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INTRODUCTION

Methodological breakthroughs in sequencing technologies have revolutionized transcriptome
profiling in recent years. Currently, the next-generation short-read sequencing (SRS) and third-
generation long-read sequencing (LRS) platforms are widely used in genome and transcriptome
research. SRS can generate large numbers of sequencing reads with unprecedented speed; however,
it cannot sufficiently cover high-complexity transcriptomes. LRS produces lower data coverage with
a higher error rate, but it can overcome many of the drawbacks of SRS, including the inefficiency in
distinguishing between transcription isoforms and identifying embedded and long transcripts. The
combined use of these platforms and library preparation chemistries can generate high-quality and
throughput data on full-length transcripts. LRS has been applied for the assembly of transcriptomic
maps in several organisms (Sharon et al., 2013; Tilgner et al., 2015; Sessegolo et al., 2019; Yin et al.,
2019; Zhao et al., 2019; Roach et al., 2020), including viruses (Tombácz et al., 2016, 2019; Balázs
et al., 2017; Moldován et al., 2017; Prazsák et al., 2018; Depledge et al., 2019; O’Grady et al., 2019).

African swine fever is a highly lethal animal disease affecting pigs and wild boars. The causative
agent of this disease is the large, double-stranded DNA virus, the African swine fever virus (ASFV),
the only member of the Asfarviridae family (Mazur-Panasiuk et al., 2019). Because no effective
vaccination is currently available against the virus, it is unarguably the largest economic threat
to the global pig industry. The ASFV genome is 190 kbp long and contains more than 190 open
reading frames (ORFs), although the exact numbers of genes and proteins are unknown (Alejo
et al., 2018). Approximately 20 viral genes are believed to participate in transcription and mRNA
processing (Rodríguez and Salas, 2013), whereas at least 17 genes play a role in the replication,
repair, and modification of DNA (Yáñez et al., 1995; Dixon et al., 2013). Depending on the strain,
∼30–50 genes are involved in the evasion of immune surveillance and in encoding virulence and
host range factors (Chapman et al., 2008).

The temporal regulation of ASFV gene expression appears to be similar to that in
poxviruses (Yáñez et al., 1995; Broyles, 2003; Chapman et al., 2008), in which four
kinetic classes of genes have been described. The expression of immediate early and
early genes precedes DNA replication, whereas the intermediate and late genes are
generated subsequently to the onset of DNA replication (Rodríguez and Salas, 2013). The
genome-wide ASFV transcriptome has recently been characterized by the Illumina SRS
approach (Cackett et al., 2020). ASFV mRNAs have 5′ cap structures and 3′ poly(A)
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tails added by the viral capping enzyme complex and the poly(A)
polymerase, respectively (Salas et al., 1986). ASFV replicates
relatively well in porcine primary alveolar macrophages (PAMs)
in vitro, although the sensitivity of naïve PAM culture to ASFV
infection varies batch by batch (Olasz et al., 2019).

To provide a detailed transcription map about the
transcription dynamics of the virus, we performed multiplatform
sequencing using both SRS and LRS techniques. The presented
dataset represent a key resource for studying the ASFV
transcriptome at different time points after infection, and of the
effect of infection on the host gene expression.

Regarding the SRS approach, the MiSeq instrument
(Illumina) was used (Supplementary Figure 1 shows the
coverage depth), whereas we applied the MinION portable
sequencer from Oxford Nanopore Technologies (ONT) for
full-length sequencing. The random-primed SRS library was
run on a single MiSeq v3 flow cell, whereas three different ONT
libraries [direct RNA sequencing (dRNA-Seq), direct cDNA
sequencing (dcDNA-Seq) and amplified cDNA sequencing)
were sequenced on three individual flow cells. Altogether the
three LRS experiments resulted in 20,021,413 sequencing reads
(Supplementary Table 1), of which 139,711 aligned to the viral
genome (MN715134.1). The longest average read length was
obtained using the dcDNA technique (1,299 bp). The average
length for the amplified approach ranged between 598 and
1,017 bp, whereas the dRNA-Seq resulted in an average read
length of 953 bp (Supplementary Table 1). More details about
the length and quality of sequencing reads are presented in
Supplementary Table 1 and Figure 1. The quality data from
Illumina sequencing is presented in Supplementary Table 2.

METHODS

The experimental design utilized in this study is
shown in Figure 2. The applied reagents are listed in
Supplementary Table 3.

Cells and Viruses
Fresh swine pulmonary macrophage (PAM) cells were harvested
following the OIEManual’s instructions (Office International des
Epizooties (OIE), 2019). The cells were grown in RPMI 1640
containing L-glutamine (Lonza) medium supplemented with
10% fetal bovine serum (Euro Clone), 1% Na-pyruvate (Lonza),
1% antibiotic-antimycotic solution (Thermo Fisher Scientific),
and 1% non-essential amino acid solution (Lonza) at 37◦C
in a humidified atmosphere containing 5% CO2. The highly
virulent Hungarian ASFV isolate ASFV_HU_2018 (ID Number:
MN715134) was used for infection. The infectious titer of the
serially diluted viral stock was calculated in PAMs using an
immunofluorescence (IF) assay as described previously (Olasz
et al., 2019). All work with the infectious virus was conducted
at the biosafety level 3 (BSL3) laboratory of the Institute for
Veterinary Medical Research, Center for Agricultural Research
following all current EU regulations (European Commission,
2020).

Infection
PAMs were cultivated in 6-well plates at a density of 3.3 × 105
cells and infected at a multiplicity of infection of 10 at 4 h after
cell seeding. Supernatant was replaced with fresh medium at 1 h
post-infection (p.i.), and infected cells were harvested at 4, 8, 12,
and 20 h p.i. Mock-infected control cells were also harvested.

RNA Purification
Isolation of Total RNA
A NucleoSpin R© RNA (Macherey-Nagel) kit was used for RNA
purification following the manufacturer’s instructions. In brief,
the supernatant was removed from all wells of the 6-well plate,
and 2 × 106 cells were lysed with RA1 lysis buffer and β-
mercapthoethanol solution. Then, the lysates were transferred to
NucleoSpin filters. After centrifugation (11,000 × g, 1min), 70%
ethanol were added to the lysates. The solutions were transferred
to the columns, and after centrifugation, the membranes were
washed with MDB buffer. After repeated washing, DNase
reactionmixture were added, and themembranes were incubated
at room temperature for 15min. The membranes were washed
with RAW2 and RA3 buffer, and the tubes were centrifuged at
11,000× g for 30 s. Finally, RA3 buffer were added, and the tubes
were centrifuged at 11,000 × g for 2min. RNA was eluted with
RNase-free H2O and centrifuged at 11,000 × g for 1min. All
buffers were supplied from the kit.

Purification of Polyadenylated RNA
For the various Nanopore sequencing approaches, the polyA(+)
RNA fraction of total RNA was isolated using the “Spin Columns
method” from the Oligotex mRNAMini Kit (Qiagen).

Ribosomal RNA Depletion
For Illumina sequencing, rRNA was eliminated from the
total RNA samples using the RiboMinusTM Eukaryote System
v2 (Invitrogen).

Library Preparation for Nanopore
Sequencing
Direct RNA Sequencing—Using Samples From Mixed

Time Points
The dRNA-Seq method using a direct RNA sequencing kit (SQK-
RNA002, Version: DRS_9080_v2_revK_14Aug2019) from ONT
was used for amplification-free sequencing. This approach is
highly recommended to explore special features of native RNA
(e.g., modified bases) and avoid potential biases associated with
reverse transcription (RT) or PCR. Total RNA from eight samples
(two parallel experiments from 4, 8, 12, and 20 h p.i.) was
mixed together, and then the polyA(+) fraction of RNA was
purified from the sample mix. One hundred nanograms from
the polyA-tailed RNA were mixed with RT Adapter (oligo dT-
containing T10 adapter), RNA CS (both from the Nanopore
kit; the latter was used to monitor the sequencing quality),
NEBNext Quick Ligation Reaction Buffer, and T4 DNA ligase
[both from New England Biolabs (NEB)]. The mixture was
incubated for 10min at room temperature, and then RT was
conducted to generate first-strand cDNAusing dNTPs (NEB), 5×
first-strand buffer, DTT (both from Invitrogen SuperScript III)
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FIGURE 1 | Aligned read length distribution. Line chart presentation of the average of aligned read lengths obtained via Nanopore sequencing. (A) Amplified cDNA

sequencing at various time points. (B) Direct cDNA sequencing and (C) direct RNA sequencing using samples from multiple time points after the infection.

and UltraPureTM DNase/RNase-Free distilled water (Invitrogen),
and then the sample was mixed with SuperScript III enzyme
(Thermo Fisher Scientific). RT was performed in a Veriti cycler
(Applied Biosystems) at 50◦C for 50min, and the reaction was
subsequently terminated at 70◦C for 10min. RNA-cDNA hybrids
were purified using Agencourt RNAClean XP Beads [1.8 bead
ratio (BR)]; Beckman Coulter], washed with freshly prepared
70% ethanol, and eluted in UltraPureTM nuclease-free water.
The sample was then ligated to the RNA adapter (RMX from
the ONT kit) at room temperature for 10min using NEBNext
Quick Ligation Reaction Buffer, T4 DNA ligase, and nuclease-free
water. The ligation reaction was followed by a final purification
step using XP Beads (1.0 BR). Samples were washed with wash
buffer (ONT) and eluted in elution buffer (ONT). After Qubit
measurement, 100 fmol from the library were loaded onto a
Flow Cell.

Direct cDNA-Seq—From Mixed Time Points
Viral and host transcripts were also sequenced on a
MinION sequencer following the instructions of the

direct cDNA sequencing kit (SQK-DCS109; Version:
DCS_9090_v109_revJ_14Aug2019; ONT). This protocol is
based on strand switching, and it is highly optimal for the
generation of full-length cDNA for the identification of potential
novel transcript isoforms without potential PCR bias. The
starting material was 100 ng of a poly(A)+ RNA mixture from
various time points of infection (4, 8, 12, and 20 h p.i.). An
oligo dT-containing VN primer (VNP) and dNTPs (10µM)
were added to the RNA. After 5min of incubation at 65◦C,
the following components were added: 5× RT buffer (from the
Maxima H Minus Reverse Transcriptase kit, Thermo Fisher
Scientific), RNaseOUTTM (Thermo Fisher Scientific), strand
switching primer from the ONT kit and nuclease-free water.
This mixture was pre-heated at 42◦C for 2min, and Maxima
H Minus Reverse Transcriptase was added. RT was conducted
at 42◦C for 90min, and finally, the reaction was stopped by
incubation at 85◦C for 5min. RNase Cocktail Enzyme Mix
(Thermo Fisher Scientific) was used to degrade the RNA in the
sample. Incubation was performed at 37◦C for 10min. Before the
second-strand synthesis, the sample was cleaned using AMPure
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FIGURE 2 | Flowchart diagram shows an overview of the methodological workflow of this study.

XP Beads (0.8 BR) (Beckman Coulter). Then, LongAmp Taq
Master Mix (NEB) was used to synthesize second-strand cDNA
using the PR2 primer (ONT). Samples were incubated using
the following “only one cycle protocol:” denaturation at 94◦C
for min, annealing at 50◦C for 1min, and elongation at 65◦C
for 15min. The double-stranded cDNAs were purified using

AMPure XP method (0.8 BR). NEBNext Ultra II End-prep
reaction buffer and NEBNext Ultra II End-prep enzyme mix
(both from NEB) were added to each sample. This end repair
process was performed at 20◦C for 5min, followed by a 5-min
incubation at 65◦C. Enzymes and buffers were removed from
the reaction using the AMPure XP purification method (1.0 BR),
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and then the sample was subjected to adapter ligation. The ONT
Adapter Mix and Blunt/TA Ligation Master Mix (NEB) were
mixed with each sample, and the mixture was incubated at room
temperature for 10min. A final AMPure XP purification (0.4
BR) was conducted to remove any excess proteins, nucleotides,
and salts from the DNA library. Adapter Bead Binding Buffer
was used to wash the beads, and the library was eluted using
elution buffer (both from the Nanopore kit). The samples were
quantified using Qubit, and then 200 fmol from the sample were
loaded on two MinION Flow Cells.

Amplified cDNA-Sequencing—From Different Time

Points
Samples from each time point (4, 8, 12, 20 h p.i. and the mock
infected cells) were sequenced by the ONTMinION device using
the cDNA-PCR Barcoding protocol (SQK-PCS109 and SQK-
PBK004; Version: PCSB_9086_v109_revK_14Aug2019). This
protocol is recommended to identify and quantify full-length
transcripts, discover novel isoforms, and splice variants and
fusion transcripts from a low amount of starting material (total
RNA) to generate large amounts of cDNA data. Approximately
50 ng of each of the samples were used for library preparation.
VNP and dNTPs were added to the RNA and incubated at
65◦C for 5min. The strand-switching buffer mixture (RT buffer,
RNaseOUT, nuclease-free water, and SSP) was added to the
samples, which were incubated at 40◦C for 2min. RT was
conducted by adding Maxima H Minus Reverse Transcriptase
at 42◦C for 90min. The enzyme was inactivated by increasing
the temperature to 85◦C for 5min. LongAmp Taq Master
Mix, one of the Low Input barcode primers (LWB01-12,
from the ONT’s SQK-PBK004 kit, Supplementary Table 4),
and nuclease-free water were included in the RT reaction
mixture. Supplementary Table 5 shows the PCR conditions.
PCR products were treated with exonuclease (NEB), and the
mixture was then incubated at 37◦C for 15min, followed by 80◦C
for 15min. AMPure Beads (0.8 BR) was used for purification, and
the clean sample was eluted.

Library Preparation for Illumina
Sequencing
A NEXTflex R© Rapid Directional qRNA-Seq Kit (PerkinElmer)
was used to sequence the whole ASFV transcriptome via a
conventional short-read approach. We used 25 ng of an rRNA-
depleted RNA mixture (4, 8, 12, and 24 h p.i.) as the starting
material. The first step was enzymatic fragmentation of the RNA
using NEXTflex R© RNA Fragmentation Buffer. The reaction was
conducted at 95◦C for 10min followed by first-strand cDNA
synthesis. First, NEXTflex R© First Strand Synthesis Primer was
added to the reaction mixture, which was heated at 65◦C
for 5min and then subsequently placed on ice. NEXTflex R©

Directional First Strand Synthesis Buffer and Rapid Reverse
Transcriptase were then added. RT was performed using the
following program: incubation at 25◦C for 10min, heating at
50◦C for 50min, and termination at 72◦C for 15min. This step
was followed directly by second-strand cDNA synthesis via the
addition of NEXTflex R© Directional Second Strand Synthesis Mix
(with dUTPs) at 16◦C for 60min. The product was cleaned using

AMPure Beads (1.8 BR). Resuspension buffer (NEXTflex R© Kit)
was used for the final elution. Polyadenylation of the double-
stranded cDNAs was performed using NEXTflex R© Adenylation
Mix at 37◦C for 30min. The reaction was terminated by heating
at 70◦C for 5min. Molecular Index Adapters (from the Kit) were
ligated to the sample at 30◦C (10min) using the NEXTflex R©

Ligation Mix. Prior to amplification, each sample was washed
with AMPure Beads (0.8 BR). First, NEXTflex R© Uracil DNA
Glycosylase was mixed with the sample, which was incubated
at 37◦C for 30min, followed by heating at 98◦C for 2min. The
sample was placed on ice, and the following components were
added: PCR Master Mix, qRNA-Seq Universal forward primer,
and qRNA-Seq Barcoded Primer (sequence: AACGCCAT; all
from the kit). The samples were amplified according to the
protocol summarized in Supplementary Table 6. The PCR
products were washedwith AMPure Beads (0.8 BR), and followed
by a second purification.

Sequencing on the Illumina MiSeq
Instrument
The sequencing-ready library (12 pM) was loaded onto a flow cell
from Illumina MiSeq Reagent Kit v3 (150-cycle format, 2 × 75
bp) and sequenced on a MiSeq sequencer.

Read Processing
ONT Sequencing
Guppy software v3.4.5 (ONT) was used for base calling from
MinION data. The raw reads were aligned to the ASFV reference
genome (NCBI Nucleotide accession: MN715134.1) using the
minimap2 software suite (Li, 2018) with the following options:
-ax splice -Y -C5 –cs. SeqTools scripts were used to obtain the
quality information.

Illumina Sequencing
Raw reads were trimmed using Cutadapt software (Martin, 2011),
the aforementioned viral reference genome was indexed using
STAR aligner v2.7.3a (Dobin et al., 2013) with the following
settings: –genomeSAindexNbases 8, followed by the mapping of
the reads with default options. Samtools (Li et al., 2009) was used
to sort the sam files and to generate and index the BAM files.
The Qualimap v2.2.1 application (García-Alcalde et al., 2012) was
used to generate quality information from the Illumina dataset.

Code Availability
Guppy v3.4.5: http://community.nanoporetech.com/downloads?
fbclid=IwAR2IchRL4gDnfA6h996UkN4vS5pbBu6rUtKVFX3a
TiBHsWFknglQ6FyvPkg

minimap2: https://github.com/lh3/minimap2
STAR: https://github.com/alexdobin/STAR
samtools: https://github.com/samtools/samtools
SeqTools: https://github.com/moldovannorbert/seqtools.

TECHNICAL VALIDATION

The total RNA, polyA(+) RNA, and rRNA-depleted samples;
generated cDNAs; and final sequencing libraries were quantified
by a Qubit 4 Fluorometer using Qubit RNA Broad-Range,
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High Sensitivity RNA, and High Sensitivity dsDNA Assay Kits.
The Agilent TapeStation 4150 system was applied to detect the
integrity of total RNA and perform a quality check of the Illumina
libraries. In the present study, RNAs samples with RIN ≥ 9.4
were subjected to construct the sequencing libraries (ode Avail
Supplementary Figure 2).

DATA RE-USE

To our best knowledge, no data on the ASFV transcriptome
are available; therefore, this dataset was primarily generated to
characterize the RNA profile of the virus. The dataset can be used
to detect RNA isoforms, including length (alternative 3′ and 5′)
variants, monocistronic, bicistronic, polycistronic, and complex
transcripts, and to discover transcriptional overlaps and the
complexity of the genetic regulation of ASFV. Nanopore dataset
allows a time-course evaluation of the full-length transcriptomes
of both the virus and host. The published BAM files contain
the reads mapped to the MN715134.1 reference genome. BAMs
[using samtools and bedtools (Quinlan and Hall, 2010)] can
be converted to FastQ files, which extend the potential usage
of data; e.g., they can be aligned to host genome. BAM files
can be analyzed using various bioinformatics tools, such as
samtools, bedtools, or the Genome Analysis Toolkit (Van der
Auwera et al., 2013). The Nanopore data generated with different
library preparation approaches can be compared to analyze the
differences between the sequencing chemistries, as well as the
effect of RT and PCR reactions on the length and quality of
the reads. The provided dataset is also useful for comparing the
performance of the utilized sequencing platforms. Tombo tool
(Stoiber et al., 2017) can be used to identify CpG methylation
patterns and base modifications (e.g., A to I editing) from
raw (fast5) Nanopore sequencing data, or the EpiNano (Liu
et al., 2019) algorithm can be applied to detect m6A RNA
modifications. The dataset can be further analyzed using various
bioinformatics program packages or visualized using softwares
[e.g., Integrative Genomics Viewer (Robinson et al., 2011), Savant
Genome Browser (Fiume et al., 2010), Geneious (Kearse et al.,
2012)].
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