
Modeling and Optimizing for NP-hard
Problems in Graph Theory

Summary of Ph.D. Thesis

Ahmad Anaqreh

Supervisors: Dr. Boglárka G.-Tóth and Dr. Tamás Vinkó

Doctoral School of Computer Science

Department of Computational Optimization

Faculty of Science and Informatics

University of Szeged

Szeged
2024

1 Introduction

Optimization involves the search for the best possible solution for a given problem. It
stands as a fundamental concept among diverse disciplines such as mathematics, computer
science, engineering, economics, and beyond. Selecting the appropriate optimization tech-
nique depends on the problem’s category as well as the trade-off between the quality of
the solution and the time sufficient for computation.

In combinatorial optimization, recommended approaches to achieve the best possible
solution include standard methods like integer linear programming, binary integer linear
programming, and linear programming with the relaxation for certain or all variables,
yet still achieving an integer solution. Additionally, decomposition methods like Benders
decomposition and Dantzig–Wolfe decomposition are efficient for some problem classes.
Conversely, if reaching the optimal solution demands significant computational resources
then the focus is on attaining a good enough solution within a reasonable time, thus
metaheuristics and heuristics gain substantial importance.

Graph theory is the study of graphs, which serve as mathematical structures used to
represent and analyze connections between objects. Its practical implementations include
diverse domains, including computer science, network science, social science, biology, and
more. The connection between optimization and graph theory has long been a significant
focal point for researchers, involving the utilization of optimization techniques to deal with
graph theory problems.

The main objective of this work is to tackle three NP-hard graph problems, these prob-
lems cannot be solved by deterministic algorithms in polynomial time, by utilizing various
optimization techniques, including standard methods, heuristics, and metaheuristics. The
evaluation of the proposed methods involves comparing their results and execution times
with the methods presented in the literature.

The work is structured into five parts. Chapter 1 is an introductory chapter, that intro-
duces the fundamentals of optimization and graph theory, and clarifies the interrelation-
ship between these two domains. Chapter 2, discusses a graph problem known as graph
geodetic number, and the two greedy algorithms proposed to obtain upper bounds for the
geodetic number in an algorithmic way. Chapter 3, clarifies how Symbolic Regression with
an evolutionary algorithm called Cartesian Genetic Programming has been used to derive
formulas capable of approximating the graph geodetic number. In Chapter 4, the aim is to
deal with the longest induced (chordless) cycle problem by proposing three integer linear
programs to yield optimal solutions for this problem. In Chapter 5, the purpose of the
work is to maximize the smallest eigenvalue of the grounded Laplacian matrix. Degree
centrality is used as the base for the first method. In addition, the vertex cover problem
was employed as an additional method of solving the problem.

1

Thesis 1: Algorithmic Upper Bounds for Graph Geodetic
Number

The graph geodetic number is a global measure for simple connected graphs and it belongs
to the path covering problems, which entails identifying the minimal-cardinality set of
vertices, such that all shortest paths between its elements cover every vertex of the graph.
It has been shown that computing the geodetic number is a computationally challenging
task for general graphs, as it falls into the NP-hard problem category [12]. As is often
the case with graph theoretical problems, an ILP formulation is applicable. Hansen and
van Omme presented such a model in a recent paper [16], which also featured the first
computational experiments conducted on a collection of moderately sized random graphs.

Drawing inspiration from these results, I conduct an empirical investigation into upper
bound algorithms. The core concept behind the algorithms is to construct a geodetic set
in an iterative greedy manner. At each iteration, the algorithm selects a vertex/vertices, to
be added to the geodetic set that leads to the most expansion of the covered set. These al-
gorithms, as demonstrated by the experiments, consistently produce acceptable results on
diverse sets of graphs, and require relatively low computational time, even when applied
to large-scale graphs.

The first algorithm known as greedy algorithm uses Floyd’s algorithm to compute all-
pair shortest paths. The algorithm uses two functions: LargestIncrease and LargestIncrease-
Pair. These functions are responsible for determining the vertex (or vertex pair) if they are
included in the geodetic set, resulting in the most expansion of the covered set. Namely,
the vertices that would be covered if one vertex or pair of vertices were included in the
geodetic set. Based on the number of covered vertices the function chooses to add one or
a pair of vertices to the geodetic set.

The locally greedy algorithm serves the same purpose as the greedy algorithm, but
instead of calculating all shortest paths using Floyd’s algorithm, this approach calculates
distances from a specific vertex to all vertices not yet included in the geodetic set using
Dijkstra’s algorithm. The algorithm takes a specific vertex as input, which can be either a
degree-one vertex or a simplicial vertex. A simplicial vertex is defined as a vertex whose
neighbors collectively form a clique, meaning that every pair of neighbors are adjacent. It
has been proved in [11, 17] that degree-one and simplicial vertices are always part of the
geodetic set. In each iteration, the algorithm returns a vertex that would maximize the
growth of the covered set if it is included in the geodetic set.

To assess the performance and efficiency of the proposed algorithms, experiments were
conducted on random graphs and real-world graphs to compare the results and execution
time to the BILP from [16]. The results shown in Table 1 present the findings from real-
world graphs. The exact refers to the geodetic number obtained using the BILP . greedy
refers to the upper bound founded by the greedy algorithm by adding pairs of vertices.
The AddOne represents the upper bound specified by the greedy algorithm, which involves
adding one vertex per iteration. Meanwhile, local indicates the upper bound determined
by the locally greedy algorithm.

The values reported in Table 1 demonstrate that BILP can require hours to determine
the exact geodetic number for graphs containing thousands of vertices and edges. In
contrast, the proposed algorithms were capable of providing acceptable upper bounds
within a reasonable time. Even for the largest graph instance (ia-email-univ), both versions

2

Table 1: Numerical results for real-world graphs, time is given in seconds unless indicated
otherwise

graph exact greedy AddOne local
name(n,m) value time value time value time value time
karate(34,78) 16 0.06 16 0.024 16 0.019 16 0.015
mexican(35,117) 7 0.21 7 0.025 8 0.023 9 0.011
sawmill(36,62) 14 0.09 14 0.022 14 0.019 15 0.015
chesapeake(39,170) 5 0.12 5 0.026 5 0.023 5 0.008
ca-netscience(379,914) 253 37 m 256 21.6 260 20.8 264 14.1
bio-celegans(453,2025) 172 1 h 183 40.8 188 34.3 225 14.8
rt-twitter-copen(761,1029) 459 6 h 459 101.7 459 103.4 490 112.6
soc-wiki-vote(889,2914) 275 14 h 276 236.4 277 232.0 409 120.5
ia-email-univ(1133,5451) 244 16 h 248 698.6 250 677.9 464 269.0
average 160.6 4 h 162.7 122.1 164.1 118.7 210.8 59.0

of the greedy algorithm were able to generate slightly less accurate upper bounds than the
exact value in less than 700 seconds. Although the locally greedy algorithm proved to be
the fastest, it missed the upper bound by a considerably larger margin for the larger graphs
compared to the greedy method. This pattern is also reflected in the average performance
data provided in the last row of Table 1.

Thesis 2: Symbolic Regression for Approximating Graph
Geodetic Number

Symbolic Regression is a mathematical modeling technique aimed at finding a formula
that accurately fits a given output based on a set of inputs. The input parameters and
constants in Symbolic Regression are predetermined. Symbolic Regression combines these
input elements using a set of predefined arithmetic operators, such as (+,−,×,÷, etc.) to
formulate a mathematical expression.

Cartesian Genetic Programming is an iteration-based evolutionary algorithm, devel-
oped by Miller [20], that works as follows: Cartesian Genetic Programming begins by
creating a set of initial solutions, from which the best one is chosen by evaluating the so-
lutions based on a fitness function. Then these solutions will be used to create the next
generation in the algorithm. The next generation’s solutions will be a mixture of chosen
solutions from the previous generations, where the new solutions should not be identical
to the previous ones, which can be done by mutation. Eventually, the algorithm must
terminate. There are two cases in which this occurs: if the algorithm has reached the max-
imum number of generations, or the algorithm has reached the target fitness. At this point,
a final solution is selected and returned. Märtens et al. [18] work was a notable starting
point as they utilized Symbolic Regression and Cartesian Genetic Programming with in-
puts as eigenvalues of the Laplacian and adjacency matrices to optimize graph diameter
and isoperimetric number on real-world graphs. Thus, I have employed Symbolic Regres-
sion with Cartesian Genetic Programming to derive formulas capable of approximating the
graph geodetic number.

3

To utilize Symbolic Regression with Cartesian Genetic Programming, a training dataset
is required. Each dataset contains instances, with each instance comprising two main
components: (i) parameters representing graph properties and selected constants as inputs
and (ii) the exact value of the corresponding graph property as the output. To construct the
training dataset, 120 connected subgraphs were generated from 10 real-world graphs from
the Network Repository1, varying in size (with 14 ≤ N ≤ 140). This was accomplished
using a straightforward procedure. Given a real-world graph G = (V,E), the process
began by randomly selecting a set W ⊂ V of vertices. Subsequently, the subgraph of V
with vertex set W was extracted. This subgraph, denoted as Ĝ, might not necessarily
be connected. As a final step, the largest connected component of Ĝ was chosen. From
these graphs parameters that are closely related to the graph geodetic number have been
obtained: eigenvalues of the Adjacency and Laplacian matrices, the count of degree-one
vertices, the count of simplicial vertices, the number of vertices, and the number of edges.
More specifically, the list of parameters used as training data:

1) N,M, γ, σ, and constants 1, 2, 3, 4, 5

2) N,M, γ, σ, λi, λN−i−1 (i = 1, . . . , 5)

3) N,M, γ, σ, µi, µN−i−1 (i = 1, . . . , 5)

4) N,M, γ, σ, λi, λN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

5) N,M, γ, σ, µi, µN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

where N is the number of vertices, M is number of edges, λi is the i-th eigenvalue of
Adjacency matrix, µi is the i-th eigenvalue of Laplacian matrix, γ is the number of vertices
with degree one in the graph, and σ is the number of simplicial vertices in the graph.

Cartesian Genetic Programming then aims to combine these parameters and constants
using arithmetic operators to achieve the desired output. The set of arithmetic operators
used consistently across all cases includes (+,−,×,÷,

√
x, x2, x3). The implementation em-

ployed in this work was the CGP-Library, a cross-platform Cartesian Genetic Programming
tool developed by Andrew Turner2. To derive formulas, Cartesian Genetic Programming
was executed a dozen times for each category. Among the generated formulas, the best
ones were selected based on their absolute error and relative error compared to the exact
values. Therefore, the best formulas exhibited the smallest errors. The best approximation
for the geodetic number was obtained by formula (1):

γ + σ +
√
M − 2 (1)

Formula (1) contains the number of degree-one vertices and the number of simplicial
vertices as these vertices are proven to be essential components of the geodetic set, as
demonstrated in previous research [11, 17]. Linear regression was employed to refine
formula (1). Therefore, the formula can be expressed as:

0.99 · γ + 0.79 · σ + 0.97 ·
√
M − 0.99 (2)

1http://networkrepository.com/
2http://www.cgplibrary.co.uk/

4

http://networkrepository.com/
http://www.cgplibrary.co.uk/

To evaluate the accuracy of the formula, a validation process was conducted using
120 graphs (with 31 ≤ N ≤ 485). The geodetic number was computed twice for each
graph: first, the exact value was determined using the BILP from [16], and second, an
approximation was obtained using formula (2). Figure 1 presents a comparison between
the two sets of values for these graphs, illustrating that the approximations are close to the
exact geodetic number values. Nevertheless, two noticeable gaps are evident in figure 1,
signifying that for certain graphs, the approximation is significantly lower than the exact
value. This occurs when the number of simplicial vertices and/or the number of degree-
one vertices is zero for these specific graphs.

0

100

200

300

400

1 20 40 60 80 100 120
graph ID

ge
od

et
ic

 n
um

be
r

exact
symbolic

Figure 1: Exact g(G) and values given by the optimized formula (2)

Thesis 3: Exact Methods for the Longest Induced Cycle
Problem

The longest induced (or chordless) cycle problem is a graph problem defined as follows:
For a graph G = (V,E) and a subset W ⊆ V , the W -induced graph G[W] comprises all the
vertices from set W and the edges from G that connect vertices exclusively within W . The
objective of the longest induced cycle problem is to determine the largest possible subset
W for which the graph G[W] forms a cycle.

I proposed three ILP designed to handle the longest induced cycle problem within
general graphs. The first model is an order-based formulation, while the other two models
build upon the models applied by prior work focused on solving the longest induced path
problem [13, 19]. Cycle-elimination model, called cec, is a modified version of the model
introduced in [19], and gave the best results compared to other models. Let δ(i) ⊂ E
denote the edges incident to vertex i. The formalism of the model is as follows:

max
∑
i∈V

yi (3)

5

subject to ∑
e∈δ(i)

xe = 2yi ∀ i ∈ V (4)

xe ≤ yi ∀ i ∈ V, e ∈ δ(i) (5)
xe ≥ yi + yj − 1 ∀e = (i, j) ∈ E (6)∑

i∈C

yi ≤ |C| − 1 ∀C ∈ C (7)

yi ∈ {0, 1} ∀i ∈ V (8)
xe ∈ {0, 1} ∀e ∈ E (9)

The binary decision variable yi is equal to one if vertex i is part of the solution. Ad-
ditionally, variable xe is set to one if edge e is included in the solution. The objective
function (3) aims to maximize the number of vertices within the induced cycle. Constraint
(4) guarantees that each vertex within the solution is connected to precisely two vertices
in the cycle. Constraints (5) and (6) are in place to ensure that the cycle is induced. To
eliminate small cycles from solutions, constraint (7) is introduced. C represents the set of
the cycles for the given graph. Constraint (7) is combined into the model to enforce the
solution to consist of a single cycle. This means that multiple small cycles are not deemed
valid solutions.

cec model relies on the set of small cycles, which are usually created as part of the so-
lution process, either through an iterative constraint generation approach or, more effec-
tively, via branch-and-cut algorithm by employing separation. Hence, the branch-and-cut
algorithm is employed as follows: the method is initiated with a model having no subtour
elimination constraints, and if subtours arise in the solution, valid inequalities are added,
and this process is repeated until the optimal solution is reached.

Consequently, the model was addressed using two distinct methodologies. The first
approach is outlined in Algorithm 1. In each iteration, the model is solved. In line 4 the
algorithm checks for the presence of an integer solution. Based on this, the depth-first
search algorithm is employed to detect any subtours within the solution, as shown in line
5. If a subtour exists, and its length is less than or equal to the value of the variable
longest induced cycle, a cut is appended for that cycle. If not, the value of the variable
is updated to reflect the length of the cycle, and there is no need to introduce a cut because
the cycle could potentially be the optimal solution. These details are clarified in lines 6
through 9. The procedure terminates when there are no further subtours present in the
solution, indicating the completion of the procedure.

The second cut generation approach is detailed in Algorithm 2. In each iteration, the
model is solved, and if an integer solution is obtained, the algorithm verifies the presence
of any subtours using the depth-first search algorithm, as described in lines 15 through
16. If any cycles are detected, a cut is integrated into the model (line 17), and the length
of the cycle is updated if it exceeds the value of the variable longest induced cycle (line
19). Towards the end of the procedure, the length of the longest induced cycle is recorded
in the variable. It is important to note that a constraint is added to the model in line 20 to
enhance the procedure. This constraint ensures that the objective value must be greater
than or equal to the length of the largest induced cycle discovered thus far.

6

Algorithm 1: Cut Generation1
1 model Initialization() // initializing the cec model

2 longest induced cycle=0

3 Function Cut Generation1()

4 if model.status==feasible integer then // model has integer solution

5 C=DFS(feasible integer) // find subtour in the solution

6 if length(C) ≤ longest induced cycle then
7 model.addConstr(7) // add cut (7)

8 else
9 longest induced cycle=length(C) // update variable value

10 model.optimize(Cut Generation1()) // solve the model

11 print(longest induced cycle)

Algorithm 2: Cut Generation2
12 model Initialization() // initializing the cec model

13 longest induced cycle=0

14 Function Cut Generation2()

15 if model.status==feasible integer then // model has integer solution

16 C=DFS(feasible integer) // find subtour in the solution

17 model.addConstr(7) // add cut (7)
18 if length(C) > longest induced cycle then
19 longest induced cycle=length(C)

20 model.addConstr(model.ObjVal ≥ longest induced cycle+1)

21 model.optimize(Cut Generation2()) // solve the model

22 print(longest induced cycle)

7

To verify the efficacy of the proposed method, I conducted a comparison with the re-
sults presented in the literature. Pereira et al. [21] proposed an ILP formulation along
with additional valid inequalities to strengthen and refine the formulation, all of which
were incorporated into the branch-and-cut algorithm. They applied a multi-start heuristic
method for initial solution generation and then conducted performance evaluations of the
algorithms on a range of randomly generated graphs. Note that cec2 refers to the method
outlined in Algorithm 2.

The results for the random graphs are presented in Table 2, where cec2 compared
against the top three algorithms introduced in [21]. The runtime represents the average
duration of ten graphs in each case. Notably, cec2 outperforms these algorithms in all
cases. Moreover, cec2 successfully solved the instance with 100 vertices and 30% density, a
scenario where none of the other algorithms succeeded. Instances that resulted in timeouts
are denoted by the symbol 	, where every run was restricted to a maximum duration of
one hour.

Table 2: Running times on random instances for cec2, and BC1, BC2,BC3 from [21], time
is given in seconds.

Randomly generated graphs: 10% density
n cec2 BC1 BC2 BC3
50 0.32 0.33 0.3 0.39
60 0.79 1.19 1.2 1.34
70 4.17 5.57 4.93 5.58
80 20.5 37.15 26.9 27.34
90 93.93 160.1 155.82 168.02
100 518.75 1321.41 1129.47 1094.8

average 106.41 254.29 219.77 216.25
Randomly generated graphs: 30% density

n cec2 BC1 BC2 BC3
50 4.15 8.21 9.6 8.78
60 26.14 39.82 46.18 51.9
70 90.11 234.45 206.36 283.28
80 203.81 935.78 676.52 1139.55
90 544.88 2072.16 1874.91 3011.17
100 1810.49 	 	 	

average 446.6 658.08 562.71 898.94

8

Thesis 4: Maximizing the Smallest Eigenvalue of the
Grounded Laplacian Matrix

Maximizing the smallest eigenvalue of the grounded Laplacian matrix L(S) is a problem
that involves identifying (n − k) × (n − k) principal submatrix obtained after removing k
rows and corresponding columns from the Laplacian matrix L, where S ⊂ V , |S| = k,
0 < k ≪ n. The smallest eigenvalue of L(S) is denoted by µ(S). L(S) is a symmetric
positive definite matrix, thus all its eigenvalues are strictly positive real numbers. Hence,
µ(S) > 0 holds.

Two algorithms have been proposed to deal with the problem at hand. The first ap-
proach, referred to as DEGREE-G, draws inspiration from the well-known Gerschgorin cir-
cle theorem [15]. The theorem provides bounds on the eigenvalues of a square matrix.
It claims that each eigenvalue of a square matrix resides within at least one Gerschgorin
circle, with each circle corresponding to a row in the matrix. In this representation, the
center of the circle corresponds to the diagonal element of the matrix, while the radius
is determined by the sum of the absolute values of the off-diagonal elements. The key
idea for maximizing the smallest eigenvalue is to move the Gerschgorin circles further
away from the origin. To achieve this, the proposed method ranks the vertices based on
a specific centrality measure and subsequently removes the corresponding row and col-
umn from the Laplacian matrix. Algorithm 3 outlines this approach which utilizes degree
centrality for this purpose.

Algorithm 3: Degree-G Algorithm
1 vertex cen = sort(centrality(V))
2 for i = 1 → k do
3 remove(L(vertex cen[i]))

4 compute(µ(S))

The second method known as COVER, takes advantage of the Gerschgorin circles, but it
utilizes the concept of the maximum k vertex cover problem. This problem is rooted in the
classic vertex cover problem [14], with the key distinction being that in the k vertex cover
problem, the objective is to identify a set of k vertices that are incident to the maximum
number of edges in the graph. This differs from the vertex cover problem, which aims to
find the minimum number of vertices such that each edge in the graph is incident to at
least one of these vertices. The BILP of k vertex cover is defined as follows:

max
∑
j∈V

yj (10)

9

subject to ∑
i∈V

xi = k (11)

yj ≤
∑

∀i∈V :(j,i)∈E

xi ∀j ∈ V (12)

k ∈ N (13)
xi, yi ∈ {0, 1} ∀i ∈ V (14)

The variables xi represent vertices that cover the maximum number of vertices within
the graph, while yi denotes vertices that have been covered. The constraints are designed
to guarantee that only k vertices can be chosen and that the value of yi is equal to 1
if and only if at least one of its adjacent vertices, represented by xi, is selected. After
successfully solving this BILP , the algorithm proceeds to remove the rows and columns
in L corresponding to the solution. Subsequently, it determines the smallest eigenvalue of
the resulting modified matrix.

Additionally, combining vertex cover and degree centrality concepts has the potential to
enhance the outcomes. Consequently, the objective function in the BILP has the following
modifications:

max
∑
j∈V

yj − ϵ
∑
j∈V

degjxj, (15)

where ϵ is a small number to not change the main objective. For instance ϵ = 1∑
j∈V degj

can be chosen. This modification aims to select k vertices with the lowest degree to maxi-
mize the objective. This approach is defined as COVER1.

The maximum k vertex cover problem often yields multiple solutions, starting to em-
ploy a method to explore the possibility of obtaining an improved value for µ(S) through
alternate solutions. The concept involves an iterative process of solving the BILP while
including a constraint that prevents the solution from resembling previous ones. By ex-
amining various solutions, different values for µ(S) can be obtained, and select the one
that yields the best result. This additional constraint is formulated as follows for a given
previously obtained solution S ⊂ V :

∑
i∈S

xi ≤ k − 1. (16)

During each iteration, the algorithm ensures that the solution covers the maximum
number of vertices, denoted as nc, which means that

∑
i∈V yi = nc must hold; other-

wise, the algorithm terminates the iteration. This approach is referred to as COVER2. The
maximum number of iterations, and consequently the maximum number of alternative
solutions, is fixed at 100.

To evaluate and compare the effectiveness of the proposed methods, a comparative
analysis against the algorithms introduced in the literature was conducted. Wang et
al. [22] proposed two algorithms, the first one, referred to as the NAÏVE algorithm, in-
volves k iterations. In each iteration, a candidate is chosen if adding it to set S maximizes

10

µ(S). The second algorithm, referred to as the FAST algorithm, evaluates a candidate node
based on the sum of the eigenvalues of its adjacent nodes. The optimal candidate is chosen
based on the maximum sum value.

Figure 2 displays the outcomes obtained by applying the proposed approaches to a
range of real-world graphs. The figure presents the smallest eigenvalue, denoted as µ(S),
for six distinct values of k.

(a) Prison (b) Huck

(c) Sanjuansur (d) Jean

(e) Sfi (f) Anna

Figure 2: Values of µ(S) obtained by the algorithms for different k values.

The displayed results illustrate that the effectiveness of these methods varies across dif-
ferent graphs, yet certain patterns arise. It is evident that the DEGREE-G and FAST meth-
ods exhibit inferior performance compared to the NAÏVE and COVER methods. Notably, the
NAÏVE method consistently outperforms the other techniques, although the COVER method
performs equally well or even better than the NAÏVE method at specific values of k.

11

2 Contributions of the thesis

In the first thesis group, the contributions are related to obtaining upper bounds of the
graph geodetic number in an algorithmic way which was capable of providing solutions of
acceptable quality within a reasonable time.

I/1. I introduced two greedy-type algorithms. The first, known as the greedy algorithm,
relies on Floyd’s algorithm, while the local greedy algorithm is based on Dijkstra’s
algorithm.

I/2. I have empirically demonstrated that the proposed algorithms can efficiently obtain
upper bounds that closely approximate the optimal solution obtained from the bi-
nary integer linear programming. Meanwhile, their computational time remains a
small fraction of that needed to obtain the exact geodetic number.

In the second thesis group, the contributions are related to using Symbolic Regression and
Cartesian Genetic Programming to derive optimized formulas for graph geodetic number.

II/1. I have used Symbolic Regression together with Cartesian Genetic Programming to
derive a general formula that approximates the graph geodetic number. The formula
is simply the sum of the number of edges, the number of degree-one vertices, and
the number of simplicial vertices. Thus, the approximation of the geodetic number
can be obtained in a reasonable computational time, even for graphs with thousands
of vertices and edges.

II/2. I demonstrated how different training sets will lead to different formulas with dif-
ferent accuracy which validates that using parameters that are highly related to the
graph property as training data will help in approximation in a better manner.

In the third thesis group, the contributions are related to finding an efficient approach
that can deliver optimal solutions within a reasonable time for the longest induced cycle
problem. Exact methods have been introduced and evaluated against existing methods
from the literature in order to address this problem.

III/1. I proposed three integer linear programs, some of which are extensions of models
created for solving the longest induced path problem. The proposed programs
had varying execution times and the number of instances they were able to solve
optimally.

III/2. I conducted a comparison between my methods and the methods proposed pre-
viously in the literature, and the results demonstrated that the newly introduced
methods consistently outperformed those presented in the literature.

In the fourth thesis group, the contributions are related to proposing new methods
to maximize the smallest eigenvalue of the grounded Laplacian matrix, which can deliver

12

solutions of acceptable quality within a reasonable time. Two approaches were introduced
and demonstrated through experiments and compared to the methods proposed in the
literature.

IV/1. I proposed two algorithms to address the problem: the first one, named DEGREE-
G relies on vertex centrality, while the second one, called COVER is based on the
vertex cover problem.

IV/2. Both algorithms, as evidenced by experimental results, consistently produced promis-
ing solutions within a reasonable time, highlighting their competitiveness when
compared to existing algorithms in the literature.

13

The author’s publications on the subjects of the thesis

Table 3 summarizes the relation between the thesis points and the corresponding publica-
tions.

Table 3: Correspondence between the thesis points and my publications.

Publication
Thesis point

I/1 I/2 II/1 II/2 III/1 III/2 IV/1 IV/2
[J1] • •
[J2] • •
[J3] • •
[C1] • •

Journal publications

[J1] Anaqreh, Ahmad T and G.-Tóth, Boglárka and Vinkó, Tamás. Algorithmic Upper
Bounds for Graph Geodetic Number. Central European Journal of Operations Research
30, 1221–1237, 2022.

[J2] Anaqreh, Ahmad T and G.-Tóth, Boglárka, G and Vinkó, Tamás. Symbolic Regression
for Approximating Graph Geodetic Number. Acta Cybernetica 25, 151–169, 2021.

[J3] Anaqreh, Ahmad T and G.-Tóth, Boglárka and Vinkó, Tamás. Exact Methods for the
Longest Induced Cycle Problem. Discrete Applied Mathematics (under review).

Full papers in conference proceedings

[C1] Anaqreh, Ahmad T and G.-Tóth, Boglárka and Vinkó, Tamás. New Methods for
Maximizing the Smallest Eigenvalue of the Grounded Laplacian Matrix. In Proceedings
of the 12th International Conference on Applied Informatics. ICAI 2023, 1–9, 2023.

Further publications

[J4] Baniata, Hamza and Anaqreh, Ahmad and Kertesz, Attila. PF-BTS: A Privacy-
Aware Fog-enhanced Blockchain-assisted task scheduling. Information Processing &
Management, 58, 102393, 2021.

14

[J5] Baniata, Hamza and Anaqreh, Ahmad and Kertesz, Attila. DONS: Dynamic Opti-
mized Neighbor Selection for smart blockchain networks. Future Generation Com-
puter Systems, 130, 75–90, 2022.

[J6] Baniata, Hamza and Anaqreh, Ahmad and Kertesz, Attila. Distributed Scalability
Tuning for Evolutionary Sharding Optimization with Random-equivalent Security in
Permessionless Blockchain. Internet of Thing, 24, 100955, 2023.

Other References

[11] H A Ahangar, F Fujie-Okamoto, and V Samodivkin. On the forcing connected geodetic
number and the connected geodetic number of a graph. Ars Combinatoria, 126:323–
335, 2016.

[12] M Atici. Computational complexity of geodetic set. International journal of computer
mathematics, 79(5):587–591, 2002.

[13] Fritz Bökler, Markus Chimani, Mirko H Wagner, and Tilo Wiedera. An experimental
study of ILP formulations for the longest induced path problem. In International
Symposium on Combinatorial Optimization, pages 89–101. Springer, 2020.

[14] Jianer Chen, Iyad A Kanj, and Weijia Jia. Vertex cover: further observations and
further improvements. Journal of Algorithms, 41(2):280–301, 2001.

[15] Gene H Golub and Charles F Van Loan. Matrix computations. Johns Hopkins Univer-
sity Press, 2013.

[16] P Hansen and N van Omme. On pitfalls in computing the geodetic number of a
graph. Optimization Letters, 1(3):299–307, 2007.

[17] F Harary, E Loukakis, and C Tsouros. The geodetic number of a graph. Mathematical
and Computer Modeling, 17(11):89–95, 1993.

[18] M Märtens, F Kuipers, and P Van Mieghem. Symbolic regression on network proper-
ties. Genetic Programming, pages 131–146, 2017.

[19] Ruslán G Marzo, Rafael A Melo, Celso C Ribeiro, and Marcio C Santos. New formu-
lations and branch-and-cut procedures for the longest induced path problem. Com-
puters & Operations Research, 139:105627, 2022.

[20] J Miller. Cartesian genetic programming. Springer, 2011.

[21] Dilson Lucas Pereira, Abilio Lucena, Alexandre Salles da Cunha, and Luidi Simonetti.
Exact solution algorithms for the chordless cycle problem. INFORMS Journal on
Computing, 34(4):1970–1986, 2022.

[22] Run Wang, Xiaotian Zhou, Wei Li, and Zhongzhi Zhang. Maximizing the smallest
eigenvalue of grounded laplacian matrix. arXiv preprint arXiv:2110.12576, 2021.

15

3 Összefoglalás

Ez a PhD értkezés optimalizációs módszereket mutat be NP-nehéz gráfproblémákhoz. Ezen
feladatok megoldására, jelen tudásunk szerint, nem léteznek polinomiális időben végre-
hajtható algoritmusok. Konkrétan három gráfproblémát vizsgáltunk, és mindegyikhez
különböző optimalizációs módszereket alkalmaztunk, úgy mint egészértékű lineáris pro-
gramozás, metaheurisztikák és heurisztikák. Minden esetben a javasolt módszerek tel-
jeśıtményét összehasonĺıtottuk a szakirodalomban találhatóakkal, figyelembe véve olyan
tényezőket, mint a végrehajtási idő és az elért megoldások minősége. Az összehasonĺıtó
elemzéseink célja a javasolt optimalizációs módszerek hatékonyságának bemutatása.

A disszertáció öt részre tagolódik. Az 1. fejezet bevezető jellegű, ahol az optimalizálás
és a gráfelmélet alapjait mutatjuk be, valamint tisztázzuk ezek két terület kölcsönhatását.
A 2. fejezet az első NP-nehez gráfproblémáról, a gráf geodetikus számról szól, valamint két
mohó algoritmust tárgyal, amelyek algoritmikus felső korlátokat szolgáltatnak a geode-
tikus számhoz. A 3. fejezet azt tárgyalja, hogyan alkalmaztuk a szimbolikus regressziót
a genetikus programozás seǵıtségével annak érdekében, hogy olyan formulákat álĺıtsunk
elő, amelyek képesek a gráf geodetikus számát elfogadhatóan jó közeĺıtéssel megbecsülni.
A 4. fejezet témája a leghosszabb indukált kör problémájának megoldása, amely egy NP-
teljes gráfprobléma, három vegyes egészértékű lineáris program használatával, amelyek
optimális megoldásokat szolgáltatnak erre a problémára. Az 5. fejezetben vizsgált fe-
ladat a Dirichlet-Laplace mátrix (az angol nyelvű szakirodalomban grounded Laplacian
mátrix) legkisebb sajátértékének maximalizálása. A javasolt módszereink alapja egyrészt
a fokszám centralitás, valamint a csúcsfedés probléma alkalmas átfogalmazása.

16

	Introduction
	Contributions of the thesis
	Összefoglalás

