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Introduction

In Western societies, some of the most common causes of death are the various

complications of atherosclerosis. Many known genetic and environmental risk factors

contribute to the development of atherosclerosis. These include elevated levels of modified

low density lipoproteins (LDL), free radicals arising from oxidative stress and cigarette

smoking, obesity, hypertension, diabetes mellitus, genetic alterations, hyperactive

monocytes/platelets, chronic infections such as by microorganisms like herpes viruses,

Chlamydia pneumonia or others, and obviously combinations of these or as yet unrecognized

factors (1).

Atherosclerosis is a multifactorial, complex pathological process. Cell-cell and cell-matrix

interactions and communications involving macrophages, vascular smooth muscle cells,

vascular endothelial cells, and lymphocytes are all likely to be involved. Three cellular

components of the circulation, monocytes, platelets, and T lymphocytes, together with two

cell types of the artery wall, endothelial and smooth muscle cells (SMC), interact in multiple

ways to generate atherosclerotic lesions (2).

Atherogenesis appears to depend on the local presence of high amounts of modified LDL.

Normally, LDL is transported trough the LDL receptors, which is a feedback inhibited

process by the accumulation of cholesterol within the cell. However, if the LDL is chemically

(most frequently oxidized) or enzimatically modified the LDL receptor can not transport it

(1).

Modified LDL has the capacity to induce the expression inflammatory factors, in response to

which monocytes migrate into the intima and differentiate into resident macrophages.

Macrophages are able to take-up the modified LDL by scavenger receptors (SR) (3, 4).

This unregulated uptake of modified LDL forms leads to foam cell formation (5, 6). At the

early stage of atherosclerosis foam cells form clusters. The intensive aggregation of these

cells leads to the formation of the atheromatous core, and to the development of fatty streak

lesions.

This process is accompanied by the migration of smooth muscle cells to the intima. They

proliferate, and secrete extracellular matrix proteins that form a fibrous plaque (7).
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This phase of plaque development is influenced by interactions of macrophages and T cells

and it is result of both humoral and cellular responses. (8). Similarly, macrophages,

endothelial cells, and smooth muscle cells are activated and produce pro-inflammatory

cytokines, such as TNF-alpha, IL-6, MCP-1 or IL-8 (9). If prolonged, these inflammatory

processes can induce the cell death of lipid-loaded macrophages and smooth muscle cell by

apoptosis or necrosis (10).

The above processes lead to the formation of the necrotic core and the accumulation of

extracellular cholesterol. Around the necrotic core, macrophages and macrophage foam cells

produce and release metalloproteinases that facilitate plaque destruction (4). Plaque rupture

exposes blood components to tissue factor, initiating coagulation, the recruitment of platelets,

and the formation of a thrombus.

All these steps of atherosclerosis are controlled by several cytokines and chemokines. A

number of cytokines have been shown to induce monocyte recruitment, cell migration or alter

the scavenger receptor and adhesion molecule expression. They regulate the immune

responses also; they have an influence on dendritic cell maturation and Th1/Th2 development.

Cytokines generate cellular responses through activation of intracellular signal transduction

networks. In atherosclerosis, the NF-B and Mitogen Activated Protein Kinase (MAPK)

pathways are amongst the most prominent ones.

The aim of my studies was to elucidate the biological effects of a novel family of MAPK

regulators, called tribbles, in inflammatory monocyte function in the context of

atherosclerosis.

Atherosclerotic Plaque Formation

LDL modification

Modification of LDL is one of the key triggers in the initiation and the progression of

atherogenesis. Cholesterol is transported in the circulation by plasma lipoproteins. The

principal cholesterol carrier, LDL, serves as an exogenous source of cholesterol and other

cellular nutrients for hepatic and various extrahepatic tissues, where it is taken up by receptor-

mediated endocytosis. LDL particles have a cholesteryl-ester rich core and a surface
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dominated by free cholesterol, phospholipids and apolipoprotein B100 (apoB), the normal

ligand for the LDL receptor (11).

Under most circumstances, LDL circulating in plasma is protected from oxidation by the

presence of antioxidants. However LDL does not only occur in its native form. It can be

trapped in the extracellular matrix of the artery wall, thus being subjected to a variety of

enzymatic and chemical modifications. Many of these modified forms of LDL, including

oxidized LDL are thought to be pro-atherogenic (12).

The oxidative modification process of LDL can be divided into three stages. The first is

known as the initiation of lipid peroxidation, the second stage being the propagation stage of

oxidation and the final step is the modification of the apoB moiety of LDL. After

modification, apoB is no longer recognized by the LDL receptor but, instead, is recognized by

scavenger receptors (13).

The precise entity responsible for the initiation of lipid peroxidation in biologic systems is

currently unknown. A number of species have been proposed that include hydroxyl radical,

Fe2+/Fe3+/O2, peroxynitrite, tyrosyl radical, and even enzymes, such as lipoxygenase.(14)

Other processes of LDL modification include glycation and incorporation in immune

complexes (13).

Modified LDL enhances monocyte adhesion to the endothelium by inducing expression of

adhesion molecules such as integrins. Modified LDL also activates platelets, thereby

promoting platelet-monocyte aggregation. LDL increases monocyte recruitment to the

vascular wall also by directly acting on monocytes (13).

Modified LDL induces not only monocyte adhesion and recruitment, but it provokes/triggers

the production of chemotactic and growth factors in various vascular cell types. Thus, for

instance, in endothelial cells modified LDL can induce the expression and release of CCL2

(MCP-1) and macrophage colony stimulating factor (M-CSF) as well as CXCL8 (IL-8) (13).

Monocyte recruitment

The interaction of monocytes with activated luminal endothelium is a central event

leading to atherosclerotic alteration of the arterial intima. Monocytes migrate into the

subendothelial layer of the intima, where they differentiate into macrophages or dendritic

cells.
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The adherence of monocytes to the endothelium and their subsequent migration into the

arterial wall are facilitated by the presence of cellular adhesion molecules on the surface of

endothelial cells (15, 16). Monocytes express both the 1 integrin CD49d/CD29 and the 2

integrins CD11a/CD18, CD11b/CD18 and CD11c/CD18. In resting monocytes, most of

CD11b/CD18 and CD11c/CD18 are stored in intracellular granules. Stimulation of monocytes

with inflammatory mediators rapidly mobilizes these integrins, leading to their trafficking to

the cell surface, where they become accessible for chemokine-dependent activation to mediate

firm adhesion (15).

The strong attachment of monocytes to the luminal surface of the endothelium is mediated by

the interactions of the integrins with ligands that belong to the immunoglobulin superfamily;

in particular, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion

molecule-1 (VCAM-1) (17).

Modification of LDL in the intima leads to the upregulation of adhesion molecules on the

endothelial cells (EC), particularly vascular cell adhesion molecule-1 (VCAM-1) and

intercellular adhesion molecule-1 (ICAM-1). Thus monocyte and leukocyte recruitment is

initiated, leading to enhanced transmigration of monocytes.

Activated monocytes roll on the surface of luminal endothelial cells and adhere to the

endothelial cells activated in response to signals originating from the intima. Rolling of

monocytes along the endothelial monolayer is mediated by the selectin family of adhesion

proteins. L-selectin is expressed on the surface of monocytes while P-selectin and E-selectin

are expressed on the luminal surface of activated endothelium (15, 16).

Following their adherence to the endothelium, monocytes migrate across the endothelium into

the subendothelial space of the arterial intima. It is known that the process of extravasation

involves not only a range of adhesion molecules but also soluble and immobilized

chemokines that both stimulate adhesion and guide the adherent monocytes across the

endothelium. The interaction with specific chemokine receptors first causes the arrest of

leukocytes rolling along the endothelium through the activation of adhesion receptors. Then,

chemokines stimulate the transendothelial migration. Once entered in the arterial wall,

monocytes undergo differentiation (18).
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LDL uptake and foam cell formation

In the arterial intima, monocytes differentiate into macrophages. Macrophages are

normally protected from the accumulation of toxic cholesterol load by multiple mechanisms,

notably the downregulation of surface LDL receptor molecules in response to repleted

intracellular cholesterol stores (19). However, as the LDL accumulates, their lipids and

proteins undergo oxidation and glycation and modified LDL may be taken up by alternate

“scavenger” or “oxidized LDL” receptors that are not similarly downregulated, when the

cholesterol load is in excess.

Monocyte-derived macrophages in arteries express cell surface receptors for LDL (LDL-R) as

well as scavenger receptors for modified LDL (SR-A, CD36, CD68). The majority of

macrophages avidly accumulate lipids in their cytoplasm and this leads to their transformation

into foam cells. Macrophage-foam cells in human arteries display a remarkable heterogeneity

with some foam cells containing mostly membrane-bound cytoplasmic lipid droplets while

others contain membrane-free lipid droplets (20, 21).

Once LDL is modified and taken up by the macrophages, it activates the nascent foam cells,

thereby inducing release of inflammatory mediators such as TNF-, IL-1, IL-8, and M-CSF.

This, in turn, leads to increased transcription of the LDL-receptor gene and consequently

enhanced binding of LDL to the endothelium and smooth muscle cells. Consequently, SMCs

can also turn into foam cells (22, 23), feeding the process even further.

Scavenger receptors

A number of scavenger receptors for modified LDL (SR-A, SR-B, SR-C SR-D, SR-E,

SR-F, SR-PSOX) have now been identified not only in macrophages but also non-

macrophage cells.

Oxidised LDL induces the production of M-CSF by various vascular cells and macrophages

in atherosclerotic lesions. M-CSF increases the synthesis of type I and type II class A

macrophage scavenger receptors (MSR-A I, II) (24), creating a positive feedback loop. SR-A

type I and type II were the first identified members of the scavenger receptor family (25, 26).

Several studies reveal important roles of these receptors in atherogenesis. SR-A gene

knockout mice crossed with either the atherosclerosis-susceptible apolipoprotein E (apoE)-

knockout mice (27) or LDL-receptor knockout mice (28) show a marked reduction in the size
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of atherosclerotic lesions (~50% reduced relative to apoE-/- and ~20% reduced relative to

LDLR-/-, respectively), suggesting that SR-A has an important pro-atherogenic function in

vivo. However, MSR-A I, II deficiency does not induce the complete block of uptake of these

ligands by macrophages, implicating that receptors other than MSR-A are also play a role in

the uptake of these ligands by macrophages (27). However, a recent experiment using

peritoneal macrophages obtained from double knockout mice of SR-A and CD36 clearly

showed that SR-A and CD36 account for 75–90% of degradation of acLDL or oxLDL,

providing solid evidence that SR-A and CD36 are the major receptors, responsible for

endocytic uptake of modified LDL by macrophages or macrophage-derived cells (29). CD36

belongs to the class B scavenger receptor family, which includes the receptor for selective

cholesteryl ester uptake, scavenger receptor class B type I (SR-BI), and lysosomal integral

membrane protein II (LIMP-II). It is a highly glycosylated 88 kDa protein that binds to

various ligands such as fatty acids, collagen, thrombospondin, anionic phospholipids, and

oxLDL (30). CD36 expression is broad and includes microvascular (but not large vessel)

endothelium, adipocytes, skeletal muscle, dendritic cells, epithelia of the retina, breast, and

intestine, smooth muscle cells, and hematopoietic cells, including erythroid precursors,

platelets, megakaryocytes, and monocytes/macrophages (30).

LOX-1 (lectin-like OxLDL receptor-1) is a C-type lectin identified as a novel scavenger

receptor for oxLDL which is highly expressed on endothelial cells (31), and mediates

endocytic uptake and subsequent lysosomal degradation of oxLDL. LOX-1 is highly

expressed by endothelial cells covering early atherosclerotic lesions (32), indicating a crucial

role as an initiator as well as accelerator for the formation of atherosclerotic lesions.

The macrophage scavenger receptor SR-PSOX was identified by expression cloning from a

cDNA library. Human SR-PSOX is a type I membrane protein of 254 amino acids that shows

no homology to other scavenger receptors. SR-PSOX recognizes phosphatidylserin and

oxLDL and is predominantly expressed in lipid laden macrophages of human atherosclerotic

lesions (33).

Necrotic core

Dysregulated uptake of modified forms of LDL by scavenger receptors leads to foam

cell formation (5). At the early stage of atherosclerosis, foam cells form clusters. The
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intensive aggregations of these cells lead to the formation of an atheromatous core within the

wall and to the development of fatty streak lesions. This process is accompanied by the

migration of smooth muscle cells to the intima. These proliferate and secrete extracellular

matrix proteins and collagen and form a fibrous cap overlying the central core that together

called as fibrous plaque (7). This phase of the development of atherosclerosis is influenced by

interaction of macrophages and T cells expressing Th1 and Th2 cytokines resulting in both

humoral and cellular responses. In addition to macrophages, endothelial cells and smooth

muscle cells are also activated and produce proinflammatory cytokines such as TNF-alpha,

IL-6 and MCP-1. Later, these inflammatory processes and the toxicity of oxidized LDL for

macrophages (10) can cause the death of lipid-loaded macrophages and smooth muscle cells

by apoptosis and/or necrosis.

In early atherosclerosis, macrophage apoptosis is a frequently occurring event. This early

lesional macrophage apoptosis modulates the cellularity of the lesion and decreases as lesion

development progresses. In late lesions, macrophages also undergo apoptosis, albeit by

mechanisms that are probably unique to these lesions, such as free cholesterol (FC) loading

and exposure to oxysterols. In this setting, however, phagocytic clearance is not efficient and

secondary necrosis of the macrophages ensues (34). This event leads to the generation of the

necrotic cores consisting of lipids, cholesterol crystals and cell debris. Inflammatory factors in

the necrotic core may stimulate surrounding macrophages to secrete matrix-degrading

metalloproteinases (MMP) in atheroma that facilitate plaque destruction (35).

Despite this, lesions may remain quiescent in fibrous plaque state for many years. Such

lesions may never produce any symptoms during the course of a patient's lifetime. At some

point, lesion activation is initiated by rupture of the atherosclerotic plaque, leading to the

rapid onset of clinical symptoms, including Acute Coronary Syndromes or stroke.

Plaque rupture

Once a fibrous cap is formed over an atherosclerotic lesion, it becomes subject to a

number of stresses due to both blood pressure and shear on the luminal surface of the artery.

This fibrous cap can remain thick and replete with smooth muscle cells that produce collagen

adding to the stability of the plaque. Under these circumstances, shear forces and mechanical

stress from arterial pressure on the plaque are not met with any structural failure, and the lipid

core remains isolated from the circulation. However, in certain cases, often associated with
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inflammation and cytokines, components of the plaque may change such that the shoulder

regions of the atherosclerotic plaque become increasingly populated by macrophages and T

cells. Once inside the vessel wall, infiltrating cells interact with ECM, oxidized lipids, and

with each other. All of these interactions have been shown to increase production of pro-

inflammatory cytokines such as IL-1 and TNF- and matrix-degrading enzymes (36, 37).

These enzymes include serine proteases, tissue-type and urokinase-type plasminogen

activators, plasmin, the matrix metalloproteninases (MMPs), and cysteine proteases (14).

Cytokines also promote the apoptosis of vascular smooth muscle cells. In this scenario, the

plaque becomes more acellular and contains less interstitial collagen. When the structural

components of the fibrous cap are injured and degraded by a variety of MMPs, the plaque

contents are exposed to the luminal surface of the artery. Since the lipid core contains a

number of prothrombotic components, contact with blood leads to a thrombotic response that

may precipitate a vascular insufficiency with catastrophic consequences such as heart attack

or stroke.

Atherosclerosis as a chronic inflammation

Russell Ross published a remarkable review in the New England Journal of Medicine

entitled: “Atherosclerosis: a chronic inflammatory disease” in 1999 (38). The view that

atherosclerosis is indeed a chronic inflammatory disease initiated by monocyte/lymphocyte

adhesion to activated endothelial cells (EC) is now widely accepted and substantiated by

experimental and clinical observations.

The presence of immune cells and their products in the human and/or experimental

atherosclerotic lesion indicates their participation in lesion biology. A number of immune  cell

types have been detected in human atherosclerotic plaques, including macrophages, dendritic

cells, CD4+, CD8+ T cells (39), and several distinct pro-inflammatory (TNF-, IL-1, IL-12,

IL-18, IFN) and anti-inflammatory (TGF, IL-4, IL-10) cytokines (40). These observations

support the hypothesis that both innate and adaptive immune mechanisms are involved in

atherogenesis.

Innate immunity provides the first line of defence for the host and its activation generates fast

and blunt responses. It is characterized by a natural selection of germline-encoded receptors,
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which focus on highly conserved motifs in pathogens. It involves several cell types not only

specialized cells. In the case of atherosclerosis, endothelial cells, vascular smooth muscle

cells, and most importantly macrophages (and dendritic cells) are all involved in generating

innate immune responses. These cell express a limited repertoire of highly conserved pattern-

recognition receptors (PRRs), such as scavenger receptors, Toll-like receptors (TLRs) and IL-

1 receptor (IL-1R) (41, 42) The importance of innate immunity in atherogenesis has been

verified in knockout animal experiments. Chi et al. showed that the complete absence of IL-

1R1 markedly reduces the progression of atherosclerosis in ApoE-/- mice. This effect of IL-

1R1 absence persisted whether the inciting factors were genetic, dietary, or infectious, alone

or in combination; thus, ApoE+/-/IL-1R1-/- mice have reduced atherosclerotic lesions

compared with ApoE+/-/IL-1R1+/- mice, whether fed chow or an high fat diet, and whether

inoculated with an oral pathogen, P. gingivalis or not (43). The recruitment of monocytes is

also essential for lesion formation, as hypercholesterolemic mice that are deficient in MCP-1

or in expression of CCR2 (its cognate receptor on monocytes) have a greatly reduced

incidence of atherosclerosis (44, 45). Similarly, hypercholesterolemic Op/Op (Csf1–/–) mice,

which lack monocyte colony-stimulating factor and therefore lack differentiated macrophages

in their tissues, show minimal atherosclerosis (46). Macrophages and dendritic cells are

important in adaptive immunity in their capacity to ingest pathogens and present antigens to

initiate adaptive immune responses.

In contrast, adaptive immunity is more precise but slower in mounting an adequate response

to challenge. Specific molecular structures on antigens are recognized by antigen receptors,

such as T-cell receptors (TCRs) and B-cell receptors (BCRs), which provide great specificity

and affinity to the antigen. Dendritic cells and macrophages can activate T cells presenting the

antigen through their class I or class II major histocompability complex (MHC). T cells are

prominent components of both the early and late lesions. Most T cells in lesions bear CD3 and

CD4 markers and ab-TCR. These represent about two-thirds of all CD3+ cells in advanced

human lesions and more than 90% of T cells in lesions of ApoE –/– mice (47). In addition,

moderate numbers of CD8+ T cells and relatively few B cells can also be found, although

they mainly localised in the adventitia surrounding lesions (48, 49).
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Cytokines and chemokines

In 1989, Balkwill and Burke defined cytokine as “one term for a group of protein cell

regulators, variously called lymphokines, monokines, interleukins, interferons, which are

produced by a wide variety of cells in the body, play an important role in many physiological

responses, are involved in the pathophysiology of a range of diseases, and have therapeutic

potential”(50). Nowadays, the cytokine family consists of more than 50 secreted factors

involved in intercellular communication and regulation of fundamental biological processes.

Cytokines play an essential role in all of the steps of the development, progression and

pathological complications of atherosclerosis. Their production is induced by a range of

triggers. Primary triggers include modified LDL and lipid oxidation products such as oxidized

phospholipids and lysophosphatidylcholine. Secondary triggers are heat shock proteins,

infectious agents, matrix metalloproteinases, adipokines and platelet products. Once cytokine

release is initiated and the atherosclerotic lesion developed, a number of factors can

participate in maintaining and amplifying cytokine production.

Macrophages are a major source of cytokines in the atherosclerotic plaque. Their repertoire of

expression is huge, including the pro-inflammatory cytokines TNF-, IL-1, IL-6, IL-12, IL-

15, and IL-18, as well as the anti-inflammatory cytokines IL-10 and TGF- (51).

Although T and B lymphocytes, the detector cells of adaptive immune responses, differ

entirely from those of innate immunity, the effector pathways used by both overlap to a great

extent. Thus, T cell activation also leads to secretion of a range of cytokines. In

atherosclerotic lesions, T cells express both Th1 and Th2 cytokines (8). Th1, the most

prevalent type of CD4+ cells, induces macrophage activation and promotes inflammation by

secreting interferon- (IFN-) and tumor necrosis- (TNF-), important pro-inflammatory

cytokines. However, Th2 cells suppress inflammation and attenuate macrophage activity via

several anti-inflammatory cytokines, including interleukin-4 (IL-4), interleukin-10 (IL-10)

and transforming growth factor- (TGF-). Hansson and colleagues (52) determined the

expression profiling of Th1 and Th2 cytokines in advanced human atherosclerotic plaques.

They found that IL-2 was present in 50% of plaques, and IFN- was detected in some but not

all of the IL-2-positive plaques. In contrast, the expression of IL-4 and IL-5, both Th2

cytokines, and TGF- is produced by both Th1 and Th2 cells. Others have found that both IL-

10 (53) and TGF- are abundantly expressed in all plaques (54). Both Th1 and Th2 cells play
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a role throughout the development of atherosclerosis, Th1 being predominant during the

initiation of lesion formation with a switch toward an pro-atherogenic Th2 response in the

chronic phase of plaque development (55). The balance between pro-inflammatory and anti-

inflammatory cytokines is a crucial determinant in disease development and progression.

Chemokines (chemotactic cytokines) are also produced in atherosclerotic plaques.

Chemokines belong to a large superfamily of low-molecular-weight secreted proteins with a

highly homologous three-dimensional structure. They have been classified into four

subfamilies, CC, CXC, CX3C, and XC, depending on the relative position of the first two N-

terminal cysteines. The receptors for chemokines were found to be seven transmembrane-

spanning receptors that signal through G-protein interactions (56). Chemokines are produced

by virtually all somatic cells, including the cellular constituents of the vessel wall, in response

to inflammatory stimuli. Among the chemokines that are found in atherosclerotic lesions,

monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8)/CXCL8 have attracted

intense interest.

IL-8/CXCL8

Interleukin-8 (CXCL8, IL-8), a member of the CXC chemokine family, was originally

identified as a potent chemotactic factor playing a central role in migration and activation of

neutrophils. It is a multifunctional chemokine involved in many biological processes.

Pro-atherogenic oxidized low density lipoprotein has been shown to induce IL-8 secretion in

primary human peripheral blood monocytes (57) and IL-8 produced by macrophages as well

as CXCR2 expression has been shown within atherosclerotic lesions (58, 59). IL-8 has been

shown to be a potent chemotactic factor for both T lymphocytes and vascular smooth muscle

cells and is also mitogenic for the latter. Migration and proliferation of smooth muscle cells

are another hallmark of atherosclerosis, and neovascularization is also a commonly observed

feature of atherosclerotic lesions (57).

Signalling events

Macrophages express receptors that recognize a broad range of molecular patterns

foreign to the mammalian organism but commonly found on pathogens. These pattern
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recognition receptors (PRR) include various scavenger (ScRs) and Toll-like receptors (TLRs)

(60). Their ligands contain pathogen associated molecular patterns (PAMPs) such as

lipopolysaccharides (LPS), surface phosphatidylserine, and aldehyde-derived proteins.

Whereas ligation of scavenger receptors leads to endocytosis and lysosomal degradation of

the recognized particles (61), engagement of TLR transmits transmembrane signals that

activate nuclear factor-B (NF-B) and mitogen-activated protein kinase (MAPK) pathways

(62-64).

NF-B and MAPK signal processing pathways are shared by all eukaryote species from

unicellular organisms to mammals. The activation of these pathways is controlled via multiple

mechanisms, including intracellular localisation of various components, expression and

regulated degradation of inhibitory subunits and phosphorylation of effector members by

upstream kinase components of the pathway. Similarly, a variety of mechanisms have been

described to be key in the inactivation of the signalling systems. These include activation of

phosphatases, degradation of active components and de novo expression of inhibitory

proteins.

NF-B pathway

The NF-B pathway is one of the main signalling pathways activated in response to

pro-inflammatory cytokines, including TNF-, IL-1, and IL-18, as well as following

activation of the Toll-like receptors (TLR) by the pattern recognition of pathogen-associated

molecular patterns. Activation of this pathway plays a central role in inflammation through

the regulation of genes encoding pro-inflammatory cytokines, adhesion molecules,

chemokines, growth factors, and inducible enzymes. Activated NF-B has been identified in

SMC, macrophages, and EC of human atherosclerotic lesions (51).

The recognition of lipopolysaccharide as a PAMP from Gram-negative bacteria is mediated

via the three membrane proteins CD14, MD2, and TLR4. Although CD14 has numerous

ligands, TLR4 and MD-2 provide greater specificity for LPS. Activation of TLR4 triggers

several subsequent steps including the recruitment of intracellular scaffold proteins (such as

MyD88, TIRAP, and Tollip), autophosphorylation of IRAK and ubiquitination of TRAF6

(family of proinflammatory signal-transducing adapter proteins.) TRAF6 associates with the
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MAP3 kinase TAK1. From TAK1, two signalling pathways diverge; one ultimately leads to

NF-kB activation and the other to MAP kinase activation (51).

MAPK pathway

MAPKs are evolutionary conserved enzymes connecting cell-surface receptors to

critical regulatory targets within cells. One of the most explored functions of MAPK

signalling modules is regulation of gene expression in response to extracellular stimuli.

MAPKs activate transcription factors without affecting DNA binding and also regulate gene

expression through post-transcriptional mechanisms involving cytoplasmic targets.

MAPKs regulate cell proliferation, control cell survival, death and cell motility. It has been

demonstrated that activation of MAPK cascades occurs in response to a wide range of stimuli,

including pro-inflammatory cytokines, growth factors, mechanical stimuli (stress) and integrin

dependent cell/matrix interactions (65). Actual roles of each MAPK cascade are highly cell

type and context dependent (66).

Many MAPKs activate specific effector kinases, MAPK-activated protein kinases

(MAPKAPKs), and are inactivated by MAPK phosphatases. All MAPKs recognize similar

phosphoacceptor sites composed of a serine or threonine followed by a proline, and the amino

acids that surround these sites further increase the specificity of recognition by the catalytic

pocket of the enzyme (66).

The protein kinases that form MAPK signalling modules may interact via a series of

sequential binary interactions to create a protein kinase cascade. The signalling network

comprises of a three level kinase cascade: MAPKKK (MEKKs and MLKs, for instance),

MAPKK (MKK3, 6, 4, 7 and MEK1) and MAPK (p38, JNK and ERK). Three parallel

cascades are now commonly described: p38, the extracellular signal

regulated protein kinases (ERK), and stress activated protein kinase/c-Jun N-

terminal kinases (JNK).

The insulin/mitogen-regulated extracellular signal regulated kinase (ERK) pathway was the

first mammalian MAPK pathway to be identified. The kinase components of the ERK module

contain a linear cascade consisting of the Raf (MAP3K), MEK (MAP or ERK kinase-



18

MAP2K) and ERK (extracellular signal-regulated kinase-MAPK) kinases. In mammalian

cells monomeric GTPases of the Ras superfamily are potent upstream activators of signal

transduction pathways, and Ras is pivotal to the activation of the ERK pathway. Ras regulates

ERK predominantly through triggering the activation of the Raf-1. There are three members

of the Raf-1 family (Raf-1, B-Raf, and A-Raf), two distinct MEK proteins (MEK1 and

MEK2), and two ERK members (ERK1 and ERK2).

The second identified pathway was the stress-activated protein kinases/c-Jun NH2-terminal

kinases, a family of MAPKs activated by environmental stresses and inflammatory cytokines

of the TNF superfamily.

The p38 MAPKs are a second mammalian stress activated MAPK family. Originally

described as a 38-kDa polypeptide, that underwent Tyr phosphorylation in response to

endotoxin treatment, and osmotic shock. Potent upstream activators of JNK and p38 pathways

are members of the Rho subfamily of the Ras superfamily. They regulate JNK through MKK4

and MKK7. p38 MAPK is activated by MKK3, MKK4, and MKK6.

Each MAPKK, however, can be activated by more than one MAPKKK, increasing the

complexity and diversity of MAPK signalling. These MAP3Ks include TAK1 and members

of the ASK1, MEKK, and MLK families (67, 68). This complexity extends to the MAP3K

enzymes in these pathways, with multiple protein kinases with different selectivity for

activation of JNK, p38 MAPK, or both of these.

Whilst Jun kinases (JNK) and p38 MAPKs have been implicated in responses primarily to

stress (heat, hypoxia, chemical, oxidative, etc. and pro-inflammatory cytokines), extracellular

signal regulated protein kinases (ERK) primarily respond to mitogenic stimuli such as growth

factors (PDGF) (69), oxidised LDL (70) or Ang II (71) in vascular cells. In most cases a given

stimulus will activate more than one group of MAPKs. The specific contribution of each

MAPK pathway to a physiological response through different transcriptional factors varies

from cell type to cell type. In some cases, MAPK pathways can co-operate, but they can

antagonise in others (72, 73). Whilst activation of MAPK cascades occurs under physiological

conditions, increased MAPK activity has been reported in a number of pathogenic conditions,

including cardiovascular cellular responses (74, 75).

A large body of literature suggests that MAPKs may be organised into multiprotein

complexes to create a functional signalling module (67, 76-79). This organisation modulated
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by scaffold proteins, which interact with each of the protein kinases and control the spatial

organisation of MAPK signalosomes. These scaffold complexes allow for the precise

regulation of MAPK signalling. Seminal studies of Saccharomyces cerevisiae have

established that scaffold proteins are indeed physiologically relevant to the regulation of

MAPK modules in yeast. Thus the mating response is regulated by a MAPK module that is

coordinated by the scaffold Ste5p (78), the first MAPK cascade scaffold to be described (79).

A number of mammalian MAPK scaffolds have been reported in recent years (67). Most of

these proteins have been shown to associate one or more MAPKs, MAPKKs or MAPKKKs.

The best known scaffold proteins are the JNK interacting proteins (JIP-1,2,3,4), kinase

suppressor of Ras (KSR), and the MEK-partner 1 (MP1). The MAPK scaffolds are important

signal transducers, facilitating the assembly and activation of MAPK signalling modules.

Mathematical modelling indicates that a scaffold protein can confer complex kinetic

regulatory properties on the function of a MAPK module (79, 80). In addition, scaffold

complexes can prevent the activation of MAPK modules by irrelevant stimuli and can provide

spatial and temporal control of MAPK signalling. Depending on their concentration, scaffolds

may be able to potentiate or inhibit MAPK function (67, 80).

Tribbles

Our group described the important role of a recently identified family of proteins,

tribbles, in the signal processes of monocytes and smooth muscle cells (81, 82). Tribbles are a

novel family of proteins with MAPK modulator, scaffold-like function. Using a genome-wide

functional screen for components of inflammatory signalling networks, Kiss-Toth at al.

identified a novel protein, human homologue of Drosophila tribbles (TRB) (83, 84). A

subsequent database search revealed the existence of three mammalian tribbles-like proteins

(TRB-1, 2 and 3).

Tribbles was first identified in Drosophila as a gene that is required for gastrulation,

oogenesis, and viability (85-87). Tribbles coordinates cell division during gastrulation by

promoting turnover of the cell cycle protein string/CDC25, thereby inhibiting premature

mitosis. In this context, loss of tribbles function was associated with increased proliferation,

whereas overexpression of tribbles slowed the cell cycle (86). Tribbles also promotes the
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degradation of slbo, the Drosophila homolog of the C/EBP family of basic region-leucine

zipper transcription factors, during oogenesis (88).

In humans there are three tribbles homologues, TRB-1,-2,-3 (89).

TRB-3 is the best studied member of the mammalian tribbles family. Identification of this

protein was first reported by two groups in 1999. Mayumi- Matsuda and colleagues (90)

described it as a gene that is up-regulated in a neuronal cell line undergoing nerve growth

factor withdrawal induced apoptosis. In a study published in parallel, Klingenspor et al.(91)

screened for differentially expressed genes in the fatty liver dystrophy (fld) mouse. In this

study, Trb-3 was reported as Ifld2, a gene highly induced in new born animals. The human

TRB-3 gene is located on chromosome 20 at p13-p12.2.

TRB-2 was originally identified as a transiently expressed, mitogen induced, and highly labile

cytoplasmic phosphoprotein, induced by thyroid hormone in dog thyroid cells (92). TRB-2 is

located on chromosome 2, at p24.3.

Human TRB-1 was first identified as a homologue of TRB-2 by Wilkin et al. (92), based on a

partial cDNA sequence. The human gene is located on chromosome 8 at q24.1.

Hegedűs et al. recently undertook a systematic data mining to annotate tribbles orthologues

and to characterise evolutionary relationships in tribbles protein family between the various

eukaryotic species. The unicellular protozoa Monosiga ovata represented the earliest point on

the evolutional tree where a tribbles-related sequence was identified. This finding is in line

with the hypothesis that tribbles are ancient proteins and may have a key role in fundamental

cellular processes. There is a single tribbles gene in invertebrates; the Trb-1, Trb-2 and Trb-3

subfamilies began to segregate in fish. Interestingly, neither amphibians nor birds have Trb-3

related gene while mammals possess all three tribbles subfamilies. This suggests two possible

explanations; independent gene duplication of mammals and fish genes then followed by

convergent evolution, resulting in the appearance of similar Trb-3 like genes in both cases or.

The mammalian Trb-3 gene may have evolved directly from the fish counterparts (93).

The proteins encoded by these tribbles genes may serve an important regulatory function in

modulating the activity of various signalling pathways and transcription factors.

Based on amino acid sequence, tribbles resembles a serine-threonine kinase; however, it has a

variant catalytic core that lacks a canonical ATP binding site, and their function is unknown.
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Tribbles structure and localization

Tribbles proteins consist of 3 domains: N-terminal domain, kinase-like domain and C-

terminal domain. Tribbles kinase-like domain is located in the middle of the protein, with

relatively short N- and C-terminal flanking sequences. These N- and C-terminal segments

proved to be the less conserved regions within the gene family.

The N-terminal (NT) segment of tribbles proteins is about 60–80 residues long in most of the

investigated organisms. The most striking feature of the NT fragment is the very high serine

(7–24%) and proline content (6–23%), mostly in the sequence stretch adjacent to the kinase-

like domain. The kinase-like domain is highly conserved during evolution. The functionality

of tribbles kinase-like domain was addressed in a study by Bowers et al (94). These tests did

not detect kinase activity for tribbles. The C-terminal fragment of tribbles proteins is in most

cases about 35–45 residues in length and is rich in charged amino acids. Some data suggest

that this region could be important in establishing protein– protein interactions (89).

A number of studies have investigated intracellular localisation of the various tribbles family

members. However, it is notable that all of the published data to date is based on

overexpression.

When expressed as a GFP fusion protein, TRB-1 was localized in the nucleus of HeLa cells.

The N-terminal, proline-rich domain is necessary for this localisation. Wilkin et al. used a

myc-tagged expression construct of TRB-2 and found that the protein expressed was mainly

localised in cytoplasmic granules. Our group has recently shown a distinct cytoplasmic

localisation for TRB-2, again by the use of GFP fusion proteins.

TRB-3-GFP fusion protein is nuclear in Cos-7, GT1-7, CHO, HeLa, 293 cells, transfected

with FLAG tagged TRB-3 also showed nuclear staining (89).

Cell type specific function

Many aspects of tribbles action appear to be cell type and/or organism specific. It has been

shown that tribbles are able to bind to various MAPKKs and that their concentration regulates

preferential activation of the different MAPK pathways, presumably leading to different

cellular responses (95).

Sung et al demonstrated that the pattern of tribbles regulation is strongly cell-type dependent.

They found whilst TRB-2 expression is up-regulated at 6 h in monocytes, mRNA levels of the
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same gene decrease sharply (and transiently) in response to an identical stimulus (IL-1) in

synovial fibroblasts. Similarly, TRB-3 expression was differentially regulated in the various

cell types tested. Whilst low mRNA levels are detected at 3 and 6h in synovial fibroblasts and

in vascular smooth muscle cells (VSMC), TRB-3 expression is up-regulated in THP-1 cells

with the highest levels observed at 10 h. The dynamics of expression for these genes was also

influenced by the cell types tested. TRB-1 was rapidly and very transiently upregulated in

VSMC and THP-1, whilst a profound but delayed activation was observed in synoviocytes.

Their results also demonstrate cell-type specificity for tribbles action. Whilst both TRB-1 and

-3 had the ability to block AP-1 activation in epithelial cells, only TRB-3 was active in

macrophages and neither of these proteins interfered with AP-1 activation in fibroblast cells

(82).

The hypothesis for the molecular mechanism of action is that tribbles may compete for the

binding site with the MAPKs, thus regulating their activation. This model may explain why

evolution preserved a catalytically inactive kinase domain from unicellular organisms to

mammals (95).
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Hypothesis and aims of the study

The hypothesis to be tested by my studies was that tribbles proteins act as regulatory

molecules in inflammatory processes through modulation of MAPK signalling. Thus they

may have a role in atherogenesis, especially in the inflammation induction role of

macrophages.

Aims of my studies were to investigate the role of human tribbles, particularly human TRB-2,

in human monocyte cells function in vitro and to elucidate related molecular mechanism by

which tribbles interact with protein kinases and regulate activity of binding partners or

activation of down stream protein molecules.

We examined:

- the uptake of modified LDL molecules by monocyte

- the role of MAPK pathways and tribbles in LDL uptake by monocytes

- the effect of modified LDL molecules on TRB-2 expression level

- the effect of TRB-2 on LPS induced IL-8 production

- and the role of the MAPK pathways in IL-8 production.

Materials and methods

Ethics:

Human samples were obtained under the ethical approval granted by the North Sheffield

Research Ethics Committee. This study conforms to the principles outlined in the Declaration

of Helsinki.

Cell culture:

Human monocytic leukaemia THP-1 cells were purchased from ATCC and maintained in

RPMI (Gibco, Invitrogene) supplemented with 10% foetal calf serum (FCS), L-glutamine and

penicillin-streptomycin.

THP-1 transfection with DharmaFECT
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Transfections were performed using DharmaFECT 2 transfection reagent (Dharmacon, Inc.,

Lafayette, CO USA) according to the manufacturer’s recommendation. For experiments

1,7x105 cells were used on 6 well plates, per transfection.

THP-1 electroporation with siRNA

Transfections were performed using Nucleofector (Amaxa AG, Cologne Germany) using

program U-001 and Cell line Nucleofector Kit V solution (Amaxa AG, Cologne Germany).

For most experiments, 1.0 × 106 cells were used per nucleofection. siRNA SmartPool against

human TRB-1,2,3 and MAPKKs were purchased from Dharmacon (Dharmacon, Inc.,

Lafayette, CO.) and used according to the manufacturer’s recommendation. After

transfection, cells were incubated for 4 h. After 4 h cell were divided into 24well plate 1,5x

105 cell per well.

ELISA:

THP-1 cells were transfected by specific siRNA, stimulated for 36 h by 100 ng/ml LPS and

the production of IL-8 was measured by ELISA (R&D Systems, Minneapolis, MN USA).

LDL uptake

Monocyte uptake of acLDL (Molecular Probes, Eugene, OR USA) was evaluated by flow

cytometry using lipoproteins labelled with the fluorescent probe Dil (1,1’-Dioctadecyl-

3,3,3’,3’-tetramethylindocarbocyanine perchlorate). 1,5x105 THP-1 cells were treated with

5g/ml Dil-labeled acLDL for 1, 2, 4 and 24 h. At the end of incubation cells were washed

with PBS and then examined on FACScan cytometer (Becton Dickinson, Franklin Lakes, NJ

USA). The Dil fluorescence was recorded on channel FL2 and analyzed by the CellQuest

program.

MAPK inhibitor treatment

MEK1 inhibitor (PD98059), p38 MAPK inhibitor (SB203580) and JNK MAPK inhibitor

(SP600125) were purchased from Calbiochem (Merck KGaA, Darmstadt, Germany) and used

at 20 µM for MEK1 and JNK MAPK inhibitors and 0,2 µM for p38 MAPK inhibitor. The

cells were treated for 1 h with inhibitors before the LPS treatment.
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RNA isolation and Quantitative Real-time PCR analysis

Total RNA was extracted from whole blood of patients with unstable angina and chronic

stable angina using QIAamp RNA blood minikit (Qiagen Gmbh, Hilden Germany) according

to the manufacturer's description. TRB-2, and β–actin genes were analyzed by Quantitative

real time PCR using ABI prism 7900 sequence detection system (Applied Biosystems, Foster

City, CA USA). The sequences of all primers and probes used are listed in Table1. To

quantify transcript levels of the TRB-2 gene, β–actin was used as a house keeping control, and

each sample was normalized with respect to its β–actin transcript content.

Statistical Analysis

Experimental data was analysed by the PRISM (GraphPad) package, using the appropriate

tests, as indicated in the figure legends.
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Results

LDL uptake

Previous data shows that activation and subsequent recruitment of monocytes to the

developing lesion of the arterial wall has an important role in the progression of

atherosclerosis. Monocytes internalise LDL particles and this process leads to differentiation

of monocytes into foam cells, which produce cytokines and chemokines. MAPK signalling

pathways, which are involved in inflammatory responses and LDL uptake by monocytes, can

be modulated by tribbles.

We first examined which cell activators affect LDL uptake. We treated the cells with 100

ng/ml LPS or 50 ng/ml PMA for 24 h. After the incubation we added 5 g/ml Dil-acLDL to

the cells. After 4 h incubation we measured the fluorescence of THP-1 cells by flow

cytometry. Only the LPS treatment enhanced the LDL uptake. (Fig.1.)

Figure 1. LPS but not PMA potentiates AcLDL
uptake of THP-1 cells. The impact of cellular
activation on acLDL uptake was measured by co-
incubation of THP-1 cells and acLDL in the
presence or absence of 100 ng/ml LPS or 50 ng/ml
PMA for 24 h, as indicated. Flow cytometry was
used to assess the level of LDL uptake.

To determine whether the fluorescence of cells was due to an active uptake or passive cell

surface binding of LDL, we incubated cells with Dil-acLDL at 37 oC or 4oC for 4h. As the

uptake is an active process it only occurs at 37C, whilst binding can be readily detected at

4oC. As negative control we added unlabelled LDL to cells also. Uptake was quantified by

flow cytometry. Fluorescence was enhanced in the 37oC treated cells only. (Fig.2.)
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Figure 2. Dil-acLDL is taken up by
monocytes via an active molecular
mechanism. THP-1 cells were incubated with
dil-acLDL for 4 h at 37 ◦C or 4 ◦C, as indicated.
Uptake was quantified by flow cytometry.

Student’s t-test was performed to analyse the
results. **: p<0.01

To characterize the dynamics of acLDL uptake by THP-1, LDL was added to the cells for 1,

2, 4 and 16 h. Activation of cells was achieved using 100 ng/ml LPS. There was a significant

difference between LPS treated and non treated samples at each time point with the highest

uptake observed after 16 h. The latter time point was therefore used in subsequent

experiments. To determine optimal dose of LDL we added 5, 10 and 15 g/ml Dil-acLDL to

cells for 4 h. The difference between the uptake of LPS treated and non-treated cells was

significant at all doses. We therefore used the lowest concentration for subsequent

experiments. (Fig.3.)
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Figures 3. The dynamics of acLDL uptake by THP-1 cells was investigated by Dil labelled
acLDL and analysed by FACS. (A) THP-1 cells were incubated with Dil-acLDL in the
presence (black) or absence (white) of LPS for varying times and the dynamics of acLDL
uptake was measured by flow cytometry. (B) The impact of LPS on acLDL uptake was
assessed using an increasing concentration of Dil-acLDL, as indicated. Student’s t-test was
performed to analyse the results. * p<0.05, **: p<0.01
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Role of MAPK pathway in acLDL uptake by THP-1 cells

Several reports suggest that expression of scavenger receptors is regulated via the

MAPK pathways (96-98). However, the link between LDL uptake, inflammatory activation

and MAPK signalling in monocytes is much less established. Therefore, the effect of

pharmacological inhibition of specific MAPKs on acLDL uptake was tested. Cells were

treated with MAPK inhibitors in the presence or absence of LPS (Figure 4). The results show

that blocking the activation of JNK pathway lead to a marked elevation of acLDL uptake that

was independent of inflammatory stimulation. Whilst the ERK and p38 pathways do not

influence the uptake of acLDL under non-inflammatory conditions, both pathways led to a

significant decrease in acLDL uptake after LPS stimulation. These observations demonstrate

that the enhanced capacity to take-up acLDL by inflammatory activated THP-1 cells is

mediated by specific MAPK pathways.

Figure 4. acLDL uptake is
regulated by MAPK signalling
pathways. Blocking the activation of
JNK pathway lead to a marked
elevation of acLDL uptake, this is
independent of inflammatory
stimulation. Whilst the ERK and p38
pathways influence the LDL uptake
only under inflammatory conditions.

The effect of knockdown of tribbles on the uptake of acLDL in THP-1 cells

As stated above, tribbles regulate MAPK activation. The effect of trb on LDL uptake

was therefore tested. THP-1 cells were transfected with siRNA against TRB-1,-2,-3 using

lipotransfection methods (DharmaFECT). After transfection Dil-labelled acLDL was added to
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cells and LDL uptake measured by FACS. There were no significant differences in LDL

uptake between siTRBs or siNc transfected cell.

To determine whether another siRNA transfection method would produce similar results, cells

were electroporated with Nucleofector kit. This produced similar results and it can be

concluded that reduced tribbles level do not affect the LDL uptake. (Fig. 5. a, b)
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Figure 5. siTRB-2 lipofection (A) and electroporation (B) do not modulate the LDL
uptake of THP-1 cells. THP-1 cells were transiently transfected with control (siNC) or
tribbles specific siRNA. The impact of reduced tribbles levels on acLDL uptake was
measured in the presence or absence of LPS, as previously.

The effect of overexpression of tribbles on acLDL uptake

To complement the knockdown studies, THP-1 cells were transiently transfected with

control or tribbles expression constructs and incubated with acLDL, in the presence or

absence of LPS, as above. Similar to results obtained in knockdown experiments,

overexpression of these proteins did not affect the ability of cells to take up acLDL (Fig.6.)

Figure 6. Modulation of tribbles
expression does not influence the
LPS potentiated acLDL uptake of
THP-1 cells. THP-1 cells were
transiently transfected with control
(mock) or tribbles expression
constructs. The impact of elevated
tribbles levels on acLDL uptake was
measured in the presence or absence of
LPS, as above.CTRL +LDL +LDL+LPS
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The effect of LDL on LPS induced IL-8 production and tribbles expression

Tribbles expression does not appear to regulate LDL uptake in THP-1 cells. In order to

characterize the contrary effect we investigated the role of LDL uptake on cytokine and

tribbles expression.

To investigate the effect of LDL uptake on cytokine expression, THP-1 cells were treated

with or without acetylated LDL (acLDL) after LPS stimulation, and the amount of IL-8, as a

biologically relevant marker of inflammatory activation of monocytes, was measured by

ELISA. The uptake of acLDL significantly enhanced IL-8 production. (Fig.7.)

TRB-2 mRNA expression levels were also measured by using qRT-PCR and were found to be

down-regulated by acLDL after 4 h and more efficiently after 24 h (Fig.8.a,).

hTRB-
2 Forward CATACACAGGTCTACCCCC

Reverse TCCGCGGACCTTATAGAC
Probe FAM-CTTCGAAATCCTGGGTTTT-TAMRA

-actin Forward GGATGCAGAAGGAGATCACTG
Reverse CGATCCACACGGAGTACTTG
Probe FAM-CCCTGGCACCCAGCACAATG-TAMRA

Table 1. List of the secuences of primers and probes.

Figure 7. AcLDL potentiates LPS induced IL-8
production. The impact of 24hrs acLDL and LPS
treatment alone and in combination was studied on
IL-8 protein production in THP-1 cells. Cells were
lysed and IL-8 levels were quantified by ELISA.
One way ANOVA with Dunnett's Multiple
Comparison Test was performed to analyse the
results. *: p<0.05
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Figure 8. (A) In THP-1 cells TRB-2 mRNA level was down-regulated by acLDL
treatment after 4h and more efficiently after 24hours. TRB-2 expression was measured in
response to acLDL treatment by qRT-PCR. In order to assess statistical significance, one way
ANOVA test with Dunnett's Multiple Comparison Test was performed. **: p<0.01 (B) Reduced
TRB-2 level enhanced the IL-8 production. The impact of reduced TRB-2 levels on LPS
induced IL-8 production was measured by ELISA. Student’s t-test was performed to analyse the
results. p=0.041

Role of JNK and ERK pathways in modulation of IL-8 production by TRB-2

To examine the effect of TRB-2 on cytokine expression TRB-2 levels were suppressed

by transfection of siRNA against TRB-2 and IL-8 release measured. IL-8 production was

induced in siRNA transfected cells by LPS treatment, as above. The results in Figure 8.b,

show that siTRB-2 treated THP-1 cells produce significantly higher levels of IL-8, compared

to cells transfected with control siRNA.

Mitogen-activated protein kinases (MAPK) are a family of serine / threonine specific kinases

which, besides playing a role in regulating cell growth, migration and differentiation, are

implicated in the development of atherosclerosis. Thus MAPKs, p38 MAPK and ERK 1/ 2,

and JNK 1/2 appear to be implicated in the regulation of IL-8 by human macrophages. In

addition previous data suggest that tribbles are mediators of MAPK signalling.

Selective MAPK inhibitors were used to block individual pathways and investigate their

involvement in IL-8 production by THP-1 cells. These data demonstrate that blocking of JNK

and ERK but not p38 pathways suppresses IL-8 production by monocytes. (Fig.9.) To further

investigate the impact of MAPK on IL-8 production, THP-1 cells were transfect with siTRB-

2, and treated with MEK1 and JNK inhibitor. These inhibitors attenuated the cytokine level to

the same extent regardless of TRB-2 levels.

A, B,
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Figure 9. The involvement of MAPK pathways in
LPS induced IL-8 production was measured by the
use of inhibitors of specific MAPK pathways.
Blocking of JNK and ERK but not p38 pathways
suppresses the IL-8 level of monocytes. Cells were
lysed and IL-8 levels were quantified by ELISA. One
way ANOVA with Dunnett's Multiple Comparison Test
was performed to analyse the results. **: p<0.01

TRB-2 modulation of IL-8 production via interaction with MAPKKs

Previously, we demonstrated that TRB-1 and -3 proteins interact with MAPKKs and

regulate their activity (95). Therefore, the interaction of TRB-2 with MKK4/SEK-1, MKK7

and MEK-1, which are known activators of JNK or ERK, was investigated. The results show

that down-regulation of kinase levels led to impaired IL-8 production. These observations are

compatible with a negative regulatory role for TRB-2 in control of ERK and JNK activation

(Fig.10.)

Figure 10. Down-regulation of MAPKK
levels attenuate IL-8 production.THP-1
cells were transfected with siMAPKK or
control siRNA (siNC), as indicated and
stimulated by LPS. Production of IL-8 was
detected by ELISA. One way ANOVA with
Dunnett's Multiple Comparison Test was
performed to analyse the results. *: p<0.05, **:
p<0.01

Relationship of TRB-2 levels and IL-8 produced in response to LPS in primary monocytes

In order to investigate the potential in vivo relevance of our findings, responsiveness of

primary monocytes from four healthy volunteers was assessed by stimulating cells with LPS

or with the combination of LPS and acLDL. IL-8 levels in response to LPS alone were used

**

**

**
*

**



33

as a unit for normalisation and values measured in samples with LPS-acLDL costimulation

were expressed relative to these. acLDL increased the amount of IL-8 produced in response to

LPS in a manner similar to that seen in monocytic cell lines. (Fig.11.a) Furthermore, the level

of IL-8 inversely correlated to the expression of TRB-2 in primary monocytes. (Fig.11.b)

Figure 11. TRB-2 levels are inversely correlated to the IL-8 produced in response to LPS in
primary monocytes (A) The ability of human primary monocytes to produce IL-8 was
assessed. acLDL increased the amount of IL-8 produced in response to LPS (B) The
relationship between the amount of IL-8 produced (LPS+acLDL treatment) and TRB-2
expression was measured by linear regression.

A, B,
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Discussion

Elevated serum LDL levels have been implicated as a major risk factor for atherosclerotic

vascular disease. Expression of inflammatory cytokines, chemokines by a variety of vascular

cells, proliferation of vascular smooth muscle cell, migration of monocytes have all been

linked to increased levels of modified LDL. The uptake of modified LDL by monocytes and

differentiation to foam cells is a hallmark of the development of atherosclerotic

lesions/plaques. A number of studies have demonstrated that MAPK pathways play a central

role in both of these processes. Whilst the involvement of these MAPK pathways is relatively

well characterised, the molecular mechanisms that modulate the ability of

monocyte/macrophages to respond to inflammatory stimuli in an LDL-dependent fashion

remain imprecisely understood. Therefore, the involvement of inflammatory signals in

regulating the uptake of modified LDL by monocytes and the role of TRB-2 in monocyte

biology has been investigated. The functional links between LDL and inflammatory activation

of monocytes has also been explored.

In line with previous findings, inflammatory activation of THP-1 cells via LPS appears to

substantially enhance the uptake of acLDL. Further, it was found that PMA stimulation,

which is routinely used to differentiate THP-1 monocytes to a macrophage-like phenotype,

does not influence this process, at least within the timeframe used in these experiments. Since

a relatively short term exposure of monocytes to PMA was used, compared to most

differentiation protocols (72-96 hrs), our results may imply that acute activation events,

induced by PMA do not influence LDL receptor expression. Pharmacological inhibition of

MAPK signalling pathways demonstrates that these signalling systems play a differential role

in modulating acLDL uptake. However our results demonstrate that acLDL uptake in THP-1

cells is tribbles-independent.

The data shows clearly that TRB-2 is a novel regulator of MAPK signalling in the context of

LPS-induced IL-8 release from a monocytic cell line and human peripheral blood monocytes.

AcLDL uptake by monocytes is associated with a reduction in TRB-2 and potentiates LPS-

induced IL-8 release. This effect was inhibited by pharmacological inhibition of the ERK and

JNK pathways. In line with our previous findings that tribbles interact with MAPKKs and
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regulate their activity (95), down-regulation of MEK1 and MKK4, -7 expression levels by

siRNA led to impaired IL-8 production in response to LPS.

These data indicate that TRB-2 is an important negative regulator of monocyte IL-8

production in response to LPS and control the augmentation of this response by acLDL

(Figure 12.). This is in keeping with the findings of others which support the mechanism of

action of tribbles through physical interaction with other signal transduction proteins. Recent

reports demonstrate that TRB-3 is able to interact with and modulate the activity of a number

of key inflammatory signalling mediators, including p65/RelA (99) ATF4 (100) and Akt (101,

102).

Figure 12. A model for the role of TRB-2 in monocytes biology in inflammatory settings.
(A) acLDL uptake by monocytes triggers reduction of TRB-2 expression, resulting in a
hypersensitive state towards inflammatory stimuli, as exemplified by LPS produced IL-8
production. (B) The molecular basis of TRB-2 regulatory function of MAPKK pathways in
the expression of IL-8.

Increasing data indicate a convergence of innate immunity to pathogens and atherosclerosis.

Several PAMPs can ligate TLRs and/or ScavRs. Some of these ligands participate not only in

microbial pathogenesis, but in atherogenesis as well. It has been shown that nonspecific

(endotoxin) stimulation of the immune system accelerates atherosclerosis in rabbits on a

hypercholesterolemic diet (103). Some evidence has implicated microbial pathogens in human

atherogenesis. Bacteria may induce innate immunity, molecular mimicry, and autoimmunity

as well as direct infection of tissues. Several studies suggest a role for Chlamydia pneumoniae
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in atherosclerosis. Interestingly, HSP60 of this microbe resembles human HSP60 and can

elicit inflammatory responses (104). Not only the ligands but altered receptors have a role in

atherogenesis. It was shown that TLRs are expressed in atherosclerotic lesions and may also

participate in inflammatory signalling (105). Although TLR4 deficiency does not decrease

atherosclerosis in cholesterol-fed Apoe /– mice (106), TLR4 activation by LPS increases

atherosclerotic plaque formation in the apoE3*Leiden atherosclerotic mouse model (107).

Human epidemiological data demonstrate that an Asp299Gly TLR4 polymorphism, which

attenuates receptor signalling, is associated with a decreased risk of atherosclerosis and acute

coronary events (108, 109). CD14, the non-transmembrane receptor for lipopolysaccharide,

initiates inflammatory responses through interactions with TLRs. A polymorphism in the

CD14 promoter, resulting in a significantly higher density of CD14 on monocytes, has been

identified as a risk factor for myocardial infarction also (108). Dual stimulus of acLDL

(scavenger receptor priming) and LPS (TLR-4 stimulation) of monocytes may be model the

human coronary events.

In this study, human primary monocyte co-incubation with acLDL increased the amount of

IL-8 produced in response to LPS, similar to that seen in monocytic cell lines, raising the

possibility that TRB-2 may also be an important negative regulator of IL-8 production of

primary monocytes, in response to LPS. These data are in line with previous findings that IL-

8 has an important role in atherogenesis. IL-8 in situ hybridization experiments using human

coronary atherectomy specimens showed that IL-8 mRNA is expressed in a macrophage-rich

area of the lesion, consistent with expression in macrophage foam cells (110). It was also

revealed that elevated plasma levels of IL-8 were associated with an increased risk of CAD in

apparently healthy individuals (111).

The experiments in this study give evidence that tribbles, a novel group of proteins, can act as

regulators of innate immune responses in monocytes. Tribbles appear not only to function in a

cell type and possibly stimulus specific manner. Although from these results it is clear that

tribbles action is highly specific; they regulate certain aspects of MAPK action (IL-8

expression) but not others (LDL uptake), within the same cell type. The molecular basis of

this is currently unknown. Expression of other components of MAPK pathways and/or their

state of activation may profoundly influence tribbles action.
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Sung et al showed tribbles have a role in different aspect of atherogenesis. Their experiments

demonstrated that TRB-1 is found in vascular smooth muscle cells in vivo and that expression

levels are key in modulating the extent of VSMC proliferation and chemotaxis (81). Although

tribbles are recently described proteins there are increasing data which show that they are

important regulators in very different cellular processes and thereby influence several

pathological processes. Their role in tumor cell growth was one of the first described

functions of human TRB-3. Bowers et al. demonstrated that TRB-3 mRNA is highly

expressed in normal human liver tissue and multiple human tumor cell lines. Northern blot

analysis of TRB-3 mRNA expression in primary human tumor tissue shows that TRB-3 is

overexpressed in specific tumor samples including lung adenocarcinoma and colon

adenocarcinoma samples. Real-time RT-PCR of TRB-3 across a wide range of tumors from

multiple tissues (breast tumors, colorectal tumors, lung tumors) indicates that TRB-3 is

overexpressed in specific primary tumor types. They showed with in situ hybridization with a

full-length TRB-3 probe that TRB-3 overexpression is not because of highly expressing

infiltrating noncancerous cells, but rather is localized to specific cancer cell clusters within

each tumor (94).

Keeshan et al showed that retroviral expression of TRB-2 immortalized hematopoietic

progenitors in vitro and induced fatal transplantable AMLs in murine recipients. Microarray

analysis of a cohort of primary human AMLs identified elevated TRB-2 mRNA expression in

a cluster of tumors associated with a high frequency of C/EBP mutations. Their studies

identified TRB-2 as an oncoprotein that contributes to the pathogenesis of AML through the

inhibition of C/EBP function. This occurs through the interaction of TRB-2 with C/EBP,

resulting in the proteasomal-dependent degradation of C/EBP. Although the mechanism of

TRB-2 upregulation in these leukemias has not yet been elucidated, their data suggests that

TRB-2 overexpression is likely to be an important pathogenic mechanism in a subset of

human AML (112).

Naiki et al. found that expression of TRB-2 and TRB-3 was immediately down-regulated in

response to differentiation stimuli in 3T3-L1 preadipocyte. In fact, forced expression of TRB-

2 and TRB-3 inhibited adipocyte differentiation in 3T3-L1 cells. TRB-2 and TRB-3 were

shown to have anti-adipogenic effects. While TRB-3 suppressed adipogenesis by strong
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inhibition of Akt activation, TRB-2 blocked adipogenesis through the inhibition of Akt

activation and degradation of C/EBP and C/EBP (113).

These results support the observation that tribbles action is highly specific, cell type and

stimuli dependent. Tribbles have a role in regulation of several different signalling pathway

(MAPK, Akt, CEBP) thereby they may are essential participants in development of

pathological processes.

As it was earlier mentioned the tribbles kinase-like domain is highly conserved during

evolution. However the functionality of tribbles kinase-like domain was addressed in a study

by Bowers et al. and these tests did not detect kinase activity for tribbles (94). One possibility

might be a potential decoy function for tribbles. In this role, they may compete with active

protein kinases for binding partners/substrates, thereby affecting the activation of kinase

dependent signalling pathways. It could explain the fundamental question, why evolution

maintains a complex family of proteins composed of almost just a single domain that is

structurally highly similar to kinases but functionally lost its activity at the early stages of

evolution.

Better understanding of the functions and mechanism of tribbles may contribute to

comprehension of the regulation of signal processes and thereby some of the pathological

disorders.
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Summary

Atherosclerosis is a pathological condition that underlies several important adverse

vascular events including coronary artery disease, stroke, and peripheral arterial disease,

responsible for most of the cardiovascular morbidity and mortality in the Western world

today. In general, the susceptibility to atherosclerosis depends on genetic factors, smoking,

obesity, diabetes, and hypertension; however the.starting point is the local presence of high

amount of modified LDL (low-density lipoprotein), which can cause an inflammation.

LDL is one of the groups of lipoproteins that carry the serum cholesterol. Normally

LDL transport is through LDL receptors, which is feedback inhibited by the accumulation of

cholesterol within the cell. However if the LDL is modified, for example chemically, or

enzimatically, the LDL receptor can not transport it. This modified LDL leads to

inflammation in the vessel and monocytes migrate to the intima and differentiate into resident

macrophages. Macrophages express scavenger receptors for modified LDL via which they

accumulate lipids in their cytoplasm and then transform into foam cells. Aggregation of foam

cells leads to formation of fatty streak lesions. This process is accompanied by migration of

smooth muscle cells to the intima where they can also turn into foam cell, feeding the process

even further. They proliferate, and secrete extracellular matrix proteins that form a fibrous

cap. These lesions may remain quiescent in fibrous plaque state for many years, however

under certain circumstances become activated and leads to a thrombotic response such as

heart attack or stroke.

Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive

immuno-inflammatory mechanisms are involved. Inflammation is central at all stages of

atherosclerosis. Cells involved in the atherosclerotic process secrete and are activated by

soluble factors, cytokines such as TNF-, IL-6, MCP-1and IL-8. They have a role in the

development, progression, and complications of atherosclerosis. They are responsible for

migration, expression of scavenger receptors, adhesion molecules; regulate maturation of

monocytes to macrophages and dendritic cells, and influence the Th1/Th2 balance. Cytokines

generate cellular responses through activation of intracellular signal transduction networks. In

atherosclerosis, the NF-B and Mitogen Activated Protein Kinase (MAPK) pathways are

amongst the most prominent ones.
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A recently described protein family, tribbles may serve regulatory function in different

signal transduction pathways especially in MAPK pathway. Tribbles was described first in

Drosophila as a gene that is required for gastrulation, oogenesis, and viability. In human are

three tribbles homolog, TRB-1,2,3. Based on amino acid sequence, tribbles resembles a

serine-threonine kinase; however, the kinase domain is highly conserved during evolution; it

has a variant catalytic core that lacks a canonical ATP binding site and tests did not detect

kinase activity. According to our current knowledge all three tribbles molecules have an

important regulatory function in modulating the activity of various signalling pathways

(MAPK, CEP, PI3K) and transcriptions factors (AP-1).

My hypothesis was that tribbles proteins are regulator molecules in inflammatory

processes, through modulating MAPK signalling so they may have a role in atherogenesis

especially in the inflammation induction role of macrophages. During my PhD my aims were

to investigate the role of human tribbles, particularly human TRB-2, in human monocyte cells

function in vitro system and to elucidate related molecular mechanism on how tribbles

interact with protein kinases and regulate activity of binding partners or activation of down

stream protein molecules.

In line with previous findings, inflammatory activation of THP-1 cells via LPS

appears to substantially enhance the uptake of acLDL. Pharmacological inhibition of MAPK

signalling pathways demonstrated that these pathways play a differential role in modulating

acLDL uptake. Blocking the activation of JNK pathway lead to a marked elevation of acLDL

uptake that was independent of inflammatory stimulation. Whilst the ERK and p38 pathways

did not influence the uptake of acLDL under non-inflammatory conditions, both of these

pathways led to a significant decrease in acLDL uptake after LPS stimulation. However the

results demonstrate that acLDL uptake in THP-1 cells is tribbles-independent.

I investigated the effect of LDL to cytokine expression also. I have shown that acLDL uptake

by monocytes is associated with a reduction in TRB-2 and potentiate LPS-induced IL-8

release through the MAPK pathways. The negative regulatory role of TRB-2 on MAPKK

stopped, by this means the activation the JNK and ERK pathways lead to elevated IL-8

production. I investigated the potential in vivo relevance of our findings on primary

monocytes also, the TRB-2 levels were inversely correlated to the IL-8 produced in

monocytes.
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The experiments in this study give evidence that tribbles, a novel group of proteins,

can act as regulators of innate immune responses in monocytes. Tribbles appear not only to

function in a cell type and possibly stimulus specific manner. From my results it is clear that

tribbles action is highly specific; they regulate certain aspects of MAPK action (IL-8

expression) but not others (LDL uptake), within the same cell type. The molecular basis of

tribbles effects is currently unknown. Better understanding of the functions and mechanism of

tribbles may contribute to comprehension of the regulation of signal processes and thereby

some of the pathological disorders.
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