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Chapter 1

Introduction

We review the rudiments of minimal clones in this chapter. In Section 1.1 we
discuss clones of functions, the five types of minimal clones and the basic tools
for proving the (non)minimality of a clone. Section 1.2 explains the connections
between varieties and clones, and introduces the technique of absorption identities.
In Section 1.3 we give some examples of minimal clones and recall some of their
properties, and in the Section 1.4 we mention some characterization theorems
about minimal clones.

1.1 Concrete clones

A set C of finitary operations on a set A is a (concrete) clone, if it is closed
under composition of functions and contains all projections. The composition of an
n-ary function f by functions g1, . . . , gn of arity k is the k-ary function f (g1, . . . , gn)
defined by

f (g1, . . . , gn) (x1, . . . , xk) = f (g1 (x1, . . . , xk) , . . . , gn (x1, . . . , xk)) ,

and the i-th n-ary projection is the function

e
(n)
i : An → A, (x1, . . . , xn) 7→ xi (i = 1, . . . , n) .

If A = (A; F ) is an algebra, then the set of its term functions, denoted by
Clo A, is a clone on A, called the clone of the algebra A. This is the smallest clone
containing F , therefore we say that F generates Clo A, and we write [F ] = Clo A.
Clearly, every clone arises as the clone of an algebra: we just need to pick a
generating set for the clone, and let these be the basic operations of the algebra.
If g ∈ [F ], then there is a term t such that g is the term function of the algebra
(A; F ) corresponding to t. In this case we will simply say that t is a term of type F ,

1



2 Chapter 1. Introduction

and we write g = tF . With this notation we have

g ∈ [F ] ⇐⇒ (∃t) : g = tF .

It is a basic problem to decide whether g ∈ [F ] holds for given g and F or
not. The affirmative answer can be proved by finding the appropriate term t for
which g = tF . Relations provide a tool for establishing the negative answer. We
say that a function f (a set F of functions) preserves the k-ary relation ρ, if ρ is
a subuniverse of Ak for A = (A; f) (A = (A; F )). The following fact is the key for
proving g /∈ [F ].

F preserves ρ and g ∈ [F ] =⇒ g preserves ρ (1.1)

Thus relations are obstacles for producing functions from other functions by
compositions, moreover, if A is finite then they form a complete set of obstacles: if
g /∈ [F ], then there exists a relation ρ such that F preserves ρ, but g does not. This
is a consequence of the so-called Pol-Inv Galois connection between functions and
relations [BKKR,Ge]. We will not present the details here, as we need only (1.1);
in fact, we will always find a suitable unary relation or an equivalence relation (i.e.
a subuniverse or a congruence of the corresponding algebra).

All clones on a given set A form a lattice with respect to inclusion; the smallest
element of this lattice is the trivial clone, the clone of all projections on A, while
the greatest element is the clone of all finitary operations on A. These clones will
be denoted by IA and OA respectively; the subscripts will be sometimes omitted,
if the base set is clear from the context. The elements of the trivial clone (the
projections) will be referred to as trivial functions, and we say that A is a trivial
algebra if its basic operations are all trivial, i.e. if Clo A = I. Note that this is
different from the usual notion of triviality: one-element algebras are trivial in this
sense, too, but not only those. For example, a groupoid is trivial iff it is a left or
right zero semigroup, regardless of its size.

Minimal clones are the atoms of the clone lattice, i.e. a clone is minimal if
its only proper subclone is the trivial clone. On finite sets there are finitely many
minimal clones, and every clone contains a minimal one (cf. [PK, Qu2, SzÁ]).
Clearly, a nontrivial clone is minimal iff it is generated by any of its nontrivial
elements:

I 6= C is minimal ⇐⇒ (∀g ∈ C \ I) : C = [g] . (1.2)

Therefore all minimal clones are one-generated, thus they arise as clones of
algebras with a single basic operation. We usually define a minimal clone by a
generating function, so let us reformulate (1.2) accordingly:

I 6= [f ] is minimal ⇐⇒ (∀g ∈ [f ] \ I) : f ∈ [g] . (1.3)
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Taking into account that the clone generated by a function can be described in
terms of terms [!] we can express (1.2) yet another way:

I 6= [f ] is minimal ⇐⇒ (∀t1) :
(
g = tf1 /∈ I =⇒ (∃t2) : f = tg2

)
, (1.4)

where t1 and t2 are terms of type f and g, respectively. Note that the validity of
this formula can be decided just by taking a look at the identities satisfied by the
algebra (A; f). Consequently, if two algebras A and B generate the same variety,
and Clo A is minimal, then Clo B is minimal, too.

It is convenient to choose a function of the least possible arity as a generator
of a minimal clone. These generators are called minimal functions : f is a minimal
function iff [f ] is a minimal clone and there is no nontrivial function in [f ] whose
arity is less than the arity of f . A minimal function must be of one of five types
according to the following theorem of I. G. Rosenberg [Ros] (see also [SzÁ]).

Theorem 1.1. [Ros] Let f be a nontrivial operation of minimum arity in a min-
imal clone. Then f satisfies one of the following conditions:

(I) f is unary, and f 2(x) = f(x) or fp(x) = x for some prime p;

(II) f is a binary idempotent operation, i.e. f(x, x) = x;

(III) f is a ternary majority operation, i.e. f(x, x, y) = f(x, y, x) = f(y, x, x) = x;

(IV) f(x, y, z) = x + y + z, where + is a Boolean group operation;

(V) f is a semiprojection, i.e. there exists an index i (1 ≤ i ≤ n) such that
f(x1, . . . , xn) = xi whenever the values of x1, . . . , xn are not pairwise distinct.

A simple induction argument shows that if f is a semiprojection (majority
function) and g ∈ [f ] is a nontrivial function of the same arity as f , then g is also
a semiprojection (majority function) [Cs2, Qu2, Ros]. Therefore a minimal clone
cannot contain minimal functions of two different types, thus we can speak about
the five types of minimal clones. We will call a clone generated by an idempotent
binary operation a binary clone, and by a majority clone we mean a clone generated
by a majority operation.

In cases (I) and (IV) the conditions ensure the minimality of f , while in the
other three cases they do not, and a general characterization seems to be far
beyond reach. There are numerous partial results that describe minimal clones
under certain restrictions; we will discuss some of these in Section 1.4.

Next we state and prove a very special property of clones generated by a major-
ity operation. It is well-known that algebras with a majority operation have many
pleasant properties, e.g. they generate congruence distributive varieties, their term
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functions are determined just by the binary invariant relations (Baker-Pixley the-
orem), etc. The following theorem shows that majority operations behave very
nicely from the viewpoint of minimal clones, too. This fact seems to be folklore;
usually it is considered as a consequence of Rosenberg’s theorem (or of Świer-
czkowski’s lemma [Sw], which is the starting point in the proof of Rosenberg’s
theorem). Here we give an almost self-contained proof.

Theorem 1.2. [Cs3] Let C be a clone generated by a majority operation f . If
every majority operation in C generates f , then C is a minimal clone.

Proof. The key is the following observation, which can be proved by a simple
induction argument [Cs3]. If g is a nontrivial operation in a clone generated by
a majority function, then g is a so-called near-unanimity function, i.e. it satisfies
the identities

g(y, x, x, . . . , x, x) = g(x, y, x, . . . , x, x) = · · · = g(x, x, x, . . . , x, y) = x.

We show that any near-unanimity function g of arity n ≥ 4 produces a nontrivial
function of arity n − 1. Let us suppose that g (x, x, x3, . . . , xn) is a projection.
Identifying all the xis except for xn with x, we get the projection x by the near-
unanimity property, therefore g (x, x, x3, . . . , xn) cannot be a projection onto xn.
This can be done for any xi instead of xn, thus g (x, x, x3, . . . , xn) has to be a
projection onto x. A similar argument shows that if g (x1, x2, y, y, x5, . . . , xn) is
a projection, then it is a projection onto y. Now we have a contradiction, be-
cause g (x, x, y, y, x5, . . . , xn) is a projection to x and y at the same time (this is
where we use that n ≥ 4). Thus we have proved that either g (x, x, x3, . . . , xn) or
g (x1, x2, y, y, x5, . . . , xn) is nontrivial.
Therefore if g is an at least quaternary near-unanimity function in the clone C, then
it produces a nontrivial function of arity one less, which is again a near-unanimity
function, since it is still generated by f . Hence if it is still of arity at least 4,
then it produces a near-unanimity function of lesser arity, and we can continue
this way until we end up with a near-unanimity function of arity 3, i.e. a majority
operation. Since it was supposed that every majority operation in C generates f ,
we have f ∈ [g], and this shows that C is a minimal clone.

The advantage of this property is that in order to prove the minimality of a
clone of type (III) it suffices to prove (1.3) for ternary functions g. On a finite set
this means a finite number of functions, while in the binary and semiprojection
case one has to consider infinitely many functions.

Another nice property of majority operations is that it is easy to decide whether
a composition is trivial or not. If f is a majority function and t is a term of type
f , such that for any subterm f (t1, t2, t3) the three arguments t1, t2 and t3 of f



Chapter 1. Introduction 5

are different, then tf is not a projection (see [Cs3], where such terms were called
regular).

The following lemma is rather obvious, but it may be still worth formulating,
as it provides the main tools we will use to prove that a function is not minimal.

Lemma 1.3. Let f be a function on a set A.

(i) If a nontrivial g ∈ [f ] preserves some relation that is not preserved by f ,
then [f ] is not minimal.

(ii) If f is a minimal function preserving some B ⊆ A, then f |B must be a
minimal or trivial function on B.

Proof.

(i) Combine (1.3) and (1.1).

(ii) Composing functions and restricting functions commute.

The second statement of this lemma and the relationship between minimal
clones and varieties mentioned in connection with (1.4) are better understood
from the viewpoint of abstract clones.

1.2 Abstract clones

An (abstract) clone C is given by a family C(n) (n ≥ 1) of sets with distinguished

elements e
(n)
i ∈ C(n) (1 ≤ i ≤ n) and mappings

F n
k : C(n) ×

(
C(k)

)n → C(k), (f, g1, . . . , gn) 7→ f (g1, . . . , gn) (n, k ≥ 1) ,

such that the following three axioms are satisfied for all f ∈ C(n), g1, . . . , gn ∈ C(k),
h1, . . . , hk ∈ C(l) (n, k, l ≥ 1):

e
(n)
i (g1, . . . , gn) = gi (i = 1, . . . , n) ;

f
(
e
(n)
1 , . . . , e(n)

n

)
= f ;

f (g1, . . . , gn) (h1, . . . , hk) = f (g1 (h1, . . . , hk) , . . . , gn (h1, . . . , hk)) .

Thus abstract clones are multi-sorted or heterogeneous algebras that capture the
compositional structure of concrete clones (considering the elements e

(n)
i as nullary

operations) [BL,Tay]. The notion of a subclone, clone homomorphism and factor
clone can be defined in a natural way, and the isomorphism theorems can be proved
for abstract clones.
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Every concrete clone can be regarded as an abstract clone if we let e
(n)
i be the

i-th n-ary projection, and F n
k (f, g1, . . . , gn) be the composition of f by g1, . . . , gn,

as we have already indicated it in the notation. We will call the elements e
(n)
i

projections, the mappings F n
k composition operations, and C(n) the n-ary part of

C, even if the elements of the abstract clone are not functions. Every abstract clone
is isomorphic to a concrete clone, so we can always assume that the elements of
the clone are actually functions. This statement is a generalisation of the Cayley
representation theorem for monoids, since the unary part of a concrete clone is
a transformation monoid, and the defining axioms of abstract clones imply that(
C(1); F 1

1 , e
(1)
1

)
is a monoid. In the following we will not always make a sharp

distinction between concrete and abstract clones.

There is a close relationship between abstract clones and varieties; roughly
speaking, abstract clones are the same as varieties up to term equivalence [Kea,LP].
To explain this more explicitly, let us fix an abstract clone C, and a generating set F
of C. Then every element g ∈ C is obtained from the elements of F and projections
by a finite number of compositions. These iterated compositions can be described
with the help of terms, just as in the concrete case: g ∈ [F ] iff there is a term of
type F such that g = tF . Of course the same element may be obtained by different
terms, and the set of pairs ϑ =

{
(t1, t2) : tF1 = tF2

}
is an equational theory. The

clone is determined up to isomorphism by F and ϑ, so we can say that an abstract
clone with a distinguished generating set F carries the same information as an
equational theory, i.e. a variety of type F .

In order to describe this variety more explicitly, we need the notion of an
F -representation. If ϕ : C → OA, f 7→ f ∗ is a clone homomorphism, then we
say that the concrete clone C∗ = ϕ (C) is a representation of the abstract clone C.
Let [F ] = C as before, and let F ∗ be the image of F under ϕ. Then [F ∗] = C∗,
thus we obtain an algebra A = (A; F ∗) of type F with Clo (A) = C∗, called an
F -representation of C. Clearly ϕ is uniquely determined by its restriction to F : if
g = tF ∈ C, then g∗ =

(
tF

)∗
= tF

∗ ∈ C∗. If (t1, t2) ∈ ϑ, then tF1 = tF2 , therefore
tF

∗

1 = tF
∗

2 , thus A satisfies the identity t1 = t2. Conversely, let A = (A; F ∗) be any
algebra in the variety defined by ϑ. Then the map ϕ : C → Clo A, tF 7→ tF

∗

is a
well-defined surjective clone homomorphism: if tF1 = tF2 ∈ C, then tF

∗

1 = tF
∗

2 , since
A satisfies the identity t1 = t2, as it belongs to ϑ.

Thus the variety defined by ϑ consists of the F -representations of C, and an
algebra A of type F belongs to this variety if and only if Clo A is a homomorphic
image of C. Since the generating set F is usually clear from the context, we will
denote this variety by VC. (If we choose another set of generators, then we get
another variety which is term-equivalent to the previous one.) Conversely, a clone
can be assigned to every variety, namely the clone of the countably generated free
algebra of the variety: CloV = Clo Fℵ0

(V), and the maps C 7→ VC and V 7→ CloV
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are inverses of each other (up to isomorphism of clones, and term-equivalence of
varieties).

Let C and V correspond to each other at this assignment. Then subvarieties
of V correspond to factor clones of C, and the congruence lattice of C is dually
isomorphic to the subvariety lattice of V . If two algebras A, B ∈ V generate the
same subvariety W ≤ V, then Clo A and Clo B are isomorphic, since both are
isomorphic to CloW . Hence if Clo A is a minimal clone, then so is Clo B, as we
have already noticed in connection with (1.4). We can also explain the somewhat
vague proof of Lemma 1.3 (ii) more precisely now: If B is a subalgebra of the algebra
A, then ϕ : Clo A → Clo B, f 7→ f |B is a surjective clone homomorphism. This is
a special case of the fact that B ∈ HSP(A) implies that Clo B is a homomorphic
image of Clo A.

The elements of C(n) may be identified with ϑ-classes of n-ary terms, i.e. with
the elements of Fn (V), the n-generated free algebra of V . Projections correspond
to variables under this identification, therefore we will use the notation x1, . . . , xn

instead of e
(n)
1 , . . . , e

(n)
n . In the binary case we will also use x and y instead of e

(2)
1

and e
(2)
2 , and x, y, z will stand for the three ternary projections.

In accordance with the concrete case, an abstract clone is called trivial if it
consists of projections only. It is an easy exercise to show that if e

(m)
i = e

(m)
j holds

in a clone C for some 1 ≤ i 6= j ≤ m, then
∣∣C(n)

∣∣ = 1 for every n ≥ 1. Therefore
there are two trivial clones up to isomorphism: the clone of trivial operations on
a set with at least two elements, and the clone of operations on a one-element set.

They will be denoted by I and I1, respectively; we have
∣∣I(n)

∣∣ = n and
∣∣∣I(n)

1

∣∣∣ = 1

for all n. Note that I plays the role of the smallest clone (up to isomorphism, of
course): every clone except I1 has I as a subclone (but I1 cannot be a subclone
of any clone other than itself). For quotients the situation is almost the converse:
every clone has I1 as a factor clone (and only some clones have I as a factor clone).
We say that a variety is trivial if its clone is trivial, i.e. isomorphic to I or I1 (the
usual definition permits only I1).

An abstract clone is said to be minimal if its only proper subclone is the triv-
ial one (isomorphic to I). Everything we mentioned about minimal clones in the
previous section holds almost verbatim in the abstract case (except for those state-
ments that refer explicitly to the underlying set, of course). Subclones of factor
clones are always factor clones of subclones, therefore a factor clone of a minimal
clone is either minimal or trivial. Consequently, every algebra in a variety with
a minimal clone has a minimal or trivial clone. The converse is also true: if a
variety consists of algebras with minimal or trivial clones, and there is at least one
nontrivial algebra among them, then the variety has a minimal clone.

Absorption identities are very useful in the study of varieties with a minimal
clone. These are identities of the form t = xi, i.e. identities with a single variable
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on one side, and a nontrivial term on the other. The following lemma appears in
[LP] and [Kea]; here we present the proof given by P. P. Pálfy and L. Lévai, which
uses abstract clones.

Lemma 1.4. [Kea,LP] Let V be a variety with a minimal clone, and let A ∈ V
be a nontrivial algebra. Then V satisfies every absorption identity that holds in A.

Proof. Let Fℵ0
(V) = (T ; F ) be the countably generated free algebra in V , and let

A = (A; F ∗). Then ϕ : CloV → Clo A, tF 7→ tF
∗

is a surjective clone homomor-
phism. Since A is nontrivial, IA is a proper subclone of Clo A, hence ϕ−1 (IA) is a
proper subclone of CloV . This latter clone is minimal, therefore the inverse image
of IA has to be its trivial subclone: ϕ−1 (IA) = IT . This equality is exactly what
we need; it means that a term interpretes as a projection in A if and only if it is
a projection in Fℵ0

(V), i.e. if it is a projection in every algebra of V .

This lemma is particularly useful if the algebra A is axiomatizable by absorption
identities, for in this case we can conclude that A generates V . We will see some
examples of such algebras in the next section.

1.3 Examples

First let us consider the binary case, i.e. clones of idempotent groupoids. (In this
dissertation the term groupoid refers to an algebra with a single binary operation.)
The basic operation of a groupoid will be denoted by f (x, y) = xy, and by the dual
of A = (A; f) we mean the groupoid Ad =

(
A; fd

)
with fd (x, y) = f (y, x) = yx.

Similarly, Vd denotes the variety formed by the duals of the elements of V for a
groupoid variety V . Obviously, a groupoid has a minimal clone if and only if its
dual does (actually they have the very same clone).

The simplest examples of groupoids (or varieties) with a minimal clone are
semilattices and rectangular bands. We list the defining identities of some more
groupoid varieties with a minimal clone in Table 1. To save parentheses we write←−−−−−−−x1 · . . . · xn for the left-associated product (· · · ((x1x2) x3) · · · ) xn, and similarly−−−−−−−→x1 · . . . · xn for the right-associated product x1 (· · · (xn−2 (xn−1xn)) · · · ). We ab-
breviate ←−−−−−−−−x · y · . . . · y to xyn (where n is certainly the number of y’s appearing
in the product). Analogously nxy stands for −−−−−−−−→x · . . . · x · y. (We have omitted the
identity xx = x everywhere, but of course these are all idempotent varieties.)

The varieties SL and RB are selfdual; the duals of right normal bands, right
regular bands, right semilattices are left normal bands (LNB), left regular bands
(LRB), left semilattices (LSL), respectively. The variety A is defined by the
identity x (y (zu)) = x ((yz) u); we will need it later, for the study of almost
associative operations. The definition of D involves infinitely many identities, but
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D ∩ A has the finite basis shown in the table. Indeed, it is quite straightforward
to check that any algebra satisfying these identities belongs to D∩A. Conversely,
if A ∈ D ∩ A, then A |= x (yz) = x ((yy) z) = x (y (yz)) = xy, and A also
satisfies xx = x and (xy) y = xy as they are among the defining identities of
D. This axiomatization of D ∩ A shows that D ∩ A contains the variety of right
semilattices.

Figure 2 shows the meet-semilattice generated by these varieties and their duals
(LZ and RZ denote the variety of left and right zero semigroups, and the bottom
element is the variety of one-element groupoids). The solid lines indicate covers,
while dashed lines connect varieties with some intermediate varieties between them.
Note that there is just one Cp on the picture, but it represents an infinite family
of varieties (one for each prime number); we have Cp1

∩ Cp2
= LZ if p1 6= p2.

The minimality of the clone of B and D is proved in [LP]; these are the clones
in parts (c) and (d) of Theorem 5.2. (Their clone appear in [P3] as B and M (2) .)
Both clones contain only two nontrivial binary operations (which are the duals
of each other), and every nontrivial operation of higher arity produces these by
a suitable identification of variables. J. PÃlonka introduced p-cyclic groupoids in
[PÃl2], and he showed that Clo Cp is minimal iff p is a prime [PÃl1]. From now on we
will always assume that p denotes a prime number whenever we mention p-cyclic
groupoids.

We have not defined the varieties A (Zp, λ) appearing in Figure 2 yet. An
affine space is an algebra whose base set is a vector space over some field, and its
clone is the full idempotent reduct of the clone of that vector space. The clone
of an affine space is determined by the base field (up to isomorphism), and it is a
minimal clone iff this field is isomorphic to Zp for some prime number p. If p = 2,
then this clone is of type (IV): the minority operation x + y + z is a generator of
minimum arity. If p > 2, then the clone is of type (II): any nontrivial operation
of the form f (x, y) = λx + (1 − λ)y is a generator. Fixing a λ ∈ Zp \ {0, 1} we
get the variety A (Zp, λ) of f -representations; it is the variety of groupoids of the
form (V ; f), where V is a vector space over Zp, and f (x, y) = λx+(1 − λ) y. Just
as for p-cyclic groupoids, we have indicated these varieties with just two points on
Figure 2 (the dual of A (Zp, λ) is A (Zp, 1 − λ)). In this dissertation affine spaces
are always meant to be affine spaces over Zp (for an arbitrary prime p).

Affine spaces, p-cyclic groupoids and rectangular bands are axiomatizable by
absorption identities (cf. [Kea,LP]), therefore we have the following consequence
of Lemma 1.4.

Lemma 1.5. [Kea, LP] Let V be a variety with a minimal clone, and suppose
that V contains a p-cyclic groupoid (rectangular band, affine space) with a non-
trivial clone. Then V is the variety of p-cyclic groupoids (rectangular bands, affine
spaces).
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Proof. Lemma 1.4 shows that V is a variety of p-cyclic groupoids (rectangular
bands, affine spaces). However, these varieties have no nontrivial subvarieties, as
we can see on Figure 2 (see [LP] or [Kea] for a proof), hence V is indeed the variety
of p-cyclic groupoids (rectangular bands, affine spaces).

Let us recall another theorem from [LP] which states that the variety D is
determined by its 2-variable identities and the fact that it has a minimal clone.

Lemma 1.6. [LP] Let V be a variety with a minimal clone satisfying the identities
x (yx) = (xy) x = (xy) y = (xy) (yx) = xy, x (xy) = x. Then V is a subvariety of
D.

Proof. This is part (d) of Theorem 5.2 in [LP]. The identities listed here are
sufficient to determine the two-generated free algebra of V . Its multiplication table
is the following (the four elements have to be distinct, since otherwise Clo (V) would
be trivial).

· x y xy yx
x x xy x xy
y yx y yx y
xy xy xy xy xy
yx yx yx yx yx

It is not hard to check that this groupoid satisfies every identity of the form
x · ←−−−−−−−−−x · y1 · . . . · yn = x (this is a special case of Lemma 4.2 in [LP]). These are
absorption identities, therefore we can apply Lemma 1.4 with A = F2 (V) to show
that V satisfies these identities, too. The remaining identities in the definition of
D are the same as the ones that were assumed.

There are much less examples of minimal clones of type (III). The simplest ones
are those containing just one nontrivial ternary operation (these are all minimal
by Theorem 1.2). An example of such a clone is the clone generated by the median
function (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) on an arbitrary lattice [PK].

There is no minimal clone with exactly two majority functions (see Theo-
rem 3.6), so the next simplest examples are those that contain three majority
functions. The dual discriminator function [FP] on any set A defined by

d (a, b, c) =

{
a if a = b

c if a 6= b

generates only three majority functions: itself, d (y, z, x) and d (z, x, y); any of
these clearly generates d, therefore [d] is a minimal clone by Theorem 1.2 (cf.
[CsG]).

We will see some more examples of minimal majority functions in the next
section.
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1.4 Characterizations

It seems to be a very hard problem to characterize minimal clones in full generality,
but there are some results that describe minimal clones or minimal functions under
certain assumptions. In this section we mention some of these results; we formulate
precisely only the theorems that we will need in the sequel.

One of the first, and most natural approaches is to restrict the size of the
underlying set of a concrete clone. E. Post determined all clones on the two-
element set [Po]; seven of them are minimal. Minimal clones on the three-element
set were described by B. Csákány [Cs2]. For the four-element set minimal clones
of type (II) were described by B. Szczepara [Szcz]. A nontrivial semiprojection on
a four-element set has to be of arity 3 or 4, and the latter case was settled in [JQ].
We are going to describe minimal majority functions on the four-element set in
Chapter 2; the case of ternary semiprojections remains open. We will need the
list of the minimal majority functions on the three-element set, so let us state this
theorem.

Theorem 1.7. [Cs2] If f is a minimal majority function on a three-element set,
then f is isomorphic to one of the the twelve majority functions shown in Table 3.
These functions belong to three minimal clones containing 1, 3 and 8 majority
operations respectively, as shown in the table.

Note that we have omitted those triples in the table where the majority rule
determines the value of the functions. The nicest generators of the three clones
are m1,m2 and m3. We see that m1 is a very simple function; it is as constant
as a majority function can be. It can be defined also as the median function
of the three element chain (with the unusual order 2 < 1 < 3 or 3 < 1 < 2).
The next function looks like the first projection, and it is nothing else but the
dual discriminator, up to a permutation of variables (the third function in [m2] is
actually the dual discriminator). The function m3 follows a nice pattern as well,
but it can be described by formulas better than words (for completeness we define
m1 and m2 formally, too). For {a1, a2, a3} = {1, 2, 3} we have

m1(a1, a2, a3) = 1;

m2(a1, a2, a3) = a1;

m3(a1, a2, a3) = ai+1 if ai = 2 (subscripts taken modulo 3).

One may restrict the size of the clone instead of the underlying set as well.
There is a result in this direction by L. Lévai and P. P. Pálfy; they described
binary minimal clones with at most seven binary operations [LP]. (The cases 5
and 7 are actually due to J. Dudek and J. GaÃluszka, cf. [Du,DG].) In Chapter 3
we are going to characterize minimal majority clones with at most seven ternary
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operations. Here we quote only the list of binary clones with at most four binary
operations (i.e. at most two nontrivial binary operations).

Theorem 1.8. [LP] Let V be a groupoid variety with a minimal clone such that
CloV contains at most four binary operations. Then V is a subvariety of one of
the varieties A (Z3, 2) ,B, C2,D,RB or the variety defined by (xy) x = (xy) y =
(xy) (yx) = xy and x · ←−−−−−−−−−−−y · x · z1 · . . . · zn = x (n = 0, 1, 2, . . .).

It is a possibility to make some assumptions on the relations preserved by a
function. Considering unary relations, an extremal situation is the case of alge-
bras with no nontrivial subalgebras; such algebras having a minimal clone were
described by B. Csákány and K. Kearnes [CsK]. Conservative operations are on
the other extreme: a function is conservative if it preserves every subset of the
underlying set (cf. [Qu1]). Conservative minimal binary and majority operations
were described by B. Csákány [Cs3]. J. Ježek and R. W. Quackenbush obtained re-
sults for conservative semiprojections, for example minimal n-ary semiprojections
on the n-element set (they are necessarily conservative) are known [JQ].

Before we state the theorem about conservative minimal majority operations,
let us make an observation and introduce some notation. For any set A let

(
A

3

)

denote the set of three-element subsets of A. If f is a conservative minimal majority
function on A, and B ∈

(
A

3

)
, then f |B is a minimal majority function on B by

Lemma 1.3(ii). These restrictions determine f , so we can say that f is somehow
glued together from copies of the functions listed in Table 3; let f‖B be the one
of these 12 functions for which (B; f |B) ∼= ({1, 2, 3} ; f‖B) holds. There are many
ways to do this gluing, and only a few of them yield minimal functions; the next
theorem describes exactly which ones.

Theorem 1.9. [Cs3] A conservative majority function f on a set A is minimal iff
its restriction to any three-element subset is minimal, and [f‖B1

] = [f‖B2
] implies

f‖B1
= f‖B2

for all three-element subsets B1, B2, i.e. if at most one function
appears from each of the clones [m2] and [m3] as a restriction of f . If f is such a
function and g ∈ [f ] is a majority function, then we have

∀B ∈
(

A

3

)
: [g‖B] = [f‖B] ;

∀B1, B2 ∈
(

A

3

)
:
(
[g‖B1

] = [g‖B2
] =⇒ g‖B1

= g‖B2

)
.

Every map B 7→ g‖B satisfying the above two properties appears for exactly one
function g ∈ [f ]. Therefore the number of majority functions in [f ] is either 1, 3, 8
or 24.
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Remark 1.10. It is useful to consider restrictions to three-element subsets even for
majority functions that are not conservative. The proof of the previous theorem
gives the following necessary condition for the minimality of a majority function
f on A preserving B1, B2 ∈

(
A

3

)
:

[f‖B1
] = [f‖B2

] =⇒ f‖B1
= f‖B2

.

Another possibility is to look for minimal functions satisfying certain identities.
Probably the most natural problem of this kind is to characterize semigroups with
a minimal clone. This problem was solved by M. B. Szendrei; she determined all
bands whose subclone lattice is a chain [SzM]. Here we reproduce the proof given
by P. P. Pálfy in [P3].

Theorem 1.11. [P3,SzM] A semigroup with a minimal clone is either a left reg-
ular band, a right regular band or a rectangular band.

Proof. Let f be an idempotent associative binary operation generating a minimal
clone. It is a straightforward calculation to check that the operation g (x, y) = xyx
does not generate any other binary operation but itself and its dual. If g is non-
trivial, then f ∈ [g] by (1.3), therefore xyx = xy or xyx = yx holds, thus we
have a left or right regular band. If g is the second projection, then xyx = y, and
this implies xy = (xy) (xy) = (xyx) y = yy = y, a contradiction. Finally, if g is
the first projection, then we have xyx = x, consequently xyz = (xzx) y (zxz) =
(xz) (xyz) (xz) = xz, so our semigroup is a rectangular band.

In Chapter 5 we will generalize this theorem by characterizing minimal clones
generated by almost associative binary operations for two different interpretations
of the term ‘almost associative’.

Á. Szendrei and K. Kearnes investigated minimal clones generated by an op-
eration that commutes with itself [KSz]. In the binary case this commutativity
property is equivalent to the so-called entropic or medial law (xy) (zu) = (xz) (yu),
and the result is the following.

Theorem 1.12. [KSz] Let A be an entropic groupoid with a minimal clone. Then
A or its dual is an affine space, a rectangular band, a left normal band, a right
semilattice or a p-cyclic groupoid for some prime p.

We will show in Theorem 4.4 that we get the same list of minimal clones if
we assume only distributivity (which is weaker than entropicity for idempotent
groupoids). We will also characterize groupoids satisfying the identity x (yz) = xy
and having a minimal clone (cf. Lemma 4.8).

Finally, let us quote a result of K. Kearnes describing abelian algebras with
a minimal clone [Kea]. It turns out that such clones are either of type (I), (II)
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or (IV), and in the binary case the entropic law holds. Therefore the following
theorem could be deduced from the previous one, but actually Theorem 1.12 was
proved with the help of Theorem 1.13. In Chapter 4 we generalize this theorem to
weakly abelian representations.

Theorem 1.13. [Kea] If a minimal clone has a nontrivial abelian representation,
then it is either unary, or the clone of an affine space, a rectangular band or a
p-cyclic groupoid for some prime p.



Chapter 2

Minimal majority clones on the
four-element set

In this chapter we determine the minimal majority functions on the four-element
set. The main result is the following theorem which characterizes nonconservative
minimal majority operations on the set {1, 2, 3, 4}. (The conservative ones are
already described in Theorem 1.9.)

Theorem 2.20 [Wa1] If f is a minimal majority function on the set {1, 2, 3, 4},
then f is either conservative, or isomorphic to one of the twelve majority functions
shown in Table 4. These functions belong to three minimal clones containing 1, 3
and 8 majority operations respectively, as shown in the table. Moreover, the clone
generated by Mi is isomorphic to [mi] (see Table 3) for i = 1, 2, 3.

In Section 2.1 we make some observations that will show that we do not have
to consider all the 424 majority operations on {1, 2, 3, 4}, only those that satisfy a
certain identity. The next three sections contain the proof of the above theorem.
The hard part of the proof is to show that the above twelve functions are the only
minimal majority operations on the four-element set. We divide the set of majority
functions under consideration into two classes: ‘orderly’ and ‘disorderly’ functions.
In Section 2.2 we prove that every minimal disorderly function is isomorphic to M2,
and in Section 2.3 we show that up to isomorphism and permutation of variables
M1 and M3 are the only orderly minimal functions. In Section 2.4 we prove that
the clones generated by mi and Mi are isomorphic, hence the latter are minimal
functions.

2.1 Majority functions on finite sets

To find all minimal majority operations on a given finite set is a finite task ac-
cording to Theorem 1.2. However, on a four-element set there are 424 majority

15
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functions, so it seems hopeless to test them one by one, even using a computer.
The next theorem reduces this number by showing that it suffices to consider
functions satisfying a certain identity.

Theorem 2.1. [Wa1] Let f be a majority function on a finite set A. Then there
exists a majority function g ∈ [f ] which satisfies the following identity.

g
(
g(x, y, z) , g(y, z, x) , g(z, x, y)

)
= g(x, y, z) (2.1)

Proof. Let us define a binary operation on [f ](3) by the following formula.

(g ∗ h) (x, y, z) = g
(
h(x, y, z) , h(y, z, x) , h(z, x, y)

)

It follows from the associativity of composition (see the third axiom in the defi-
nition of abstract clones) that this operation is associative. The set of majority

functions is closed under this operation, so
(
[f ](3) \ IA; ∗

)
is a finite semigroup.

Every finite semigroup has an idempotent element (moreover, every element has
an idempotent power), and if g is an idempotent in our semigroup, then it satisfies
(2.1).

Now we introduce some notation. The k-th power f ∗· · ·∗f of f will be denoted
by f (k), and f̂ denotes an idempotent power of f (whose existence is guaranteed
by the above theorem). We put 〈abc〉 = {(a, b, c), (b, c, a), (c, a, b)}, and we will
use the symbol f |〈abc〉 ≡ u to mean that f(a, b, c) = f(b, c, a) = f(c, a, b) = u, and
f |〈abc〉 = p to mean that f(a, b, c) = a, f(b, c, a) = b, f(c, a, b) = c. (Here ‘p’ stands
for ‘projection’: f |〈abc〉 = p means that f agrees with the first projection on the
set 〈abc〉. If both f |〈abc〉 = p and f |〈bac〉 = p hold, then f |{a,b,c} looks like a first
projection – except that it is a majority function. Similarly, f |〈abc〉 ≡ u ≡ f |〈bac〉

means that f is as constant on {a, b, c} as a majority function can be.) The
following lemma shows an easy way to test if a majority function satisfies identity
(2.1) or not.

Lemma 2.2. [Wa1] Let f be a majority function on a set A satisfying (2.1), and
let a, b, c be pairwise distinct elements of A. Let u = f(a, b, c), v = f(b, c, a),
w = f(c, a, b). Then |{u, v, w}| 6= 2, and if u, v, w are pairwise different, then
f |〈uvw〉 = p.

Proof. To prove the first statement, let us suppose (without loss of generality)
that u 6= v = w. Then (2.1) for x = a, y = b, z = c yields that f(u, v, w) = u,
contradicting the majority property of f . The second statement of the lemma is
an obvious consequence of identity (2.1).

We can say a bit more than Lemma 2.2 when f is a minimal function.
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Theorem 2.3. [Wa1] Let f be a minimal majority function on a set A satis-
fying (2.1), and let a, b, c be pairwise distinct elements of A. If u = f(a, b, c),
v = f(b, c, a), w = f(c, a, b) are pairwise different, then f |〈uvw〉= p and also
f |〈vuw〉= p.

Proof. By the previous lemma we have f |〈uvw〉= p. Now the nontrivial superposi-
tion g(x, y, z) = f(f(x, y, z), f(x, z, y), x) preserves {u, v, w} hence f does too, and
then from the description of the minimal majority functions on the three-element
set (Theorem 1.7) we get the conclusion of the theorem.

In the next lemma we consider the four-element case. Let us recall that 〈abc〉 is
just the set {(a, b, c), (b, c, a), (c, a, b)}, hence f(〈abc〉) denotes {f(a, b, c), f(b, c, a),
f(c, a, b)}.
Lemma 2.4. [Wa1] Let f be a minimal majority function on the four-element set
A = {a, b, c, d} satisfying (2.1). If f(〈abc〉) ⊆ {a, b, c} then either f |〈abc〉= p and
f |〈bac〉= p or f |〈abc〉≡ u and f |〈bac〉≡ v for some u, v ∈ A.

Proof. The set f(〈abc〉) has either three or one elements by Lemma 2.2. If it has
three elements then it is {a, b, c}, and then by Theorem 2.3 we have f |〈abc〉= p and
f |〈bac〉= p. If f(〈abc〉) is a one-element set, then we may assume f |〈abc〉≡ a. If
d /∈ f(〈bac〉), then f preserves {a, b, c} and Theorem 1.7 shows that f |〈bac〉≡ v for
suitable v ∈ {a, b, c}. If a, d ∈ f(〈bac〉) then we permute cyclically the variables to
have f(b, a, c) = a, and then g(2) preserves {a, b, c} for the superposition g in the
proof of Theorem 2.3, contradicting the minimality of f . Finally, if a /∈ f(〈bac〉)
but d ∈ f(〈bac〉) then f(〈bac〉) = {b, c, d}. Now we may suppose f(b, a, c) = c,
f(a, c, b) = d, f(c, b, a) = b or f(b, a, c) = b, f(a, c, b) = d, f(c, b, a) = c after a
cyclic permutation of variables. In both cases g(2) shows that f is not minimal,
since it preserves {a, b, c}.

If f is a conservative minimal majority function on a set A satisfying (2.1),
then for all a, b, c ∈ A we have

f |〈abc〉 = p or (∃u ∈ A) : f |〈abc〉 ≡ u. (2.2)

This follows from Theorem 1.9, but it can be deduced from Lemma 2.2 and Theo-
rem 2.3 as well. Lemma 2.4 and Theorem 2.3 leave such an impression that (2.2)
holds for many a, b, c ∈ A even in the nonconservative case, if A has just four
elements. Let us call a majority function f on {1, 2, 3, 4} satisfying (2.1) ‘orderly’
if (2.2) is valid for all a, b, c and ‘disorderly’ otherwise. In the next section we will
prove that up to isomorphism there is only one minimal disorderly function on a
four-element set, namely M2. In Section 2.3 we investigate orderly functions, and
we will find that the only minimal ones are M1 and M3 up to isomorphism and
permutation of variables.
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Now we define and examine a superposition which we will use frequently later
on. For a ternary function f let fx, fy, fz stand for the composite functions where
the first, second resp. third variable of f is replaced by f itself:

fx(x, y, z) = f(f(x, y, z), y, z);

fy(x, y, z) = f(x, f(x, y, z), z);

fz(x, y, z) = f(x, y, f(x, y, z)).

We will briefly write fzy instead of (fz)y. We will also use the convention that

lower indices have priority to upper ones. So f
(k)
zy means (fzy)

(k), and f̂zy stands

for (̂fzy).
The proof of the following claim is just a straightforward calculation, so we

omit it.

Claim 2.5. Let f be a majority function on {a, b, c, d}. If f(a, b, c) 6= d, then
fzy(a, b, c) = f(a, b, c). If f(a, b, c) = d, then fzy(a, b, c) = f(a, b, d) if the latter
does not equal d. If f(a, b, c) = f(a, b, d) = d, then fzy(a, b, c) = f(a, d, c) if
this value is not b. Finally, if f(a, b, c) = f(a, b, d) = d and f(a, d, c) = b, then
fzy(a, b, c) = f(a, d, b).

The following six lines summarize the statement of this claim in the case
{a, b, c, d} = {1, 2, 3, 4} and d = 4, which we will consider most of the time.

fzy (1, 2, 3) = f (1, 2, 3)
4−→ f (1, 2, 4)

4−→ f (1, 4, 3)
2−→ f (1, 4, 2)

fzy (2, 3, 1) = f (2, 3, 1)
4−→ f (2, 3, 4)

4−→ f (2, 4, 1)
3−→ f (2, 4, 3)

fzy (3, 1, 2) = f (3, 1, 2)
4−→ f (3, 1, 4)

4−→ f (3, 4, 2)
1−→ f (3, 4, 1)

fzy (2, 1, 3) = f (2, 1, 3)
4−→ f (2, 1, 4)

4−→ f (2, 4, 3)
1−→ f (2, 4, 1)

fzy (1, 3, 2) = f (1, 3, 2)
4−→ f (1, 3, 4)

4−→ f (1, 4, 2)
3−→ f (1, 4, 3)

fzy (3, 2, 1) = f (3, 2, 1)
4−→ f (3, 2, 4)

4−→ f (3, 4, 1)
2−→ f (3, 4, 2)

An arrow of the form u
w−→ v indicates that we need to compute u, and we can

stop here, if u 6= w; while if we find that u = w, then we have to compute v
(and follow the next arrow similarly, if there is one). For example, in order to
find fzy(1, 2, 3) we compute first f (1, 2, 3). If this value is not 4, then we are
done: fzy(1, 2, 3) = f (1, 2, 3). If f (1, 2, 3) = 4, then we have to proceed to
f (1, 2, 4). If it is not 4, then we can stop: fzy(1, 2, 3) = f (1, 2, 4); otherwise we
need to go on to f (1, 4, 3), and we are done if it equals 2. If f (1, 4, 3) = 2, then
fzy(1, 2, 3) = f (1, 4, 2). We will consider fzy very often, and we will not refer to
Claim 2.5 all the time; the reader should always look at the above table (or make
a similar one) when we claim anything about the values of fzy.



Chapter 2. Majority clones on the 4-element set 19

In the following two sections we will scan through the disorderly and orderly
functions on {1, 2, 3, 4}, and check that almost all of them are not minimal. Most
often this will be done with the help of Lemma 1.3 (i) by finding a nontrivial
superposition which preserves some subset that is not preserved by the original
function. The following lemma presents another tool for proving the nonminimality
of a function. This lemma was proved in [Cs2] by term induction; here we give a
proof using invariant relations, but first we need a definition. Majority functions
are obviously surjective, therefore it is more meaningful to define the range of a
majority operation as follows. If f is a majority function on a set A, then let

range(f) = {f(a, b, c) : a, b, c ∈ A are pairwise distinct} .

Lemma 2.6. [Cs2] If f is a majority function on A and g ∈ [f ](3) \ IA, then
range (g) ⊆ range (f). Moreover, if f is a minimal majority function, then we
have range (g) = range (f).

Proof. It is easy to check that a majority operation preserves the equivalence
relation whose blocks are {a} and A\{a} if and only if a does not belong to its
range. Now the first statement follows from (1.1), the second one from (1.3).

2.2 Disorderly functions

In this section we will show that every disorderly minimal function is isomorphic
to M2. Since we will consider the values of the functions on the set {1, 2, 3} very
often, it will be useful to introduce the following notation. Let [p, q, r; s, t, u] de-
note the set of majority functions f on A = {1, 2, 3, 4} for which f(1, 2, 3) = p,
f(2, 3, 1) = q, f(3, 1, 2) = r, f(2, 1, 3) = s, f(1, 3, 2) = t, f(3, 2, 1) = u holds.
If we do not want to specify all these six values of f , than we will use ∗ to indi-
cate an arbitrary element of A. For example f ∈ [4, ∗, ∗; ∗, ∗, ∗] means just that
f(1, 2, 3) = 4. The letters a, b, c, d will always denote arbitrary distinct elements
of A, i.e. {1, 2, 3, 4} = A = {a, b, c, d}.

Claim 2.7. In either of the following four cases f is not minimal.

(1) f ∈ [4, 2, 1; ∗, ∗, ∗]

(2) f ∈ [4, 1, 2; ∗, ∗, ∗]

(3) f ∈ [4, 1, 3; ∗, ∗, ∗]

(4) f ∈ [4, 3, 1; ∗, ∗, ∗]
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Proof.

(1) Suppose for contradiction that f ∈ [4, 2, 1; ∗, ∗, ∗] is a minimal function. Then
we have f |〈214〉 = p = f |〈124〉 by Theorem 2.3, and this implies fzy|〈214〉 =
p = fzy|〈124〉. Using Claim 2.5 we can check that fzy ∈ [1, 2, 1; u, v, w] with
u, v 6= 4. Since f does not preserve {1, 2, 3}, we must have w = 4. A more
careful analysis shows that this happens only if f (3, 2, 1) = f (3, 2, 4) =
f (3, 4, 1) = 4, or f (3, 2, 1) = f (3, 2, 4) = f (3, 4, 2) = 4 and (3, 4, 1) = 2.
Let us examine the set f(〈213〉) now. It has either one or three elements
by Lemma 2.2, and it is not a subset of {1, 2, 3} according to Lemma 2.4.
Therefore we have f(〈213〉) = {1, 2, 4} , {1, 3, 4} , {2, 3, 4} or {4}. We treat
these four cases separately.

Case 1. If f(〈213〉) = {1, 2, 4}, then f ∈ [4, 2, 1; 1, 2, 4]∪ [4, 2, 1; 2, 1, 4] since
f (3, 2, 1) = 4. Using the fact that fzy|〈214〉 = p = fzy|〈124〉 we conclude that

fzy ∈ [1, 2, 1; 1, 2, 4] ∪ [1, 2, 1; 2, 1, 4] and f̂zy ∈ [1, 1, 1; 1, 2, 4] ∪ [1, 1, 1; 2, 1, 4].

However, in this case Lemma 2.4 shows that f̂zy is not minimal, hence neither
is f .

Case 2. If f(〈213〉) = {1, 3, 4}, then f |〈134〉 = p = f |〈314〉 by Theorem 2.3
contradicting that f (3, 4, 1) is either 4 or 2.

Case 3. If f(〈213〉) = {2, 3, 4}, then similarly to the previous case we have
f |〈234〉 = p = f |〈324〉 contradicting that f (3, 2, 4) = 4.

Case 4. If f(〈213〉) = {4}, then fzy ∈ [1, 2, 1; 2, v, 4] with v 6= 4. As we
have already seen in the first case, v = 1 is not possible. We cannot have
v = 2 either, because this would imply f

(2)
zy ∈ [1, 1, 1; 2, 2, 2], hence f

(2)
zy would

preserve {1, 2, 3} contradicting the minimality of f . Finally, if v = 3 then
fzy(y, z, fzy(x, y, z)) ∈ [2, 1, 1; 3, 3, 2], which is a contradiction again.

(2) Here we can use the same argument; the only difference is that in this case
fzy ∈ [1, 1, 2; u, v, w] with u, v 6= 4.

(3) The function f(x, z, y) is isomorphic to a function which is not minimal
by (1). (We shall note here that interchanging the second and third variable
does not affect the identity (2.1).)

(4) Now f(x, z, y) falls under (2) after renaming the elements of the base set.

Claim 2.8. If f ∈ [4, 3, 2; ∗, ∗, ∗] then f is not minimal.

Proof. Suppose for contradiction that f ∈ [4, 3, 2; ∗, ∗, ∗] is a minimal function.
Similarly to the previous claim we have f |〈234〉 = p = f |〈324〉, and the four possibil-
ities for f(〈213〉) are {1, 2, 4} , {1, 3, 4} , {2, 3, 4} and {4}.
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Case 1. If f(〈213〉) = {1, 2, 4}, then f |〈214〉 = p = f |〈124〉 by Theorem 2.3. Now
Claim 2.5 shows that fzy ∈ [1, 3, 2; u, v, w] with u, v, w 6= 4, hence fzy preserves
{1, 2, 3} , which is a contradiction.

Case 2. If f(〈213〉) = {1, 3, 4}, then f |〈134〉 = p = f |〈314〉, and we get the same
contradiciton as in the previous case.

Case 3. If f(〈213〉) = {2, 3, 4}, then f ∈ [4, 3, 2; 3, 4, 2] or f ∈ [4, 3, 2; 2, 4, 3] , as
otherwise f would be isomorphic to a function which is not minimal by
Claim 2.7. Now we have g ∈ [3, 3, 2; 3, 2, 2] or g ∈ [3, 3, 2; 2, 2, 4] for the function
g (x, y, z) = f (z, y, f (x, y, z)), and we get a contradiction, because in both cases
g(2) ∈ [3, 3, 3; 2, 2, 2], and thus g(2) preserves {1, 2, 3}.

Case 4. If f(〈213〉) = {4}, then f ∈ [4, 3, 2; 4, 4, 4] and g ∈ [3, 3, 2; u, 2, v], where
g is the same function as above. If u 6= 3, then for h (x, y, z) = g (g (x, y, z) , z, x)
we have h ∈ [3, 2, 2; 2, 2, ∗]. (In order to verify this for u = 4 one needs to observe
that f |〈234〉 = p = f |〈324〉 implies g (4, 3, 2) = 2.) Now we have a contradiction,
as h(2) ∈ [2, 2, 2; 2, 2, 2]. So let us suppose that u = 3 and v = 4 (otherwise
g preserves {1, 2, 3}). This means that g ∈ [3, 3, 2; 3, 2, 4], and one can check
that ĝ ∈ [3, 3, 3; 3, 2, 4] or ĝ ∈ [3, 3, 3; 2, 4, 3] or ĝ ∈ [3, 3, 3; 4, 3, 2]. (Again, we
need the fact that g (4, 3, 2) = 2, g (3, 2, 4) = 4 and g (2, 4, 3) = 3 follows from
f |〈234〉 = p = f |〈324〉.) Lemma 2.4 shows that ĝ is not a minimal function, hence
neither is f .

Claim 2.9. If f ∈ [4, 2, 3; 2, 1, 4] or f ∈ [4, 2, 3; 4, 1, 3] then f is not minimal.

Proof. If f ∈ [4, 2, 3; 2, 1, 4] is a minimal function, then f |〈234〉 = p = f |〈324〉 and
f |〈214〉 = p = f |〈124〉 by Theorem 2.3. This implies that fz ∈ [1, 2, 3; 2, 1, 3], thus fz

preserves {1, 2, 3}, and we have a contradiction. The second case is similar; here
we have fy ∈ [1, 2, 3; 2, 1, 3].

Claim 2.10. If f ∈ [4, 2, 3; 2, 4, 3] is a minimal function, then f = M2.

Proof. Let us consider the function g(x, y, z) = f(f(x, y, z), x, y). Then we have
g ∈ [u, 2, 3; 2, v, 3], where u = f (4, 1, 2) and v = f (4, 1, 3). We also have g|〈234〉 =
p = g|〈324〉 since f |〈234〉 = p = f |〈324〉 follows from Theorem 2.3. If none of u and v
equals 4, then g preserves {1, 2, 3}, which is impossible. If u = 4 and v = 1, v = 2 or
v = 3, then ĝ ∈ [4, 2, 3; 2, 1, 3], ĝ ∈ [4, 2, 3; 2, 2, 2] or ĝ ∈ [4, 2, 3; 3, 3, 3] respectively.
In either case ĝ is not minimal by Lemma 2.4. If u 6= 4 = v, then we get a
contradiction in a similar way. Therefore we must have f (4, 1, 2) = f (4, 1, 3) = 4.
Using g (x, y, z) = f (f (x, y, z) , y, x), g (x, y, z) = f (x, f (x, y, z) , y), etc. we get
f (4, 2, 1) = f (4, 3, 1) = 4, f (1, 4, 2) = f (1, 4, 3) = 4, etc. Thus we obtained
f |〈124〉 ≡ 4 ≡ f |〈214〉 and f |〈134〉 ≡ 4 ≡ f |〈314〉, and taking into account that
f |〈234〉 = p = f |〈324〉 we conclude f = M2.
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Claim 2.11. If f ∈ [4, 2, 3; 4, 4, 4] then f is not minimal.

Proof. Let f ∈ [4, 2, 3; 4, 4, 4] be a minimal function. Just like in the previous
claim, we have f |〈234〉 = p = f |〈324〉, and this implies fzy|〈234〉 = p = fzy|〈324〉.
Therefore fzy ∈ [u, 2, 3; v, w, 3] with v 6= 4.

Case 1. If v = 3, then fzy ∈ [u, 2, 3; 3, w, 3], therefore f̂zy ∈ [1, 2, 3; 3, 3, 3],

f̂zy ∈ [2, 2, 2; 3, 3, 3], f̂zy ∈ [3, 3, 3; 3, 3, 3] or f̂zy ∈ [4, 2, 3; 3, 3, 3] depending on
whether u = 1, 2, 3 or 4. We have a contradiction, because in the first three cases
f̂zy preserves {1, 2, 3}, while in the last case f̂zy is not minimal by Lemma 2.4.

Case 2. If v = 1, then for the function h (x, y, z) = fzy (z, x, fzy (x, y, z)) we have

h ∈ [∗, 2, 3; 3, ∗, 3]. The same argument as above leads to a contradiction, since ĥ
either preserves {1, 2, 3} or is not minimal by Lemma 2.4.

Case 3. If v = 2, then we consider fzy again. At least one of u and w must equal

4, as otherwise fzy preserves {1, 2, 3}. If u = 4 6= w, then f̂zy ∈ [4, 2, 3; 2, 1, 3],

f̂zy ∈ [4, 2, 3; 2, 2, 2], f̂zy ∈ [4, 2, 3; 3, 3, 3] depending on whether u = 1, 2 or 3. Thus

we have a contradiction, because f̂zy is not minimal by Lemma 2.4. The case
u 6= 4 = w is similar, so let us suppose u = v = 4. Then fzy ∈ [4, 2, 3; 2, 4, 3], hence
fzy = M2 according to Claim 2.10. We will see later that the clone generated by
M2 does not contain any function belonging to [4, 2, 3; 4, 4, 4] (cf. Theorem 2.20),
therefore f /∈ [fzy] contradicting the minimality of f .

Theorem 2.12. [Wa1] Every disorderly minimal majority function on the set
A = {1, 2, 3, 4} is isomorphic to M2.

Proof. Claim 2.7 and Claim 2.8 together with Lemma 2.4 show that if f is a min-
imal majority function on A satisfying (2.1) and f (〈abc〉) is a three-element set
but f |〈abc〉 6= p, then on two of the triplets (a, b, c) , (b, c, a) , (c, a, b) the value of f
equals the first variable, while on the third one f equals d.
If f is disorderly, then this happens for some a, b, c ∈ A, and we can suppose
without loss of generality that 〈abc〉 = 〈123〉, and f (1, 2, 3) = 4. Therefore
f ∈ [4, 2, 3; u, v, w] for some u, v, w ∈ A, and we cannot have u = v = w = 4
by Claim 2.11. Now Lemma 2.4 yields that f (〈213〉) has three elements and
f |〈213〉 6= p. Thus we can apply the argument of the previous paragraph with
〈abc〉 = 〈213〉 and we conclude that f ∈ [4, 2, 3; 2, 1, 4] or f ∈ [4, 2, 3; 4, 1, 3] or
f ∈ [4, 2, 3; 2, 4, 3]. (Note that after fixing f (1, 2, 3) = 4 it would restrict the gen-
erality if we assumed, say, that u = 4.) The first two cases are not possible by
Claim 2.9, while in the third case Claim 2.10 shows that f equals M2.
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2.3 Orderly functions

In this section we are going to search for the orderly minimal functions. The
conservative ones are already described, so we deal only with nonconservative
functions. We assume f to be such a function and we will prove several properties
of f , until we find that only a few functions possess these properties, namely
M1,M3 and M3 (y, x, z) (up to isomorphism).

So let f be an arbitrary nonconservative orderly minimal majority function
on A = {1, 2, 3, 4}. It follows from Lemma 2.4 that a stronger form of (2.2) is
valid: for any three-element subset {a, b, c} of A either f |〈abc〉 = p and f |〈bac〉 = p
or f |〈abc〉 ≡ u and f |〈bac〉 ≡ v holds for some u, v ∈ A. If the latter happens for
all four three-element subsets, then f is invariant under cyclic permutations of
its variables, i.e. it is cyclically symmetric. In the first claim we show that our
function f has to be cyclically symmetric.

Claim 2.13. The function f is cyclically symmetric.

Proof. Suppose that f is a orderly nonconservative minimal function that is not
cyclically symmetric. Then there are a, b, c ∈ A such that f |〈abc〉 = p = f |〈bac〉, say
f |〈124〉 = p = f |〈214〉. Since f is not conservative we may suppose that f |〈123〉 ≡ u
and f |〈213〉 ≡ v where at least one of u and v equals 4. If u 6= 4 then fzy|〈123〉 ≡ u,
while if u = 4 then fzy (1, 2, 3) = 1 and fzy (2, 3, 1) 6= 4.
Thus we have fzy (〈123〉) ⊆ {1, 2, 3} except when u = 4 and fzy (3, 1, 2) = 4.
Claim 2.5 shows that the latter holds only if f (3, 1, 2) = f (3, 1, 4) = f (3, 4, 1) = 4
and f (3, 4, 2) = 1, or f (3, 1, 2) = f (3, 1, 4) = f (3, 4, 2) = 4. In the first
case f (3, 4, 2) = 1 implies f |〈234〉 ≡ 1 since f is orderly, and therefore we have
fzy ∈ [1, 1, 4; ∗, ∗, ∗].
Similarly, in the second case we have f |〈234〉 ≡ 4 and this implies fzy ∈ [1, 2, 4; ∗, ∗, ∗].
However, fzy ∈ [1, 2, 4; ∗, ∗, ∗] leads to a contradiction as follows. Since f |〈124〉 =

p = f |〈214〉 we have fzy|〈124〉 = p = fzy|〈214〉 as well, and therefore f̂zy ∈ [1, 2, 4; ∗, ∗, ∗].
We see that f̂zy is disorderly, thus Theorem 2.12 implies that f̂zy is isomorphic to
M2. We will see in the proof of Theorem 2.20 that the clone generated by M2

contains no orderly functions, hence f /∈ [f̂zy] contradicting the minimality of f .
We have proved that either fzy (〈123〉) ⊆ {1, 2, 3} or fzy ∈ [1, 1, 4; ∗, ∗, ∗], and sim-
ilarly one can verify that fzy (〈213〉) ⊆ {1, 2, 3} or fzy ∈ [∗, ∗, ∗; 2, 2, 4]. Combining
these possibilities we get the following four cases.

Case 1. If fzy (〈123〉) ⊆ {1, 2, 3} and fzy (〈213〉) ⊆ {1, 2, 3}, then fzy preserves
{1, 2, 3}, which is a contradiction.

Case 2. If fzy (〈123〉) ⊆ {1, 2, 3} and fzy ∈ [∗, ∗, ∗; 2, 2, 4], then we have a contra-

diction again, because f̂zy preserves {1, 2, 3}. To verify this let us suppose that
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fzy ∈ [r, s, t; 2, 2, 4] where r, s, t 6= 4. If r, s, t are not pairwise distinct, say, r = s,

then f̂zy ∈ [r, r, r; 2, 2, 2], hence f̂zy preserves {1, 2, 3}. If {r, s, t} = {1, 2, 3}, then
we have two possibilities: either 〈rst〉 = 〈123〉 or 〈rst〉 = 〈213〉. In the first case

f̂zy ∈ [1, 2, 3; 2, 2, 2], while in the second case f̂zy ∈ [2, 2, 2; 2, 2, 2], therefore in both

cases f̂zy preserves {1, 2, 3}.

Case 3. If fzy ∈ [1, 1, 4; ∗, ∗, ∗] and fzy (〈213〉) ⊆ {1, 2, 3}, then a similar argument
leads to a contradiction.

Case 4. If fzy ∈ [1, 1, 4; ∗, ∗, ∗] and fzy ∈ [∗, ∗, ∗; 2, 2, 4], then clearly we have

f̂zy ∈ [1, 1, 1; 2, 2, 2], a contradiction again.

From now on we suppose f to be a nonconservative cyclically symmetric min-
imal majority function on A. In [Csi] these are determined by computer, here we
give a straightforward description. Since f is not conservative, we can suppose
without loss of generality that f |〈123〉 ≡ 4. In the following two claims we prove
that f preserves all three-element subsets of A except for {1, 2, 3}.

Claim 2.14. If f |〈123〉≡ 4 and f |〈213〉≡ u 6= 4, then the only subset of A not
preserved by f is {1, 2, 3}.

Proof. Suppose for contradiction that f does not preserve, say, {1, 2, 4}. Then we
have f |〈124〉 ≡ 3 or f |〈214〉 ≡ 3 or both. First let us assume that f |〈124〉 ≡ 3, and
let us consider the function g (x, y, z) = f (x, fz (x, y, z) , z). If f (2, 3, 4) = 4, then
g ∈ [3, 3, ∗; u, u, u], thus g(2) preserves {1, 2, 3} contradicting the minimality of f .
So we have f (2, 3, 4) 6= 4, and this implies fzy ∈ [3, v, w; u, u, u] with v 6= 4. Since
f does not preserve {1, 2, 3}, we must have w = 4. Claim 2.5 shows that this holds
only if f (3, 1, 4) = f (3, 4, 1) = 4 and f (2, 3, 4) = 1. However, this implies that
g ∈ [3, 1, 1; u, u, u], which is a contradiction again.
Now let us suppose that f |〈214〉 ≡ 3 and f |〈124〉 ≡ v 6= 3, and let h (x, y, z) =
f (y, x, f (x, y, z)). Then h ∈ [3, f (3, 2, 4) , f (1, 3, 4) ; u1, u2, u3], where at least two
of u1, u2, u3 equals u. Now we separate six cases upon the value of f (3, 2, 4) and
f (1, 3, 4).

Case 1. If f (3, 2, 4) = 3 or f (1, 3, 4) = 3, then h(2) preserves {1, 2, 3} since
h(2) ∈ [3, 3, 3; u, u, u].

Case 2. If f (3, 2, 4) = f (1, 3, 4) = 1, then h(2) preserves {1, 2, 3} again, as
h(2) ∈ [1, 1, 1; u, u, u].

Case 3. If f (3, 2, 4) = f (1, 3, 4) = 2, then similarly to the previous case we have
h(2) ∈ [2, 2, 2; u, u, u].
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Case 4. If f (3, 2, 4) = 1 and f (1, 3, 4) = 2, then one can check that
h(2) ∈ [2, 3, 1; u, u, u], which is a contradiction again.

Case 5. If f (3, 2, 4) = 2 and f (1, 3, 4) = 1, then h(3) preserves {1, 2, 3}, because
h(2) ∈ [u3, u1, u2; u, u, u] and thus h(3) ∈ [u, u, u; u, u, u].

Case 6. If f (3, 2, 4) = 4 or f (1, 3, 4) = 4, then let us consider the values of h
on {1, 2, 4}. We have h (2, 1, 4) = 4, h (1, 4, 2) = f (1, 3, 4) , h (4, 2, 1) = f (3, 2, 4)
and h (1, 2, 4) = v1, h (2, 4, 1) = v2, h (4, 1, 2) = v3, where at least two of v1, v2, v3

equals v. Therefore h(2)|〈214〉 ≡ 4 and h(2)|〈124〉 ≡ v 6= 3, hence h(2) preserves
{1, 2, 4}. This is a contradiction, as f does not preserve {1, 2, 4}.
Claim 2.15. If f |〈123〉≡ 4 and f |〈213〉≡ 4, then the only subset of A not preserved
by f is {1, 2, 3}.
Proof. Let us suppose again that f does not preserve {1, 2, 4}. By the previ-
ous claim we must have f |〈124〉 ≡ 3 ≡ f |〈214〉. Since f is cyclically symmetric
f |〈234〉 ≡ u1, f |〈324〉 ≡ v1, f |〈314〉 ≡ u2, f |〈134〉 ≡ v2 with suitable u1, v1, u2, v2 ∈ A.
Let us now examine the values of fzy on {1, 2, 3}. Taking into account that
f |〈124〉 ≡ 3 ≡ f |〈214〉 we can simplify the table following Claim 2.5 in the following
way (see the left column).

fzy (1, 2, 3) = 3 fzy (1, 2, 4) = 4

fzy (2, 3, 1) = u1
4−→ 3 fzy (2, 4, 1) = v1

3−→ 4

fzy (3, 1, 2) = u2
4−→ u1

1−→ v2 fzy (4, 1, 2) = v2
3−→ v1

1−→ u2

fzy (2, 1, 3) = 3 fzy (2, 1, 4) = 4

fzy (1, 3, 2) = v2
4−→ 3 fzy (1, 4, 2) = u2

3−→ 4

fzy (3, 2, 1) = v1
4−→ v2

2−→ u1 fzy (4, 2, 1) = u1
3−→ u2

2−→ v1

We see that fzy (2, 3, 1) 6= 4, and fzy (3, 1, 2) = 4 iff

(1) u2 = u1 = 4 or

(2) u2 = v2 = 4 and u1 = 1.

Similarly fzy (1, 3, 2) 6= 4, and fzy (3, 2, 1) = 4 iff

(3) v1 = v2 = 4 or

(4) v1 = u1 = 4 and v2 = 2.

Since f does not preserve {1, 2, 3}, at least one of (1)–(4) must hold. The right
column of the table shows the values of fzy on {1, 2, 4}, and as f does not preserve
this set either, fzy (4, 1, 2) = 3 or fzy (4, 2, 1) = 3 holds. Therefore at least one of
the following four statements is true:
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(5) v2 = v1 = 3;

(6) v2 = u2 = 3 and v1 = 1;

(7) u1 = u2 = 3;

(8) u1 = v1 = 3 and u2 = 2.

Now we need to consider all the 16 combinations of (1)–(4) and (5)–(8). Fortu-
nately, most of these pairs are not consistent; only (1) and (5), or (3) and (7)
can hold simultaneously. In the first case fzy ∈ [3, 3, 4; 3, 3, 3]; in the second case

fzy ∈ [3, 3, 3; 3, 3, 4], hence in both cases f
(2)
zy preserves {1, 2, 3} contradicting the

minimality of f .

We have proved that if f is an orderly nonconservative minimal function, then
f is cyclically symmetric and preserves all but one three-element subsets of A. In
the following three claims – as usually – we suppose that f |〈123〉≡ 4, f |〈213〉≡ u and
f preserves {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. Depending on whether u = 4 or not, we
will finally reach M1 or M3.

Claim 2.16. If f |〈123〉 ≡ 4, then f̂zy (〈123〉) ⊆ {1, 2, 3}, unless f (1, 2, 4) =
f (2, 3, 4) = f (3, 1, 4) = 4.

Proof. Assume that f |〈123〉 ≡ 4, and let u = f (1, 2, 4) , v = f (2, 3, 4) , w =
f (3, 1, 4). First suppose that none of u, v, w equals 4. Then fzy ∈ [u, v, w; ∗, ∗, ∗],
and if u, v, w are not pairwise distinct, say u = v, then f̂zy ∈ [u, u, u; ∗, ∗, ∗], i.e.

f̂zy (〈123〉) = {u}. If {u, v, w} = {1, 2, 3}, then we have 〈uvw〉 = 〈123〉. Indeed,
(u, v, w) = (2, 1, 3) is impossible, because v ∈ {2, 3, 4}, and (u, v, w) cannot be
(1, 3, 2) or (3, 2, 1) either, since w ∈ {1, 3, 4} and u ∈ {1, 2, 4}. Now it is easy to

check that f̂zy (〈123〉) = {1, 2, 3}.
Next suppose that exactly one of u, v, w equals 4, say u = 4 6= v, w. Then
Claim 2.5 shows that fzy ∈ [w, v, w; ∗, ∗, ∗], hence f̂zy ∈ [w,w,w; ∗, ∗, ∗], i.e.

f̂zy (〈123〉) = {w}. Finally, if two of u, v, w equals 4, say u, v = 4 6= w, then

we have fzy ∈ [w, 4, w; ∗, ∗, ∗], therefore f̂zy ∈ [w,w,w; ∗, ∗, ∗] holds again.

Claim 2.17. If f |〈213〉≡ u 6= 4 then f is isomorphic to M3 or M3 (y, x, z).

Proof. We can assume without loss of generality that u = 3. Then fzy|〈213〉 ≡ 3,

therefore f̂zy preserves {1, 2, 3} iff f̂zy (〈123〉) ⊆ {1, 2, 3}. Thus we must have
f (1, 2, 4) = f (2, 3, 4) = f (3, 1, 4) = 4 by the previous claim. Now f is determined
by its values on 〈214〉, 〈324〉 and 〈134〉. Since f preserves {1, 2, 4} , {2, 3, 4} and
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{1, 3, 4} we have three choices for each of these three values. The following table
lists the 27 possibilities.

〈214〉 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4
〈324〉 3 3 3 2 2 2 4 4 4 3 3 3 2 2 2 4 4 4 3 3 3 2 2 2 4 4 4
〈134〉 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4 1 3 4

a a a a b b a b c b a b a a a b a c b a e a b c c d c

If f corresponds to a column marked with the letter ‘a’, then f is not minimal, be-
cause it does not satisfy the condition in Remark 1.10. For example, let us consider
the first column. Here

[
f‖{1,2,4}

]
=

[
f‖{2,3,4}

]
= [m3], but f‖{1,2,4} 6= f‖{2,3,4}. (Ac-

tually f restricted to {1, 2, 4} is isomorphic to m3, while the restriction to {2, 3, 4}
is isomorphic to m3 (y, x, z).)
For functions marked with ‘b’ let us consider the composition g(x, y, z) =
f(y, x, f(x, y, z)). We have g ∈ [f(2, 1, 4), f(3, 2, 4), f(1, 3, 4); 4, 3, 3], therefore
f(g(x, y, z), g(z, x, y), g(y, z, x)) ∈ [v, v, v; 3, 3, 3] where v stands for
f (f(2, 1, 4), f(1, 3, 4), f(3, 2, 4)). It turns out that v 6= 4 in all of the 8 cases,
hence f(g(x, y, z), g(z, x, y), g(y, z, x)) preserves {1, 2, 3}, which is a contradiction.
For example, if f corresponds to the last column that is marked with ‘b’, then
g ∈ [4, 2, 3; 4, 3, 3] and v = f (4, 3, 2) = 2.
For columns marked with ‘c’ we claim that 3 /∈ range

(
h(2)

)
, where h(x, y, z) =

f(x, f(x, y, z), f (y, x, z)). Indeed, the range of f |{1,2,4}, f |{2,3,4} and f |{1,3,4} does
not contain 3, hence the same is true for h(2). Thus it suffices to verify that
3 /∈ range

(
h(2)|{1,2,3}

)
. For the function corresponding to the third column from the

right we have h(2) ∈ [4, 4, 4; 1, 1, 1]; for the other four functions h(2) ∈ [4, 4, 4; 4, 4, 4]
holds. The range of f contains 3 since we assumed f |〈213〉≡ 3, and therefore we
have a contradiction by Lemma 2.6.
Finally, the function marked with ‘d’ is isomorphic to M3, and the one marked
with ‘e’ is M3 (y, x, z).

Claim 2.18. If f |〈213〉≡ 4 then f = M1.

Proof. Let U = {f(1, 2, 4), f(3, 1, 4), f(2, 3, 4)} and V = {f(2, 1, 4), f(1, 3, 4),

f(3, 2, 4)}. If U 6= {4} then f̂zy (〈123〉) ⊆ {1, 2, 3} by Claim 2.16, and similarly

one can verify that V 6= {4} implies f̂zy (〈213〉) ⊆ {1, 2, 3}. Since f does not
preserve {1, 2, 3} we must have U = {4} or V = {4}. Let us suppose first that

U = {4} 6= V . Then f̂zy|〈123〉 ≡ 4 and f̂zy (〈213〉) ⊆ {1, 2, 3}. Now Lemma 2.4

shows that f̂zy|〈213〉≡ u 6= 4, thus f̂zy satisfies the conditions of the previous
claim. Therefore f is isomorphic to a function belonging to the clone generated
by M3. However, there is no function in [M3] with f |〈abc〉 ≡ d ≡ f |〈bac〉. Similarly
U = {4} 6= V is not possible either. Hence we must have U = {4} = V , and then
f = M1.
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Let us summarize the results of this section.

Theorem 2.19. [Wa1] Every nonconservative orderly minimal majority function
on A = {1, 2, 3, 4} is isomorphic to M1, M3 or M3 (y, x, z).

2.4 The minimal clones

Theorem 2.20. [Wa1] If f is a minimal majority function on the set {1, 2, 3, 4},
then f is either conservative, or isomorphic to one of the twelve majority functions
shown in Table 4. These functions belong to three minimal clones containing 1, 3
and 8 majority operations respectively, as shown in the table. Moreover, the clone
generated by Mi is isomorphic to [mi] (see Table 3) for i = 1, 2, 3.

Proof. Theorems 2.12 and 2.19 show that every nonconservative minimal majority
operation on {1, 2, 3, 4} is isomorphic to a function generated by M1, M2 or M3. It
remains to prove that the clones [mi] and [Mi] are isomorphic for i = 1, 2, 3. This
implies that the Mi are indeed minimal functions, and we will also see that they
generate exactly the twelve majority operations shown in Table 4. We present two
proofs for this isomorphism: an ‘abstract’ and a ‘concrete’ one.
The abstract approach is quite easy: it suffices to prove that the algebras
({1, 2, 3} ; mi) and ({1, 2, 3, 4} ; Mi) generate the same variety. Clearly the first
algebra embeds into the second one (the embedding is 1 7→ 4, 2 7→ 2, 3 7→ 3). On
the other hand, ({1, 2, 3, 4} ; Mi) is isomorphic to a subalgebra of the direct square
of ({1, 2, 3} ; mi); for example 1 7→ (1, 2) , 2 7→ (2, 1) , 3 7→ (3, 1) , 4 7→ (1, 1) is an
embedding.
The concrete proof is more elaborate, but it is constructive: we prove that
f 7→ f |{2,3,4} is an isomorphism between [Mi] and

[
Mi|{2,3,4}

]
, which is isomorphic

to [mi], since the algebras
(
{2, 3, 4} ; Mi|{2,3,4}

)
and ({1, 2, 3} ; mi) are isomorphic.

It is obvious that this restriction is a surjective clone homomorphism, so it suffices
to show that every f ∈ [Mi] is uniquely determined by its restriction to {2, 3, 4}.
Let σ and % be the equivalence relations corresponding to the partitions
{{1, 4} , {2} , {3}} and {{1} , {2, 3, 4}} respectively. Since Mi preserves these equiv-
alence relations and all unary relations except for {1, 2, 3}, any f ∈ [Mi] also pre-
serves them. There is only one majority operation on a two-element set, therefore
the restrictions of Mi to two-element subsets are all isomorphic. Moreover, any
bijection between two-element subsets is an isomorphism between the correspond-
ing restrictions of Mi, consequently the same is true for every f ∈ [Mi].
Now let f1, f2 ∈ [Mi] be n-ary operations such that f1|{2,3,4} = f2|{2,3,4}, and
let a1, . . . , an be arbitrary elements of {1, 2, 3, 4}. Our goal is to prove that
f1 (a1, . . . , an) = f2 (a1, . . . , an).
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We define the elements a′
j and a′′

j as follows.

a′
j =

{
aj if aj 6= 1

4 if aj = 1
a′′

j =

{
3 if aj 6= 1

1 if aj = 1
(j = 1, . . . , n)

We have ajσa′
j and a′

j ∈ {2, 3, 4}, therefore

f1 (a1, . . . , an) σf1 (a′
1, . . . , a

′
n) = f2 (a′

1, . . . , a
′
n) σf2 (a1, . . . , an) ,

hence f1 (a1, . . . , an) σf2 (a1, . . . , an). If f1 (a′
1, . . . , a

′
n) ∈ {2, 3}, then we are done,

because 2 and 3 are singleton blocks of σ. If f1 (a′
1, . . . , a

′
n) = 4, then we can

conclude only that f1 (a1, . . . , an) , f2 (a1, . . . , an) ∈ {1, 4}. Since 1 and 4 are
not related in %, it suffices to show that f1 (a1, . . . , an) %f2 (a1, . . . , an). We have
f1|{2,3} = f2|{2,3}, and for k = 1, 2 the algebras

(
{2, 3} ; fk|{2,3}

)
and

(
{1, 3} ; fk|{1,3}

)

are isomorphic under the same isomorphism (say, 2 7→ 1, 3 7→ 3), therefore
f1|{1,3} = f2|{1,3}. Thus f1 (a′′

1, . . . , a
′′
n) = f2 (a′′

1, . . . , a
′′
n), and then

f1 (a1, . . . , an) %f1 (a′′
1, . . . , a

′′
n) = f2 (a′′

1, . . . , a
′′
n) %f2 (a1, . . . , an) .

follows, since aj%a′′
j . By transitivity we have f1 (a1, . . . , an) %f2 (a1, . . . , an), and

this completes the second proof. In order to find the ternary operations in the
clones [Mi] we can use Theorem 1.7 to determine their restrictions to {2, 3, 4}, and
then apply the above argument to extend these restrictions to {1, 2, 3, 4}. The
resulting functions are shown in Table 4.

There are 4, 12, 24 majority operations on A = {1, 2, 3, 4} that are isomorphic
to M1, M2, M3 respectively, so there are 4+12+24 = 40 nonconservative majority
minimal clones on a four-element set. These clones contain 4 · 1 + 12 · 3 + 24 · 8 =
232 majority operations, hence there are 232 nonconservative minimal majority
operations on A, and they fall into 1 + 3 + 8 = 12 isomorphism classes.

For completeness, let us count the conservative clones and operations, too.
We know from Theorem 1.9 that every conservative minimal majority clone can
be generated by a unique operation whose restrictions to three-element subsets
are isomorphic to m1, m2 or m3. Conversely, every such operation generates a
minimal clone, and they generate different clones, therefore it suffices to determine
the number of these functions. Let us say that these are our“favourite”generators.
On a given three-element set there are 3, 1, 3 operations isomorphic to m1, m2, m3

respectively, hence we have 3 + 1 + 3 = 7 choices on each of the four three-element
subsets. Consequently, the number of conservative minimal majority clones on the
four-element set is 74 = 2401. (This is easy to generalize: on the n-element set

there are 7(
n

3
) conservative minimal majority clones.)
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To count the minimal functions, let us note that Theorem 1.9 shows that if
both m2 and m3 appear (in an isomorphic copy) among the restrictions of our
generator to three-element sets, then the clone contains 24 majority operations.
If m3 appears, but m2 does not, then we have 8 majority functions in the clone;
if m2 appears, but m3 does not, then we get 3 majority functions. Finally, if all
the restriction to three-element sets are isomorphic to m1, then the clone contains
just one majority operation. Therefore, the number of nonconservative minimal
majority operations on A is 34·1+(44 − 34)·3+(64 − 34)·8+(74 − 64 − 44 + 34)·24 =
32 646. (This also generalizes to arbitrary finite base sets; we leave it to the reader
to write up the formula.)

To see how many functions we get if we count only up to isomorphism, we
return to our 2401 favourite generators, and assign a directed graph to each of
them. The vertex set is A = {1, 2, 3, 4}, and there will be exactly four edges:
one edge leaving from every vertex. In the graph corresponding to the majority
operation f , the edge leaving from a ∈ A is determined by the restriction of f to
{b, c, d} = A \ {a} as follows. If this restriction is isomorphic to m2, then we draw
an arrow from a to a (a loop). If f |{b,c,d} is isomorphic to m1, then we draw an
arrow from a to b if f |〈bcd〉≡ b ≡f |〈cbd〉. If f |{b,c,d} is isomorphic to m3, say f |〈bcd〉≡ b
and f |〈cbd〉≡ c, then we draw a double arrow from a to d. Clearly two functions
are isomorphic iff the corresponding graphs are isomorphic (regarding single and
double edges as different).

If we do not distinguish between single and double arrows, then we get the
graph of a map A → A, and conversely, the graph of any transformation of A is
the graph of one of our favourite generators. So we only have to count the number
of unary operations on A up to isomorphism, and then consider the possible ways
to double some of the arrows in their graphs. The results are summarized in
Figure 6. There are 19 graphs with only single arrows, and for each of them we
gave the number of ways to double some of the arrows (the first number below
each graph). Note that loops are always single arrows, and we have to take into
account the symmetries (i.e. automorphisms) of the graph at the counting. For
example, consider the graph in the second column of the second row. Here we have
three edges that we can double, but the two edges at the bottom play symmetric
roles, therefore only 6 of the total number of 23 possibilities yield nonisomorphic
graphs:

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4
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We end up with 126 favourite generators up to isomorphism, i.e. there are
126 conservative minimal majority clones on the four-element set up to algebra
isomorphism. We can apply Theorem 1.9 again to count the number of majority
operations in these clones. If there is a loop and a double arrow, then we get 24
majority functions; if there is a double arrow but no loop, then we get 8; if there
is a loop but no double arrow, then we get 3, and if there are only single arrows
(none of whom is a loop), then we get only one function. In the example above,
we obtain 1 · 3 + 5 · 24 = 123 functions. Performing this calculation for all of the
19 cases (see the second number below each graph in Figure 6) we find that there
are 1653 conservative minimal majority operations on the four element set up to
isomorphism.

The hardest task is to count the clones up to clone isomorphism. Let f1 and
f2 be conservative minimal majority operations on A. If the algebras A1 = (A; f1)
and A2 = (A; f2) generate the same variety, then the clones [f1] and [f2] are
isomorphic. Unfortunately, the converse is not true in general: the isomorphism of
the clones ensures only that the two varieties are term equivalent. However, if f1

and f2 are the favourite generators of the corresponding clones, then the converse
holds as well. To prove this, we observe that the favourite generator is canonical
in the sense that if f is one of our favourite generators, then it is the only majority
function in [f ] that satisfies the identities f (2) = f and g(2) = f , where g stands for
the operation f (f (x, y, z) , f (y, x, z) , z). This implies that if ϕ is an isomorphism
from [f1] to [f2], then ϕ (f1) = f2, hence HSP A1 = HSP A2.

Therefore we only need to find the varieties generated by algebras of the form
A = (A; f), where f is one of the 126 favourite generators. Any variety is deter-
mined by its subdirectly irreducible members, and according to Jónsson’s lemma,
these are in HSA in our case, since A generates a congruence-distributive variety.
As A has only four elements, there is no difficulty in listing all the algebras in HSA.
We omit the details, and present only the final results: 121 of the 126 algebras are
subdirectly irreducible (hence they generate pairwise different varieties); only the
algebras represented by the following five graphs are not subdirectly irreducible:

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

For the first two algebras HSA contains only one- and two-element subdirectly
irreducible algebras; for the other three cases HSA contains ({1, 2, 3} ; m3) as well.
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Thus there are 123 conservative minimal majority clones on the 4-element set up
to clone isomorphism.

We have seen in Theorem 2.20 that there are three nonconservative minimal
majority clones on {1, 2, 3, 4} up to clone isomorphism. The variety generated
by ({1, 2, 3, 4} ; Mi) contains only one- and two-element subdirectly irreducible
algebras for i = 1, and it contains also ({1, 2, 3} ; mi) for i = 2, 3. Thus the clones
[M1] and [M3] are isomorphic to some of the 123 conservative ones, but [M2] is
not: altogether there are 124 minimal majority clones on the four-element set up
to isomorphism. The numerical outcomes of the above discussion are summarized
in Table 5.



Chapter 3

Minimal clones with few majority
functions

We will study minimal majority clones as abstract clones in this chapter. The-
orem 1.2 shows that the minimality of a majority clone can be read off from its

ternary operations, thus it suffices to consider the algebra
(
C(3); F 3

3 , e
(3)
1 , e

(3)
2 , e

(3)
3

)

only. We will refer to this algebra as the ternary part of C, and denote it by C(3).
This is an algebra with one quaternary and three nullary operations satisfying the
following identities.

F 3
3

(
e
(3)
i , f1, f2, f3

)
= fi (i = 1, 2, 3)

F 3
3

(
f, e

(3)
1 , e

(3)
2 , e

(3)
3

)
= f

F 3
3

(
F 3

3 (f, g1, g2, g3) , h1, h2, h3

)
=

F 3
3 (f, F 3

3 (g1, h1, h2, h3) , F 3
3 (g2, h1, h2, h3) , F 3

3 (g3, h1, h2, h3))

The clone C is minimal iff C(3) has no proper nontrivial (i.e. different from
{e1, e2, e3}) subalgebras. The main result of this chapter is the following theorem
that describes minimal clones of type (III) with at most four majority operations,
i.e. with at most seven ternary operations. The characterization is given up to the
isomorphism of the ternary part of the clone (but not up to the isomorphism of
the whole clone!).

Theorem 3.6 [Wa4] There is no minimal clone with exactly two or four majority
operations. If C is a minimal clone with one or three majority operations, then
C(3) is isomorphic to [m1]

(3) or [m3]
(3), respectively (see Table 3).

In Section 3.1 we prepare the proof of this theorem by proving a statement
about the possible symmetries of majority operations in a minimal clone, and we

33
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also examine the simplest case, when there is just one majority operation in the
clone. Section 3.2 contains the hard part of the proof: the cases of 2, 3 and 4
majority operations.

3.1 Symmetries of minimal majority functions

For any abstract clone C, the symmetric group Sn acts naturally on C(n): applying
a permutation π ∈ Sn to f ∈ C(n) we get

f
(
e
(n)
π(1), e

(n)
π(2), . . . , e

(n)
π(n)

)
. (3.1)

In the case of concrete clones this means that we permute the variables of f , and
we will adopt this terminology to the abstract case, even though we cannot speak
about variables here. If f is a nontrivial operation, then so are the operations of
the form (3.1), hence Sn acts on C(3) \ I, too. Let us denote by σ (f) the stabilizer
of f , i.e. the group of permutations leaving f invariant.

If f is a majority operation, then σ (f) is a subgroup of S3, therefore it has
1, 2, 3 or 6 elements. If σ (f) ⊇ A3, then we say that f is cyclically symmetric, and
if σ (f) = S3, then we say that f is totally symmetric.

If C is a majority clone with just one majority operation, then the majority rule
and the clone axioms completely determine the structure of C(3), and it is clear
that in this case C is minimal. For example, [m1] is such a clone, so we have the
following theorem.

Theorem 3.1. [Wa4] If C is a minimal clone with one majority operation, then

C(3) is isomorphic to [m1]
(3).

If f is the unique majority operation in such a clone, then every nontrivial
ternary superposition of f yields f itself. In particular, f is totally symmetric,
and satisfies f (f (x, y, z) , y, z) = f (x, y, z). It is easy to check that this identity
together with the total symmetry ensures that f does not generate any nontrivial
ternary operation other than f , hence the clones described in the above theorem
are exactly the factor clones of the clone of the variety M1 defined by the following
identities:

f (x, y, z) = f (y, z, x) = f (y, x, z) = f (f (x, y, z) , y, z) , f (x, x, y) = x. (3.2)

This variety has infinitely many subvarieties, therefore there are infinitely many
nonisomorphic minimal clones with just one majority operation. To see this, we
will construct a subdirectly irreducible (in fact, simple) algebra An ∈ M1 of size n
for every n > 6. Since M1 is congruence distributive, Am /∈ HSP(An) if m > n by
Jónsson’s lemma, hence the subvarieties HSP(An) are all different, and the clones
Clo An are pairwise nonisomorphic.
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Example 3.2. Let An = ({1, 2, . . . , n} ; f), where f is a totally symmetric majority
operation defined for 1 ≤ a < b < c ≤ n by

f (a, b, c) =






a if
⌈

a+c
2

⌉
< b < c;

b if b =
⌊

a+c
2

⌋
or b =

⌈
a+c
2

⌉
;

c if a < b <
⌊

a+c
2

⌋
.

Note that it suffices to define f (a, b, c) for a < b < c since f is a totally symmetric
majority function. Let us consider the elements of An as points on the real line. If
a < c, then we could call the points

⌊
a+c
2

⌋
and

⌈
a+c
2

⌉
the midpoints of the segment

between a and c. (Segments of even length have one midpoint, while segments of
odd length have two midpoints.) If a < b < c and b is a midpoint of the segment
between a and c, then f (a, b, c) = b, otherwise f (a, b, c) is that endpoint of this
segment which is farther from b.

It is easy to check that An ∈ M1 (because f is conservative), and we claim that
An is simple if n > 6. To prove this, let us first observe that if I is a congruence
class, then I has the following property: if at least two of a, b, c belong to I, then
f (a, b, c) ∈ I. Let us call such subsets ideals of An. If I is an ideal and a, c ∈ I,
then I contains the midpoints of the segment between a and c. Successively taking
midpoints we can reach any point between a and c, therefore this whole segment
belongs to I, i.e. ideals are convex.

Let ϑ be a nontrivial congruence of An, and let a be the least element of An

that belongs to a non-singleton block I of ϑ. Since a is the smallest element of I,
which is a convex set with at least two elements, we must have a+1 ∈ I. If a ≥ 4,
then f (1, a, a + 1) = 1, and by the ideal property f (1, a, a + 1) ∈ I. Now 2 ∈ I
follows by convexity, and then n = f (1, 2, n) ∈ I (here we need that n ≥ 5). As
both 1 and n belong to I, we have I = {1, 2, . . . , n}, i.e. ϑ is the total relation on
An.

If a + 1 ≤ n − 3, then a similar argument works: n = f (a, a + 1, n) ∈ I, and
then 1 = f (1, n − 1, n) ∈ I, therefore ϑ is the total relation again. The assumption
n > 6 ensures that at least one of a ≥ 4 and a + 1 ≤ n − 3 holds, hence An is
simple, as claimed.

From now on C will denote an arbitrary majority minimal clone. To simplify
the notation we will just write 1, 2 and 3 for the first, second and third ternary
projections respectively, and numbers greater than 3 will denote nontrivial ele-
ments of C(3). Our next goal is to prove that if all majority functions in C are
cyclically symmetric, then there is only one majority operation in the clone, i.e.
C(3) ∼= [m1]

(3).
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In preparation, we introduce three binary operations on the ternary part of C.

f ∗ g = f (g (1, 2, 3) , g (2, 3, 1) , g (3, 1, 2))

f • g = f (g (1, 2, 3) , 2, 3)

f } g = f (1, g (1, 2, 3) , g (1, 3, 2))

The proof of the next theorem is similar to the proof of Theorem 2.1 (note that
∗ is the same operation as the one introduced there). Concerning the operation •
see also Lemma 4.4 of [HM].

Theorem 3.3. [Wa4] The operations ∗, • and } are associative, and if C is a
majority clone, then C(3) \ I is closed under them. Therefore if C(3) is finite, then
it contains a nontrivial idempotent element for each of these operations.

Proof. It is easy to check that if f and g are majority operations, then so are
f ∗ g, f • g and f } g, hence C(3) \ I is closed under these three operations. Asso-
ciativity can be checked by a routine calculation using the three defining axioms
of abstract clones. We work out the details for }, the other two cases are similar.
Let us compute (f } g) } h first:

(f } g) } h = (f } g) (1, h (1, 2, 3) , h (1, 3, 2)) =

f (1, g (1, h (1, 2, 3) , h (1, 3, 2)) , g (1, h (1, 3, 2) , h (1, 2, 3))) .

For f } (g } h) we have

f } (g } h) = f (1, (g } h) (1, 2, 3) , (g } h) (1, 3, 2)) =

f (1, g (1, h (1, 2, 3) , h (1, 3, 2)) (1, 2, 3) , g (1, h (1, 2, 3) , h (1, 3, 2)) (1, 3, 2)) =

f (1, g (1, h (1, 2, 3) , h (1, 3, 2)) , g (1, h (1, 3, 2) , h (1, 2, 3))) .

The last statement of the theorem follows since every finite semigroup contains an
idempotent element.

Now we are ready to prove the main result of this section. This theorem is an
analogue of a theorem of J. Dudek and J. GaÃluszka which states that if a binary
minimal clone contains finitely many nontrivial binary operations all of which are
commutative, then there is just one nontrivial binary operation in the clone [DG].

Theorem 3.4. [Wa4] Let C be a majority minimal clone with finitely many ternary
operations. If every nontrivial ternary operation in C is cyclically symmetric, then
C contains only one nontrivial ternary operation, hence C(3) ∼= [m1]

(3).
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Proof. Let C(3) = {1, 2, . . . , n}, where 1, 2, 3 are the ternary projections as before.
First let us assume that there is no totally symmetric majority function in C, i.e.
σ (f) = A3 for all f ≥ 4. By Theorem 3.3 there is a nontrivial }-idempotent,
say 4 } 4 = 4. Since 4 is not invariant under the transposition (23), the element
4 (1, 3, 2) is different from 4, thus we may suppose without loss of generality that
4 (1, 3, 2) = 5. We have 4 (1, 4, 5) = 4 } 4 = 4, hence 4|〈145〉 ≡ 4 because 4 is
cyclically symmetric. We can compute 4 (1, 5, 4) as well, using the associativity of
composition:

4 (1, 5, 4) = 4 (1 (1, 3, 2) , 4 (1, 3, 2) , 5 (1, 3, 2)) = 4 (1, 4, 5) (1, 3, 2) = 4 (1, 3, 2) = 5.

Thus we have 4|〈154〉 ≡ 5, therefore 4 preserves {1, 4, 5}, and its restriction to this
set is isomorphic to m3. However, m3 generates majority operations that are not
cyclically symmetric (see Table 3), and this contradicts our assumption that every
nontivial ternary operation of C is cyclically symmetric. This contradiction shows
that C must contain at least one totally symmetric majority function. If f and g
are totally symmetric, then f • g is invariant under the transposition (23):

(f • g) (1, 3, 2) = f (g (1, 2, 3) , 2, 3) (1, 3, 2) =

f (g (1, 3, 2) , 3, 2) = f (g (1, 2, 3) , 2, 3) = f • g.

Since f • g is nontrivial, it is also cyclically symmetric, hence σ (f • g) = S3. Thus
totally symmetric majority functions form a finite semigroup under •, so there is a
totally symmetric f ∈ C(3) with f • f = f . Then f satisfies the identities in (3.2),

hence [f ](3) ∼= [m1]
(3). By the minimality of C we have [f ] = C, and this proves the

theorem.

Corollary 3.5. [Wa4] If C is a majority minimal clone with 2 ≤
∣∣C(3)

∣∣ < ℵ0, then

the action of S3 on C(3) \ I has an orbit with at least 3 elements.

Proof. By the previous theorem there is a nontrivial operation f ∈ C(3) which is
not cyclically symmetric. Thus σ (f) has at most 2 elements, and therefore the
size of the orbit of f is 6/ |σ (f)| ≥ 3.

3.2 Minimal clones with at most four majority

operations

In this section we prove the main result of this chapter, the following characteri-
zation of majority minimal clones with at most seven ternary operations.

Theorem 3.6. [Wa4] There is no minimal clone with exactly two or four majority
operations. If C is a minimal clone with one or three majority operations, then
C(3) is isomorphic to [m1]

(3) or [m3]
(3), respectively (see Table 3).
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Theorem 3.1 describes the minimal clones with one majority operation, and
from Corollary 3.5 we see immediately that there is no minimal clone with exactly
two majority operations. We will deal with the cases of three and four majority
operations in two separate lemmas.

Lemma 3.7. [Wa4] If C is a minimal clone with three majority operations, then

C(3) is isomorphic to [m2]
(3).

Proof. Let C be a minimal clone with three majority functions, and let C(3) =
{1, 2, 3, 4, 5, 6}, where 1, 2, 3 are the ternary projections. Considering the orbits
of the action of S3 on {4, 5, 6} we see by Corollary 3.5 that the only possibility
is that there is just one orbit, i.e. any two nontrivial ternary operations can be
obtained form each other by cyclic permutations of variables. We can suppose
that 4 (2, 3, 1) = 5 and 5 (2, 3, 1) = 6 (and then 6 (2, 3, 1) = 4). Any composition
of majority operations is again a majority operation, therefore the set C(3) \ I =
{4, 5, 6} is preserved by 4. This implies that every operation in C preserves {4, 5, 6},
since C = [4] . Thus we have a clone homomorphism

ϕ : C → O{4,5,6}, f 7→ f |{4,5,6}.

We claim that ϕ is injective on {1, 2, 3, 4, 5, 6}. Clearly it suffices to show that
ϕ (4) 6= ϕ (5) 6= ϕ (6) 6= ϕ (4). We prove the first unequality, the other two are
similar. Let us compute 5 (4, 5, 6) using the associativity of composition:

5 (4, 5, 6) = 4 (2, 3, 1) (4, 5, 6) = 4 (5, 6, 4) =

4 (4 (2, 3, 1) , 5 (2, 3, 1) , 6 (2, 3, 1)) = 4 (4, 5, 6) (2, 3, 1) .

Since 4 (4, 5, 6) ∈ {4, 5, 6} and none of these three elements are invariant under
the permutation (231), we have 5 (4, 5, 6) = 4 (4, 5, 6) (2, 3, 1) 6= 4 (4, 5, 6). Thus
4|{4,5,6} 6= 5|{4,5,6} as claimed. Now we see that C(3) is isomorphic to its image under
ϕ, which is the ternary part of a minimal clone on a three-element set. Therefore
C(3) ∼= [mi]

(3) for some i ∈ {1, 2, 3}. The cardinality of C(3) is 6, so we must have
i = 2, and the lemma is proved.

Remark 3.8. The previous lemma can be formulated in terms of algebras and
varieties as follows. Let M2 be the variety defined by the three-variable iden-
tities satisfied by ({1, 2, 3} ; m2). If f is a majority operation on a set A, then
[f ] is a minimal clone with exactly three majority operations iff (A; f) is term
equivalent to an element of M2 \M1. Note that no two different subvarieties of
M2 are term equivalent, since for any A = (A; f) ∈ M2 the basic operation f is
the only nontrivial ternary function in Clo A which is invariant under the trans-
position (23). This means that in order to show that there are infinitely many
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nonisomorphic minimal clones with three majority operations, it suffices to ver-
ify that the variety M2 has infinitely many subvarieties that are not contained
in M1. If dA is the dual discriminator function on a set A with at least three
elements, then (A; dA (z, y, x)) ∈ M2 \ M1, and by Jónsson’s lemma we have
(B; dB (z, y, x)) /∈ HSP (A; dA (z, y, x)) if A is finite and |A| < |B|. Thus the alge-
bras (A; dA (z, y, x)) with A = {1, 2, . . . , n} and n ≥ 3 generate pairwise different
subvarieties of M2 that are not contained in M1.

Lemma 3.9. [Wa4] There is no minimal clone with four majority operations.

Proof. Let us suppose that C is a minimal clone with four majority functions,
and let C(3) = {1, 2, 3, 4, 5, 6, 7}, with 1, 2, 3 being the ternary projections. Corol-
lary 3.5 shows that there are two orbits under the action of S3 on {4, 5, 6, 7}: a
three-element and a one-element orbit. Thus one of the four nontrivial opera-
tions is totally symmetric, the other three operations have two-element invariance
groups, and the latter three functions can be obtained from each other by cyclic
permutations of their variables. We may assume without loss of generality that 7
is totally symmetric, and 4, 5 and 6 are invariant under the transpositions (23),
(13) and (12) respectively. Then we must have 4 (2, 3, 1) = 5, 5 (2, 3, 1) = 6 and
6 (2, 3, 1) = 4.
Since any composition of majority operations is nontrivial, every operation in C
preserves {4, 5, 6, 7}. Restricting to this set, we obtain (the ternary part of) a
minimal clone on a four-element set. The operation 7 (4, 5, 6) is easily seen to be
totally symmetric: applying a permutation to 7 (4, 5, 6) will just permute 4, 5 and
6 in the arguments of 7, and this has no effect on the final value, as 7 is totally
symmetric. Since the only totally symmetric operation in C(3) is 7, we must have
7 (4, 5, 6) = 7. This means that the restriction of 7 to {4, 5, 6, 7} is a totally sym-
metric minimal majority operation that is not conservative. Now Theorem 2.20
implies that 7|{4,5,6,7} is isomorphic to M1, so 7 (a, b, c) = 7 for any pairwise distinct
a, b, c ∈ {4, 5, 6, 7}. Moreover, since M1 does not generate any majority operation
but itself, the operations 4, 5, 6, 7 coincide with each other on {4, 5, 6, 7}:

f (a, b, c) = 7 if f, a, b, c ∈ {4, 5, 6, 7} and a, b, c are pairwise distinct. (3.3)

In particular, we have 6 (6, 4, 5) = 7, and taking into account that 4 and 5 are
obtained from 6 by cyclic permutations of variables, this means that 6 ∗ 6 = 7.
In what follows, we will compute many more compositions until we get a contra-
diction by constructing a nontrivial ternary operation in C which is different from
4, 5, 6 and 7. The operation 7 (1, 2, 7) is invariant under the transposition (12),
hence it is either 6 or 7. The latter is impossible, since 7 (1, 2, 7) = 7 implies that
7 satisfies the identities in (3.2), and then the clone generated by 7 would contain
just one nontrivial ternary operation. Thus we have 7 (1, 2, 7) = 6, and by the
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total symmetry of 7 it follows that

7 (1, 2, 7) = 7 (7, 1, 2) = 7 (2, 7, 1) = 6. (3.4)

Let us now consider the values of 6 on (1, 2, 7) , (2, 7, 1) , (7, 1, 2). We have
6 (1, 2, 7) ∈ {6, 7} since 6 (1, 2, 7) is invariant under (12). Applying this trans-
position to 6 (2, 7, 1) we obtain 6 (7, 1, 2):

6 (2, 7, 1) (2, 1, 3) = 6 (1, 7, 2) = 6 (7, 1, 2) .

Therefore either both 6 (2, 7, 1) and 6 (7, 1, 2) are equal to 6 or 7, or one of them
is 4, the other one is 5. The resulting eight possibilities are summarized in the
following table.

6 (1, 2, 7) 6 6 6 6 7 7 7 7
6 (2, 7, 1) 7 6 4 5 7 6 4 5
6 (7, 1, 2) 7 6 5 4 7 6 5 4

↑ ↑
(3.5)

Let us consider any of the eight columns, and let a, b, c be the elements in this
column. Then using the fact that 7 = 6 ∗ 6, we obtain

7 (1, 2, 7) = 6 (6 (1, 2, 7) , 6 (2, 7, 1) , 6 (7, 1, 2)) = 6 (a, b, c) .

For the two columns marked by the arrows this gives 7 (1, 2, 7) = 6 by the ma-
jority rule. Similarly, for the first and the fifth column the majority rule yields
7 (1, 2, 7) = 7, and in the remaining four cases we get 7 (1, 2, 7) = 7 again, accord-
ing to (3.3). However, we already know from (3.4) that 7 (1, 2, 7) = 6, so one of
the two possibilities indicated by the arrows takes place. In both cases we have

6 (2, 7, 1) = 6. (3.6)

Now we go on to collect some information about the function 7. For the reader’s
convenience, we put the number of the equation being used over the equality sign
in the following calculations. First of all, using (3.4) and (3.6) we obtain

7 (6, 2, 7)
( 3.4)
= 7 (7, 1, 2) (2, 7, 1)

( 3.4)
= 6 (2, 7, 1)

( 3.6)
= 6.

Permuting variables we get

7 (4, 3, 7) = 7 (6, 2, 7) (2, 3, 1) = 6 (2, 3, 1) = 4; (3.7a)

7 (5, 3, 7) = 7 (6, 2, 7) (1, 3, 2) = 6 (1, 3, 2) = 5. (3.7b)

We already know from (3.3) that 7 (4, 5, 7) = 7, and let us suppose for a moment
that 7 (4, 5, 3) = 7. Then (3.7) shows that 7 preserves {3, 4, 5, 7}, and its restriction
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to this four-element set is a totally symmetric nonconservative minimal majority
function. Therefore it is isomorphic to M1 by Theorem 2.20. However, this is
clearly not the case. This contradiction shows that 7 (4, 5, 3) 6= 7. Let us observe
that 7 (4, 5, 3) (2, 1, 3) = 7 (5, 4, 3) = 7 (4, 5, 3), i.e. 7 (4, 5, 3) is invariant under the
transposition (12). Since 6 and 7 are the only nontrivial functions in our clone
which are invariant under (12), we must have

7 (4, 5, 3) = 6. (3.8)

Next we calculate the value of 6 (4, 5, 3):

6 (4, 5, 3)
( 3.4)
= 7 (1, 2, 7) (4, 5, 3)

( 3.8)
= 7 (4, 5, 6)

( 3.3)
= 7. (3.9)

Note that 6 (3, 4, 5) (2, 1, 3) = 6 (3, 5, 4) = 6 (5, 3, 4), hence similarly to the previous
table, we can list the possible behaviours of 6 on {(4, 5, 3) , (5, 3, 4) , (3, 4, 5)}.

6 (4, 5, 3) 7 7 7 7
6 (5, 3, 4) 7 6 5 4
6 (3, 4, 5) 7 6 4 5

↑
(3.10)

We can read 7 (4, 5, 3) from this table in the same way as we read 7 (1, 2, 7) from
(3.5). We see that 7 (4, 5, 3) = 7 in three of the four cases. However, we already

know that 7 (4, 5, 3)
( 3.8)
= 6, so the only possibility is the one marked by the arrow.

Finally, to reach the desired contradiction, let us consider 6 (2, 3, 6). Denoting this
composition by f , we show that f (4, 5, 3) = 5:

f (4, 5, 3) = 6 (2, 3, 6) (4, 5, 3)
( 3.9)
= 6 (5, 3, 7)

( 3.4)
= 7 (1, 2, 7) (5, 3, 7)

(3.7b)
= 7 (5, 3, 5) = 5.

The operation f is nontrivial, but it does not coincide with any of 4, 5, 6 or 7,
because the value of these functions on (4, 5, 3) is different from 5. Indeed, we have

4 (4, 5, 3) = 6 (5, 3, 4)
( 3.10)

= 6;

5 (4, 5, 3) = 6 (3, 4, 5)
( 3.10)

= 6;

6 (4, 5, 3)
( 3.9)
= 7;

7 (4, 5, 3)
( 3.8)
= 6.

Thus we have more than four majority operations in our clone, and this contra-
diction completes the proof.
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Minimal clones with weakly
abelian representations

Our goal in this chapter is to generalize Theorem 1.13 using a weaker term con-
dition. Let us first recall the definition of abelianness together with three other
term conditions (cf. [KK]). For an algebra A let M(A) denote the set of 2 × 2

matrices of the form
(

t(a,c) t(a,d)
t(b,c) t(b,d)

)
where t is a polynomial of A of arity n + m and

a,b ∈ An, c,d ∈ Am. We say that the algebra A is

(1) weakly abelian, if
(

u u
u v

)
∈ M(A) implies u = v;

(2) abelian, if
(

u u
v w

)
∈ M(A) implies v = w;

(3) rectangular, if
(

u v
w u

)
∈ M(A) implies u = v = w;

(4) strongly abelian, if it is both abelian and rectangular.

All of these properties are inherited by subalgebras and direct products, but
not by homomorphic images. If A is a groupoid, and we apply (1) to t(x, y) = xy,
then we get that whenever in the multiplication table of A we see a configuration
like this:

· · · · c · · · d · · ·
...

...
...

a · · · u · · · u · · ·
...

...
...

b · · · u · · · v · · ·
...

...
...

then we must have u = v. Of course, this is just a necessary condition for A to be
weakly abelian.

43
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The main result of this chapter is the following characterization of minimal
clones with weakly abelian representations.

Theorem 4.16 [Wa2] If a minimal clone has a nontrivial weakly abelian repre-
sentation, then it also has a nontrivial abelian representation. Therefore such a
clone must be a unary clone, the clone of an affine space, a rectangular band or a
p-cyclic groupoid for some prime p.

It was proved in Theorem 3.1 of [Kea] that minimal clones of type (III) and (V)
do not have nontrivial abelian representations, and the proof actually shows that
they do not have nontrivial weakly abelian representations either. Every represen-
tation of a minimal clone of type (I) or (IV) is clearly abelian, therefore we only
need to consider weakly abelian groupoids with a minimal clone. In Section 4.1
we discuss the relationship between weak abelianness and distributivity in idem-
potent groupoids; we describe distributive groupoids with a minimal clone, and
we prove that if a weakly abelian groupoid has a minimal clone, then at least
one of the distributive laws hold. Section 4.2 finishes the proof of Theorem 4.16
by characterizing weakly abelian groupoids satisfying one-sided distributivity and
having a minimal clone. Section 4.3 contains some corollaries. It will turn out
that if a minimal clone has a (weakly) abelian representation, then every repre-
sentation is weakly abelian, but not necessarily abelian. From Theorem 4.16 we
will easily obtain the list of minimal clones with rectangular and strongly abelian
representations, and we will see that if a minimal clone has a nontrivial rectan-
gular representation, then it also has a nontrivial strongly abelian representation;
moreover, all representations are strongly abelian.

4.1 Weak abelianness and distributivity

In the theory of quasigroups a different notion of ‘weak abelianness’ is defined
by the identities

(xx)(yz) = (xy)(xz), (yz)(xx) = (yx)(zx), (4.1)

and a groupoid is called ‘abelian’ (or medial, or entropic) if (xy)(zu) = (xz)(yu)
holds (see [Kep]). To avoid confusion with the universal algebraic definitions, we
will use the word entropic in the latter case. Minimal clones are always idempotent,
and in this case the identities (4.1) are equivalent to the distributive laws:

Left distributivity: x(yz) = (xy)(xz),
Right distributivity: (yz)x = (yx)(zx).
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Any idempotent abelian groupoid is entropic [Kea], and one might expect that
idempotent weakly abelian groupoids are distributive. We do not know if this is
true or not, but for our present purposes the weaker properties stated in the next
two lemmas are sufficient.

Lemma 4.1. [Wa2] If A is an idempotent weakly abelian groupoid and
u, v1, v2 ∈ A, then uv1 = uv2 = w implies u(v1v2) = w, i.e. {v : uv = w} is a
subuniverse for any given u,w ∈ A.

Proof. Applying the definition of weak abelianness with a = (u, v1, u),b = (u, u, v1),
c = v1,d = v2 for t(x1, x2, x3, x4) = (x1x2)(x3x4) we get

(
(uv1)(uv1) (uv1)(uv2)
(uu)(v1v1) (uu)(v1v2)

)
=

(
ww ww
uv1 u(v1v2)

)
=

(
w w
w u(v1v2)

)
∈ M(A),

hence u(v1v2) = w.

Lemma 4.2. [Wa2] Every idempotent weakly abelian groupoid satisfies the follow-
ing identities:

(i) (xy)(xz) = (x(yz))((xy)(xz));

(ii) (yx)(zx) = ((yx)(zx))((yz)x);

(iii) (xy)x = x(yx).

Proof. Let A be an idempotent weakly abelian groupoid. To prove (i), we will
use the 8-ary term ((x1x2)(x3x4))((x5x6)(x7x8)); the underlined letters show the
entries occupied by c and d in the definition of weak abelianness. We have

(
((xy)(xy))((xx)(zz)) ((xy)(xz))((xy)(xz))
((xx)(yy))((xx)(zz)) ((xx)(yz))((xy)(xz))

)

=

(
(xy)(xz) (xy)(xz)
(xy)(xz) (x(yz))(xy)(xz)

)
∈ M(A),

therefore the equality in (i) holds. Doing the same with the dual of A, which is
of course also weakly abelian, we obtain the second identity. We could derive the
third identity in a similar manner, but it is easier to deduce it from the previous
ones. If we put z = x in (i) we get (xy)x = (x(yx))((xy)x); replacing y with x and
z with y in (ii) yields x(yx) = (x(yx))((xy)x); comparing them gives (iii).

In light of the last identity we will sometimes omit the parentheses in prod-
ucts of the form xyx. To make the connection between distributivity and weak
abelianness more explicit, we will define a binary relation ∼ on our groupoid by
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a ∼ b iff ab = a. Identity (ii) says that A is right distributive ‘modulo ∼’. This
does not make perfect sense yet, since ∼ may not be a congruence, maybe not even
an equivalence relation. Our strategy will be to reduce the problem to the case
when ∼ is a congruence relation. As a preparation, we first show that assuming
that the clone of A is minimal, we can conclude that A satisfies at least one-sided
distributivity.

Lemma 4.3. [Wa2] A weakly abelian groupoid with a minimal clone must satisfy
at least one of the distributive laws.

Proof. Suppose that A is a weakly abelian groupoid with a minimal clone, and
A is neither left nor right distributive. First we will show that there is a two-
element left zero semigroup in HSP(A). Since A is not right distributive, we can
find elements x, y, z such that b = (yz)x 6= (yx)(zx) = a. The second identity of
Lemma 4.2 shows that ab = a. If ba = b, then {a, b} is a two-element left zero
subsemigroup of A. If ba 6= b, then let c denote the product ba, which is different
from a by the weak abelian property. We have ab = aa = a, so Lemma 4.1 yields
that a = a(ba) = ac. With the help of identity (iii) of Lemma 4.2 we can compute
cb = (ba)b = b(ab) = ba = c. Thus we have the following part in the multiplication
table of A.

a b c
a a a a
b c b
c c c

If bc = b, then again we have a two-element left zero subsemigroup, namely {b, c}.
Suppose therefore that bc 6= b. Then x(xy) is a nontrivial operation, since a(ab) =
aa = a 6= b and b(ba) = bc 6= b. However, the operation x(xy) is trivial on the
set {a, c}. The only entry which we need to verify is c(ca) = c. We can get this
equality by simply applying the definition of weak abelianness on the following
matrix: (

c(bb) c(cb)
c(ba) c(ca)

)
=

(
c c
c c(ca)

)
∈ M(A).

Therefore any operation in the clone generated by x(xy) is a projection on {a, c},
and the original multiplication must be in this clone since it was supposed to
generate a minimal clone. Thus we have ca = c, that is, {a, c} is a two-element
left zero subsemigroup. Passing from A to its dual, which is not left or right
distributive either, we see from the fact proved in the preceding paragraph that
A also has a two-element right zero subsemigroup. The product of these two is
a nontrivial rectangular band in HSP(A), therefore Lemma 1.5 implies that A

itself is a rectangular band. This is a contradiction, since rectangular bands are
distributive.
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With the help of Lemma 4.3 we will be able to handle all cases where ∼ is not
a congruence relation, and finally we will arrive at the quotient groupoid A/∼,
which will turn out to be distributive. This will be a rather lengthy argument, so
we postpone it to the next section. Here we give the characterization of distributive
groupoids with a minimal clone, which we will need to analyse A/∼.

It was shown in [KN] that every distributive groupoid is trimedial, i.e. any
subgroupoid generated by at most three elements is entropic. The next theorem
shows that the distributive and entropic properties are equivalent for groupoids
with a minimal clone, hence we get the same list of groupoids as in Theorem 1.12.

Theorem 4.4. [Wa2] If A is a distributive groupoid with a minimal clone, then
the entropic law holds in A, therefore A or its dual is an affine space, a rectan-
gular band, a left normal band, a right semilattice or a p-cyclic groupoid for some
prime p.

Proof. We know that all three-generated subgroupoids of A are entropic. If they
are all trivial, then there must be a left and a right zero semigroup among them
(otherwise the clone of A would be trivial), and the product of these gives a
nontrivial rectangular band in HSP(A). Applying Lemma 1.5, we get that A is
a rectangular band. If there is a nontrivial 3-generated subalgebra which is an
affine space, a rectangular band, or (the dual of) a p-cyclic groupoid, then again
by Lemma 1.5 we have that A (or its dual) belongs to one of these varieties. Hence
in all these cases A is entropic.
So we can assume that every three-generated subgroupoid of A is a left or right
semilattice or a normal band. If there is a nontrivial right semilattice among
them, then the term x(xy) is the first projection on this subalgebra, hence by the
minimality of the clone we have A |= x(xy) = x. This equation does not hold in
a left semilattice or in a normal band, except for a left zero semigroup (which is
a right semilattice). Thus we have that every 3-generated subalgebra is a right
semilattice. This means that all identities involving at most three variables which
hold in the variety of right semilattices also hold in A. Since right semilattices
are axiomatizable by three-variable identities, we conclude that A itself is a right
semilattice.
The case of left semilattices is similar, so finally we can suppose that we have
only normal bands as 3-generated subalgebras, i.e. that A satisfies all 3-variable
identities that hold for normal bands. Associativity is such an identity, so our
groupoid is a distributive semigroup, hence entropic: xyzu = xyzyu = xzyu (cf.
[KN], Proposition 2.3).

Finally let us see which of the varieties mentioned in Theorem 1.12 contain
nontrivial weakly abelian algebras.
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Theorem 4.5. [Wa2] If A is a weakly abelian entropic groupoid with a minimal
clone, then A or its dual is a rectangular band, an affine space or a p-cyclic groupoid
for some prime p.

Proof. By Theorem 1.12, we only need to show that A cannot be a left or right
normal band, or left or right semilattice. A nontrivial semilattice is clearly not
weakly abelian. In a nontrivial right normal band one can find elements a, b such
that b 6= ab. It is easy to check that {b, ab} is a two-element subsemilattice,
contradicting weak abelianness. Similarly, a nontrivial left normal band cannot be
weakly abelian either. Finally, let us suppose that A is a right semilattice (the
case of a left semilattice is similar). Considering the matrix

(
(xy)(yy) (xx)(yy)
(xy)(xy) (xx)(xy)

)
=

(
xy xy
xy x

)
∈ M(A)

we see that xy = x holds for all x, y ∈ A, and this contradicts the assumption that
A has a minimal clone.

4.2 Left distributive weakly abelian groupoids

with minimal clones

Throughout this section A will denote a weakly abelian groupoid with a min-
imal clone. Lemma 4.3 shows that such a groupoid satisfies at least one of the
distributive laws, so we will suppose that A is left distributive. We define a binary
relation ∼ on A by a ∼ b iff ab = a. Clearly, this relation is reflexive. First we
prove that if ∼ is not a congruence, then A is a p-cyclic groupoid for some prime p.
(Note that in the first claim we do not use left distributivity.)

Claim 4.6. If ∼ is not symmetric, then A |= x(xy) = x.

Proof. Suppose that there are elements a, b ∈ A such that a ∼ b but b 6∼ a, that
is, ab = a and ba = c 6= b. This situation is the same as in the proof of Lemma 4.3,
and we will proceed similarly, but this time we go farther. Again, we have c 6= a
by the weak abelian property. Let S be the subgroupoid of A generated by a and b.
According to Lemma 4.1, the set {x : ax = a} is a subuniverse of A, and it contains
a and b. Therefore it contains S, which implies that a is a left zero element in this
subgroupoid. Moreover, xy = a implies x = a for every x, y ∈ S. This can be seen
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in the multiplication table of S by weak abelianness.

a · · · x · · · y
a a · · · a · · · a
...

...
...

...
x ∗ · · · x · · · a

(Note that we have xx = x by idempotence, and ∗ indicates xa; its value is
irrelevant.)
Next we show that c is almost a left zero element in S; more precisely, cz = c for all
z ∈ S \ {a}. Since z is in the subgroupoid generated by a and b, there is a binary
term t such that t(a, b) = z. We prove cz = c by induction on the length of t. If
this length is zero, then either t(x, y) = x or t(x, y) = y. The former is impossible
because z 6= a. In the latter case we have cb = (ba)b = b(ab) = ba = c. Now for the
induction step suppose that z = t(a, b) = uv with u = t1(a, b), v = t2(a, b). Again,
u 6= a follows from z 6= a, and therefore cu = c by the induction hypothesis. If v
is also different from a, then cv = c, so cz = c(uv) = c by Lemma 4.1. If v = a,
then we have to prove c(ua) = c. Let us consider the matrix

(
c(bb) c(ba)
c(ub) c(ua)

)
=

(
cb cc

c(ub) c(ua)

)
=

(
c c

c(ub) c(ua)

)
∈ M(A).

We know that cu = cb = c, therefore c(ub) = c as before. Therefore our matrix is
of the form

( c c
c c(ua)

)
, hence cz = c(ua) = c by weak abelianness.

What we just proved means that in the multiplication table of the subgroupoid S,
the row of c is constant c except for ca, which may be different. In the same way
as we proved that xy = a implies x = a, we can show that xy = c implies x = c or
y = a, that is, c can appear only in its own row and in the column of a.
The knowledge we gathered about the multiplication table is enough to see that
the operation x(xy) preserves S \ {c}. Indeed, if x(xy) = c for some x, y ∈ S, then
either x = c or xy = a. The latter is impossible since it would force x = a, but
then x(xy) = a 6= c. However, the original multiplication does not preserve this
set, because ab = c. Therefore, by the minimality of the clone, x(xy) must be a
projection. Since a(ab) = a 6= b, it can only be the first projection, i.e. the identity
x(xy) = x holds in A.

Claim 4.7. If ∼ is symmetric but not transitive, then A |= x(xy) = x.

Proof. Suppose that there are elements a, b, c ∈ A such that a ∼ b ∼ c but a 6∼ c.
Then a, b, c must be pairwise different, because ∼ is reflexive by the idempotence
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of A. A part of the multiplication table looks like this:

a b c
a a a
b b b b
c c c

It is easy to check that we have the same in the multiplication table of x(xy). But
for this operation we can compute the missing two entries, too, with the help of
the left distributive identity:

a(ac) = (ab)(ac) = a(bc) = ab = a,

c(ca) = (cb)(ca) = c(ba) = cb = c.

Thus we see that x(xy) is the first projection on the set {a, b, c}, but the original
operation xy is not, because a 6∼ c implies ac 6= a. Therefore, by the minimality of
the clone of A, x(xy) must be a trivial operation, hence A satisfies x(xy) = x.

To finish the investigation of the cases where ∼ is not an equivalence relation, we
will show that a weakly abelian groupoid with a minimal clone satisfying x(xy) = x
must be a p-cyclic groupoid. This will be the consequence of the following lemma,
where we do not assume weak abelianness.

Lemma 4.8. [Wa2] If a groupoid has a minimal clone and satisfies the identity
x(yz) = xy, then it belongs to the variety D ∩A or Cp for some prime p.

Proof. Suppose that t1, t2 are two terms, and the leftmost variable of t2 is x. Then
it can be shown easily by induction on the length of t2 that the identity t1t2 = t1x
holds in our groupoid. This means that any term t can be reduced to a left-
associated product: t = ←−−−−−−−−−x · y1 · . . . · yn. Let us now compute what happens if we
multiply a term by its leftmost variable: tx = tt = t because the leftmost variable
of the underlined t is also x.
Thus we have the same situation as in Claim 3.9 of [KSz], except that the order of
the variables y1, . . . , yn is not irrelevant. However, when we compute binary terms,
we do not have to permute them, so every binary term is of the form xyk, and we
can proceed as in [KSz] to show that either (xy)y = xy or xyp = x holds for some
prime number p.
In the first case we are done, so let us suppose that the latter holds. One can check
that the term t(x, y, z) = (((xyp−1)z)y)zp−1 satisfies the identities t(x, x, z) =
t(x, y, x) = t(x, y, y) = x, i.e., it is a first semiprojection. Therefore t does not
generate any nontrivial binary operation, so it must be trivial: t(x, y, z) = x.
Substituting xy for x in this equality and multiplying both sides from the right
by z we get the identity t(xy, y, z)z = (xy)z. Computing the left hand side we
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obtain the identity (xz)y = (xy)z. Thus all the defining identities of the variety
of p-cyclic groupoids hold in our groupoid.

Lemma 4.9. [Wa2] If a weakly abelian groupoid has a minimal clone and satisfies
the identity x(xy) = x, then it is a p-cyclic groupoid for some prime p.

Proof. We show that weak abelianness and the identity x(xy) = x imply the
stronger identity x(yz) = xy. Let t = t(x, y, z) = x(yz), and compute the following
matrix: (

t(tz) t(ty)
x(yz) x(yy)

)
=

(
t t
t xy

)
.

Thus we have x(yz) = xy by weak abelianness, and we can apply the previous
lemma. The only thing we need to show is that the identity (xy)y = xy cannot
hold. We can proceed the same way as we did at the end of the proof of Theorem 4.5
to see that (xy)y = xy would imply xy = x.

So far we have proved that if ∼ is not an equivalence relation, then A is a
p-cyclic groupoid. From now on we will assume that ∼ is an equivalence relation,
and we will force it to be a congruence of A. Using the left distributive identity
we can show that ∼ is not very far from being a congruence.

Claim 4.10. For any a, b, c ∈ A, if a ∼ b then the following relations are true:

(i) ca ∼ cb,

(ii) (ac)(bc) ∼ ac.

Proof. To prove (i) we simply apply the left distributive law: (ca)(cb) = c(ab) =
ca. For (ii) let us substitute x = c, y = a, z = b in the identity (yx)(zx) =
((yx)(zx))((yz)x), which holds in A by Lemma 4.2. Then we get (ac)(bc) =
((ac)(bc))((ab)c) = ((ac)(bc))(ac) which is just what we had to prove.

It would be nice if we had ac ∼ bc in (ii), because then ∼ would be a congruence.
With the next claim we finish the investigation of the case where ∼ is not a
congruence.

Claim 4.11. If ∼ is not a congruence relation, then A is a p-cyclic groupoid.

Proof. We prove first that for any a, b, c ∈ A, if a ∼ b then the subalgebra generated
by ac and bc satisfies the identity x(xy) = x. The second part of the previous claim
shows that uv ∼ u holds for u, v ∈ S = {ac, bc}. Next we show that this property
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is inherited when we pass from S to the subgroupoid generated by S. This can be
done using the following two rules:

(uw ∼ u and uv ∼ u) ⇒ (uv)w ∼ uv,

(wu ∼ w and wv ∼ w) ⇒ w(uv) ∼ w.

To check the first one, we calculate u((uv)w) = (u(uv))(uw) = u(uw) = u,
which shows that u ∼ (uv)w. We have assumed u ∼ uv, therefore by transi-
tivity and symmetry (uv)w ∼ uv follows. The second one is easier: w(w(uv)) =
w((wu)(wv)) = (w(wu))(w(wv)) = ww = w.
With these rules one can show by term induction that uv ∼ u for all u, v in
the subgroupoid generated by S. Hence this subgroupoid satisfies the identity
x(xy) = x. If ∼ is not a congruence, then we can find elements a, b, c such that
a ∼ b but ac 6∼ bc, that is, (ac)(bc) 6= ac. If (ac)(bc) = bc, then by the second
part of Claim 4.10 we would have bc ∼ ac, which is impossible since ac 6∼ bc.
Thus the subalgebra generated by {ac, bc} is not trivial. Then it has a minimal
clone; it is weakly abelian, and satisfies x(xy) = x, therefore by Lemma 4.9 it is a
nontrivial p-cyclic groupoid in HSP(A). With the help of Lemma 1.5 we conclude
that HSP(A) is the variety of p-cyclic groupoids.

Let us summarize what we have proved so far in this section.

Theorem 4.12. [Wa2] If A is a weakly abelian left distributive groupoid with a
minimal clone such that the relation ∼ defined by a ∼ b ⇔ ab = a is not a
congruence, then A is a p-cyclic groupoid for some prime p.

So finally we can suppose that A is a left distributive weakly abelian groupoid
with a minimal clone, and ∼ is a congruence of A. The corresponding factor
groupoid A/∼ is distributive (right distributivity holds because A satisfies iden-
tity (ii) of Lemma 4.2). Furthermore, A/∼ has a minimal or trivial clone. Therefore
it is entropic by Theorem 4.4, and it must have at least two elements, since A is
not a left zero semigroup. Using the list of entropic groupoids with a minimal
clone, we will prove that A is also entropic. The key observation is that by the
definition of ∼ we have for any terms t1, t2

A/∼ |= t1 = t2 ⇐⇒ A |= t1t2 = t1.

Claim 4.13. If A/∼ has a two-element left or right zero subsemigroup, then A is
entropic. It is impossible to have a two-element semilattice among the subgroupoids
of A/∼.

Proof. First let us suppose that X,Y ∈ A/∼ form a left zero semigroup. Then for
any x, y ∈ X ∪Y we have xy ∼ x. Therefore x(xy) = x holds in X ∪Y , which is a
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nontrivial subgroupoid of A, since X and Y are two different congruence classes.
By Lemma 4.9 this subgroupoid must be p-cyclic, and by the minimality of the
clone of HSP(A), Lemma 1.5 implies that A itself must also be a p-cyclic groupoid.
Now suppose that X,Y ∈ A/∼ form a right zero semigroup. Again, X ∪ Y is a
subgroupoid of A, and t1t2 = t1 holds in this subalgebra whenever the rightmost
variables of t1 and t2 are the same (i.e., when t1 = t2 holds in right zero semi-
groups). Using this fact and the weak abelian property, we can compute (xy) z for
x, y, z ∈ X ∪ Y as follows:

(
((xy)y)z ((xy)z)z
((xx)y)z ((xx)z)z

)
=

(
(xy)z (xy)z
(xy)z xz

)
∈ M(A),

therefore the identity (xy)z = xz holds in X ∪ Y . Similarly, X ∪ Y |= x(yz) = xz
can be shown by considering the following matrix:

(
(xz)(zz) (xz)(yz)
(xx)(zz) (xx)(yz)

)
=

(
xz xz
xz x(yz)

)
∈ M(A).

Thus X∪Y is a rectangular band, and if it is nontrivial, then A is also a rectangular
band by Lemma 1.5, so we are done. If X ∪ Y is trivial, then X and Y must be
singletons, because X and Y are left zero subsemigroups. Therefore X ∪ Y is a
right zero subsemigroup in A. Forming the direct product of this with any non-
singleton congruence class we get a nontrivial rectangular band in HSP(A), so A

is also a rectangular band by Lemma 1.5. If all the ∼-blocks of A are singletons,
then A ∼= A/∼ is distributive, hence entropic by Theorem 4.4.
Finally, let us suppose that X,Y ∈ A/∼ form a semilattice. Then X ∪ Y satisfies
all equations of the form t1t2 = t1 where t1 = t2 is valid in every semilattice.
Combining this with identity (iii) of Lemma 4.2 allows us to conclude that the
identities

(xy)y = ((xy)y)(xy) = (xy)(y(xy)) = xy,

(xy)x = ((xy)x)(xy) = (xy)(x(xy)) = xy

hold in X ∪ Y . Using these identities we can compute the following matrix for
x, y ∈ X ∪ Y : (

(xy)y (xy)x
(xx)y (xx)x

)
=

(
xy xy
xy x

)
∈ M(A).

Thus X ∪ Y is a left zero semigroup, contradicting the fact that X and Y are two
different congruence classes.

Theorem 4.14. [Wa2] If A is a weakly abelian left distributive groupoid with a
minimal clone such that the relation ∼ defined by a ∼ b ⇔ ab = a is a congruence,
then A is entropic.
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Proof. There are at least two ∼-classes, since otherwise A would be a left zero
semigroup. So A/∼ has at least two elements, and if it is trivial, then we can
apply the previous claim. If this is not the case, then A/∼ must belong to one
of the varieties which have entropic minimal clones. In the case of affine spaces,
rectangular bands and p-cyclic groupoids Lemma 1.5 shows that A also belongs to
one of these varieties. As we have seen in the proof of Theorem 4.5, a nontrivial left
or right normal band always contains a two-element subsemilattice, but Claim 4.13
shows that this is impossible for A/∼.
Finally, let us assume that A/∼ is a nontrivial right semilattice. Then it contains
elements a, b such that a 6= ab. Using the defining identities of the variety of right
semilattices, one can check that a and ab form a two-element left zero subsemigroup
in A/∼, so we can apply Claim 4.13 again. Similarly, a nontrivial left semilattice
must contain a two-element right zero subsemigroup, so Claim 4.13 applies in this
case, too.

Putting together Theorems 4.12 and 4.14 with Theorem 4.5 we get the main
result of this section.

Theorem 4.15. [Wa2] A left distributive weakly abelian groupoid with a minimal
clone is either a rectangular band, an affine space or (the dual of ) a p-cyclic
groupoid for some prime p.

4.3 Minimal clones with term conditions

We have seen that only minimal clones of types (I), (II) and (IV) can have
nontrivial weakly abelian representations, and in case of types (I) and (IV) all
representations are abelian. A weakly abelian groupoid with a minimal clone is
left or right distributive by Lemma 4.3, therefore we can apply Theorem 4.15 (after
dualizing if necessary) to see that such a groupoid must be a rectangular band, an
affine space or (the dual of) a p-cyclic groupoid. This list does not contain any new
items compared to Theorem 1.13, thus these two abelianness concepts coincide at
the level of abstract minimal clones.

Theorem 4.16. [Wa2] If a minimal clone has a nontrivial weakly abelian repre-
sentation, then it also has a nontrivial abelian representation. Therefore such a
clone must be a unary clone, the clone of an affine space, a rectangular band or a
p-cyclic groupoid for some prime p.
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Unary algebras, rectangular bands and affine spaces are abelian. A p-cyclic
groupoid must be weakly abelian, as we shall see in the following lemma.

Lemma 4.17. [Wa2] Every p-cyclic groupoid is weakly abelian.

Proof. Suppose that A is a p-cyclic groupoid for some prime number p. (Actually,
we will not need the fact that p is prime.) Let t be a term of A, of arity n+m, and

let a,b ∈ An, c,d ∈ Am be such that the matrix
(

t(a,c) t(a,d)
t(b,c) t(b,d)

)
is of the form

(
u u
u v

)
.

As we have seen in the proof of Lemma 4.8, every term of A can be reduced to a
left-associated product, so we may assume that t is of the form t = ←−−−−−−−−−x1x2 . . . xn+m.
Transposing our matrix if necessary, we can suppose that the leftmost variable is
occupied by entries belonging to a and b, say a1 and b1. Using the identity (xy)z =
(xz)y we can permute the other variables so that the entries in the first column of

the matrix are: t(a, c) = ←−−−−−−−−−−−−−−a1a2 · · · anc1c2 · · · cm, and t(b, c) =
←−−−−−−−−−−−−−−
b1b2 · · · bnc1c2 · · · cm.

Our groupoid is right cancellative, since multiplication by any element on the right
is a permutation of order p. Therefore the equation t(a, c) = t(b, c) implies that
←−−−−−−a1a2 · · · an =

←−−−−−−
b1b2 · · · bn. Multiplying both sides on the right by d1, d2, · · · , dm, we

conclude that t(a,d) = t(b,d), that is u = v, so A is weakly abelian.

This lemma yields an interesting homogeneity property for weakly abelian rep-
resentations.

Theorem 4.18. [Wa2] If a minimal clone has a nontrivial weakly abelian repre-
sentation, then all representations are weakly abelian.

As the following example shows, there exist nonabelian p-cyclic groupoids.
Therefore the two abelianness concepts differ already at the level of concrete min-
imal clones.

Example 4.19. For any prime number p let us define the following binary operation
on the set Zp × {0, 1}:

(a, b) ◦ (c, d) =

{
(a + 1, b) if b = 0 and d = 1;

(a, b) otherwise.

The algebra A = (Zp×{0, 1}, ◦) is a p-cyclic groupoid, therefore it is weakly abelian
and has a minimal clone. It is not abelian, as we can see from the following matrix:

(
(0, 1) ◦ (0, 0) (0, 1) ◦ (0, 1)
(0, 0) ◦ (0, 0) (0, 0) ◦ (0, 1)

)
=

(
(0, 1) (0, 1)
(0, 0) (1, 0)

)
∈ M(A).
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We conclude with a theorem on rectangularity and strong abelianness. A non-
trivial affine space or p-cyclic groupoid cannot be rectangular, but unary algebras
and rectangular bands are all strongly abelian. Thus these two concepts coincide
both at the level of abstract and concrete minimal clones.

Theorem 4.20. [Wa2] If a minimal clone has a nontrivial rectangular represen-
tation, then it also has a nontrivial strongly abelian representation; moreover, all
representations are strongly abelian. Such a clone must be either unary, or the
clone of rectangular bands.



Chapter 5

Almost associative operations
generating a minimal clone

We give two generalizations of Theorem 1.11 in this chapter. In Section 5.1 we
discuss two ways to tell how far a given binary operation is from being associative.
One of them uses the index of nonassociativity; the other one is based on the
associative spectrum. Here we review only some basic facts about them, but in
the Appendix we give a more detailed account about the associative spectrum,
including many examples. For the index of nonassociativity the reader is referred
to [Cl1,Cl2,DK,KT1,Szá].

We call a binary operation almost associative if its associative spectrum or
index of nonassociativity is as small as possible without being associative. Thus
we have two notions of almost associativity. We study the first one in Section 5.2;
it turns out that for idempotent operations the right choice is to require that its
associative spectrum s (n) satisfies 1 < s (4) < 5. The main result of this section is
the following characterization of almost associative binary operations generating a
minimal clone.

Theorem 5.10 [Wa3] For any groupoid A the following two conditions are equiv-
alent:

(i) A has a minimal clone and 1 < sA (4) < 5;

(ii) A is not a semigroup and A or its dual belongs to one of the varieties B∩A,
Cp or D ∩A for some prime p.

If these conditions are fulfilled, then we have sA (n) = 2n−2 for n ≥ 2.

In Section 5.3 we consider Szász-Hájek groupoids, i.e. groupoids whose in-
dex of nonassociativity equals 1. Szász-Hájek groupoids with minimal clones are
described in the next theorem.

57
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Theorem 5.13 [Wa3] For any Szász-Hájek groupoid A the following two condi-
tions are equivalent:

(i) A has a minimal clone;

(ii) A or its dual belongs to the variety B.

Finally, in Theorem 5.14 we will show that there are only 10 Szász-Hájek
groupoids up to duality and isomorphism which have a minimal clone, and which
are themselves minimal in the sense that all of their proper subgroupoids are semi-
groups.

5.1 Measuring associativity

One way to measure associativity is to count the nonassociative triples in the
groupoid; this number (or cardinal) is called the index of nonassociativity, and
is denoted by ns. Formally, we have ns (A) = |{(a, b, c) ∈ A3 : (ab) c 6= a (bc)}|.
This notion was studied in [Cl1,Cl2,DK,KT1, Szá]. Clearly A is a semigroup iff
ns (A) = 0, and it is natural to say that the multiplication of A is almost associative
if ns (A) = 1. Such groupoids are called Szász-Hájek groupoids (SH-groupoids for
short). SH-groupoids were investigated in [Há1, Há2] and [KT3–KT6] in much
detail. Following the terminology of these papers, we say that an SH-groupoid is
of type (a, b, c) if its only nonassociative triple is (a, b, c) ∈ A3 and a 6= b 6= c 6= a.
Types (a, a, a) , (a, b, a) , (a, a, b) and (a, b, b) are defined analogously. (Note that
by saying e.g. that A is an SH-groupoid of type (a, b, c) we mean not only that the
components of the unique nonassociative triple are pairwise distinct, but implicitly
we assume that these components are denoted by a, b and c respectively.) Let us
recall a result from [KT3] (Proposition 1.2(i)).

Proposition 5.1. [KT3] If A is an SH-groupoid and (a, b, c) is the unique
nonassociative triple, then xy = a (xy = b, xy = c) implies x = a (x = b, x = c) or
y = a (y = b, y = c) for all x, y ∈ A.

Proof. Suppose that xy = a, but x 6= a 6= y. Since x 6= a, we have (x, y, bc) 6=
(a, b, c), hence (x, y, bc) is an associative triple: (xy) (bc) = x (y (bc)). Now y 6= a
implies that (y, b, c) 6= (a, b, c), so x (y (bc)) = x ((yb) c). Similarly x ((yb) c) =
(x (yb)) c = ((xy) b) c, because x 6= a. We have obtained that (xy) (bc) = ((xy) b) c,
thus (xy, b, c) = (a, b, c) is an associative triple, which is a contradiction. The other
two assertions can be proved similarly.
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Clearly, a subgroupoid of an SH-groupoid A with nonassociative triple (a, b, c)
is an SH-groupoid or a semigroup, depending on whether it contains a, b and c
or not. Specially, A is generated by {a, b, c} iff all proper subgroupoids of A are
semigroups. Such a groupoid is called a minimal SH-groupoid. In [KT3-KT6] the
project of characterizing minimal SH-groupoids was begun, but completed only for
the type (a, a, a). In Theorem 5.13 we prove that SH-groupoids having a minimal
clone belong to the varieties B or Bd, and in Theorem 5.14 we give a complete list
of minimal SH-groupoids with a minimal clone up to isomorphism.

Another way of measuring associativity is possible by considering the identi-
ties implied by associativity, and somehow counting how many of these are (not)
satisfied. To make this more precise, let us say that B is a bracketing, if B is a
groupoid term, and each variable occurs exactly once in B. If these variables are
x1, x2, . . . , xn and they appear in this order (as we will suppose most of the time),
then B is nothing else but a way to put brackets into the product x1 · . . . · xn such
that the order of the n−1 multiplications is well determined. We express this fact
by writing B = B (x1, . . . , xn), and in this case we say that B is of size n. The
size of B is denoted by |B|.

In every bracketing there is an outermost multiplication, and this splits the
bracketing into two parts, the left factor and the right factor of the bracketing. Let
B = B (x1, . . . , xn), and let P,Q be the left and right factors of B. Then B = PQ,
and P = P (x1, . . . , xk) , Q = Q (xk+1, . . . , xn), where k = |P |. Sometimes we will
use the notation l (B) for the left factor of B.

The number of bracketings of the product x1 · . . . · xn is Cn−1 = 1
n

(
2n−2
n−1

)
, the

(n − 1)st Catalan number. In a semigroup all of these Cn−1 many terms induce
the same term function, but in an arbitrary groupoid they may induce more than
one term function. Intuitively, the more term functions of this kind there are, the
less associative the multiplication is. Therefore we define the associative spectrum
of a groupoid A to be the sequence sA (1) , sA (2) , . . . , sA (n) , . . ., where sA (n) is
the number of different term functions on A arising from bracketings of x1 · . . . ·xn.
Thus the associative spectrum gives (only quantitative) information about identi-
ties of the form B1 (x1, . . . , xn) = B2 (x1, . . . , xn) satisfied by the groupoid. The
associative spectrum was introduced and investigated in [CsW].

Clearly, sA (1) = sA (2) = 1 for every groupoid A, and sA (3) = 1 iff A is a
semigroup. In the latter case sA (n) = 1 for all n by the general law of associativity.
The smallest possible spectrum for a nonassociative multiplication is 1, 1, 2, 1, 1, . . .,
so we could say that a binary operation is almost associative if its spectrum is this
sequence. However, there is no groupoid having a minimal clone with this spectrum
(not even an idempotent one) as we will see later. Therefore we have to be more
generous: in Theorem 5.10 we determine groupoids with a minimal clone satisfying
s (4) < 5 = C3.

The two ways of measuring associativity introduced here do not seem to be
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closely related. For example, the groupoid G3 (see its multiplication table in Ta-
ble 7) is an SH-groupoid, with the largest possible associative spectrum: sG3

(n) =
Cn−1 for every n. (For the proof of the latter fact see Proposition A.17; G3 is
isomorphic to the groupoid with number 17 there.)

Let us mention finally that there is a third possibility to measure associativ-
ity with the help of the Hamming distance of multiplication tables. This yields
the notion of the semigroup distance of a groupoid. Groupoids with small semi-
group distance and connections between the semigroup distance and the index of
nonassociativity were studied in [KT2].

5.2 Minimal clones with small spectrum

In this section we are going to describe nonassociative binary operations gener-
ating a minimal clone that have a relatively small associative spectrum. The first
three theorems show that the spectrum of such an operation cannot be too small.

Theorem 5.2. [Wa3] If an idempotent groupoid satisfies the identity

←−−−−−−−x1 · . . . · xn = −−−−−−−→x1 · . . . · xn (5.1)

for some n ≥ 3, then it is a semigroup.

Proof. Applying (5.1) with x1 = . . . = xk = x, xk+1 = . . . = xn = y we obtain

xyn−k = ←−−−−−−−−−−−−−x · . . . · x · y · . . . · y = −−−−−−−−−−−−−→x · . . . · x · y · . . . · y = kxy (5.2)

for 1 ≤ k ≤ n − 1. Let us use (5.1) again, for x1 = x, x2 = u = xy2 = n−2xy,
x3 = . . . = xn = y:

(xu) yn−2 = ←−−−−−−−−−−x · u · y · . . . · y = −−−−−−−−−−→x · u · y · . . . · y = x (uy) . (5.3)

The left hand side is (xu) yn−2 = (n−1xy) yn−2 = (xy) yn−2 = xyn−1 = xy (we used
(5.2) twice, with k = n−1 and k = 1 respectively). We can compute the right hand
side of (5.3) in a similar manner: x (uy) = x (xy3) = x (n−3xy) = n−2xy = xy2.
Thus we have xy = xy2, i.e. right multiplications are idempotent. Finally, to prove
associativity, we write up (5.1) one more time:

(xy) zn−2 = ←−−−−−−−−−−x · y · z · . . . · z = −−−−−−−−−−→x · y · z · . . . · z = x (yz) .

By the idempotence of right multiplication (by z) the left hand side reduces to
(xy) z, and therefore associativity is established.
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Theorem 5.3. [Wa3] An idempotent groupoid satisfying the following two iden-
tities for some n ≥ 3 must be a semigroup.

x0 · ←−−−−−−−x1 · . . . · xn = x0 · −−−−−−−→x1 · . . . · xn

←−−−−−−−x1 · . . . · xn · x0 = −−−−−−−→x1 · . . . · xn · x0

Proof. Substituting ←−−−−−−−x1 · . . . · xn into x0 in the first identity we have

←−−−−−−−x1 · . . . · xn = ←−−−−−−−x1 · . . . · xn · −−−−−−−→x1 · . . . · xn.

by idempotence. Similarly, if we substitute −−−−−−−→x1 · . . . · xn for x0 in the second identity,
then we get

←−−−−−−−x1 · . . . · xn · −−−−−−−→x1 · . . . · xn = −−−−−−−→x1 · . . . · xn,

and thus (5.1), hence also associativity follows by the previous theorem.

Theorem 5.4. [Wa3] If a groupoid has a minimal clone and satisfies

←−−−−−−−x1 · . . . · xn = x1 · ←−−−−−−−x2 · . . . · xn (5.4)

for some n ≥ 3, then it is a semigroup.

Proof. The case n = 3 is trivial, so let us suppose that n ≥ 4. First we draw a
consequence of (5.4) and idempotence (putting x and z for x1 and xn, and y for
the rest of the variables): (

xyn−2
)
z = x (yz) . (5.5)

As a special case (with z = y) we get

xyn−1 = xy. (5.6)

Now we suppose that A = (A; ·) is a groupoid with a minimal clone that satisfies
identity (5.4). The binary operation s (x, y) = xyn−2 belongs to the clone of A,
therefore if it is nontrivial, then [s] contains the basic operation f (x, y) = xy.
Suppose that a and b are arbitrary elements of A such that c = (ab)an−3 6= a.
We claim that s is a semilattice operation on the two-element set {a, c}. With the
help of (5.6) we see that s (c, a) = ((ab)an−3) an−2 = (ab)a2n−5 = ((ab)an−1) an−4 =
((ab) a) an−4 = (ab)an−3 = c. To compute s (a, c) let us first consider ac:

ac = a
(
(ab)an−3

)
= ((aa)b) an−3 = (ab)an−3 = c. (5.7)

In the middle two steps we used identity (5.4) and idempotence. Now it is easy to
conclude that s (a, c) = acn−2 = c, proving that s is indeed a semilattice operation
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on {a, c}. Since f ∈ [s], the restriction of f to {a, c} is either trivial, or coincides
with s. In the latter case we have f (c, a) = c, so

(
(ab)an−3

)
a = (ab)an−2 = (ab)an−3. (5.8)

If f is trivial on our two-element set, then it has to be a second projection, because
f (a, c) = ac = c as we have already observed in (5.7). Thus we have f (c, a) =
ca = a, which means that (ab)an−2 = a. Multiplying by a from the right we get
(ab)an−1 = a, therefore (ab) a = a by (5.6). If we multiply both sides of this
equality n − 4 times by a, then we get (ab)an−3 = a, i.e. c = a, contrary to our
assumption. If (ab)an−3 = a for some a, b ∈ A, then (5.8) holds trivially. Thus
we have proved that if a groupoid A has a minimal clone, and satisfies (5.4), then
(5.8) holds for all a, b ∈ A. In other words, A satisfies the following identity.

(xy)xn−3 = (xy)xn−2 (5.9)

It suffices to show now that (5.4) and (5.9) together with idempotence imply as-
sociativity. Let us multiply both sides of (5.9) by x from the right. We get
(xy)xn−2 = (xy)xn−1 and then (5.6) shows that (xy)xn−2 = (xy)x. Therefore
((xy)xn−2) z = ((xy)x) z also holds. The left hand side of this identity reduces
to (xy) (xz) according to (5.5), with xy, x and z playing the role of x, y and z,
respectively. Thus we have obtained the following identity.

((xy) x) z = (xy) (xz) (5.10)

Now we go back to (5.9), and this time we multiply it by y from the left. The
left hand side becomes y ((xy)xn−3), which turns to ((yx) y) xn−3 if we apply
(5.4). With the help of (5.10) and idempotence we can simplify this expression:
((yx) y) xn−3 = (((yx) y) x) xn−4 = ((yx) (yx)) xn−4 = (yx) xn−4 = yxn−3. The
right hand side of (5.9) becomes y ((xy) xn−2). This can be considered as a prod-
uct of n factors, if we keep the x and the y in the middle together. We can
rearrange this product according to (5.4), and we get (y (xy)) xn−2. The y (xy) at
the beginning of this term can be written as y · ←−−−−−−−−x · . . . · x · y, and an application
of (5.4) yields ←−−−−−−−−−−y · x · . . . · x · y = (yxn−2) y. Substituting this back into the original
expression we get (y (xy)) xn−2 = ((yxn−2) y) xn−2. If we consider yxn−2 as one
factor, then this is again a (left-associated) product of n factors, and we can use
(5.4) one more time: ((yxn−2) y) xn−2 = (yxn−2) (yxn−2). Clearly this is just yxn−2,
and if we compare the results we have obtained from the two sides of (5.9) we can
conclude the following identity.

yxn−3 = yxn−2

Multiplying this by x we get yxn−2 = yxn−1 = yx by (5.6). Now the left hand
side of (5.5) can be simplified as (xyn−2) z = (xy) z, and therefore associativity
follows.
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Remark 5.5. Idempotence and identity (5.4) for n ≥ 4 do not imply associativity,
as we can see from the following example. For every k ≥ 2 we define a groupoid
Ak on the set Ak = Zk∪̇ {e} by

xy =






y if y 6= e;

x + 1 if y = e 6= x;

e if y = e = x.

This groupoid is idempotent, but not associative, because (0 · e) · e = 2 6= 1 =
0 · (e · e). Let B (x1, . . . , xn) be a bracketing, b the corresponding term function,
and let di denote the left depth of xi in B (see Section A.2 for the definition of left
depth). It is not hard to prove by induction on n, that for any c1, . . . , cn ∈ Ak we
have b (c1, . . . , cn) = ci +di if ci is the last element of the sequence c1, . . . , cn that is
different from e (if there is no such element, then clearly b (c1, . . . , cn) = e). Thus
two bracketings give the same term function on Ak iff their left depth sequences
are congruent modulo k. The left depth sequence of the bracketing on the left
hand side of (5.4) is (n − 1, n − 2, n − 3, . . . , 1, 0) and that of the right hand side is
(1, n − 2, n − 3, . . . , 1, 0). Hence Ak satisfies (5.4) iff k divides n− 2. For example,
An−2 is an idempotent nonassociative groupoid satisfying (5.4).

The associative spectrum of Ak is the same as that of the operation x + εy
on C, where ε is a primitive k-th root of unity: both count the number of zag
sequences modulo k (see Proposition A.30, and the proof of Theorem A.3 for the
definition of a zag sequence). If k = 2, then we have ε = −1, and the spectrum
is 2n−2 (cf. Proposition A.4). For k = 3 the spectrum is sequence A005773 in the
Encyclopedia [Sl]; this sequence is related to Motzkin numbers (A001006). The
spectrum for k = 4 does not appear in the Encyclopedia, but the superseeker found
that it is a transformation of the sequence A036765

Let us now turn to the investigation of four-variable ‘associativity conditions’.
There are five bracketings of size four:

B1 = x (y (zu)) ;

B2 = x ((yz) u) ;

B3 = (xy) (zu) ;

B4 = ((xy) z) u;

B5 = (x (yz)) u.

Many of the possible
(
5
2

)
identities cannot be satisfied by a nonassociative idempo-

tent groupoid. For example, identifying z and u in B1 and B3 we see that B1 = B3

implies associativity if idempotence is assumed. A similar argument works for
B3 = B4 and B2 = B5. For B2 = B3 we need two steps: multiplying both sides
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by a variable from the left yields x (y ((zu) v)) = x ((yz) (uv)) (after renaming
the variables), while replacing u with uv gives x ((yz) (uv)) = (xy) (z (uv)). Now
x (y ((zu) v)) = (xy) (z (uv)) follows by transitivity, and identifying z, u and v we
get x (yz) = (xy) z. We can treat B3 = B5 similarly (this is actually the dual of
B2 = B3).

Specializing Theorems 5.2 and 5.4 to n = 4 we see that B1 = B4 and B2 = B4

cannot hold in a nonassociative groupoid with a minimal clone, and neither can
B1 = B5, because it is the dual of B2 = B4. Only three possibilities remain: our
groupoid satisfies B1 = B2 or B4 = B5 or both. Theorem 5.3 shows that the third
case is impossible, hence we can conclude that if a groupoid A has a minimal clone,
and 1 < sA (4) < 5 holds for its spectrum, then sA (4) = 4, and A satisfies either
B1 = B2 or its dual, but not both. We are going to characterize such groupoids
in the next theorem, but first we need three lemmas. Let A denote the variety
defined by B1 = B2, i.e. x (y (zu)) = x ((yz) u).

Lemma 5.6. [Wa3] If t1 = t2 is an identity that is true in every semigroup, then
A satisfies xt1 = xt2 (where x is an arbitrary variable).

Proof. If t1 = t2 holds in the variety of semigroups, then t1 and t2 are two
bracketings of the same product. Therefore it suffices to prove that A satis-
fies x · B (x1, . . . , xn) = x · −−−−−−−→x1 · . . . · xn for any bracketing B (x1, . . . , xn). This
is clear for n = 1, 2, so let us suppose that n ≥ 3 and use induction. Re-
peatedly applying x ((yz) u) = x (y (zu)) we can transform x · B (x1, . . . , xn) to
the form x · (x1 · B′ (x2, . . . , xn)). By the induction hypothesis we have that
x1 · B′ (x2, . . . , xn) = x1 · −−−−−−−→x2 · . . . · xn = −−−−−−−→x1 · . . . · xn holds in A, hence we see that
x·B (x1, . . . , xn) = x·−−−−−−−→x1 · . . . · xn is true as well. (Note that we did nothing else but
gave a proof for the general law of associativity, but we had to avoid implications
of the form p = q ⇒ pr = qr).

Lemma 5.7. [Wa3] Let V be a subvariety of A, and let W be the intersection of
V and the variety of semigroups. If an identity t1 = t2 holds in W, then xt1 = xt2
holds in V (where x is an arbitrary variable).

Proof. Let ΘV , ΘW , Θsgr denote the equational theories of V ,W and the variety of
semigroups, respectively. These are fully invariant congruences of the free groupoid
on countably many generators, and ΘW equals ΘV∨Θsgr, i.e. the transitive closure
of ΘV ∪ Θsgr. Therefore, if W satisfies an identity t1 = t2, then there are terms
p1, . . . , pn such that p1 = t1, pn = t2 and pi = pi+1 holds in V if i is odd, and
pi = pi+1 is a semigroup identity if i is even. Then xpi = xpi+1 is true in V
for every i and any variable x. (For odd i’s this is obvious; for even ones it is a
consequence of the previous lemma.) Now xt1 = xt2 follows by transitivity.

The next lemma is based on the method used in the proof of Lemma 3.8 in
[KSz], and is basically just a slight generalization of the situation considered there.
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Lemma 5.8. [Wa3] Suppose that A is a groupoid with a minimal clone, and there
is a subset M of Clo(2) (A) containing the first projection and at least one nontrivial
element, such that for all f, g, h ∈ M we have

(i) f (g, h) = g;

(ii) f
(
g, hd

)
= f (g, e2) ∈ M.

Then A or its dual belongs to the variety D or Cp for some prime number p.

Proof. Let e1 and e2 be the first and second binary projection respectively (we
can write gd as g (e2, e1) with this notation). Note that e2 = ed

1, hence (ii) means
that f

(
g, hd

)
does not depend on h (as long as h ∈ M). We have e1 ∈ M , but

e2 ∈ M is impossible, because then (ii) would imply (with f = e2) that hd = e2

for every h ∈ M , contradicting that M has at least two elements. If f ∈ M is
nontrivial and fd also belongs to M , then we have f

(
e1, f

d
)

= e1 by (i), and
f

(
e1, f

d
)

= f (e1, e2) = f by (ii), hence f = e1, a contradiction. Thus M and
Md =

{
fd : f ∈ M

}
are disjoint.

The operation f • g = f (g, e2) is associative in any clone (this is the binary
analogue of the corresponding operation introduced in Section 3.1), and (M ; •)
is a semigroup in virtue of (ii). The first projection is an identity element for
•, hence (M ; •) is a monoid. If N is a submonoid of M , then N ∪ Nd is closed
under binary compositions and contains e1 and e2. In a minimal clone such a set
must be either {e1, e2} or the whole binary part of the clone. This fact together
with the disjointness of M and Md shows that Clo(2) (A) = M ∪Md, and the only
submonoids of M are {e1} and M itself. Such a monoid is called minimal, and it
was shown in Claim 3.11 of [KSz] that every minimal monoid is isomorphic to a
two-element semilattice or a cyclic group of prime order.
Suppose first that (M ; •) ∼= ({0, 1} ;∨) with f0 and f1 corresponding to 0 and 1 at
this isomorphism. Then there are only four binary operations in Clo (A), namely
f0 = e1, f

d
0 = e2, f1, f

d
1 and we can suppose (after passing to the dual of A if

necessary) that f1 (x, y) = xy, the basic operation in A. By the above isomorphism
we have f1 = f1∨1 = f1 • f1 = f1 (f1, e2), and this means that xy = (xy) y holds
in A. Writing out (i) with f = f1, g = f1, h = f0 and f = f1, g = f0, h = f1

we get f1 (f1, f0) = f1 and f1 (f0, f1) = f0 implying that A satisfies the identities
(xy) x = xy and x (xy) = x. Similarly we obtain f1

(
f0, f

d
1

)
= f1 (f0, e2) and

f1

(
f1, f

d
1

)
= f1 (f1, e2) as special cases of (ii), and they translate to the identities

x (yx) = xy and (xy) (yx) = (xy) y. All the identities in Lemma 1.6 are established,
therefore A ∈ D follows.
Now let us suppose that (M ; •) ∼= (Zp; +) with fi ∈ M corresponding to i ∈ Zp at
this isomorphism. Then the binary part of the clone consists of the 2p operations
fi, f

d
i (i = 0, 1, . . . , p − 1) with f0 = e1, f

d
0 = e2. We may assume (after dualizing
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if necessary) that fi (x, y) = xy for some i ∈ {1, . . . , p − 1}; moreover, we can
suppose without loss of generality that f1 (x, y) = xy since the automorphism group
of Zp acts transitively on Zp \ {0}. Then fi+1 = f1 • fi = f1 (fi, e2) by the above
isomorphism. Similarly to the previous case, F2 (HSP (A)) can be determined: (i)
implies fi · fj = f1 (fi, fj) = fi, and (ii) implies fi · fd

j = f1

(
fi, f

d
j

)
= f1 (fi, e2) =

fi+1; dualizing these we get fd
i · fd

j = fd
i and fd

i · fj = fd
i+1. It is easy to check that

F2 (HSP (A)) is a p-cyclic groupoid with a nontrivial clone (actually it is isomorphic
to F2 (Cp)), hence HSP (A) = Cp by Lemma 1.5.

Theorem 5.9. [Wa3] Let V ⊆ A be a variety with a minimal clone. Then V or
its dual is a subvariety of B, Cp, D or RB for some prime p.

Proof. Let W be the intersection of V and the variety of semigroups. Then W has
a minimal or trivial clone, therefore it is a subvariety of the variety of left zero
semigroups, right zero semigroups, rectangular bands, left regular bands or right
regular bands (cf. Theorem 1.11). We treat these five cases separately.

Case 1. If W is the variety of left zero semigroups, then Lemma 5.7 shows that V
satisfies t1x = t1t for arbitrary terms t1, t if x is the first variable of t. Specializing
to t = t1 we have that V |= tx = tt = t, i.e. a V-term does not change if we
multiply it by its first variable from the right. Using these observations it is easy
to check that M = {x, xy, xy2, xy3, . . .} satisfies the conditions of Lemma 5.8 for
any A ∈ V with a nontrivial clone (especially also for Fℵ0

(V)), and hence V ⊆ D or
V = Cp for some prime p. (Note that V satisfies x (yz) = xy, therefore Lemma 4.8
could be used as well.)

Case 2. If W is the variety of right zero semigroups, then similarly to the pre-
vious case we have the identities t1x = t1t and tx = t in V , where x is the
last variable of t. Now we can apply Lemma 5.8 with A = Fℵ0

(V) and M =
{x,←−−xyx,←−−−−xyxyx,←−−−−−xyxyxyx, . . .} to show that V ⊆ D or V = Cp for some prime
p, provided ←−−xyx is nontrivial in Fℵ0

(V). If (xy) x is a projection in Fℵ0
(V),

then V |= (xy) x = x or V |= (xy) x = y. The latter is impossible, since
x ((xy) x) = xx = x holds in V . Now we can write up the multiplication table
of F2 (V).

· x y xy yx
x x xy xy x
y yx y y yx
xy x xy xy x
yx yx y y yx

This is a semigroup in V , but it is not a right zero semigroup, contradicting that
W is the variety of right zero semigroups. (Actually this groupoid is isomorphic
to the two-generated free rectangular band, hence Lemma 1.5 could be applied as
well.)
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Case 3. If W is the variety of rectangular bands, then V = W = RB by Lemma 1.5.

Case 4. Suppose now that W is a variety of left regular bands. Then W |= t1 = t2
if t1 and t2 are binary terms such that both x and y appear in both terms, and
they have the same first variable. Lemma 5.7 implies that tt1 = tt2 holds in V for
every term t, if t1 and t2 satisfy the above conditions. This allows us to perform
the following computations in V with g (x, y) = x (xy).

g (x, g (x, y)) = x (x (x (xy))) = x (xy) = g (x, y)

g (x, g (y, x)) = x (x (y (yx))) = x (xy) = g (x, y)

g (g (x, y) , x) = (x (xy)) ((x (xy)) x) = (x (xy)) (x (xy)) = g (x, y)

g (g (x, y) , y) = (x (xy)) ((x (xy)) y) = (x (xy)) (x (xy)) = g (x, y)

g (g (x, y) , g (y, x)) = (x (xy)) ((x (xy)) (y (yx))) = (x (xy)) (x (xy)) = g (x, y)

These identities show that the subclone of Clo (V) generated by g contains at most
four binary operations, namely g, gd and the two projections. If g is nontrivial,
then the minimality of the clone implies that g (x, y) = xy or g (y, x) = yx. In
the first case the above identities are just the axioms of B, and in the second
case they show that V ⊆ Bd. If g is trivial, then x (xy) = x holds in V (since
x (xy) = y is clearly impossible), and hence also in W . Since W is a variety of
bands, W |= x = x (xy) = xy, and therefore it is the variety of left zero semigroups,
and we have Case 1.

Case 5. Finally, let W be a variety of right regular bands. Now V |= tt1 = tt2
whenever the last variable of the binary terms t1 and t2 is the same, and the same
variables occur in them. Proceeding similarly to the previous case, we show that
[g](2) =

{
e1, e2, g, gd

}
for g (x, y) = x (yx). This is established by the following

identities.

g (x, g (x, y)) = x ((x (yx)) x) = x (yx) = g (x, y)

g (x, g (y, x)) = x ((y (xy)) x) = x (yx) = g (x, y)

g (g (x, y) , x) = (x (yx)) (x (x (yx))) = (x (yx)) (x (yx)) = g (x, y)

g (g (x, y) , y) = (x (yx)) (y (x (yx))) = (x (yx)) (x (yx)) = g (x, y)

g (g (x, y) , g (y, x)) = (x (yx)) ((y (xy)) (x (yx))) = (x (yx)) (x (yx)) = g (x, y)

If g is nontrivial, then we have V ⊆ B or V ⊆ Bd just as in Case 4. If g is trivial,
then it has to be a first projection, hence x (yx) = x holds in V . Right regular
bands satisfy x (yx) = yx, hence W |= yx = x, and we have Case 2.

Now we are ready to prove the main result of this section: the characterization
of groupoids with a minimal clone that are almost semigroups in the ‘spectral’
sense.
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Theorem 5.10. [Wa3] For any groupoid A the following two conditions are equiv-
alent:

(i) A has a minimal clone and 1 < sA (4) < 5;

(ii) A is not a semigroup and A or its dual belongs to one of the varieties B∩A,
Cp or D ∩A for some prime p.

If these conditions are fulfilled, then we have sA (n) = 2n−2 for all n ≥ 2.

Proof. First we show that (i) implies (ii). The considerations preceding Lemma 5.6
show that if A has a minimal clone, and 1 < sA (4) < 5, then either A or its
dual satisfies x (y (zu)) = x ((yz) u), i.e. A ∈ A or A ∈ Ad. Applying Theo-
rem 5.9, we get that A or Ad belongs to B, Cp or D (for some prime p). Thus we
have to consider varieties of the from V1 ∩ V2, where V1 = A or V1 = Ad, and
V2 ∈

{
B, Cp,D,Bd, Cd

p ,Dd : p is a prime
}
, but up to duality we have only six cases,

because we may suppose that V2 = B, Cp or D.
We show that if A ∈ V2, and a, b are elements of A such that ax = bx holds for
all x ∈ A, then a = b. Letting x = a and x = b we see that {a, b} is a right zero
subsemigroup of A. The identity x (yx) = xy holds in V2 in all of the three cases,
hence a (ba) = ab. Since a and b form a right zero semigroup we have a (ba) = a and
ab = b, thus a = b as claimed. We see that V2 ∩Ad is a variety of semigroups, be-
cause the defining identity of Ad is ((xy) z) u = (x (yz)) u, and according to the pre-
vious observation this implies that (xy) z = x (yz) holds in V2. Thus V1 = A, and
we end up with the varieties of (ii). (Note that Cp |= x (y (zu)) = xy = x ((yz) u),
therefore Cp ∩ A = Cp.)
Now suppose that A (or its dual) belongs to one of the varieties mentioned in (ii),
and A is not a semigroup. The clone of B, Cp and D is minimal, thus the clone of A

is minimal, too (note that A has a nontrivial clone, because it is not a semigroup).
The other assertion of (i) will follow at once, if we prove that sA (n) = 2n−2. We
will do this in two steps: first we show that A ∈ A implies sA (n) ≤ 2n−2, and then
we prove that sA (n) ≥ 2n−2 holds if we suppose in addition that A ∈ B, Cp or D.
Let B and B′ be bracketings of the product x1 · . . . · xn. Lemma 5.6 implies that
A |= B = B′ if |l (B)| = |l (B′)| and A |= l (B) = l (B′). Applying Lemma 5.6
again, we see that |l (B)| = |l (B′)| , |l2 (B)| = |l2 (B′)| and l2 (B) = l2 (B′) is suffi-
cient for B = B′. Proceeding this way we arrive at left factors of size 1 (i.e. the sin-
gle variable x1) finally, and we see that if |li (B)| = |li (B′)| for all i (where it makes
sense), then B = B′ holds in A. Clearly, the numbers |li (B)| (and |li (B′)|) are
strictly decreasing in i, therefore it is sufficient if the sets {|li (B)| : i = 1, 2, . . .} and
{|li (B′)| : i = 1, 2, . . .} coincide. They are subsets of {1, 2, . . . , n − 1}, containing
1, hence there are 2n−2 many choices for these sets. This shows that sA (n) ≤ 2n−2

for any A ∈ A.
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Now let A ∈ A ∩ V2, where V2 ∈ {B, Cp,D : p is a prime}, and let B and B′ be
bracketings as before. Suppose that A |= B = B′, but {|li (B)| : i = 1, 2, . . .} 6=
{|li (B′)| : i = 1, 2, . . .}, and let i be the smallest value where |li (B)| and |li (B′)|
are different. The observation made in the second paragraph of this proof (a cer-
tain right cancellation property) together with idempotence shows that we can
delete the right factors in the identity B = B′ if they have the same size. Doing
this i− 1 times we arrive at bracketings whose left factors have different size, thus
we may suppose that i = 1 and we can also suppose that |l1 (B)| < |l1 (B′)|. Let
us substitute x for the first |l1 (B)| variables, y for the next |l1 (B′)| − |l1 (B)|
variables, and z for the rest. Then B becomes (x · · ·x) (y · · · yz · · · z) (with some
bracketing of the two products), and B′ has the form (x · · ·xy · · · y) (z · · · z). Thus
A satisfies an identity of the form (x · · ·x) (y · · · yz · · · z) = (x · · · xy · · · y) (z · · · z)
(with the same number of x, y and z on the two sides).
In B this identity reduces to x (yz) = (xy) z, showing that if sA (n) < 2n−2 for
some n, then A is a semigroup. If V2 = Cp or D, then let us put y = x, then we
have A |= (x · · · x) (x · · ·xz · · · z) = (x · · · xx · · ·x) (z · · · z). The right hand side is
clearly xz, and on the left hand side the bracketing of the factor (x · · ·xz · · · z) is
irrelevant according to Lemma 5.6. Thus A |= x (xz) = xz, and since x (xz) = x
holds in Cp and D, we see that A is a left zero semigroup. We have proved that
the associative spectrum of a groupoid in any one of the varieties mentioned in (ii)
is either (1, 1, 1, 1, . . .) or (1, 2, 4, 8, . . .), and this completes the proof of the theo-
rem.

Remark 5.11. Each of the varieties B ∩ A, Cp and D ∩ A contain groupoids with
a nonassociative operation. For Cp it is clear, because the only p-cyclic groupoids
that are semigroups are the left zero semigroups. The two-generated free algebra of
D is not a semigroup, and satisfies x (y (zu)) = x ((yz) u), hence belongs to D∩A.
(See the multiplication table in the proof of Lemma 1.6.) Let us now construct
some nonassociative algebras in B ∩ A.

Let S = (S;∨) be a semilattice, and let C be the set of finite chains in S. We
define a multiplication in C by the following formula (note that if bl ≤ ak, then
the right hand side is the same as the first factor on the left hand side).

(a1 < a2 < · · · < ak) · (b1 < b2 < · · · < bl) = (a1 < a2 < · · · < ak ≤ ak ∨ bl)

For a = (a1 < a2 < · · · < ak) ,b = (b1 < b2 < · · · < bl) and c = (c1 < c2 < · · · < cm)
we have (a · b) · c = (a1 < a2 < · · · < ak ≤ ak ∨ bl ≤ ak ∨ bl ∨ cm) and a · (b · c) =
(a1 < a2 < · · · < ak ≤ ak ∨ bl ∨ cm). Since the top element of both chains is
ak ∨ bl ∨ cm, right multiplication by (a · b) · c is the same as right multiplica-
tion by a · (b · c), hence C = (C; ·) satisfies x (y (zu)) = x ((yz) u). It is not hard
to check, that the defining identities of B also hold in C, hence C ∈ B ∩ A. If the
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height of S is at least three, i.e. there is a chain of length three, then C is not a
semigroup. Indeed, if a < b < c, then (a · b) · c = (a < b < c) 6= (a < c) = a · (b · c).

5.3 Szász-Hájek groupoids with a minimal clone

In this section we are going to determine binary operations generating a mini-
mal clone that are almost associative in the ‘index’ sense, i.e. SH-groupoids with a
minimal clone. We need the following lemma before we state and prove the main
result.

Lemma 5.12. [Wa3] If an SH-groupoid has a minimal clone, then it has to be of
type (a, b, c).

Proof. Let A be an SH-groupoid with a minimal clone. Then A is idempotent,
hence it cannot be of type (a, a, a). If it is of type (a, b, a), then the subgroupoid
generated by a and b is a minimal SH-groupoid of type (a, b, a) with a minimal
clone. The description of minimal SH-groupoids of type (a, b, a) given in [KT4] is
not complete, but it covers the idempotent case (subtypes (α) and (β)). There
are four idempotent minimal SH-groupoids of type (a, b, a) up to isomorphism: the
following two groupoids and their duals (the second groupoid is a factor of the first
one).

· a b d e
a a a e e
b d b d d
d d d d d
e e e e e

· a b d
a a a d
b d b d
d d d d

In both cases the operation g (x, y) = x (yx) is nontrivial, and preserves the equiv-
alence relation corresponding to the partition whose only nontrivial block is {b, d},
but the basic operation f (x, y) = xy does not preserve this relation. This shows
that f /∈ [g], hence the clone is not minimal.
Suppose now that A is of type (a, a, b). From the computations in [KT5] it fol-
lows that d = ba = b (combine Lemmas 1.5, 1.6, 2.4 and 2.19), therefore the
subgroupoid generated by a and b is a minimal SH-groupoid of type (a, a, b) and
of subtype (ε). Up to isomorphism there is only one such groupoid, namely the
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following one.
· a b c e
a a c e e
b b b b b
c c c c c
e e e e e

The clone of this groupoid is not minimal, because x (xy) is a nontrivial operation
preserving the set {a, b, e}, while the basic operation xy does not preserve this
set. Dually, the type (a, b, b) is not possible either, thus we can conclude that an
SH-groupoid with a minimal clone has to be of type (a, b, c).

Theorem 5.13. [Wa3] For any Szász-Hájek groupoid A the following two condi-
tions are equivalent:

(i) A has a minimal clone;

(ii) A or its dual belongs to the variety B.

Proof. It is clear that (ii) implies (i), since B has a minimal clone. For the other
direction let us suppose that A is an SH-groupoid with a minimal clone. As
we have seen in the previous lemma, A is of type (a, b, c). Therefore (x, y, x)
is an associative triple for all x, y ∈ A, hence A |= (xy) x = x (yx). Thus
we may omit parentheses in products of the form xyx. Similarly, we obtain
A |= (xy) y = x (yy) = xy by idempotence. Proposition 5.1 shows that (xy, x, y)
is an associative triple for all x, y ∈ A, because xy = a, x = b, y = c is impossible.
Thus A |= ((xy) x) y = (xy) (xy) = xy. By another application of Proposition 5.1
we can see that (xy, y, x) 6= (a, b, c), so (xy) (yx) = ((xy) y) x = (xy) x holds in A.
The identities derived so far together with their duals are almost sufficient to
fill out the multiplication table of the two-generated free algebra in the variety
generated by A (see the table below). The only entries that are not determined
yet are (xyx) (yxy) and (yxy) (xyx). In order to compute these, let us observe
that (xyx, yx, y) is always an associative triple, because yx = b and y = c im-
plies x = b by Proposition 5.1, but then x (yx) = bb = b 6= a. Therefore
A |= (x (yx)) ((yx) y) = ((x (yx)) (yx)) y = (x (yx)) y = ((xy) x) y = xy.

· x y xy yx xyx yxy
x x xy xy xyx xyx xy
y yx y yxy yx yx yxy
xy xyx xy xy xyx xyx xy
yx yx yxy yxy yx yx yxy
xyx xyx xy xy xyx xyx xy
yxy yx yxy yxy yx yx yxy
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We see that the binary part of Clo (A) contains at most six operations (some of
the six elements in the table may coincide). In [LP] we can find the complete
description of minimal clones with at most six binary operations, so we could
finish the proof by simply examining the list of clones given there. Another way
is to observe that for g (x, y) = xyx the binary part of [g] is

{
e1, e2, g, gd

}
. If

g is a nontrivial operation, then [g] = Clo (A), hence A satisfies xyx = xy or
xyx = yx, and then the defining identities of B or Bd can be read from the above
multiplication table. If g is trivial, then A |= xyx = x, because xyx = y would
imply xy = (xyx) y = yy = y. In this case F2 (HSP (A)) is a rectangular band (we
get the same multiplication table as in Case 2 of the proof of Theorem 5.9), hence A

is a rectangular band by Lemma 1.5, contradicting that A is an SH-groupoid.

Finally we describe minimal SH-groupoids in the varieties B and Bd up to
isomorphism.

Theorem 5.14. [Wa3] Every minimal SH-groupoid having a minimal clone is
isomorphic or dually isomorphic to one of the groupoids G1, . . . , G10 listed in
Table 7.

Proof. Let A be a minimal SH-groupoid with a minimal clone. Then A is of
type (a, b, c), and up to duality we may suppose that A belongs to the variety
B. Following the notation of [KT6] we set d = ab, e = bc, f = a (bc) = ae and
g = (ab) c = dc. Some of these elements may coincide, but a, b, c are pairwise
distinct and f 6= g. Since A is idempotent, we have d = a or e = c by Lemma 1.7
of [KT6]. If d = a, then ba = b or ba = a (Lemma 1.9 (iii)); if e = c, then cb = b
or cb = c (Lemma 1.9 (iv)). Thus we have four cases, and we will deal with them
separately.

Case 1. d = ab = a and ba = b We have g = dc = ac = c by Lemma 1.4
(ii) of [KT6], and then ca = c (ca) = (ac) (ca) = ac = c follows applying the
defining identities of B. Some other products may be computed with the help
of these identities, for example be = b (bc) = bc = e and eb = (bc) b = bc = e.
For others, we can use the fact that (a, b, c) is the only nonassociative triple, e.g.:
cb = (ca) b = c (ab) = ca = c, and bf = b (ae) = (ba) e = be = e. We can fill out the
multiplication table this way except for the entry fc. Here we have two possibilities.
If e 6= b, then (f, e, c) 6= (a, b, c), therefore fc = (fe) c = f (ec) = fe = f , and we
get the groupoid G1. If e = b, then fc = ac = c, and we arrive at the groupoid
G3. (Note that e = b implies f = ae = ab = a.) In both cases we have to
consider the possibility that some of the elements (denoted by different letters so
far) coincide. This amounts to forming factor groupoids, but only with respect to
congruences where f and g belong to different congruence classes (otherwise the
factor groupoid would be a semigroup). There is no such congruence on G3, while



Chapter 5. Almost associative operations 73

G1 has exactly one nontrivial congruence not collapsing f and g (= c); its classes
are {a} , {b} , {c} , {e, f}, and the corresponding factor groupoid is G2.

Case 2. d = ab = a and ba = a Let us start again with the product ca. We
claim that (a, b, ca) is a nonassociative triple. Indeed, (ab) (ca) = a (ca) = ac =
(ab) c = g, while a (b (ca)) = a ((bc) a) = a (ea) = ae = a (bc) = f . Since the only
nonassociative triple is (a, b, c), we can conclude that ca = c. Then cb = (ca) b =
c (ab) = ca = c, and the rest of the multiplication table can be filled out without
any difficulty. (The computation of fc is straightforward here, because e = b is
impossible as it would imply f = bf = ef = e = eg = bg = g.) We get the
groupoid G4, and the only possible coincidence between the six elements is e = f ;
this yields G5.

Case 3. e = bc = c and cb = b This case is not possible, because cb = b implies
that b = bb = b (cb), but b (cb) = bc by the axioms of B, hence we have b = bc = c,
which is a contradiction.

Case 4. e = bc = c and cb = c We prove that cd = c by showing that (a, b, cd) is
a nonassociative triple. Indeed, (ab) (cd) = d (cd) = dc = g, while a (b (cd)) = f
can be derived in the following way (we have indicated where we used the axioms
of B and where the Szász-Hájek property).

a (b (cd))
SH
= a ((bc) d) = a (cd)

SH
= (ac) d = (ac) (ab)

SH
= ((ac) a) b

B
= (ac) b

SH
= a (cb) = ac = a (bc) = f

Now we can compute that ca = (cd) a = c (da) = c ((ab) a) = c (ab) = cd = c,
and the rest of the multiplication table of G6 is not hard to fill out (we set h = ba
and i = bf). The only entries whose calculation is not straightforward are ag, ai
and di. Since f 6= g, at least one of these two elements is different from c, hence
(a, d, f) or (a, d, g) is an associative triple (even if d = b). Therefore we have either
ag = a (df) = (ad) f = df = g, or ag = a (dg) = (ad) g = dg = g (after computing
df = dg = g and ad = d). Writing ai either as a (bf) or a (bg) and di as d (bf)
or d (bg) we get by a similar argument that ai = g and di = g. There are four
congruences of G6 that do not collapse f and g, the corresponding factor groupoids
are G7, G8, G9 and G10.

To finish the proof we need to check that these ten groupoids are really SH-
groupoids and that they belong to the variety B. This requires tedious but straight-
forward computations, therefore we omit the details.

Remark 5.15. Minimal SH-groupoids of type (a, b, c) were investigated in [KT6].
The groupoid G3 is the same as V10 there, but the other nine groupoids found in
the previous theorem seem to be new minimal SH-groupoids of type (a, b, c).
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Remark 5.16. The class of groupoids found in Theorem 5.10 is disjoint from the
class described in Theorem 5.13, i.e. there is no groupoid with a minimal clone
that is almost associative in both the ‘spectral’ and the ‘index’ sense. Indeed, if A

satisfies the conditions of both theorems, then A (or its dual) satisfies x (y (zu)) =
x ((yz) u) by the considerations preceding Lemma 5.6, and A (or its dual) contains
a subgroupoid isomorphic to one of the groupoids G1, . . . , G10 by Theorem 5.14.
However, this is impossible, because neither of these ten groupoids and neither of
their duals satisfy x (y (zu)) = x ((yz) u) as it can be seen from their multiplication
tables (let x = a, y = a, z = b, u = c for G1, . . . , G10 and x = a, y = c, z = b, u = a
for their duals).



Appendix

Associative spectra of binary
operations

A.1 Introduction

Let n be a positive integer. We call a string consisting of symbols x, (, and )
a bracketing of size n if it contains n symbols “x”, and n − 1 symbols “(” (left
parentheses) as well as “)” (right parentheses) so that they are properly placed to
determine a product of n factors x (see, e.g. [BBi,Tam]). More formally,

1. x is the unique bracketing of size 1,

2. the bracketings of size n are exactly the strings of form (PQ) where P and Q
are bracketings of size k resp. l with k + l = n.

E.g. (xx) is the only bracketing of size 2, and ((x(xx))(xx)) is a bracketing of
size 5. Note that we always use an outermost pair of parentheses whenever n > 1,
in contrary to the everyday usage of parentheses. We shall denote bracketings by
capital letters, and |B| stands for the size of B.

Bracketings are, in fact, the elements of the free groupoid with one free gen-
erator x (cf. [BBi], p. 133), or, equivalently, they are the unary groupoid terms.
The corresponding unary term operations on special groupoids were investigated
by several authors (see, e.g. [GN,GS]). In any bracketing of size n we can indicate
the position of symbols x by subscripts 1, . . . , n, e.g. (x1x2), ((x1(x2x3))(x4x5)).
Thus, a bracketing of size n provides also an element of the free groupoid with free
generators x1, . . . , xn, i.e., an n-ary groupoid term (although, of course, not all
n-ary groupoid terms originate from bracketings in such a way). Here we always
study bracketings considered as n-ary groupoid terms, even if in some cases we
omit the subscripts 1, . . . , n. On every groupoid G, these terms give rise to n-ary
term operations. We call them regular n-ary operations of G (or, regular over the
operation of G), and, in concrete cases, operations induced by given bracketings.

75
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For notation of the regular operation induced by the bracketing B,P,Q, etc. we
use the corresponding lowercase letters b, p, q, etc.

If G is associative, then by the generalized associative law there is exactly one
regular n-ary operation for each n. In the general case, we have a sequence

s
G
(1), s

G
(2), . . . , s

G
(n), . . .

of positive integers with s
G
(n) denoting the number of distinct n-ary regular opera-

tions of G. E.g., s
G
(1) = s

G
(2) = 1 for every groupoid G, and s

G
(3) = 2 if and only

if G is nonassociative, as then the two possible bracketings of size 3, (x1(x2x3))
and ((x1x2)x3) induce different ternary term operations.

The sequence

{s
G
(n)} = (s

G
(1), s

G
(2), . . . , s

G
(n), . . .)

measures, in some sense, the distance of G from associativity: the smaller its
entries are, the closer the operation of G is to being associative. Hence we call
this sequence the associative spectrum of G (or, of the operation of G). Instead of
s

G
(n) we write s(n) if this cannot cause misunderstanding. Usually we also omit

s(1) and s(2), bearing no information about G.
In this chapter we study the introduced notion from several points of view. The

next section contains some well-known facts, simple observations, and auxiliary
results on bracketings and associative spectra; there and later, the routine inductive
proofs will often be omitted. Most frequently we use induction on size; we leave
out the words “on size” in these cases. The third section contains samples of
determining associative spectra of some familiar nonassociative operations. The
problem of characterizing all associative spectra of operations on a set with a given
power seems to be hard. However, the case of the two-element set is, as it might be
expected, easy (Section A.4), and a lot of three-element groupoids are accessible
(Section A.5). In the final section we present some facts on the general behavior
of associative spectra, and formulate several problems.

Further on, we write simply spectrum for associative spectrum.

A.2 Properties of bracketings and spectra

For any bracketing B of size n(> 1), we can pair its left and right parentheses in a
natural way ([Kl,Tam]). Induction shows that we can always choose a consecutive
quadruple (xx) in B; its left and right parentheses will be associated to form a
pair. Replacing then (xx) with x we obtain a bracketing B′ of size n−1, for which
the preceding process can be repeated until no unpaired parentheses remain. This
way of forming pairs involves that any pair together with the symbols between
them is also a bracketing. It is called a subbracketing of B; e.g., if B = (PQ),
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then P and Q are subbracketings of B, as outermost parentheses of any bracketing
are paired. We call P and Q the (left resp. right) factors of B. The symbols x are
considered as subbracketings of size 1, too. Observe that pairing is unique, and if
a parenthesis lies between a pair then its associate also lies between them. Hence
the representation of bracketings of size > 1 in form (PQ) is unique, too.

Substituting x for one or several disjoint subbracketings in B we obtain a quo-
tient bracketing of B. E.g. (x(xx)) and ((xx)(xx)) are (disjoint) subbracketings
of B = (((x(xx))x)((xx)(xx))), and replacing them with x provides the quotient
bracketing ((xx)x) of B. A bracketing is a nest if it is either of size 1 (a trivial
nest) or one out of its factors is x, and the other one is a nest ([GN,GS]). E.g.,
all bracketings of size 4 save (xx)(xx) are nests. Given a bracketing B, there are
subbracketings of B which are nests; in particular, each xi is contained in a unique
maximal nest. We call these maximal nests simply the nests of B. A nontrivial
nest has a unique subbracketing of form (xixi+1); we say that xi, xi+1 are the eggs
of the nest.

The Catalan numbers Cn are defined recursively by

(1) C0 = 1,

(2) Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−2C1 + Cn−1C0 (n > 0),

or, equivalently, by the formula

Cn =
1

n + 1

(
2n

n

)
.

Comparing (1) and (2) with the formal definition of bracketings in the introduction,
and taking into account the uniqueness of the representation of bracketings in form
(PQ), we can see that the number of bracketings of size n equals Cn−1 (see, e.g.
[Ja]). Therefore 1 ≤ s(n) ≤ Cn−1 holds for any spectrum {s(n)}. If sG(n) = Cn−1

for every n, then the groupoid G and its operation are said to be Catalan. E.g., free
groupoids are Catalan. The following inequality also follows from the definition of
bracketings:

s(n) ≤ s(1)s(n−1)+s(2)s(n−2)+· · ·+s(n−2)s(2)+s(n−1)s(1) (n ≥ 2) . (A.1)

Hence if s
G
(n0) < Cn0−1 then s

G
(n) < Cn−1 for every n > n0.

The spectrum gives account of the number of certain special identities (not)
satisfied by a groupoid, therefore isomorphic or antiisomorphic groupoids have
the same spectrum. Moreover, for any groupoid G and H ∈ HSP (G) we have
s

H
(n) ≤ s

G
(n) for every n. Thus in order to prove that a groupoid G is Catalan,

it is sufficient to find a Catalan groupoid in the variety generated by G.
The next fact goes back to ÃLukasiewicz (for a proof, see [Co], Ch. 3.2, or [Lo],

Exercise 1.38):
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Theorem A.1. Bracketings are uniquely determined by the places of their right
(or left) parentheses between the symbols x1, . . . , xn.

Next we introduce sequences of nonnegative integers which arise naturally from
bracketings, and also contain full information on them. Consider the free monoid
F2 with unit element e, generated by symbols 0 and 1. A subset M of F2 is
prefix-free if no word in M is a prefix (i.e., a left segment) of another word in M .
There exist finite maximal prefix-free sets (FMPF-sets in short) in F2, e.g., the set
containing the empty word e only, the sets {0, 1}, {00, 010, 011, 10, 11}, etc. Assign
to each bracketing an ordered sequence of words in F2 inductively by the rule:

(a) x 7→ (e),

(b) if P 7→ (w1, . . . , wk) and Q 7→ (wk+1, . . . , wk+l) then
(PQ) 7→ (0w1, . . . , 0wk, 1wk+1, . . . , 1wk+l).

It is a routine to check that, in this way, a unique, lexicographically listed
FMPF-set of n words is assigned to every bracketing of size n. Now we can use
the defining properties (1),(2) of Catalan numbers to show that the number of
distinct FMPF-sets of n elements equals Cn−1. Therefore, (a) and (b) provide a
1-1 correspondence between bracketings and lexicographically ordered FMPF-sets.

Consider a bracketing B of size n viewed with subscripts, i.e., as an n-ary
groupoid term. Let (w1(B), . . . , wn(B)) be the lexicographically ordered FMPF-
set corresponding to B. Call the length of wi(B) the depth of xi in B, and the
number of 0’s (resp. of 1’s) in wi(B) the left depth (resp. the right depth) of xi in
B.

Inspecting (a) and (b) we get the intuitive meaning of depth of xi: the number
of pairs of parentheses (or, equivalently, of the subbracketings of size at least 2 )
containing xi. Similarly, e.g. the right depth of xi in B is the number of those
subbracketings in which xi is contained in the right factor. The sequence consisting
of the depths of x1, . . . , xn in B will be called the depth sequence of B. Left and
right depth sequences of B are defined analogously. E.g., the depth sequence of
((x(xx))(xx)) is (2, 3, 3, 2, 2), and its right depth sequence is (0, 1, 2, 1, 2).

FMPF-sets — and thus also bracketings — can be imagined as such minimal
sets of vertices in the infinite binary rooted tree that separate the top of the tree
from its bottom. See the figure where the sets of vertices corresponding to (x1x2)
and (x1(x2x3))(x4x5) are marked by squares, resp. circles; correspondence between
vertices and binary strings is indicated, too. In this representation, the depth of
xi is the number of edges in the path p connecting e with xi. Similarly, the left
(right) depth is the number of left(right) edges in p.
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e

0 x1

00 x1

000 001

01

010
x2 011

x3

1 x2

10 x4

100 101

11 x5

110 111

Theorem A.2. [CsW] Bracketings are uniquely determined by their depth se-
quences.

Proof. This is clearly true for bracketings of size ≤ 3. Suppose the bracketings
(P1Q1) and (P2Q2) of size n(> 3) have the same depth sequence (d1, . . . , dn).
From the definition, the equality

n∑

i=1

1

2ei
= 1 (A.2)

follows for every depth sequence (e1, . . . , en). If |P1| = j, |P2| = k, then, in view of
(a) and (b), the depth sequences of P1 and P2 are of form (d1 − 1, . . . , dj − 1) and
(d1 − 1, . . . , dk − 1), respectively. Therefore,

j∑

i=1

1

2di
=

k∑

i=1

1

2di
= 1/2.

Hence the sizes of P1 and P2 are equal. Now the theorem follows by induction.

Theorem A.3. [CsW] Bracketings are uniquely determined by their right (or
left) depth sequences.

Proof. Let B = (PQ) be a bracketing with right depth sequence (in short, RD-
sequence)

(d1, . . . , dn). (A.3)

Then there is a k between 1 and n such that the RD-sequence of P is (d1, . . . , dk),
and that of Q is (dk+1 − 1, . . . , dn − 1). Induction shows that always

d1 = 0, d2 = 1, (A.4)
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and, for i = 1, . . . , n − 1,
1 ≤ di+1 ≤ di + 1. (A.5)

Call a sequence (A.3) of nonnegative integers a zag sequence (cf. [GK], Ch. 1.2,
where zig is defined) if it has the properties (A.4) and (A.5). We use induction
to prove that for any zag sequence (A.3) there exists at most one bracketing with
RD-sequence (A.3). This is clearly true for n ≤ 2. As (dk+1−1, . . . , dn−1) is a zag
sequence, we have dk+1 = 1, and dj ≥ 2 for j = k + 2, . . . , n. It follows that if the
size of the first factor of B is k, then the last 1 in the RD-sequence of B appears
on the (k + 1)st place. Hence if the RD-sequences of B = (PQ) and B′ = (P ′Q′)
are the same, then |P | = |P ′|. Thus the RD-sequences of P and P ′ coincide, and,
by induction, P = P ′. Similarly we obtain Q = Q′, completing the proof.

An analogous straightforward induction shows that every zag sequence is the
RD-sequence of some bracketing. Consequently, the number of zag sequences of
length n equals that of the bracketings of size n, i.e., Cn−1 (cf. [St], Ch. 5, Exercise
19(u)).

A.3 Examples

In this section we determine spectra of several common operations. Given a partic-
ular operation, we denote the members of its spectrum by s(n) (without subscript),
and we write s(n) = f(n) to indicate that this equality holds for n ≥ 3.

Proposition A.4. [CsW] For the subtraction of numbers, s(n) = 2n−2.

Proof. Induction shows that any regular operation b(x1, x2, . . . , xn) over the sub-
traction is of form x1−x2±x3±· · ·±xn. It is enough to prove that actually every
possible sequence of the + and − signs occurs. This is true for n ≤ 3; suppose
n > 3, and apply induction. If b(x1, x2, . . . , xn) = x1 − x2 − · · · − xn, then b is
induced by ((. . . ((x1x2)x3) . . .)xn). Otherwise there exists a first + sign in f , say
b(x1, x2, . . . , xn) = x1 − x2 − · · · − xk+1 + xk+2 ± · · · ± xk+l (k + l = n). Then
b(x1, . . . , xn) = (x1−x2−· · ·−xk)− (xk+1−xk+2∓· · ·∓xk+l), and this is induced
by B = (PQ), where P = ((. . . ((x1x2)x3) . . . xk), and Q is the bracketing that
induces the subtrahend (such a Q exists by induction). In fact, this reasoning is
valid for subtraction in arbitrary Abelian groups except those of exponent 2.

Proposition A.5. [CsW] The arithmetic mean as a binary operation on numbers
is Catalan.

Proof. We prove that distinct bracketings induce distinct regular operations over
the arithmetic mean. Induction shows that a bracketing B of size n induces
b(x1, . . . , xn) =

∑n

i=1 2−dixi over the arithmetic mean, where di is the depth of xi
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in B. Let B′ (6= B) be another bracketing of size n which induces b′(x1, . . . , xn) =∑n

i=1 2−di
′

xi. In virtue of Theorem A.2, there exists a j (1 ≤ j ≤ n) such that
dj 6= dj

′. Then b(δj
1, . . . , δ

j
n) = 2−dj 6= 2−dj

′

= b′(δj
1, . . . , δ

j
n), i.e., b and b′ are

distinct operations, as required. This holds for an arbitrary set of numbers closed
under arithmetic mean, containing more than one element.

Proposition A.6. [CsW] The geometric mean and the harmonic mean as binary
operations on positive real numbers are Catalan.

Proof. This follows from Proposition A.5 as the groupoids (R, (x + y) /2) and
(R+,

√
xy) are isomorphic, as well as (R+, (x + y) /2) and (R+, 2xy/ (x + y)).

Proposition A.7. [CsW] The exponentiation as a binary operation (a, b) 7→ ab

on numbers is Catalan.

Proof. Let p1, . . . , pn be distinct prime numbers. Consider bracketings B, B′(6= B)
and the regular operations b, b′ they induce over the exponentiation. We show
that b 6= b′. Making use of the law (rs)t = rst, and the usual convention of
writing rst

instead of r(st), we can write expressions of form b(p1, . . . , pn) without
parentheses, e.g., if B = ((x1 (x2x3)) (x4x5)) and pi are the first primes, we have
b(2, 3, 5, 7, 11) = 235711

. Here the exponents are at different levels: say, 2 is at the
zeroth, 3 and 7 are at the first level, etc. The key observation is that the height
of the level of pi in b always equals the right depth of xi in B; this can be verified
using induction. As B 6= B′, by Theorem A.3 there exists a j such that the right
depth of xj in B is different from that of xj in B′. Then the fundamental theorem
of arithmetic implies b(p1, . . . , pn) 6= b′(p1, . . . , pn).

Proposition A.8. [CsW] The cross product of vectors is Catalan.

Proof. Consider three pairwise perpendicular unit vectors, their additive inverses,
and the zero vector. They form a groupoid under cross product, and, if we identify
the unit vectors with their negatives, we obtain a four-element factorgroupoid G

with Cayley operation table

× 0 u v w

0 0 0 0 0

u 0 0 w v

v 0 w 0 u

w 0 v u 0

It is enough to prove that this operation is Catalan, because G ∈ HSP (R3;×). Let
B,B′, b, b′ be as in Proposition A.7. We shall find nonzero elements c1, . . . , cn ∈ G
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such that b(c1, . . . , cn) = 0 6= b′(c1, . . . , cn). The case n = 3 is obvious. The general
case needs some preparations:

Claim A.9. Let F be a nontrivial nest of size k which induces the regular oper-
ation f on G. Given i (1 ≤ i ≤ k), and c, d ∈ G with d /∈ {0, c}, we can choose
elements c1, . . . , ci−1, ci+1, . . . , ck ∈ G so that f(c1, . . . , ci−1, c, ci+1, . . . , ck) = d.

This is valid also for any bracketing B and its induced regular operation b
instead of F and f . Indeed, apply Claim A.9 to the nest of B containing xi, if this
nest is nontrivial, and replace this nest by x; while if xi is a trivial nest, replace
the eggs of another nest by x. Then, in both cases, use induction for the quotient
bracketing. We remark that this generalized form of Claim A.9 implies that any
regular operation over the cross product is surjective (i.e., it maps Gn onto G; in
fact, this is the case for all surjective binary operations, cf. Claim A.13).

Claim A.10. If xj, xj+1 are no eggs of any nest of a bracketing B, we can choose
d1, . . . , dj−1, d, dj+2, . . . , dk in G such that f(d1, . . . , dj−1, d, d, dj+2, . . . , dk) 6= 0.

Proof. If B = (PQ) with |P | = k and j + 1 ≤ k, then for suitable elements
d, di ∈ G by induction we have p(d1, . . . , dj−1, d, d, dj+2, . . . , dk) = e 6= 0. Now by
Claim A.9 there are dk+1, . . . , dn ∈ G such that q(dk+1, . . . , dn) = f 6= 0, e. Then
b(d1, . . . , d, d, . . . , dn) = e× f 6= 0. The case k < j can be treated in a similar way.
Finally, suppose k = j. Let us fix d 6= 0, and apply Claim A.9 to P and Q with i =
k and i = k+1, respectively. Then we have elements d1, . . . , dk−1, dk+2, . . . , dn ∈ G
such that p(d1, . . . , dk−1, d) = e and q(d, dk+2, . . . , dn) = f , where G = {0, d, e, f}.
Thus b(d1, . . . , d, d, . . . , dn) = e × f = d 6= 0, completing the proof of Claim A.10.

¦

In order to prove Proposition A.8, first suppose that there is an i (1 ≤ i ≤ n)
such that xi and xi+1 are the eggs of a nest of B as well as of B′. Replacing (xixi+1)
by x in B and B′, we obtain quotient bracketings B1 resp. B1

′ of size n − 1 with
induced regular operations b1 and b1

′. By induction, there exist nonzero elements
e1, . . . , en−1 ∈ G such that b1(e1, . . . , ei, . . . , en−1) = 0 6= b1

′(e1, . . . , ei, . . . , en−1).
Let e′, e′′ ∈ G be distinct, and different from 0 and ei. Then e′ × e′′ = ei, and
b(e1, . . . , ei−1, e

′, e′′, ei+1, . . . , en−1) = b1(e1, . . . , ei, . . . , en−1) = 0, and on the other
hand b′(e1, . . . , ei−1, e

′, e′′, ei+1, . . . , en−1) = b′1(e1, . . . , ei, . . . , en−1) 6= 0. Now sup-
pose that no nests of B and B′ have a common pair of eggs. Let xj and xj+1 be
the eggs of a nest of B. Then b(d1, . . . , dj−1, d, d, dj+1, . . . , dn) = 0 for any choice
of d1, . . . , dj−1, d, dj+2, . . . , dn ∈ G. However, as xj and xj+1 are eggs of no nest
in B′, from Claim A.10 it follows that there is a choice of d1, . . . , dj−1, dj+2, . . . , dn

such that b′(d1, . . . , dj−1, d, d, dj+2, . . . , dn) 6= 0.



Appendix. Associative spectra 83

A.4 Groupoids on two-element sets

In what follows we consider operations on finite sets. For uniform treatment, we
study groupoids of form (n, ◦), where n stands for the set {0, 1, . . . , n − 1}. Each
two-element groupoid is isomorphic or antiisomorphic with (2, ◦), where x ◦ y is
one of the following seven Boolean functions:

(1) the constant 1 operation;

(2) x (the first projection);

(3) x ∧ y (i.e., min(x, y));

(4) x + y mod 2;

(5) x + 1 mod 2;

(6) x|y (the Sheffer function: “neither x, nor y”);

(7) x → y (implication).

Here (1) — (4) are associative. We determine the spectra of (5) — (7).

Proposition A.11. [CsW] For the operation x + 1 mod 2, s(n) = 2.

Proof. Indeed, induction shows that for an arbitrary bracketing B of size n and
c1, . . . , cn ∈ 2, b(c1, . . . , cn) = c1+d mod 2, where d is the left depth of x1 in B.

Proposition A.12. [CsW] The Sheffer function is Catalan.

Proof. Recall, that 0|0 = 1 and x|y = 0 otherwise. We shall need some prelimi-
naries.

Claim A.13. Regular operations over a surjective operation are surjective (i.e.,
they take on all elements of their base sets).

Claim A.14. If the Cayley table of a surjective operation ◦ has neither two iden-
tical columns nor two identical rows, then each variable of any regular operation
over ◦ is essential.

Proof. This is obvious for at most binary regular operations. Let B = (PQ),
|B| = n ≥ 3, |P | = k. Take a variable xi of b. We have to prove that there are ele-
ments c1, . . . , ci−1, u, v, ci+1, . . . , cn in the base set M of the operation ◦ such that
b(c1, . . . , ci−1, u, ci+1, . . . , cn) 6= b(c1, . . . , ci−1, v, ci+1, . . . , cn). Without loss of gener-
ality, suppose i ≤ k. Then by induction there exist c1, . . . , ci−1, u, v, ci+1, . . . , ck ∈ M
such that g = p(c1, . . . , ci−1, u, ci+1, . . . , cn) 6= p(c1, . . . , ci−1, v, ci+1, . . . , cn) = h.
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The rows of g and h in the Cayley table of ◦ are not identical, i.e., there is a
d ∈ M such that g ◦ d 6= h ◦ d. Further, by Claim A.13, there are ck+1, . . . , cn ∈ M
with q(ck+1, . . . , cn) = d. Then b(c1, . . . , ci−1, u, ci+1, . . . , cn) = g ◦ d 6= h ◦ d =
b(c1, . . . , ci−1, v, ci+1, . . . , cn), which was needed. ¦
Claim A.15. If ◦ fulfils the conditions of Claim A.14, then regular operations of
distinct arities over ◦ cannot be identically equal.

Proof. Indeed, otherwise the last variable of the regular operation of greater arity
could not be essential. ¦

We see that Claim A.13—Claim A.15 apply to the Sheffer function. Let B1, B2

be bracketings of size n (≥ 3), B1 = (P1Q1), B2 = (P2Q2), and suppose that their
induced operations b1 and b2 coincide. We have to prove B1 = B2. This is true for
n = 3, as (0|0)|1 = 0 6= 1 = 0|(0|1). Let n > 3, and assume k = |P1| ≤ |P2| = l.
First we show that, for arbitrary c1, . . . , ck, . . . , cl ∈ 2, p1(c1, . . . , ck) = 0 if and
only if p2(c1, . . . , cl) = 0. Let p1(c1, . . . , ck) = 0. By Claim A.13, there exist
ck+1, . . . , cn ∈ 2 with q1(ck+1, . . . , cn) = 0. Hence it follows

b1(c1, . . . , ck, ck+1, . . . , cn) = p1(c1, . . . , ck) | q1(ck+1, . . . , cn) = 1 =

= b2(c1, . . . , cl, cl+1, . . . , cn) = p2(c1, . . . , cl) | q2(cl+1, . . . , cn),

implying p2(c1, . . . , cl) = 0. This reasoning is valid in the opposite direction,
too, showing that p1 identically equals p2. Now from Claim A.15 we infer k = l
and, by induction, P1 = P2. It remains to establish Q1 = Q2. Let, once more,
p1(c1, . . . , ck) = 0. If Q1 6= Q2, then, again by induction, there are ck+1, . . . , cn ∈ 2
such that q1(ck+1, . . . , cn) 6= q2(ck+1, . . . , cn). Then

b1(c1, . . . , cn) = 0 | q1(ck+1, . . . , cn) 6= 0 | q2(ck+1, . . . , cn) = b2(c1, . . . , cn),

a contradiction. Thus Q1 = Q2, as required.

Proposition A.16. [CsW] Implication is Catalan.

Proof. Instead of implication we can consider the operation x∗y, defined by 0∗1 = 1
and x ∗ y = 0 otherwise, as (2,→) and (2, ∗) are isomorphic. For ∗, the proof of
Proposition A.12 can be literally adapted.

A.5 Groupoids on three-element sets

There are 3330 essentially distinct three-element groupoids in the sense that each
three-element groupoid is isomorphic with exactly one of them (see the Siena Cat-
alog [BBu], in which code numbers from 1 to 3330 are given to each of these repre-
sentatives), therefore a plain survey of their spectra such as in the two-element case
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seems to be impossible. In this section we determine the spectra of all groupoids on
3 with minimal clones of term operations, and give examples for further spectra.

There exist 12 essentially distinct groupoids on 3 with minimal clones, and
each of them is idempotent (see [Cs1]). The operations of an idempotent groupoid
on 3 may be encoded by the numbers 0, 1, . . . , 728 in the following transparent
way: let the code of ◦ be

(0 ◦ 1) · 35 + (0 ◦ 2) · 34 + (1 ◦ 0) · 33 + (1 ◦ 2) · 32 + (2 ◦ 0) · 3 + (2 ◦ 1)

(see the examples below). The operations of the groupoids on 3 with minimal
clones are (or, more exactly, may be chosen as) 0, 8, 10, 11, 16, 17, 26, 33, 35, 68,
178, 624 (their codes in the Siena Catalog are 80, 102, 105, 106, 122, 125, 147, 267,
271, 356, 1108, 2346 respectively). It is easy to check that 0, 8, 10, 11 and 26 are
associative. Here we display the Cayley tables of the remaining seven operations:

0 0 0

0 1 1

2 1 2

0 0 0

0 1 1

2 2 2

0 0 0

1 1 0

2 0 2

0 0 0

1 1 0

2 2 2

16 17 33 35

0 0 0

2 1 1

1 2 2

0 0 2

0 1 1

2 1 2

0 2 1

2 1 0

1 0 2

68 178 624

As we apply three different approaches, we parcel our task into three parts.

Proposition A.17. [CsW] The operations 16, 17 and 178 are Catalan.

Proof. Observe that 3 with each of the operations 16, 17 and 178 is a groupoid
in which {0, 1} is a subgroupoid with two-sided zero element 0, while {1, 2} and
{2, 0} are subgroupoids with left zero elements 1 and 2, respectively. Here and
in what follows, the just considered operations will be denoted by circle. Let
Bi = (PiQi) (i = 1, 2) be distinct bracketings of size n (≥ 3). For n = 3, 1◦(2◦0) =
1 ◦ 2 = 1 6= 0 = 1 ◦ 0 = (1 ◦ 2) ◦ 0, i.e., b1 6= b2. To prove the same for n > 3, first
suppose |P1| = k < l = |P2|. Then

b1(1, . . . , 1, 2, . . . , 2, 0, . . . , 0) = p1(1, . . . , 1) ◦ q1(2, . . . , 2, 0, . . . , 0) = 1 ◦ 2 = 1,

b2(1, . . . , 1, 2, . . . , 2, 0, . . . , 0) = p2(1, . . . , 1, 2, . . . , 2) ◦ q2(0, . . . , 0) = 1 ◦ 0 = 0.
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Thus, we can assume |P1| = |P2| = k. If P1 6= P2, by induction there exist elements
c1, . . . , ck ∈ 3 with g1 = p1(c1, . . . , ck) 6= p2(c1, . . . , ck) = g2. Let d be the element
of 3 that is different from g1 and g2. Then g1◦d 6= g2◦d (see the Cayley tables), and
hence b1(c1, . . . , ck, d, . . . , d) = g1 ◦ d differs from b2(c1, . . . , ck, d, . . . , d) = g2 ◦ d. It
remains to settle the case Q1 6= Q2. Again, we can choose elements ck+1, . . . , cn ∈ 3
with h1 = q1(ck+1, . . . , cn) 6= q2(ck+1, . . . , cn) = h2.

Case 17. Here 0 and 2 are left zero elements, whence ck+1 = 1, and we can
assume h1 = 0, h2 = 1. Now b1(1, . . . , 1, ck+1, . . . , cn) = 1 ◦ 0 = 0 6= 1 = 1 ◦ 1 =
b2(1, . . . , 1, ck+1, . . . , cn).

Cases 16 and 178. For distinct elements h1, h2 ∈ 3 there exists e ∈ 3 with
e◦h1 6= e◦h2. Hence it follows b1(e, . . . , e, ck+1, . . . , cn) 6= b2(e, . . . , e, ck+1, . . . , cn),
concluding the proof.

Proposition A.18. [CsW] The operation 33 is Catalan. For 35 and 68 we
have s(n) = 2n−2.

Proof. Consider a groupoid (G, ◦) with idempotent elements d, e( 6= d), f such that

(α) in the Cayley table of ◦, d occurs only in its own row;

(β) in the row of e, e ◦ d occurs only once;

(γ) f is a right unit element.

First check that 3 with 33, 35 or 68 satisfies these conditions. Now let B1 = (P1Q1)
and B2 = (P2Q2) be bracketings of size n such that their induced operations over
◦ coincide. We prove p1 = p2. Suppose k = |P1| < |P2| = l. Then

b2(e, . . . , e, d, . . . , d) = p2(e, . . . , e) ◦ q2(d, . . . , d) = e ◦ d,

b1(e, . . . , e, d, . . . , d) = p1(e, . . . , e) ◦ q1(e, . . . , e, d, . . . , d).

By (α) we have q1(e, . . . , e, d, . . . , d) 6= d, therefore from (β) it follows that
b1(e, . . . , e, d, . . . , d) 6= b2(e, . . . , e, d, . . . , d). Thus |P1| = |P2|, and p1(c1, . . . , ck) =
b1(c1, . . . , ck, f, . . . , f) = b2(c1, . . . , ck, f, . . . , f) = p2(c1, . . . , ck) holds for arbitrary
c1, . . . , ck ∈ G by (γ), hence p1 = p2.
Take into account that 33 is surjective, and its Cayley table has no two identi-
cal columns. We show that in the case of 33 if b1 = b2, then q1 = q2, which
together with p1 = p2 implies via induction that 33 is Catalan. Indeed, suppose
that, although b1 = b2, there exist ck+1, . . . , cn ∈ 3 such that q1(ck+1, . . . , cn) 6=
q2(ck+1, . . . , cn). Then the columns of these two elements are also distinct, i.e.
c ◦ q1(ck+1, . . . , cn) 6= c ◦ q2(ck+1, . . . , cn) for some c ∈ 3. In virtue of Claim A.13
we can choose c1, . . . , ck ∈ 3 so that p1(c1, . . . , ck) = c. Now b1(c1, . . . , cn) =
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p1(c1, . . . , ck) ◦ q1(ck+1, . . . , cn) 6= p1(c1, . . . , ck) ◦ q2(ck+1, . . . , cn) = b2(c1, . . . , cn), a
contradiction.
Concerning 35 and 68, observe that in these cases if u ◦ v 6= u ◦ w then at least
one of v and w is a left zero which satisfies (α). We have seen that b1 = b2 implies
p1 = p2; now we prove that the converse implication also holds. Suppose not, i.e.,
there are c1, . . . , cn ∈ 3 such that b1(c1, . . . , cn) = p1(c1, . . . , ck) ◦ q1(ck+1, . . . , cn) 6=
p1(c1, . . . , ck) ◦ q2(ck+1, . . . , cn) = b2(c1, . . . , cn). Hence, without loss of general-
ity, the element d = q1(ck+1, . . . , cn) is a left zero, and d does not occur in other
rows. We infer that ck+1 = d, and, as a consequence, q2(ck+1, . . . , cn) = d =
q1(ck+1, . . . , cn), whence b1(c1, . . . , cn) = b2(c1, . . . , cn), a contradiction. This shows
that, for 35 and 68, s(n) = s(n−1)+ · · ·+s(2)+s(1), and this means s(n) = 2n−2,
as stated.

Proposition A.19. [CsW] For the operation 624, s(n) = b2n/3c.

Proof. 624 is actually 2x + 2y mod 3 on 3. We shall write it in form −x − y;
our considerations are valid for this operation on numbers, too. An n-ary regular
operation (over −x − y) is always of form t(x1, . . . , xn) = ±x1 ± · · · ± xn. We
call such operations complete linear. As x1 − x2 + x3 shows, not every complete
linear operation is regular. Denote by π(t) the number of + signs in a com-
plete linear operation t = t(x1, . . . , xn), and call a complete linear t subregular, if
π(t) ≡ 2n − 1 (mod 3). The following assertion can be checked immediately:

Claim A.20. If t, t1, t2 are complete linear operations such that the equality
t(x1, . . . , xn) = −t1(x1, . . . , xk) − t2(xk+1, . . . , xn) holds, then every one of t, t1, t2
is subregular provided the other two of them are subregular.

Next we characterize the regular operations over −x − y.

Claim A.21. A complete linear operation t(x1, . . . , xn) is regular over −x − y if
and only if it is subregular but not of form

x1 − x2 + x3 − · · · + xn (A.6)

(i.e., not of odd arity with alternating signs and beginning with a + sign).

Proof. Clearly, this is true for n ≤ 3. Suppose that t is regular. Then t(x1, . . . , xn) =
−t1(x1, . . . , xk)−t2(xk+1, . . . , xn) with t1 and t2 regular. By induction, t1 and t2 are
subregular, and Claim A.20 implies that t is subregular. If t is regular and it is of
form (A.6), then one of t1 and t2 — say, t1 — must be of even arity with alternating
signs. However, a complete linear operation t of arity 2m with alternating signs
cannot be subregular, as π(t) = m 6≡ 2 ·2m−1 (mod 3). Hence t1 is not subregular,
a contradiction. Conversely, assume that t is subregular but not regular. We have
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to prove that t is of form (A.6). We show that the first sign in t is + . If not, then
t(x1, . . . , xn) = −x1±x2±· · ·±xn = −x1−(∓x2∓· · ·∓xn) = −x1−t2(x2, . . . , xn),
and from Claim A.20 it follows that t2 is subregular. If, in addition, t2 is not of
form (A.6), then by induction t2 is regular, hence t is regular, in contrary to the
assumption. However, if t2 is of form (A.6), then

t(x1, . . . , xn) = −x1 − x2 + x3 − · · · + xn−1 − xn =

= −(x1 + x2 − x3 + · · · − xn−1) − xn =

= −t1(x1, . . . , xn−1) − xn,

and here t1 is regular, implying again the regularity of t. Thus, t starts with a +
sign, and it is enough to prove that the signs alternate in t. If not, consider the
first two consecutive identical signs in t. Suppose they are + ; the other case can
be treated analogously. Then

t(x1, . . . , xn) = x1 − x2 + · · · − x2k−2 + x2k−1 + x2k±
± x2k+1 ± · · · ± xn =

= − (−x1 + x2 − · · · + x2k−2 − x2k−1 − x2k)−
− (∓x2k+1 ∓ · · · ∓ xn) =

= − t1(x1, . . . , x2k) − t2(x2k+1, . . . , xn).

We can check that t1 is subregular and not of form (A.6), hence regular; further,
t2 is subregular by Claim A.20. As above, supposing that t2 is not of form (A.6)
leads to a contradiction. Hence t2(x2k+1, . . . , xn) = x2k+1−x2k+2 + · · ·−xn−1 +xn,
and

t(x1, . . . , xn) = x1 − x2 + x3 − · · · + x2k−1 + x2k − x2k+1+

+ x2k+2 − · · · + xn−1 − xn =

= − (−x1 + x2 − x3 + · · · − x2k−1 − x2k + x2k+1−
− x2k+2 + · · · − xn−1) − xn =

= − t1
′(x1, . . . , xn−1) − xn.

Here t1
′ is subregular and not of form (A.6), so it is regular by induction, whence

we obtain that t is regular, and this final contradiction proves that a subregular
but not regular complete linear operation is of form (A.6). ¦

From Claim A.21 it follows that the number s(n) of the n-ary regular operations
over −x − y equals

∑
k

(
n

3k+i

)
− (n mod 2), if n ≡ 2 − i (mod 3) (i = 0, 1, 2). It is

known that each of these numbers is equal to b2n/3c (see [GK], Ch. 5, Exercise
75). This completes the description of spectra of three-element groupoids with
minimal clones.
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The next seven operations are of some interest from various reasons. The first
two pairs have the same spectra but with different coincidences of induced regular
operations. Fibonacci numbers appear at the fifth one. Nest structure is exploited
in the next example, and the last one is related to the Sheffer operation on 2.
These operations are numbered by their codes in the Siena Catalog [BBu]:

0 0 2

0 0 2

2 2 1

0 0 0

0 0 0

1 0 0

0 0 1

0 0 1

1 1 0

1 1 1

2 2 2

0 0 0

1066 10 405 3242

0 0 0

0 1 0

0 0 1

0 0 0

0 1 0

0 1 2

1 0 0

0 2 0

0 0 0

79 82 2407

Proposition A.22. [CsW] For the operations 1066 and 10, s(n) = n − 1.

Proof. Denote by t(c1, . . . , cn) the number of occurrences of 2 among c1, . . . , cn.
Concerning 1066, induction shows that, for arbitrary bracketing B = (PQ) with
|B| = n, |P | = k, and c1, . . . , cn ∈ 3,

b(c1, . . . , cn) = 2 if and only if t(c1, . . . , cn) is odd,

and

b(c1, . . . , cn) = 1 if and only if both t(c1, . . . , ck) and t(ck+1, . . . , cn) are odd.

As a consequence, b(c1, . . . , cn) = 0 iff both t(c1, . . . , ck) and t(ck+1, . . . , cn) are
even. Hence it follows that two bracketings of equal size induce the same operation
if and only if the sizes of their left factors are equal.
In order to manage 10 (which, for this once, will be written as multiplication), we
introduce the priority of a bracketing B (pr(B) in sign) for |B| > 2 as follows:
If B = (PQ) and |P | > 1, then pr(B) = 0; if B = (x1(x2(. . . (xk(R)) . . .))), and
pr(R) = 0 or |R| = 2, then pr(B) = k. We call the bracketing R the core of B.
Clearly, if n > 2, for every k = 0, 1, . . . , n− 2 there exist bracketings of size n with
priority k. Hence it is sufficient to prove that two bracketings of size n induce the
same regular operation over 10 if and only if they are of the same priority.
“If”: pr(B) = 0 implies that b is the constant 0 operation. If k = n−2 or k = n−3,
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then there is only one bracketing B with pr(B) = k. Suppose B1 and B2 are of
size n with cores R1, resp. R2, and pr(B1) = pr(B2) = k < n − 3. Then

b1(c1, . . . , cn) = (c1(. . . (ck · r1(ck+1, . . . , cn)) . . .)) = (c1(. . . (ck · 0) . . .)) =

= (c1(. . . (ck · r2(ck+1, . . . , cn)) . . .)) = b2(c1, . . . , cn)

for arbitrary c1, . . . , cn ∈ 3.
“Only if”: Let again B1 and B2 be bracketings with cores as above, and let
pr(B1) = k < l = pr(B2). Induction on priority shows that bracketings with pos-
itive priority induce nonconstant operations over 10. Hence there exist elements
ck+1, . . . , cl, cl+1, . . . , cn ∈ 3 such that (ck+1(. . . (cl · r2(cl+1, . . . , cn)) . . .)) = 1. For
i = 0, 1, check the equality (2(2(. . . (2 · i) . . .))) = (k − i) mod 2, where k is the
number of occurrences of 2 in the left side, and choose c1 = · · · = ck = 2. It follows

b1(c1, . . . , cn) = (c1(. . . (ck · r1(ck+1, . . . , cn)) . . .)) = (c1(. . . (ck · 0) . . .)) =

= k mod 2 6= (k − 1) mod 2 = (c1(. . . (ck · 1) . . .)) =

= (c1(. . . (ck(ck+1(. . . (cl · r2(cl+1, . . . , cn)) . . .))) . . .)) =

= b2(c1, . . . , cn).

Proposition A.23. [CsW] For the operations 405 and 3242, s(n) = 3 if n > 3.

Proof. Let B1, B2 be bracketings of size n, Bi = (PiQi). We show that the in-
duced regular operations b1, b2 over 405 coincide if and only if one of the following
conditions is satisfied:

(1) |P1| = |P2| = 1;

(2) 1 < |P1|, |P2| < n − 1;

(3) |P1| = |P2| = n − 1.

Indeed, in the case (1) the first variable, and in the case (3) the last variable
determines the value of bi. In the case (2) bi is the constant zero operation. Finally,
if B1 = (x1Q1), B2 = (P2xn), then b1(0, . . . , 2) = 0 6= 1 = b2(0, . . . , 2). 3242 is

x + 1 mod 3. Similarly to Proposition A.11, for any bracketing B and its induced
operation b over 3242 we have b1(c1, . . . , cn) = c1 + d mod 3, where d is the left
depth of x1 in B.

Proposition A.24. [CsW] For the operation 79, s(n) = Fn+1 − 1, where Fk is
the k th Fibonacci number.
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Proof. First we show that, for bracketings B1, B2 of equal size, b1 coincides with b2

if and only if the eggs of nests of B1 are the same as the eggs of nests of B2. Suppose
that xi, xi+1 are the eggs of a nest of B1 but of no nest of B2. Put cj = 2, if j = i
or j = i + 1, and cj = 1 otherwise. Then b1(c1, . . . , cn) = 1 6= 0 = b2(c1, . . . , cn).
On the other hand, if the eggs of nests of B1 and B2 are the same, induction on
the number of nests proves b1 = b2. Note that this number is 1 exactly when B1

and B2 are nests, and for nests we can apply the usual induction on size. Choose
several non-overlapping pairs (i, i + 1) in the sequence 1, . . . , n. The number of
such choices (including the empty choice) is Fn+1. Induction shows that for every
such nonempty choice C there exists a bracketing B such that xi, xi+1 are the eggs
of a nest of B if and only if (i, i + 1) occurs in the choice C. This proves our
proposition.

Proposition A.25. [CsW] The operation 82 is Catalan.

Proof. Induction shows that the first (i.e., leftmost) right parenthesis in B together
with its left pair encloses just the eggs of the leftmost nontrivial (maximal) nest
of B. Let |B1| = |B2| = n, b1 = b2, and let the eggs in question of B1 and B2

consist of xk, xk+1 and xl, xl+1 (k < l), respectively. For c1 = · · · = ck = ck+2 =
· · · = cn = 1, ck+1 = 2 we get b1(c1, . . . , cn) = 0 6= b2(c1, . . . , cn). Thus, the
first right parentheses in B1 and B2 cannot be in different positions. Collapsing
xk and xk+1 we obtain quotient bracketings B′

1 and B′
2 of size n − 1. Remark

that, for arbitrary c1, . . . , ck−1, ck+1, . . . , cn ∈ 3, b′i(c1, . . . , ck−1, ck+1, . . . , cn) =
bi(c1, . . . , ck−1, 2, ck+1, . . . , cn) holds, as 2 is a left unit for 82. In such a way, bi

determines b′i, and the latter determines the place of the first right parenthesis
in B′

i, which is the second right parenthesis in Bi; etc. We see that the induced
operation determines the positions of all right parentheses in its parent bracketing.
Now Proposition A.25 follows from Theorem A.1.

Proposition A.26. [CsW] The operation 2407 is Catalan.

Proof. The proof consists of a suitable adaptation of Proposition A.12. The ob-
servations Claim A.13, Claim A.14, and Claim A.15 apply to 2407. Now, from
B1 = (P1Q1), B2 = (P2Q2), and b1 = b2 we can deduce not only the equivalence
of p1(c1, . . . , ck) = 0 and p2(c1, . . . , cl) = 0 but also that of p1(c1, . . . , ck) = 1
and p2(c1, . . . , cl) = 1. Thus, again we have p1 = p2, and, by induction, P1 =
P2. In order to refute Q1 6= Q2, assume that there exist ck+1, . . . , cn ∈ 3 with
q1(ck+1, . . . , cn) = i 6= j = q2(ck+1, . . . , cn); here we can suppose i 6= 2. There are
c1, . . . , ck ∈ 3 with p1(c1, . . . , ck) = i. Then b1(c1, . . . , cn) = i ◦ i = i + 1 mod 3 6=
i ◦ j = b2(c1, . . . , cn).
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The Sheffer function on 2 and 2407 on 3 are the smallest instances of groupoids
(n, ◦) with operations

i ◦ j =

{
i + 1, if i = j

0, otherwise.
(A.7)

All these groupoids are primal ; i.e., all possible operations on n are term operations
of such a groupoid. The proof of Proposition A.26 can be generalized for them
without trouble. Hence we could (in fact, we did) conjecture for a minute that
primality implies a Catalan spectrum; however, operation 3233 testifies that this
is not the case. Its Cayley table comes from that of 3242 by writing 1 ◦ 2 = 0
instead of 1 ◦ 2 = 2. For 3233 we have s6 = 41 < C5(= 42). Actually,

x1 ◦ ((x2 ◦ (x3 ◦ (x4 ◦ x5))) ◦ x6) = x1 ◦ ((x2 ◦ ((x3 ◦ x4) ◦ x5)) ◦ x6)

identically holds for 3233 on 3 (but no other regular operations over 3233 induced
by distinct bracketings of size ≤ 6 are equal). On the other hand, the primality
of 3 with 3233 as well as of n with operation (A.7) follows, e.g., from Rousseau’s
criterion: a finite algebra with a single operation is primal if and only if it has
neither proper subalgebras, nor congruences, nor automorphisms [Rou].

We have checked all the 3330 entries of the Siena Catalog by computer for the
five initial elements of their spectra, i.e. (s(3), s(4), s(5), s(6), s(7)). It is known
that there are 24 nonisomorphic three-element semigroups. The table below shows
the number of essentially distinct three-element nonassociative groupoids with a
given initial segment of spectrum:

2 2 2 2 2 16

2 3 3 3 3 4

2 3 4 5 6 15

2 4 4 4 4 2

2 4 5 6 7 6

2 4 6 8 10 4

2 4 7 12 20 4

2 4 7 12 21 12

2 4 8 15 27 12

2 4 8 16 32 62

2 5 8 12 16 2

2 5 10 18 31 4

2 5 10 20 40 4

2 5 10 21 42 5

2 5 11 23 47 2

2 5 11 24 53 4

2 5 12 28 65 12

2 5 13 34 87 12

2 5 13 34 89 2

2 5 13 34 90 4

2 5 13 34 91 24

2 5 13 35 96 2

2 5 13 35 97 32

2 5 14 41 123 6

2 5 14 41 124 16

2 5 14 42 132 3038
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Several sequences beginning with some quintuples above, e.g. (2, 5, 10, 21, 42) (cf.
Proposition A.19) and (2, 5, 14, 41, 123), are recently missing in the Encyclopedia
[Sl].

A.6 General remarks and problems

All the spectra considered up to now are monotonic. Groups with the commutator
operation provide examples of non-monotonic spectra: if a group G is nilpotent
then there exists an n such that all n-ary regular term operations over the com-
mutator of G are equal (to the constant unit operation), hence s(n) = 1, and if G
is not nilpotent of class 2 then the commutator is not associative (see, e.g. [Ku] ).
The spectrum always stabilizes in these examples: s(n) = 1 implies s(m) = 1 for
every m > n. In fact, this is a common property of all spectra, which generalizes
the generalized associative law:

Theorem A.27. [CsW] For an arbitrary spectrum s, s(n) = 1 for some n (≥ 3)
implies s(m) = 1 for every m > n.

Proof. Call two bracketings of size m adjacent if there exists a j such that xj, xj+1

are eggs of nests for each of these bracketings. It is easy to see that the transitive
closure of the adjacency relation is the trivial equivalence if m ≥ 5. Let n (≥ 3) be
a number such that s(n) = 1 for an operation ◦ on a set M . Consider bracketings
B,B∗ of size n + 1. We have to prove b = b∗. For n = 3 this is the generalized
associative law. Assume n > 3. Then n + 1 ≥ 5, hence there exist bracketings
B0 = B,B1, . . . , Bk = B∗ such that, for i = 0, 1, . . . , k − 1, Bi is adjacent to
Bi+1. Let xj, xj+1 be common eggs of a nest of Bi and a nest of Bi+1. Replacing
(xjxj+1) by xj in both of them, we obtain quotient bracketings B′

i, B
′
i+1 of size n.

As s(n) = 1, we have b′i = b′i+1, and thus

bi(c1, . . . , cn+1) = b′i(c1, . . . , cj−1, cj ◦ cj+1, cj+2, . . . , cn+1) =

= b′i+1(c1, . . . , cj−1, cj ◦ cj+1, cj+2, . . . , cn+1) =

= bi+1(c1, . . . , cn+1)

for arbitrary c1, . . . , cn+1 ∈ M .

Groups provide also examples showing that the difference s(n) − s(n − 1) of
consecutive entries of a spectrum can be arbitrarily large:

Proposition A.28. [CsW] The spectrum of the commutator operation on the di-
hedral group of degree 2t (t ≥ 3) is

s(n) =






2, if n = 3

n, if 3 < n ≤ t

1, if n > t.
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Proof. Dm, the dihedral group of degree m is generated by a rotation α of order
m and a reflection ρ. We write i for αi and j′ for αjρ. Here is the concise Cayley
table of the commutator on Dm:

j j′

i 0 −2i mod m

i′ 2j mod m 2 (i − j) mod m

The following observations are immediate: If a bracketing B over the commutator
on Dn has at least two nests, then it induces the constant zero operation. Further,
if B is a nest with eggs xk, xk+1, then b(c1, . . . , cn) 6= 0 only if all ci (∈ Dm) but at
most one of ck, ck+1 are of form i′ (i.e., αiρ). From the Cayley table we learn that
for such a nest B and such elements c1, . . . , cn

b(c1, . . . , cn) = [ck, ck+1] 2
k−1(−2)n−k−1 mod m (A.8)

holds. From (A.8) we infer that the position of eggs of B determines the induced
operation b. As all commutators are of form 2u mod m, (A.8) shows also that
always b(c1, . . . , cn) = 2n−1 · v mod m with suitable integers v. This means that b
is the zero operation if m = 2t and n > t.
It remains to show that nests of equal size n (≤ t) but with distinct eggs in-
duce distinct operations. Indeed, besides B consider another nest B′ with eggs
xl, xl+1 (l > k). Let ck = 1, ck+1 = 2′, and choose elements ci (i 6= k, k + 1)
of form i′ arbitrarily. Then [1, 2′] = −2 mod 2t, and, by (A.8), b(c1, . . . , cn) =
(−1)n−k2n−1 mod 2t 6= 0. On the other hand, l > k implies b′(c1, . . . , cn) = 0
because ck = 1, and xk is out of the egg of B′.

The same reasoning shows that the commutator on D1, D2 and D4 is associa-
tive, and if m is not a power of 2 (e.g., in the case of D3 = S3) the spectrum of
the commutator on Dm is s(n) = n for n > 3.

The next example leads to groupoids whose spectra begin with arbitrarily many
Catalan numbers and still reach 1.

Proposition A.29. [CsW] The following operation on the nonnegative integers
is Catalan:

a ◦ b =

{
min(a, b) − 1, if a, b > 0

0, otherwise.

Proof. For the proof, denote by d
B
(xi) the depth of xi in the bracketing B. Con-

sider an arbitrary bracketing B = (PQ) with |B| = n, |P | = k. First we show
that

b(d
B
(x1) + 1, . . . , d

B
(xn) + 1) = 1.
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Note that, for any B, b(c1, . . . , cn) > 0 implies b(c1+1, . . . , cn+1) = b(c1, . . . , cn)+1.
By induction we have p(d

B
(x1), . . . , dB

(xk)) = p(d
P
(x1) + 1, . . . , d

P
(xk) + 1) = 1,

and similarly q(d
B
(xk+1), . . . , dB

(xn)) = 1, whence it follows

b(d
B
(x1) + 1, . . . , d

B
(xn) + 1) = p(d

B
(x1) + 1, . . . , d

B
(xk) + 1)◦

◦ q(d
B
(xk+1) + 1, . . . , d

B
(xn) + 1) =

= (1 + 1) ◦ (1 + 1) = 1,

as needed. Next we show that for any other B′ of size n we have
b′(d

B
(x1) + 1, . . . , d

B
(xn) + 1) = 0. Again, induction shows that for arbitrary

B, nonnegative integers c1, . . . , cn, and i (1 ≤ i ≤ n)

b(c1, . . . , cn) ≤ max(ci − d
B
(xi), 0) (A.9)

holds; we omit the details. As B′ 6= B, Theorem A.2 implies that there exists an
i such that d

B′
(xi) 6= d

B
(xi), and in view of (A.2) we can suppose even d

B′
(xi) >

d
B
(xi). Then applying (A.9) to B′ we obtain

b′(d
B
(x1) + 1, . . . , d

B
(xn) + 1) ≤ max(d

B
(xi) + 1 − d

B′
(xi), 0) = 0,

concluding the proof.

For any bracketing B with |B| = k < n, and for every i (= 1, . . . , k), we have
d

B
(xi) < k, hence d

B
(xi) + 1 ∈ n. Therefore the above reasoning shows that

in (n, ◦), which is a subgroupoid of (N0, ◦), distinct bracketings of size k (< n)
induce different regular operations. On the other hand, every bracketing B whose
size exceeds 2n−2 has a symbol xj with d

B
(xj) ≥ n − 1. Applying (A.9) to the

regular operation b of (n, ◦) we obtain

b(c1, . . . , cn) ≤ max(cj − d
B
(xj), 0) = 0,

as cj ≤ n − 1. Hence any bracketing of size 2n−2 + 1 induces the constant zero
operation of (n, ◦). Thus, for the spectrum of (n, ◦), s(k) = Ck−1 if k < n, and
s(k) = 1 if k > 2n−2.

The study of spectra of linear operations px+ qy (and px+ qy + r) on numbers
(or, more generally, on modules over rings) also offers remarkable facts. As a
specimen, we prove the following generalization of Proposition A.5.

Proposition A.30. [CsW] The linear operations px+py and x+py on the com-
plex numbers are not Catalan if and only if p is a root of unity.
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Proof. Concerning px + py, induction shows that for any bracketing B of size n,
the induced operation over px + py is

b(x1, . . . , xn) =
n∑

i=1

pdixi, (A.10)

where di is the depth of xi in B. From Theorem A.2 it follows that if p is not a
root of unity then px + py is Catalan. Suppose pk = 1. Define the bracketings Bi

by B1 = (xx), and Bn+1 = (BnBn) for n > 0. The depth sequences of B′ = (xBk)
and B′′ = (Bkx) are (1, k + 1, . . . , k + 1) and (k + 1, . . . , k + 1, 1), respectively.
Now (A.10) implies b′ = b′′. Hence, for m = 2k + 1, s(m) < Cm−1. Analogous
considerations apply to x+py: (A.10) remains valid for this case with right depths
instead of depths. If p is not a root of unity, Theorem A.3 guarantees that x+py is
Catalan. Suppose again pk = 1, and redefine Bi by B1 = (xx), and Bn+1 = (xBn)
for n > 0. The RD-sequences of B′ = (Bkx) and B′′ = Bk+1 are (0, 1, 2, . . . , k, 1)
and (0, 1, 2, . . . , k, k + 1),

In conclusion, we formulate a few problems:

1. For every positive integer n there exists a minimal f(n) with the property
that, if for two spectra s1, s2 of n-element groupoids s1(i) = s2(i) holds whenever
i ≤ f(n), then these spectra coincide. Propositions A.11—A.16 imply f(2) = 4,
and the table at the end of Section A.5 shows that f(3) ≥ 7. What is the actual
value of f(3) (and that of f(4), etc.)?

2. We gave a rough estimation for the subsequent entries of a spectrum with
a given initial segment in (A.1) which e.g., for s(3) = 2 and s(4) = 4 provides
s(5) ≤ 12. However, a case-by-case analysis shows that s(3) = 2 and s(4) = 4
actually imply s(5) ≤ 8. Do they imply s(n) ≤ 2n−2 for all n (> 1) ? If so, call
s(n) = 2n−2 a maximal extension of the initial segment (2, 4). Prove or disprove
that the maximal extension of (2, 3) is s(n) = n− 1, and that of (2, 2) is s(n) = 2.

3. All nonconstant spectra we exhibited above are ultimately constant or mono-
tonic. In the latter case their growth rates are either linear or exponential. Is
there any other possibility? More concretely: find, e.g., a spectrum with quadratic
growth rate.

4. The statistics of the three-element groupoids and the abundance of appropriate
examples leave such an impression that a huge majority of binary operations is
Catalan. Is it true that, in some sense, almost all operations are Catalan (or
almost Catalan)?



Summary

1. Introduction

A (concrete) clone is a collection C of finitary operations on a set that is closed
under composition of functions and contains all projections. An (abstract) clone
is a heterogeneous algebra that captures the compositional structure of concrete
clones. A representation of an abstract clone C is (the image of) a clone homomor-
phism from C to the concrete clone of operations on some set. The most important
examples of clones are clones of term functions of algebras.

A clone is minimal if its only proper subclone is the trivial clone, i.e. the clone
of projections. Clearly, a nontrivial clone is minimal iff it is generated by any of its
nontrivial elements. It is convenient to choose a function of the least possible arity
as a generator of a minimal clone. These generators are called minimal functions.
A minimal function must be of one of five types according to the following theorem
of I. G. Rosenberg.

Theorem 1. [Ros] Let f be a nontrivial operation of minimum arity in a minimal
clone. Then f satisfies one of the following conditions:

(I) f is unary, and f 2(x) = f(x) or fp(x) = x for some prime p;

(II) f is a binary idempotent operation, i.e. f(x, x) = x;

(III) f is a ternary majority operation, i.e. f(x, x, y) = f(x, y, x) = f(y, x, x) = x;

(IV) f(x, y, z) = x + y + z, where + is a Boolean group operation;

(V) f is a semiprojection, i.e. there exists an index i (1 ≤ i ≤ n) such that
f(x1, . . . , xn) = xi whenever the values of x1, . . . , xn are not pairwise distinct.

The simplest examples of minimal clones of type (II), i.e. groupoids with
a minimal clone, are semilattices and rectangular bands. We give the defining
identities of some more groupoid varieties with a minimal clone in Table 1. (We
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have omitted the identity xx = x everywhere, but of course these are all idempotent
varieties.)

Affine spaces provide further examples of binary minimal clones. The clone
of an affine space is minimal iff the base field is isomorphic to Zp for some prime
number p. In the following affine spaces are always meant to be affine spaces over
Zp (for an arbitrary prime p).

There are much less examples of minimal clones of type (III). The simplest ones
are those containing just one nontrivial ternary operation. The clone generated by
the median function (x ∧ y)∨ (y ∧ z)∨ (z ∧ x) on any lattice is such a clone [PK].
Another example of a majority minimal clone is the clone generated by the dual
discriminator function on any set [CsG,FP].

It seems to be a very hard problem to characterize minimal clones in full gener-
ality, but there are some results that describe minimal clones or minimal functions
under certain assumptions.

One of the most natural approaches is to restrict the size of the underlying
set of a concrete clone. E. Post determined all clones on the two-element set
[Po]; seven of them are minimal. Minimal clones on the three-element set were
described by B. Csákány [Cs2]; we quote the result for type (III) below. For the
four-element set minimal clones of type (II) were described by B. Szczepara [Szcz].
We describe minimal majority functions on the four-element set in Theorem 6; the
case of semiprojections remains open.

Theorem 2. [Cs2] There are twelve minimal majority functions on the three-
element set up to isomorphism, and they belong to three minimal clones containing
1, 3 and 8 majority operations respectively (see Table 3).

Based on this theorem, B. Csákány obtained a characterization of minimal
majority operations which are conservative, i.e. which preserve all subsets of the
underlying set [Cs3].

Another possibility is to look for minimal functions satisfying certain identities.
Probably the most natural result of this kind is the following characterization of
semigroups with a minimal clone given by M. B. Szendrei ([SzM], see also [P3]).

Theorem 3. [P3,SzM] A semigroup with a minimal clone is either a left regular
band, a right regular band or a rectangular band.

Á. Szendrei and K. Kearnes investigated minimal clones generated by an op-
eration that commutes with itself [KSz]. In the binary case this commutativity
property is equivalent to the so-called entropic or medial law (xy) (zu) = (xz) (yu),
and the result is the following.

Theorem 4. [KSz] Let A be an entropic groupoid with a minimal clone. Then
A or its dual is an affine space, a rectangular band, a left normal band, a right
semilattice or a p-cyclic groupoid for some prime p.
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Finally, let us quote a result of K. Kearnes describing abelian algebras with a
minimal clone [Kea].

Theorem 5. [Kea] If a minimal clone has a nontrivial abelian representation,
then it is either unary, or the clone of an affine space, a rectangular band or a
p-cyclic groupoid for some prime p.

2. Minimal majority clones on the four-element set

Our goal in this chapter is to determine the minimal majority functions on the
four-element set. This is a finite task, since it is possible to test in finitely many
steps whether a function is minimal or not, and there are finitely many majority
operations on a finite set. However, the four-element set is already very big from
this point of view. There is only one majority operation on the two-element set,
and 36 = 729 on the three-element set, while on the four-element set we have
424 = 281 474 976 710 656 functions. Thus it seems hopeless to test them one by
one, even with the help of a computer. After a long reduction process only three
nonconservative functions remain up to isomorphism and permutation of variables
that have a chance to be minimal. They turn out to be minimal; actually their
clones are isomorphic to the three minimal majority clones on the three-element
set. (Let us recall that the conservative case is settled in [Cs3].)

Theorem 6. [Wa1] There are twelve nonconservative minimal majority functions
on the four-element set up to isomorphism, and they belong to three minimal clones
containing 1, 3 and 8 majority operations respectively (see Table 4). These three
clones are isomorphic to the minimal majority clones of the three-element set.

The number of minimal majority operations and clones is given in Table 5.

3. Minimal clones with few majority functions

In this chapter we describe minimal clones of type (III) with at most seven ternary
operations (see [LP] for the analogous question in the binary case). A unique
property of clones generated by a majority operation is that the minimality of
such a clone depends only on its ternary functions. We denote the ternary part
of C by C(3), and we regard it as an algebra with one quaternary operation (the
composition of ternary functions) and three constants (the projections).

First we prove a general theorem about the symmetries of the majority func-
tions in a minimal clone which is an analogue of a theorem of J. Dudek and
J. GaÃluszka concerning minimal clones containing only commutative nontrivial
binary operations [DG].
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Theorem 7. [Wa4] Let C be a majority minimal clone with finitely many ternary
operations. If every nontrivial ternary operation in C is invariant under cyclic
permutations of its variables, then C contains only one nontrivial ternary operation.

The main result of this chapter describes minimal majority clones with at most
four majority operations. It turns out that each such clone can be realized on the
three-element set up to isomorphism of the ternary part of the clone.

Theorem 8. [Wa4] If C is a majority minimal clone such that
∣∣C(3)

∣∣ ≤ 7, then

C contains either one or three majority operations. In both cases C(3) is uniquely
determined up to isomorphism.

Let us remark that the characterization is given up to isomorphism of C(3), not
C itself. In fact, there are infinitely many nonisomorphic minimal clones with one
or three majority operations.

4. Minimal clones with weakly abelian representations

This chapter gives a generalization of Theorem 5 using a weaker term condition,
called weak abelianness. It was proved in [Kea] that minimal clones of type (III)
and (V) do not have nontrivial abelian representations, and the proof actually
shows that they do not have nontrivial weakly abelian representations either. Every
representation of a minimal clone of type (I) or (IV) is clearly abelian, therefore
we only need to consider weakly abelian groupoids with a minimal clone.

First we show that if a distributive groupoid has a minimal clone, then it is
entropic. Using this result we prove that every weakly abelian groupoid having a
minimal clone is entropic. It is easy to check that nontrivial left (right) normal
bands and nontrivial left (right) semilattices cannot be weakly abelian, therefore
taking Theorem 4 into account, we get the same list of minimal clones as in The-
orem 5.

Theorem 9. [Wa2] If a minimal clone has a nontrivial weakly abelian represen-
tation, then it also has a nontrivial abelian representation. Therefore such a clone
must be a unary clone, the clone of an affine space, a rectangular band or a p-cyclic
groupoid for some prime p.

Unary algebras, rectangular bands and affine spaces are all abelian, and it is
not hard to show that every p-cyclic groupoid is weakly abelian. This fact yields
an interesting homogeneity property for weakly abelian representations.

Theorem 10. [Wa2] If a minimal clone has a nontrivial weakly abelian represen-
tation, then all representations are weakly abelian.
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We conclude with a theorem about rectangular and strongly abelian represen-
tations of minimal clones. A nontrivial affine space or p-cyclic groupoid cannot
be rectangular, but unary algebras and rectangular bands are all strongly abelian.
Thus these two term conditions are equivalent for groupoids with minimal clones.

Theorem 11. [Wa2] If a minimal clone has a nontrivial rectangular representa-
tion, then it also has a nontrivial strongly abelian representation; moreover, all
representations are strongly abelian. Such a clone must be unary or the clone of
rectangular bands.

5. Almost associative operations generating a minimal clone

In this chapter we generalize Theorem 3 by characterizing minimal clones generated
by almost associative binary operations. To explain what we mean by this, we need
a way to measure how far a binary operation is from being associative.

One way to measure associativity is to count the nonassociative triples in the
groupoid. It is natural to say that the multiplication of A is almost associative
if there is only one nonassociative triple, i.e. if (ab) c = a (bc) fails for only one
(a, b, c) ∈ A3. These groupoids are called Szász-Hájek groupoids (SH-groupoids for
short). The following theorem describes SH-groupoids with a minimal clone.

Theorem 12. [Wa3] For any Szász-Hájek groupoid A the following two conditions
are equivalent:

(i) A has a minimal clone;

(ii) A or its dual belongs to the variety B.

The elements of the unique nonassociative triple in an SH-groupoid generate
an SH-groupoid whose proper subgroupoids are all semigroups. Such groupoids
are called a minimal SH-groupoids. In [KT3-KT6] the project of characterizing
minimal SH-groupoids was begun, but completed only for certain types. However,
these types of groupoids do not have minimal clones (except for one groupoid), so
the next theorem gives new minimal SH-groupoids.

Theorem 13. [Wa3] Up to isomorphism and duality there are ten minimal SH-
groupoid with a minimal clone. (Their multiplication tables can be found in Ta-
ble 7.)

Another way of measuring associativity is possible by considering the identi-
ties implied by associativity, and somehow counting how many of these are (not)
satisfied. Let sA (n) denote the number of those term functions of the groupoid
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A which arise from the product x1 · . . . · xn by inserting parentheses in order to
specify the order of the multiplications. The sequence sA (1) , sA (2) , . . . , sA (n) , . . .
is called the associative spectrum of A [CsW].

Clearly, sA (1) = sA (2) = 1 for every groupoid A, and sA (3) = 1 iff A is a
semigroup. In the latter case sA (n) = 1 for all n by the general law of associativity.
The smallest possible spectrum for a nonassociative multiplication is 1, 1, 2, 1, 1, . . .,
so we could say that a binary operation is almost associative if its spectrum is
this sequence. However, there is no groupoid having a minimal clone with this
spectrum. Therefore we have to be more generous: in the following theorem we
characterize groupoids with a minimal clone satisfying s (4) < 5. (The variety A
in the theorem is defined by the identity x (y (zu)) = x ((yz) u)).

Theorem 14. [Wa3] For any groupoid A the following two conditions are equiv-
alent:

(i) A has a minimal clone and 1 < sA (4) < 5;

(ii) A is not a semigroup and A or its dual belongs to one of the varieties B∩A,
Cp or D ∩A for some prime p.

If these conditions are fulfilled, then we have sA (n) = 2n−2 for n ≥ 2.

Let us note finally that the class of groupoids found in Theorem 14 is disjoint
from the class described in Theorem 12, i.e. there is no groupoid with a minimal
clone that is almost associative in both the ‘spectral’ and the ‘index’ sense.



Összefoglaló

1. Bevezetés

Konkrét klónon egy adott halmazon értelmezett többváltozós függvények olyan
összességét értjük, amely zárt az összetett függvények képzésére és tartalmazza
a projekciókat. Az absztrakt klónok olyan heterogén algebrák, amelyek a konkrét
klónbeli kompoźıcióműveletek struktúráját ı́rják le. Egy C absztrakt klón reprezen-
tációja olyan klónhomomorfizmus (illetve annak képe), ami C-t valamely halmaz
műveleteinek konkrét klónjába képezi le. A legfontosabb példákat klónokra algeb-
rák termfüggvényeinek klónjai szolgáltatják.

Egy klónt akkor nevezünk minimálisnak, ha egyetlen valódi részklónja a trivi-
ális klón (a projekciókból álló klón). Egy nemtriviális klón akkor és csak akkor
minimális, ha bármely nemtriviális eleme generálja. Természetes, hogy a lehető
legkisebb változószámú generátort válasszuk. Ezeket a generátorokat minimális
függvényeknek nevezzük. A minimális függvények öt t́ıpusba sorolhatók I. G. Ro-
senberg alábbi tétele szerint.

1. Tétel. [Ros] Legyen f minimális aritású nemtriviális függvény egy minimális
klónban. Ekkor f kieléǵıti az alábbi öt feltétel valamelyikét:

(I) f egyváltozós, és f2(x) = f(x) vagy fp(x) = x valamely p pŕımszámra;

(II) f idempotens kétváltozós művelet, azaz f(x, x) = x;

(III) f háromváltozós többségi függvény, azaz f(x, x, y)=f(x, y, x)=f(y, x, x)=x;

(IV) f(x, y, z) = x + y + z, ahol + egy elemi Abel 2-csoport művelete;

(V) f szemiprojekció, azaz létezik olyan i (1 ≤ i ≤ n), hogy f(x1, . . . , xn) = xi,
ha az x1, . . . , xn értékek között van ismétlődés.

A legegyszerűbb példákat (II)-es t́ıpusú minimális klónokra, azaz minimális
klónú grupoidokra, a félhálók és a derékszögű kötegek adják. Az 1. táblázatban
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megadjuk néhány további minimális klónnal rendelkező grupoidvarietás definiá-
ló azonosságait. (Az xx = x azonosságot nem ı́rtuk ki sehol, de természetesen
idempotens varietásokról van szó.)

Az affin terek további példákat szolgáltatnak binér minimális klónokra. Egy
affin tér klónja akkor és csak akkor minimális, ha az alaptest izomorf a Zp mara-
dékosztálytesttel valamely p pŕımszámra. A továbbiakban affin téren mindig Zp

feletti affin teret értünk (tetszőleges p pŕımre).
Sokkal kevesebb példát ismerünk (III)-as t́ıpusú minimális klónra. A legegysze-

rűbbek azok, amelyek csak egy nemtriviális háromváltozós műveletet tartalmaz-
nak. Tetszőleges hálón az (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) mediális függvény ilyen klónt
generál [PK]. Egy másik példa többségi minimális klónra tetszőleges halmazon a
duális diszkriminátor függvény által generált klón [CsG,FP].

A minimális klónok teljes általánosságban történő léırása nagyon nehéz prob-
lémának tűnik, vannak azonban olyan eredmények, amelyek bizonyos feltételek
mellett karakterizálják a minimális klónokat.

A legtermészetesebb megközeĺıtés az alaphalmaz méretének korlátozása. A
kételemű halmazon E. Post meghatározta az összes klónt [Po], ezek közül hét mi-
nimális. Csákány Béla ı́rta le a háromelemű halmaz minimális klónjait [Cs2], alább
idézzük a (III)-as t́ıpusra vonatkozó tételt. A négyelemű halmazon B. Szczepara
határozta meg a (II)-es t́ıpusú minimális klónokat [Szcz], a minimális többségi
függvényeket pedig 6. Tételben adjuk meg. A négyelemű halmaz (V)-ös t́ıpusú
minimális klónjainak léırása még nyitott probléma.

2. Tétel. [Cs2] Izomorfia erejéig tizenkét minimális többségi függvény van a há-
romelemű halmazon, és ezek három minimális klónba tartoznak, amelyek rendre 1,
3 és 8 többségi függvényt tartalmaznak (lásd a 3. táblázatot).

A fenti tétel seǵıtségével Csákány Béla léırta a konzervat́ıv minimális több-
ségi függvényeket, vagyis azokat, amelyek megőrzik az alaphalmaz minden részhal-
mazát [Cs3].

Egy másik lehetséges megszoŕıtás, hogy bizonyos azonosságokat kieléǵıtő műve-
letek körében keressük a minimális függvényeket. Talán a legtermészetesebb ilyen
eredmény a minimális klónú félcsoportok B. Szendrei Mária által adott jellemzése
([SzM], lásd még [P3]).

3. Tétel. [P3, SzM] A minimális klónú félcsoportok pontosan a bal- és jobbreg-
uláris kötegek, valamint a derékszögű kötegek.

Szendrei Ágnes és K. Kearnes vizsgálta azokat a minimális klónokat, ame-
lyeket egy önmagával felcserélhető művelet generál [KSz]. Ez a felcserélhetőségi
tulajdonság a kétváltozós esetben ekvivalens az (xy) (zu) = (xz) (yu) entropikus,
vagy mediális azonossággal.
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4. Tétel. [KSz] Legyen A egy minimális klónnal rendelkező entropikus grupoid.
Ekkor A vagy duálisa affin tér, derékszögű köteg, balnormális köteg, jobbfélháló
vagy p-ciklikus grupoid valamely p pŕımszámra.

Végezetül idézzük K. Kearnes egy tételét, amely karakterizálja azokat az Abel-
féle algebrákat, amelyek klónja minimális [Kea].

5. Tétel. [Kea] Ha egy minimális klónnak létezik nemtriviális Abel-féle reprezen-
tációja, akkor vagy egyváltozós, vagy pedig egy affin tér, egy derékszögű köteg vagy
egy p-ciklikus grupoid klónja valamely p pŕımszámra.

2. Többségi minimális klónok a négyelemű halmazon

Ezen fejezet célja a négyelemű halmaz minimális többségi függvényeinek meg-
határozása. Ez véges feladat, hiszen véges sok lépésben ellenőrizhető, hogy egy
adott függvény minimális-e, és véges halmazon véges számú többségi függvény
van. Mindazonáltal a négyelemű halmaz már meglehetősen nagy ebből a szempont-
ból. A kételemű halmazon csak egy többségi függvény van, a háromeleműn pedig
36 = 729, mı́g a négyelemű halmazon már 424 = 281 474 976 710 656 többségi függ-
vény van. Ezért még számı́tógéppel is reménytelennek tűnik egyenként sorra venni
az összes függvényt. Redukciós lépések hosszú sora után kiderül, hogy mindössze
három olyan nemkonzervat́ıv függvény marad, amelynek egyáltalán van esélye arra,
hogy minimális legyen (izomorfia és a változók permutációja erejéig). Ezek valóban
minimálisak, ugyanis klónjaik izomorfak a háromelemű halmaz minimális többségi
klónjaival. (Emlékeztetünk rá, hogy a konzervat́ıv minimális többségi függvények
minden véges halmazon ismertek [Cs3].)

6. Tétel. [Wa1] Izomorfia erejéig tizenkét nemkonzervat́ıv minimális többségi függ-
vény van a négyelemű halmazon, és ezek három minimális klónba tartoznak, ame-
lyek rendre 1, 3 és 8 többségi függvényt tartalmaznak (lásd a 4. táblázatot). E
három klón izomorf a háromelemű halmaz három többségi minimális klónjával.

A minimális klónok és függvények számát az 5. táblázatban adjuk meg.

3. Kevés többségi függvényt tartalmazó minimális klónok

Ebben a fejezetben meghatározzuk a legfeljebb hét háromváltozós függvényt tar-
talmazó (III)-as t́ıpusú minimális klónokat (a kétváltozós esetre vonatkozó hasonló
kérdést illetően lásd [LP]). A többségi függvény által generált klónok egy kivételes
tulajdonsága, hogy a klón minimalitása csupán a benne található háromváltozós
függvényeken múlik. A C klón háromváltozós részét C(3) jelöli, ezt a halmazt
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egy négyváltozós művelettel (a háromváltozós függvények kompoźıciója) és három
konstanssal (a háromváltozós projekciók) ellátott algebrának tekintjük.

Először egy általános álĺıtást bizonýıtunk be a minimális klónokban található
többségi függvények szimmetriáiról ami J. Dudek és J. GaÃluszka csupa kommutat́ıv
nemtriviális kétváltozós műveletet tartalmazó minimális klónokról szóló tételének
analogonja [DG].

7. Tétel. [Wa4] Legyen C egy többségi minimális klón véges sok háromváltozós
művelettel. Ha C-ben minden nemtriviális háromváltozós művelet invariáns vál-
tozóinak ciklikus permutációjára, akkor C csak egy nemtriviális háromváltozós mű-
veletet tartalmaz.

A fejezet fő eredménye a legfeljebb négy többségi függvényt tartalmazó többségi
minimális klónok léırása. Kiderül, hogy a klón háromváltozós részének izomorfiája
erejéig minden ilyen klón realizálható a háromelemű halmazon.

8. Tétel. [Wa4] Ha a C többségi minimális klónra
∣∣C(3)

∣∣ ≤ 7 teljesül, akkor C
vagy egy vagy három többségi függvényt tartalmaz. Mindkét esetben C(3) izomorfia
erejéig egyértelműen meghatározott.

Figyeljük meg, hogy a jellemzés C(3), nem pedig C izomorfiája erejéig van
megadva. Valójában végtelen sok nemizomorf többségi minimális klón van, amely
egy vagy három többségi függvényt tartalmaz.

4. Minimális klónok gyengén Abel-féle reprezentációi

Ezen fejezetben az 5. Tételt általánośıtjuk egy gyengébb term-feltétel, a gyenge
Abel-féleség használatával. K. Kearnes bizonýıtotta be, hogy (III)-as és (V)-ös t́ı-
pusú minimális klónnak nem lehet nemtriviális Abel-féle reprezentátiója [Kea], és
a bizonýıtás valójában azt is mutatja, hogy gyengén Abel-féle reprezentációja sem
lehet. Az (I)-es és (IV)-es t́ıpusú minimális klónoknak viszont minden reprezen-
tációja Abel-féle, ı́gy elegendő a minimális klónnal rendelkező gyengén Abel-féle
grupoidokat vizsgálnunk.

Először megmutatjuk, hogy minden minimális klónú disztribut́ıv grupoid ent-
ropikus. Ennek seǵıtségével igazoljuk, hogy a minimális klónnal rendelkező gyen-
gén Abel-féle grupoidok entropikusak. Könnyű ellenőrizni, hogy egy nemtrivi-
ális balnormális (jobbnormális) köteg illetve balfélháló (jobbfélháló) nem lehet
gyengén Abel-féle, ı́gy a 4. Tételt figyelembe véve pontosan ugyanazokat a mi-
nimális klónokat kapjuk, mint az 5. Tételben.

9. Tétel. [Wa2] Ha egy minimális klónnak van nemtriviális gyengén Abel-féle
reprezentációja, akkor van nemtriviális Abel-féle reprezentációja is. Ezért egy ilyen
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klón csak unér lehet, vagy pedig egy affin tér, egy derékszögű köteg vagy egy p-
ciklikus grupoid klónja valamely p pŕımszámra.

Az unér algebrák, a derékszögű kötegek és az affin terek mindig Abel-félék, és
nem nehéz megmutatni, hogy minden p-ciklikus grupoid gyengén Abel-féle. Ez a
tény egy érdekes homogenitási tulajdonságot ad a gyengén Abel-féle reprezentá-
ciókra.

10. Tétel. [Wa2] Ha egy minimális klónnak létezik nemtriviális gyengén Abel-féle
reprezentációja, akkor minden reprezentációja gyengén Abel-féle.

Végül minimális klónok derékszögű és erősen Abel-féle reprezentációiról mon-
dunk ki egy tételt. Egy nemtriviális affin tér vagy p-ciklikus grupoid nem lehet
derékszögű, viszont az unér algebrák és a derékszögű kötegek mind erősen Abel-
félék. Tehát ez a két term-feltétel egybeesik a minimális klónú grupoidok körében.

11. Tétel. [Wa2] Ha egy minimális klónnak van nemtriviális derékszögű reprezen-
tációja, akkor van nemtriviális erősen Abel-féle reprezentációja is, sőt minden
reprezentációja erősen Abel-féle. Egy ilyen klón csak unér lehet, vagy pedig egy
derékszögű köteg klónja.

5. Majdnem asszociat́ıv műveletek által generált minimális klónok

A 3. Tétel két lehetséges általánośıtását adjuk meg ebben a fejezetben a minimális
klónt generáló majdnem asszociat́ıv kétváltozós műveletek léırásával. Hogy ezt
pontosabban meg tudjuk fogalmazni, mérnünk kell valahogyan, hogy egy adott
művelet milyen messze van attól, hogy asszociat́ıv legyen.

Egy lehetséges mód az asszociativitás mérésére, hogy meghatározzuk a nem-
asszociat́ıv hármasok számát. Természetes azt mondani, hogy az A grupoid műve-
lete majdnem asszociat́ıv, ha csak egy nemasszociat́ıv hármasa van, azaz (ab) c =
a (bc) teljesül egyetlen (a, b, c) ∈ A3 kivételével. Az ilyen grupoidokat Szász-Hájek
grupoidoknak nevezzük (röviden SH-grupoidok). A következő tételben jellemezzük
a minimális klónú SH-grupoidokat.

12. Tétel. [Wa3] Tetszőleges A Szász-Hájek grupoidra ekvivalens a következő két
álĺıtás:

(i) A klónja minimális;

(ii) A vagy duálisa a B varietásba tartozik.
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Egy SH-grupoid nemasszociat́ıv hármasának elemei olyan SH-grupoidot gene-
rálnak, amelynek minden valódi részgrupoidja félcsoport. Az ilyen grupoidokat
minimális SH-grupoidoknak nevezzük. A minimális SH-grupoidok szisztematikus
léırásárát T. Kepka és M. Trch kezdte el, de a karakterizáció csak bizonyos t́ıpusú
SH-grupoidok esetén teljes [KT3-KT6]. Egyetlen kivételtől eltekintve az ilyen t́ı-
pusú grupoidok klónja nem lehet minimális, ı́gy a következő tétel új minimális
SH-grupoidokat szolgáltat.

13. Tétel. [Wa3] Izomorfia és dualitás erejéig t́ız minimális klónú minimális SH-
grupoid létezik. (A művelettáblázataikat lásd a 7. táblázatban.)

Egy másik módja az asszociativitás mérésének, hogy számba vesszük, hogy
az asszociativitásból következő azonosságok közül mennyi (nem) teljesül. Jelölje
sA (n) az A grupoid azon termfüggvényeinek számát, amelyek úgy keletkeznek,
hogy az x1, x2, . . . , xn szorzatot zárójelekkel látjuk el, hogy a szorzások sorrendje
egyértelműen meghatározott legyen. Az sA (1) , sA (2) , . . . sorozatot az A grupoid
asszociat́ıv spektrumának nevezzük [CsW].

Világos, hogy bármely A grupoidra sA (1) = sA (2) = 1, és sA (3) = 1 akkor
és csak akkor, ha A félcsoport. Az utóbbi esetben az általános asszociativitás
tétele szerint sA (n) = 1 teljesül minden n pozit́ıv egész számra. A legkisebb spek-
trum tehát, ami a nemasszociat́ıv műveletek körében felléphet, az 1, 1, 2, 1, 1, . . .
sorozat, ezért azokat a műveleteket nevezhetnénk majdnem asszociat́ıvnak, ame-
lyeknek a spektruma megegyezik ezzel a sorozattal. A minimális klónú grupoidok
között azonban nem létezik olyan grupoid, amelynek ilyen kicsi lenne a spektruma.
Ezért nagyvonalúbbnak kell lennünk: a 14. Tételben azokat a minimális klónt gen-
eráló kétváltozós műveleteket fogjuk meghatározni, amelyek spektrumára s (4) < 5
teljesül. (A tételben szereplő A varietást az x (y (zu)) = x ((yz) u) azonosság
definiálja.)

14. Tétel. [Wa3] Tetszőleges A grupoidra ekvivalens a következő két álĺıtás:

(i) A klónja minimális, és 1 < sA (4) < 5;

(ii) A nem félcsoport, és A vagy duálisa a B ∩ A, Cp vagy D ∩ A varietások
valamelyikébe tartozik (alkalmas p pŕımszámra).

Ha ezen feltételek teljesülnek, akkor sA (n) = 2n−2 minden n ≥ 2 esetén.

A 14. Tételben és a 12. Tételben léırt grupoidok halmaza diszjunkt, tehát nem
létezik olyan minimális klónú grupoid amely majdnem asszociat́ıv

”
spektrális” és

”
indexes” értelemben is.
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(semilattices) SL : (xy) z = x (yz) , xy = yx

(rectangular bands) RB : (xy) z = x (yz) , xyz = xz

(right normal bands) RNB : (xy) z = x (yz) , xyz = yxz

(right regular bands) RRB : (xy) z = x (yz) , xyx = yx

B : x (yx) = (xy) x = (xy) y = (xy) (yx) = x (xy) = xy

D : x (yx) = (xy) x = (xy) y = (xy) (yx) = xy,

x · ←−−−−−−−−−x · y1 · . . . · yn = x (n = 1, 2, . . .)

D ∩A : x (yz) = xy, xy2 = xy

(right semilattices) RSL : x (yz) = xy, xy2 = xy, (xy) z = (xz) y

(p-cyclic groupoids) Cp : x (yz) = xy, xyp = x, (xy) z = (xz) y

Table 1: Some groupoid varieties with minimal clones

�

LZ

RSL

D ∩ A

D

Cp LNB

LRB

B ∩ A

B

A (Zp, λ) SL

RB

B ∩ Bd

A (Zp, 1 − λ) RZ

RNB

RRB

(B ∩ A)
d

Bd

Cd
p LSL

(D ∩A)d

Dd

Figure 2: Some groupoid varieties with minimal clones
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m1 m2 m3

(1, 2, 3) 1 1 2 3 3 3 1 3 1 1 3 1
(2, 3, 1) 1 2 3 1 3 1 3 3 1 3 1 1
(3, 1, 2) 1 3 1 2 3 3 3 1 1 1 1 3
(2, 1, 3) 1 2 1 3 1 3 1 1 3 1 3 3
(1, 3, 2) 1 1 3 2 1 1 1 3 3 3 3 1
(3, 2, 1) 1 3 2 1 1 1 3 1 3 3 1 3

Table 3: Minimal majority functions on the 3-element set

M1 M2 M3

(1, 2, 3) 4 4 2 3 3 3 4 3 4 4 3 4
(2, 3, 1) 4 2 3 4 3 4 3 3 4 3 4 4
(3, 1, 2) 4 3 4 2 3 3 3 4 4 4 4 3
(2, 1, 3) 4 2 4 3 4 3 4 4 3 4 3 3
(1, 3, 2) 4 4 3 2 4 4 4 3 3 3 3 4
(3, 2, 1) 4 3 2 4 4 4 3 4 3 3 4 3
{1, 2, 4} 4 4 4 4 4 4 4 4 4 4 4 4
{1, 3, 4} 4 4 4 4 4 4 4 4 4 4 4 4
(4, 2, 3) 4 4 2 3 3 3 4 3 4 4 3 4
(2, 3, 4) 4 2 3 4 3 4 3 3 4 3 4 4
(3, 4, 2) 4 3 4 2 3 3 3 4 4 4 4 3
(2, 4, 3) 4 2 4 3 4 3 4 4 3 4 3 3
(4, 3, 2) 4 4 3 2 4 4 4 3 3 3 3 4
(3, 2, 4) 4 3 2 4 4 4 3 4 3 3 4 3

Table 4: Nonconservative minimal majority functions on the 4-element set
(The middle two rows mean that if {a, b, c} equals {1, 2, 4} or {1, 3, 4},

then the value of the functions on (a, b, c) is 4.)

cons. noncons. all
minimal functions 32646 232 32 878
minimal functions up to isomorphism 1653 12 1665
minimal clones 2401 40 2441
minimal clones up to algebra isomorphism 126 3 129
minimal clones up to clone isomorphism 123 3 124

Table 5: The number of minimal majority functions and clones on the
4-element set
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1 2

3 4

1 1 · 3

1 2

3 4

3 1 · 3 + 2 · 24

1 2

3 4

6 1 · 1 + 5 · 8

1 2

3 4

4 1 · 3 + 3 · 24

1 2

3 4

6 1 · 1 + 5 · 8

1 2

3 4

2 1 · 3 + 1 · 24

1 2

3 4

6 1 · 3 + 5 · 24

1 2

3 4

8 1 · 3 + 7 · 24

1 2

3 4

16 1 · 1 + 15 · 8

1 2

3 4

4 1 · 3 + 3 · 24

1 2

3 4

16 1 · 1 + 15 · 8

1 2

3 4

8 1 · 3 + 7 · 24

1 2

3 4

3 1 · 3 + 2 · 24

1 2

3 4

3 1 · 3 + 2 · 24

1 2

3 4

10 1 · 1 + 9 · 8

1 2

3 4

12 1 · 1 + 11 · 8

1 2

3 4

8 1 · 3 + 7 · 24

1 2

3 4

6 1 · 3 + 5 · 24

1 2

3 4

4 1 · 3 + 3 · 24

Figure 6: Isomorphism classes of minimal majority functions on the 4-element set
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G1 a b c e f
a a a c f f
b b b e e e
c c c c c c
e e e e e e
f f f f f f

G2 a b c e
a a a c e
b b b e e
c c c c c
e e e e e

G3 a b c
a a a c
b b b b
c c c c

G4 a b c e f g
a a a g f f g
b a b e e f g
c c c c c c c
e e e e e e e
f f f f f f f
g g g g g g g

G5 a b c e g
a a a g e g
b a b e e g
c c c c c c
e e e e e e
g g g g g g

G6 a b c d f g h i
a a d f d f g d g
b h b c h i i h i
c c c c c c c c c
d d d g d g g d g
f f f f f f f f f
g g g g g g g g g
h h h i h i i h i
i i i i i i i i i

G7 a b c d f g h
a a d f d f g d
b h b c h g g h
c c c c c c c c
d d d g d g g d
f f f f f f f f
g g g g g g g g
h h h g h g g h

G8 a b c d f g
a a d f d f g
b d b c d g g
c c c c c c c
d d d g d g g
f f f f f f f
g g g g g g g

G9 a b c d f h
a a d f d f d
b h b c h h h
c c c c c c c
d d d d d d d
f f f f f f f
h h h h h h h

G10 a b c d f
a a d f d f
b d b c d d
c c c c c c
d d d d d d
f f f f f f

Table 7: Minimal Szász-Hájek groupoids with a minimal clone
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