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“It’s not a bug - it’s an undocumented feature.”
— Anonymous

1
Introduction

Managing software bugs is an essential part of software development and companies
tend to spend a large amount of resources on it. Programmers tend to make mistakes
despite the assistance provided by different integrated development environments, and
errors may also occur due to frequent changes in the code and inappropriate specifica-
tions; therefore, it is important to get more and/or better tools to help the automatic
detection of errors [67]. Dealing with software bugs consists of tasks like preventing,
finding, and fixing bugs.

Finding software bugs is usually done by checking the source code manually and
looking for the root of the problem based on bug reports. It is a time- and resource-
consuming activity, and minimizing the required effort would help to reduce the cost
of the development. Unit tests can also help us detect and localize software faults, but
it requires writing test cases in parallel with development, and it is also a resource-
intensive task. Another way of assisting bug localization is to characterize the known
ones with some appropriate metrics and try to predict which source code elements have
the highest probability of containing a bug. The most important step in facilitating
error detection is to analyze already known errors to identify patterns or trends.

Analyzing known bugs requires a source code change history and a bug tracking
system. Nowadays, many developers use a versioning system - like Subversion or Git -,
hence the source code history is often available. The use of bug tracking systems is also
quite common in software development. There are numerous commercial and open-
source software systems available for these purposes. The bug reports are recorded
within these systems and all changes related to the bugs are also tracked, including the
source code fixes. Furthermore, different web services are built to meet these needs.
The most popular ones, like SourceForge, Bitbucket, and GitHub, fulfill the above-
mentioned functionalities. They usually provide several services, such as source code
hosting and user management. Their APIs make it possible to retrieve various kinds of
data, e.g., they provide support for the examination of the behavior or the cooperation
of users, or even for the analysis of the source code itself. Since most of these services
include bug tracking, the idea of using this information in the characterization of buggy
source code parts is raised [132]. To do so, the bug reports managed by these source

1



1. Chapter. Introduction

code hosting providers must be connected to the appropriate source code parts [127].
A common practice in version control systems is to describe the changes in a comment
belonging to a commit (log message) and often to provide the identifier of the associated
bug report that the commit is supposed to fix [71]. This can be used to identify the
faulty versions of the source code [39, 40]. GitHub contains more than 330 million
repositories1 and has a readily usable API2 to access these projects, which are accessible
via Git3; hence it is a convenient choice as a data source for the studies.

In terms of programming languages, some of the most popular languages in use
today include Java, Python, C++, JavaScript, and PHP4. According to the TIOBE
Index5, the most popular programming language in 2023 was Python, followed by C,
C++, and Java. Java has been a popular programming language for many years and
is widely used in enterprise software development due to its scalability, reliability, and
portability6. JavaScript (JS) is the de-facto web programming language globally7, and
the most adopted language on GitHub8. JavaScript is massively used in the client
side of web applications to achieve high responsiveness and user-friendliness. In recent
years, due to its flexibility and effectiveness, it has also been increasingly adopted for
server-side development, leading to full-stack web applications [13]. Platforms such as
Node.js9 allow developers to conveniently develop both the front- and back-end of the
applications entirely in JavaScript. Despite its popularity, the intrinsic characteristics
of JavaScript—such as weak typing, prototypal inheritance, and run-time evaluation—
make it one of the most error-prone programming languages. As such, a large body
of software engineering research has focused on the analysis and testing of JavaScript
web applications [23, 121, 122, 94, 46, 11, 83, 12]. For these reasons, although there
are many different programming languages, we made a conscious decision to focus our
efforts on analyzing bugs reported in Java or JavaScript projects.

Although a vast amount of raw data is available regarding software bugs, collecting,
filtering, and processing it can be a time-consuming and resource-intensive task. Many
papers have dealt with bug databases using many kinds of approaches, such as bug
prediction, fault localization, or testing techniques [31, 98, 95, 81, 133]. Researchers
often use a database created for their own purposes, but these datasets are rarely
published for the community. Despite the abundance of research on software bugs, the
availability of bug databases that are accessible to the public is notably inadequate
and overlooked. Additionally, subject programs or accompanying experimental data
are rarely made available in a detailed, descriptive, curated, and coherent manner.
This not only hampers the reproducibility of the studies themselves but also makes it
difficult for researchers to assess the state-of-the-art of related research and compare
existing solutions. Specifically, testing techniques are typically evaluated with respect
to their effectiveness at detecting faults in existing programs, however, real bugs are
hard to isolate, reproduce, and characterize. Therefore, the common practice relies on
manually seeded faults or mutation testing [66]. Each of these solutions has limitations.

1https://github.com/about
2https://docs.github.com/en/rest
3https://git-scm.com/
4https://octoverse.github.com/2022/top-programming-languages
5https://www.tiobe.com/tiobe-index/
6https://github.com/readme/featured/java-programming-language
7https://insights.stackoverflow.com/survey/2019
8https://octoverse.github.com
9https://nodejs.org/en/
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Manually injected faults can be biased toward researchers’ expectations, undermining
the representativeness of the studies that use them. Mutation techniques, on the other
hand, allow for generating a large number of “artificial” faults. Although research has
shown that mutants are quite representative of real bugs [55, 70, 14], mutation testing
is computationally expensive to use in practice. For these reasons, publicly available
benchmarks of bugs are of paramount importance for devising novel debugging, bug
prediction, fault localization, or program repair approaches.

The characterization of buggy source code elements through various methods is still
a popular research area. For automatic recognition of unknown faulty code elements, it
is a prerequisite to characterize the already known ones. There are many good studies
on bug characterization [56, 110, 30, 41]. Processing the diff files of a commit can
help us obtain the exact code sections affected by the bug [128]. The most commonly
used methods for bug characterization include textual similarities with faulty code
parts [18], source code analysis, product metrics [37, 100], or process metrics. There
are numerous tools, some of which are free, that are capable of analyzing source code
written in different programming languages and producing product metrics for the code
elements. During our studies, we used the OpenStaticAnalyzer10 tool for source code
analysis, because it is able to process source code written in either Java or JavaScript
programming languages and it can extract detailed information about the source code
elements.

The thesis is composed of three thesis points and is structured as follows. Chapter 2
discusses the related work and background information of our study. In the following
three chapters, we delve into each of the three thesis points. In Chapter 3, we present
the first thesis point, which is a novel method for constructing a bug database. Using
this method we construct a dataset and evaluate its usefulness for bug prediction, while
also comparing it with a database made using the traditional approach. Chapter 4 cov-
ers the second thesis point, where we present a method for computing software process
metrics using a graph database. We assess the metrics’ predictive power for bugs and
compare them with product metrics. In Chapter 5, we present the third thesis point,
which is a benchmark of real, manually-verified JavaScript bugs, and we discuss the
results of our quantitative and qualitative analyses of these bugs. Finally, in Chap-
ter 6, we provide a summary of the thesis. In Appendices A and B, we present concise
summaries of the thesis in English and Hungarian, respectively, outlining the concrete
thesis points, as well as the author’s contributions and supporting publications.

10https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
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“I grew up thinking that a research scientist was
a natural thing to be.”

— Stephen Hawking

2
Background

2.1 Bug Taxonomies
There are several industry standards for categorizing software bugs, such as the IEEE
Standard Classification for Software Anomalies [9], or IBM’s Orthogonal Defect Clas-
sification [34]. Also, there are countless categorization schemes proposed by various
testing and defect management tool and service vendors, which are also less relevant
to our research.

Hanam et al. [59] discuss 13 cross-project bug patterns occurring in JavaScript per-
taining to six categories, which are the following: Dereferenced non-values (e.g., Unini-
tialized variables), Incorrect API config (e.g., Missing API call configuration values),
Incorrect comparison (e.g., === and == used interchangeably), Unhandled exceptions
(e.g., Missing try-catch block), Missing arguments (e.g., Function call with missing
arguments), and Incorrect this bounding (e.g., Accessing a wrong this reference). The
most common pattern according to the Hanam et al. scheme, Dereferenced non-values,
can also be identified in other related work. Previous work showed that this pattern
also occurs frequently in client-side JavaScript applications [94]. Developers could avoid
these syntax-related bugs by adopting appropriate coding standards. Moreover, IDEs
can be enhanced to alert programmers to possible effects or bad practices. They could
also aid in prevention by prohibiting certain actions or by recommending the creation
of stable constructs.

Catolino et al. [32] analyzed 1,280 bug reports of 119 popular projects with the aim
of building a taxonomy of the types of reported bugs. They devised and evaluated
the automated classification model, which is able to classify the reported bugs accord-
ing to the defined taxonomy. The authors defined a three-step manual method to
build the taxonomy. The final taxonomy defined in this work contains nine main com-
mon bug types over the considered systems: configuration, network, database-related,
GUI-related, performance, permission/deprecation, security, program anomaly, and
test code-related issues. This classification is less suitable to apply to source code
because it is a very high-level one.

Li et al. [79] used natural language text classification techniques to automatically
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2. Chapter. Background

analyze 29,000 bugs from the Bugzilla databases of the Mozilla and Apache HTTP
Server projects. The authors classified the bugs along three dimensions: root cause
(RC), impact (I), and software component (SC). According to RC, bugs can be classified
into three disjoint groups (and subgroups): semantic, memory, and concurrency.

Tan et al. [116] proposed a work that is related to the previous study. They exam-
ined more than 2,000 randomly sampled real-world bugs in three large projects (Linux
kernel, Mozilla, and Apache) and manually analyzed them according to the three di-
mensions defined by Li et al. [79]. They created a bug type classification model, which
used machine learning techniques to automatically classify the bug types.

Zhang et al. [130] investigated the symptoms and root causes of TensorFlow bugs.
They identified the bugs from the GitHub issue tracker using commit and pull request
messages. The authors collected the common root causes (that were based on structure,
model tensor, and API operation) and symptoms (based on error, effectiveness, and
efficiency) into categories and classified each bug accordingly.

Thung et al. [117] presented a semi-supervised defect prediction approach (LeDEx -
Learning with Diverse and Extreme Examples) to minimize manual bug labeling. The
researchers used a benchmark that contains 500 defects from three projects that have
been manually labeled based on ODC. In their approach, hand-labeled samples were
used to learn and build the model, which uses non-labeled elements to refine the model.

In another study, Thung et al. [118] proposed a classification-based approach used
to categorize the bugs into control and data flow, structural or non-functional groups.
They performed NLP pre-processing and feature extraction operations on the text
mined from JIRA. The resulting data was used to build the model based on Support
Vector Machine (SVM).

Nagwani et al. [92] used the bug tracking system to collect textual information and
several attributes of bugs. They presented a methodology to bug classification, which
is based on a generative statistical model (LDA - Latent Dirichlet allocation) in natural
language processing.

2.2 Bug Localization and Source Code Management
Numerous approaches have been proposed to tackle bug characterization and localiza-
tion [107, 123, 42]. For instance, Zhou et al. introduced BugLocator [132], a tool that
identifies the relevant source code files that need to be modified to fix a bug by utilizing
textual similarities between the initial bug report and the source code to rank poten-
tially problematic files. BugLocator employs a bug database that stores information
about previous bug reports. The ranking is based on the assumption that descriptions
with high similarities indicate highly similar related files. Similarly, Rebug-Detector
by Wang et al. [120] is a tool that detects related bugs from source code using bug
information, focusing on overridden and overloaded method similarities.

The goal of developing ReLink was to address the issue of missing links between
code changes in version control systems and fixed bugs, and its potential usefulness
for software engineering research that relies on linkage data, such as software defect
prediction [127]. ReLink works by analyzing bug tracking database information, such
as bug reporter, description, comments, and date, and then pairing the bug with the
appropriate source code files based on source code information extracted from the
version control system. While most studies focus on linking information retrieved solely
from version control and bug tracking systems [49, 87, 72, 126], this approach relies
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on file-level textual features to extract additional information about the relationship
between bugs and source code.

Kalliamvakou et al. [71] conducted a study on the characteristics and qualities of
GitHub repositories. Their analysis covered various project features, such as (in)activity,
and raised additional research questions, such as whether a project is an independent
entity or part of a larger system. The study found that the extracted data could be a
valuable input for various investigations, however, one must always verify the useful-
ness and reliability of the data. While it is recommended to select projects with many
developers and commits, the most important factor is to choose projects that suit one’s
specific purpose.

Mining software repositories can be a harsh task when an automatic mechanism
is used to construct a large set of data based on the information gathered from a
distributed software repository. As we used GitHub to address our research questions,
we paid extra attention to prevent and avoid pitfalls. Bird et al. [24] presented a
study on distributed version control systems – focusing mainly on Git – that examined
their usage and the available set of data (such as whether the commits are removable,
modifiable, or movable). The main purpose of the paper was to draw attention to
pitfalls and help researchers avoid them during the processing and analysis of a mined
information set.

The value of bug tracking systems in improving software quality has been well-
documented in numerous research papers. Bangcharoensap et al. [18] propose a method
that leverages bug reports stored in such systems to quickly locate buggy files in a
software system. Their approach offers three distinct methods for ranking fault-prone
files: (a) Text mining, which evaluates files based on their textual similarity to the
bug report, (b) Code mining, which predicts potential buggy modules using source
code product metrics, and (c) Change history, which predicts fault-prone modules
using process metrics. The authors test their approach using data from the Eclipse
platform and demonstrate its effectiveness in identifying buggy files. They find that
bug reports with brief descriptions and specific language can be particularly helpful in
identifying weaknesses in the system. Overall, the results suggest that bug tracking
systems provide a rich source of data for identifying and addressing software issues. By
combining multiple methods for ranking fault-prone files, the proposed approach offers
a comprehensive approach to bug localization that can be easily applied to a range of
software systems.

Apart from the methods mentioned earlier, changes in source code metrics can also
suggest the presence of potential bugs in relevant source code files [57]. Couto et al. [37]
published a study demonstrating a possible link between changed source code metrics
and bugs. The study aimed to find more reliable evidence regarding the causality
between software metrics and bug occurrence.

2.3 Public Datasets
Bug prediction is an intensively studied research area [84, 85, 82]. The techniques and
approaches used for bug prediction can be presented and compared in different ways,
however, there are some basic points that can serve as common components [78]. One
common element can be a dataset used for the evaluation of the various approaches.
The biggest of these datasets is the tera-PROMISE [112, 86] repository. It is a repos-
itory of datasets out of which several contain bugs gathered from open-source and
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also from closed-source industrial software systems1. Amongst others, it includes the
NASA MDP dataset, which was used in many research studies and also criticized for
containing erroneous data [109, 97]. The tera-PROMISE repository also contains an
extensively referenced dataset created by Jureczko[68], which provides object-oriented
metrics as well as bug information for the source code elements (classes). This latter
one includes open-source projects, such as Apache Ant, Apache Camel, JEdit, and
Apache Lucene, forming a dataset containing 48 releases of 15 projects. The main pur-
pose of these datasets is to support prediction methods and summarize bugs and their
characterizations extracted from various projects. Many research papers used datasets
from the tera-PROMISE repository as input for their investigations, but unfortunately,
the latest version of the repository is not available anymore.

A similar dataset for bug prediction by D’Ambros et al. [41] came to be commonly
known as the Bug prediction dataset2. The reason for creating this dataset was mainly
inspired by the idea of measuring the performance of the different prediction models
and also comparing them to each other. As part of their research, they created a
benchmark database from several open-source projects (Eclipse, Mylyn, Lucene). This
database contains bug numbers at the class level with 15 change metrics and 17 product
metrics. According to their findings, change metrics could improve the performance
of the fault prediction methods. The bug information was extracted from the commit
messages and bug tracking systems by using pattern matching, as others did in earlier
studies [134, 49]. This dataset handles the bugs and the relevant source code parts at
the class level, i.e., the bugs are assigned to classes. They describe the whole process
of building such a database, but the links to the tools used do not work anymore.

Zimmermann et al. [134] used Eclipse as the input for a study dealing with defect
prediction. They investigated whether the complexity metrics have the power to detect
fault-prone points in the system at package and file level. During the study, they
constructed a public dataset, called Eclipse Bug Dataset3. It contains different source
code metrics and a subset of the files/packages is marked as “buggy” if it contained
any bugs in the interval between two releases. The dataset is still available, but the
website is marked as archived, and it has not been maintained since 2010.

iBUGS [40, 39] provides a complex environment for testing different automatic de-
fect localization methods. Information describing the bugs comes from both version
control systems and bug tracking systems. iBUGS used the following three open-source
projects to extract the bugs from (the numbers of extracted bugs are in parentheses):
AspectJ – an extension for the Java programming language to support aspect-oriented
programming (223); Rhino – a JavaSript interpreter written in Java (32); and Joda-
Time – a quality replacement (extension) for the Java date and time classes (8). The
authors attempted to generate the iBUGS dataset in an automatic way and they com-
pared the generated set to the manually validated set of bugs. iBUGS is a framework
that is rather aimed towards bug localization instead of being a standalone dataset
containing source code elements and their characterizations (i.e., metrics).

The Bugcatchers [58] dataset, created by Hall et al., is not only a bug dataset but it
also contains bad smells detected in the subject systems. They showed that code smells
also play a significant role in bug prediction. The selected three systems are Eclipse
JDT Core, ArgoUML, and Apache Commons. The dataset is built and evaluated at

1http://promise.site.uottawa.ca/SERepository/index.html
2http://bug.inf.usi.ch/
3https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
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the file level.
The ELFF dataset [111] is a recent dataset proposed by Shippey et al. They found

that only a few method-level datasets exist, thus they created a dataset whose entries
are methods. Additionally, they also made class-level datasets publicly available4.
They used Boa [45] to mine SourceForge repositories and collect as many candidates
as they could, selecting 23 projects out of 50,000 that fulfilled their criteria (number
of closed bugs, bugs are referenced from commits, etc.). They only kept projects with
SVN version control systems, which narrows down their candidate set. They used the
classic and well-defined SZZ algorithm [114] to find the linkage between bugs and the
corresponding source code elements.

The Had-oops! dataset was created using a novel approach introduced by Harman
et al [60]. In their study, they examined eight consecutive versions of Hadoop and in-
vestigated how the chronology of versions impacts the performance of fault prediction.
They constructed prediction models for a given version using data from all previous
versions, as well as models using only the current version, and compared their perfor-
mance. Interestingly, the results were not straightforward, as they found that earlier
versions often outperformed recent versions in many cases. Additionally, they discov-
ered that using all versions was not always superior to using only the current version
when building prediction models.

The Mutation-aware fault prediction dataset was created as a result of an experi-
ment conducted by Bowes et al., where they explored the use of mutation metrics as
independent variables for fault prediction [27]. The experiment utilized three software
systems, including two open-source projects (Eclipse and Apache) and one closed-source
project. The widely-used PITest [36] tool was employed to obtain a set of mutation
metrics at the class level that were incorporated into the final dataset. Additionally,
static source code metrics calculated by JHawk [10] were included in the dataset for
comparison purposes.

Software-artifact Infrastructure Repository [44] is a repository of software-related
artifacts meant to support rigorous, controlled experimentation with program analysis
and software testing techniques, and education in controlled experimentation. The
repository holds a collection of software systems written in Java, PHP, C#, C, C++,
and other programming languages, spanning across multiple versions. It also houses
various supporting artifacts like test suites, fault data, and scripts. Additionally, the
repository includes documentation on how to utilize these objects for experimentation,
as well as supporting tools that aid in the experimentation process. It also contains
information on the methods employed for artifact selection, organization, and enhance-
ment, along with tools that facilitate these processes.

Defects4J [69] (Defects for Java) is a publicly available curated dataset of real-world
software defects specifically designed for software testing and debugging research. It is
a collection of reproducible bugs or defects extracted from open-source Java projects,
with accompanying test cases that trigger the defects. It was created to facilitate the
development and evaluation of automated software testing and debugging techniques
by providing a standardized and diverse set of real-world software defects for researchers
and practitioners to use in their experiments. Defects4J is maintained as an open-source
project5 and contains 835 bugs from 17 projects.

4https://github.com/tjshippey/ESEM2016
5https://github.com/rjust/defects4j

9

https://github.com/tjshippey/ESEM2016
https://github.com/rjust/defects4j


2. Chapter. Background

BugZoo6 is a decentralized platform for distributing, reproducing, and interacting
with historical software bugs [119]. It is designed to support both software engineering
researchers as well as developers of tools for program testing, analysis, and repair.

ManyBugs7 and IntroClass8 are sets of C programs that contain defects and are
associated with test suites. They are intended to support reproducible and comparative
studies of research techniques in automatic patch generation for defect repair [77].
ManyBugs and IntroClass are seamlessly integrated with BugZoo.

BugSwarm9 is a toolset that enables the creation of a scalable, diverse, real-world,
continuously growing set of reproducible build failures and fixes from open-source
projects [43]. It mines GitHub projects that utilize Travis-CI as a continuous inte-
gration service. It collects pairs of build results where the first build in the pair fails,
and the second build, which is the subsequent one in Git history on each branch, passes.
It has over 3000 entries from projects written in Java or Python.

Furthermore, purpose-specific test and bug datasets also exist to support studies in
program repair [80], test generation [50], and security [54].

Awesome-MSR10 is a curated repository named after the conference series known
as Mining Software Repositories (MSR). It serves as a comprehensive collection of
repositories, tools, and datasets to conduct evidence-based, data-driven research on
software systems.

2.4 Bug Prediction
In the aforementioned studies, various statistical models and machine learning ap-
proaches were utilized to help predict the occurrence of bugs by identifying patterns
and relationships in the data. Logistic regression is a commonly used statistical tech-
nique that is used to model the relationship between a binary outcome variable (e.g.,
the occurrence of a bug) and one or more predictor variables (e.g., software metrics,
historical bug data, etc.). Machine learning approaches, including supervised, unsu-
pervised, and semi-supervised learning algorithms, are also commonly used in bug
prediction. These techniques often involve training a model on labeled data (e.g.,
bug reports with labeled bug/non-bug instances) and then using the trained model to
predict the likelihood of bugs in new, unlabeled data.

For evaluating our results during the study, we applied the following algorithms:

• NaiveBayes [129]
• NaiveBayesMultinomial
• Logistic [38]
• SGD [106]
• SimpleLogistic [76]
• VotedPerceptron [51]
• DecisionTable [73]
• OneR [65]
• J48 (C4.5) [99]
6https://github.com/squaresLab/BugZoo
7https://github.com/squaresLab/ManyBugs
8https://github.com/ProgramRepair/IntroClass
9https://github.com/BugSwarm/bugswarm

10https://github.com/dspinellis/awesome-msr
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• RandomForest [64]
• RandomTree

For the training, we used 10-fold cross-validation and compared the results based
on precision, recall, and F-measure metrics where these metrics are defined in the
following way:

precision = TP

TP + FP
recall = TP

TP + FN

F − measure = 2 · precision · recall

precision + recall
,

where TP (True Positive) is the number of entries that were predicted as faulty and
observed as faulty, FP (False Positive) is the number of entries that were predicted
as faulty but observed as not faulty, FN (False Negative) is the number of entries
that were predicted as non-faulty but observed as faulty. We carried out the training
with the popular machine learning library called Weka11. It contains algorithms from
different categories, for instance, Bayesian methods, support vector machines, and
decision trees.

2.5 Source Code Analysis
There are two main approaches to analyzing source code in software development:
static analysis and dynamic analysis.

Static analysis tools analyze the source code without actually running the code,
thus providing feedback before the code is executed, which allows developers to iden-
tify and fix issues early in the development process. They scan the code for potential
issues, such as coding standard violations, security vulnerabilities, and performance
optimizations, by examining the code’s syntax, structure, and patterns. They use pre-
defined or customizable rules or patterns to identify potential issues in the code. These
rules are typically based on coding standards, best practices, and security guidelines.
Static analysis tools are often integrated into popular development environments and
build systems, such as IDEs and CI/CD pipelines, to provide real-time feedback during
development.

Dynamic analysis tools analyze the behavior of the code during runtime, by actually
executing the code and observing its behavior. This allows for insights into the actual
execution of the code and its runtime behavior, thus providing feedback during code
execution, which allows developers to observe the code’s behavior in different scenarios
and identify issues that may not be evident through static analysis. Dynamic analysis
tools can also assess test coverage, profiling, and performance during runtime.

Symbolic analysis is a type of dynamic analysis that involves using symbolic execu-
tion techniques to analyze the behavior of software during runtime. Symbolic execution
is a technique where variables and inputs are represented symbolically, allowing for the
exploration of different paths and conditions in the code to understand how the software
behaves in different scenarios. It can be used for various purposes, such as identifying

11http://www.cs.waikato.ac.nz/ml/weka/
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bugs, vulnerabilities, or unexpected behavior in software. However, it can also be com-
putationally expensive and may require specialized tools and expertise to effectively
implement and interpret the results.

Both static source code analysis and dynamic analysis have their advantages and
limitations. There are many tools available for static code analysis12 as well as symbolic
analysis13. For our studies, we used the OpenStaticAnalyzer tool, which is a static
analysis tool. We chose it because it is able to process source code written in either
Java or JavaScript programming languages and it can extract detailed information
about the source code elements, including various source code metrics. The output of
the static source code analysis using OpenStaticAnalyzer is presented in the form of a
graph, which contains the source code elements (files, classes, methods) as nodes and
the corresponding relationships between these elements as edges. Additionally, the tool
includes a Java library that offers an API for working with the graph file generated
from the static source code analysis. These features make this tool an ideal choice for
performing the task of static source code analysis.

2.6 Software Metrics
A software metric is a quantified measure of a property of a software project. By
using a set of different metrics, we can measure the properties of a project objectively
from various points of view. Metrics can be obtained from the source code, from the
project management system, or even from the execution traces of the source code.
We can deduce higher-level software characteristics from lower-level ones [15], such
as the maintainability of the source code or the distribution of defects, but they can
also be used to build a cost estimation model, apply performance optimization, or
to improve activities supporting software quality [25, 17, 16]. Software metrics can
be classified into different categories based on their characteristics and purposes. A
common classification is based on whether they measure the characteristics of the
resulting software product (product metrics) or the efficiency and effectiveness of the
software development process (process metrics).

Software product metrics are extracted from the structure of the source code. Some
examples are lines of code, cyclomatic complexity, and the number of methods. These
metrics are frequently used for bug characterization[100] because they are easy to com-
pute. Product metrics do not rely on the software’s project history as they are based
on a single state of the software and hence do not incorporate temporal characteristics.
Typically, these metrics are computed for files or classes, although there are now more
tools that also support methods.

Software process metrics are derived from developer activities, and many of them
incorporate temporal information. Common examples include metrics based on the
number of previous modifications, the number of different contributors, the number of
modified lines, and the timing of modifications. These metrics have diverse applications
and can be used for various purposes. They are particularly useful for examining
developers’ behavior, as the computation is based on their activities. Additionally,
these metrics can aid in identifying key source code parts that are frequently or recently
modified, providing valuable insights into the software development process.

12https://github.com/analysis-tools-dev/static-analysis
13https://github.com/ksluckow/awesome-symbolic-execution
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2.6.1 Software Product Metrics
The area of object-oriented source code metrics has been researched for many years [33,
19, 28], thus, no wonder that several tools exist for measuring them. These tools
are suitable for the detailed examination of systems written in various programming
languages. The source code metrics provide information about the size, inheritance,
coupling, cohesion, or complexity of the code. As mentioned before, during our studies,
we used the OpenStaticAnalyzer tool to analyze the source code of the selected systems.
It is capable of computing various software product metrics. The full list of the object-
oriented metrics we used is shown in Table 2.2. The last three columns of the table
indicate the kind of elements the given metric is calculated for, namely method, class,
and file. The presence of ‘X’ indicates that the metric is calculated for the given source
code level. Most of the blanks in the table come from the fact that the metric is defined
only for a given level. For instance, Weighted Methods per Class cannot be interpreted
for methods and files. Other blanks come from the limitations of OpenStaticAnalyzer.

One special metric category is provided by source code duplication detection [105].
OpenStaticAnalyzer is able to detect Type-1 (exact copy of code, not considering white
spaces and comments) and Type-2 clones (syntactically identical copy of code where
variable, function, or type identifiers can be different; also not considering white spaces
and comments) in software systems [20] and also supports clone management tasks,
such as:

• Clone tracking: clones are tracked during the source code analysis of consecutive
revisions of the analyzed software system.

• Calculating clone metrics: a wide set of clone-related metrics is calculated to
describe the properties of a clone in the system (for example, the risk of a clone
or the effort needed to eliminate the clone from the system).

Basic clone-related metrics that are calculated for methods and classes are presented
in Table 2.1.

Table 2.1: Clone metrics used for characterization

Abbreviation Full name

CC Clone Coverage
CCL Clone Classes
CCO Clone Complexity
CI Clone Instances
CLC Clone Line Coverage
CLLC Clone Lines of Code
LDC Lines of Duplicated Code
LLDC Logical Lines of Duplicated Code

OpenStaticAnalyzer also provides a coding rule violation detection module. The
occurrence of rule violations in a source code element can potentially result in errors
later [26], which could be akin to a ticking time bomb. Therefore, the count of distinct
rule violations identified in the source code element can serve as a valuable predictor;
thus, this information is also encapsulated in the dataset.
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Table 2.2: Source code metrics used for characterization

Abbreviation Full name Method Class File
CLOC Comment Lines of Code X X X
LOC Lines of Code X X X
LLOC Logical Lines of Code X X X
NL Nesting Level X X
NLE Nesting Level Else-If X X
NII Number of Incoming Invocations X X
NOI Number of Outgoing Invocations X X
CD Comment Density X X
DLOC Documentation Lines of Code X X
TCD Total Comment Density X X
TCLOC Total Comment Lines of Code X X
NOS Number of Statements X X
TLOC Total Lines of Code X X
TLLOC Total Logical Lines of Code X X
TNOS Total Number of Statements X X
McCC McCabe’s Cyclomatic Complexity X X
PDA Public Documented API X X
PUA Public Undocumented API X X
HCPL Halstead Calculated Program Length X
HDIF Halstead Difficulty X
HEFF Halstead Effort X
HNDB Halstead Number of Delivered Bugs X
HPL Halstead Program Length X
HPV Halstead Program Vocabulary X
HTRP Halstead Time Required to Program X
HVOL Halstead Volume X
MIMS Maintainability Index (Microsoft version) X
MI Maintainability Index (Original version) X
MISEI Maintainability Index (SEI version) X
MISM Maintainability Index (SourceMeter version) X
NUMPAR Number of Parameters X
LCOM5 Lack of Cohesion in Methods 5 X
WMC Weighted Methods per Class X
CBO Coupling Between Object classes X
CBOI Coupling Between Object classes Inverse X
RFC Response set For Class X
AD API Documentation X
DIT Depth of Inheritance Tree X
NOA Number of Ancestors X
NOC Number of Children X
NOD Number of Descendants X
NOP Number of Parents X
NA Number of Attributes X
NG Number of Getters X
NLA Number of Local Attributes X
NLG Number of Local Getters X
NLM Number of Local Methods X
NLPA Number of Local Public Attributes X
NLPM Number of Local Public Methods X
NLS Number of Local Setters X
NM Number of Methods X
NPA Number of Public Attributes X
NPM Number of Public Methods X
NS Number of Setters X
TNA Total Number of Attributes X
TNG Total Number of Getters X
TNLA Total Number of Local Attributes X
TNLG Total Number of Local Getters X
TNLM Total Number of Local Methods X
TNLPA Total Number of Local Public Attributes X
TNLPM Total Number of Local Public Methods X
TNLS Total Number of Local Setters X
TNM Total Number of Methods X
TNPA Total Number of Public Attributes X
TNPM Total Number of Public Methods X
TNS Total Number of Setters X
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2.6.2 Software Process Metrics
There are many software process-related metrics [90, 91, 61, 21] and they were mainly
used in studies concerning bug prediction. In these studies, the authors evaluated the
predictive capability of these metrics and they often compared this capability with that
of product metrics. Other studies [101, 89, 88, 75, 82] have shown that while software
process metrics are generally better bug predictors than product metrics, tools that
can compute these metrics are still quite rare. The studies primarily focus on defining
process metrics and presenting their results. However, the method of computing these
metrics is not always thoroughly described, which can make reproducing the results
challenging.

Rahman et al. [101] analyzed the properties of process metrics from the perspective
of performance, stability, portability, and stasis. They found that product metrics
have a higher stasis - which means they do not change much compared to the process
metrics -, thus the same elements were predicted as defective over and over. Also,
product metrics are less stable and less portable across projects.

Hassan [61] went further. In his paper, he proposed complexity metrics that are
based on process metrics. He analyzed 6 projects written in C and C++ and computed
process metrics at the file level, but he did not give a detailed description of the method
of processing and how to compute these metrics. He concluded that the proposed
change complexity metrics are better fault predictors than the well-known process
metrics. He also said that we should consider using these metrics instead of simple
metrics like the number of prior modifications and the number of prior faults.

Buginfo is a tool that is used for collecting bug information from source code repos-
itories [68]. It uses regular expressions on the commit messages to count the number of
bugs in classes, as other studies did [134, 49]. It is also capable of computing process
metrics, but unfortunately, the tool is not maintained.

D’Ambros et al. [41] computed change metrics and bug information on the file level.
They found that the Weighted Churn and Linearly Decayed Entropy metrics perform
the best (around 90%) for bug prediction, but the computation of these metrics is quite
complex. Furthermore, they concluded that multiple metrics should be used for this
purpose in order to achieve good results across multiple systems.

The Eclipse project is used quite often for studies on bug prediction. Bernstein et
al. [21] used this project to examine whether temporal features are suitable for bug
prediction. They gathered change information from CVS and bugs from Bugzilla and
they computed several temporal features. They built non-linear models for the bug
database they created and they achieved a high accuracy score (99%) in predicting
defects. They concluded that temporal features (process metrics) and non-linear mod-
els are suitable for bug prediction. Moser et al. [88] also used the Eclipse project to
investigate the characteristics of change metrics in bug prediction. They calculated 18
change metrics at the file level. They achieved better results with these metrics than
with product metrics [89] and they showed that 3 out of 18 change metrics can achieve
good results, and they are as stable as the model with all the metrics. These three
metrics are the following: number of revisions, number of bug fixes, and maximum size
of all of its change sets.

Shihab et al. [110] also examined whether the number of predictors can be reduced.
As a data source, they used the Eclipse data set [134]. They showed that the 34 product
and process metrics can effectively be reduced to 4 with very little difference in the
overall prediction accuracy. They found that the most stable independent metrics were:
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total prior changes, number of pre-release defects, and TLOC.
The study made by Krishnan et al. [75] sought to answer the research question of

whether the process metrics are good bug predictors for the family of products in the
evolving Eclipse product line. They replicated the results previously achieved by Moser
et al. [89] and extended them with their observations. They concluded that process
metrics are good bug predictors for the Eclipse product line. Furthermore, they found
that a small subset of these metrics are stable and consistent across multiple projects.
They are called maximum changeset, number of revisions, and number of authors.

Graves et al. [56] also made a study on the bug prediction capabilities of process
metrics. They computed the metrics at the module level and analyzed systems written
in C. Their observation was that the best model used the weighted time damp metric
and the best linear models used the number of changes and the age metrics. They
found that the number of developers and the changeset metrics did not influence the
accuracy of the fault prediction.

In the literature, process metrics are usually defined for files or modules (collection
of files). Here, an overview of the most commonly used metrics gathered from the
aforementioned studies is provided, along with a general definition for each that can
be applied to various source code elements, such as classes or methods:

• Number of Modifications: The number of previous modifications of the source
element.

• Number of Bug Fixes: The number of previous modifications of the source
element that reflect an intention to fix a bug.

• Number of Versions: The number of software versions (revisions) since the
source element was created. In other words, the number of commits on the whole
project since the creation of the element.

• Number of Refactorings: The number of previous modifications of the source
element that were committed in order to perform refactoring.

• Age: The age of the source element in days, weeks, or months.

• Weighted Age: The weighted age [89] is calculated using the age and size of
the previous modifications. It may be expressed in days, weeks, or months. The
formal definition is the following:

WeightedAge(e) =
∑

v Age(v) × NumberOfAddedLines(e, v)∑
v NumberOfAddedLines(e, v) (2.1)

In this formula, we compute the metric for the source element e. Age is the
age of the software version v (days, weeks, or months), where v is earlier than
the version for which we want to calculate. NumberOfAddedLines represents the
number of lines added for source element e in version v.

• Number of Contributors: How many different developers contributed to the
source element.

• Number of Contributor Changes: The number of developer changes in the
code history. A developer change occurs when the next sequential modification
on the same source element was performed by a different developer.
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• Sum of Added Lines: The total sum of the lines of code added to the source
element.

• Maximum Number of Added Lines: The maximum number of lines of code
added with one commit to the source element.

• Average Number of Added Lines: The average number of lines of code added
to the source element.

• Number of Additions: The number of previous commits in which new lines
were added to the source element.

• Sum of Deleted Lines: The total sum of the lines of code deleted from the
source element.

• Maximum Number of Deleted Lines: The maximum number of lines of code
deleted with one commit from the source element.

• Average Number of Deleted Lines: The average number of lines of code
deleted from the source element.

• Number of Deletions: The number of previous commits containing lines that
were deleted from the source element.

• Code Churn: The sum of lines added minus the lines deleted from the source
element[90].

• Relative Code Churn: The normalized Code Churn metric. Normalization
can be achieved with, for example, lines of code, file count, or time period [91].

• Maximum Number of Elements Modified Together: The maximum num-
ber of distinct elements that were modified with one commit.

• Average Number of Elements Modified Together: The average number of
distinct elements that were modified together with the source element.

• Average Time Between Changes: The average number of days, weeks, or
months that passed between consecutive modifications of the source element.

• Author: The identity of the original author of the source element. It may include
other information about the developer, such as the total number of commits of
the author and the number of projects.

• Number of Referenced Issues: The number of distinct issues referenced in
the comments of commits that introduce modifications to the source element.

• Number of Commits Without Message: The number of previous modifica-
tions without any comment message.

Many of these metrics rely on versioning information and issue-tracking data, while
others may also consider software management data. However, since software man-
agement data sources were not processed in this study, metrics that depend on them
are not described here. Additionally, more specific characteristics, such as the Number
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Of Referenced High Priority Issues metric, which considers the count of high-priority
issues referenced in the commit message, may also be taken into account if issue pri-
ority information is available. However, due to the potential variations of these details
across different systems, these variations were omitted from the list, and the focus was
on the most commonly used metrics.

Other metrics also can be formed like Change Activity Rate [102], which is defined
as the overall number of modifications relative to the age of the source element in
months. This metric can be computed by a simple division. The calculation of these
combined metrics is relatively straightforward, and thus we won’t go into further detail
about them.

Furthermore, most of these metrics can be specified with a time period. For in-
stance, the calculation interval can be limited to the last six months, allowing for the
production of new metrics, such as Number Of Modification In The Last Six Months.

2.7 GitHub
GitHub is one of today’s most popular source code hosting services. It is used by
several major open-source teams for managing their projects like Node.js, Ruby on
Rails, Spring Framework, Zend Framework, and Jenkins, among others. GitHub offers
public and private Git repositories for its users, with some collaborative services, e.g.,
built-in bug and issue tracking systems.

Bug reporting is supported by the fact that any GitHub user can add an issue,
and collaborators can even label these issues for further categorization. The system
provides some basic labels, such as “bug”, “duplicate”, and “enhancement”, but these
tags can be customized if required. In an optimal case, the collaborators review these
reports and label them with the proper labels, for instance, the bug reports with the
“bug” label. The most important feature of bug tracking is that we can refer to an issue
from the log message of a commit by using the unique identifier of the issue, thereby
identifying a connection between the source code and the reported bug. GitHub has
an API14 that can be used for managing repositories from other systems, or query
information about them. This information includes events, feeds, notifications, gists,
issues, commits, statistics, and user data.

With the GitHut15 project that also uses this API, we can get up-to-date statistics
about the public repositories. For instance, Table 2.3 presents the number of pushes
created in 2022, grouped by the main programming languages they use (only the top
10 languages are shown). It shows that Java and JavaScript are still among the most
often used programming languages in the open-source world.

Although extracting basic information from GitHub is easy, some version control
features are hard to deal with, especially during the linking process when we try to
match source code elements to bugs. For example, Git provides a powerful branching
mechanism by supporting the creation, deletion, and selection of branches. A fixing
commit of a bug most often occurs on other – so-called “topic” – branches and not on
the master branch. During the merge, isomorphic commits are generated and placed on
the master branch, thus all the desired analysis can be done by taking only the master
branch with a given version as input. Another example is forking a repository, which

14https://docs.github.com/en/rest
15https://githut.info/
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Table 2.3: The number of pushes created on GitHub in 2022 for the top 10 languages

Language Number of Pushes

Python 1,069,484
Java 572,890
JavaScript 534,972
C++ 478,294
PHP 361,926
TypeScript 367,136
C 245,035
Go 281,807
Shell 191,369
Ruby 200,872

is used worldwide. In our experiments, we do not handle forks, since it would have
encumbered the above-mentioned linking process and we would not gain significant
additional information since bugs are often corrected in the original repository. These
details can be viewed as our underlying assumptions regarding the usage of GitHub.
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“A ship in port is safe, but that is not what ships
are for. Sail out to sea and do new things.”

— Grace Hopper

3
A Novel Bug Prediction Dataset and its

Validation

Previously published datasets follow a so-called traditional concept to create a dataset
that serves as a benchmark for testing bug prediction techniques [41, 68]. These
datasets include all code elements – both buggy and non-buggy – from one or more ver-
sions of the analyzed system. In this chapter, we present a new approach that collects
before-fix and after-fix snapshots of source code elements (along with their character-
istics) that were affected by bugs and does not consider those code elements that were
not impacted by bugs. This kind of dataset helps us capture the changes in software
product metrics when a bug is being fixed, thus, we can learn from the differences in
source code metrics between faulty and non-faulty code elements. As far as we know,
there exists no other bug dataset yet that tries to capture this before-fix and after-fix
state.

This new dataset is called BugHunter Dataset and it is freely available (see Sec-
tion 3.1.8). It can serve as a new kind of benchmark for testing different bug prediction
methods since it includes a wide range of source code metrics to describe the previ-
ously detected bugs in the chosen systems. To construct this dataset, we have taken
all reported bugs from the bug tracking system into consideration. We used the usual
methodology of connecting commits to bugs by analyzing the log messages and by
looking for clues that would unambiguously identify the bug that was the intended
target of the corresponding fixing commit(s). Commit diffs helped us detect which
source code elements were modified by a given change set, thus the code elements that
had to be modified in order to fix the bug. We have analyzed 15 projects with more
than 3.5 million lines of code, and more than 114 thousand commits in total. The
subject systems that we selected differ in many ways from each other (size, domain,
number of bugs reported) to cover a wide and general set of systems.

We have also performed experiments to check whether our novel dataset is suitable
for bug prediction purposes. We collected bug characterization metrics at three source
code levels: file, class, and method. After the dataset was constructed, we used different
machine learning algorithms to analyze its usefulness.
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Table 3.1: Comparison of the two types of datasets

Feature Traditional Novel

Included time interval Usually 6 months Entire project history
Included source code elements All the elements from a sin-

gle version
Only the modified elements
right before and after bug-
fixes

Assumptions Source code elements that
are not included in any bug-
fix are non-faulty

No assumptions needed

Uncertainty The source code elements are
faulty in the latest release
version before the bug fix
and non-faulty after the fix

The source code elements are
faulty right before the bug fix
and fixed afterwards

We also performed a novel kind of experiment in which we assessed whether the
method level metrics are better predictors when projected to class level than the class
level metrics themselves.

An important aspect to investigate is how the bug prediction models built from
the novel dataset compare to the ones which used the traditional datasets as corpus.
However, this comparison is hard in its nature due to the variability in multiple factors.
One major problem is the difference in the corpus itself. The list of the included projects
varies from dataset to dataset. To overcome this issue, we utilized our traditional
dataset, which was generated from the same 15 projects and referred to as the GitHub
Bug Dataset [7]. This traditional dataset was constructed using release versions of
the systems, with snapshots taken at approximately six-month intervals. This way, we
could assess whether there was any difference in the bug prediction capabilities of these
two types of datasets.

To emphasize the research artifact contributions and the research questions, we list
them here:

• Research Artifact: A freely available novel dataset, called BugHunter Dataset,
containing source code metrics of buggy Java source code elements (files, classes,
methods) before and after bug fixes were applied to them.

• Research Question 1: Is the BugHunter Dataset usable for bug prediction
purposes?

• Research Question 2: Are the method-level metrics projected to the class level
better predictors than the class-level metrics themselves?

• Research Question 3: Is the BugHunter Dataset more powerful and expressive
than the GitHub Bug Dataset?

In Table 3.2, we compare the main characteristics of our two datasets with those
that are publicly available.

Our goal was to pick the strong aspects of all the previous datasets and put them
together. Although the works discussed in Chapter 2 successfully made use of their
datasets, an extended dataset can serve as a good basis for further investigations. Our
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Table 3.2: Comparison of the datasets

Project Level of bugs Bug characteristics Projects

NASA MDP Dataset class static source code metrics 11
Jureczko Dataset class static source code metrics 15

Bug prediction dataset class static source code metrics,
process metrics 5

Eclipse dataset file, package complexity metrics 1

iBUGS N/A bug-fix size properties, AST
fingerprints 3

Bugcatchers file code smells 3
ELFF class, method static source code metrics 23
Had-oops! class static source code metrics 1
Mutation-aware fault
prediction dataset class static source code metrics,

mutation metrics 3

GitHub Bug Dataset file, class, method
static source code metrics,
code duplication metrics, code
smell metrics

15

BugHunter dataset file, class, method
static source code metrics,
code duplication metrics, code
smell metrics

15

datasets include various projects from GitHub, include numerous static source code
metrics, and store a large number of entries in fine granularity (file, class, and method
level as well). Furthermore, we also experimented with chronology, although in a
different way compared to Harman et al [60]. The differences between the traditional
datasets and the proposed novel BugHunter Dataset are summarized in Table 3.1. See
Section 3.1.3 for details about the process of selecting the bug-related data for the
novel dataset. The detailed comparison can be found in Section 3.4.4.

3.1 Methodology
In this section, we will outline the methodology that was employed to construct the
dataset. We carried out the data processing in multiple steps using the toolchain shown
in Figure 3.1. Each of these steps – and their corresponding components – are detailed
in their dedicated sections below.

3.1.1 Subject System Selection
We considered several criteria when searching for appropriate projects on GitHub. First
of all, we searched for projects written in Java, especially larger ones, because those
are more suitable for this kind of analysis. It was also important to have an adequate
number of issues labeled as bugs, and the number of references from the log messages to
certain commits is also a crucial factor (this is how we can link source code elements to
bugs). Additionally, we preferred projects that are still actively maintained. Logged-in
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Figure 3.1: The components of the process

users can give a star for any repository and bookmark selected ones to follow. The
number of stars and watches applied to repositories forms a ranking between them,
which we will refer to as “popularity” from now on. We performed our search for
candidate projects mainly based on popularity and activity. During our search, we
discovered several projects that could have met most of our criteria, were it not for the
developers’ use of an external bug tracking system, which we were unable to support
at that time.

In the end, we selected the 15 projects listed in Table 3.3 based on the previously
mentioned criteria. As the descriptions show, these projects cover different domains;
a good practice when the goal is creating a general dataset. The table contains the
following additional data about the projects:

Stars the number of stars a project received on GitHub
Forks the number of forks of a project on GitHub
kLOC the thousand lines of code a project had in September, 2017

Recently, the repository of the Eclipse Ceylon project was moved to a new location
and the old repository is not available anymore. Due to this reason, we could not
obtain the total number of stars and the total number of forks of this repository, which
resulted in the low values in the table.

Besides knowing each project’s domain, further descriptors can help us get a more
precise understanding. Table 3.4 provides a more accurate picture of the projects by
showing different characteristics (related to the repositories) for each project. This
table sums up the occurrences of various bug reports and commits of the projects
present in September 2017. Considering the total number of commits (TNC) is a good
starting point to show the scale and activity of the projects. The number of commits
referencing a (closed) bug (NCRB) shows how many commits out of TNC referenced a
bug by using the pattern ’#x ’ in their commit log messages, where x is a number that
uniquely identifies the proper issue that is labeled as a bug [87]. NCBR (Number of
Closed Bug Reports) is also important since we only consider closed bug reports and
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Table 3.3: The selected projects and their descriptions

Project Stars Forks kLOC

Android Universal Image Loader1 16,521 6,357 13
An Android library that assists with the loading of images.

ANTLR v42 6,030 1,559 68
A popular piece of software in the field of language processing. It is a powerful parser generator
for reading, processing, executing, or translating structured text or binary files.

Broadleaf Commerce3 1,266 1,020 322
A framework for building e-commerce websites.

Eclipse plugin for Ceylon4 56 30 181
An Eclipse plugin that provides a Ceylon IDE.

Elasticsearch5 42,685 14,303 995
A popular RESTful search engine.

Hazelcast6 3,211 1,169 949
A platform for distributed data processing.

jUnit7 7,536 2,826 43
A Java framework for writing unit tests.

MapDB8 3,700 745 68
A versatile, fast, and easy-to-use database engine in Java.

mcMMO9 511 448 42
An RPG game based on Minecraft.

Mission Control Technologies10 818 280 204
Originally developed by NASA for space flight operations. It is a real-time monitoring and visual-
ization platform that can be used for monitoring any other data as well.

Neo4j11 6,643 1,636 1,027
The world’s leading graph database with high performance.

Netty12 20,006 9,128 380
An asynchronous event-driven networking framework.

OrientDB13 3,919 792 621
A popular document-based NoSQL graph database. Mainly famous for its speed and scalability.

Oryx 214 1,633 388 34
An open-source software with machine learning algorithms that allows the processing of huge data
sets.

Titan15 4,931 1,015 108
A high-performance, highly scalable graph database.

the corresponding commits in this context. The abbreviations we used stand for the
following:

TNC Total Number of Commits
NCRB Number of Commits Referencing a Bug
NBR Number of Bug Reports
NOBR Number of Open Bug Reports
NCBR Number of Closed Bug Reports
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Table 3.4: Statistics about the selected projects

Project name TNC NCRB NBR NOBR NCBR ANCBR

Android U. I. L. 1,025 52 90 15 75 0.69
ANTLR v4 6,526 162 179 23 156 1.04
Broadleaf Comm. 14,920 1,051 703 28 675 1.56
Eclipse Ceylon 7,984 316 923 82 841 0.38
Elasticsearch 28,815 2,807 4,494 207 4,287 0.65
Hazelcast 24,380 3,030 3,882 120 3,762 0.81
jUnit 2,192 72 90 6 84 0.86
MapDB 2,062 167 244 16 228 0.73
mcMMO 4,765 268 664 8 656 0.41
Mission Control T. 977 15 46 9 37 0.40
Neo4j 49,979 781 1,268 116 1,152 0.68
Netty 8,443 956 2,240 33 2,207 0.43
OrientDB 15,969 722 1,522 250 1,272 0.57
Oryx 1,054 69 67 2 65 1.06
Titan 4,434 93 135 8 127 0.73

ANCBR Average Number of Commits per closed Bug Reports (NCRB/NCBR)

It is apparent that the projects are quite different according to the number of bug
reports and the lines of code they have. NCRB is always lower than NCBR except in
three cases (ANTLR v4, Oryx, Broadleaf Commerce), which means that not all
bug reports have at least one referencing commit to fix the bug. This is possible since
closing a bug is viable not only from a commit but directly from GitHub’s Web user
interface without committing anything.

Figure 3.2 depicts the number of commits for each closed bug report. One insight
here is that the rate of closed bug reports is high where not even a single commit is
present to fix the bug. There are several possible causes for this, for example, the bug
report is not referred to from the commit’s log message, or the error has already been
fixed.

Figure 3.3 shows the ratio of the number of commits per project, illustrating the
activity and the size of the projects. When considering the number of commits, Neo4j
appears to be dominant. However, bug report-related activities are relatively average

1https://github.com/nostra13/Android-Universal-Image-Loader
2https://github.com/antlr/antlr4
3https://github.com/BroadleafCommerce/BroadleafCommerce
4https://github.com/eclipse/ceylon-ide-eclipse
5https://github.com/elastic/elasticsearch
6https://github.com/hazelcast/hazelcast
7https://github.com/junit-team/junit4
8https://github.com/jankotek/MapDB
9https://github.com/mcMMO-Dev/mcMMO

10https://github.com/nasa/openmct
11https://github.com/neo4j/neo4j
12https://github.com/netty/netty
13https://github.com/orientechnologies/orientdb
14https://github.com/OryxProject/oryx
15https://github.com/thinkaurelius/titan
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Figure 3.2: The number of bug reports with the corresponding number of commits
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Figure 3.4: The relationship between the bug reports and commits

in comparison. The figures presented demonstrate the variability among the selected
software systems, which contributes to the construction of a diverse and heterogeneous
dataset.

3.1.2 Data Collection
As the first step, we save data about the selected projects via the GitHub API. This
is necessary because while the data is continuously changing on GitHub due to the
activities in the projects, we need a consistent data source for the analysis. The data
we save includes the list of users assigned to the repository (Contributors), the open
and closed bug reports (Issues), and all of the commits. For open issues, we store only
the date of their creation. For closed issues, we store the creation date, closing date,
and the hash of the fixing commits with their commit dates. Additionally, we focus
exclusively on bug-related issues, so closed bugs that were not referenced from any
commit were not stored. This filtering is based on the issue labels provided by GitHub
and the set of labels we manually selected for each project. The data we store about
the commits includes the identifier of the contributor, the parent(s) of the commit, and
the affected files with their corresponding changes. All this raw information is stored
in an XML format, ready for further processing.

3.1.3 Data Processing
While the data extracted from GitHub includes all commits, we only need the ones
that relate to the bug reports. Amongst these commits, some can occur that need
to be removed because they are no longer available through Git (deleted, merged).
Moreover, we do not only search for links from the direction of commits but also from
the direction of issues (bug reports). When considering a bug report, we can find a
commit id showing that the bug was closed in that specific commit.

The selected commits are then divided into different subsets, as depicted in Fig-
ure 3.4. Green nodes are directly referencing the bug report (fixing intention). Gray
nodes are commits applied between the first fix and the last fix but not referencing the
bug id in their commit log messages. We have taken one extra commit into considera-
tion, which is the one right before the first fix (colored with orange). This commit holds
the state when the source code is buggy (not fixed yet), thus a snapshot (source code
analysis) will be performed at that point too. Although the orange node represents
the latest state where the bug is not fixed yet, the blue nodes also contain the bug
so we mark the source code elements as buggy in these versions as well. These blue
markings are important for distinguishing commits that are involved in multiple bugs
at the same time. The white nodes are considered free from the bug.
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For the GitHub Bug Dataset, we create bug databases from release versions. Let us
consider a few bugs that were later fixed (see Figure 3.5). There are 3 release versions
of the system: Version A, Version B, and Version C, and we have 3 bugs in the software:
Bug A, Bug B, and Bug C. Bug A was reported after Version A and was resolved prior
to Version B, indicating that Bug A was only present in Version A of the system. By
the time of Version B, Bug A had already been fixed, and therefore it is not included
in that version or any subsequent versions. Bug B was also reported after Version A;
however, Bug B was eventually fixed after Version B, resulting in Bug B being included
in the output for Version A and Version B as well. Bug C was reported after Version B
and was resolved prior to Version C, therefore it is included only in Version B.

Since the faulty elements are determined from the viewpoint of reported issues, and
the issues are independent of the release versions that we selected, this means that the
bug information is scattered across different points in time. If a bug was reported after
a specific release version and fixed before the subsequent selected version, then the bug
does not appear in either of the databases. To solve this issue, a common solution
is to aggregate the bug information to the selected release versions. For every issue,
we determine the preceding release version from those that we selected and mark the
buggy source code elements.

For the construction of the database, we use the traditional approach, which means
that we collect release versions with approximately six-month-long time intervals for
every project. We use six-month-long intervals since enough bugs and versions are
present for such a long time interval. Based on the age of a project, the number of
selected release versions could differ for each project. We select the release versions
manually from the list of releases located on the projects’ GitHub pages. It is com-
mon practice that projects use the release tag on a newly branched (from the master)
version of the source code. Since we only use the master branch as the main source
of information, we have to perform a mapping when the hash id of the selected re-
lease is not representing a commit located in the master branch. Developers usually
branch from the master and then tag the branched version as the release version, so our
mapping algorithm detects when (timestamp) the release tag was applied on a version
and searches for the last commit in the master branch that was made right before this
timestamp.
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1 --- /path/to/original ’’timestamp’’
2 +++ /path/to/new ’’timestamp’’
3 @@ -1,4 +1,4 @@
4 +Added line
5 -Deleted line
6 This part of the
7 document has stayed the
8 same

Listing 3.1: Unified diff format example

For creating the BugHunter Dataset, we use two versions for each issue: the one
right before the (first) fix was applied (orange), and the one where the bug was fully
fixed (last green).

We have to perform code analysis on the orange and green commits and also on
the release versions to construct the two datasets. At this step, we assemble a list that
contains all the commit ids (hash) for each selected project to undergo static analysis.

3.1.4 Source Code Analysis
After gathering the appropriate versions of the source code for a given project, feature
extraction could begin. This component wraps up the results of the OpenStaticAna-
lyzer tool. The output of the analysis contains the files, classes, and methods along
with source code positions and various software product metrics (as described in Sec-
tion 2.6). At this point, we have obtained all the desired raw data, including the source
code elements and bug-related information from the project.

3.1.5 Extracting the Number of Bugs
The next step is to link the two data sets – the results of the code analysis and the
data gathered from GitHub – and extract the characteristics of the bugs. We identify
the source code elements impacted by the commits, as well as the number of bugs
associated with each commit at the file, class, and method levels.

To determine the affected source code parts, we use an approach similar to the SZZ
algorithm [126]. However, we do not want to detect the fix-inducing commits, only the
mapping between the fixing code snippets and source code elements. For this purpose,
we use the diff files – from the GitHub data – that contain the differences between two
source code versions in a unified diff format. An example unified diff file snippet is
shown in Listing 3.1. Each diff contains header information specifying the starting line
number and the number of affected lines. Using this information, we can get the range
of the modification (for a given file pair: original and new). To obtain a more accurate
result, we subtract the unmodified code lines from this range. Although the diff files
generated by GitHub contain additional information about which method is affected,
it does not carry enough information because the difference can affect multiple source
code elements (overlapping cases that are not handled by GitHub). Thus, there is no
further task but to examine the source code elements in every modified file and identify
which ones are affected by the changes. This method uses the source code elements’
position, i.e., source line mappings from the output of the OpenStaticAnalyzer tool.
We identify the source code elements by their fully qualified names that involve the
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name of the package, the class, the method, the type of the parameters, and the type
of the return value.

Next, we take the commits that were selected by the “Data Processing” step and
mark the code sections affected by the bug in these commits. We do this by accumu-
lating the modifications on the issue-level and collecting the fully qualified names of
the elements. Then, the algorithm marks the source code elements in the appropriate
versions that would then be entries in the dataset (modified by a bug fix). If a source
code element in a specific version is marked by multiple issues, then it contains multiple
bugs in that version. Finally, the data for files, classes, and methods are exported into
three different files in a simple CSV format.

For the traditional GitHub Bug Dataset, we create a database for each of the release
versions. The first row of these files contains the header information, namely the
qualified name and the bug cardinality. Since bug tracking was not always used from
the beginning of the projects, we could not assign any bug information to some of the
earlier release versions. Also, the changing developer activity could result in a lack of
bug reports, consequently making bug-fixing commits rare. All of these factors play
roles in that the created databases vary in the number of bugs.

For the novel BugHunter Dataset, the first row of these files contains the header in-
formation, namely the commit id, the qualified name, and the bug cardinality. Further
lines store the data of the source code elements according to the header. One entry is
equivalent to one source code element at a given time (the same source code element
can occur more than once with a different commit id – hash).

3.1.6 Combining CSV Files
As a final step, we merge the CSV outputs of OpenStaticAnalyzer and the previously
described CSV output. In this phase, we match the source code elements that are
entries in the dataset to the metrics and rule violations calculated during the static
analysis. The output of this step is also a CSV file for each type of source code element,
extended with the additional columns.

3.1.7 The GitHub Bug Dataset
Regarding the traditional GitHub Bug Dataset, in total we selected 105 release versions
for the 15 projects with six-month-long intervals. The three columns: Method, Class,
and File in Table 3.5 present the number of entries for each project at the three levels.
The last column shows the number of release versions included in the dataset. The
GitHub Bug Dataset is available as an online appendix at:
https://www.inf.u-szeged.hu/~ferenc/papers/GitHubBugDataSet

In the database folder, there are subfolders for each of the subject projects that
contain a directory for each release version selected from that project. These directories
contain the CSV files of the dataset. There are separate CSV files for the file, the class,
and for the method level.

3.1.8 The BugHunter Dataset
As the main result and contribution of this thesis point, we constructed a novel kind of
bug dataset that contains before/after fix states of source code elements at file, class,
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Table 3.5: The number of entries in the GitHub Bug Dataset

Project Method Class File Release versions

Android U. I. L. 4,007 639 478 6
ANTLR v4 18,049 2,353 2,029 5
Broadleaf Commerce 164,294 17,433 14,703 11
Eclipse Ceylon 25,031 4,512 2,129 5
Elasticsearch 313,767 54,562 23,252 12
Hazelcast 156,885 25,130 14,791 9
jUnit 18,820 5,432 2,266 8
MapDB 20,418 2,740 962 6
mcMMO 11,103 1,393 1,348 6
Mission Control T. 32,664 6,091 1,904 3
Neo4j 169,544 32,156 18,306 9
Netty 85,428 11,528 8,349 9
OrientDB 106,576 11,643 9,475 6
Oryx 10,142 2,157 1,400 4
Titan 32,443 5,312 3,713 6

Total 1,169,171 183,078 105,105 105

and method levels. We produced a dataset for every project (see Table 3.3) and also
a combined one with all the projects included. In Table 3.6, we collected the general
metadata about the dataset, which is scattered throughout the chapter.

The resulting BugHunter Dataset 1.0 is available as an online appendix at:
https://www.inf.u-szeged.hu/~ferenc/papers/BugHunterDataSet

The BugHunterDataset-1.0.zip file contains the dataset in CSV format as de-
scribed above. The directory named full contains the unfiltered database. The
remaining four directories, namely gcf, remove, single, and subtract contain the
results of the different filtering methods. Each of these directories contains 15 subdi-
rectories – one for each subject system – and an additional directory named all, which
contains the summarized dataset. Three CSV files are placed in these directories for
file, class, and method levels respectively. There is also a fourth CSV file in each direc-
tory, called method-p.csv, which contains the method-level dataset extended with an
additional column, the name of the parent class (see Section 3.4.3). Additionally, the
appendix.zip file contains the analysis results presented in Section 3.4 in spreadsheet
files.

3.2 Computational Cost of Extending the Dataset
Extending the dataset comes with computational costs that depend on multiple factors.
Adding a new project to the dataset requires the project to have bug reports along
with bug-fixing commits. Finding such projects is time-consuming, because it mostly
requires manual work to select good candidates (see Section 3.1.1).

The most critical step is to collect appropriate bugs. For this initial dataset, we
have collected projects from GitHub, since its API makes it easy to gather the required
information about bugs automatically. The actual runtime of this step depends on the
size of the project, e.g. number of commits and number of bug reports, but for the
selected 15 projects, it took just a few hours to save the required data. Selecting bugs
manually would take considerably more time. GitHub has a limit on the number of
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Table 3.6: BugHunter Dataset metadata

Type bug prediction dataset

Granularity file, class, method

Number of projects 15

Number of metrics
static source code metrics (66),
code duplication metrics (8),
code smell metrics (35)

Number of entries
file: 70,088
class: 84,562
method: 159,078

Ratio of the faulty entries
file: 1.03 (35,507/34,581)
class: 0.95 (41,098/43,475)
method: 0.59 (58,810/100,268)

API requests per hour, which increased the total runtime. It is possible to collect data
from other sources, although it may require a different amount of work.

The most time- and resource-consuming task is the source code analysis. We used
the OpenStaticAnalyzer tool, which performs deep static analysis, therefore, it requires
more resources than a simple parser tool. During this step, we extract the static source
code metrics and the source code positions of the classes and methods, as described
in Sections 3.1.3 and 3.1.4, respectively. The computational cost of this step highly
depends on the number of bug-fixing commits, the size of the source code, and the
analyzer tool. It took days to analyze each of the nearly 10,000 bug-fixing commits.
There are other tools that could be used to extract the source code positions and other
tools to compute metrics with a potentially shorter runtime, but the tool we used
produces a wide range of metrics and rule violations accurately in a well-processable
format.

The next step, determining the buggy source code elements, is a simple algorithm
that does not require many resources. The runtime here mostly depends on the number
of bug-fixing commits. This step took only a few hours for the 15 projects.

For example, processing a smaller project such as jUnit took around 2 hours of
machine time: 10 minutes to download the data from GitHub, 110 minutes to analyze
107 versions of the project (on average 1 minute per version), and around 2 minutes
to produce the bug dataset entries. Regarding a larger project, Elasticsearch, it
took around 6 hours to download the data from GitHub, around 1,600 hours to analyze
4,881 versions of the project (on average 20 minutes per version), and it took around
90 minutes to produce the bug dataset.

At this point, the data is ready to be added to the dataset. The last step is
to match the format of the dataset (see Section 3.1.7 and Section 3.1.8). Since the
dataset consists of CSV files, it is very easy to extend it with new projects or with
additional bugs for the projects that are already present.

3.3 Validation
When constructing a dataset in an automatic way, one always has to validate the con-
structed set. As seen previously, this kind of generated data should always be handled
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with mistrust [71]. We chose the mid-sized project JUnit for such manual validation,
which contains 90 bug reports (6 open and 84 closed) and a total of 72 referencing
commits to the bugs, thus this project seems to be suitable for manual validation in-
vesting a reasonable amount of effort. We validated the 84 closed bug reports manually
to verify whether the bugs are valid and whether the matching algorithm works well.
Table 3.7 summarizes our findings.

Table 3.7: Validation results

Closed bugs Bugs in dataset Commits Java code Commit mismatch

84 37 72 61 5

From the total number of closed bugs, only 37 are present in the dataset because
many fixing commits are not related to the source code (e.g., documentation) or Java
code (e.g., bug in build XML). This is shown in the Java code column of the table
that summarizes the number of commits that contain Java language code (61). These
commits that include code are referencing 37 bugs, thus at least one bug exists that is
referenced from multiple commits according to the pigeonhole principle.

We found 5 “commit mismatch” cases in total, where only comments were modified
in the source code – this means 7 entries in the dataset. The dataset created for
JUnit has 734 entries in total (92 files, 216 classes, and 426 methods), thus a very
small (0.95%) number of entries was incorrectly included. Out of the 734 entries, 286
are not related to test code (43 files, 77 classes, and 166 methods). Based on this,
we can presume that our validated dataset can be an appropriate corpus for further
investigations and that our bug extraction mechanism is working quite reliably.

3.3.1 Relationship between Files and Classes
In the case of Java, there is usually one class per .java file. We examined how true this
is for our subject projects. We randomly chose 100 commits that we analyzed from
each project and we counted the number of classes in each file, not including test files.
After we calculated the frequency of these values for each commit, we calculated the
average frequency (see Figure 3.6). The diagram shows that most of the files contain
only a single class (865), but there is a significant number of files with more than one
class (120 files with 2 classes, 46 files with 3 classes, etc.).

Although we have a larger set of metrics on the class level than on file level, we
cannot associate a file to a single class due to the one-to-many relationship between
them.

3.4 Evaluation
In this section, we give answers to research questions related to the BugHunter Dataset
by evaluating it using machine learning algorithms. As trying to predict the exact
number of bugs in a given source code element would be much more difficult – and would
presumably require much larger datasets – we chose to restrict our study to predicting
a boolean “flag” for the presence of any bugs. Thus, we only applied classification
algorithms, and to do so, classes needed to be formed from the bug numbers. For the
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Figure 3.6: Distribution of the number of classes in a Java file

binary classification, we divided the instances into two classes. Instances with zero
bugs were categorized as non-buggy, and those with one or more bugs were categorized
as buggy.

Upon examining the learning sets, we observed that the dataset is imbalanced.
The ratio of positive to negative entries is not equal, which could be misleading during
model training. The imbalance is caused by the fact that fixing a bug may involve
introducing or removing classes and/or methods from the source code, resulting in
a difference in the number of affected entries before and after the fix. To address
this issue, we employed random undersampling [62, 124] to obtain an equal number
of elements in both categories. For example, if the final corpus at the method level
contained 10 buggy methods and 50 non-buggy methods, we use random undersampling
on the non-buggy set to reduce the number of samples and balance the ratio to 10-10.
The training process, using this random undersampling, was repeated 10 times, and an
average was calculated. As described in Section 2.4, we used 10-fold cross-validation
to measure the accuracy of the models, and to compare the models, we used precision,
recall, and F-measure metrics.

3.4.1 Filtering
As the data set should be suitable for studying the connection between different metrics
and bug occurrences, it should serve as a practical input for different machine learning
algorithms. It is possible, however, to have entries in the dataset that have the same
metric values with different numbers of bugs assigned to them. For example, let us
consider a buggy method f with metric values Mf1 . After the bug fix, the metric
values of f are changed to Mf2 . Similarly, let us consider another buggy method g
with metric values Mg1 and Mg2 , respectively. These two methods could contain two
different bugs that are present in a system for distinct periods of time. In this case, the
dataset would contain 4 entries: Mf1 , Mf2 , Mg1 , Mg2 , where Mf1 and Mg1 are buggy
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and Mf2 and Mg2 are non-buggy entries. If any of these metric values are equal (e.g.
Mf1 = Mg2 or Mg1 = Mg2), then redundancy occurs that can influence the accuracy of
machine learning for bug prediction (overfitting, contradicting records).

To solve this issue, we used different approaches to filter the raw dataset and elim-
inate redundant entries. We tried various methods to reduce the noise in the learning
set, whose entries are classified into either buggy or not buggy.

• Removal: keep the entries located in the class with the larger cardinality (e.g.,
for a 10:20 distribution, the result is 0:20)

• Subtract: reduce the number of entries in the class with the larger cardinality
by removing as many entries as the cardinality of the smaller class (e.g., for a
10:20 distribution, the result is 0:10)

• Single: remove the entries of the class with the smaller cardinality and hold only
one entry from the larger one (e.g., for a 10:20 distribution, the result is 0:1)

• GCF: divide the number of entries of both classes by their greatest common
factor (or greatest common divisor) and retain only the resulting amounts of
entries from the classes (e.g., for a 10:20 distribution, the result is 1:2)

Each selected approach can seriously modify the result set, thus we investigated
all four options and, additionally, the basic case, where no filtering was applied. Ta-
bles 3.8, 3.10, and 3.12 present average F-measure values calculated for all of the
machine learning algorithms we used for all of the projects. From these tables, we can
see that the Single and GCF methods performed quite similarly but were less effective
than Subtract or Removal.

Table 3.8: Filtering results at method level

Method Precision Recall F-Measure

No filter 0.5553 0.5501 0.5317
Removal 0.6070 0.5963 0.5773
Subtract 0.5974 0.5893 0.5717
Single 0.5495 0.5448 0.5250
GCF 0.5445 0.5408 0.5218

We employed a statistical significance test, namely the Friedman test [52], with a
threshold of α = 0.05 to assess the significance of the differences between the averages,
as it was done similarly in previous bug prediction studies [63, 53]. Our data do not
follow a normal distribution; it consists of dependent samples and we have five paired
groups, thus the Friedman test is the appropriate choice. The null hypothesis is that
the multiple paired samples have the same distribution. The tests resulted in very low
p values (pmethod = 5.32e-80, pclass = 2.03e-77, pfile = 1.83e-40), therefore, we reject
the null hypothesis, which means the distributions are not equal. Then, we applied the
Nemenyi post-hoc test [93], which is usually used after a null hypothesis is rejected to
gain more insight into the significance of the differences. Tables 3.9, 3.11, and 3.13 list
the results of the tests.
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Table 3.9: Significance test results for method level filtering

No filter Removal Subtract Single GCF

No filter 0.001 0.001 0.736 0.020
Removal 0.001 0.210 0.001 0.001
Subtract 0.001 0.210 0.001 0.001
Single 0.736 0.001 0.001 0.343
GCF 0.020 0.001 0.001 0.343

Let us consider the method level F-measure values in Table 3.8 where Removal has
the highest average F-measure (0.5773) and Subtract is a close second (0.5717). In
Table 3.9, the results of the significance tests for the method level show that the p
value of the test between Subtract and No filter is below the threshold (p = 0.001 <
α = 0.05), therefore, the difference is significant and with Subtract having a higher
average F-measure (0.5717) than No filter (0.5317), we can state that it is significantly
better. We can conclude the same when comparing Subtract with Single (p = 0.001 <
α = 0.05) or with GCF (p = 0.001 < α = 0.05). The p value between Subtract and
Removal is p = 0.210 > α = 0.05 which is not significant.

Table 3.10: Filtering results at the class level

Method Precision Recall F-Measure

No filter 0.5265 0.5235 0.5128
Removal 0.5567 0.5528 0.5419
Subtract 0.5541 0.5499 0.5393
Single 0.5236 0.5206 0.5090
GCF 0.5221 0.5201 0.5077

Similar results can be concluded for class level and file level as well. We can state
that the Removal and Subtract methods performed significantly better than the other
methods in all three cases. The difference between the Removal and Subtract methods
is not significant.

Table 3.11: Significance test results for class-level filtering

No filter Removal Subtract Single GCF

No filter 0.0010 0.0010 0.9000 0.0496
Removal 0.0010 0.9000 0.0010 0.0010
Subtract 0.0010 0.9000 0.0010 0.0010
Single 0.9000 0.0010 0.0010 0.1828
GCF 0.0496 0.0010 0.0010 0.1828

We speculate that a disadvantage to Single is that it drops the multiplicity of the
records (i.e., the weight information). The problem with GCF, on the other hand, is
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that it will only perform filtering when the greatest common factor is not one, and
that it does not eliminate the noise completely (i.e., it will keep at least one entry from
both classes). Removal removes the noise entirely, but it suffers from the fact that it
ignores the minority.

Table 3.12: Filtering results at the file level

Method Precision Recall F-Measure

No filter 0.5160 0.5117 0.4883
Removal 0.5451 0.5414 0.5194
Subtract 0.5407 0.5371 0.5147
Single 0.5187 0.5148 0.4910
GCF 0.5172 0.5129 0.4889

The Subtract method, however, neutralizes the positive and negative entries with
identical feature vectors. This means that it removes the noise while also keeping the
weight of the records, so this filtering method seems to be the best choice.

Table 3.13: Significance test results for file-level filtering

No filter Removal Subtract Single GCF

No filter 0.0010 0.0010 0.0682 0.9000
Removal 0.0010 0.9000 0.0010 0.0010
Subtract 0.0010 0.9000 0.0010 0.0010
Single 0.0682 0.0010 0.0010 0.1262
GCF 0.9000 0.0010 0.0010 0.1262

We have 3 levels of source code (method, class, file), 16 datasets (including the
summarized dataset), 11 machine learning algorithms, and 5 filtering methods. Pre-
senting all the results obtained would be too large for this format, thus we will only
present the best-performing algorithms for the results achieved using the Subtract fil-
tering method. Please note that the online appendix (see Section 3.1.8 for the Web
link) contains all the analysis results in spreadsheet files.

3.4.2 Research Question 1
The first research question we will answer is the following:

Research Question 1: Is the BugHunter Dataset usable for bug prediction pur-
poses?

To answer this question, we present the best results obtained by different machine
learning algorithms at the method, class, and file levels. Similar to Section 3.4.1, we
used the Friedman test to check whether the distributions of the samples are equal or
not. We observed the same, very low p values (pmethod = 1.21e-14, pclass = 1.54e-07,
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pprojected = 3.77e-14, pfile = 1.06e-05), thus the distributions are not equal. In Ta-
bles 3.14, 3.15, 3.16, and 3.17, we present the results of the Nemenyi post-hoc tests.

Method level

We trained models to use method-level metrics to predict future failures at the method
level. The results are shown in Table 3.18 containing the best five algorithms selected
by F-measure values.

The fifth best algorithm with a 0.5983 F-measure value is DecisionTable. The Sim-
pleLogistic algorithm resulted in a slightly higher F-measure (0.6031). The first three
algorithms are all from the tree family. J48 is the second-best algorithm (0.6119).
The third and the first algorithms also use trees to produce prediction models. Ran-
domForest (0.6319) builds a forest from RandomTrees to get a slightly better result
than RandomTree (0.6110). The results of the statistical tests in Table 3.14 show
that the differences between the top five algorithms are not statistically significant
(p > α = 0.05), but the difference between the worst (NaiveBayes, NaiveBayesMulti-
nomial, and VotedPerceptron) and the best-performing algorithms is significant.

Table 3.18: TOP 5 machine learning algorithms for the method level based on F-
measure

Algorithm Precision Recall F-Measure

trees.RandomForest 0.6335 0.6324 0.6319
trees.J48 0.6147 0.6134 0.6119
trees.RandomTree 0.6115 0.6113 0.6110
functions.SimpleLogistic 0.6062 0.6043 0.6031
rules.DecisionTable 0.6138 0.6073 0.5983

At the method level, trees were performing the best and could result up to 0.6319
when considering F-measure values. We also investigated the results by projects and
found that specific projects performed worse than others. Android Universal Im-
age Loader and Eclipse Ceylon were the worst when considering precision, recall,
or F-measure. Achieved F-measure values depend highly upon the project itself. A pos-
sible factor that plays a role in this is the size of the built corpus. These projects have
a smaller training corpus and more inconsistencies in the feature vectors, consequently,
it is harder to build a well-performing prediction model for them. This phenomenon
does not only appear at the method level but at the class and file levels as well, since
at these levels even fewer entries are created in the dataset. The best F-measure values
(over 0.75 in one case) achieved on different projects are demonstrated in Table 3.19.
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Table 3.19: The best F-measure values by projects at the method level

Project F-measure Algorithm

ANTLR v4 0.7573 trees.RandomForest
Broadleaf Commerce 0.7366 trees.RandomForest
Hazelcast 0.7170 trees.RandomForest
Mission Control T. 0.6876 trees.RandomForest
Oryx 0.6678 trees.RandomForest
jUnit 0.6638 rules.DecisionTable
All* 0.6622 trees.RandomForest
Netty 0.6412 trees.RandomForest
Elasticsearch 0.6411 trees.RandomForest
OrientDB 0.6236 trees.RandomForest
Titan 0.6216 functions.SGD
Neo4j 0.6086 functions.Logistic
mcMMO 0.5815 trees.RandomForest
MapDB 0.5610 functions.SimpleLogistic
Android U. I. L. 0.5569 functions.SGD
Eclipse Ceylon 0.5395 trees.RandomTree

Class level

When considering the class level, we have quite a different set of algorithms in the top
five than in the case of methods. Furthermore, the precision, recall, and F-measure
values differ significantly from those we obtained at the method level. We suspect
that the main reason behind this is the different set of metrics used to predict the
possibility of bugs occurring in a class. At the class level, simple logistic, decision
table, and SGD were the best. Function- and rule-based groups of machine learning
algorithms can be emphasized as the best when considering class level. The best
machine learning algorithms at the class level are shown in Table 3.20 with F-measure
values around 0.56. In Table 3.15, the results of the significance tests show that the
best algorithm, SimpleLogistic with a 0.5685 F-measure, achieved significantly better
results than the worst two algorithms that are not in the top five (NaiveBayes p = 0.019
and VotedPerceptron p = 0.001). Between the top five algorithms, the differences are
not significant (p > α = 0.05).

Table 3.20: TOP 5 machine learning algorithms for class level based on F-measure

Algorithm Precision Recall F-Measure

functions.SimpleLogistic 0.5760 0.5763 0.5685
rules.DecisionTable 0.5703 0.5705 0.5637
functions.SGD 0.5718 0.5676 0.5626
functions.Logistic 0.5561 0.5552 0.5537
trees.J48 0.5531 0.5530 0.5520

The low F-measure values suggest that one cannot build efficient prediction models
at the class level. However, we present the F-measure values of individual projects
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in Table 3.21. Considering these F-measure values, we can see the same phenomenon
as in the case of methods. mcMMO, Android Universal Image Loader, and
Neo4j are in the worst 5, which supports the previous experience according to which
different projects provide different amounts of “munition” for predicting faults. The
best case, however, provides an F-measure of 0.74.

Table 3.21: The best F-measure values by projects at the class level

Project F-measure Algorithm

Broadleaf Commerce 0.7400 trees.RandomForest
Oryx 0.7095 functions.SGD
jUnit 0.6639 rules.DecisionTable
Hazelcast 0.6175 trees.RandomTree
MapDB 0.6138 functions.SimpleLogistic
OrientDB 0.6132 functions.SimpleLogistic
Mission Control T. 0.5825 functions.SGD
Elasticsearch 0.5817 rules.DecisionTable
All* 0.5803 rules.DecisionTable
Eclipse Ceylon 0.5789 rules.DecisionTable
ANTLR v4 0.5685 rules.OneR
mcMMO 0.5670 functions.SGD
Titan 0.5614 functions.SimpleLogistic
Netty 0.5537 functions.Logistic
Neo4j 0.5413 functions.SimpleLogistic
Android U. I. L. 0.4713 bayes.NaiveBayes

File level

In a Java context, a public class is almost equivalent to a file with a ’.java’ extension.
However, despite the fact that we compute a different set of metrics for class and file
level, the results are quite similar. Since we operate on a different set of metrics at
class and file levels, this explains why different machine learning algorithms performed
the best. The best algorithms for this level use tree-based approaches to predict bugs
as it is shown in Table 3.22. Similarly to the class level, the differences between the
top five algorithms are not considered significant (p > α = 0.05), as can be seen in
Table 3.17. The best-performing algorithm, achieving an F-measure value of 0.5476, is
RandomTree. The top five algorithms achieved significantly better results compared
to the worst algorithm (VotedPerceptron).
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Table 3.22: TOP 5 machine learning algorithms for the file level based on F-measure

Algorithm Precision Recall F-Measure

trees.RandomTree 0.5484 0.5484 0.5476
trees.RandomForest 0.5458 0.5461 0.5455
functions.Logistic 0.5528 0.5474 0.5367
rules.OneR 0.5358 0.5359 0.5348
functions.SimpleLogistic 0.5491 0.5474 0.5321

We also present the F-measure values obtained in projects in Table 3.23. The take-
away remains the same, Android Universal Image Loader and Neo4j are located
within the five worst projects again. On the other hand, Broadleaf Commerce,
Oryx, and Hazelcast seem to be appropriate to use in model building. The best
F-measure value is over 0.77.

Table 3.23: The best F-measure values by projects at the file level

Project F-measure Algorithm

Broadleaf Commerce 0.7741 trees.RandomForest
Oryx 0.6458 bayes.NaiveBayesMultinomial
Hazelcast 0.6417 trees.RandomTree
All* 0.6234 trees.RandomTree
OrientDB 0.6200 rules.DecisionTable
Elasticsearch 0.6073 trees.RandomTree
Eclipse Ceylon 0.5857 trees.J48
Titan 0.5793 functions.SimpleLogistic
mcMMO 0.5702 trees.RandomForest
MapDB 0.5525 rules.OneR
jUnit 0.5484 rules.OneR
Netty 0.5344 trees.RandomTree
ANTLR v4 0.5212 trees.RandomForest
Neo4j 0.5138 rules.DecisionTable
Android U. I. L. 0.4781 rules.DecisionTable
Mission Control T. 0.4576 functions.Logistic

Answering Research Question 1: Considering the results we obtained, we
can state that creating bug prediction models at the method level is more successful
than at file and class levels if we consider the full dataset. We also showed the
diversion in F-measure values by projects, which strengthens our assumption that
not all projects are capable of providing an appropriate training set. We can obtain
F-measure values on separate projects up to 0.7573, 0.7400, and 0.7741 at method,
class, and file levels, respectively, which is promising. To answer our next research
question, we carry out an experiment and its results are even better. However,
even without knowing that there is a better solution, we can answer this research
question in a positive manner and say that the constructed dataset is usable for bug
prediction.
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3.4.3 Research Question 2
The dataset contains the bug information on both method and class levels, and we also
know the containing relationships between classes and methods. However, since classes
have a different set of source code metrics than methods, a question arose: can we (and
more importantly, should we) use method-level metrics to predict faulty classes? The
second research question we will answer is the following:

Research Question 2: Are the method-level metrics projected to the class level
better predictors than the class-level metrics themselves?

We carried out an experiment where we projected the results of the method-level
learning to the class level. During the cross-validation of the method-level learning, we
used the containing classes of the methods to calculate the confusion matrix from the
number of classes classified as buggy and non-buggy. Classes containing at least one
buggy method were considered buggy.

We compared this result with the result of the class-level prediction. The results in
Table 3.24 show that the projection method performs much better than the prediction
with class-level metrics.

We applied the Wilcoxon-signed-rank test [125] (a non-parametric paired test for
dependent samples), with a threshold of Zcrit = 1.96 (for a two-tailed test with α =
0.05) to check whether the difference is significant. We also calculated the effect size
of these tests with the Pearson correlation coefficient (Pearson’s r) from the formula
r = Z√

N
, where N is the total number of samples and Z is the z-score of the test [103].

According to Cohen [35], the effect size is considered small if r ≈ 0.1, medium if r ≈ 0.3,
or large if r ≈ 0.5.

After the test, we can confirm that the difference between the projection method
and the prediction with class-level metrics is significant (Z = 10.9 > Zcrit = 1.96) and
the effect size is considered large (r = 0.58).

We suspect that this is due to the generality of class-level metrics, which are therefore
not powerful enough to effectively distinguish source code bugs. Although the bug
information for methods does not include all bugs that affect the containing class (e.g.
change of fields, interfaces, or superclasses), method-level metrics are more useful for
bug prediction.

Table 3.24: The results of projected learning

Algorithm Precision Recall F-Measure

Projected Class Projected Class Projected Class

trees.RandomForest 0.7471 0.5336 0.7370 0.5336 0.7405 0.5334
trees.RandomTree 0.7421 0.5381 0.7273 0.5380 0.7330 0.5376
functions.SGD 0.7441 0.5718 0.7288 0.5676 0.7322 0.5626
rules.DecisionTable 0.7425 0.5703 0.7404 0.5705 0.7309 0.5637
trees.J48 0.7390 0.5531 0.7250 0.5530 0.7290 0.5520

The results of the significance tests between the different machine learning algo-
rithms are displayed in Table 3.16. The best performing algorithm is RandomForest
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with a 0.7405 F-measure, which is significantly better than the worst three algorithms
that are not displayed in Table 3.24 (NaiveBayes p = 0.001; NaiveBayesMultinomial
p = 0.001; VotedPerceptron p = 0.003). The difference between the top five algorithms
is not considered significant (p > α = 0.05).

When using the projection approach to predict bugs in classes, the F-measure values
reach 0.74. As an extension of the answer to the first research question, we can provide
the above-described mechanism to locate class-level bugs with higher accuracy in a
software system.

Answering Research Question 2: Using method-level metrics for class-level
bug prediction performed the best in our study. This fact also contributes to the
answer given for Research Question 1. Furthermore, method-level metrics are better
predictors when projected to the class level than class-level metrics by themselves.

3.4.4 Research Question 3
The last research question we will answer is the following:

Research Question 3: Is the BugHunter Dataset more powerful and expressive
than the GitHub Bug Dataset?

Comparing the expressive power of different datasets is a harsh task since, as the
various datasets were created with different purposes, they often have only a few in-
dependent variables in common. The projects included in these datasets are different
as well. Therefore, we provide an objective comparison between our traditional bug
dataset, the GitHub Bug Dataset, and the BugHunter Dataset. The datasets include
exactly the same 15 projects, and their sets of independent variables are common and
also calculated in the same way with the same tool. We used the same machine learning
algorithms to build prediction models. This way, it is quite straightforward to compare
the expressiveness and compactness of these datasets.

Firstly, we compare the size of the datasets expressed with the number of entries
located in the datasets. Table 3.25 shows the number of entries at method, class, and
file levels. The number of entries contained in the traditional GitHub Bug Dataset is
listed in the “Trad” column. The “BH” column represents the number of entries in the
BugHunter Dataset, while “Rate” is calculated as follows:

Rate = # of entries in the traditional dataset

# of entries in the BugHunter dataset

The obtained rate is higher than 1.0 for most of the projects in the case of the method
level, which shows that the new approach contains fewer entries at this level. A rate of
1.54 is achieved at the method level, 0.41 at the class level, and 0.33 at the file level.
It is important to note that the traditional dataset only encompasses data for a six-
month-long interval. On the other hand, the BugHunter Dataset contains information
from the beginning of the project up to September 2017. One would expect that the
new approach will contain fewer entries than the traditional one since the BugHunter
Dataset only contains the entries that were affected by a closed bug. However, the
traditional GitHub Bug Dataset only depends on the size (number of files, classes, and
methods) of the projects included. In contrast, the BugHunter Dataset highly depends
on the number of closed bugs in the system (a large project can have a small number
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of reported bugs). Even if no feature development was performed on a project (the
size of the project remains almost the same: in general, no new files and classes are
added, only modified) the number of closed bugs implies more entries in the BugHunter
Dataset, while the size is not affected in any way in the traditional dataset.

Table 3.25: Comparison of the size of the datasets

Project Method Class File

Trad BH Rate Trad BH Rate Trad BH Rate

Android U.I.L. 432 325 1.33 73 156 0.47 63 145 0.43
ANTLR v4 3,640 840 4.33 479 314 1.53 411 347 1.18
Broadleaf C. 14,651 4,709 3.11 1,593 2,957 0.54 1,719 2,969 0.58
Eclipse Ceylon 8,787 2,087 4.21 1,611 1,275 1.26 700 946 0.74
Elasticsearch 34,324 35,862 0.96 5,908 24,994 0.24 3,035 17,724 0.17
Hazelcast 21,642 32,973 0.66 3,412 19,845 0.17 2,228 14,913 0.15
jUnit 2,441 462 5.28 731 316 2.31 309 177 1.75
MapDB 2,913 1,456 2.00 331 899 0.37 138 482 0.29
mcMMO 2,531 1,184 2.14 301 732 0.41 267 678 0.39
Mission C. T. 9,836 105 93.68 1,887 66 28.59 413 52 7.94
Neo4j 30,256 7,030 4.30 5,899 3,701 1.59 3,278 2,934 1.12
Netty 8,312 11,171 0.74 1,143 5,677 0.20 914 4,023 0.23
OrientDB 17,013 9,445 1.80 1,847 4,134 0.45 1,503 3,564 0.42
Oryx 2,506 810 3.09 533 598 0.89 281 536 0.52
Titan 8,424 785 10.73 1,468 428 3.43 976 378 2.58

Total 167,708 109,244 1.54 27,216 66,092 0.41 16,235 49,868 0.33

To sum up, we cannot clearly decide whether the novel dataset is more compact,
however, it is clearly visible that BugHunter could compress the bug-related informa-
tion at the method level. We achieved an F-measure value of 0.6319 at the method
level (see Table 3.26) and the composed dataset contains 58,464 fewer entries than
the traditional one. In both datasets, the number of entries is sufficient to build a
predictive model from, however, we should investigate the predictive capabilities first
to conclude our findings related to expressive power and compactness.

Next, we present tables that capture the differences in the prediction capabilities
between the two datasets (using F-measures as before). Table 3.26 presents machine
learning results for method, class, and file levels, and also the F-measure values for the
projected method-level predictors, respectively. The complete tables are not presented
here due to lack of space, however, average, standard deviation, min, and max val-
ues are calculated and included in the tables, which provide a general picture for the
comparison. The appendix.zip file supplied as an online appendix (see Section 3.1.8)
contains the complete tables with all F-measure values. For the sake of clarity, we
describe how we obtained the averages presented here in detail. First, since the tradi-
tional dataset consists of multiple versions with bugs from six-month-long intervals, for
each project we selected the version from the GitHub Bug Dataset that has the highest
number of bugs assigned to it. After collecting the machine learning results of the
selected versions, we calculated average F-measure values for each algorithm we used.
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Then we ranked the algorithms based on these averages and selected the one with the
highest average value. We used this average value for the traditional dataset in the
comparison. From the BugHunter Dataset, we used the previously selected algorithm’s
average F-measure value, which was calculated on the results obtained after applying
the Subtract filtering. We performed this process for method, class, file, and projected
levels separately.

Table 3.26: Predictive capabilities

Dataset Avg. Std.dev. Min Max

Method level

BugHunter 0.6319 0.0836 0.3376 0.7573
Traditional 0.7348 0.0789 0.4019 0.8339

Class level

BugHunter 0.5685 0.0704 0.3572 0.7400
Traditional 0.7710 0.0869 0.3446 0.8331

File level

BugHunter 0.5147 0.0749 0.3328 0.7741
Traditional 0.6058 0.1076 0.2882 0.8247

Projected

BugHunter 0.7405 0.0914 0.3178 0.8386
Traditional 0.7831 0.0716 0.4399 0.8825

On the traditional GitHub Bug Dataset, the machine learning algorithms performed
better, achieving higher F-measure values in every case. The two kinds of datasets
differ fundamentally because they are constructed with two different methods. For the
traditional dataset, we divided the history of the projects into six-month-long intervals
by selecting release versions from the GitHub repository. We collected the reported
bugs from these intervals and we assigned the buggy source code elements to these
release versions based on the bug fixes. Then we used the state of the source code
elements from these selected versions to assemble the bug dataset. This method was
used in several previous studies [41, 57]. It is necessary because the bugs are usually
reported after releasing a version, thus at the time of the release there are too few
bugs to construct a bug dataset. For the bug assignment, we used a heuristic method -
similar to other studies [57] - where we assigned each bug to the latest selected version
before the bug was reported to the issue tracking system. This method leads to some
uncertainty in the dataset because it could happen that the bug is not yet present in
the assigned version. Table 3.27 shows some characteristics of this uncertainty.

The second column is the average number of days elapsed between the date of the
release and the date of the bugs reported. The maximum that could occur is 180
days because we used intervals that were around 6 months long. We can see that
these averages are quite high; the overall average is 85 days. The third column is the
average number of commits contributed to the project between the release commit and
the date of the bug report. These values vary for each project because it depends on
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Table 3.27: Uncertainty in the traditional dataset

Project Average
days

Average commits
before reported

Average commits
before fixed

Android U. I. L. 78.78 179.04 22.82
ANTLR v4 83.73 94.83 66.21
Broadleaf Comm. 96.40 524.88 116.74
Eclipse Ceylon 136.05 442.00 20.22
Elasticsearch 93.85 1,004.60 382.79
Hazelcast 84.61 1,905.88 143.54
jUnit 91.94 76.71 171.09
MapDB 102.09 150.47 25.06
mcMMO 108.71 289.83 41.72
Mission Control T. 64.00 203.00 55.93
Neo4j 39.53 535.77 189.30
Netty 83.65 411.60 48.96
OrientDB 99.21 568.76 179.30
Oryx 63.00 104.42 3.40
Titan 51.35 65.91 59.85

the developers’ activity. For some projects (Elasticsearch, Hazelcast) it could
mean thousands of modifications before the bug was reported. The more commits
are performed, the higher the probability that the source code element became buggy
after the release. The fourth column shows the average number of commits performed
between the time when the bug was reported and when the fix was applied. These
numbers are much smaller, which also demonstrates that bugs are fixed relatively fast.
This fast corrective behavior causes before and after fix states to be less different for
the BugHunter approach. Consequently, less difference in metric values makes building
a precise prediction model more difficult.

Bug
TimelineCommit

Reported Fixed

Version A Version B

Appeared

 ~ 85 days 

 ~ 6 months 

Buggy

Figure 3.7: Uncertainty included in the traditional approach
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The uncertainty is also visualized in Figure 3.7 for the sake of better comprehension.
The timeline shows a case when the actual bug appeared in the code after a release,
Version A, then the bug was reported at some point and finally fixed before the next
release, Version B. The traditional dataset is created with the state captured at the
time of Version A. However, the source code elements became buggy after Version A,
thus the dataset incorrectly marked them as buggy at that point. This error comes
from the methodology itself, which could be leveraged by narrowing the time window
(which is traditionally 6 months long). On the other hand, this 6 month interval is
not an unwitting choice. If we narrow down the time window, we will also have fewer
bugs for an interval, which results in a more unbiased dataset, thus only less powerful
predictive models can be built. It would be important to see how many source code
elements were marked as buggy incorrectly, however, this cannot be easily measured
since the exact time of the bug occurrence cannot be determined (we only know the
time when a bug was reported).

The new BugHunter approach, however, is free from the uncertainty mentioned
above because it only uses the buggy and the fully fixed states of the bug-related
source code elements. This way, the produced bug dataset is more precise, hence it
is more appropriate for machine learning. Therefore, we cannot clearly state that the
traditional dataset is better, even despite the higher F-measure values. The difference
between the values of the two datasets is around 0.10 at the method level, 0.21 at the
class level, and 0.09 at the file level. Projecting method-level metrics to the class level
achieved almost as high an F-measure value (0.7405) as in the traditional case (0.7831).
The difference is only 0.04, yet it is on a much more precise dataset.

Answering Research Question 3: Traditional datasets include a high risk when
labeling source code elements as buggy since the elements may become buggy after the
release version. This injects false labeling into the training set, which might end up
causing deceptive machine learning results (as successfully predicting a bad label is
not correct). Unfortunately, the number of incorrectly labeled source code elements
cannot be determined since we only know the time when a bug was reported, but not
the exact time when it was inserted into the system. These facts make it really hard
to take one dataset and state that it is better for bug prediction.

3.5 Threats to Validity
In this section, we briefly describe the threats to validity. Firstly, we present the
possible threats to the construct validity, then to the internal and external validity.

3.5.1 Threats to Construct Validity
When constructing a dataset in an automatic way, there are always some possible
threats to validity. We validated our matching algorithm on JUnit, which was fair in
size. However, investigating the validity of the matching in other systems could have
revealed additional findings.

As we have seen, commit mismatches can occur during this process, which can dis-
tort the final bug dataset. However, manually validating all bugs and the corresponding
commits would have been an enormous task.
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Deciding which source code elements are faulty and which are not can also cause
a construct validity threat. We consider a source code element faulty before the cor-
responding bug is fixed (the source code element had to be modified in that fix) and
after the corresponding bug report is present. The source code element can already be
faulty before the report and can have multiple changes during that period. Moreover,
it can still be faulty after the last fix, but we do not know the issue at that time,
which can also distort the measurements. Unfortunately, these uncertainties cannot be
solved, since there is no further data to rely on.

3.5.2 Threats to Internal Validity
It would be meaningful to use multiple static source code analyzers in order to decrease
the threats to internal validity caused by measuring source code element characteristics
with only one tool. However, it would mean much more work, and even then, additional
manual validations would be needed to decide which tool measures a given metric more
precisely, which often depends on interpreting the conceptual definitions.

3.5.3 Threats to External Validity
Currently, the constructed dataset consists of 15 projects, which may limit the capa-
bilities of the bug prediction models. Selecting more projects to be included in the
dataset would increase the generalizability of the built bug prediction models. Consid-
ering additional source hosting platforms (SourceForge, Bitbucket, GitLab) would also
increase the external validity of the dataset.

Widely used and accepted programming constructs and structures can vary from
programming language to programming language. Using different constructs may have
a significant result on the calculated metric values. Selecting projects written in differ-
ent programming languages, not only Java software systems, could further strengthen
the generalizability of our method.

3.6 Summary
In this chapter, we presented a method that generates a bug dataset whose entries
are source code elements altered by bug fixes mined from GitHub. The entries repre-
sent before and after states of source code elements on which bug fixes were applied.
The presented approach allows the simultaneous processing of several publicly avail-
able projects located on GitHub, thereby resulting in the production of a large – and
automatically expandable – dataset. In contrast, previous studies have only dealt
with a few large-scale datasets, which were created under strict individual manage-
ment. Additionally, our dataset contains new source code metrics compared to other
datasets, allowing for the examination of the relationship between these metrics and
software bugs. Furthermore, manual examinations showed the reliability of our ap-
proach, so the adaptation of project-specific labels to the presence of bugs remains the
only non-automatic step. Our initial adaptation of 15 suitable Java projects led to the
construction of the dataset, which is one of the main – publicly available – contributions
of this research.

During empirical evaluations, we showed that the dataset can be used for further
investigations, such as bug prediction. For this purpose, we used several machine
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learning algorithms at three different granularity levels (method, class, file) from which
the method-level prediction achieved the highest F-measure values. As a novel kind
of experiment, we also investigated whether the method-level metrics projected to the
class level are better predictors than the class-level metrics themselves, and found a
significant improvement in the results.

As potential future work, we are planning to expand the dataset with additional
projects and even additional data sources, such as SourceForge and Bitbucket. Sup-
porting different external bug tracking systems is another option for extending our
approach. We will also dedicate more attention to the concrete prediction models
we generate, as this study focused solely on showing the conceptual usability of our
dataset.
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“We are what we repeatedly do. Excellence,
then, is not an act, but a habit.”

— Aristotle

4
Calculation of Process Metrics and their

Bug Prediction Capabilities

In Chapter 3, we presented a method for characterizing software bugs with product
metrics. It incorporates temporal information into the database by using the buggy
source code elements before and after the bug fix occurred, but of course, more sophis-
ticated temporal characteristics could be included.

Studies have shown that process metrics usually perform better in bug prediction
than product metrics do. Rahman et al. [101] analyzed the properties of process metrics
from the perspective of performance, stability, portability, and stasis. They found that
product metrics have a higher stasis - which means they do not change much compared
to the process metrics -, thus the same elements were predicted as defective over and
over. Also, product metrics are less stable and less portable across projects.

In this chapter, we are going to present a method to compute software process
metrics efficiently. After the calculation of the process metrics, we will evaluate their
ability to predict bugs and compare them with the product metrics.

The main achievements of this study can be summarized as follows:

• Research Artifact: A freely available dataset containing process metrics of
buggy Java source code elements (files, classes, methods).

• Research Question 1: Is the dataset containing process metrics usable for bug
prediction purposes?

• Research Question 2: Which metrics are more effective for predicting software
bugs: process metrics or product metrics?

• Research Question 3: What is the relation between product metrics and pro-
cess metrics?
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4.1 Difficulty of Computing Process Metrics

The difficulty of computing process metrics may arise from issues related to storing and
processing historical information. A key requirement for computing process metrics
is the availability of project history. Versioning systems such as Git or Subversion
are commonly used in software development, and their APIs can provide access to
project histories. Source code hosting services like GitHub or Bitbucket, which host
open-source projects in various programming languages, are also increasingly popular
sources of project history.

Another critical criterion for using process metrics effectively is ensuring that devel-
opers are using the versioning system correctly. If the system is not used correctly, the
information gathered from it may be misleading or not useful. Thus, it is important to
consider the accuracy and reliability of the data obtained from the versioning system
when analyzing process metrics.

The primary technical challenge we encounter when dealing with process metrics is
the sheer size of the dataset. Software projects can consist of hundreds of thousands
of lines of source code, with thousands or even tens of thousands of commits. In order
to compute process metrics for a particular software version, the entire project history
needs to be processed, which necessitates an efficient method for handling such large
datasets.

The granularity of process metrics is another aspect that presents challenges. Pro-
cess metrics can be calculated at different levels, such as file, class, or method. At the
file level, the calculations are relatively straightforward as versioning systems operate
on files directly, requiring no additional analysis. However, at the class and method
levels, a more in-depth source code analysis is necessary to extract the relevant source
code elements and their positions. In order to obtain more accurate results, additional
information, such as empty lines, comments, and other relevant details, may also need
to be gathered during the analysis process. This adds complexity to the computa-
tion of process metrics, as it requires careful consideration of the appropriate level of
granularity and the necessary source code analysis techniques for accurate results.

Another challenge is determining how to store the collected data in a readily acces-
sible format. In recent years, graph databases have gained popularity due to advance-
ments in their underlying technologies. Graph databases are capable of handling large
amounts of data and are well-suited for storing loosely structured data. The historical
data of a software package can be represented as a graph, which has led to research on
the application of graph databases for assessing software quality [22], particularly in
the calculation of software process metrics. Therefore, graph databases appear to be a
viable choice for this task, as they provide a promising solution for efficiently storing
and retrieving the data required for computing process metrics.

We decided to use Neo4j1 for data storage. It was the most popular open-source
graph database when conducting this study and it continues to hold this position in the
present day. It also has a powerful query language called cypher that can be utilized
to compute process metrics.

1https://neo4j.com/
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4.2 Methodology
4.2.1 Database Schema
After analyzing the available data sets (project history, static source code analysis
results), we designed a graph database schema that is shown in Figure 4.1. Our goal
was to construct a graph with a structure that supports the computation of process
metrics, so the change information would be easy to obtain. Actually, it contains seven
types of nodes. The Project node represents the repository of a project. Since we used
GitHub, it has two attributes: the GitHub user and repository identifiers. With this
node, one database can be used for multiple projects. It may be useful if we are dealing
with cross-repository issue referencing, which is also one of the GitHub features. At
bigger companies and on GitHub, developers usually contribute to multiple repositories.
If we put these repositories into this database, then the developers are connected to
multiple projects, hence we can calculate with this feature as well. The User node
simply represents a developer. It has one attribute, the number of commits, which
represents the total number of commits made by the user in the system. This property
is provided by the GitHub API. The Issue node represents a bug that was reported
to the issue tracking system and was later fixed. It has two attributes, namely opened
and closed. The former is the date of the bug report, while the latter is the date of
closing the bug report or it is null if it is still open. It has an outgoing edge called Prev
that points to the Commit node, which is the latest commit created before the issue
was reported.
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Figure 4.1: The graph database schema

The Commit node represents a software version. It has three attributes, these being
hash, created, and fix. The first one is the unique hash of the commit. The second is the
timestamp of the commit’s creation. Fix is a Boolean property that tells us whether
this commit is a bug fix or not. A commit is treated as a fix if the commit message
references a bug report. This connection is provided by the GitHub API and in the
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schema, it is represented as a Referenced edge between Commit and Issue nodes. A
commit is made by one user, thus we connect the Commit nodes to the User nodes
with an Author edge. Sometimes the commits do not have such an edge because the
developer is removed from GitHub. The Parent edges of Commit nodes represent the
relationship between consecutive commits. Two commits are connected if one of them
is directly followed by the other. One commit may have multiple parents in the case
of merge commits.

The bottom three nodes - File, Class, and Method - represent the source code
elements. The Parent edges between them is the containment relationship. Since
we focused on the Java programming language, other containment relations are not
possible. Method and Class nodes have a name attribute, which is the fully qualified
name of the elements. The File nodes always have a filename attribute. The filename
contains the full path of the file. In Chapter 3, in order to avoid marking non-buggy test
code as buggy, we filtered the test-related source code elements during the collection of
bug information. This filtering is based on the file name and the qualified name. The
filtered attribute of the File, Class, and Method nodes indicates whether a certain file,
class, or method was filtered or not. The values of name and filename attributes are
unique, and this means only one node is created for a given source element that lives
across multiple software versions. This way, it is easy to get the changes of a file, class,
or method. This is a crucial feature of the database in terms of creating an efficient
method. The Contains edge between commits and source elements is responsible for
showing whether a given commit actually contains the specific element.

The Changed edges between commits and the source elements indicate whether an
element is changed during a commit. These edges have the following attributes: added
- number of added lines, deleted - number of deleted lines, and modified - number
of modified lines. These values are computed from the commit patch file, which can
also be obtained via the GitHub API. The patch file is based on files, hence additional
mapping is required for classes and methods. For this task, we used the source position
available from the static source code analysis. A patch file contains sections (deltas).
A delta has a beginning line number and an end line number. The mapping is carried
out by checking whether a delta intersects the position of a source code element. From
the patch file, we can get the beginning and end line numbers of a change (delta) and
from the output of the OpenStaticAnalyzer tool, we can get the source position of a
source element in the form of row numbers. Now, let us consider a delta with line
values 31-46 and a method with position 24-37. The first and last three lines of a
delta are unchanged, so we can subtract them from the section. After this step, we get
34-43 as line values for the delta. The intersecting range is 34-37. This means that 4
lines of the method have changed. If we look at the original version of a delta, we can
extract information about the type of change. If the size of the original is zero, then
the change is an addition. Conversely, if the size of the new part is zero, then it is a
deletion. Otherwise, it is a modification.

4.2.2 Calculating Process Metrics
Now that we have a schema definition, we can proceed to the metric calculation.

Figure 4.2 shows a small part of the graph database created for the ANTLR v4 project
(more details in Section 4.3). In this graph, we have at least 1 of each type of node
and relationship. As an example, let us demonstrate how to compute a simple process
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Figure 4.2: Example graph (green: project, purple: issue, red: user, blue: commit,
pink: file, yellow: class, grey: method)

metric called the Number of Modifications in this graph. The basis of the calculation is
the highlighted commit (uppermost) and the source element is the upper right method.
We have to look for Commit nodes that are created before the subject commit and
have a Changed relationship with the selected Method node. We can use the Parent
edge between commits, or the created attribute for selecting the past commits. Adding
the Changed edge to the match condition leads to the desired commits, which in this
example is the lowermost Commit node. With a simple aggregation (counting) we
get the value for the computed process metric. As we mentioned earlier, Neo4j has a
query language called cypher. With this language, it is easy to formulate these process
metrics. As an example, the query of the Number of Modifications metric is shown
in Listing 4.1. We will not go into detail about the syntax of this query language. A

1 match
2 (n:METHOD{name:’...’})<-[:CONTAINS]-(c1:COMMIT{hash:’...’}),
3 (n)<-[:CHANGED]-(c2:COMMIT)
4 where
5 c1.created >= c2.created
6 return
7 n.name as name, count(c2) as ‘Number of Modifications‘

Listing 4.1: Cypher query for calculating the Number of Modifications metric
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detailed description is available on the official Neo4j website2. The other metrics can
be formulated into a single query too, hence this is an easy way to compute them.
Table 4.1 lists the implemented process metrics. Switching to the class level is simple,
because all we need to do is change the node type in the query.

Table 4.1: The list of implemented process metrics

Process Metric
Age
Average Number of Added Lines
Average Number of Deleted Lines
Average Number of Elements Modified Together
Average Time Between Changes
Last Contributor Commits
Maximum Number of Added Lines
Maximum Number of Deleted
Maximum Number of Elements Modified Together
Number of Additions
Number of Contributor Changes
Number of Contributors
Number of Deletions
Number of Fixes
Number of Fixed in the Last Six Months
Number of Modifications
Number of Modifications in the Last Six Months
Number of Versions
Sum of Added Lines
Sum of Deleted Lines
Time Passed Since the Last Change
Weighted Age

4.2.3 Computing Bug Numbers
In order to calculate the number of bugs from the graph database and build a traditional
bug database, first of all, we have to select a software version that we want to build
the database from. As we discussed in Chapter 3, an often-used approach is to choose
a release version. In this research, we process the whole history of a project, thus we
handle more than one version. We assign each bug to a selected version that is the
latest one before them (see Figure 3.5). These assignments are represented in the graph
by the prev edges.

We formulated the calculation into a cypher query. The query to compute method-
level bug numbers is shown in Listing 4.2. In this query, we match for any non-filtered
method node n that is present in the selected commit c. We also match for any commit
cc that changed the method n and which references an issue i that may or may not
have a prev edge to the commit assigned. In the conditions part of the query, we specify

2https://neo4j.com/developer/cypher/
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1 match
2 (n:METHOD{filtered:false})<-[:CONTAINS]-(c:COMMIT{hash:’...’}),
3 (n)<-[:CHANGED]-(cc:COMMIT)-[:REFERENCED]->
4 (i:ISSUE)-[:PREV*0..1]->(assigned:COMMIT)
5 where
6 c.created < cc.created and
7 (assigned = c or i.opened < c.created)
8 return
9 n.name as name, count(DISTINCT i) as ‘Number of Bugs‘

Listing 4.2: Cypher query for calculating method-level bug numbers

that the commit cc (the modification) had to come later than commit c (the selected
version). We also specify that the bug i has to be assigned to commit c or that it was
reported before commit c. In the latter case, it implies that issue i was closed after
commit c, because there is a fix (commit cc) for this bug after the selected commit.
At the end of this query, we return with the name of the source code elements and
the associated number of bugs. If we want to compute these values for classes, we can
just simply change the type of node n to CLASS. Hence it is a very general way of
calculating bug numbers.

Figure 4.3: Example graph (purple: issue, blue: commit, grey: method)

Figure 4.3 shows a typical graph where we can see the matched nodes for a certain
method (grey). The blue node on the left highlighted in yellow is the selected com-
mit that contains the method node. The next five blue nodes are bug fixes that are
committed later and changed the method. The first three of these commits reference
three issues that are assigned to the selected commit. The last two commits reference
an issue that is assigned to another commit, but which was opened before the selected
commit. Here, we see that the Number of Bugs for this method in the given version is
4.
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4.2.4 The Open-source Toolchain

We created a framework to automatically produce these metrics for a specific version
of a project. Below, we will describe the overall picture of the framework.
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Figure 4.4: Overview of processes involved

An overview of the process is shown in Figure 4.4. The shape in the top left corner
represents our data source, GitHub. The two connecting elements are the first two
steps: GitHub history analysis and Source code analysis. In these two steps, we collect
every bug report of the chosen project from GitHub’s bug tracking system and we
analyze all versions of the project. The source code analysis is carried out by the
OpenStaticAnalyzer tool and the bug reports are exported from GitHub using the
GitHub API3. Next, the graph nodes and edges - according to the previously presented
schema - are exported into CSV files. These files can be directly imported into a Neo4j
graph database. The next task is to produce the required process metrics listed in
Table 4.1. The selection of the implemented metrics is based on the data available to
us. The cypher queries are executed and the results are saved in separate CSV files for
each metric. At this point, we also run the queries to calculate the number of bugs.
The next and final step of the process is to merge the available CSV files so as to
produce the desired database. OpenStaticAnalyzer also exports the source elements
into CSV files with some essential properties, like qualified name, source position, and
static source code metrics.

From these data sets, we create databases that contain the source code elements
(files, classes, and methods) along with the static source code metrics, the process
metrics, and the number of bugs. Here, these databases are in CSV form. The first line
contains the header information - as in the previously published GitHub Bug Dataset
- extended with the process metric names. The rest of the lines store the data of the
source code elements according to the header.

The tools created are published as open-source projects in the following GitHub
repository:
https://github.com/sed-szeged/BugHunterToolchain

3https://docs.github.com/en/rest
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4.3 Experimental Set-up
To demonstrate our method, we processed 5 of the Java projects (see Table 4.2) we
used in Chapter 3. During the process, we analyzed every single version of the systems
to extract the change information. Although the analysis of individual versions was
quick, the overall runtime was quite high. For the Broadleaf Commerce project,
the analysis of nearly ten thousand versions took around 200 hours. From a process
perspective, it was just an initial step, and only needed to be executed once.

The next step was to build the graph databases. The total runtime for all of the
projects was around 6 hours. For a single version, this time is negligible, thus the
database can be extended efficiently with the new version. Table 4.2 gives statistics on
the size of the graph databases. The first column shows the name of the project. The
next two columns are the number of nodes and the number of relationships (edges) in
the graph, expressed in thousands. The next column contains the disk space occupied
by the graph databases in Megabytes. The final column is the size of the results of
source code analysis in Gigabytes. We can see that the graph is a compact way of
storing information about project history and that process metrics can be efficiently
derived from it.

Table 4.2: Statistics about the graph databases that we created

Project kNodes kEdges Size of
Graph (MB)

Size of
Raw Data (GB)

ANTLR v4 24 13,069 484 18
Broadleaf C. 91 145,966 4,828 220
jUnit 14 7,457 300 9
MapDB 13 4,629 208 7
Titan 219 21,471 804 30

After setting up the graph database, we computed the process metrics for 25 release
versions of the systems (5 each). The release versions were selected just like those in
Chapter 3, namely at 6-monthly intervals. Due to smaller inactive periods in project
development, it may happen that the bug numbers are zero in a given release version.
In such cases, we dropped this release version, therefore, the time interval between
some of the versions was larger than six months.

Finally, using the framework, we created bug databases for the selected 5 projects’
25 release versions.

4.4 Evaluation
We applied machine learning algorithms to our bug database in order to check whether
it was suitable for bug prediction. In the preliminary step, similar to Chapter 3, we
grouped the source elements into two classes based on the number of bugs. Source
elements with zero bugs formed the non-defective class, while the others formed the
defective class. The structure of the learning tables was the following: it contained
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a unique id for every instance; next, it contained the predictors (22 software process
metrics); lastly, it contained the label of the class as a Boolean value (true - defective,
false - non-defective). Separate learning tables were constructed for files, classes, and
methods in each release version, hence we got 75 learning tables in total. The number
of instances in the defective class was much smaller than the number of instances
in the non-defective class. As in Section 3.4, we applied random undersampling to
the databases to avoid any distortions in the results. This method helps balance the
number of positive and negative instances in the training set. To achieve more reliable
results, we applied this method ten times to the data sets and computed an average.

4.4.1 Research Question 1
The first research question we will answer is the following:

Research Question 1: Is the dataset containing process metrics usable for bug
prediction purposes?

To answer the question above, we evaluated the 11 algorithms on all 25 release
versions and only used process metrics as predictors.

Table 4.3: Average F-measure values at the class level

Project #1 #2 #3 #4 #5

ANTLR v4 0.7306 0.5380 0.6748* 0.7080 0.7680
Broadleaf C. 0.6688 0.6715 0.6772* 0.6732 0.6908
MapDB 0.5640 0.6531* 0.7218 0.7259 0.7401
jUnit 0.6800 0.6417 0.5914 0.6143* 0.8067
Titan 0.5713 0.6154 0.6574 0.6547 0.7386*

Table 4.4: Average F-measure values at the file level

Project #1 #2 #3 #4 #5

ANTLR v4 0.7228 0.7487 0.6940* 0.7311 0.6837
Broadleaf C. 0.6372 0.6730 0.6766* 0.6951 0.6886
MapDB 0.5651 0.7860* 0.6562 0.6783 0.8349
jUnit 0.7261 0.6089 0.7012 0.6805* 0.5340
Titan 0.5971 0.7132 0.7041 0.7285 0.6968*

Our first observation was that the F-measure values at the class level generally
improved with time except for the jUnit project. Table 4.3 shows the average F-
measure values at the class level for all 25 versions. The first column contains the
project names, while the next columns are the average results for each version in
chronological order. The first is the earliest in time, the following is the next, and so
on. The value marked with an asterisk indicates the version with the highest number
of bug entries. From this table, we can observe that the best results are achieved
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Table 4.5: Average F-measure values at the method level

Project #1 #2 #3 #4 #5

ANTLR v4 0.5456 0.3842 0.5142* 0.5908 0.6461
Broadleaf C. 0.6186 0.6547 0.6116* 0.6565 0.5643
MapDB 0.6607 0.7328* 0.6633 0.7068 0.6713
jUnit 0.5761 0.5378 0.5332 0.5350* 0.6413
Titan 0.4685 0.7023 0.6369 0.5125 0.7004*

using the latest (#5) release versions. The best-performing project is jUnit with an
average F-measure value of 0.8067. One possible explanation for this is the nature of
the metrics used. Most of the process metrics are based on temporal characteristics,
hence, these values may be more reliable with bigger time intervals. At the file and
method levels, as shown in Tables 4.4 and 4.5, things are not so straightforward because
the values do not follow this trend. The same release version for jUnit achieved the
worst overall average F-measure value (0.5340) at the file level, however, relative to
the project, it performed the best again at the method level. In Table 4.6, we list the
number of bug entries in each release version for each source code level. Based on the
results, the performances of the classification algorithms do not seem to correlate with
the number of bug entries in a release version.

Table 4.6: Number of bug entries at the file (F), class (C) and method (M) levels

Project #1 #2 #3 #4 #5

F C M F C M F C M F C M F C M

ANTLR v4 28 13 21 18 6 5 41 21 32 21 6 8 10 7 10
Broadleaf C. 91 85 101 199 180 363 286 292 362 88 89 147 46 40 75
MapDB 14 26 64 22 40 89 7 9 12 5 5 9 8 19 24
jUnit 9 7 11 13 10 19 24 22 33 42 35 48 16 13 18
Titan 5 8 12 8 12 14 14 18 15 14 14 12 70 96 91

In Table 4.7, we list the F-measure values at the class level for the versions with
the most bug entries. Although the process metrics did not perform the best in these
versions, it is still reasonable to use them since we evaluated the GitHub Bug Dataset [7]
using these versions. The first column contains the name of the machine learning
algorithms that we used. The subsequent columns contain the resulting F-measure
values for each project. The last column is the average F-measure value over projects.
The table is ordered by the average value in decreasing order. Here, we notice that tree-
and rule-based algorithms performed the best. The highest average F-measure value is
0.7430, while the lowest is 0.6117. The overall highest F-measure value in these versions
is 0.7997 and it was achieved by the Titan project. The best-performing algorithm is
the RandomForest method.

Table 4.8 shows the resulting F-measures at the file level for the versions with the
most bug entries. The structure of the table is the same as that of Table 4.7. Similarly,
in this case as well, the same set of algorithms, RandomForest and DecisionTable,
perform the best, just like in the case of classes. The best results are over 0.8 (MapDB
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Table 4.7: F-measure values at the class level

Algorithm ANTLR v4 Broadleaf C. MapDB jUnit Titan AVG

RandomForest 0.7328 0.7638 0.7483 0.6702 0.7997 0.7430
DecisionTable 0.6704 0.7147 0.6719 0.6712 0.7742 0.7005
OneR 0.7101 0.6982 0.6065 0.6770 0.7597 0.6903
SimpleLogistic 0.6970 0.7059 0.6163 0.6345 0.7878 0.6883
J48 0.6971 0.6953 0.6618 0.6077 0.7567 0.6837
SGD 0.6196 0.7039 0.6838 0.6125 0.7832 0.6806
RandomTree 0.6530 0.6861 0.6547 0.6365 0.7540 0.6769
Logistic 0.5827 0.6885 0.6459 0.6006 0.7441 0.6523
NaiveBayes 0.7106 0.5846 0.6868 0.6457 0.5672 0.6390
NaiveBayesMultinomial 0.7065 0.5920 0.6042 0.5349 0.6689 0.6213
VotedPerceptron 0.6432 0.6159 0.6040 0.4663 0.7290 0.6117

Table 4.8: F-measure values at the file level

Algorithm ANTLR v4 Broadleaf C. MapDB jUnit Titan AVG

RandomForest 0.7804 0.7328 0.8180 0.6659 0.7271 0.7448
DecisionTable 0.7299 0.7152 0.8143 0.7061 0.7103 0.7352
SimpleLogistic 0.7234 0.6910 0.7869 0.7071 0.7094 0.7236
SGD 0.7033 0.7025 0.8036 0.6857 0.7159 0.7222
NaiveBayesMultinomial 0.6920 0.6342 0.8152 0.6732 0.7533 0.7136
OneR 0.6911 0.6642 0.7786 0.7371 0.6781 0.7098
J48 0.6553 0.6994 0.7983 0.6614 0.7304 0.7090
RandomTree 0.6826 0.6740 0.7261 0.6933 0.6896 0.6931
VotedPerceptron 0.6267 0.6340 0.8019 0.6149 0.7406 0.6836
Logistic 0.6765 0.6950 0.6699 0.6649 0.6821 0.6777
NaiveBayes 0.6732 0.6008 0.8334 0.6757 0.5278 0.6622

project) and the worst result is 0.5278, however, on average, the F-measure values are
around 0.7. The highest average F-measure value is 0.7448, while the lowest is 0.6622.

Table 4.9 displays the resulting F-measures at the method level for the versions with
the highest number of bug entries. Overall, the F-measure values obtained are lower
compared to those for classes and files. The RandomForest algorithm remains the best-
performing algorithm in this context. It is worth noting that in some cases, very low
F-measure values (<0.5) were observed, indicating a decrease in the predictive power
of the process metrics at the method level. This suggests that the change metrics of a
method do not directly correlate with the presence of a bug, unlike in the case of classes
where it is more accurate. There could be several explanations for this observation.
Firstly, changes in methods are often made in conjunction with other methods, and
it is rare for only a single method to be independently modified. Consequently, if a
method is not frequently edited, it is likely that other methods in the same class also
undergo minimal changes, resulting in similar process metrics. Furthermore, it is more
common to modify a single class alone, leading to greater variation in change patterns
at the class level.
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Table 4.9: F-measure values at the method level

Algorithm ANTLR v4 Broadleaf C. MapDB jUnit Titan AVG

RandomForest 0.5788 0.6617 0.8185 0.6390 0.7705 0.6937
RandomTree 0.5565 0.6286 0.7882 0.5804 0.7243 0.6556
J48 0.5501 0.6180 0.7661 0.5655 0.7118 0.6423
SimpleLogistic 0.4595 0.6455 0.7890 0.4957 0.7416 0.6263
SGD 0.4584 0.6354 0.7823 0.4917 0.7519 0.6239
Logistic 0.4911 0.6289 0.7572 0.5319 0.7053 0.6229
DecisionTable 0.4618 0.6376 0.7515 0.5787 0.6773 0.6214
OneR 0.5233 0.5684 0.6935 0.5327 0.6690 0.5974
VotedPerceptron 0.4956 0.5654 0.6855 0.4655 0.7052 0.5834
NaiveBayes 0.5143 0.6010 0.6248 0.5127 0.6365 0.5779
NaiveBayesMultinomial 0.5670 0.5369 0.6046 0.4908 0.6107 0.5620

In summary, while change patterns at a smaller level of source code elements may
not reliably indicate the presence of bugs, change patterns at a higher level, such as
classes or files, could provide better indications of bug-proneness. Additionally, the
Bayesian methods perform poorly overall, and their performance varies across different
versions. Therefore, it can be concluded that using Bayesian algorithms is not the
optimal approach for bug prediction.

Answering Research Question 1: The results obtained suggest that databases
with process metrics are suitable for bug prediction purposes, with the RandomForest
and DecisionTable methods performing the best. Specifically, we achieved F-measure
values of 0.7997 (Titan) at the class level, 0.8180 (MapDB) at the file level, and
0.8185 (MapDB) at the method level using the RandomForest algorithm. Further-
more, it is important to note that not all projects are equally capable of providing an
appropriate training set for bug prediction. Additionally, on average, process metrics
provide stronger indications of bug-proneness at higher levels of source code, such
as classes or files.

4.4.2 Research Question 2
The second research question we will answer is the following:

Research Question 2: Which metrics are more effective for predicting software
bugs: process metrics or product metrics?

Table 4.10 allows for a comparison of the average F-measure values obtained from
two different sets of predictors for the release versions with the highest number of
bug entries. The higher value of the two is highlighted in bold. Analyzing these
values, it can be observed that, at the class level, process metrics performed worse
than product metrics in 4 out of 5 cases. However, at the file level, process metrics
outperformed product metrics in 3 out of 5 cases. At the method level, product metrics
performed better in 3 out of 5 cases. Despite the underperformance of process metrics
in certain cases, the resulting F-measure values suggest that process metrics show
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greater robustness compared to product metrics. Table 4.11 presents the statistical
characteristics of the obtained F-measure values. Notably, the standard deviation for
process metrics is generally lower, except for one instance at the class level for jUnit.
The average difference in standard deviation is 0.0375, with a minimum difference of
0.0073, and a maximum difference of 0.0933. Additionally, the minimum F-measure
values tend to be higher for process metrics in all cases, except for one instance at
the method level for jUnit. The average difference in minimum values is 0.0809, with
a maximum difference of 0.2685. The presence of 0 among the minimum F-measure
values is due to an insufficient number of buggy entries in one of the release versions of
the project. It is worth noting that the maximum F-measure values tend to be lower
for process metrics in the majority of cases. The average difference in maximum values
is 0.0577, with a maximum difference of 0.1305. Furthermore, the best-performing
algorithms differ for each version when using product metrics, while the process metrics
consistently yield a similar set of top-performing algorithms across all cases.

Table 4.10: F-measure values for the release versions with the highest number of bug
entries

File Class Method

Product Process Product Process Product Process

ANTLR4 0.7035 0.6940 0.7129 0.6748 0.7198 0.5142
Broadleaf C. 0.6926 0.6766 0.7470 0.6772 0.7830 0.6116
MapDB 0.6420 0.7860 0.6939 0.6531 0.6709 0.7328
jUnit 0.5647 0.6805 0.7164 0.6143 0.5824 0.5350
Titan 0.5759 0.6968 0.6971 0.7386 0.6252 0.7004

Table 4.11: Statistical characteristics of the F-measure values

ANTLR4 Broadleaf C. MapDB jUnit Titan

Product Process Product Process Product Process Product Process Product Process

Fi
le

Std. dev. 0.1419 0.0486 0.1133 0.0423 0.1744 0.1472 0.1092 0.0952 0.1946 0.1241
Min 0.3333 0.6018 0.3333 0.5459 0.0000 0.0000 0.3333 0.4066 0.0000 0.0000
Max 0.8796 0.8305 0.7937 0.7423 0.8999 0.8895 0.7810 0.8162 0.9021 0.8493
Avg. 0.7061 0.7161 0.6533 0.6741 0.6846 0.7041 0.5967 0.6501 0.5607 0.6879

C
la

ss

Std. dev. 0.1349 0.1110 0.1040 0.0436 0.1696 0.1369 0.0880 0.1016 0.1284 0.0846
Min 0.2473 0.3312 0.3555 0.5802 0.0000 0.0000 0.3442 0.4663 0.3483 0.4239
Max 0.8903 0.8711 0.8242 0.7638 0.9630 0.9598 0.7838 0.8842 0.8391 0.7997
Avg. 0.6679 0.6839 0.6768 0.6763 0.7084 0.6810 0.6880 0.6668 0.6382 0.6475

M
et

ho
d Std. dev. 0.1505 0.1395 0.0766 0.0601 0.1042 0.0969 0.1150 0.0855 0.1678 0.1196

Min 0.0000 0.0000 0.4857 0.4924 0.4053 0.4056 0.4414 0.4090 0.2570 0.3706
Max 0.8568 0.7430 0.8012 0.7266 0.8582 0.8661 0.8842 0.7678 0.9037 0.7732
Avg. 0.6219 0.5362 0.6723 0.6211 0.6752 0.6870 0.6669 0.5647 0.6242 0.6041

Upon examining the average F-measure values, it is observable that process metrics
surpassed product metrics at the file level in all cases. At the class level, the results were
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mixed, with product metrics performing better in two cases, process metrics performing
better in two cases, and the average F-measure values being similar in one case. At
the method level, product metrics achieved higher average values in 4 out of 5 cases.
These findings indicate that process metrics are more effective predictors for higher
levels of source code when compared to product metrics.

Answering Research Question 2: Based on the obtained results, it can be
concluded that creating bug prediction models based on process metrics at the file
level generally yields better performance compared to those using product metrics.
However, at lower levels of source code, such as the class or method level, prod-
uct metrics often outperform process metrics. An interesting observation is that the
standard deviation of the resulting F-measure values is consistently lower for process
metrics in almost all cases, with an average difference of 0.0375. Furthermore, the
overall lowest achieved F-measure values are higher for process metrics in almost all
cases, with an average difference of 0.0809. These findings suggest that bug predic-
tion results obtained from process metrics are more robust and reliable, indicating
their suitability for predicting bugs in source code.

4.4.3 Research Question 3

The last research question we will answer is the following:

Research Question 3: What is the relation between product metrics and process
metrics?

We computed the Pearson correlation coefficient values between product and process
metrics for class-level and method-level metrics in our databases. As the results are
similar across all versions, we will only present the correlations for one version to avoid
lengthy listings. Instead of including the correlation matrices that have over a hundred
rows and columns, we illustrate these with colored tables (Figures 4.5, and 4.6). The
black cells denote the low absolute value of the correlation (close to zero), while the
white cells denote the high absolute value of the correlation (near one or minus one).

Figure 4.5 shows the correlation of metrics at the method level. The product metrics
(including rule violation metrics) are separated from the process metrics by a red line.
From this image, we can see that the process metrics (bottom right quarter) correlate
more with each other than with product metrics. There are some higher correlation
values around 0.4-0.5 between a few size-based product metrics (e.g. Lines of Code,
Number of Statements) and process metrics (e.g. Number of Added Lines, Number
of Modifications), but in general, there are no dominant correlation values between
product and process metrics.

If we look at the correlation results between any two class-level metrics in Figure 4.6,
we notice that the relation between process and product metrics is a little stronger.
Nonetheless, the correlation between metrics of the same type remains notably higher.
At the file level, we cannot draw any conclusions from the database, as it only contains
a few product metrics.
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Figure 4.5: Correlation of method-level metrics

Figure 4.6: Correlation of class-level metrics

Answering Research Question 3: From the correlation results presented above,
it can be observed that process metrics and product metrics are of a different nature.
Process metrics provide a distinct perspective in characterizing the source code ele-
ments compared to product metrics, as there are no strong correlations between the
two types of metrics.

Due to the size of the learning tables and correlation matrices, we have not included
all the evaluation tables here. Please refer to the online appendix, which contains all
the analysis results in spreadsheet files:
https://www.inf.u-szeged.hu/~pgyimesi/papers/ActaCybernetica2016/
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4.5. Summary

4.5 Summary
In this chapter, we presented a method that efficiently computes software process
metrics in a graph database. Also, we made an implementation available on GitHub as
an open-source project that is capable of computing 22 process metrics. We selected 5
Java projects and produced databases for 25 release versions. The databases created
contain the implemented process metrics for files, classes, and methods along with the
number of bugs. Afterward, we applied 11 machine learning algorithms to them to
investigate whether the database is suitable for bug prediction purposes. Based on the
F-measure values, we found that tree- and rule-based methods perform the best and,
in particular, the RandomForest method performed well in every case.

In the future, we intend to implement more process metrics and experiment with
new ones. We also plan to extend the list of processed systems.

In addition to the study, our method was also implemented in the QualityGate4

service, although the implementation differs slightly. QualityGate is a service that
continuously measures and monitors the quality of the source code, as well as the
performance of the development team. Source code is analyzed on-site without ever
leaving the local network. In such an environment, our method had to be integrated
directly into the analysis pipeline. The implementation had to be highly resource-
efficient, which meant that process metrics had to be calculated quickly and using very
little memory. Due to the continuous measurements, we had to adapt our method
to calculate the metrics incrementally from version to version. As a result of this
integration, process metrics are calculated continuously for more than 450 open-source
and closed-source projects. The metrics of the open-source projects are freely accessible
through a REST API. This makes it the largest dataset available that contains process
metrics for various source code elements, such as classes, methods, annotations, and so
on. QualityGate currently does not process bug tracking information, thus the number
of bugs could not be calculated. In the future, we plan to use this huge dataset to
further investigate the properties of the process metrics.

4https://www.quality-gate.com/
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“Knowing there is a structure, hidden or felt, to
the random gives pleasure.”

— Cecil Balmond

5
A Public Dataset of JavaScript Bugs

Despite all the JavaScript-related research, to date, a well-organized repository of la-
beled JavaScript bugs is still missing. The plethora of different JavaScript implementa-
tions available (e.g., V8, JavaScriptCore, Rhino) further makes devising a cohesive bugs
benchmark nontrivial. To fill this gap, we present BugsJS, a benchmark of JavaScript-
related bugs from 10 open-source JavaScript projects, based on Node.js and the Mocha
testing framework.

To emphasize the research artifact contributions and the research questions, we list
them here:

• Research Artifact 1: BugsJS, a benchmark of 453 manually selected and
validated JavaScript bugs from 10 JavaScript Node.js programs pertaining to the
Mocha testing framework.

• Research Artifact 2: A Docker-based framework to download, analyze, and
run test cases exposing each bug in BugsJS and the corresponding real fixes
implemented by developers. The infrastructure includes a set of precomputed
data from the subjects and tests as well.

• Research Artifact 3: A bug taxonomy of server-side JavaScript bugs in BugsJS,
which, to our knowledge, is the first of its kind.

• Research Question 1: Do the bug-fixing patterns for JavaScript bugs in
BugsJS match existing classification schemes?

• Research Question 2: How do the bug-fixing patterns in BugsJS relate to
our taxonomy of bugs?

5.1 Methodology
To construct a benchmark of real JavaScript bugs, we identify existing bugs from the
programs’ version control histories and collect the real fixes provided by developers.
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Developers often manually label the revisions of the programs in which reported bugs
are fixed (bug-fixing commits, or patches). As such, we refer to the revision preceding
the bug-fixing commit as the buggy commit. This allowed us to extract detailed bug
reports and descriptions, along with the buggy and bug-fixing commits they refer to.
Particularly, each bug and fix should adhere to the following properties:

• Reproducibility: One or more test cases are available in a buggy commit to
demonstrate the bug. The bug must be reproducible under reasonable con-
straints. We excluded non-deterministic features and flaky tests from our study,
since replicating them in a controlled environment would be excessively challeng-
ing.

• Isolation: The bug-fixing commit applies to JavaScript source code files only;
changes to other artifacts, such as documentation or configuration files, are not
considered. The source code of each commit must be cleaned from irrelevant
changes (e.g., feature implementations, refactorings, changes to non-JavaScript
files). The isolation property is particularly important in research areas where
the presence of noise in the data has detrimental impacts on the techniques (e.g.,
automated program repair, or fault localization approaches).

 

GitHub
50 subjects

542 bugs453 bugs

Dynamic Validation4 Manual Validation3
795 bugs
10 subjects 

Bugs Collection2Subjects Selection1

Forks

Tags
Patches

Organization

Figure 5.1: Overview of the bug selection and inclusion process

Figure 5.1 depicts the main steps of the process we performed to construct our
benchmark. First, we adopted a systematic procedure to select the JavaScript subjects
to extract the bug information from ❶. Then, we collected bug candidates from the
selected projects ❷ and manually validated each bug for inclusion by means of multiple
criteria ❸. Next, we performed a dynamic sanity check to make sure that the tests
introduced in a bug-fixing commit can detect the bug in the absence of its fix ❹.
Finally, the retained bugs were cleaned from irrelevant patches (e.g., whitespaces).

5.1.1 Subject Systems Selection
To select relevant programs to include in BugsJS, we focused on popular and trending
JavaScript projects on GitHub. Such projects often engage large communities of de-
velopers, and therefore, are more likely to follow software development best practices,
including bug reporting and tracking. Moreover, GitHub’s issue IDs allow conveniently
connecting bug reports to bug-fixing commits.

Popularity was measured using the projects’ Stargazers count (i.e., the number of
stars owned by the subject’s GitHub repository). We selected server-side Node.js ap-
plications that are popular (Stargazers count ≥ 100) and mature (number of commits
> 200), and have been actively maintained (year of the latest commit ≥ 2017). We
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currently focus on Node.js because it is emerging as one of the most pervasive technolo-
gies to enable using JavaScript on the server side, leading to the so-called full-stack
web applications [13]. Limiting the subject systems to server-side applications and
specific testing frameworks is due to technological constraints, as running tests for
browser-based programs would require managing many complex and time-consuming
configurations. We discuss the potential implications of this constraint in Section 5.4.

We examined the GitHub repository of each retrieved subject system to ensure
that bugs were properly tracked and labeled. Particularly, we only selected projects
in which bug reports had a dedicated issue label on GitHub’s Issues page, which al-
lows filtering irrelevant issues (pertaining to, e.g., feature requests, build problems, or
documentation), so that only actual bugs are included. Our initial list of subjects in-
cluded 50 Node.js programs, from which we filtered out projects based on the number
of candidate bugs found and the adopted testing frameworks.

5.1.2 Bugs Collection
Collecting bugs and bug-fixing commits

For each subject system, we first queried GitHub for closed issues assigned with a
specific bug label using the official GitHub API.1 For each closed bug, we exploit the
links existing between issues and commits to identify the corresponding bug-fixing
commit. GitHub automatically detects these links when there is a specific keyword
(belonging to a predefined list2), followed by an issue ID (e.g., Fixes #14).

Each issue can be linked to zero, one, or more source code commits. A closed bug
without a bug-fixing commit could mean that the bug was rejected (e.g., it cannot
be replicated), or that developers did not associate that issue with any commit. We
discarded such bugs from our benchmark, as we require each bug to be identifiable
by its bug-fixing commit. At last, similarly to existing benchmarks [69], we discarded
bugs linked to more than one bug-fixing commit, as this might imply that they were
fixed in multiple steps, or that the first attempt for fixing them was unsuccessful.

Including corresponding tests

We require each fixed bug to have unit tests that demonstrate the absence of the bug.
To meet this requirement, we examined the bug-fixing patches to ensure they also
contain changes or additions in the test files. For this filtering, we manually examined
each patch to determine whether test files were involved. The result of this step is the
list of bug candidates for the benchmark. From the initial list of 50 subject systems,
we considered the projects having at least 10 bug candidates.

Testing frameworks

There are several testing frameworks available for JavaScript applications. We collected
statistics about the testing frameworks used by the 50 considered JavaScript projects.
Our results show that there is no single predominant testing framework for JavaScript
(as compared to, for instance, JUnit which is used by most Java developers). We found

1https://docs.github.com/en/rest
2https://docs.github.com/en/issues/tracking-your-work-with-issues/

linking-a-pull-request-to-an-issue#linking-a-pull-request-to-an-issue-using-a-keyword
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Table 5.1: Bug-fixing commit inclusion criteria

Rule Name Description

Isolation The bug-fixing changes must fix only one (1) bug (i.e., must close
exactly one (1) issue)

Complexity The bug-fixing changes should involve a limited number of files (≤
3), lines of code (≤ 50) and be understandable within a reasonable
amount of time (max 5 minutes)

Dependency If a fix involves introducing a new dependency (e.g., a library),
there must also exist production code changes and new test cases
added in the same commit

Relevant
Changes

The bug-fixing changes must involve only changes in the production
code that aim at fixing the bug (whitespace and comments are
allowed)

Refactoring The bug-fixing changes must not involve the refactoring of the pro-
duction code

that the majority of tests in our pool were developed using Mocha3 (52%), Jasmine4

(10%), and QUnit5 (8%). Consequently, the initial version of BugsJS only includes
projects that use Mocha, whose prevalence as a JavaScript testing framework is also
supported by a recent large-scale empirical study [48].

Final Selection

Table 5.2 reports the names and descriptive statistics of the 10 applications we ulti-
mately retained. Notice that all these applications have at least 1000 LOC (frameworks
excluded), thus being representative of modern web applications (Ocariza et al. [94]
report an average of 1,689 LOC for AngularJS web applications on GitHub with at
least 50 stars).

Table 5.3 lists the number of tests of the subject projects, and the source code
coverage achieved by running the test suite. A test is considered Passing if it runs
without an issue, and it is considered Failing if it throws any error. A Pending test
means that it was skipped by the testing framework due to some criteria. The coverage
is measured at Statement, Branch, Function, and Line levels.

The subjects represent a wide range of domains. Bower is a front-end package man-
agement tool that exposes the package dependency model through an API. Express
is a minimal and flexible Node.js web application framework that provides a robust
set of features for web and mobile applications. Hessian.js is a JavaScript binary
web service protocol that makes web services usable without requiring a large frame-
work, and without learning a new set of protocols. Hexo is a blog framework powered
by Node.js. Karma is a popular framework agnostic test runner tool for JavaScript.
Mongoose is a MongoDB object modeling tool for Node.js. Node-redis is a Node.js

3https://mochajs.org/
4https://jasmine.github.io/
5https://qunitjs.com/
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Table 5.2: Subjects included in BugsJS

Program Stats

Name Description kLOC (JS) Stars Commits Forks

Bower6 package manager 16 15,290 2,706 1,995
Eslint7 linting tool 240 12,434 6,615 2,141
Express8 web framework 11 40,407 5,500 7,055
Hessian.js9 serialization service 6 104 217 23
Hexo10 blog framework 17 23,748 2,545 3,277
Karma11 test runner 12 10,210 2,485 1,531
Mongoose12 ODM 65 17,036 9,770 2,457
Node-redis13 database client 11 10,349 1,242 1,245
Pencilblue14 CMS 46 1,596 3,675 276
Shields15 badge service 20 6,319 2,036 1,432

client for the Redis database. Pencilblue is a CMS and blogging platform, powered
by Node.js. Shields is a web service for badges in SVG and raster format.

5.1.3 Manual Patch Validation
In this study, two participants manually investigated each bug and its corresponding
bug-fixing commit and labeled them based on a well-defined set of inclusion criteria
(Table 5.1). The bugs meeting all the criteria were initially marked as “Candidate
Bugs” for further consideration.

To ensure relatedness to the fixed bug, the participants investigated the code of
the commit simultaneously. However, some bug-fixing commits were too complex for
investigators to comprehend due to domain knowledge requirements or a large number
of modified files or lines of code. In such cases, the bug-fixing commits were labeled
as “Too complex” and discarded from BugsJS. This was done to maintain the size of
the patches within reasonable thresholds, ensuring a high-quality corpus of bugs that
can be easily processed and analyzed through both manual inspection and automated
techniques. A commit was deemed too complex if it involved changes in more than
three files or more than 50 LOC, or if understanding the fix required more than 5
minutes. If the participants unanimously agreed that a fix was too complex, the case
was ignored.

Another reason for exclusion was refactoring operations in the analyzed code. The
participants aimed to preserve the original behavior of the code as written by devel-
opers. Therefore, only modifications that did not affect the program’s behavior, such
as whitespaces, were restored. It is often challenging to decouple refactoring from bug
fixing due to the requirement for in-depth domain knowledge, especially in JavaScript,
which is a dynamic language. Refactoring can also affect multiple parts of a project,
affecting metrics such as code coverage and making it more challenging to restore the
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Table 5.3: Statistics about the projects included in BugsJS

Program Tests (#) Coverage (%)

Name All Passing Pending Failing Satements Branches Functions Lines

Bower 455 103 19 36 81.11 66.91 80.62 81.11
Eslint 18,528 18,474 0 54 99.21 98.19 99.72 99.21
Express 855 855 0 0 98.71 94.32 100 99.95
Hessian.js 225 223 2 0 96.42 91.27 98.99 96.42
Hexo 875 868 7 0 96.20 90.51 98.54 97.27
Karma 331 331 0 0 54.61 34.03 43.98 54.76
Mongoose 2,107 2,071 36 0 90.97 85.95 89.65 91.04
Node-redis 966 965 0 1 99.06 98.19 97.99 99.06
Pencilblue 807 802 0 5 35.21 19.09 22.91 35.22
Shields 482 469 13 0 75.98 65.60 83.26 75.97

original code changes.
We manually validated a total of 795 commits, out of which 542 (68.18 %) met the

criteria. The result of this step for each application and across all applications is shown
in Table 5.4 (Manual). Excluding bugs due to fixes being deemed too complex was the
most common reason (136). Other common scenarios were bug-fixing commits address-
ing more than one bug (32), fixes not involving production code (29), and containing
refactoring operations (39). We also came across four instances in which the patch did
not involve the actual test’s source code, but rather comments or configuration files.

5.1.4 Dynamic Validation
To ensure that the test cases introduced in a bug-fixing commit were actually intended
to test the buggy feature, we adopted a systematic and automatic approach. Let Vbug

be the version of the source code that contains a bug b, and let Vfix be the version in
which b is fixed. The existing test cases in Vbug do not fail due to b. However, at least
one test of Vfix should fail when executed on Vbug. This allows us to identify the test in
Vfix used to demonstrate b (isolation) and to discard cases in which tests immaterial
to the considered buggy feature were introduced.

To run the tests, we obtained the dependencies and set up the environment for each
specific revision of the source code. Over time, however, developers made major changes

6https://github.com/bower/bower
7https://github.com/eslint/eslint
8https://github.com/expressjs/express
9https://github.com/node-modules/hessian.js

10https://github.com/hexojs/hexo
11https://github.com/karma-runner/karma
12https://github.com/Automattic/mongoose
13https://github.com/redis/node-redis
14https://github.com/pencilblue/pencilblue
15https://github.com/badges/shields
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Table 5.4: Manual and dynamic validation statistics per application for all considered
commits
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Initial number of bugs 10 559 39 17 24 37 56 25 18 10 795

M
an

ua
l

✘ Fixes multiple issues 0 18 1 0 1 5 2 5 0 0 32
✘ Too complex 0 94 0 4 8 4 8 7 9 2 136
✘ Only dependency 1 9 0 0 1 0 2 0 0 0 13
✘ No production code 0 20 4 0 1 1 2 0 0 1 29
✘ No tests changed 1 0 1 0 0 0 0 1 1 0 4
✘ Refactoring 0 36 0 0 0 1 1 1 0 0 39

After manual validation 8 382 33 13 13 26 41 11 8 7 542

D
yn

am
ic ✘ Test does not fail at Vbug 1 11 6 4 1 2 8 3 1 3 40

✘ Dependency missing 3 17 0 0 0 1 1 0 0 0 22
✘ Error in tests 1 7 0 0 0 0 3 1 0 0 12
✘ Not Mocha 0 14 0 0 0 1 0 0 0 0 15

✔ Final Number Of Bugs 3 333 27 9 12 22 29 7 7 4 453

to some of the projects’ structure and environment, making test replication infeasible.
These cases occurred, for instance, when older versions of required dependencies were
no longer available, or when developers migrated to a different testing framework (e.g.,
from QUnit to Mocha).

For the projects that used scripts (e.g., grunt, bash, Makefile) to run their tests,
we extracted them, so as to isolate each test’s execution and avoid possible undesirable
side effects caused by running the complete test suite.

After the dynamic analysis, 453 bug candidates were ultimately retained for inclu-
sion in BugsJS (84% of the 542 bug candidates from the previous step).

Table 5.4 (Dynamic) reports the results of the dynamic validation phase. In 22
cases, we were unable to run the tests because dependencies were removed from the
repositories. In 15 cases, the project at revision Vbug did not use Mocha for testing b.
In 12 cases, tests were failing during the execution, whereas in 40 cases no tests failed
when executed on Vbug. We excluded all such bug candidates from the benchmark.

5.1.5 Patch Creation
We performed manual cleaning on the bug-fixing patches, to make sure they only
include changes related to bug fixes. In particular, we removed irrelevant files (e.g.,
*.md, .gitignore, LICENSE), and irrelevant changes (i.e., source code comments, when
only comments changed, and comments unrelated to bug-fixing code changes, as well
as changes solely pertaining to whitespaces, tabs, or newlines). Furthermore, for easier
analysis, we separated the patches into two separate files, the first one including the
modifications to the tests, and the second one pertaining to the production code fixes.
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Figure 5.2: Overview of BugsJS architecture

5.1.6 Benchmark Infrastructure and Implementation
Infrastructure

Figure 5.2 illustrates the overall architecture of BugsJS, which supports common
activities related to the benchmark, such as running the tests at each revision, or
checking out specific commits. The framework’s command-line interface includes the
following commands:

• info: Prints out information about a given bug.

• checkout: Checks-out the source code for a given bug.

• test: Runs all tests for a given bug and measures the test coverage.

• per-test: Runs each test individually and measures the per-test coverage for a
given bug.

For the checkout, test, and per-test commands, the user can specify the desired
code revision: buggy, buggy with the test modifications applied, or the fixed version.
BugsJS is equipped with a pre-built environment that includes the necessary configu-
rations for each project to execute correctly. This environment is available as a Docker
image along with a detailed step-by-step tutorial. The interested reader can find more
information on BugsJS and access the benchmark on our website:
https://bugsjs.github.io/

Source code commits and tests

We used GitHub’s fork functionality to make a full copy of the git history of the subject
systems. The unique identifier of each commit (i.e., the commit SHA1 hashes) remains
intact when forking. In this way, we were able to synchronize the copied fork with the
original repository and keep it up-to-date. Importantly, our benchmark will not be lost
if the original repositories get deleted.
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The fork is a separate git repository, therefore, we can push commits to it. Taking
advantage of this possibility, we have extended the repositories with additional com-
mits, to separate the bug-fixing commits and their corresponding tests. To make such
commits easily identifiable, we tagged them using the following notation (X denotes a
sequential bug identifier):

• Bug-X: The parent commit of the revision in which the bug was fixed (i.e., the
buggy revision);

• Bug-X-original: A revision with the original bug-fixing changes (including the
production code and the newly added tests);

• Bug-X-test: A revision containing only the tests introduced in the bug-fixing
commit, applied to the buggy revision;

• Bug-X-fix: A revision containing only the production code changes introduced
to fix the bug, applied to the buggy revision;

• Bug-X-full: A revision containing both the cleaned fix and the newly added
tests, applied to the buggy revision.

Test runner commands

For each project, we have included the necessary test runner commands in a CSV file.
Each row of the file corresponds to a bug in the benchmark and specifies:

1. A sequential bug identifier;

2. The test runner command required to run the tests;

3. The test runner command required to produce the test coverage results;

4. The Node.js version required for the project at the specific revision where the
bug was fixed, so that the tests can execute properly;

5. The preparatory test runner commands (e.g., to initialize the environment to run
the tests, which we call pre-commands);

6. The cleaning test runner commands (e.g., the teardown commands, which we call
post-commands) to restore the application’s state.

Bug report data

Forking repositories does not maintain the issue data associated with the original repos-
itory. Thus, the links appearing in the commit messages of the forked repository still
refer to the original issues. In order to preserve the bug reports, we obtained them via
GitHub’s API and stored them in Google’s Protocol Buffers16 format. Particularly, for
each bug report, we store the original issue identifier paired with our sequential bug
identifier, the text of the bug description, the issue open and close dates, the SHA1 of the
original bug-fixing commit along with the commit date and commit author identifiers.
Lastly, we save the comments from the issues’ discussions.

16https://developers.google.com/protocol-buffers/
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In the following paragraphs, we list several artifacts that we added to BugsJS in
the form of precomputed data.17 These can be reproduced by performing suitable static
and dynamic analyses on the benchmark, however, we supply this information to bet-
ter facilitate further bug-related research, including bug prediction, fault localization,
automatic repair, etc.

Test coverage data

We included pre-computed information in BugsJS. We used the tool Istanbul18 to
compute per-test coverage data for Bug-X and Bug-X-test versions of each bug, and
the results are available in JSON format. Particularly, for each project, we included
information about the tests of the Bug-X versions in a separate CSV file. Each row in
such file contains the following information:

1. A sequential bug identifier;

2. Total LOC in the source code, as well as LOC covered by the tests;

3. The number of functions in the source code, as well as the number of functions
covered by the tests;

4. The number of branches in the source code, as well as the number of branches
covered by the tests;

5. The total number of tests in the test suite, along with the number of passing,
failing, and pending tests (i.e., the tests that were skipped due to execution
problems).

Static source code metrics

Furthermore, to support studies based on source code metrics, we run static analysis
on Bug-X-full and Bug-X versions of each bug. For the static analysis, we used the
tool OpenStaticAnalyzer, which calculates 41 static source code metrics for JavaScript.
The results are available in a zip file named metrics.

5.1.7 Extending BugsJS
BugsJS was designed and implemented in a way that is easy to extend with new
JavaScript projects, however, there are some restrictions. The current version of the
framework only supports projects that are in a git repository and use the Mocha testing
framework. If the project is hosted on GitHub, it can be also forked under BugsJS’s
GitHub Organization to preserve the state of the repository.

Mining an appropriate bug to add to BugsJS takes four steps as described at
the beginning of Section 5.1. It is mainly manual work, but some of it could be
done programmatically. In our case, we used GitHub as the source of bug reports,
which has a public API, thus we could automate the bug collection step. Validating
the bug-fixing patches requires manual work, but it can be partially supported by
automation, e.g., for filtering patches that modify both the production code and the

17https://github.com/BugsJS/bug-dataset
18https://istanbul.js.org/
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tests. However, in our experience during the development of BugsJS, the location of
test files varies across different projects, and sometimes across versions as well. Thus,
it is still challenging to automatically determine it for an arbitrary set of JavaScript
projects. Dynamic validation also requires some manual effort. Despite the fact that
we limited the support only to the most common testing framework (Mocha), running
the tests programmatically is not so trivial because the command that runs the test
suite is, in some cases, assembled at run-time (e.g., with grunt or Makefile) and
can change over time. Extracting it programmatically is only possible for standard
cases, e.g., when it is located in the default package.json file. Due to the great variety
of JavaScript projects, this process can hardly be automated, as compared to other
languages like Java, where project build systems are more homogeneous.

After a suitable bug is found, some preparatory steps are required before a bug can
be added to BugsJS. If necessary, irrelevant white space and comment modifications
can be removed from the bug-fix patch, which is re-added to the repository as a new
commit. Next, the production code modifications should be separated from the test
modifications by committing the changes separately on top of the buggy version. Then,
the commits should be tagged according to the notation described in Section 5.1.6.
Finally, the new bug can be submitted to BugsJS using a GitHub pull request. The
pull request has to contain the modified or added CSV files that contain the repository
URL, the test runner command, and any additional commands (pre and post) if any.
Adding precomputed data is not mandatory, but beneficial.

5.2 Taxonomy of Bugs in BugsJS
In this section, we present a detailed overview of the root causes behind the bugs in our
benchmark. Hanam et al. [59] identified 13 cross-project bug patterns in JavaScript
projects, and we tried to assign all 453 bugs from BugsJS to one of these categories.
Our analysis revealed that there were 42 occurrences of the categories proposed by
Hanam et al., with the majority falling under the category of Dereferenced non-values.
This demonstrates that these patterns do exist in the bugs present in BugsJS, although
they only cover a small subset. The majority of the remaining bugs are logical errors
made by developers during implementation and do not necessarily fall under recurring
patterns. Therefore, BugsJS includes bugs that are diverse in nature, making it
an ideal platform to evaluate a wide range of analysis and testing techniques. Our
taxonomy proved to be more appropriate for categorizing such logical errors in BugsJS.
However, this came at a cost, as our categories are more high-level and independent of
the language and the domain of the subject systems.

We constructed our taxonomy using faceted classification [115], i.e., we created
the categories/subcategories of our taxonomy in a bottom-up fashion, by analyzing
different sources of information about the bugs.

5.2.1 Manual Labeling of Bugs
Each bug and associated information (i.e., bug report and issue description) was man-
ually analyzed by four authors (referred to as “taggers” hereafter) following an open
coding procedure [108]. Four taggers specified a descriptive label for each bug assigned
to them. The labeling task was performed independently, and the disagreements were
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discussed and resolved through dedicated meetings. Unclear cases were also discussed
and resolved during such meetings.

First, we performed a pilot study, in which all taggers reviewed and labeled a sample
of 10 bugs. Bugs for the pilot were selected randomly from all projects in BugsJS. The
consensus on the procedure and the final labels was high, therefore, for the subsequent
rounds, the four taggers were split into two pairs, that were shuffled after each round
of tagging.

The labels were collected in separate spreadsheets; the agreement on the final labels
was found by discussion. During the tagging, the taggers could reuse existing labels
previously created, should an existing label apply to the bug under analysis. This
choice was meant to limit introducing nearly-similar labels for the same bug and help
taggers use consistent naming conventions.

When inspecting the bugs, we looked at several sources of information, namely
(1) the bug-fixing commit on GitHub’s web interface containing the commit title, the
description as well as at the code changes, and (2) the entire issue and pull request
discussions.

In order to achieve internal validation in the labeling task, we performed cross-
validation. Specifically, we created an initial version of the taxonomy labeling around
80% of the bugs (353). Then, to validate the initial taxonomy, the remaining 20%
(100) were simply assigned to the closest category in the initial taxonomy, or a new
category was created, when appropriate. Bugs for the initial taxonomy were selected at
random, but they were uniformly selected among all subjects, to avoid over-fitting the
taxonomy towards a specific project. Analogously, the validation set was retained so as
to make sure all projects were represented. Internal validation of the initial taxonomy
is achieved if few or no more categories (i.e., labels) were needed for categorizing the
validation bugs. The labeling process involved four rounds: the first round (the pilot
study) involved labeling 10 bugs, the second round 43 bugs, and 150 bugs were analyzed
in both the third and fourth rounds.

5.2.2 Taxonomy Construction

After enumerating all causes of bugs in BugsJS, we began the process of creating a
taxonomy, following a systematic process. During a physical meeting, for each bug
instance, all taggers reviewed the bugs and identified candidate equivalence classes to
which descriptive labels were assigned. By following a bottom-up approach, we first
clustered tags that correspond to similar notions into categories. Then, we created par-
ent categories in such a way that categories and their subcategories follow specialization
relationships.

5.2.3 Taxonomy Internal Validation

We performed the validation phase in a physical meeting. Each of the four taggers
classified one-fourth of the validation set (25 bugs) independently, assigning each of
them to the most appropriate category. After this task, all taggers reviewed and
discussed the unclear cases to reach a full consensus. All 100 validation bugs were
assigned to existing categories, and no further categories were needed.
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5.2.4 The Final Taxonomy

Figure 5.3: Taxonomy of bugs in the benchmark of JavaScript programs of BugsJS.

Figure 5.3 presents a graphical view of our taxonomy of bugs in the JavaScript
benchmark. Nodes represent classes and subclasses of bugs, and edges represent spe-
cialization relationships. Specializations are not complete, disjoint relationships. Even
though during labeling we tried assigning the most specific category, we found out
during taxonomy creation that we had to group together many app-specific corner
cases. Thus, some bugs pertaining to inner nodes were not further specialized to avoid
creating an excessive number of leaf nodes with only a few corner cases.

At the highest level, we identified four distinct categories for the causes of bugs, as
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follows:

1. Causes related to incomplete feature implementation. These bugs are re-
lated either to an incomplete understanding of the main functionalities of the
considered application, or a refinement in the requirements. In these cases, the
functionalities have already been implemented by developers according to their
best knowledge, but over time, users or other developers found out that they do
not consider all aspects of the corresponding requirements. More precisely, given
a requirement r, the developer implemented a program feature f ′ which corre-
sponds to only a subset r′ ⊂ r of the intended functionality. Thus, the developer
has to adapt the existing functionality f ′ ⊂ f to f , in order to satisfy the re-
quirement in r. Typical instances of this bug category are related to one or more
specific corner cases that were unpredictable at the time in which that feature
was initially created, or when the requirements for the main functionalities are
changed or extended to some extent.

2. Causes related to incorrect feature implementation. These bugs are also
related to the mainstream functionalities of the application. Differently from the
previous category, the bugs in this category are related to wrong implementa-
tion by the developers, for instance, due to an incorrect interpretation of the
requirements. More precisely, suppose that given a requirement r, the developer
implemented a program feature f ′, to the best of her knowledge. Over time, other
developers found out by the usage of the program that the behavior of f ′ does
not reflect the intended behavior described in r, and opened a dedicated issue in
the GitHub repository (and, eventually, a pull request with a first fix attempt).

3. Causes related to generic programming errors. Bugs belonging to this cate-
gory are typically not related to an incomplete/incorrect understanding of the
requirements by developers, but rather to common coding errors, which are also
important from the point of view of a taxonomy of bugs.

4. Causes related to perfective maintenance. Perfective maintenance involves
making functional enhancements to the program in addition to the activities
to increase its performance even when the changes have not been suggested by
bugs. These can include completely new requirements to the functionalities or
improvements to other internal or external quality attributes not affecting exist-
ing functionalities. When composing BugsJS, we aimed at excluding such cases
from the candidate bugs (see Section 5.1), however, the bugs that we classified in
the taxonomy with this category were labeled as bugs by the original developers,
so we decided to retain them in the benchmark.

We now discuss each of these categories in turn, in each case considering the sub-
categories beneath them.

1 - Incomplete feature implementation
This category contains 45% of the bugs overall and has five subcategories, which we
describe in the following subsection.
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1.1 - Incomplete data processing
The bugs in this category are related to an incomplete implementation of a feature’s
logic, i.e., the way in which the input is consumed and transformed into output.

Overall, 27 bugs were found to be of this type. An example is Bug#7 of Hexo,19 in
which an HTML anchor is undefined, unless correct escaping of markdown characters
is used.

1 – var text = $(this).html();
2 + var text = _.escape($(this).text());

1.2 - Missing input validation
The bugs in this category are related to incomplete input validation, i.e., the way in
which the program checks whether a given input is valid and can be processed further.

Overall, 16% of the bugs were found to be of this type, and a further 16% in more
specialized instances. This prevalence was mostly due to the nature of some of our
programs. For instance, ESLint provides linting utilities for JavaScript code, and it
is the most represented project in BugsJS (73%). Therefore, being its main scope to
actually validate code, we found many cases related to invalid inputs being unmanaged
by the library, even though we found instances of these bugs also in other projects.
For instance, in Bug#4 of Karma,20 a file parsing operation should not be triggered
on URLs having no line number. As such, in the bug-fixing commit, the proposed fix
adds one more condition.

1 – if (file && file.sourceMap) {
2 + if (file && file.sourceMap && line) {

Another prevalent category is due to missing type checks on inputs (11%), whereas
less frequent categories were missing checks of null inputs, empty parameters, and
missing handling of spaces or other special characters (e.g., in URLs).

1.3 - Error handling
The bugs in this category are related to incomplete handling of errors, i.e., the way in
which the program manages erroneous cases, i.e., exception handling.

Overall, 3% of the bugs were found to be of this type. For instance, in Bug#14 of
Karma,21 the program does not throw an error when using a plugin for a browser that
is not installed, which is a corner case missed in the initial implementation. Addition-
ally, we found two cases specific to callbacks.

1.4 - Incomplete configuration processing
The bugs in this category are related to an incomplete configuration, i.e., the values of
parameters accepted by the program.

Overall, 2% of the bugs were found to be of this type. For instance, in Bug#10
of ESLint,22 an invalid configuration is used when applying extensions to the default
configuration object. The bug fix updates the default configuration object’s constructor

19https://github.com/BugsJS/hexo/releases/tag/Bug-7-original
20https://github.com/BugsJS/karma/releases/tag/Bug-4-original
21https://github.com/BugsJS/karma/releases/tag/Bug-14-original
22https://github.com/BugsJS/eslint/releases/tag/Bug-10-original
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to use the correct context, and to make sure the config cache exists when the default
configuration is evaluated.

1.5 - Incomplete output message
The last subcategory pertains to bugs related to incomplete output messages by the
program.

Only three bugs were found to be of this type. For instance, in Bug#8 of Hes-
sian.js,23 the program casts the values exceeding Number.MAX_SAFE_INTEGER as string,
to allow safe readings of large floating point values.

2 - Incorrect feature implementation
This category contains 48% of the bugs overall and has seven subcategories, which we
describe in the following subsections.

2.1 - Incorrect data processing
The bugs in this category are related to the wrong implementation of a feature’s logic,
i.e., the way in which the input is consumed and transformed into output.

Overall, 75 bugs were found to be of this type, with two subcategories due to a
wrong type comparison (1 bug), or an incorrect initialization (10 bugs). An example
of this latter category is Bug#238 of ESLint,24 in which developers remove the default
parser from CLIEngine options to fix a parsing error.

1 – parser: DEFAULT_PARSER
2 + parser: ""

2.2 - Incorrect input validation
The bugs in this category are related to the wrong input validation, i.e., the way in
which the program checks whether a given input is valid, and can be processed further.

Overall, 19% of the bugs were found to be of this type, with three subcategories due
to unnecessary type checks (7 bugs), incorrect handling of special characters (16 bugs),
or empty input parameters given to the program (2 bugs). As an example of this latter
category, in Bug#171 of ESLint,25 the arrow-spacing rule did not check for all spaces
between the arrow character (=>) within a given code. Therefore, it is updated as
follows:

1 – while (t.type !== "Punctuator" || t.value !== "=>") {
2 + while (arrow.value !== "=>") {

2.3 - Incorrect filepath
The bugs in this category are related to wrong paths to external resources necessary
to the program, such as files. For instance, in Bug#6 of ESLint,26 developers failed to

23https://github.com/BugsJS/hessian.js/releases/tag/Bug-8-original
24https://github.com/BugsJS/eslint/releases/tag/Bug-238-original
25https://github.com/BugsJS/eslint/releases/tag/Bug-171-original
26https://github.com/BugsJS/eslint/releases/tag/Bug-6-original
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check for configuration files within sub-directories. Therefore, the code was updated
as follows:

1 – if (!directory)
2 + if (directory) directory = path.resolve(this.cwd, directory);

2.4 - Incorrect output
The bugs in this category are related to incorrect output by the program. For instance,
in Bug#7 of Karma,27 the exit code is wrongly replaced by null characters (\0x00),
which results in squares (□□□□□□) being displayed in the standard output.

1 – return exitCode
2 + return {exitCode: exitCode, buffer: buffer.slice(0, tailPos)}

2.5 - Incorrect configuration processing
The bugs in this category are related to an incorrect configuration of the program, i.e.,
the values of parameters accepted.

Nine bugs were found to be of this type. For instance, in Bug#145 of ESLint,28

a regression was accidentally introduced where parsers would get passed additional
unwanted default options even when the user did not specify them. The fix updates
the default parser options to prevent any unexpected options from getting passed to
parsers.

1 – let parserOptions = Object.assign({}, defaultConfig.parserOptions);
2 + let parserOptions = {};

2.6 - Incorrect handling of regex expressions
The bugs in this category are related to an incorrect use of regular expressions.

Seven bugs were found to be of this type. For instance, in Bug#244 of ESLint,29

a regular expression is wrongly used to check that the function name starts with
setTimeout.

2.7 - Performance
The bugs in this category caused the program to use an excessive amount of resources
(e.g., memory). Only four bugs were found to be of this type. For instance, in Bug#85
of ESLint,30 a regular expression susceptible to catastrophic backtracking was used.
The match takes quadratic time in the length of the last line of the file, causing Node.js
to hang when the last line of the file contains more than 30,000 characters. Another
representative example is Bug#1 of Node-Redis,31 in which parsing big JSON files
takes substantial time due to an inefficient caching mechanism that makes the parsing
time grow exponentially with the size of the file.

27https://github.com/BugsJS/karma/releases/tag/Bug-7-original
28https://github.com/BugsJS/eslint/releases/tag/Bug-145-original
29https://github.com/BugsJS/eslint/releases/tag/Bug-244-original
30https://github.com/BugsJS/eslint/releases/tag/Bug-85-original
31https://github.com/BugsJS/node_redis/releases/tag/Bug-1-original
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3 - Generic
This category contains 6% of the bugs overall and has six subcategories, which we
describe next.

3.1 - Typo

This category refers to typographical errors by the developers.
We found three such bugs in our benchmark. For instance, in Bug#321 of ESLint,32

a rule is intended to compare the start line of a statement with the end line of the
previous token. Due to a typo, it was comparing the end line of the statement instead,
which caused false positives for multiline statements.

3.2 - Return statement

The bugs in this category are related to either missing return statements (3 bugs), or
incorrect usage of return statements (1 bug). For instance, in Bug#8 of Mongoose,33

the fix involves adding an explicit return statement.
1 – this.constructor.update.apply(this.constructor, args);
2 + return this.constructor.update.apply(this.constructor, args);

3.3 - Variable initialization

The bugs in this category are related to either missing initialization of variables state-
ments (8 bugs), or to the incorrect initialization of variables (4 bugs). For instance, in
Bug#9 of Express,34 the fix involves correcting a wrongly initialized variable.

1 – mount_app.mountpath = path;
2 + mount_app.mountpath = mount_path;

3.4 - Data processing

The bugs in this category are related to the incorrect processing of information.
Six bugs were found to be of this type. For instance, in Bug#184 of ESLint,35

developers fixed the possibility of passing negative values to the string.slice function.
1 – currentText.slice(node.range[0] - (beforeCount || 0)
2 + currentText.slice(Math.max(node.range[0] - (beforeCount || 0), 0)

3.5 - Missing type conversion

The bugs in this category are related to missing type conversions.
Three bugs were found to be of this type. For instance, in Bug#4 of Shields,36

developers forgot to convert labels to strings prior to applying the uppercase transfor-
mation.

1 – data.text[0] = data.text[0].toUpperCase();
2 + data.text[0] = (’’ + data.text[0]).toUpperCase();

32https://github.com/BugsJS/eslint/releases/tag/Bug-321-original
33https://github.com/BugsJS/mongoose/releases/tag/Bug-8-original
34https://github.com/BugsJS/express/releases/tag/Bug-9-original
35https://github.com/BugsJS/eslint/releases/tag/Bug-184-original
36https://github.com/BugsJS/shields/releases/tag/Bug-4-original
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3.6 - Loop statement

We found only one bug of this type—Bug#304 of Shields,37—related to the incorrect
usage of loop statements.

1 – while ((currentAncestor = currentAncestor.parent))
2 – if (isConditionalTestExpression(currentAncestor)) {
3 – return currentAncestor.parent;
4 – }
5 – }
6
7 + do {
8 + if (isConditionalTestExpression(currentAncestor)) {
9 + return currentAncestor.parent;

10 + }
11 + } while ((currentAncestor = currentAncestor.parent));

4 - Perfective maintenance
This category contains only 1% of the bugs. For instance, in Bug#209 of ESLint,38

developers fix JUnit parsing errors which treat no test cases having an empty output
message as a failure.

5.3 Evaluation
To gain a better understanding of the characteristics of bug-fixes of bugs included in
BugsJS, we have performed two analyses to quantitatively and qualitatively assess
the representativeness of our benchmark. This serves as an addition to the taxonomy
presented in Section 5.2 which, by connecting the bug types to the bug-fix types, can
support applications, such as automated fault localization and automated bug repair.

5.3.1 Research Question 1
The first research question we will answer is the following:

Research Question 1: Do the bug-fixing patterns for JavaScript bugs in BugsJS
match existing classification schemes?

To observe the occurrence of recurring low-level bug-fixing patterns in BugsJS,
we conducted further analysis. Similar studies [96, 131, 29] in the past have explored
patterns in bug-fixing changes within Java programs, suggesting that the existence
of such patterns reveals certain code constructs (such as if conditionals) that could
indicate weak points in the source code, where developers are consistently more likely
to introduce bugs [96].

All 453 bug-fixing commits in BugsJS were manually investigated by four partici-
pants of this study, who attempted to assign the bug-fixing changes to the predefined
categories proposed in previous studies. The categories suggested by Pan et al. [96]
were used for this purpose, but they were originally related to Java bug fixes. The aim
of this study is to assess whether these categories generalize to JavaScript or whether

37https://github.com/BugsJS/eslint/releases/tag/Bug-304-original
38https://github.com/BugsJS/eslint/releases/tag/Bug-209-original
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Table 5.5: Bug-fixing change types found in BugsJS

Category Example #

E
xi

st
in

g

if-related Changing if conditions 291
Assignments Modifying the RHS of an assign-

ment
166

Function calls Adding or modifying an argu-
ment

152

Class fields Adding/removing class fields 22
Function declarations Modifying a function’s signature 94
Sequences Adding a function call to a se-

quence of calls, all with the same
receiver

42

Loops Changing a loop’s predicate 5
switch blocks Adding/removing a switch

branch
6

try blocks Introducing a new try-catch
block

1

N
ew

return statements Changing a return statement 40
Variable declaration Declaring an existing variable 2
Initialization Initializing a variable with empty

object literal/array
3

there are specific bug-fix patterns that emerge in JavaScript. Any disagreements re-
garding classification or the potential need for new categories were resolved through
further discussion among the participants. In order to identify the occurrences of pat-
terns, a manual analysis was conducted to ensure the coverage of potential new patterns
and to add an additional layer of validation against possible misclassifications.

It should be noted that since the categories suggested by Pan et al. were originally
developed for Java programs, we needed to ensure that we correctly applied them
to JavaScript code. Specifically, prior to ECMAScript 2015, JavaScript did not have
built-in syntactical support for classes. Instead, classes were simulated using functions
as constructors, with methods and fields added to the prototype [113, 104, 47]. Addi-
tionally, object literals could be used to represent classes, with a comma-separated list
of name-value pairs enclosed in curly braces defining the class fields and methods. To
prevent any misclassifications, we carefully considered all of these aspects during the
classification process.

The bug-fixing categories and the number of occurrences of each are presented in
Table 5.5. In cases where a bug fix spanned multiple lines, it was possible for us to
assign more than one category to a single bug-fixing commit. As a result, the overall
number of occurrences listed in Table 5.5 is greater than the number of bugs analyzed.

The most common fix patterns involved modifying an if statement, either by chang-
ing its condition or adding a precondition, modifying assignment statements, and
changing function call arguments (Table 5.5). We found that the same three cate-
gories were also found to be the most frequent in Java code. Furthermore, we observed
that changes to class fields were also prevalent in JavaScript bug fixes.
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JavaScript-related bug-fixing patterns

In our benchmark, we identified three recurring patterns that had not been previously
reported:

• return statements: We identified a frequent pattern in bug fixes that involved
modifying the return statement of a function. Developers changed the expression
used in the return statement to address issues with the function’s behavior or
output. This pattern was the most common JavaScript-related pattern.

• Variable declaration: In JavaScript, it is permissible to use a variable without
declaring it explicitly, which can cause subtle bugs. When a variable is utilized
inside a function without prior declaration, it gets “hoisted” to the top of the
global scope. As a result, it becomes visible to all functions, even outside its
original lexical scope, leading to potential naming conflicts. The recurring pattern
we observed involves fixing this issue by declaring a variable that was previously
in use.

• Initialization: This bug-fixing pattern aims to fix uninitialized variables. This
pattern provides an alternative to using an if statement by utilizing a logical “or”
operator. For example, a = a || {} assigns the value of a to itself if it already
has a “non-falsey” value. If a has a “falsey” value, then it will be initialized with
an empty object. This pattern also corresponds to Hanam et al.’s [59] first bug
pattern.

Answering Research Question 1: Our analysis of bugs in BugsJS revealed
that 88% of them had fixes falling into one of the proposed categories. The most
common fix patterns involved modifying an if statement. Interestingly, the same
three categories were also found to be the most frequent in Java code. Furthermore,
we identified three JavaScript-specific recurring patterns.

5.3.2 Research Question 2
The second research question we will answer is the following:

Research Question 2: How do the bug-fixing patterns in BugsJS relate to our
taxonomy of bugs?

We compared the taxonomy with the bug-fixing patterns used to fix the bugs. Fig-
ures 5.4, 5.5, and 5.6 present Sankey diagrams showing the relationship of the assigned
bug categories with the bug-fixing patterns of Pan et al. [96] and the JavaScript-related
bug-fixing patterns described in Section 5.3.1. We focused our analysis on the first three
main bug categories of our taxonomy. For presentational clarity, each figure shows a
diagram for one of such main categories. The left side of the diagrams shows one of
the main bug categories, unfolded into its sub-categories. The right side depicts the
associated bug-fixing patterns. The None node indicates that no patterns were appli-
cable. In the middle, each bug category is connected to each bug-fixing pattern that is
used to fix the bugs belonging to the bug category. The thickness of the curved lines
between the nodes indicates the cardinality of the association.
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Table 5.6: Bug-fixing patterns

Category Pattern name

Pan [96]
Assignment (AS) Change of assignment expression (AS-CE)

Class Field (CF) Addition of a class field (CF-ADD)
Change of class field declaration (CF-CHG)
Removal of a class field (CF-RMV)

If-related (IF) Addition of an else branch (IF-ABR)
Addition of precondition check (IF-APC)
Addition of precondition check with jump (IF-APCJ)
Addition of post-condition check (IF-APTC)
Change of if condition expression (IF-CC)
Removal of an else branch (IF-RBR)
Removal of an if predicate (IF-RMV)

Loop (LP) Change of loop condition (LP-CC)
Change of the expression that modifies the loop variable (LP-CE)

Method Call (MC) Method call with different actual parameter values (MC-DAP)
Different method call to a class instance (MC-DM)
Method call with different number or types of parameters (MC-DNP)

Method Declaration (MD) Change of method declaration (MD-CHG)
Addition of a method declaration (MD-ADD)
Removal of a method declaration (MD-RMV)

Sequence (SQ) Addition of operations in an operation sequence of
field settings (SQ-AFO)
Addition of operations in an operation sequence of
method calls to an object (SQ-AMO)
Addition or removal method call operations in a short
construct body (SQ-AROB)
Removal of operations from an operation sequence of
field settings (SQ-RFO)
Removal of operations from an operation sequence of
method calls to an object (SQ-RMO)

Switch (SW) Addition/removal of switch branch (SW-ARSB)

Try (TY) Addition/removal of a catch block (TY-ARCB)
Addition/removal of a try statement (TY-ARTC)

BugsJS
JavaScript (JS) Changing a return statement (JS-Return)

Initializing a variable with empty object literal/array (JS-Initialization)
Declaring an existing variable (JS-Declaration)

For example, in Figure 5.4, the node incomplete feature implementation is connected
to the subcategory missing input validation with a thick line, due to the majority of
the bugs in this main category belonging to that subcategory. Then, the node of
that subcategory is connected to the node of the IF-CC bug-fixing pattern with a
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relatively thick line, because a considerable amount of bug fixes are classified into that
category. The nodes of the bug categories can be wider than the total width of the
lines connected from the right side because bug fixes can be assigned with multiple bug
patterns, whereas each bug is assigned with exactly one bug category. Also, there are
bugs that are only assigned to a main category, e.g., Missing input validation, but not
to any subcategory, which resulted in the direct lines between the pattern and main
category nodes.

Table 5.6 gives a description of the bug-fixing pattern abbreviations. We now discuss
each of the bug categories in detail.

Incomplete feature implementation

Figure 5.4 illustrates the connection between the bugs under the Incomplete feature
implementation category and the related bug-fixing patterns.
Missing input validation. Table 5.7 shows that the majority of the bugs assigned
to this category are fixed by if-related (53), assignment related (29), and method
declaration related (22) changes. The most common are changing a condition in an if
statement (IF-CC ), changing an assignment expression (AS-CE), or adding a method
declaration (MD-ADD). The most numerous subcategory is the Missing type check and
the related bugs are mainly fixed by if-related changes (39), the top two are IF-CC
and IF-APCJ and by changing an assignment expression (18 AS-CE). The fixes of
bugs in the Missing handling of special characters subcategory often contain changes
in an assignment expression (6 AS-CE) and in an if statement (5), mainly adding
post-condition checks (IF-APTC ). Bugs belonging to the Missing null check and the
Empty input parameters sub-categories are mainly fixed by changing an if condition
(5). The Missing handling of spaces subcategory is connected to various bug-fixing
patterns and none of them is dominant.
Incomplete configuration processing. The majority of the bug fixes of this cat-
egory contain if-related patterns (9), mainly IF-APC, adding a precondition check.
The Missing type check subcategory of Incomplete configuration processing is too small
to draw meaningful conclusions.
Error handling. Bugs of this category are typically fixed with if-related fixes (12),
namely IF-APCJ, IF-APC, and IF-CC. The second most common fix patterns are
MC-DNP, changing the number of parameters (3) and MD-ADD, adding a method
declaration (4). The Callbacks subcategory of Error handling is related to a variety of
bug-fixing patterns (4 if-related, 1 assignment related, 1 method call related, and 1
sequence related).
Incomplete output message. Bugs assigned to this category are usually fixed by
changing the parameters of function calls (2 MC-DAP, 1 MC-DNP).
Incomplete data processing. Bugs belonging to this category were fixed in a va-
riety of ways. The most common pattern is method call related (11), but there is no
dominant bug-fixing pattern.

Incorrect feature implementation

Figure 5.5 illustrates the connection between the bugs under the Incorrect feature
implementation category and the related bug-fixing patterns.
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configuration processing: 17

callbacks: 8

error handling: 28

incomplete output message: 4

missing null check: 7

incomplete data processing: 39

incomplete feature implementation: 202

empty input parameters: 6

missing input validation: 205

AS: 64AS-CE: 64

missing type check: 86

missing handling of spaces: 8

TY-ARTC: 1

missing type checking: 2

TY: 1

SQ-AMO: 5
SQ: 8

SQ-AFO: 2

SQ-AROB: 1

CF-CHG: 10

CF-ADD: 2

CF: 12

MD-CHG: 9

MD-DNP: 1

MD-ADD: 32

MD: 46

MD-RMV: 4

None: 11

MC-ADD: 1

MC-DNP: 17

MC-DM: 6

MC-DAP: 22

MC: 46

SW-ARSB: 4 SW: 4

LP-CC: 2 LP: 2

JS-Declaration: 1
JS-Initialization: 1

JS-Return: 11
JS: 13

IF-CHG: 1
IF-RBR: 1
IF-RMV: 2
IF-ACPJ: 1

IF-APC: 26

IF-ABR: 7

IF-APCJ: 29

missing handling of special characters: 13

IF-CC: 69

IF-APTC: 6

IF: 142

Figure 5.4: Bug-fixing patterns used in the Incomplete feature implementation category

Incorrect input validation. The most dominant bug-fixing patterns of this category
are if-related (56), method-call-related (27), and assignment-related (25). The most
numerous if-related pattern is IF-CC and the most numerous method-call-related pat-
tern is MC-DAP. Furthermore, return-statement-related (12 JS-Return) and method-
declaration-related (10 MD-ADD and 5 MD-CHG) patterns are also quite common.
In the Unnecessary type check subcategory, the most common pattern is if-related (6
IF-CC and 1 IF-RMV ) and the second most common pattern is the assignment-related
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performance: 14

incorrect input validation: 168

incorrect data processing: 135

incorrect handling of special characters: 42

incorrect feature implementation: 215

unnecessary type check: 14

incorrect handling of regex expressions: 26

LP: 3

incorrect output: 27

CF: 5

configuration processing: 16

incorrect filepath: 17

AS: 94AS-CE: 94

MC: 98

MC-DAP: 68

MC-DM: 20

MC-DNP: 10

IF: 135

IF-CC: 74

IF-APTC: 2
IF-RBR: 4

IF-APCJ: 25

IF-APC: 17

MD: 46

IF-ABR: 6

IF-RMV: 7

MD-ADD: 35

MD-RMV: 1
MD-CHG: 8
MD-DNP: 1
MD-DAP: 1

JS: 24
JS-Return: 24

None: 17

SW: 2

SW-ARSB: 2

SQ: 30

SQ-AMO: 6

SQ-AROB: 6

SQ-RMO: 3

SQ-AFO: 15

CF-CHG: 4

CF-ADD: 1

LP-CC: 3

incorrect output message: 28

empty input parameters: 2

incorrect initialization: 17

incorrect type comparison: 1

Figure 5.5: Bug-fixing patterns used in the Incorrect feature implementation category

pattern (5 AS-CE). Bugs belonging to the biggest input-validation-related subcategory,
the Incorrect handling of special characters, are usually fixed with method-call-related
changes (10 MC-DAP and 2 MC-DM ), with assignment-related changes (9 AS-CE) and
with method-declaration-related changes (9 MD-ADD and 1 MD-RMV ). The Empty
input parameters subcategory of Incorrect input validation is too small to draw mean-
ingful conclusions.
Incorrect data processing. Similarly to the Incomplete data processing category,
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bugs belonging to this category were fixed in a variety of ways. There is no dominant
bug-fixing pattern. The most numerous patterns are if-related (39), method-call-
related (27), and assignment-related (24). The Incorrect initialization subcategory is
interestingly not connected to if-related patterns at all. The bug fixes of this category
are connected to only assignment-related (5), sequence-related (5), and method-call-
related (4) patterns. The Incorrect type comparison subcategory of Incorrect data
processing is too small to draw meaningful conclusions.
Incorrect handling of regex expressions. Bugs assigned to this category are
mostly fixed with assignment-related (13 AS-CE) and method-call-related (6 MC-
DAP) changes.
Incorrect filepath. Here, the most dominant bug-fixing patterns are assignment-
related (4), method-call-related (4), and if-related (4). The variety of connected pat-
terns is large.
Incorrect output. Bugs of this category are usually fixed by changing method calls
(3MC-DM and 2 MC-DAP) and by changing return statements (3 JS-Return). The
Incorrect output message subcategory contains bugs with fixes that mostly involve
changes to the parameters of method calls (9 MC-DAP and 1 MC-DNP) and changes
to condition expressions in if statements (5 IF-CC, 2 IF-RMV, and 1 IF-APCJ ).
Incorrect configuration processing. The most dominant bug-fixing pattern for
this category is assignment-related (5 AS-CE), but a variety of other patterns occur
as well (3 if-related, 2 method-call-related, 1 JavaScript-related, 1 loop-related, and 1
method-declaration-related).
Performance. The majority of the bug-fixing patterns used for fixing bugs of this
category are SQ-AFO, adding operations in an operation sequence of field settings (7).
The second most common patterns are if-related (5 IF-APC and 1 IF-APCJ ).

Generic

Figure 5.6 illustrates the connection between the bugs under the Generic category and
the related bug-fixing patterns.
Variable initialization. The bug fixes of the Missing variable initialization subcate-
gory contain five types of bug-fixing patterns. The most dominants are the JavaScript-
related patterns (2 JS-Return, 2 JS-Initialization, and 1 JS-Declaration) and the class-
field-related patterns (2 CF-CHG and 2 CF-ADD). In the other subcategory, Incorrect
variable initialization, changing an assignment expression (3 AS-CE) is the most dom-
inant.
Data processing. Similarly to the other two cases of data processing bugs, the
associated bug fixes contain a variety of patterns (2 JavaScript related, 2 method-call-
related, 1 if-related, 1 assignment-related, and 1 sequence-related) and there is no
dominant bug-fixing pattern.
Missing type conversion. The bug fixes of this category mostly involve changes in an
assignment expression (2 AS-CE), but adding a precondition check to an if statement
(1 IF-APC ) and removing an operation from an operation sequence of method calls (1
SQ-RMO) also appears.
Typo. For this category, there is no dominant bug-fixing pattern (2 if-related, 2
method-call-related, 1 assignment-related, and 1 method-declaration-related), which
essentially means typos can occur at any place in the code.
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generic: 29

JS: 7

missing type conversion: 4

incorrect loop statement: 1

typo: 6

SQ: 4

CF: 5

data processing: 8

return statement: 4

incorrect variable initialization: 4

missing variable initialization: 13

variable initialization: 12

JS-Initialization: 2

JS-Declaration: 1

JS-Return: 4

CF-CHG: 3

CF-ADD: 2

SQ-AFO: 1

SQ-AMO: 1

SQ-RMO: 2

MC-DAP: 3

MC: 7

None: 4

MC-DNP: 4

AS: 7

loop statement: 1

missing return statement: 3

incorrect return statement: 1

IF: 5

AS-CE: 7

MD: 1

MD-ADD: 1

IF-APCJ: 1

IF-CC: 2

IF-RMV: 1

IF-APC: 1

Figure 5.6: Bug-fixing patterns used in the Generic category

Return statement. This category contains too few bug-fixing patterns to draw mean-
ingful conclusions. Surprisingly, the bug fixes do not fall into the JS-Return category.
Loop statement. There is only one bug in this category and its fix does not contain
any bug-fixing patterns, therefore, we cannot draw meaningful conclusions here.

Highlights

Table 5.7 provides statistics about the occurrences of each bug-fix type corresponding
to the bug types. The table can serve to analyze the emergence of correlations between
bug-fix types and bug types.

Answering Research Question 2: Overall, the most common bug-fixes in
BugsJS are if-related (291), the second most common are assignment-related
(166), and the third most common are method-call-related (152) bug-fixes. These
bug-fix types are mostly related to the most prominent bug categories, namely missing
input validation, incorrect input validation, and incorrect data processing. Another
correlation is that assignment-related fixes are also the preferred way to fix regexes.
These are perhaps the only correlations between bug-fix types and bug types that are
observable in our benchmark.
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Table 5.7: Taxonomy and bug-fixing types

AS CF IF JS LP MC MD None SQ SW TY

incomplete feature implementation
configuration processing 1 0 9 1 0 2 1 1 1 0 0

missing type check 1 0 0 0 0 1 0 0 0 0 0
error handling 1 0 12 1 0 3 4 3 1 0 1

callbacks 1 0 4 0 0 2 0 0 1 0 0
incomplete data processing 4 2 9 1 0 11 7 3 1 1 0
incomplete output message 0 0 1 0 0 3 0 0 0 0 0
missing input validation 29 8 53 4 1 11 22 2 2 2 0

empty input parameters 1 0 3 0 0 1 0 0 1 0 0
missing handling of spaces 2 0 2 1 0 1 2 0 0 0 0
missing handling of special characters 6 0 5 1 0 1 0 0 0 0 0
missing null check 0 0 5 2 0 0 0 0 0 0 0
missing type check 18 2 39 2 1 10 10 2 1 1 0

incorrect feature implementation
configuration processing 5 0 3 1 1 2 1 3 0 0 0
incorrect data processing 24 2 39 5 1 27 13 3 9 1 0

incorrect initialization 5 0 0 0 0 4 0 3 5 0 0
incorrect type comparison 0 0 1 0 0 0 0 0 0 0 0

incorrect filepath 4 0 4 2 0 4 1 0 2 0 0
incorrect handling of regex expressions 13 0 4 0 0 6 3 0 0 0 0
incorrect input validation 25 1 56 12 0 27 15 2 4 1 0

empty input parameters 0 0 1 0 0 0 0 1 0 0 0
incorrect handling of special characters 9 0 7 0 1 12 9 1 3 0 0
unnecessary type check 5 0 7 0 0 0 2 0 0 0 0

incorrect output 1 0 0 3 0 5 0 1 0 0 0
incorrect output message 2 2 8 1 0 10 2 3 0 0 0

performance 1 0 5 0 0 1 0 0 7 0 0

generic
data processing 1 0 1 2 0 2 0 1 1 0 0
loop statement

incorrect loop statement 0 0 0 0 0 0 0 1 0 0 0
missing type conversion 2 0 1 0 0 0 0 0 1 0 0
return statement

incorrect return statement 0 0 0 0 0 1 0 0 0 0 0
missing return statement 0 0 1 0 0 0 0 2 0 0 0

typo 1 0 2 0 0 2 1 0 0 0 0
variable initialization

incorrect variable initialization 3 1 0 0 0 0 0 0 0 0 0
missing variable initialization 0 4 0 5 0 2 0 0 2 0 0

perfective maintenance 1 0 9 1 0 1 1 0 0 0 0

5.4 Discussion
Our results might drive devising novel software analysis and repair techniques for
JavaScript, with BugsJS being a suitable real-world bug benchmark for their eval-
uation, as well as inform developers of the most error-prone constructs.

In the rest of this section, we discuss some of the potential uses of our taxonomy,
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together with possible use cases of our benchmark in supporting empirical studies in
software analysis and testing, as well as its limitations, and the threats to validity of
our study.

5.4.1 Directing Developer Efforts
Improving manual repair processes

In the absence of automated program repair techniques, knowledge about the causes of
bugs could help developers manually fix programs, both by increasing their awareness
of bug causes, and helping them prioritize the inspection of possible causes based on
the relative importance of such causes in our taxonomy.

Avoiding bugs

Bug avoidance pertains to cases in which programmers are provided with information
to assist them in avoiding bugs, and it is up to them to choose what information to
utilize and how. One way to promote bug avoidance involves educating developers
and maintainers of JavaScript applications as to the causes and probabilities of bugs.
Such education could be supported by the information present in our taxonomy and
the data that underlie it. First, consider code change activities. We observed that
many of the bugs involving missing type checks resulted from simple code changes, i.e.,
missing an IF-condition in a statement. Second, consider code creation tasks. When
creating new code, programmers can enforce the practice of adding input validation as
a must-do of their daily activities. Finally, consider test case creation. Testers can use
our taxonomy to focus their test case creation to avoid the most bug-prone categories.

Preventing bugs

Bug prevention, in contrast to bug avoidance, involves the use of automated approaches
for ensuring that bugs do not occur, even though humans might be included in the
feedback loop. For example, programmers may take advantage of tools like checkers
and linting tools that enable static and dynamic analysis automatically [74], and our
taxonomy could help improve on certain constructs that are particularly challenging
for developers.

IDE enhancements

Another class of bug prevention approaches involves improvements in web program-
ming and testing IDEs. Analysis techniques that operate concurrently with program
development and maintenance may be quite effective, and such techniques could also be
guided by our taxonomy. Modern IDEs for code development typically employ such ap-
proaches: as programmers edit, they point out problems or provide useful information
based on the programmers’ actions. JavaScript application development IDEs employ
such approaches also, but to our knowledge, no such IDEs also build in assistance re-
lated to testing efforts. Such IDEs could aid in bug avoidance by alerting developers
to possible effects or bad practices and letting them choose whether or not to act on
them. They could aid in prevention by prohibiting certain actions or by recommending
the creation of constructs. Let us take as an example the return-statement-related is-
sues. Our taxonomy highlighted that developers often fix bugs by changing the return
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statement. Thus, IDEs can be improved with new data flow testing techniques that
check that JavaScript objects’ states are preserved during the execution before they are
returned, or that inform a change-impact analysis technique to show how the change
to an object affects the final output.

5.4.2 Limitations
In the JavaScript ecosystem, the presence of numerous implementations, standards,
and testing frameworks poses significant technical obstacles in creating a uniform bug
infrastructure. Similarly, choosing Mocha as a reference testing framework presented
its own challenges. BugsJS only comprises server-side JavaScript applications created
using the Node.js framework, and it does not currently support evaluating client-side
programs. This limitation and bias for experiments using BugsJS is worth noting,
and we are considering expanding the benchmark in the future to accommodate other
environments. However, due to the unique features of the JavaScript ecosystem, we do
not anticipate fully covering the numerous execution environments. Nevertheless, all
the subjects included in BugsJS have previously been employed in at least one study
on bugs.

5.4.3 Threats to Validity
The main threat to the internal validity of this work is the possibility of introducing
bias when selecting and classifying the surveyed papers and the bugs included in the
benchmark.

Our paper selection was driven by the keywords related to software analysis and
testing for JavaScript. We may have missed relevant studies that are not captured
by our list of terms. We mitigate this threat by performing an issue-by-issue, manual
search in the major software engineering conference proceedings and journals, followed
by a snowballing process. We, however, cannot claim that our survey captures all
relevant literature; yet, we are confident that the included papers cover the major
related studies.

Concerning the bugs, we manually classified all candidate bugs into different cate-
gories (Section 5.1.3), and the retained bugs into categories pertaining to existing bug
and fix taxonomies (Section 5.3.1). To minimize classification errors, multiple authors
simultaneously analyzed the source code and performed the classifications individually,
and disagreements were resolved by further discussions among the authors. Concern-
ing the bug classification for taxonomy construction, the first four authors classified
the bugs manually. This task, however, requires reasoning that cannot be automated,
so it is difficult to envision less threat-prone approaches. To reduce the subjectivity
involved in the task, the authors followed a systematic and structured procedure, with
multiple interactions.

Threats to external validity concern the generalization of our findings. We, by
no means, claim that our benchmark represents all relevant web apps. We selected
only 10 applications and our bugs may not generalize to different projects. Also,
other relevant classes of bugs might be unrepresented or underrepresented within our
benchmark, which is to date quite overfitted towards ESLint, i.e., the most represented
project. Nevertheless, we tried to mitigate this threat by selecting applications with
different sizes and pertaining to different domains. We hope that our framework will
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provide an entry point and a reference for future improvements as other subject systems
are necessary to fully confirm the generalizability of our results, and corroborate our
findings.

Another generalization threat concerns our taxonomy. Taxonomies are conceptual
maps derived from empirical observations; as such, they typically evolve as additional
observations of the world are made. We expect the same to be true of our taxonomy,
and thus, it is not necessarily the case that any attempt to apply the taxonomy to sub-
sequent programs will allow every type of bug in those applications to be categorized.
In such cases, the taxonomy will require adjustments. This work attempts to reduce
this threat by applying a validation phase to our initial taxonomy.

With respect to the reproducibility of our results, all classifications, subjects, and
experimental data are available online, making the analysis reproducible.

5.5 Summary
In this chapter, we presented BugsJS, a benchmark of 453 real, manually-verified
JavaScript bugs from 10 popular programs. Our investigation included both quanti-
tative and qualitative analyses, with a particular focus on grouping the bugs into a
dedicated taxonomy. Our research showed a wide range of bugs that BugsJS encom-
passes, and it can serve as a reliable benchmark for conducting reproducible research in
software analysis and testing. It can be utilized in various areas of research, including
regression testing, bug prediction, and fault localization. Additionally, a flexible frame-
work has been implemented in BugsJS, enabling researchers to automate the process
of examining specific revisions of the source code, executing tests, and producing test
coverage reports.

We intend to broaden the dataset by incorporating other JavaScript testing frame-
works, and our long-term objective is to encompass client-side JavaScript web applica-
tions in BugsJS as well.
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“Science can amuse and fascinate us all, but it
is engineering that changes the world.”

— Isaac Asimov

6
Conclusions

In this thesis, we discussed the studies we conducted in the area of bug databases.
We showed that previous datasets created using traditional approaches contain un-

certainties. Therefore, we developed a novel method to capture the before-fix and
after-fix states of buggy source code elements, resulting in a dataset with reduced un-
certainties. We carried out empirical evaluations and found that this dataset can be
useful for bug prediction. We also conducted an experiment to compare the bug pre-
diction capabilities of method-level metrics projected to the class level with those of
class-level metrics. Our findings indicate that projecting method-level metrics to the
class level enhances their predictive power for bug prediction.

Despite previous studies showing that process metrics outperform product metrics
in bug prediction, the use of process metrics is not widespread, and there is a scarcity
of research on process metrics. To address this, we developed a method to efficiently
compute process metrics for files, classes, and methods using a graph database. We
confirmed that bug databases with process metrics are suitable for bug prediction. We
also compared process and product metrics and found that the use of process metrics in
bug prediction yields more stable results. Moreover, process metrics provide a different
perspective on characterizing source code elements compared to product metrics.

Lastly, we created a benchmark of real, manually-verified JavaScript bugs, along
with a framework to automate research processes. We analyzed the bugs included in
the benchmark and found that most have fixes that fall into existing bug-fixing patterns.
We also created a bug taxonomy and investigated whether this categorization relates
to bug-fixing patterns. This benchmark serves as a reliable source for conducting
reproducible research in software analysis and testing.

Future Work
In addition to the future work discussed in the summaries of each chapter, we plan
to combine these studies. Given the unique perspective with which process metrics
characterize source code elements, utilizing them as predictors for bug prediction on
a database created through our novel method would make for an interesting study.
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Furthermore, employing bug prediction techniques using our JavaScript benchmark
would present an outstanding opportunity for experimentation, although a challenging
one due to the dynamic nature of the JavaScript language.

Epilogue
This research journey has been immensely enriching for me. Throughout this process,
I have acquired valuable skills that will accompany me throughout my life. From
conducting comprehensive reviews of existing literature to meticulously documenting
the research process and presenting the results, each step has contributed to my growth.
Obtaining a PhD is not the ultimate goal, but rather a stepping stone towards a
lifelong pursuit of knowledge and opportunities. Whether I am engaged in academic
research, working at an IT company, or venturing into new business endeavors, I will
be committed to giving my best.

While I have always been attentive to the details when writing code, my experience
in researching software bugs has increased my awareness of their impact. As a result,
I can confidently say that I will never look at programming the same way again.
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A
Summary in English

Despite the assistance provided by various integrated development environments, pro-
grammers often make mistakes, which can lead to bugs. Therefore, it is crucial to
acquire more advanced tools that facilitate the automatic detection of errors. The
research conducted for this thesis focuses on enhancing the precision of software bug
prediction. This involves gaining a better understanding of the bug occurrence patterns
and effectively characterizing them.

The research studies are organized into three thesis points. In the first thesis point,
we discuss a novel method for constructing a bug database. This method aims to provide
a more precise repository of bugs. In the second thesis point, we compare the predictive
power of product metrics with that of process metrics. The objective is to determine
which set of metrics holds greater potential for accurately predicting software bugs. In
the third thesis point, we present a benchmark of JavaScript bugs and conduct detailed
analyses of these bugs. This analysis contributes to the overall understanding of bug
patterns and assists in the development of more effective bug detection techniques.

Overall, these thesis points form the core of our research, enabling us to advance
the field of software bug prediction and mitigation.

I. A Novel Bug Prediction Dataset and its Validation
The contributions of this thesis point are discussed in Chapter 3.
Previously published datasets have followed a conventional approach to creating
benchmark datasets for testing bug prediction techniques. These datasets typ-
ically include all code elements, both faulty and non-faulty, from one or more
versions of the analyzed system. In this thesis point, we introduce a new ap-
proach that focuses on collecting snapshots of source code elements affected by
bugs, along with their characteristics, before and after the bugs were fixed. This
approach excludes code elements that were not impacted by bugs. By utilizing
this kind of dataset, we can effectively capture the changes in software product
metrics during bug fixes. This enables us to examine the differences in source code
metrics between faulty and non-faulty code elements and gain valuable insights.
To conduct our analysis, we selected 15 open-source projects from GitHub and

107



A. Appendix. Summary in English

considered all reported bugs from their bug tracking systems. We constructed
databases at three source code levels: file, class, and method. Using 11 machine
learning algorithms, we built prediction models and demonstrated the dataset’s
potential for bug prediction and further investigations. Our findings indicate that
creating bug prediction models at the method level yields better results compared
to the file and class levels when considering the complete dataset. We also ob-
served variations in F-measure values across different projects, supporting our hy-
pothesis that not all projects provide suitable training sets. However, we achieved
promising F-measure values for individual projects, reaching up to 0.7573 at the
method level, 0.7400 at the class level, and 0.7741 at the file level. Further-
more, we conducted a novel experiment comparing the predictive capabilities of
method-level metrics when projected to the class level against the class-level met-
rics themselves. The results revealed a significant improvement in the prediction
accuracy when using the method-level metrics projected to the class level. These
findings contribute to the advancement of bug prediction techniques and demon-
strate the potential of our dataset as a valuable resource for future research in
this field.
The Author’s Contributions
The author has made several significant contributions to this research. Firstly,
he designed and implemented the novel method presented for constructing bug
databases. Additionally, he actively participated in the literature review and the
process of defining criteria for the inclusion of projects in the BugHunter dataset.
The author was responsible for executing the method, constructing the dataset,
and gathering all the statistics related to the projects. Lastly, the author took a
leading role in producing and analyzing the results obtained from the machine
learning techniques utilized in this study. The publications related to this thesis
point are:

♦ Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Rudolf Ferenc. Charac-
terization of Source Code Defects by Data Mining Conducted on GitHub.
In 15th International Conference on Computational Science and Its Applica-
tions (ICCSA 2015), Banff, AB, Canada, June 22–25, pages 47–62, LNCS,
Volume 9159. Springer International Publishing, 2015.

♦ Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A Public Bug Database of
GitHub Projects and its Application in Bug Prediction. In 16th International
Conference on Computational Science and Its Applications (ICCSA 2016),
Beijing, China, July 4–7, pages 625–638, LNCS, Volume 9789. Springer In-
ternational Publishing, 2016.

♦ Rudolf Ferenc, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor
Gyimóthy. An Automatically Created Novel Bug Dataset and its Validation
in Bug Prediction. Journal of Systems and Software, 2020, 169: 110691.

II. Calculation of Process Metrics and their Bug Prediction Capabilities
The contributions of this thesis point are discussed in Chapter 4.
Studies have shown that process metrics outperform product metrics in bug
prediction. However, the use of process metrics remains limited, and there is
a scarcity of research in this area. Therefore, in this thesis point, we aim to
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address these gaps by presenting an effective method for computing a variety
of software process metrics. To accomplish this, we leverage graph technologies,
specifically utilizing the widely-used Neo4j graph database. We implemented the
calculation of 22 process metrics for files, classes, and methods, along with the
corresponding bug counts. To evaluate the effectiveness of process metrics, we
selected five open-source Java projects from GitHub and generated databases for
5 release versions of each project. Subsequently, we applied 11 machine learning
algorithms to construct prediction models, confirming that a bug database incor-
porating process metrics is indeed suitable for bug prediction. Notably, based on
the F-measure values, we observed that tree-based methods consistently outper-
formed others, with the RandomForest method displaying the best performance
across all cases. Additionally, we conducted a comparative analysis with product
metrics and observed that the utilization of process metrics in bug prediction
yielded more robust results. Moreover, process metrics offer a different perspec-
tive on characterizing source code elements compared to product metrics, further
enhancing their value in this context.
The Author’s Contributions
This study is the author’s independent work. He reviewed the literature, designed
the methodology, and implemented the necessary tools. Subsequently, he gener-
ated the bug databases containing process metrics, conducted the evaluations,
and drew conclusions. The publications related to this thesis point are:

♦ Péter Gyimesi. Automatic Calculation of Process Metrics and their Bug
Prediction Capabilities. In Acta Cybernetica, pages 537–559, Volume 23,
No 2, 2017.

♦ Péter Gyimesi. An open-source solution for automatic bug database cre-
ation. In Proceedings of the 10th International Conference on Applied Infor-
matics (ICAI 2017), Eger, Hungary, January 30–February 1, pages 111–119,
2017.

III. A Public Dataset of JavaScript Bugs
The contributions of this thesis point are discussed in Chapter 5.
Despite the extensive research on JavaScript (JS), a well-organized repository of
labeled JS bugs was still missing. The presence of numerous JS implementations
further complicated the task of creating a cohesive bugs benchmark. To address
this gap, in this thesis point, we introduced a benchmark comprising a total of 453
manually selected and validated JS-related bugs from 10 open-source JS projects.
Additionally, we have developed a framework to automate research processes uti-
lizing our benchmark. We conducted an investigation to determine whether the
bug-fixing patterns for JS bugs align with existing classification schemes. Inter-
estingly, we found that a majority of the bugs in our dataset fit into existing
bug-fixing patterns. Notably, we discovered that the same three categories were
also prevalent in Java code. Furthermore, we identified three JS-specific recur-
ring patterns. By conducting both quantitative and qualitative analyses on the
bugs, we constructed a taxonomy of JS bugs present in the benchmark. We also
explored the relationship between this categorization and bug-fixing patterns.
Our analysis revealed that the most common bug-fix types in the benchmark
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are if-related fixes (291), followed by assignment-related fixes (166), and method
call-related fixes (152). In the taxonomy, the most prominent bug categories are
identified as missing input validation, incorrect input validation, and incorrect
data processing. Another notable finding is that assignment-related fixes are fre-
quently used to fix regexes. This comprehensive analysis demonstrates that the
dataset encompasses a wide range of bugs and can serve as a reliable benchmark
for conducting reproducible research in software analysis and testing.
The Author’s Contributions
During this research, the author actively participated in designing the research
plan and implementing the framework, which included the benchmark. He was
responsible for collecting and analyzing JavaScript projects, selecting suitable
bugs, and extracting relevant bug fixes. Additionally, he took part in manually
validating the bugs. Throughout the analysis of the bugs, the author actively
contributed to examining bug-fixing patterns, as well as creating and validating
the bug taxonomy. Finally, the author took a leading role in analyzing the corre-
lation between the bug taxonomy and the bug-fixing patterns. The publications
related to this thesis point are:

♦ Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpád
Beszédes, Rudolf Ferenc and Ali Mesbah. BugsJS: A Benchmark of JavaScript
Bugs. In 12th IEEE Conference on Software Testing, Validation and Verifi-
cation (IEEE ICST 2019), Xi’an, China, April 22–27, pages 90–101, IEEE,
Volume 1. IEEE Computer Society Press, 2019.

♦ Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpád
Beszédes, Rudolf Ferenc and Ali Mesbah. BugsJS: A Benchmark and Tax-
onomy of JavaScript Bugs. Journal of Software Testing, Verification and
Reliability (STVR 2021), John Wiley & Sons Publishing. 38 pages.

♦ Béla Vancsics, Péter Gyimesi, Andrea Stocco, Davood Mazinanian, Arpád
Beszédes, Rudolf Ferenc and Ali Mesbah. Poster: Supporting JavaScript Ex-
perimentation with BugsJS. In 12th IEEE Conference on Software Testing,
Validation and Verification (IEEE ICST 2019), Poster Track, Xi’an, China,
April 22–27, pages 375–378, IEEE, Volume 1. IEEE Computer Society Press,
2019.

Table A.1 summarizes the main publications and how they relate to our thesis points.

№ [4] [7] [1] [2] [3] [5] [6] [8]
I. ♦ ♦ ♦

II. ♦ ♦

III. ♦ ♦ ♦

Table A.1: Thesis contributions and supporting publications
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B
Magyar nyelvű összefoglaló

Annak ellenére, hogy a különböző integrált fejlesztői környezetek számos támogatást
nyújtanak, a programozók gyakran hibáznak, amely szoftverhibákhoz vezethet. Ebből
kifolyólag lényeges, hogy a hibák automatikus felismerését megkönnyítő, minél jobb esz-
közök álljanak rendelkezésre. A jelen disszertációt megalapozó kutatás a szoftverhibák
pontosabb előrejelzésének javítását hivatott elősegíteni a hibák előfordulási mintázatait
és a hibás kódrészek jellemzőit vizsgálva.

A kutatási eredményeinket három tézispontba szervezve taglaljuk. Az első tézispont-
ban bemutatunk egy új elméleti módszert hibaadatbázisok létrehozására, melynek célja,
hogy pontosabb, kevesebb bizonytalanságot tartalmazó adatbázist kapjunk. A máso-
dik tézispontban a hibás kódrészek jellemzőit vizsgáljuk úgy, hogy összehasonlítjuk a
termékmetrikák hiba-előrejelző képességét a folyamatmetrikákéval abból a célból, hogy
meghatározzuk, melyik metrikahalmaz rendelkezik nagyobb potenciállal a szoftverhi-
bák pontosabb előrejelzésére. A harmadik tézispontban bemutatunk egy JavaScript
hibákat tartalmazó adathalmazt, és részletes elemzéseket végzünk a benne található
hibákról. Ezzel hozzájárulunk a gyakori JavaScript hibamintázatok feltárásához, előse-
gítve a hatékonyabb hibafelismerő technikák kidolgozását.

Ezek a tézispontok képezik a kutatásunk középpontját, lehetővé téve a szoftverhibák
előrejelzésének területén történő előrelépést.

I. Újszerű predikciós hibaadatbázis és kiértékelése
Az ide tartozó kutatási eredményeket a 3. fejezet tárgyalja.
Az eddig publikált hiba adatbázisok hagyományos megközelítést alkalmazva ke-
rültek létrehozásra. Ezeket az adatbázisokat a különféle hiba-előrejelzési techni-
kák tesztelése céljából hozták létre. Egy hagyományos módon előállított adat-
halmaz tartalmazza az összes kódelemet, hibásat és hibamenteset egyaránt, az
elemzett rendszer egy vagy több verziójából. Ebben a tézispontban egy új mód-
szert mutatunk be hiba adatbázisok előállítására, amely a hibával érintett forrás-
kódelemek pillanatképeinek gyűjtésére összpontosít. Ezen pillanatképek a hibák
javítása előtti és utáni állapotát reprezentálják. A módszer nem veszi figyelem-
be azokat a kódelemeket, amelyeket nem érintett hiba. Az így előállított újszerű
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adathalmazzal hatékonyan vizsgálhatjuk a forráskódmetrikák változásait a hiba-
javítások során. Az újszerű adatbázis kiértékeléséhez 15 nyílt forráskódú projektet
választottunk ki a GitHub-ról, és feldolgoztuk az összes bejelentett hibát. Három
forráskódszinten hoztunk létre adatbázisokat: fájl, osztály és metódus. Ezután
11 gépi tanulási algoritmust felhasználva előrejelző modelleket építettünk, és be-
mutattuk az adathalmaz potenciálját a hibaelőrejelzés terén. Eredményeink azt
mutatják, hogy a metódusszintű hibaelőrejelzési modellek jobb eredményeket hoz-
nak a fájl és az osztály szintekhez képest. Továbbá a különböző projekteken elért
F-measure értékek közötti eltérések alátámasztják azon hipotézisünket, miszerint
nem minden projekt nyújt megfelelő tanulási halmazt. Ígéretes F-measure érté-
keket értünk el bizonyos projektek esetén, elérve akár 0,7573-at metódusszinten,
0,7400-t osztályszinten és 0,7741-et fájlszinten. Emellett egy újszerű kísérletet is
végrehajtottunk, ahol összehasonlítottuk a metódusszintű metrikák osztályszintre
vetített hiba-előrejelző képességét az osztályszintű metrikák hiba-előrejelző képes-
ségével. Azt tapasztaltuk, hogy ezt a technikát alkalmazva jelentős javulás érhető
el a predikció pontosságában. Összességében, az elért eredmények tekintetében
kimondható, hogy kutatásunkkal hozzájárultunk a hiba-előrejelzési technikák fej-
lődéséhez, illetve bemutattuk az adathalmazunk potenciálját a jövőbeli kutatások
számára ezen a területen.
A szerző hozzájárulása
A szerző számos hozzájárulást tett a kutatás során. Először is, ő tervezte meg az
elvi alapjait a bemutatott újszerű hiba adatbázis építő módszernek. Továbbá a
módszer implementációjában is jelentős szerepet vállalt. Ezen felül aktívan részt
vett a szakirodalom áttekintésében és a projektkiválasztási kritériumok megha-
tározásában. A szerző volt felelős a módszer futtatásáért, az adathalmazok létre-
hozásáért és a projektekkel kapcsolatos összes statisztika előállításáért. A szerző
ugyancsak jelentős szerepet vállalt a gépi tanulási technikákkal elért eredmények
előállításában és elemzésében. A tézispont a következő publikációkra épül:

♦ Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Rudolf Ferenc. Charac-
terization of Source Code Defects by Data Mining Conducted on GitHub.
In 15th International Conference on Computational Science and Its Applica-
tions (ICCSA 2015), Banff, AB, Canada, June 22–25, pages 47–62, LNCS,
Volume 9159. Springer International Publishing, 2015.

♦ Zoltán Tóth, Péter Gyimesi, and Rudolf Ferenc. A Public Bug Database
of GitHub Projects and its Application in Bug Prediction. In 16th Interna-
tional Conference on Computational Science and Its Applications (ICCSA
2016), Beijing, China, July 4–7, pages 625–638, LNCS, Volume 9789. Sprin-
ger International Publishing, 2016.

♦ Rudolf Ferenc, Péter Gyimesi, Gábor Gyimesi, Zoltán Tóth, and Tibor
Gyimóthy. An Automatically Created Novel Bug Dataset and its Validation
in Bug Prediction. Journal of Systems and Software, 2020, 169: 110691.

II. Folyamatmetrikák számítása és hiba-előrejelző képességük
Az ide tartozó kutatási eredményeket a 4. fejezet tárgyalja.
Korábbi kutatások kimutatták, hogy a folyamatmetrikákkal jobb eredmény ér-
hető el a hiba-előrejelzésben, mint a termékmetrikákkal. Azonban a folyamat-
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metrikák használata továbbra sem terjedt el széles körben, és viszonylag kevés
kutatás történt ezen a területen. A jelen tézispontban ezt a hiányosságot céloz-
tuk meg orvosolni azáltal, hogy egy hatékony módszert mutatunk be különböző
folyamatmetrikák számítására. Ennek elérésére gráf technológiákat hívunk segít-
ségül, egészen pontosan a széles körben elterjedt Neo4j gráf adatbázist használjuk.
Megvalósítottuk a kalkulációját 22 folyamatmetrikának, illetve ugyanezt a mód-
szert alkalmazva, a hibás forráskódelemek meghatározását. Ezen számításokat
három forráskódszinten végezzük: fájl, osztály és metódus. A folyamatmetrikák
hiba-előrejelző hatékonyságának vizsgálatához 5 nyílt forráskódú Java projektet
választottunk ki a GitHub-ról, és hiba adatbázisokat hoztunk létre mindegyik
projekt 5 verziójához. Ezután 11 gépi tanulási algoritmust alkalmaztunk predik-
ciós modellek létrehozásához, amelyek megerősítették, hogy egy folyamatmetri-
kákat tartalmazó hiba adatbázis valóban alkalmas a hiba-előrejelzésre. A kapott
F-measure értékek alapján azt tapasztaltuk, hogy a fa alapú gépi tanulási algo-
ritmusok következetesen jobb eredményeket értek el a többihez képest, a Ran-
domForest módszer pedig a legjobb teljesítményt hozta minden esetben. Emel-
lett összehasonlító elemzést végeztünk a termékmetrikákkal, és azt az eredményt
kaptuk, hogy bár a folyamatmetrikák használata a hiba-előrejelzésben nem min-
den esetben hoz javulást, de a kapott eredmények robusztusabbak, stabilabbak.
Ezenkívül tovább növeli a folyamatmetrikák értékét az, hogy alacsony a korre-
lációjuk a termékmetrikákkal, tehát más nézőpontot kínálnak a forráskódelemek
jellemzésére a termékmetrikákhoz képest.
A szerző hozzájárulása
Ez a tanulmány a szerző önálló munkája. Áttekintette a szakirodalmat, megter-
vezte a módszert és implementálta a szükséges eszközöket. Ezt követően előál-
lította a folyamatmetrikákat tartalmazó hiba adatbázisokat, majd elvégezte a
kiértékeléseket és levonta a következtetéseket. A tézispont a következő publikáci-
ókra épül:

♦ Péter Gyimesi. Automatic Calculation of Process Metrics and their Bug
Prediction Capabilities. In Acta Cybernetica, pages 537–559, Volume 23,
No 2, 2017.

♦ Péter Gyimesi. An open-source solution for automatic bug database cre-
ation. In Proceedings of the 10th International Conference on Applied Infor-
matics (ICAI 2017), Eger, Hungary, January 30–February 1, pages 111–119,
2017.

III. Publikus JavaScript hibaadatbázis
Az ide tartozó kutatási eredményeket az 5. fejezet tárgyalja.
Annak ellenére, hogy rengeteg kutatás történt a JavaScript (JS) területén, még
mindig hiányzik egy címkézett JS hibákat tartalmazó adathalmaz. A sok JS imp-
lementáció tovább nehezíti egy egységes, jól szervezett adatbázis létrehozását.
Ezen hiányosságokat orvosolva ebben a tézispontban bemutatunk egy új adat-
halmazt, amelybe összesen 453 manuálisan validált JS hibát választottunk be 10
nyílt forráskódú JS projektből. Emellett létrehoztunk egy keretrendszert az adat-
halmazunkon alapuló kutatási folyamatok automatizálására. Ezután vizsgálatot
végeztünk annak megállapítására, hogy a JS hibák javítási mintái egyeznek-e
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a meglévő osztályozási rendszerekkel. Érdekes módon arra az eredményre ju-
tottunk, hogy az adathalmazban található hibák nagy része illeszkedik a már
meglévő javítási mintákhoz. Nevezetesen, ugyanaz a három kategória a leggyako-
ribb a Java kódokban is. Ezenkívül azonosítottunk három JS-specifikus ismétlődő
mintát. A hibákon végzett kvantitatív és kvalitatív elemzések segítségével létre-
hoztunk egy JS hibataxonómiát, amely szintén része az adathalmaznak. Ezenkí-
vül vizsgáltuk a kapcsolatot ezen kategorizáció és a hibajavítási minták között.
Elemzésünk azt mutatta, hogy az adathalmazban a leggyakoribb hibajavítási tí-
pusok az if feltételekkel kapcsolatos (291), az értékadással kapcsolatos (166) és a
metódushívással kapcsolatos (152) minták. A taxonómiában a legjelentősebb hi-
bakategóriák az input validáció hiánya, a helytelen input validáció és a helytelen
adatfeldolgozás. Egy másik jelentős megállapítás, hogy az értékadással kapcsola-
tos hibajavítási minták gyakran használatosak a reguláris kifejezések javítására.
Ez az átfogó elemzés bizonyítja, hogy az adatbázisunk változatos hibákat tartal-
maz, és megbízható forrása lehet szoftverelemzéssel és -teszteléssel kapcsolatos,
reprodukálható kutatásoknak.
A szerző hozzájárulása
A kutatás során a szerző aktívan részt vett a kutatási terv kialakításában és a ke-
retrendszer implementálásában, amely magában foglalta az adathalmazt. Felelős
volt a JavaScript projektek gyűjtéséért és elemzéséért, megfelelő hibák kiválasz-
tásáért, valamint releváns hibajavítások kinyeréséért. Emellett részt vett a hibák
kézi validálásában. A hibák elemzése során a szerző aktívan hozzájárult a hibaja-
vítási minták vizsgálatához, valamint a hibataxonómia létrehozásához és validá-
lásához. Végül a szerző vezető szerepet vállalt a hibataxonómia és a hibajavítási
minták közötti összefüggés elemzésében. A tézispont a következő publikációkra
épül:

♦ Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Ar-
pád Beszédes, Rudolf Ferenc and Ali Mesbah. BugsJS: A Benchmark of
JavaScript Bugs. In 12th IEEE Conference on Software Testing, Validati-
on and Verification (IEEE ICST 2019), Xi’an, China, April 22–27, pages
90–101, IEEE, Volume 1. IEEE Computer Society Press, 2019.

♦ Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Ar-
pád Beszédes, Rudolf Ferenc and Ali Mesbah. BugsJS: A Benchmark and
Taxonomy of JavaScript Bugs. Journal of Software Testing, Verification and
Reliability (STVR 2021), John Wiley & Sons Publishing. 38 pages.

♦ Béla Vancsics, Péter Gyimesi, Andrea Stocco, Davood Mazinanian, Arpád
Beszédes, Rudolf Ferenc and Ali Mesbah. Poster: Supporting JavaScript Ex-
perimentation with BugsJS. In 12th IEEE Conference on Software Testing,
Validation and Verification (IEEE ICST 2019), Poster Track, Xi’an, Chi-
na, April 22–27, pages 375–378, IEEE, Volume 1. IEEE Computer Society
Press, 2019.

A tézispontokhoz tartozó publikációkat a B.1. táblázat foglalja össze.
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B. Appendix. Magyar nyelvű összefoglaló

№ [4] [7] [1] [2] [3] [5] [6] [8]
I. ♦ ♦ ♦

II. ♦ ♦

III. ♦ ♦ ♦

B.1. táblázat. A tézispontokhoz kapcsolódó publikációk
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