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Introduction 

All the RNA molecules expressed at a given time, 

called the transcriptome. These include both protein-

coding and non-coding RNAs, as well as transcripts with 

splice and alternative initiator and terminator sites (K-H 

Liang, 2013). Understanding them is important for 

studying functional elements of the genome (Wang et al., 

2009). 

RNA sequencing has become a common and 

ubiquitous tool for analyzing quantitative changes in gene 

expression between experimental groups (differential gene 

expression or DGE) (Young et al., 2012) or in longitudinal 

sampling of tissues and microorganisms (Hubbard et al., 

2013). The first form of RNA sequencing was used in 1977 

when Fredrick Sanger developed the chain-end method, 

which is the first-generation sequencing platform (Adams 

et al., 1995, 1991). An automated version of this method 

was developed in 1986 (Heather and Chain, 2016). This 

method was based on the chemical cleavage or 

degradation of molecules. Innovations in microfluidics 

and nanotechnology have brought the era of next-

generation sequencing platforms. New generation 
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sequencing (NGS) or second generationsequencing 

platforms offer a key advantage over classical Sanger 

sequencing, as they do not require bacterial cloning and 

electrophoretic separation. In 2005, Roche's model 454 

was the first, a synthesis-based bioluminescence method 

(Metzker, 2010; van Dijk et al., 2018). In this reaction, 

dNTPs are cyclically added, and pyrophosphate released 

upon incorporation is detected. Roche 454 had a 

significant advantage in long reads (~1 kb) but a 

disadvantage in low coverage. Other technology-based 

developments have been initiated, resulting in the release 

of the Ion PGM platform in 2010 (Liu et al., 2012), which 

works on the basis that when a polymerase incorporates a 

nucleotide into DNA, a proton is released, causing a pH 

change that can be detected. Illumina was launched in 

2007 and is currently the most widely used platform in 

genomics (Turnbull et al., 2018; Weimer, 2017). The 

sequencing process uses fluorescently labeled dNTPs, 

whose fluorescence is detected by a camera upon 

incorporation (van Dijk et al., 2014). Second-generation 

technologies are not suitable for the detection of long RNA 

molecules and their isoforms (Byrne et al., 2019). 
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Currently, two large sequencing platforms, PacBio and 

ONT MinION, are available. The former is based on 

nanosensor technology and has the advantage that a 

molecule can be sequenced several times, as the template 

is a circular molecule and the system does not require 

amplification. The system does not require amplificationof 

the starting material (Coupland et al., 2012). Their ONT 

MinION paltfrom sequencing approach is based on a 

completely new approach using protein nanopores 

embedded in a synthetic membrane (Lu et al., 2016). The 

sensors detect changes in ionic current corresponding to 

the characteristics of each nucleotide passing through. 

This information provides the signal used for base 

mapping. 

Direct RNA sequencing developed by nanopore 

technology, which directly sequences RNA, meaning that 

neither reverse transcription nor PCR amplification is 

required for library generation, provides an efficient 

method to avoid major problems during transcriptome 

sequencing, these problems are false priming and temple 

shifting. These problems can lead to the detection of false 



5 
 

intron and transcription end sites (Cocquet et al., 2006; 

Garalde et al., 2018). 

Viral transcripts can overlap with each other 

(Boldogköi, 2012; Boldogkői et al., 2019b). these overlaps 

can be convergent, divergent and parallel. These overlaps 

may play a potential role in gene regulation, meaning that 

they may regulate and synchronize the kinetics of viral 

genes through the physical interaction of transcriptional 

machinery. This hypothesis is called the Transcription 

Interference Network (TIN). Another interesting 

phenomenon may be generated by replication-associated 

RNAs transcribed near replication origins. Several such 

molecules have previously been detected in herpesviruses 

using Long-Read Sequencing (LRS) (Boldogkői et al., 

2019a; Torma et al., 2023). These RNAs are thought to 

regulate the initiation of replication and the orientation of 

the replication fork. DNA replication and transcription 

processes are likely to generate genome-wide interference, 

where these two processes tightly regulate each other at 

the genomic level. 
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Epstein–Barr virus 

The Epstein-Barr virus (EBV, human 

gammaherpesvirus 4) is a member of the subfamily 

Gammaherpesvirinae within the family Herpesviridae 

(Davison et al., 2009). EBV is predominantly transmitted 

by saliva and is widespread in human populations 

(Rickinson A, 2007). EBV plays a role in the pathogenesis 

of Burkitt's lymphoma and other lymphomas, and it is also 

involved in the development of nasopharyngeal carcinoma 

and a subset of gastric carcinomas (Shannon-Lowe and 

Rickinson, 2019; Young et al., 2016). EBV is classified as 

a group 1 carcinogen in humans (de Martel et al., 2020). 

Moreover, EBV reactivation is considered a major cause 

of long COVID symptoms (Gold et al., 2021). Only a 

limited number of viral genes from the circular, episomal, 

chromatinized EBV genome are expressed in latently 

infected cells and can be classified into three gene 

expression programs (types I, II and III) (Price and Luftig, 

2015). In latently infected cells, viruses are replicated once 

per cell cycle by the host DNA synthesis machinery, with 

viral episomes binding to the nuclear matrix at oriP, the 
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latent origin of replication (Hammerschmidt and Sugden, 

2013). Induction of EBV lytic replication results in a 

change in the limited latent expression pattern of EBV 

genes by sequential transcription of immediate early (IE), 

early (E) and late (L) EBV genes. The immediate early and 

early genes will be responsible for coding proteins 

involved in replication, while the late genes will code for 

the structural proteins of the virus. The EBV genom is 

approximately 170 kb long and actively transcribed during 

the lytic cycle and can encode more than 100 different 

gene products, of which 69 EBV-encoded proteins have 

recently been identified by proteomic analysis (Arvey et 

al., 2012; Dresang et al., 2011; Ersing et al., 2017; Yuan et 

al., 2006). It has been shown that transcription of the lytic 

cycle is bidirectional and that several newly identified 

transcribed regions do not encode proteins (Cao et al., 

2015; Majerciak et al., 2018; O’Grady et al., 2016, 2014). 

AcMNPV, a baculovirus 

The Autographa californica multiple 

nucleopolyhedrovirus (AcMNPV) is an insect virus of the 

family Baculoviridae (Blissard and Rohrmann, 1990) The 
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developed recombinant SARS-CoV-2 antibody 

nanoparticle vaccine is based on this virus (Tian et al., 

2021). During infection, two different forms of the virion 

are produced: occlusion-derived viruses, surrounded by an 

envelope containing viral proteins that ensure survival 

even in harsh environments such as the midgut of insects, 

and budding viruses, which have an envelope and some 

proteins facilitating their systemic spread in the near-

neutral environment of insect tissue (Volkman et al., 1976). 

The 134 kbp long, double-stranded circular viral DNA 

contains 150 closely spaced open reading frames (ORFs) 

(Ayres et al., 1994). As shown by our group and others, the 

proximity of ORFs causes overlap between several 

transcripts of AcMNPV (Chen et al., 2013; Moldován et 

al., 2018). The AcMNPV genes are expressed in three 

phases: early (E), late (L), and very late (VL) (George F 

Rohrmann., 2008). Early transcription (0-6 hours post-

infection, (p.i.)) produces transcriptional activators 

(Guarino and Summers, 1986) and the molecular 

machinery for DNA replication (Kool et al., 1994). E 

genes are transcribed by host RNA polymerase II. The L 

phase starts at the beginning of genome replication (6-18 
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h p.i.). The viral RNA polymerase (RNP) transcribes the L 

and VL genes, which recognize the consensus late initiator 

sequence (TAAG) on DNA and start synthesizing RNAs 

from the second nucleotide of the motif (Chen et al., 2013; 

Garrity et al., 1997). VL gene expression (18-72 h p.i.) is 

characterized by the synthesis of occlusion body proteins. 

The majority of AcMNPV transcripts contain a canonical 

polyadenylation signal (PAS) upstream of their 

transcription end site (TES). 

Aims 

For each virus, we aimed at six things: 

Identification of the 5' end of mRNAs. Determination of 

the 3' end of the mRNAs. Detection of promoter elements 

(TATA box, CAAT box, GC box) and polyadenylation 

signals. Linking annotated TSS and TES positions to 

transcripts. Categorization and abundance determination 

of annotated transcript isoforms, polycistronic RNAs, 

ncRNAs, antisense RNAs and 5' truncated RNAs. 

Detection of transcriptional overlaps 
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Materials and methods 

Viruses were propagated in appropriate cell lines 

grown in conditions recommended by the cell line vendor. 

The infection was stopped in consecutive time points, and 

total RNA was extracted from the cell lysates. For EBV 

total RNA samples were split in two. Polyadenylated 

RNAs were isolated from half of the total RNA. 

Ribodepletion, was carried out to remove ribosomal RNA 

from the other half of total RNAs. In case of AcMNPV 

polyadenylated RNAs and Cap-selected RNAs were 

isolated Futhermore, RNA bisulfite conversion was 

carried out. MinION amplified full-length cDNA libraries 

were prepared for all viruses, while direct RNA libraries 

was prepared for the AcMNPV and a non-amplified full-

length cDNA library was prepared for EBV, followed by 

sequencing on PacBio and MinION sequencers. 

Our sequencing data was base called with 

Minimap2 and pre-processed, followed by transcript 

isoform annotation using the LoRTIA software suite. The 

IGV and Genious software tools were employed for 

visualization of the reads and annotated transcripts. 
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Results 

In case of AcMNPV, we identified 311 

transcription start sites (TSS) and 261 transcription end 

sites (TES), from which we annotated a total of 875 

transcripts. Among these, 330 5'-UTR isoforms, as well as 

340 3'-UTR variants, were determined, 76.35% of which 

contained canonical PAS upstream of their 5′-end. 

Additionally, we identified 41 5'-truncated transcripts, 

which are RNAs containing in-frame ORFs within genes. 

Multicistronic transcripts that overlap multiple genes were 

also identified, with 45 being polycistronic and 54 being 

complex transcripts. We identified 101 novel non-coding 

transcript isoforms that did not contain previously 

annotated ORFs, two-thirds of which were longer than 200 

nts, representing long non-coding RNAs. The AcMNPV 

genome contains 37 convergent gene pairs. Our LRS 

analysis revealed that all convergent gene pairs exhibited 

transcriptional readthroughs. Among these, only three 

pairs exclusively overlapped in their 3'-UTRs, while the 

remaining pairs exhibited overlaps in their ORFs. Out of 

the 34 gene pairs, 32 showed divergent transcriptional 

overlaps, and 84 demonstrated parallel overlaps in 87 gene 
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pairs. Homologous repeat (hr) regions are located at 

multiple genomic positions in AcMNPV, believed to 

contain replication origins (Oris). In total, 55 transcript 

species were identified in hr regions. RNA modification 

detection was performed on the direct RNA sequencing 

data of AcMNPV using the Tombo software suite. After 

filtering the potential false-positive detections 325 

putative 5 m C sites mapped to the viral transcriptome in 

12 viral genes. We detected a potential methylation 

consensus sequence: UUACCG (the modified base 

underlined). With bisulfite sequencing, 234 of the 325 

methylated positions (identified by Tombo analysis) were 

confirmed In total, 7897 putative methylation positions 

were identified in 99 gene transcripts. 31 potential 

cytosine positions were detected in the 3′-UTR of the ac-

Orf-12 transcript, all of which were untranslated and 

therefore methylated. Overall, 88% of the potential 

methylation positions tested were located in coding 

regions and 21% in UTRs. Reads of ORF19-L showed a 

high frequency of A to I (read A to G by sequencing) 

substitution, which was not present in the overlapping 
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reads. We found that for ORF19, 50% of all substitutions 

were A to G. 

For EBV, 322 TSS (145 novel) and 57 TES (12 

novel) were identified, from which a total of 351 

transcripts were annotated from them 241 where novel. 

This included 47 long and 57 short 5'-UTR isoforms, along 

with 7 3' UTR isoforms. 72 5'-truncated transcripts were 

identified. Using the LoRTIA toolkit, 205 introns were 

detected from which 42 novel spliced transcripts were 

detected. We identified forty-seven multigenic transcripts, 

27 of which were novel, and 4 novel complex transcripts 

out of a total of 6. A total of 21 non-coding transcripts were 

detected, 2 short ncRNAs and 19 lncRNAs. All three 

forms of transcriptional overlap were detected in EBV 

RNAs. The EBV genome has two lytic (Ori-Lyt) and one 

latent (OriP) replication origins. We detected nine novel 

isoforms of Ori-associated RNAs. 

Discusion 

In my thesis I describe the analysis of the 

transcriptome of AcMNPV and EBV using sequencing 

platforms that provide long reads. Using these approaches , 



14 
 

several new, previously unknown transcript categories 

have been identified. As a result of our investigations, we 

have identified numerous new transcription start sites and 

transcription end points. Additionally, we have discovered 

new 5' and 3'-UTR isoforms. The Long-Read Sequencing 

(LRS) revealed a broad spectrum of 5'-truncated 

hypothetical RNAs. Several multigenic transcripts were 

detected, that overlap multiple genes in each virus. It is 

hypothesized that transcriptional readthrough in tandem 

genes (and also on convergent genes) plays a role in a 

transcription interference-based mechanism (Boldogköi, 

2012). In this study, we detected novel promoters, Inr 

sequences, and poly(A) sites. Another significant result of 

these platforms was that a new class of RNAs was 

identified with them, which include transcripts 

transcribing replication origins and transcripts near 

replication origins (Boldogkői et al., 2019a). In conclusion, 

multiplatform approaches are essential in transcriptomic 

studies because different platforms have distinct 

advantages and limitations, representing independent 

techniques vital for validating results obtained by a 

particular method. 
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