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KOSZONETNYILVANITAS

Ezuton szeretnék koszonetet mondani témavezetémnek, Kincses Janosnak, hogy
szines el6adasaival felkeltette az érdeklédésemet az algebrai topoldgia irdnt. Ezeken
az ordkon, majd az ezt koveto konzultacidkon sokat tanultam Tole. Tovabba koszonet
illeti azért a rengeteg segitségért és tanacsért, amit az eddigi munkaimhoz adott.



BEVEZETES

Lovész Lészlénak a Kneser sejtésre adott 1978-as [22] bizonyitdsdval kezd6dott
a kombinatorikus topoldgia témakorén beliil a grafok kromatikus szamaira vonatkozd
topologikus alsokorlat tételek vizsgalata. Lovasz egy tetszoleges G graf kromatikus
szamara az altala bevezetett szomszédsagi komplexus topologikus Osszefiiggdségi sza-
méval adott alsé korlatot. Kovetkezd 1épésként J.W. Walker 1983-as [35] cikkében
definidlta a Lovasz komplexust. Ezt a szomszédsagi komplexusrél a nem lényeges
szimplexek lefejtésével kapta meg. Ezen komplexuson a "kozos szomszéd” leképezés
egy Zso-hatast adott. Ezt kihasznalva egy elegans bizonyitdsat adta Lovasz tételének,
ugyanis definidlt egy a grafok és grafhomomorfizmusok, és a Zo-terek és Zo-leképezések
kategoriai kozti funktort. 2003-ban J. Matousek és G.M. Ziegler a Lovasz komplex-
ussal homotop ekvivalens box komplexust vizsgaltak, amely Zs-indexével adtak alsé
korlatot a kromatikus szamra [24]-ben. Napjainkban a box komplexus dltaldnositdsa-
ként kapott grafhomomorfizmus komplexussal kapcsolatos vizsgalatok folynak [3]. E.
Babson és D.N. Kozlov [2]-ben ezen komplexus topologikus invaridnsaval, a Stiefel-
Whitney osztallyal, fogalmazott meg topologikus alsé korlatot a kromatikus szamra.

Ezzel parhuzamosan a posetek topologikus tulajdonsigaival kapcsolatos kuta-
tasok indultak meg (lasd [6]). Ezt kovette a komplexuson értelmezett topologikus
eljarasok posetekre valé atiiltetése. Ilyen példaul a komplexusok atfejthetéségére vo-
natkozé parcidlis parositdsi technika [5], illetve a R. Forman [14] altal kidolgozott
diszkrét Morse elmélet.

A grafok s-szeres szinezését ugyancsak az 1970-es években vezették be szamos
gyakorlati probléma altal vezérelve [27]-ben. Ezzel kapcsolatos legels eredményeket
Saul Stahl 1978-as [32] cikke tartalmazza. Stahl a Kneser sejtés dltal motivalva, vala-
mint a Kneser grafoknak a s-szeres szinezésekben betoltott kozponti szerepet kapcsan
megfogalmazta a Kneser sejtés altalanositasat, a Kneser grafok multikromatikus sza-
maira vonatkozé sejtését. A Stahl [32] éltal adott, ezen multikromatikus szdmokra
vonatkozo, felokorlat megegyezik a sejtett értékkel. Az eddig ismert alsé korlatok
(Stahl [32] és [33]) viszont kevés esetben élesek. Azaz a sejtés csak specidlis esetekre

igazolt.



BEVEZETES vi

Eddigi kutatasaim soran a Stahl sejtés altal motivalva a fent emlitett, grafok
kromatikus szamara vonatkozé topologikus alsokorlat tételek multikromatikus szé-
mokra valé atvitelét vizsgaltuk. A Walker-féle, illetve Babson-Kozlov-féle tételek
altalanositasat meg is adtuk [29]. Mindekézben, énmagukban is érdekes, komplexu-
sok homotopia tipusat hataroztuk meg. A Lovasz-féle, valamint a Babson-Kozlov-
féle tételeket alkalmazva a G gréf teljes graffal vett lexikografikus szorzatara, ijabb
topologikus alsékorlat tételeket kaptunk a multikromatikus szdmokra [12]. Ehhez a
G| K] lexikografikus szorzat szomszédsagi, illetve grafhomomorfizmus komplexusanak
topologikus invaridansait hataroztuk meg. Ezeket a topologikus alsokorlat tételeket al-
kalmazva a Kneser grafokra, néhany, mar ismert esetekben tudtuk igazolni a Stahl
sejtést, valamint bizonyos esetekben jobb alsé korlatot kaptunk a multikromatikus
szamokra. A [28] cikkben a topologikus akadalyok mellett az ortokorok szimplicialis
méretét is vizsgalva a sejtést tjabb, eddig nem ismert, esetekben igazoltuk.



1. ELOKESZULETEK

Ezen fejezetben Osszegytjtjiik az alapveto fogalmakat, jeloléseket és tételeket.
Mivel ezek legtobbje jol ismert, igy csak rovid ismertetését adjuk ezeknek, az allitasok
bizonyitasait elhagyjuk. A fogalmak és eljarasok részletes ismertetését, valamint az
allitdsok bizonyitasat megtalaljuk Maunder [26], Bredon[8], Matousek [23] és Kozlov
[20] konyveiben.

1.1. GRAFELMELETI ELEMEK

Valamennyi, a dolgozatban vizsgalt G grafrdl feltessziik, hogy véges, egyszerii és
Osszefliggd. A cstcsok halmazat V(G)-vel, az élek halmazat pedig F(G)-vel jeloljiik.
Példaként vegyiik az m-csicsu teljes gréfot, K,,-et, melyre V(K,,) = {1,...,m} =
Im] és E(Kn) = ([’g]>. A dolgozatban t3bbszér indukalt részgréffal dolgozunk majd,
melyek koziil a legegyszeriibb a csticsok egy A C V(G) részhalmaza éltal indukalt
részgraf, amit G 4-val jeléliink. Tovabbd az A1, Ay C V(G) csticshalmazokra G4, a,)
legyen GG azon részgrafja, melynek csticshalmaza A; U As és uv akkor és csak akkor él
G (a,,4,)-ben, ha uv éle G-nek és u € Ay és v € Ay, vagy forditva.

Két tetszoleges grafbdl djabb grafot kapunk a kovetkezo konstrukcidk segitségé-
vel. G és H join szorzata az a G x H graf, melynek csicshalmaza V(G) UV (H), és
G« H két csicsa, u és v, akkor és csak akkor van éllel 0sszekotve, ha uv éle G-nek vagy
H-nak, vagy u csticsa G-nek és v csicsa H-nak vagy forditva. A G[H] lexikografikus
szorzatnak a csucshalmaza V(G) x V(H), és két csicsa (ug,usz) és (vy,v2) akkor és

csak akkor van éllel osszekotve, ha uyv; éle G-nek vagy u; = vy és ugsve éle H-nak.

A grafok, mint objektumok, az alabbi morfizmusokkal, kategériat alkotnak. Egy
v : G — H grdifhomomorfizmuson, egy olyan v : V(G) — V(H) leképezést értiink,
mely élet élbe visz, azaz ha uv € E(G), akkor v(u)y(v) € E(H).
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Egy G graf t szinnel valo (csics)szinezésén egy v : G — Ky grafhomomorfizmust
értiink, ha létezik ilyen leképezés. A x(G) kromatikus szam pedig az a legkisebb t
egész, melyre 1étezik v : G — K; grafhomomorfizmus.

1.2. ALGEBRAI TOPOLOGIAI ESZKOZOK

Homoto6pia és homotoépia tipus

Legyen X1, X5 két topologikus tér. Az fi1, fo : X1 — Xo leképezések homotop
ekvivalensek (f1 ~ f2), halétezik F' : X1 %[0, 1] — X5 folytonos leképezés (homotopia)
ugy, hogy F(z,0) = f1(z) és F(z,1) = fo(x) minden z € X; esetén. Két topologikus
tér, X1, Xs homotop ekvivalens, illetve ugyanaz a homotopia tipusuk, ha léteznek
fi: X1 — Xoés fo: Xo — X, leképezések ugy, hogy

f2 (e} fl ~ ZXm éS fl (@) f2 ~ idXQ,

jelben X7 ~ X5. Az egy pontu topologikus térrel homotdép ekvivalens teret pontra
0sszehizhatonak hivjuk. Eléfordul, hogy egy X topologikus tér egy A alterével ho-
motop ekvivalens. Specidlisan az A altér deformdcios retraktuma X-nek, ha létezik
r : X — A folytonos leképezés, melyre i or : X — X homotép ekvivalens az idx
identikus leképezéssel, ahol i : A — X az A altér természetes bedgyazasa X-be. Az

r: X — A leképezést deformdcids retrakcionak nevezzik.

Legyen X egy tetszoleges Osszefiiggd topologikus tér és ¢ pozitiv egész. Jelolje
mi(X) az f: S — X leképezések homotépia osztdlyainak halmazat. Ezen halmazok
felruhdzhatdok csoportstruktirdval (1dsd Maunder [26]), mely csoportok az X tér ho-
motdpia csoportjai, jelben ugyancsak m;(X). Természetesen homot6p ekvivalens terek
homotopia csoportjai izomorfak.

Topologikus Gsszefiiggtség

Két topologikus tér homotdpia tipusanak kiilonbozoségét gyakran egyszeriien
megallapithatjuk a terekben taldlhato ”lyukak” méretének segitségével. Ezen lyu-
kak dimenzidjat méri a topologikus Osszefiiggoség.

Az {x € R": ||z|| < 1} n-dimenzids gombét jeldlje B™, a hatarat {x € R™ : ||z|| =
1}, azaz az (n — 1)-dimenzids gombfeliiletet pedig S™~1.
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Az X topologikus tér k-idsszefiiggd, ha tetszéleges f : S7 — X folytonos leképezés
kiterjesztheté egy B/t — X folytonos leképezéssé, minden 0 < j < k-ra. Azaz az
X topologikus tér pontosan akkor k-osszefiiggd, ha minden f : S7 — X folytonos
leképezés homotép ekvivalens egy ¢ : S7 — X konstans leképezéssel 0 < j < k-ra.
Az X topologikus tér dsszefliggdségi szdma, conn(X) az a legnagyobb k, melyre X
k-Osszefiiggo.

Topologikus konstrukciok

Az X és Y topologikus terekbdl az alabbi konstrukcidkkal tjabb topologikus te-
reket kapunk. Az egyik legegyszeriibb ilyen eljaras, amikor a két teret két, kitiintetett
pontjuknal ” 6sszeragasztjuk”. Azaz az X VY wedge szorzat legyen az X UY diszjunkt
unié {xg, yo }-lal valé faktorizaltja, ahol o € X és yg € Y a kitilintetett pontok. Ter-
mészetesen tetszoleges szamu {X;}ier térnek vehetjiik a fentinek megfeleld \/, ., X;
wedge szorzatdt. A késébbiekben abban a specidlis esetben taldlkozunk a \/,_; X; tér-
rel, amikor valamennyi X; egy gombfeliilet lesz, ezen teret gombecsokornak nevezzik. A
késobbiekben az egy pontu teret 0 darab gombfeliilet csokranak tekintjiik. Egy maésik,
ugyancsak hasznos konstrukcié a két tér join szorzata X Y, ami az X xY x [0,1]/ =~
faktortér, ahol a ~ a kovetkez& ekvivalencia relacié: (z,y,0) ~ (z’,y,0) minden
x, 2’ € X ésy € Y esetén, és (r,y,1) ~ (z,9',1) minden z € X és y,3y' € Y esetén.
Egy X tér és egy egypontu tér joinszorzata: cX = X x {xg} az X feletti kip. Egy
X tér és egy kétponti tér joinszorzatat, X x SO, X szuszpenzidjdnak nevezziik és sX-
szel jeloljiik. Topologikus terek join szorzatanak topologikus tulajdonsiagat Milnor
vizsgélta a [25] cikkében. Ezen cikk kovetkezd allitasat fogjuk tobbszor haszndlni a
dolgozatban.

1. Allitas. (Milnor [25]) Legyen X k-dsszefiiggd és Y l-dsszefiiggd topologikus tér.
Ekkor X «Y (k + 1+ 2)-dsszefiiggd.

Zo-tér és Zo-index

A dolgozatban vizsgalt legtobb X topologikus téren adott lesz egy v : X — X
homeomorfizmus, mely idempotens és fixpontmentes leképezés. Az ilyen v leképe-
zéseket Zo-hatdsnak, az X teret pedig Zs-térnek nevezziik. Standard példa az S¢
gombfeliiletet a v(x) = —x Zo-hatassal. Az (X, v) és (Y, u) Zo-terek kozti f folytonos
leképezés Zo-leképezés, ha f felcserélhet6 a Zo-hatasokkal. Az (X,v) és (Y, u) Zo-terek
Zo-homotop ekvivalensek, ha léteznek fi1 : X7 — Xo és fo : Xo — X7 Zo-leképezések
ugy, hogy

foofi~idx, és firofar~idx,.
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Az algebrai topoldgia egyik legeredményesebb eszkoze a Borsuk-Ulam tétel.
Matousek [23] konyvében és Steinlein [34] cikkében szdmos kiterjesztését és altaldno-
sitasat, valamint érdekes alkalmazasat taldljuk. Borsuk 1933-as antipodalis tételének

ot ekvivalens verzidja:

2. Tétel. (Borsuk-Ulam tétel [7] [23])

(i) Bdrmely f : S — RY folytonos leképezés esetén létezik x € S¢, hogy f(x) =
f(~a).

(ii) Bdrmely f : S — R? Zy-leképezésre létezik x € S¢, hogy f(x) = 0.

(iii) Nem létezik f : S™ — S Zy-leképezés, han > d.

(iv) Tetszbleges X d-Osszefiiggs Zo-tér esetén, nem létezik f: X — S Zy-leképezés.
(v) S¢ minden olyan d + 1 elemi lefedése esetén, melyre a lefedésben szerepld rész-
halmazok mind nyiltak vagy mind zdrtak, létezik eqy részhalmaz, mely antipodadlis

pontokat tartalmaz. (Borsuk-Liusternik-Schnirelman)

Az S¢ gémbfeliilet kitiintetett szerepe folytan keriilt bevezetésre az X Zo-tér Zo-
indexe, mely az a legkisebb d egész, melyre létezik f: X — S? Zy-leképezés. Jelben:
ind(X). A Zs-index tulajdonsagait a kovetkezd dllitdsban Osszegezziik.

3. Allitas. ([23])

(i) Ha létezik f : X — Y Zo-leképezés, akkor ind(X) < ind(Y).
(ii) ind(S?) = d, minden d > 0-ra.

(7i1) Ha X (d — 1)-dsszefiiggd, akkor ind(X) > d.

Amint ezen allitas is mutatja, mig a conn(X) Osszefiiggdségi szam az X térben
taldlhaté legkisebb ”lyuk” dimenzidjat adja, addig az ind(X) index az X Zso-térben
talalhaté legnagyobb Zs-"1lyuk” dimenziéjat.

Geometriai szimplicialis komplexus

A szimplicidlis komplexusok jelentik a kapcsolatot a kombinatorika és a topolo-
gia kozt, ugyanis egyszerre hordozzak egy diszkrét objektum és egy topologikus tér
tulajdonsagait. Ennek kovetkeztében szamos topologikus tulajdonsag kombinatori-
kus eszkozokkel meghatérozhato, illetve a topologikus tulajdonsagokbol az eredeti
komplexus egyéb kombinatorikus tulajdonsdgaira kovetkeztethetiink vissza.

Az R™ n-dimenziés valés tér a®,al,... a" affin fiiggetlen pont (n + 1)-esének
konvex burkédt, conv{a®,al,... a"}-et, geometriai n-szimpleznek nevezziik. Az
0 1

a’,a,...,a" pontokat a szimplex csicsainak, a csticsok tetszoleges [-elemii részhal-
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mazanak konvex burkat pedig a szimplex lapjinak nevezzik (I < n+ 1).

Egy A geometriai szimplicidlis komplezuson véges sok geometriai szimplex hal-
mazat értjiik, mindegyik ugyanazon R™-beli, ugy, hogy

(1) ha o € A és 7 lapja o-nak, akkor 7 € A,
(74) ha o,7 € A, akkor o N7 vagy iires halmaz, vagy lapja mind o-nak, mind 7-nak.

Két Aq és Ay szimplicidlis komplexus kozti ¢ : Ay — Ao szimplicidlis leképezésen
egy a csicsaik kozti olyan ¢ : AY — A megfeleltetést értiink, melyre conv{gp(v) :
v cstcsa o-nak} szimplex As-ben, minden o € A;-re.

Fontos megjegyezni, hogy egy A szimplicialis komplexus nem topologikus tér, csu-
pan egy halmaz, melynek elemei geometriai szimplexek. Azonban R™ azon pontjainak
halmaza, melyeket A legalabb egyik szimplexe tartalmaz, az 6roklott topologidval fel-
ruhdzva egy topologikus tér, melyet A poliéderének hivjuk és |Al-val jeloljik. Egy
¢ : Ay — Ay szimplicidlis leképezés |A1|-re valé affin kiterjesztése, |@| : |[A1] — |[Asg]
folytonos leképezés. Ha a A szimplicialis komplexusnak valamilyen topologikus tulaj-
donsagot adunk, akkor mindig |A|-ra gondolunk.

Tetszoleges X1, Xo homotop ekvivalens topologikus terek homotoépia csoportjai
izomorfak. Ez Ay, As szimplicidlis komplexusokra forditva is igaz.

4. Tétel. (Whitehead tétel [26]) Ha a Ay, Ao szimplicidlis komplexusokra m;(A1) =
mi(A2) minden i € N-re, akkor A1 ~ A,.

A kovetkezo allitas egy d-dimenzids A szimplicidlis komplexus homotopia tipusat
adja meg abban az esetben, ha A (d — 1)-0sszefiiggd.

5. Allitis. (Bjorner [6]) Legyen A egy d-dimenzids szimplicidlis komplezus. Ekkor
A akkor és csakis akkor (d — 1)-dsszefliggé ha A homotdp ekvivalens egy d-dimenzidos

gombcesokorral.

Egy A szimplicidlis komplexus szimplicidlis Zo-komplexus, ha adott rajta egy
olyan v : A — A szimplicidlis leképezés, melyre |v| Zo-hatds |A|-n. Ekkor v-t szimp-
licialis Zo-hatdsnak nevezziik. Két szimplicidlis Zo-tér kozotti f szimplicialis leképe-
zés szimplicidlis Zo-leképezés, ha f kommutdl a Zs-hatasokkal. Egy A szimplicialis
Zo-komplexus topologikus tulajdonsidgainak ismeretében a Zo-indexére a 3. allitas
pontjain tul tovabbi ismereteink vannak.
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6. Allitas. ([23]) Ha A d-dimenzids szimplicidlis Zo-komplezus, akkor bdrmely Y
(d — 1)-dsszefiiggd ZLo-tér esetén létezik f : |A| — Y Zo-leképezés, és igy ind(A) < d.

CW-komplexus

A dolgozatban javarészt szimplicialis komplexusokon fogunk dolgozni, CW-
komplexust csak néhany esetben, adott szimplicialis komplexusok topologikus struk-
turdjanak meghatarozasa soran fogunk kapni. Ezért itt csak a véges dimenzids
valamelyikében. Egy m-dimenzios CW-komplezuson egy A topologikus teret és a
AY C Al C--- C A™ = A alterek sorozatét értjiik, melyre az aldbbi tulajdonsigok
teljestilnek.

(i) AY diszkrét tér.

(i) Minden 1 < k < m-re létezik A, indexhalmaz és léteznek ¢F : SE=1 — AF-1
folytonos leképezések o € Ap-ra. A A tér pedig éppen egyenld azzal a topologi-
kus térrel, amit gy kapunk, hogy a ¢F leképezésekkel a A¥~1 térhez ragasztjuk
a BF celldkat.

Homolégia

A homotépianal konnyebben kezelheté a homolégia, mely ugyancsak szamos to-
pologikus informaciét hordoz. Egy X topologikus tér H;(X) homoldgia csoportjanak
elemei az f : A; — X leképezések formalis Osszegeinek homoldgia osztalyai. Ezen for-
mélis Gsszegek homoldg ekvivalencidjanak definidldsat [26]-ban megtaldljuk, mi most
ezt elhagyjuk. Az X tér redukalt homoldgia csoportjait jelole H;(X) [26]. Azt mond-
juk, hogy X k-aciklikus, ha fIZ(X) = 0 minden i < k-ra. A (-1)-aciklikus X tér nemii-
res, a 0-aciklikus X tér nemiires és osszefliggd. Tovabba X aciklikus, ha ITIZ(X )=0

minden i € Z-re.

Az alabbi allitas egy A szimplicialis komplexus homotopikus tulajdonsaga és ho-
mologiaja kozotti kapcsolatrél szél.

7. Allitas. ([8]) Legyen A egy szimplicidlis komplexus.

(i) A akkor és csakis akkor pontra dsszehizhato, ha aciklikus €s egyszeresen dssze-
figgd.

(1i) A akkor és csakis akkor k-dsszefiiggd, ha k-aciklikus és egyszeresen dsszefiiggd.

Egy A aciklikus szimplicialis komplexus az alabbi fixpont tulajdonsdggal rendel-
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kezik.

8. Allitas. ([8]) Ha a A szimplicidlis komplezus aciklikus, akkor minden f : |A| — |A]
folytonos leképezésnek van fixrpontja.

1.3. KOMBINATORIKUS TOPOLOGIAI MODSZEREK

Absztrakt szimplicialis komplexus

Egy szimplicidlis komplexust megadhatunk olymédon is, hogy felsoroljuk a
szimplexeit és megadjuk a koztiikk levo tartalmazas relaciét. Az altalunk vizsgalt
szimplicialis komplexusokat ilymédon nyerjiik. Egy ilyen komplexushoz minden eset-
ben taldlunk egy megfelel6 dimenzids valds térbeli geometriai szimplicialis komplexust.

Absztrakt szimplicidalis komplezuson egy K = (V,K) péart értiink, ahol V' (abszt-
rakt) csicsok egy véges halmaza, I pedig V' nem iires véges részhalmazainak, (abszt-
rakt) szimplezek halmaza ugy, hogy ) # 0 C 7 € K akkor 0 € K. A késébbiekben
szimplicilis komplexuson mindig absztrakt szimplicidlis komplexust értiink.

Egy o € K szimplex dimenzidjin a dim o = card o — 1 szamot értjiik, a I
szimplicidlis komplexus dimenzidgjan pedig a dim K = max,cx dim o szamot értjiik.

Legyen A egy geometriai szimplicidlis komplexus. Ekkor legyen K az az abszt-
rakt szimplicidlis komplexus, melynek cstcsai és A csicsai kozott bijektiv megfeleltetés
van, valamint a csicsok egy részhalmaza akkor és csakis akkor szimplex K-ban, ha a
neki megfeleld csticsok A valamely szimplexének a csuicsai. A K absztrakt szimplicidlis
komplexust A absztrakciojanak hivjuk. Egy olyan geometriai szimplicialis komplexust,
melynek K az absztrakcidja, IC geometriai realizdltjanak nevezziik. Ezutdn valahény-
szor egy K szimplicidlis komplexusnak valamilyen topologikus tulajdonsagot adunk,
akkor mindig egy geometriai realizaltjanak poliéderére gondolunk.

Poset és lapposet

Szimplicialis komplexusbél természetes modon kapunk posetet, azaz részbenren-
dezett halmazt, illetve posetbol szimplicidlis komplexust. Egy K szimplicialis komple-
xus lap posetje legyen az a P(K) = (IC, C) poset, melynek alaphalmazét a KC szimplexei
alkotjak és a tartalmazas a részbenrendezés. Egy P poset rendezés komplerusa pedig

az a IC(P) szimplicialis komplexus, melynek csticsai a P poset elemei és a k-szimplexei
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pedig az xg < 1 < --- < x, P-beli k-lancok. Ha egy P posetnek topologikus tulaj-
donsdgot adunk, mindig a |[KC(P)| poliéderre gondolunk. Egy £ szimplicidlis komp-
lexus baricentrikus felbontdsdn az sd(L) = K(P(L)) szimplicidlis komplexust értjiik.
Ismert, hogy |sd(L£)| = |£|. Hasonléan egy P poset rendezés komplexusdnak lappo-
setjét sd(P)-vel jeloljiik.

Példaként tekintsiik egy o geometriai (m — 1)-szimplex absztrakciéjat, azaz azt
a K (o) szimplicialis komplexust, mely alaphalmaza V' = {1,...,m} és V Osszes rész-
halmaza szimplexe K(o)-nak. Ekkor IC(o) lapposetje éppen By, az [m] = {1,...,m}
halmaz 0sszes részhalmazanak tartalmazasra nézve vett posetje. A késObbiekben ezen
posetek kovetkezé részposetjei fogjuk vizsgalni: C’,’j%n pontjai legyenek az [m] halmaz
legalabb n és legfeljebb n + k elemii részhalmazai, ahol m,n és k pozitiv egészek, me-
lyekre n + k < m. Az m = 2n + k specidlis esetben a C’,’f%n posetet By, ,-nel jeloljik,
azaz a B, poset kozépso szeletét.

Legyen P Osszefuggd poset és p, p’ két tetszbleges pontja P-nek. Az F =
{fo,..-,fq} C P részposet P-beli g-ut p és p' kozott, ha fo = p, f; = p' és
fi < fix1 > fizo, vagy fi > fix1 < fire mindeni = 0,...,g—2-re, és nincs mas egyéb
relaci6é barmely két kiillonbozé elem kozt. Az (f;, fiy1) par felfelé lépés, ha f; < fiy1,
és lefelé lépés, ha f; > fir1. Egy ¢-it hossza q. P két kiilonbozo p és p’ pontjai kozti
d(p,p") tdvolsdg a p és p’ kozti legrovidebb 1it hossza.

Az f . Py — P, posetleképezés monoton, ha vagy rendezéstarté (p < ¢ = f(p) <
f(q)) vagy rendezésfordité (p < q = f(q) < f(p)). Vilagos, hogy egy f: P, — P»
monoton leképezés esetén

d(p,p") > d(f(p), f("))

minden p,p’ € Pj-re.
Ortoposet és ortoleképezés

Egy o geometriai (m — 1)-szimplex hataranak absztrakcidja, a K (&) nem szimp-
licialis Zo-komplexus, holott ¢ = S™~1. Am a P(K(c)) poseten, By, 1-en a komple-
menter képzés egy szimplicidlis Zo-hatdst indukal sd(d)-on. Ennek mintdjira egy P
posetet ortoposetnek hivunk, ha van rajta egy v : P — P poset leképezés, mely:

(i) rendezésfordito,
(ii) idempotens,
(iii) p és v(p) nem Gsszehasonlithaté barmely p € P-re.

Azt mondjuk, hogy p és q ortogondlisak, ha q < v(p), és ekkor természetesen
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p < v(q). Amint lattuk, a B,, és B,, , posetek mindegyike ortoposet a komplementer
képzéssel. Tehat két B,, ,-beli halmaz pontosan akkor ortogonalis, ha diszjunkt.

Két ortoposet kozotti leképezést ortoleképezésnek hivunk, ha monoton és megorzi
az ortogonalitast. Egy ortoposeten az identikus leképezés ortoleképezés, valamint
ortoleképezések kompozicidja is mindig ortoleképezés lesz.

Komplexusok szimplicialis atfejtése

Legyen K egy szimplicidlis komplexus, 7 C o két lapja K-nak, melyre dim 7 <
dim o és o-an kiviil nincs mas maximalis lapja KC-nak, melynek 7 lapja. A K komple-
xus Ky komplexusra vald szimplicidlis lefejtése K azon ~ lapjainak torlése, melyekre
T C v Co. Jelben K\, 1. A K komplexus £ komplexusra valé szimplicidlis dtfejtése
egy Ko = K,K4,...,K; = L komplexus sorozat, melyre K;—1 \, K; vagy K; \, Ki_1
minden 1 < i < g-ra. Ezen atfejtés soran C homotodpia tipusa nem véaltozik.

9. Allitas. ([6]) Legyen K és L két eqgymasba dtfejthetd szimplicidlis komplezus.
Ekkor IC és L homotop ekvivalens.

Egy K szimplicidlis Zs-komplexus esetén legyen 7 C o két olyan lapja K-nak,
melyre dim 7 < dim o és o-an kiviil nincs més maximélis lapja K-nak, melynek
7 lapja, valamint v(7) C v(o)-ra is teljesiil ugyanez. Ekkor a K Zs-komplexus Ky
Zo-komplexusra vald szimplicidlis Zs-lefejtése K azon ~ lapjainak torlése, melyekre
T C v Covagy v(1) C v C v(o). Ennek megfeleléen definidlt egy K Zo-komplexus
egy L Zs-komplexusra vald szimplicidlis Zo-atfejtése.

Ideg tétel

A késObbiekben tobbszor alkalmazzuk a koévetkezé kombinatorikus topoldgiai
tételt egy szimplicidlis komplexus topologikus Osszefliggdségének meghatarozdsara.
Legyen K egy szimplicidlis komplexus és {IC;}7; részkomplexusok csalddja, melyre
K = UK. A {K;}, részkomplexus rendszer idegén azt a N (K;) szimplicidlis
komplexust értjiik, melynek csicshalmaza [n], és egy o C [n] halmaz szimplex, ha
NicoKCi # 0. Ez valéban egy szimplicidlis komplexus, ugyanis ha ) # 7 C o € N (K;),
akkor N;e/C; D NieoKi # (0. Mi az Ideg tétel kovetkezd verzidjat fogjuk alkalmazni.

10. Tétel. (Ideg tétel [6]) Legyen K egy szimplicidlis komplexus és {K;}1 | rész-
komplexusok rendszere, melyre K = U K;. Tegyiik fel, hogy minden nemiires met-
szet, Kiy NIC;, N---NK;, (k—t+ 1)-dsszefiiggd. Ekkor K akkor és csakis akkor
k-0sszefiiggd, ha N (K;) k-osszefiiggd.
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Lezarasoperator

Egy P poset (geometriai realizaltjanak) struktirdjat egyszeriibbé tehetjitk anél-
kiil, hogy a homotépia tipusat megvéltoztatnank, ha egy alkalmas ¢ : P — P poset-
leképezés képterére tériink at. Ilyen leképezés a ¢ : P — P felszdllo lezdrdsoperdtor,
mely rendezéstartd, p? = ¢ és ¢(x) > x, minden z € P-re, ugyanis:

11. Tétel. (Bjorner [6]) Legyen ¢ : P — P egy felszdllo lezdardsoperdtor. Ekkor o(P)
deformdacios retraktuma P-nek.

Diszkrét Morse elmélet

Ugyancsak egyszerisithetjiik egy P lapposet (geometriai realizaltjanak) felépité-
sét, a homotopia tipus megvaltoztatdasa nélkiil, ha egy a P lapposeten értelmezett,
alabbi tulajdonsidgi p leképezés altal meghatarozott részposetre tériink at. A P
poset egy 3 részposetjén értelmezett injektiv p : X — P\ ¥ leképezését parcidlis
pdrositasnak nevezzik, ha barmely z € Y-ra x < p(x), és barmely x < y < p(z)-
rey = x vagy y = p(z). A P\ (XU u(X)) pontjait kritikus pontoknak (P lap-
poset volta folytan kritikus szimplexeknek) nevezziikk. Tovdbba egy u parciélis pa-
rositas kormentes, ha nem létezik ¥-beli zi,...,z, pontsorozat, ¢ > 2-re, hogy
(1) > wo, p(2) > 3, .00y p(Tg) > 1.

12. Tétel. (Kozlov [20]) Legyen K szimplicidlis komplexus és legyen p egy kérmen-
tes parcialis pdrositdas IC lapposetjén. Jelolje ¢; a K komplexus i-dimenzios kritikus
szimplexekeinek szamdt.

(i) Ha a kritikus szimplexek KC-nak egy K. részkomplezusdt alkotjdk, akkor K. és K
homotop ekvivalensek.

(i) A K szimplicialis komplezus homotdp ekvivalens egy A. CW-komplezussal, mely-
nek ¢; darab i-dimenzids celldja van.

Ennek a tételnek a Zs-vezidjat is alkalmazni fogjuk.

13. Tétel. (Csorba [11]) Legyen K egy szimplicidlis Zo-komplexus a v szimplicildlis
Zo-hatdssal és p eqy kormentes parcidlis pdrositis K lapposetjén, mely felcserélheto
a Zo-hatdssal (azaz ha v € X, akkor v(x) € 3, és v(u(z)) = p(v(z))). Ha a kritikus
szimplexek eqy IC. Zo-részkomplexusdt alkotjak a K komplexusnak, akkor IC. és K
Zio-homotop ekvivalensek.



2. TOPOLOGIKUS ALSOKORLAT
TETELEK A KROMATIKUS SZAMRA

Az els6 topologikus grafszinezhetoségi tételt Lovasz Laszlo bizonyitotta M. Kne-
ser 1955-6s feladatanak megvalaszoldsa soran.

Feladat. (Kneser [19]) Tekintsik egy m-elemd halmaz n-elemd részhalmazainak a
rendszerét, 1 < n és2n < m. FEzen részhalmazokat konnyen elhelyezhetjik m — 2n 4 2
osztdalyba gy, hogy bdrmely két halmazt véve eqy osztdlybol, akkor azok metszete nem

tres. Vajon megtehetd ez m — 2n + 1 osztdllyal is?

Kneser negativ valaszt sejtett, amit 1978-ban Lovasz Laszlé be is bizonyitott [22]-
ben. Kozel egy idében Barany Imre is beldtta a sejtést egy rovid, 6tletes bizonyitdssal
[4]-ben.

14. Tétel. (Lovéasz-Kneser [22]) Ha egy m-elemi halmaz n-elemd részhalmazait
m — 2n + 1 osztalyba soroljuk, akkor lesz olyan osztdly, melyben van két diszjunkt
halmaz.

Lovasz Laszlé atfogalmazta a feladatot egy gréafszinezhetdségi feladatta azzal,
hogy definidlta a KG,, ,, Kneser grafot. Tetszoleges 1 < n és 2n < m egészekre, a
KG,,  Kneser grdf cstcsai az [m] = {1,2,...,m} halmaz n-elemi részhalmazai, és
két cstcs éllel van 0sszekotve, ha azok mint halmazok diszjunktak. Ilymoédon a feladat
a KGy, , graf kromatikus szamanak meghatdrozasira vezet.

14’. Tétel. (Lovéasz-Kneser [22]) A KG,, ,, Kneser grdf nem szinezheté m —2n + 1
szinnel.

Az igy kapott kérdés megvélaszolasdhoz az alabbi altalanos, topologikus grafszi-

nezhetoségi tételt igazolta.

15. Tétel. (Lovész [22]) Ha a G grdf szomszédsdgi komplexusa (k — 1)-dsszefiiggd,

akkor a G graf nem szinezhetd k + 1 szinnel.
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A Lovasz tételt szamos grafszinezhetOségre vonatkozdé topologikus akadaly tétel
kovette, melyek mindegyikében az alabbi eljarast alkalmaztak.

G graf — K(G) gratkomplexus

!
als6 korlat x(G)-re «— K(G) topologikus tulajdonsiga

Azaz valamennyi esetben a G grifhoz egy K(G) grafkomplexust rendeltek: J.W. Wal-
ker [35]-ben a Lovasz komplexust hasznélta, J. Matousek és G.M. Ziegler a Lovész
komplexussal homotép ekvivalens Box komplexust vizsgaltdk [24]-ben. Babson és
Kozlov [2] cikkiikben a szomszédsagi komplexus Lovész Laszlé dltal definidlt dlta-
lanositasaval, a grafhomomorfizmus komplexussal dolgoztak. Ezen grafkomplexusok
topologikus tulajdonsagaibdl x(G)-re vonatkozé alsékorldt tételeket nyertek.

2.1. GRAFKOMPLEXUSOK

Ezen alfejezetben a fent emlitett grafkomplexusokat definialjuk. Az elsét, a szom-
szédsagi komplexust Lovasz Laszl6 definidlta a mar emlitett cikkében. A tobbit ezen
komplexus kiilonb6z6 altalanositasaként kaptak.

Szomszédsagi komplexus

Egy tetszOleges G gréf esetén a Lovdsz &ltal [22]-ben bevezetett NK(G) szom-
szédsdgi komplerus az az absztrakt szimplicidlis komplexus, melynek csicshalmaza
V(G), és a csicsok egy A részhalmaza szimplex, ha van kozos szomszédjuk G-ben.
Jelolje 2V(@) a V(G) 6sszes részhalmazanak posetjét. Az ugyancsak [22]-ben defi-
nialt cng : 2V — 2V(G) gszomszédsagi leképezés egy A cstcshalmazhoz a kozos

szomszédjaik halmazat rendeli, azaz
eng(A) :={v € V(G) : (v,a) € E(G) minden a € A-ra}.

Ekkor NK(G) = {A C V(G) : létezik v € V(G) hogy A C cng(v)}.

Az vilagos, hogy cng rendezésfordité leképezés, tovabba az alabbi tulajdonsa-
gokkal rendelkezik

ANneng(A) =0, ACcni(A), cng(A) = cng(A)

tetszéleges A C V(G) részhalmazra, ahol cn = cng o cng, cny, = cng o cng o
cng. Tehdt cn? lezérdsoperator (idempotens, monoton leképezés) 2V(G)_n, ezért azt
mondjuk, hogy A C V(G) zdrt, ha cn%(A) = A.
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Példaként tekintsiik az alabbi Gy grafot. Ennek a grafnak megnézziik tobb graf-
komplexusat is, ezen az abran a szomszédsagi komplexusa lathato.

f

(&

1. abra: A G graf és szomszédsagi komplexusa.

Lovasz komplexus

Legyen LP(G) az NK(G) szomszédségi komplexus lapposetjének a zart elemei
altal indukalt részposetje, melyet a G graf Lovdsz posetjének neveziink. A cng le-
képezést megszoritva az LP(G) posetre az (LP(G),cng) ortoposetet kapjuk. Az
(LP(G),cng) ortoposetet J. Walker definidlta az dltala konstrudlt, grafok és Zs-terek
kategoriai kozti funktor koztes lépéseként [35]-ben.

f
08 % ypa
b d (b} %
{b,c,6} fa,d.e}
c a {ae}

¢ {e}

2. dbra: A G| graf szomszédsagi komplexusa és Lovasz komplexusa.

Walker az LP(G) Lovész poset rendezés komplexusaként definidlta a G graf
Lovdsz komplezusdt, melyet mi LK(G)-vel jeloliink. Beldtta, hogy LK(G) szimplicialis
Zo-komplexus. Ugyanis, mig NK(G) dltaldban nem Zs-komplexus, addig LK (G)-n
cng indukal egy szimplicélis Zo-hatast. Az vilagos, hogy cng indukal egy szimplicidlis
leképezést, mely idempotens. Mésrészt fixpontmentes, mivel LIC(G) tetszéleges A
szimplexére, azaz egy A1 C Ay C --- C A, lancra, AN cng(A) = 0. Ami pedig
mindig teljesiil, ugyanis ha A; C Aj;, akkor sem cng(A4;) = Aj, sem cng(4;) = A;
nem lehetséges. Igy LK(G) szimplicidlis Zo-komplexus.

Jolismert az LK(G) és NK(G) komplexusok homotép ekvivalencidja, ugyanis
LP(G) nem més mint a cnZ : P(NK(G)) — P(NK(G)) lezardsoperator kép po-
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setje, {gy a 11. tétel szerint A(cnZ (P(NK(Q)))) = LK(G) deformécidés retraktuma
sd(NK(G))-nek.

16. Tétel. (Bjorner [6]) Tetszdleges G grdf esetén LIK(G) deformdcids retraktuma
NK(G)-nek.

Az alabbi abran a fenti G graf szomszédsagi komplexusanak a Lovasz komple-
xusara valé deformaciés retrakcidja lathato.

‘///,‘

‘—
(
<«

-
el

3. abra: Az NK(Gy) komplexus deformécids retrakcidja LIC(Gp)-re.

Walker [35]-ben adott topologikus als6korlat tétele azon alapul, hogy a K; teljes
graf Lovasz komplexusa homeomorf az St~2 gombfeliilettel. Ezt az azonossdgot most
mi is megmutatjuk. Legyen a K, graf csticshalmaza {1,...,t}. Ha {a1,...,q;} csu-
csok egy nemiires halmaza, akkor a k6z0s szomszédok halmaza {1,...,t}\{a1,...,a;}.
Vagyis a csicsok bamely nemiires halmazanak van koézos szomszédja, kivéve ha az
egész csucshalmazt vessziik. Tehdt az NK(K;) szomszédsagi komplexus geometriai
realizaltja éppen a (¢ — 1)-dimenzids szimplex hatarkomplexusa. A V(K}) cstucshal-
maz bémely valédi részhalmaza zért, ugyanis enf ({a1,...,a}) = {aq,...,a;} bér-
mely {aq,...,a;} C V(K;)-re. Tehdt az LP(K;) ortoposet megegyezik P(NI(K}))-
vel, ami izomorf az {1,...,t} valédi részhalmazainak posetjével, azaz Bj ;_o-vel.
Amint lattuk, B ¢+—2-ben két elem pontosan akkor ortogondlis, ha a két halmaz disz-
junkt. A Ky graf LK(K;) Lovész komplexusa megegyezik a KC(P(NIK(K)))-vel, azaz
sd(NK(Ky))-vel.

A Walker-féle topologikus alsékorlat tétel multikromatikus szdmokra vald altaléa-
nositasa soranban a K; teljes graf helyett a KG; ; Kneser graf fog szerepelni. Most
ezért lefrjuk ezen grafok Lovasz posetjét. KGy, csicshalmaza a [t] = {1,...,t}
halmaz s-elemii részhalmazainak a halmaza. Ha {ai,...,a;} csicsok egy nem iires
részhalmaza, akkor a kozos szomszédaik halmaza az [t] \ |Ja; halmaz s-elemii rész-
halmazainak a halmaza. Megjegyezziik, hogy az [t] \ Ja; halmaznak nincs s-elemil

részhalmaza, ha az | Ja;-nek tobb mint ¢t — s eleme van. Tehét az {ay,...,a;} csics-
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halmaz akkor és csakis akkor zart, ha megegyezik az | J a; halmaz s-elemii részhalma-
zainak halmazaval és s < ||Ja;| <t —s. Ha A; és Ay két legaldbb s elemii halmaz,
akkor az A; Osszes s-elemil részhalmazat tartalmazo halmazt pontosan akkor tar-
talmazza az Ao Osszes s-elemi részhalmazat tartalmazé halmaz, ha A; részhalmaza
As-nek. Vagyis az LP(K G, ) Lovész poset izomorf By s-sel, a [t] halmaz legaldbb s
és legfeljebb t — s elemi részhalmazainak a posetjével.

Box komplexus

A box komplexus kiilonb6z6 verzidit talaljuk Alon, Frankl és Lovéasz [1], Sarkaria
[31], Kiiz [21], Matousek és Ziegler [24] cikkekben. Mi itt a Matousek és Ziegler
altal is vizsgalt verziot vessziik. Tetszéleges G graf esetén a B(G) boxr komplexus
csicshalmaza a V(G) WV (G) = V(G) x {1,2}, a szimplexek halmaza pedig

B(G) == {A10 Ay : Ay, Ay CV(G), AxNAz =),
G (4,,4,) teljes paros, és cng(A1) # 0 # cng(A2)}.

4. dbra: A G, graf B(Gp) box komplexusa.

A csticsok halmazét két diszjunkt részre oszthatjuk Vi :={v W0 : v € V(G)} és
Vo :={0Wv:v € V(G)}. AVjés Vs csticshalmazok dltal indukalt részkomplexusokat,
melyek mindegyike izomorf a szomszédségi komplexussal, B(G) partjainak nevezziik.
A G graf box komplexusanak a szomszédsagi komplexusara vald lefejtését Csorba
Péter [11]-ben mutatta meg.

17. Tétel. (Csorba [11]) Tetszdleges G grdf esetén B(G) lefejtheté NK(G)-re.

A box komplexuson a v((v,i)) := (v,3 — i) egy szimplicidlis Zo-hatds. Ehhez
elég megmutatni, hogy A; W As Nv(A; W Az) = (. Ami pedig nyilvdnvald, ugyanis
V(A1 W Ay) = Ay W Ay és Ay N Ay = (. Tehédt B(G) is szimplicidlis Zo-komplexus.
Tovébba Csorba [11]-ben azt is megmutatta, hogy ssd(B(G)) Zo-lefejtheté L(G)-
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re, ahol ssd(B(G)) az 6 és szerzOtédrsai altal [10]-ben definidlt part felbontdsa a box
komplexusnak.

ssd(B(Q)) :=={sd(eNVy)x sd(c NV3) : 0 € B(G)}.

Grathomomorfizmus komplexus

A box komplexus altaldnositdsa a Hom(H,G) grathomomorfizmus komplexus,
melynek konstrukcidja ugyancsak Lovéasz Laszléhoz fliz6dik. Tetszoleges G és H gra-
fokra tekintsiik az Gsszes olyan 7 : V(H) — 2V(@\ {)} leképezést, melyre G (n(w),n(v))
teljes paros graf minden uv € E(H) élre. Vegyiik ezen 7 leképezések Ppom(H,G) po-
setjét, melyben 1y < 7y akkor és csakis akkor, ha n;(v) C n2(v) minden v € V(H)-ra.
A Hom(H,G) grdafhomomorfizmus komplezust a Phom(H,G) poset rendezés komple-
xusaként definidljuk. Ezen komplexusosztaly topologikus tulajdonsagainak tanulma-
nyozasat Babson és Kozlov [2] cikkében taldlhatjuk.

Hom(H, G) grathomomorfizmus komplexus ugyancsak szimplicidlis Zo-komp- le-
xussd teheté abban az esetben, ha létezik xy € E(H) él, hogy cng(z) \ {y} =
eng(y) \ {z}. Ekkor legyen vy : H — H a kovetkez6 grafhomomorfizmus:

Yy, hau=ux;
v (u) =< x, hau=y;
u  kilonben.

Legyen v : Prom(H,G) — Prom(H, G) poset leképezés

V("?) =novy,

minden 1 € Ppom (H, G)-ra. Az vildgos, hogy v egy idempotens szimplicidlis leképezést
indukél, ugyanis tetszéleges 1 C 12 C -+ C m; ladncra v(n;) C v(n2) C -+ C v(m)
lanc lesz. Madsrészt fixpontmentes is, mivel Hom(H,G) tetszoleges Q0 szimplexére,
azaz egy 2 =mn; Cng C --- C n lancra, Q Nv(Q) = ), ahol ugyancsak v-vel jeloljik
az indukalt leképezést is. Ez pedig mindig teljesiil, ugyanis ha n; C 7, akkor sem
v(n;) = nj, sem v(n;) = n; nem lehetséges.

Specidlisan a H = K,, esetben a Hom(K,,,G) szimplicidlis komplexus csicsai
az olyan Ay W As W --- W A, rendezett parcidlis particiéi a V(G) csicshalmaznak,
melyekre G4, 4,) teljes paros graf minden i # j-re. A Hom(K,,,G) szimplexei pedig
az

(A1 WA oW W A,) C-- C(Apn WA WA,
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lancoknak felelnek meg. Tovabba a standard szimplicialis Zs-hatés a kovetkezéképpen
hat Hom(K,,, G) cstcsain:

I/(AltUAQH'J"'H‘JAm)ZAQL‘!‘JAlL‘!‘J“-H'JAm.

Ismert a B(G) és a Hom(K2, G) komplexusok Zs-homotép ekvivalencidja.

18. Tétel. (Csorba [11]) Tetszbleges G grdf esetén sd(B(G)) Zo-lefejthetd
Hom (K3, G)-re.

A Hom(K,,KG;s) komplexus homotépia tipusdnak meghatdrozasahoz a
Phom Ky, KGy ) poset lezartjat vizsgaltam [29]-ben. A P, (H, G) poset lezartjat
a kovetkez6 U: Propm, (H, G) — Prom(H, G) leképezés képhalmazaként definidljuk

T(n)(v) = eng;(n(v))

minden v € V(H)-ra és n € Prom(H,G)-re. ¥ egy joldefinidlt leképezés, ugyanis
U(n)(v) € 2V \ () és ha (u,v) € E(H), akkor

(@,7) € E(G) minden 4 € n(u) és 0 € n(v) esetén <

(1, 9) € E(G) minden @ € cnZ(n(u)) és © € cn&(n(v)) esetén <
(@,v) € E(G) minden @ € ¥U(n(u)) és v € W(n(v)) esetén.

Azaz W(n) € Prom(H,G). U egy leszallé lezérdsoperator Pponm (H, G)-n:
(1) rendezéstarté: m <mn2 <  m(v) Cna(v) minden v € V(H)ra =
eny(m(v)) € eng(nz(v))  minden v € V(H)ra < ¥(p) < ¥(na),

minden 71, m2 € Prom (H, G)-re.

(ii) leszalls:  enZ(n(v)) 2 n(v) minden v € V(H)-ra <

Y(n)(v) 2n(v) minden v € V(H)-ra < ¥(n) =1,

minden 1 € Ppom (H, G)-re.

(ii1) idempotens: cnZ ocnZ(n(v)) = cn(n(v)) mindenv € V(H)-ra <

VoVU(n)(v) =¥(n)(v) mindenv e V(H)ra < VolU(n) =VY(n),
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minden 1 € Ppom (H, G)-re.

fgy Phom(H,G) := U (Ppom(H,G)) erés deforméciés retraktuma Ppom(H, G)-nek a
11. tétel szerint.

2.2. TOPOLOGIKUS ALSOKORLAT TETELEK

Valamennyi altalunk tanulmanyozott topologikus alsokorlat tétel a Zo-terekre
vonatkoz6 Borsuk-Ulam tipusu tételen alapszik. Ugyanis egy G graf t szinnel valo
szinezése, azaz egy v : G — K, grafhomomorfizmus, valamennyi Z,-graftkomplexus
esetén indukdl egy ¢ : K(G) — K(K}) szimplicidlis Zo-leképezést. Ezen Za-leképezések
a K(K;) komplexusok ismert homotépia tipusa folytdan csak bizonyos t-kre 1éteznek
majd.

A Walker-féle tételek

Adott ¢ : G — H gréafhomomorfizmus indukal egy L(y) : LP(G) — LP(H)
leképezést: az LP(G) Lovész poset egy A pontjara (V(G) egy zéart részhalmazéra)
L(p)(A) legyen a p(A) csticshalmaz P(NK(H))-beli lezdrtja (Walker [35]):

Vildgos, hogy L(y) megérzi a részbenrendezést, viszont L(p) mint (LP(G),cng) és
(LP(H),cnp) ortoposetek kozti leképezés altalaban nem felcserélhetd a cn leképe-
zésekkel, csak az egyik irdnyu tartalmazas all fenn minden esetben. Tetszoleges
A € LP(G) pontra G(4,cng(a)) teljes paros graf, igy H,(a),p(cna(A))) 1S egy teljes
paros graf, tehat

p(eng(A)) C enu(p(A)),
enfro(eng(A)) C eny(0(A)),

L(p)(ena(A)) € enu(L(p)(A). (%)

Mar az alabbi egyszerli példa esetén is valédi tartalmazast kapunk. Vegyiik a G

graf aldbbi szinezését, a v : Gg — K3 grathomomorfizmust.
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b

a)=7(c)=(e) =1 () =7(f)=2  ~(d)=3

5. dbra: A v : Gy — K3 grafhomomorfizmus.

Ekkor az A = {a,e} csicshalmazra L(vy)(cng({a,e})) = L(v)({b, f}) = {2}, mig
eng, (L(v)({a,e})) = enk, ({1}) = {2,3}, azaz az LP(G) poset {a, e} pontja esetén

L(y)(ena({a, e})) C enie, (L(v)({a, e})).

Tehat az L(p) leképezés csak ezt a b6vebb (x), Walker dltal bevezetett ortogo-
nalitas reldciot érzi meg: legyen A és B az LP(G) ortoposet ortogondlis elemei, azaz
A C cng(B) (és ekkor B C cng(A)). Ekkor az Gsszes A-beli csiics Gssze van kotve
az Osszes B-beli csticesal. Mivel ¢ egy grathomomorfizmus a p(A)-beli sszes cstics
ossze van kotve az Gsszes o(B)-beli csticesal. Vagyis ¢(A) C eng(p(B)). A cn
lezarasoperatort alkalmazva a kovetkezot kapjuk

engy (p(A)) € enfy(enm(¢(B))) = enp(engy (0(B))),
azaz L(p) tényleg megérzi az ortogonalitést
L(@)(A) € enp(L(e)(B)).
Ezzel Walker kovetkezo allitasat kaptuk meg.

19. Allitas. (Walker [35]) Tetszéleges G és H grifok esetén, ha létezik G — H
grafhomomorfizmus, akkor létezik LP(G) — LP(H) ortoleképezés.

Egy ¢ : G — H grathomomorfizmus esetén az L(y) : LP(G) — LP(H) ortoleké-
pezés természetes médon indukal egy

L(p): LK(G) — LK(H)
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szimplicialis leképezést a Lovasz komplexusok kozott, ami altalaban nem lesz szimp-
licidlis Zo-leképezés (L(p) altaldban nem cserélheté fel a cn-ekkel).

b (b f

by W ey W U3 B
—>
{b,c,e} {a,d,e} (13) 2,31
{ae}
le} {23

6. abra: Az L() : LK(Gp) — LK(K3) szimplicidlis leképezés.

Az |LK(G)| és |LK(H)| Zao-terek kozott viszont lehet definidlni, ugyancsak az
L(y) ortoleképezést hasznélva, egy

fHIER(G)| — [LK(H))

Zo-leképezést. Ezt Walker [35]-ben az aldbbi eljardssal konstrudlta meg. Legyen az

A

L(p) : LP(G) x By, — LP(H) rendezéstart6 leképezés kivetkezOképpen definidlva
egy tetszbleges A € LP(G) elemre

A

L(¢)(A,0) := L(p)(A),

L(p)(A, {1}) := enm(L(p)(ena(A))),

ahol By o a ) C {1} lanccal egyezik meg. Ez indukél egy |L(p)| : |LK(G) x Bio| —
|LIC(H)| folytonos leképezést. Az |LIC(G) x B o] poliéder homeomorf az |[LK(G)| X
| B1,0| poliéderrel (lasd [13]), jel6lje ennek inverzét 7, azaz

T : |£K(G)’ X |Bl,0| — |LK(G> X Bl,0|.

A v |LK(G)| — |LK(G)| % | By o] leképezést pedig definidljuk a kovetkezéképpen egy
z € |LK(G)| pontra v(z) := (z, 2a + 1b), ahol a az 0 realizéltja, a b pedig az {1}
realizéltja. Ezekutén definisljuk az f leképezést az |L(p)|oT oy szorzatleképezésként,
mely Zo invariancidjat az alabbi kommutativ diagramm mutatja.

. i
ILK(G)| 5 |LK(G)| x |Byo| = |LK(G) x Byo| =B K (1)

L lengl L lenglx|rl L lengxri L lenyl

ILK(G)| 5 |LK(G)| x |Byo| = |LK(G) x Byol " K (1)
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Itt r: B1,o — Bi felcseréli By o két elemét. Ezzel a kovetkez6 allitast kaptuk.

20. Allitas. (Walker [35]) Tetszdleges G és H grifok esetén, ha létezik v : G — H
grdafhomomorfizmus, akkor létezik a Lovdsz komplezusaik koztic : |[CIC(G)| — |LK(H)]
Zo-leképezés.

Ezen allitast felhasznalva a kovetkez6 topologikus alsékorlat tételt kapjuk. Te-
gyik fel, hogy a G graf szinezhet6 t szinnel, vagyis létezik G — K; grafhomomor-
fizmus. Ekkor létezik |LIC(G)| — |LIC(Ky)| Zo-leképezés. A K teljes graf Lovész
komplexusa LIC(K;) megegyezik IC(P(NIK(Ky)))-vel, azaz sd(NKC(Ky))-vel. Mivel

|sANK(K)| = INK(Ky)| ~ S'72,

fgy azt kaptuk, hogy G — K; grafhomomorfizmus esetén létezik |LKX(G)| — St—2
Zo-leképezés, azaz
ind(LK(G)) <ind(S'™%) =t — 2.

Ezzel bebizonyitottuk a kovetkezd topologikus alsdkorlat tételt.

21. Tétel. (Walker [35]) Tetszdleges G grdfra

ind(LK(G)) +2 < x(G),

A Lovasz-féle tétel

Walker fenti tételét haszndlva Matousek [23]-ban egyszerii bizonyitasit adta az
eredeti Lovasz-féle topologikus alsékorlat tételnek.

15. Tétel. (Lovasz [22]) Ha a G grdf szomszédsagi komplezusa (t — 2)-dsszefiiggd,

akkor a G graf nem szinezhetd t szinnel.

Bizonyitas. Tegyiik fel, hogy a G szomszédsdgi komplexus (¢ — 2)-0sszefiiggd, ekkor
a deformaciés retraktuma, LIC(G) is (t — 2)-Osszefliggd. A 3. allitds (iii) része szerint
ekkor ind(LI(G)) >t — 1. gy az eldbbi 21. tétel szerint a x(G) > ¢ + 1.

|

A Babson-Kozlov-féle tétel

Adott ¢ : G; — Gy grathomomorfizmus indukél egy ¢? : Prom(H,G1) —
Prom(H,G5) poset leképezést. A Py, (H,G1) poset egy n pontjara ¢ (n) legyen
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a @ on leképezés, mely nyilvan pontja Phom (H,G2)-nek. Az is vildgos, hogy o
megérzi a részbenrendezést, igy indukal egy, a grathomomorfizmus komplexusok
kozti o : Hom(H,G1) — Hom(H,Gs) szimplicidlis leképezést. Ha Hom(H,G)
és Hom(H,Gs) Zs-komplexusok a standard vy és v Zo-hatdsokkal, akkor o :
Hom(H,G1) — Hom(H, G2) szimplicidlis Za-leképezés:

e ovi(n) =" (novy) =ponovy =

va(pon) =wpo0 SOH(”)-

Tegytiik fel, hogy 1étezik t szinnel valé szinezése a G grafnak, azaz G — K; gratho-
momorfizmus, ekkor 1étezik Hom (K, ,G) — Hom(K,, K;) Zs-leképezés. Az utébbi
komplexust homotdp ekvivalencia erejéig Babson és Kozlov hatdrozta meg [2]-ben.
A bizonyitasban a diszkrét Morse elmélet és az Ideg tétel kombinalt alkalmazésara
lathatunk példat.

22. Tétel. (Babson és Kozlov [2]) A Hom(K,, K:) komplexus homotop ekvivalens
eqy (t — n)-dimenzids gombcsokorral.

Bizonyitas. Az allitast n és t —n szerinti indukcidval latjuk be. Az indukcié elindul,
ugyanis a Hom(K1, K;) komplexus egy ¢ cstcsi szimplex baricentrikus felbontésa,
azaz pontra Osszehuzhat6. Mig Hom(Ky, Ky) t! pontbdl éll, azaz t! — 1 darab 0-
dimenzidos gombfeliiletbdl allé gombcesokor. Ezek utan tegyiik fel, hogy 2 < n-nél és
n + 1 < t-nél kisebb pozitiv egészekre igaz az allitas.

Vegyiik a Phom (K, K¢) poset pontjainak alabbi részposetjeit
Pii={n: V(Ky,) — 2"\ f|t & n(j) minden j € {1,...,n},j #i}.

A K, teljes graf barmely két csiicsa éllel van Osszekotve, igy tetszéleges 1 esetén ¢ nem
lehet eleme a 7(i1) N n(iz)-nek. Ebbél kovetkezik, hogy Phom (K, Ki) = Ul P;, és
hogy a Hom(K,,, K;) komplexus egy a P; posetek altal indukélt H; részkomplexusokra
valé felosztésat kapjuk. Ugyanis Prom (Kp, K¢) poset tetszéleges n1 C e C -+ C 1
lancéra 1étezik i, hogy t & n;(j) minden j # i-re, s ekkor 71 C 1o C -+ C n; lanc lesz
P;-ben.

Az Ideg tételt fogjuk alkalmazni a Hom(K,,, Ky) = U, 'H; felosztasara. Ehhez
vizsgéljuk ezen részkomplexusok véges metszeteit. Az iy # ia, i1,i2 € {1,...,n}

indexekre

Py N Py = {n: V(Kn) = 2"59\ 0 | ¢ & 9(j) minden j € {1,...,n}},



2. TOPOLOGIKUS ALSOKORLAT TETELEK 23

igy P;, N P;, izomorf Py, (K, Ki—1)-gyel. Hasonléan barmely véges metszet izomorf
Phom (K, Ki—1)-gyel. fgy a H; részkomplexusok barmely véges metszete indukcid
szerint (t — n — 2)-Osszefiiggd.

Ezek utan megmutatjuk, hogy a H; részkomplexusok mindegyike (t — n — 1)-
osszefiiggs. Elegendd a Hy komplexust vizsgalni, ugyanis a H,;-k izomorfak egymassal.
Vegyiik a kovetkezé p parcidlis parositdast a P(H;) laphdlén, mely az aldbbi pq és po
parcidlis parositasok uniéja. A P(H;) laphalé minden olyan A = (n; Cne C -+ C 1)
pontjara, melyre t & n1(1), legyen my := maz{i : t & n;(1)}. Ekkor definidljuk a
kovetkez6 n leképezést

n(1) =1m, (L U{t} é  n(j) =1m,(j) minden 1<j<n.
Ha 1 # 1, +1, akkor A € ¥ és

p1(A) == (m C - C Ny TN C Nry1 C -+ C 1)

Minden olyan A = (n; C n2 C --- C m;) pontra, melyre t € ny(1) és n(1) # {t},
legyen mo := min{i : n;(1) # {t}}. Ekkor definidljuk a kovetkez6 n leképezést

n1) ={t} é () =1m,(j) minden 1<j<n.
Ha 1 # nm,—1, akkor A4 € ¥4 és
pa(A) = (m C - Clmy—1 CNCNny T2+ ).
Ay és us parcidlis parositasok diszjunktak, igy unidjuk p is egy parcidlis parositas.

A p parcidlis parositds kormentes. Indirekt tegyiik fel, hogy létezik p(A;) >
Ao, p(A2) = As, ..., u(Ay) = Ap kor. Az ellentmondéshoz elegendé megmutatni,
hogy barmely j-re a pu(A;) > Aj11 1épésben nem valtozik a t € n;(1), illetve az
ni(1) = {t} részlancok hossza. Ugyanis az A; < u(A;) 1épésekben eggyel né a t €
n:(1), illetve az n;(1) = {t} részlancok hossza. Ha az A; pontra létezik i, hogy
t & ni(1), akkor a p(Aj) = (m C -+ C Dy €N C N1 C -+ C 1) ldncbdl Ggy
kapjuk Ajyi-et, hogy 7, -et tordljik, kiilonben nem lenne parja vagy A;-t kapnank
vissza. Azaz az ju(A;) >~ Aji1 1épésben nem valtozik a ¢ € n;(1) részlanc hossza. Ha
az A; pontra t € n1(1) és létezik i, hogy n;(1) # {t}, akkor a u(A;) = (m C --- C
Nms—1 C N C Nmy C -+- C 1) ldncbdl Ugy kapjuk Ajyi-et, hogy np,-6t toroljik,
kiilonben nem lenne pérja vagy A;-t kapnank vissza. Azaz az j1(A;) = A;;1 1épésben

nem valtozik a n;(1) = {t} részlanc hossza. Azaz ellentmonddsra jutottunk.
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A p parcidlis parositdshoz tartozé kritikus pontok azon A = (n; Cny C -+ C )
lancok, melyekre n;(1) = {t}. Azaz a kritikus pontoknak megfelelé szimplexek altal
alkotott komplexus izomorf Hom (K, 1, K;—1)-gyel, ami indukcié szerint (t —n — 1)-
Osszefiiggs. A 12. tétel szerint Hy, és igy a H; komplexusok mindegyike, (¢ —n — 1)-
Osszefiiggd.

Ezutan az Ideg tételt alkalmazva a Hom(K,,, K;) = U} H; felosztasara kapjuk,
hogy Hom(K,, K;) (t — n — 1)-6sszefiiggd, ugyanis ezen felosztdashoz tartozd ideg
komplexus az n cstcst szimplex. Igy az 5. &llités szerint Hom(K,, K;) egy (t —n)-

dimenzids gdmbcsokorral homot6p ekvivalens, hiszen dimHom(K,,, K;) =t — n.
|

Ezen eredmény segitségével Babson és Kozlov [2]-ben egy a G graf kromati-
kus szamdra vonatkozé topologikus alsékorlat tételt adtak a Hom(K,,G) komp-
lexus topologikus invaridnsaval, a w(Hom(K,,G)) Stiefel-Whitney osztallyal. Mi
most ennek az alsékorlat tételnek az eddigiekkel Gsszevethetd, a Hom(K,,,G) Zo-
indexével megfogalmazott, valtozatat adjuk meg. Az el6z6 alfejezetben megmu-
tattuk, hogy Hom(K,, K;) egy szimpliciédlis Zs-komplexus, igy a 6. allitds szerint
ind(Hom(K,, K;)) < t —n, ugyanis dimHom/(K,,, K;) = t — n. Mésrészt most 14t-
tuk, hogy a Hom(K,, K;) komplexus (t — n — 1)-Osszefliggd, igy a 3. Aallitas (ii7)
része szerint t — n < ind(Hom(K,, K:)). Tehat ind(Hom(K,,K:)) =t —n. Egy
Hom(K,,G) — Hom(K,, K;) Z-leképezés 1étezése esetén a 3. tétel (i) része szerint

ind(Hom(K,,Q)) < ind(Hom(K,, K)),

azaz

ind(Hom(K,,G)) <t—n.
Ezzel a kovetkezo tételt kaptuk.

23. Tétel. (Babson és Kozlov [2]) Tetszdleges n > 2 egész és G graf esetén
ind(Hom(K,,,G)) +n < x(G).

2.3. A LOVASZ-KNESER TETEL BIZONYITASA

A 14’. tétel legtobb bizonyitasanak alapja a KG,, , Kneser graf LIC(K Gy, p)
Lovasz komplexusdnak egy (m — 2n)-dimenziés gémbcsokorral valé homotép ekviva-
lencidja. Ezt Lovész [22]-ben az NK(K Gy, ) szomszédsagi komplexus (m — 2n — 1)-

Osszefiiggdségének megmutatasaval bizonyitotta. Most ezen eredmény egy, mar a 22.
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tétel bizonyitasaban is alkalmazott, diszkrét Morse elméleten alapulé bizonyitasat ad-
juk. Ebbdl pluszként az LIC(KGyy,,) Lovasz komplexusbeli gombfeliiletek szamat is
megkapjuk.

Definidlunk egy parciélis parositast a LP(K G, ) Lovasz poseten. Amint lattuk
a KG,, n, Kneser graf LP(KG,, ) Lovész posetje éppen a B, ,, posettel izomorf. Az
alabbi 4llitas bizonyitasa m szerinti indukcidéval megy, ezért a B, , posetosztalynél
bévebb C’ff%n posetosztalyban dolgozunk, azaz az [m| halmazok legalabb n és legfel-
jebb n 4+ k elemii részhalmazainak a tartalmazésra nézve vett posetjeiben.

24. Allitas. Az m,n és k nemnegativ egészekre, melyekre n + k < m teljesiil, a
IC(C’ﬁ%n) komplexus homotop ekvivalens eqy k-dimenzios gombesokorral.

Bizonyitds. Az éllitds bizonyitdsdhoz m szerinti indukciéval megadunk a K(CP, )
komplexus lapposetjén, sd(C’,’f,w)—en egy kormentes parcidlis parositdast, melynek
egyetlen 0-lanc és valahany k-lanc lesz a kritikus pontja. Megjegyezziik, hogy az
sd(Cﬁ%n) poset egy pontja egy

.A:<A1CA2C"'CA1>

(I — 1)-lanc, ahol A; C [m] és n < |A;| < n + k minden i-re.

Eldszor tekintsiik a peremeseteket, azaz a K(CF, o), a K(CY, ) és a IC(C’kHC?n)

m,n n

komplexusokat. Az sd(Cf;L’O) poseten definialjuk a parcialis parositast a kovetkezo-
képpen: egy A € sd(C’,’jl’O) lanc legyen Y-ban, ha A; # (), és minden A € Y-ra

p(A) =0 C Ay C Ay C--- CA).

Ekkor p(X) éppen azon A € sd(C’,";’O) lancokat tartalmazza, melyekre A; = (). Vil4-
gos, hogy p egy kormentes parcidlis parositds. p egyetlen kritikus pontja az A = ()
0-lanc.

A sd(Cy, ,,) poseten 11 legyen az iires leképezés, ugyanis sd(Cy, ,,) poset egy darab
0-ldncbdl és (7:) — 1 darab k-lancbdl &ll (k = 0).

Az m = n + k esetben definidljuk a parcidlis parositast a kovetkezéképpen: egy
A € sd(CE, ) lanc legyen 3-ban, ha A; # [m], és minden A € Y-ra

w(A) :=(A; C Ay C --- C A; C [m)).

Ekkor u(¥) éppen azon A € sd(CP, ) léncokat tartalmazza, melyekre A; = [m)].
Vilagos, hogy p egy kormentes parcidlis parositds. p egyetlen kritikus pontja az
A = [m] 0-lanc.
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Az allitds m szerinti indukciéval valé bizonyitasa elindul, ugyanis az m = 1
eseteket tartalmazzdk a fentiek. Ezek utan legyen az sd(C,,’f%n) poset olyan, hogy
n,k > 0é m > n+k > 1. Ekkor a u parcidlis parositast a kovetkezo parcialis
parositasok unidjaként kapjuk. 1). El6szor vegyiik az sd(Cﬁ%m) poset azon A pontjai
altal indukalt P, részposetjét, melyekre m ¢ A;. Ekkor P, = sd(C’ffl_l,n) a

\Ifl(.A) = .A

izomorfizmussal. Indukcié szerint sd(C¥ )-n létezik egy py kormentes parcidlis

—1,n
péarositas, melynek egyetlen O-lanc és valahdny k-lanc a kritikus pontja. Ez megad
egy, ugyancsak pq-gyel jelolt, kormentes parcialis parositast P;-en, mely valamely 3;
részposetjén van értelmezve. pp kritikus pontjai egyetlen P;-beli 0-lanc és valahany

P;-beli k-lanc.

2). Mésodszor vegyiik az sd(C}F, ,,) poset azon A pontjai altal indukélt P, rész-
posetjét, melyekre m € A;. Ekkor P, = sd(Ch,_,,,_,) a

Uy(A) := (A \ {m} C A2\ {m} C--- C A\ {m})

izomorfizmussal. fgy indukcié szerint 1étezik Po-n egy po kormentes parcidlis parosi-
tas, mely P valamely Yo részposetjén van értelmezve. o kritikus pontjai egyetlen
P5-beli 0-lanc és valahdany Ps-beli k-lanc.

3). Harmadszor vegyiik az sd(CJ, ,,) poset azon A pontjai dltal indukalt P rész-
posetjét, melyekre m ¢ Ay és m € A;. Egy A € Ps-ralegyen j = min{i : m € A;}, és
ha A;_ # A; \ {m}, akkor legyen A € 3. Definidljuk a p3 parcidlis parositast egy
A € ¥3-ra a kovetkezOképpen:

[Lg(A) Z:<A1C"'CAj_lCAj\{m}CAjC"‘CAl>,

minden A € Y3. Az vilagos, hogy u3 egy kormentes parcidlis parositds Ps-on. Kritikus
pontjai P azon A pontjai, melyekre A; = As \ {m}.

4). s ezen A kritikus pontjai dltal indukélt Py részposetre Py = sd(C*1 ) a

Uy(A) = (A \ {m} C Az \ {m} C--- C A\ {m})

izomorfizmussal. fgy indukcié szerint létezik Pj-en egy p4 kormentes parcialis paro-
sitas, mely P, valamely ¥, részposetjén van értelmezve. g4 kritikus pontjai egyetlen
Py-beli 1-lanc és valahany Py-beli k-lanc.
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Tehat p legyen ezen parcidlis parositasok uniéja

po=p1 U po U pz U pg,

valamint

p(Ao) := (B C BU {mj}),

ahol az Ay = A a p; parcidlis pérositds P;-beli kritikus 0-ldnca , és B = (B C
B U{m}) a u4 parciélis parositds Py-beli kritikus 1-lanca. Ugyanis azt feltehetjiik,
hogy A = B: [m — 1]-nek egy permutéciéjaval el tudjuk érni, hogy uy kritikus 0-
lancara A C B vagy B C A. Egzutan ha A # B, akkor u;-et ujradefinialjuk ugy,
hogy By = B legyen az egyetlen Pj-beli kritikus 0-lanca p}-nek. Induljunk el az
Ao C p1(Ag) = A1 D Az C pui(Az) = Az D -+ - titon Pi-ben. Mivel p; kérmentes és
m & B, igy létezik As; pont az tton, hogy B € pj(Ag;). Ekkor definidljuk p}-et a
As; pontokon a kovetkezdképpen

,u/1 (AZi) = Ao

minden 0 < ¢ < j-re, és pj(By) = Ag;, valamint ¥; Osszes, a fenti ithoz nem
tartozé A pontjara pf(A) = u1(A). Az igy kapott p} ugyancsak egy kodrmentes
parcidlis parositds sd(C’,’jL’n)—n: az vildgos, hogy parcidlis parositds, valamint hogy u}
Y| értelmezési tartomanyara

Y= (E N\ {A ) U{Bo} és pi(Z)) = (X0).
Indirekt tegyiik fel, hogy létezik P;-beli
By C py(By) D By C py(B2) D+ By C py(By) D By

kor. Ekkor nyilvan B;-k 0-lancok, hiszen p; kormentes volt. Valamint a fenti utnak
és a kornek van kozos pontja, azaz B; 0-lanc, melyre p) (B;) # p1(B;). Mivel py(B;)
1-ldncnak pontosan két 0-lanc a részlanca és pf(X7) = p1(X1), igy Bi+1 0-ldncnak
volt a péarja p)(B;)-nek p; mellett. Ekkor viszont p)(B;11) 1-1anc B;ioe-nek volt a
parja pu; mellett, és igy tovabb. Azt kapjuk, hogy a fenti By pontja a lancnak, de
akkor A is, ami ellentmond a kor 1étezésének, vagy pedig 1étezik

Bl C ,ul(Bl) D) BQ C ,u1<82) D) Bt - M1(8t> D) Bl

kor P;-ben, ami megint csak ellentmondas. Tehat feltehetjiik, hogy a p; Pi-beli
kritikus O-ldnca azon Ay = B, melyre a py Py-beli kritikus 1-ldnca B = (B C BU{m}).
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1 kormentességének igazolasahoz indirekt tegyiik fel, hogy 1étezik sd(C’ﬁ%n)—beli
A Cu(Ar) D Ax Cu(A2) D -+ Ay C u(Ar) DAy

kor. Az vildgos A; € ¥ U UX3U X, U{Ag}. Ha Ay € Xo, akkor az Osszes A;
eleme Yo-nek, ami ellentmond a kor létezésének. Ha A; € X4, akkor az Osszes A;
eleme Y4-nek, ami megint csak ellentmondéas. Ha A; € ¥, akkor az Gsszes A; eleme
Y1-nek, ami ellentmondds, vagy valamelyik A; = Ay p kritikus 0-ldnca. Ehhez
pa p(Ayg) = (A C AU {m})-et rendeli, de ekkor A;1; = AU {m}, ami ¥s-beli,
igy az Osszes tObbi A; is Ya-beli lesz. Tehat nem lehetséges hogy p(A;) O Aj, ismét
ellentmondasra jutottunk. Ha A; € X3, akkor a kor létezése miatt van olyan A;, mely
Y1-beli, de akkor az Osszes tobbi A; is Xi-beli, ami ellentmondas, vagy valamelyik
Ajr = A a py kritikus 0-lanca. Ekkor ismét ellentmondasra jutottunk az elébbi
meggondolas alapjan. Hasonléan, ha A; = Ay a puq kritikus 0-lanca. Ekkor az 6sszes
tobbi A; Yo-beli lesz. Tehdt nem lehetséges hogy pu(A;) D Az, ismét ellentmonddsra
jutottunk. Ezzel belattunk, hogy p egy kormentes parcialis parositas.

A parcidlis parositasnak egyetlen 0-lanc és valahany k-lanc a kritikus pontja.
A 12. tétel masodik része szerint az IC(Cfmn) komplexus homotép ekvivalens egy K

CW-komplexussal, melynek egyetlen 0-dimenzids és valahany k-dinemziés cellaja van,

azaz IC(C’ff%n) komplexus homotoép ekvivalens egy k-dimenzids gombcsokorral.
|

Legyen a K(CF, ,,) komplexus homotép ekvivalens w(m,n, k) darab gémbfeliilet
csokraval homot6p ekvivalens. Ekkor a fenti bizonyitasbdl kapjuk, hogy a w(m,n, k)

szamokra az alabbi rekurziv formula teljesiil
w(m,n, k) =wlm—1,n,k) +wim—1,n—1,k)+wim—1,n,k—1),

minden m > n + k pozitiv egészkre. A peremesetekben pedig a
w(m,0,k) = 0; w(m7n,0)=(7g)—1; w(n+k,n, k) =0

értékeket veszi fel.
Az el6bbi allitast felhasznalva mar egyszeriien belathatjuk a Lovasz-Kneser tételt.

14°. Tétel. (Lovasz-Kneser [22]) A KG,, , Kneser grdf nem szinezheté m — 2n + 1

szinnel.
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Bizonyitds. A tétel bizonyitdséhoz elég megmutatni, hogy az NK(KG,, ) szom-
szédsagi komplexus (m — 2n — 1)-6sszefiiggd. Ehhez vizsgaljuk az LIC(K G, ) Lo-
véasz komplexust, NK(KG,, ) deformdciés retraktumat. Az el6z6 allitds szerint
LIC(K G, n) komplexus homotdp ekvivalens egy (m — 2n)-dimenzids gémbcsokorral,

igy (m — 2n — 1)-0sszefiiggd. Ezzel bebizonyitottuk a Lovasz-Kneser tételt.
]



3. GRAFOK S-SZERES SZINEZESE

Grafok s-szeres szinezését 1972-ben Gilbert vezette be [18]-ban a radidfrekvencia
kiosztéasi problémaval kapcsolatban. Tovabbi gyakorlati problémak, tigymint flotta-
szervizelés, munkafeladatok iitemezése vagy forgalomszinkronizalas tanulmanyozasa
is a grafok s-szeres szinezésének feladatara vezetnek [27]. Ugyanis ezen problémék
matematikai modelljében a kovetkezo feladatot kell megoldanunk: egy megfeleld graf
csucsaihoz egy bizonyos szinhalmaz s elemii részhalmazainak egy olyan hozzarende-
1ését adjuk meg, mely éllel 6sszekotott csticsokhoz diszjunkt részhalmazokat rendel.
Ezen problémak jelentés mértékben motivaltak a grafok s-szeres szinezésének tovabbi
vizsgalatat.

Az s-szeres szinezéssel kapcsolatos legalapvetobb eredményeket Saul Stahl 1978-
as [32] cikke tartalmazza. Amint ldtni fogjuk a KG,, ,, Kneser graf kézponti szerepet
tolt be az s-szeres szinezésekben. Stahl [32]-ben a Kneser grafok multikromatikus
szamainak szamos tulajdonsagat fogalmazta meg, tobb esetben kiszamolta ezeket.
Ezek alapjan megfogalmazta a Kneser sejtés altalanositasat, amely megadné az 0sszes
multikromatikus szamot. Ezt ma Stahl sejtésnek nevezziik.

3.1. GRAFOK S-SZERES SZINEZESE

A grafok s-szeres szinezésének elsé preciz, matematikai megfogalmazasat Stahl
[32] cikkébben taldljuk. Tetszéleges s pozitiv egész esetén, egy G graf s-szeres szi-
nezése soran a graf minden csicsahoz s darab szint rendeliik tgy, hogy szomszédos
csucsokhoz diszjunkt szin s-es tartozik. Vilagos, hogy a G graf s-szeres szinezése a
hagyomanyos szinezés altalanositasa, amikor minden csicshoz egy szint rendeliink.
Tegyiik fel, hogy a G graf s-szeres szinezése soran Osszesen t szint haszndltunk fel.
Ekkor egy G graf s-szeres szinezésére kiilonbozé nézépontokbdl tekinthetiink. Elészor
a grafhomomorfizmus fogalmat haszndlva:

Egy G grdf s-szeres szinezése t szinnel eqy v : G — KGy s grafhomomorfizmus.
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A mésodik nézépontbdl a G graf fiiggetlen csicshalmazait tekintjik. A V(G)
egy részhalmaza fiiggetlen csicshalmaz, ha nem tartalmaz éllel 6sszekotott csticsokat.
Legyen C; az 1 szinii csicsok halmaza, tehat:

Egy G grdf s-szeres szinezése t szinnel eqy olyan {C;}:_, fuggetlen csicshalmaz

rendszer, hogy minden csiucs a Ci-k kézil pontosan s-ben van benne.

Az s-szeres szinezés egy, a hagyoményos szinezésen keresztiil vald értelmezését
is adhatjuk a G[K,] graf segitségével, a G graf K, teljes graffal vett lexikografikus

szorzatat hasznalva.

Egy G grdf s-szeres szinezése t szinnel pontosan a G[K,| grdf hagyomdnyos szi-
nezése t szinnel.

Legyen x(G) az a legkisebb ¢ szdm, melyre létezik G-nek s-szeres szinezése
t szinnel. A xs(G) szdmot a G graf s-edik multikromatikus szdménak nevezziik,
s = 1,2,.... Megjegyezziik, hogy ez a definici6 a graf hagyomanyos kromatikus
szamanak egy altalanositasa, ugyanis a G graf hagyoményos kromatikus szama éppen
a x1(G). A G[K] lexikografikus szorzat kromatikus szamét Geller és Stahl [16]-ban
vizsgalta, melyben a kovetkezo észrevételt tették

3.2. GYAKORLATI PROBLEMAK

A fent emlitett négy gyakorlati probléma részletes tanulmanyozasiat Opsut és
Roberts [27] cikkében talaljuk. Mi most csak megfogalmazzuk a feladatokat, valamint
azok matematikai modelljét adjuk meg.

1. Radiofrekvencia kiosztdsi probléma: Egy orszagot, egy nagyobb régiot kisebb
zonakra osztunk fel, és minden egyes zénaban az ott miikodo radio szolgaltatoknak egy
megengedett radidfrekvencia halmazt akarunk kijel6lni. Foldrajzi, meterologiai, vagy
egyéb mas okokbdl bizonyos zdéndk tlitkoznek, igy ezen teriileteknek csak diszjunkt
megengedett radidfrekvencia halmazokat jelolhetiink ki. Feladat: Adjuk meg egy
adott régié zondinak megengedett radidfrekvencia kiosztasat.

1. Flottaszervizelési probléma: Egy szerviz egy adott, kiillonb6z6 méreti jar-

miivekbél (autdk, repiil6k, hajok) allé gépjarmiipark rendszeres szervizelését végzi.
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Mindegyik jarmi elore, bizonyos idoperidodusra van betablazva. Feladat: Foglaljunk
le minden egyes jarmiinek egy munkateriiletet, ahol a szervizelést elvégzik, igy, hogy
azon jarmivek, melyek idéperiddusa atfedi egymast, kiillonbozé tertiletet kapjanak.

III. Munkafeladatok titemezése: Egy nagy és komplikdlt munkafeladatot részfe-
ladatokra osztunk. Ezek kozziil bizonyos részfeladatok Osszeegyeztethetetlenek és nem
lehet ugyanabban az id6ben elvégezni ket (példdul, mert ugyanazon eszkdzoket, mun-
kadarabokat, vagy munkateriiletet hasznéljak). Feladat: Adjuk meg a részfeladatok
egy iitemezését, mely minden idoperiédusra csak Osszeegyeztetheto részfeladatok ter-

vez be.

1V. Forgalomszinkronizdldsi probléma: Adott bizonyos eszkoz, igymint labora-
térium, szamitogép, vagy kozlekedési keresztez0dés, részegységeinek haszndalatara vo-
natkozé kéréseknek halmaza. Minden egyes elfogadott kérésnek ki kell jelolni egy
idoperiddust, amely alatt hasznédlhatja az eszkozt. A kozlekedési forgalmat vagy a
hasznalati forgalmat szinkronizalni kell, bizonyos kérések nem teljesithetok egyszerre.
Feladat: Adjuk meg a zold periddusok egy olyan kiosztdsat, melyben csak kompatibilis
kéréseket szerepelnek minden egyes idéperiodusban.

Ezen problémék grafelméleti megfogalmazasaban definidlunk egy G grafot, me-
lyen adott Z tulajdonsagot teljesité v : G — S leképezést keresiink. A radiéfrekvencia
kiosztéasi probléméaban a G graf csicsai az egyes zonak, két zéna éllel van Osszekotve,
ha valamilyen okbdl iitkéznek. Egy v € V(G) z6nédra y(v) legyen a zdéna megenge-
dett radidfrekvencia halmaza. A flottaszervizelési problémaban a V(@) cstucshalmaz
legyen a jarmiivek halmaza, és két jarmi éllel van 6sszekotve, ha szervizelésiik idope-
ridusa atfedi egymést. Egy v jarmiire v(v) legyen a lefoglalt munkateriiletet, ahol
a szervizelést elvégzik. A munkafeladatok litemezésénél a G csicshalmaza a részfela-
datok halmaza, két részfeladat éllel van 0sszekotve, ha azok Osszeegyeztethetetlenek.
Legyen ~(v) a v részfeladatra kijelolt id6periédus. A forgalomszinkronizaldsi problé-
méban pedig V(G) legyen a kérések halmaza, két kérés éllel van Gsszekotve, ha azok
nem teljesitheték egyszerre. Legyen v(v) a v kérésre kijelolt zold id6periédus. Vala-
mennyi feladatban a keresendo6 v : G — S leképezésre a kovetkezd 7 tulajdonsagnak
kell teljesiilnie: barmely uv € E(G) él esetén v(u) N~y(v) = 0.

3.3. xs ALTALANOS TULAJDONSAGAI

Stahl [32]-ben a xs multikromatikus szamok tulajdonsigaira vonatkozé szémos
tételt bizonyitott. A kovetkezé harom tulajdonsagbdl képet kapunk a ys multik-
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romatikus szamok altalanos viselkedésérol, melyek altala adott bizonyitdasat nézziik
meg. Az elsé tétel a multikromatikus szamok alsé indexben vald szubadditivitasara

vonatkozik, azaz:

25. Tétel. (Stahl [32]) Tetszdleges G grdf és si1,s2 egészek esetén

Xs1+s2 (G) < Xs1 (G) + Xso (G)

Bizonyitas. Legyenek a {C;} és a {C}} fliggetlen csticshalmaz rendszerek s;-szeres és
sg-szeres szinezései a G grafnak. Ekkor a {C;} U{C"} fiiggetlen csticshalmaz rendszer
egy (s1 + s2)-szeres szinezése G-nek. Tehat

Xs1+s2(G) < X6, (G) + X5, (G).
[ |

Tovabba egy G graf multikromatikus szdmainak sorozata szigorian monoton

névekvo. Abban a trividlis esetben, ha G-nek nincs éle, akkor vilagos hogy:
Xs(G) =8> 5—1=xs-1(G).

Abban az esetben, ha G-nek van éle:
26. Tétel. (Stahl [32]) Ha a G grdfnak van éle, akkor xs(G) > xs—1(G) + 2.
Stahl bizonyitasa a kovetkez6 lemmaéan alapul.

27. Lemma. (Stahl [32]) Tetszéleges n > 1 és m > 2n pozitiv egészek esetén létezik
KGm — KGy—2 n—1 grifhomomorfizmus.

Bizonyitas. Legyen A = {a1,as,...,a,} egy tetszOleges cstucsa K G, n-nek, ekkor
azt mondjuk, hogy A [-reguldris cstics, ha a; = ¢ minden ¢ = 1,...,l-re és aj41 >
I+ 1. A O-reguléris csicsokat irrequldris csicsoknak nevezziik. Most definialjuk a A :
V(KGmn) = V(KGp—_2n—1) leképezést egy A l-reguldris csicsra a kovetkez6képpen

MA):={azs—1l,a3—1,...;a; — 1,a141 — 2,...,a, — 2},
egy A irreguléris csicsra pedig

MA) :={as —2,a3 — 2,...,a, — 2}.
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Megmutatjuk, hogy A egy KGr, p, — KGp—25n—1 grafhomomorfizmus. Azaz tetszo-
leges A, B € V(KG, ) csicsokra A(A) N A(B) = 0, ha AN B = (). Indirekt tegyiik
fel, hogy 1étezik két diszjunkt csics, A és B, hogy A(A) N A(B) # 0. Az nem lehetsé-
ges, hogy mindketto regularis, ugyanis akkor mindkett6 sziikségképpen tartalmazza
az 1-et. Tehat két eset lehetséges:

1. Ha A és B is irregularis. Ekkor \(4) = {az — 2,a5 — 2,...,a, — 2} és A\(B) =
{by —2,b3 —2,...,b, —2}. Tgy, ha A\(A) N A(B) # 0, akkor 1étezik a; és bj, hogy
a; —2 =bj — 2, azaz a; = b;, ami ellentmond A és B diszjunktsaganak.

2. Ha A l-reguléris és B irreguléris. Ekkor
MA)={as —l,az3—1,...;a; — La;41 — 2,...,a, — 2},
és
AB) ={by —2,b3 —2,...,b, —2}.

Ha A(A) N A(B) # 0, akkor 1étzik j > 1, hogy b; —2 € A(A). Ha b; —2 =a; — 2
valamely ¢ > [-re, akkor ismét ellentmondasra jutunk A és B diszjunktsaga miatt.
Tehat b; — 2 = a; — 1 valamely 2 < i < [-re. Ekkor

Mésrészt A és B diszjunktsdga miatt [ +1 < b;. Vagyis azt kapjuk, hogy b; =
[ +1. Ami azt jelenti, hogy b; a B legkisebb eleme, azaz j = 1. Tehat ismét
ellentmondésra jutottunk.

Ezzel a lemmat belattuk.

A 26. tétel bizonyitasa. Tegyiik fel, hogy a G griafnak van éle, ekkor nyil-
van xs(G) = t > 2s. Azaz létezik v : G — KG;, grathomomorfizmus. Az
el6z6 lemma szerint 1étezik n : KGy s — KGi—_2 ¢—1 grafhomomorfizmus. Mivel két
grafhomomorfizmus kompoziciészorzata is grafhomomorfizmus, igy ekkor létezik egy
G — KGi_9 51 grathomomorfizmus. Tehat

Xs—1(G) <t =2 =x,(G) — 2.
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28. Kovetkezmény. (Stahl [32]) Ha a G grdfnak van éle, akkor
Xs(G) > x5 (G) + 25 — 25’
tetszdleges s > s’ pozitiv egészekre.

A harmadik tulajdonsag altalanositasa a jol ismert, hagyoméanyos kromatikus
szamra vonatkozé tulajdonsagnak.

29. Tétel. (Stahl [32]) Ha létezik ¢ : G — H grdfhomomorfizmus, akkor

xs(G) < xs(H).

Bizonyitas. Tegyiik fel, hogy létezik ¢ : G — H grafhomomorfizmus, és hogy
Xs(H) = t, azaz 1étzik v : H — KGj1—2s grafhomomorfizmus. Ekkor 1étezik ¢ o~ :
G — KGs —2s grafhomomorfizmus és igy xs(G) < t.

|

3.4. A STAHL SEJTES

Stahl a Kneser grafok multikromatikus szdmaira vonatkozé sejtését az alabbi
ismert esetekbdl kiindulva fogalmazta meg. Tetszoleges n és m > 2n pozitiv egészekre
a x1(KGp, ) kromatikus szdm m — 2n + 2 a Lovasz-Kneser tétel szerint. Tovabbd
a 26. tételt alkalmazva, azaz a xs multikromatikus szamok kozti legaldbb 2-es ugrés
miatt

m—2n+2s < xs(KGmn),

minden s = 1,...,n-re. fgy a Xn(K Gy, n) multikromatikus szdmra a kévetkezd alsé
korlatot kapjuk
m—2n+2n=m < xp(KGnn).

Mésrészt az identikus KG,, ,, — KG,y, p grafhomomorfizmus egy n-szeres szinezését
adja a KGy,, n Kneser grafnak, vagyis

Xn(KGmn) < m.

Tehat
Xn(KGm,n) =m,
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sot ekkor a 26. tétel és a 28. kovetkezmény miatt
m—2n+2s < x,(KGpn) <m—2n+ 2s,

tehat
Xs(KGmpn) =m —2n + 2s,

minden s = 1,...,n-re. Az viladgos, hogy a KG,, , Kneser grifot ki tudjuk szinezni
2m — 2n + 2 szinnel n + 1-szeresen, ugyanis

Xn+1(KGmn) < Xn(KGmn) + X1 (KGppn) =m+m—2n+2 =2m —2(n — 1)

a 25. tétel miatt. Am Stahl szdmitdsaira hivatkozva azt sejtette, hogy ennél keveseb-
bel nem is lehet, aminek kévetkeztében

Xon—r(KGpm.n) =2m —2r

minden r = 0,...,n — l-re, ahol ugyancsak a 28. kovetkezmény miatt, valamint az
altala [32]-ben meghatarozott gn-edik multikromatikus szamok,

an(KGm,n) =qm

kovetkeztében. Az m = 2n + 1-es esetben ezt sikeriilt igazolnia, sOt teszéleges n, ¢
pozitiv egészekre és 0 < r < n — l-re megmutatta [32]-ben, hogy

Xqn—r(KGant1,n) = q(2n+1) — 2r.
Ezen eredményekbol szamara tgy tint, hogy az s = gn + 1 esetek a kritiku-
sak, ugyanis hasonléan a ¢ = l-es esethez, tetszileges q esetén, a xgn(KGp.p) és

Xqn+1(KGp,n) multikromatikus szamok kozti m — 2(n — 1)-es ugréds kévetkeztében
az 0sszes tobbi multikromatikus szamra

Xqn—r(KGm.n) = qgm — 2r

mar addédik a 28. kovetkezmény miatt, amit sejtésként meg is fogalmaztott az 1978-as
[32] cikkében.

30. Sejtés. (Stahl [32]) Tetszdleges n ésm > 2n esetén legyen s = qn—r, ahol 0 < q

és 0 < r <n egészek, ekkor

Xs(KGmpn) = qgm — 2r.
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A KG,,,, Kneser graf n = 1 esetén éppen a m csucsu teljes graf, igy ebben
az esetben a sejtés trividlisan igaz. Tovabba a sejtés igaz a kritikus s = 4 esetben
a KGp, 3 Kneser grafokra, amit Garey és Johnson mutatott meg egy 1976-os [15]
cikkiikben. Majd mésodik, s-szeres szinezéssel kapcsolatos 1978-as [9] cikkiikben Ch-
véatal, Garey és Johnson igazoltdk, hogy tetszéleges n > 1-re létezik ¢ = ¢(n) konstans,
hogy elég nagy m-re

Xn+1(KGm,n) > 2m —2(n—1) —c.

Stahl kovetkez6 1998-as [33] cikkében az Erdés-Chao Ko-Rado és a Hilton-Milner
tételeket haszndlva alsé korldtot adott K G, ,-beli s-szeresen fedd fiiggetlen csics-
halmazok szdmara, s ezzel a KG,, 2 és KG,, 3 Kneser grafokra igazolta a sejtést.
Tovabba Chvatal, Garey és Johnson fenti alsé korlatjat élesitette:

31. Tétel. (Stahl [33]) Tetszdleges n és m > 2n esetén legyen s = qn —r, ahol 0 < q
és 0 < r <n egészek, ekkor

XS(KGm,n) > qm — 2r — (n2 —3n —|—4)

Ez az als6 korlat s = gn + 1 esetén,
Xgn+1(KGmn) 2 Xgn(KGmp) +m —2(n—1) — (n2 —3n+4),

éppen azt mutatja, hogy a X¢n(KGmn) és Xgn+1(K Gy, ) multikromatikus szamok
kozott, rogzitett n esetén, akdrmilyen nagy ugras lehet. Amazm—2n<n?—3n+4
esetén még mindig csak a 28. kovetkezménybol kovetkezo

Xgn—r(KGm.n) > (¢—1)m+2(n—1)

alsé korlat volt ismert.



4. TOPOLOGIKUS ALSOKORLAT TETELEK
A MULTIKROMATIKUS SZAMOKRA

A 2. fejezetben szamos, a hagyomanyos kromatikus szamra vonatkozo topo-
logikus alsékorlat tételt tekintettiink. A Stahl sejtés altal motivédlva ezen tételek
altalanositasait vizsgaltam. Amint lattuk, egy G graf s-szeres szinezése t szinnel,
egyenértékll egy v : G — KGy s grafhomomorfizmus megaddasaval. A kordbban defi-
nidlt valamennyi Zo-grafkomplexus esetén a v indukdl egy c : |[K(G)| — [K(KGys)|
Zo-leképezést. A K(KGys) komplexusok homotépia tipusa miatt ezen leképezések
létezése csak bizonyos t-kre lehetséges.

4.1. A WALKER-FELE TETEL ALTALANOSITASA

Tegyiik fel, hogy a G graf s-szeresen szinezheté t szinnel, azaz létezik ~
G — KG; s grathomomorfizmus. Ekkor a 19. allitds szerint létezik ¢ : LP(G) —
LP(KG; ) ortoleképezés. Felhasznalva, hogy az LP(K G, ) ortoposet izomorf a B; 4

/////

32. Allit4s. (Walker [35]) Tetszdleges G grdf esetén, ha létezik G — KGy s grifho-

momorfizmus, akkor létezik LP(G) — By s ortoleképezés.

Ezen allitast felhasznalva meghatarozzuk a K, teljes graf multikromatikus sza-
mait. Megjegyezziik, hogy a xs(K,) multikromatikus szdm az s-szeres szinezés de-
allitas egyszert alkalmazdsara szeretnénk példat mutatni. Az vilagos, hogy ha a K,
teljes grafot s-szeresen szinezziik, akkor sn szin biztosan elég lesz, ugyanis a 25. tétel
szerint

Xs(Kn) < sx1(Kp) = sn.

Masrészt a 32. allitas szerint annak a sziikséges feltétele, hogy a K, grafnak 1étez-

zen s-szeres szinezése t szinnel, az hogy létezik LP(K,) — B s ortoleképezés. Az
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L(K,) Lovész poset izomorf a B, ; ortoposettel, aminek n darab minimdlis pontja
van, melyek paronként ortogondlisak (diszjunktak). Egy ortoleképezés megérzi az
ortogonalitast, tehdt ha létezik B, 1 — DB s ortoleképezés, akkor a B ;-ben van n
darab paronként ortogonalis (diszjunkt) pont. Ez csak akkor igaz, ha t > ns. Tehét
azt kaptuk, hogy

Xs(Kn) = sn.

A hagyomanyos kromatikus szamra vonatkozé Walker-féle topologikus alsékorlat
tételnek a multikromatikus szamokra vonatkozé altalanositasat a 20. allitas felhasz-
nalasaval vezethetjiik le. Ezen allitas szerint valamennyi v : G — KG; s grathomo-
morfizmus indukal egy ¢ : |L(G)| — |L(KGy,s)| Zo-leképezés, igy

ind(L(G)) < ind(L(KGy)).

A KG: s Kneser graf Lovasz komplexusdrél a Lovasz-Kneser tétel bizonyitdsa so-
ran megmutattuk, hogy (¢t — 2s — 1)-Osszefiiggd, igy a 3. tétel (iii) allitdsa szerint
ind(L(KGy)) > t —2s. Maésrészt L(KGys) (t — 2s)-dimenziés szimplicidlis Zo-
komplexus, igy ind(L(KGys)) <t — 2s. Tehét azt kaptuk, hogy

ind(L(G)) <ind(L(KGys)) =t — 2s,
vagyis

ind(L(G)) +2s < t.

Ezzel a Walker-féle topologikus alsékorlat tétel dltaldnositdsat kaptuk a xs(G)
multikromatikus szadmokra:

33. Tétel. (Osztényi) Tetszbleges G grif esetén és s > 1-re
ind(L(G)) + 25 < xs(G).

Most pedig vegytlink példaként egy G péaros grafot. A G gréf s-szeres szinezéséhez
2s szin elegendd, ugyanis a 25. tétel szerint

Xs(G) < sx1(Ky) = 2s.

Maésrészt, ha G paros grafnak van éle, akkor NX(G) szomszédsagi komplexus nem
tires és igy az L(G) Lovédsz komplexus —1-0sszefiiggs. Tehdt a 3. tétel (idi) allitdsa
szerint 0 < ind(L(Q)), igy a 33. tétel szerint

2s < xs(G).
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Azaz azt kaptuk, hogy
Xs(G) = 2s.

Mivel a péaros hosszi korok mind paros grafok, igy ezek multikromatikus sza-
mait ismerjiik. A paros grafok és paros hosszi korok multikromatikus szamait is
meghatarozta Stahl [32]-ben. Egy péaratlan hosszi kor multikromatikus szamainak

meghatarozasa mar nem ilyen egyszerii, erre az 5. fejezetben tériink vissza.
4.2. A BABSON-KOZLOV-FELE TETEL ALTALANOSITASA

A Babson-Kozlov-féle topologikus alsékorlat tétel altalanositasahoz tegyiik fel,
hogy létezik ¢ szinnel valé s-szeres szinezése a G gréfnak, azaz G — KGy, graf-
homomorfizmus. Ekkor létezik Hom(K,,,G) — Hom(K,, KG; ) Zs-leképezés. A
Hom(K,,, KG; ) komplexus homotépia tipusat [29]-ben hataroztam meg. Ezzel a
22. tétel altalanositasat kaptam, ugyanis a KG¢ s Kneser graf az s = 1 esetben éppen
a K; teljes graf.

34. Tétel. (Osztényi [29]) A Hom(K,, KG:s) komplexus homotdp ekvivalens egy

(t — ns)-dimenziés gombcesokorral.

A Hom(K,,, KG} ) komplexus homotodpia tipusat a kovetkezd eljardssal hatéroz-
zuk meg. El6szor a Phom(Ky, KGy s) posetrdl attériink a Ppop, (K,, KGy ) posetre.
Ezzel a homotopia tipus nem véltozik, ugyanis lattuk fent, hogy a Ppom (Ky, KGt s)
poset homotép ekvivalens a Phrom (Kp, K Gi,s) posettel.  Most ehhez lefrjuk a
Phom(Ky, KG, ) poset elemeit. Legyen 1 € Phom (Ky, KGt s) egy tetszbleges elem.
Ha (i) = {a1,...,am} C V(KGys), akkor ¥(n)(i) = cnikq, (n(i) az Uj-, a;
halmaz 6sszes s-elemii részhalmazanak halmaza minden i € V (K, )-re. Tetszbleges
i1, 02 € V(Ky) esetén (U, cpay) @) (U, engin) b5) = 0, mivel 7 € Phom (Kp, KGys).
Tehdt Ppom (K, KGy s) izomorf a kévetkez6 posettel

P([t],n,s) = {A10-- WA, UL A; C[t] & A,NA; =0hai# j&|A;| >sV1<i<n}.

A P([t],n, s) poset elemeit a [t] halmaz rendezett parcidlis (n, s)-particidinak nevezzik.
A P([t],n,s) poseten a részbenrendezés pedig a kovetlezd: legyen WA; és WB; két
rendezett parcidlis (n, s)-partici6, ekkor WA; < WB;, ha A; C B; minden i-re.

Ezutan meghatérozzuk a KC(P([t],n,s)) (és ezzel a Hom(K,,, KG; s)) komplexus

Osszefiiggéségét, amihez a kiillonb6z6 részkomplexusait vezetjitk be. A KC(P([t],n,s))
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komplexus egy tetszOleges szimplexe egy A = (@1 A, C ... C .[le A; ;) ldnca
P([t],n,s)-nek. Legyen £ = Fy W --- W F,, egy rendezett (n,0)-particidja az F C [t]
halmaznak, ahol F' = ‘Ql F;. A K(P([t],n,s)) komplexus &-rogzitett elemek &ltal

indukalt részkomplexusa

K[€]: = {<_@1A1,i c...C .L_TQIAM) eK:F,CA,;V1<i<n}

35. Allitas. (Osztényi [29]) Tetszbleges s,n és t pozitiv egészek esetén, ahol
max{2s,ns} < t, legyen K[¢] a K(P([t],n,s)) komplezus &-régzitett elemek dltal in-
dukdlt részkomplezusa, melyre |F;| < s minden 1 < i < n-re. Ekkor K[{] (t —ns—1)-

0sszefliggo.

Bizonyitas. A bizonyitds s + n + (t — ns) szerinti indukciéval megy. Az indukcid
elindul, ugyanis az allitas igaz az s + n + (t — ns) = 3 esetben. Ez csak akkor &ll
fenn, ha s = 1,n = 1,t = 2 vagy s = 1,n = 2,t = 2, mely esetekben K[{] pontra
Osszehuzhato, illetve nem iires. Tehat tegyiik fel, hogy s +n + (t — ns) > 3. Két eset
lehetséges:

1. eset: Ha létezik k € [n] index, hogy |Fi| = s. Ebben az esetben megadunk
egy parcidlis parositast a P = P(K[{]) lapposeten. Legyen ¥ a P poset azon A =
<z‘§1 A, C ... C El A ;) elemeib8l all6 részposetje, melyekre A;j \ Fi, # 0 és a
h = h(A) = min{j: F}, # A, 1} indexre

(igl Api) \ (igl An—1) # Ang \ Fr.
Ekkor egy A € Y¥-ra
/L(.A) = <@1 Al,i Cc...C .@1 Ahflﬂ' - .@1 B; C _@1 Ah,i Cc...C '@1 Al,i>7

ahol By = F), és B; = Ap,; minden 7 # k-ra. Ez valéban egy parcidlis parositas,
ugyanis X N u(X) = 0 és p injektiv.

Megmutatjuk, hogy u egy kormentes parcidlis parosités. Indirekt tegyiik fel, hogy
A, u(Ar), ... Ay, i(Ay) egy koér P-ben (¢ > 1). Minden egyes Aj, u(A;) felugras
esetén mi egy 1j rendezett (n, s)-parcidlis particiét adunk az A; lanchoz, melynek k-
adik komponense Fj,. Ha pedig 11(A;)-b6l A1 1-be ugrunk, akkor A, -et gy kapjuk,
hogy a 1(.A;) lanc EJI Ap, i elemét toroljiik, ahol h; = h(A;), killonben A; 11 € ¥ vagy
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A;i1 = Aj. Azaz nem olyan rendezett (n,s)-parcidlis particiét toroltiink a p(A;)
lancbdl, melynek k-adik komponense Fj,. Vagyis a korben haladva az A; lancok ilyen
particidinak szama monoton nd, ez pedig ellentmond a kor létezésének.

A kritikus pontok, mint szimplexek, egy K. C K[| részkomplexust alkotnak,
ugyanis a kritikus pontok azon A = <L_ZJ1 A, C...C .L_:_Lle A; ;) pontjai P-nek, melyekre
Fy C Ay és Ay = Fy,. A 12 tétze_l szerint KC[¢] Izlz)mot(’)p ekvivalens K.-vel. Ha
n = 1, akkor K. egyetlen pont, igy az allitas igaz. Ha n > 1, akkor K. izomorf a
K(P([t]\ Fx,n—1,s)) komplexus &'-rogzitett elemek altal indukélt részkomplexuséval,
ahol ¢ = F1W- - W Fp_1 W Fry1 W--- W F, rendezett (n — 1,0)-particidja az F \ Fj
halmaznak. igy indukci6 szerint a K. komplexus (t—s— (n—1)s —1) = (t —ns—1)-
Osszefliggd. Tehat K[E] ~ K. (t — ns — 1)-Osszefliggd.

2. eset: Ha minden k € [n] indexre |F| < s, akkor a kovetkezd eljarast hajtsuk

végre.

Legyen fy a legkisebb eleme az [t] \ F' halmaznak. A k € [n] indexre legyen Ky, a
K[¢] komplexus kovetkezd részkomplexusa

K ={(8 A1 C...C © Au) €KIE]: fo & Au i # k —ra}.

K[¢] tetszbleges A = (@1 A, C ... C _Linjl A; ;) szimplexére létezik k, hogy fo & Ay

minden i # k-ra, igy IC;C_ tartalmazza az A szimplexet, vagyis

Klgl = 0 Ki.

A {K}y} ke[n) részkomplexus rendszere az Ideg tételt fogjuk alkalmazni, ezért vizs-
géljuk a véges metszetek Osszefliggiségét. TetszOleges k1, . .., k,, € [n] indexekre, ahol
m > 2,

Ky N N Kh = {(,@1A1,i c...C ,L_@lAl,Z) K[ fod Ay Vi€ [n]).

Ha t = ns, akkor g, N ... N Ky, = 0. Egyébként Kk, N ... N Ky, izomorf a
K(P([t] \ {fo},n,s)) komplexus &-rogzitett elemek altal indukalt részkomplexuséval,
melyre |Fj| < s minden k € [n]-re, igy indukci6 szerint (t —1—ns—1) = (t —ns — 2)-
Osszefliggd.

Most megmutatjuk, hogy mindegyik Ky (t — ns — 1)-Osszefiiggé. Megadunk egy
W parcidlis parositdast a P, = P(Kj) lapposeten. Legyen Y a Py poset azon A =
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(El A, C ... C .@1 A; ;) elemeibdl all6 részposetje, melyekre fo & Ay és az r =

1=

r(A) = max{j: fo & Aju} indexre (U A1)\ (U Ars) # {fo}. Ekkor egy A € Sy-

ra

n n n n n
/Lk(.A) = _H’Jl Al,i cC...C .L+J1 Ar,i - 'H—Jl B, C 'H—Jl AT+17¢ C...C 'H—Jl Al,z‘;
1= 1= 1= 1= 1=

ahol By = A, rU{fo} és B; = A,; minden i # k-ra. Ez valéban egy parcidlis parositas,
ugyanis X N pug(Xx) = 0 és ug injektiv.

Megmutatjuk, hogy ux egy kormentes parcidlis parositdas. Indirekt tegyiik fel,
hogy Ay, (A1), ..., Ag, i (Ay) egy kor Py-ban (¢ > 1). Minden egyes A;, p(A;)
felugras esetén mi egy 1j rendezett (n,s)-parcidlis particiét adunk az A; lanchoz,
mely k. komponense tartalmazza fo-t. Ha pedig px(A;)-bél A;11-be ugrunk, akkor
Ajiq-et gy kapjuk, hogy a ui(A;) ldnc i§1 A, i elemét toroljiik, ahol r; = r(A;),
kiilonben A;1 & ¥j vagy A;11 = Aj. Azaz nem olyan rendezett (n,s)-parcidlis
particiét toroltitk a p(A;) lancbdl, melynek k-adik komponense tartalmazza fo-t.
Tehat a korben haladva az A4; lancok ilyen particidinak szdma monoton né, ez pedig
ellentmond a kor létezésének.

A kritikus pontok azon A = <L_ZJ1 A, C ... C ng A; ;) elemei Pp-nak, melyekre
F; C Ay, és fo € A fgy a kzr_itikus pontok, ;r_lint szimplexek egy Kr. C Kg
részkomplexust alkotnak, mely részkomplexus izomorf a IC(P([t], n, s)) komplexus £"'-
rogzitett elemek dltal indukélt részkomplexusaval, ahol " = Fy W -+ W Fj_q W (F), U
{fo}) W Fr11W- -y F, rendezett (n,0)-particiéja az F'\ {fo} halmaznak. A 12. tétel
(i) része szerint Ky homotdp ekvivalens a ICp.-val.

Abban az esetben, ha |F,U{fo}| = s, az elsé eset szerint kész vagyunk. Azaz g,
(t —ns — 1)-Osszefiiggd, és igy K is (t —ns — 1)-0sszefiiggd. Az Ideg tételt alkalmazva
a {Kg}re[n) részkomplexus rendszerre azt kapjuk, hogy K[¢] (¢ — ns — 1)-Osszefiiggd,
mivel az NK({K;};c}n)) ideg komplexus egy (n — 1)-szimplex.

Egyébként, ha |Fr, U{fo}| < s, hajtsuk végre a fenti eljarast a K[¢"] komplexusra.
|

Ezek utan mar meg tudjuk mutatani, hogy a Hom(K,,, KG; s) komplexus egy
(t — ns)-dimenzi6és gdmbcesokorral homotép ekvivalens.

A 34. Tétel bizonyitasa. Az eléz6 4llitas szerint a Hom(K,, KG; ) komplexus
(t — ns — 1)-Osszefiiggd. Mivel a Hom(K,,, KG} ) komplexus dimenziéja t — ns, igy
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5. A&llitas szerint Hom(K,,, KGys) egy (t — ns)-dimenzidés gdmbcsokorral homotép
ekvivalens.

Ekkor, amint azt a 2.2. alfejezetben megmutattuk ind(Hom(K;, KG; s)) = t—sl.
fgy ha létezik G — K Gy s grathomomorfizmus, akkor

ind(Hom(K;, G)) < ind(Hom(K;, KG;s)) =t — sl.
Ezzel a kovetkezd topologikus alsékorlat tételt kaptuk a multikromatikus szamokra.
36. Tétel. (Osztényi [29]) Tetszbleges G grdfra, s és | > 2 pozitiv egész szamokra

ind(Hom(Kj, G)) + sl < xs(G).

4.3. TOPOLOGIKUS ALSOKORLAT TETELEK GRAFOK LEXIKOGRAFIKUS
SZORZATANAK KROMATIKUS SZAMARA

A G gréf s-szeres szinezése ekvivalens a G[Kj| lexikografikus szorzat egyszeres
szinezésével, igy ebben az esetben a Lovész-féle alsékorlat tétel a kovetkezo

Xs(G) > conn(NK(G[K,])) + 3,
mig a Babson-Kozlov-féle alsékorlat tétel pedig a
Xs(G) > ind(Hom(Ks, G[K,])) + 2

alsé korlatot adja. Ebben az alfejezetben ezen komplexusok Osszefiiggoségét, illetve
Zo-indexét vizsgaljuk.

A Lovasz-féle alsékorlat tétel a lexikografikus szorzatra

Amint 1atni fogjuk a G[K;] lexikografikus szorzat szomszédsigi komplexusa-
nak Osszefiiggdségét meghatarozza a G graf ugynevezett kiegészitett szomszédsagi
komplexusdnak Osszefiigglsége. Egy tetszOleges G graf esetén az EN(G) kiegészi-
tett szomszédsdagi komplexus legyen azon szimplicidlis komplexus, melynek csicshal-

maza V(G), és a csucsok egy A részhalmaza szimplex, ha van olyan v csticsa G-nek,
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melyre A C cng(v) U{v}. A szomszédsédgi leképezés kigészitettjeként definidljuk a
cng - 2VI(G) _, 9V(G) leképezést:

eng(A) :==ceng(A)U A

Ekkor
EN(G)={B CV(G):3vweV(G) hogy B C cng(v)}.

Az NK(G[K)) szomszédségi komplexus egy j6 felbontdsdra fogjuk alkalmazni az
Ideg tételt. Legyen p : V(G[K;]) — V(G) projekciés leképezés, azaz p(w) = v minden

w = (v,l) cstcsra. A G graf egy v csicsara legyen NS a G[Kg|en () részgraf

GIKs
szomszédsdgi komplexusa, ahol v = p(w). Ez jéldefinidlt részkomplexusa NK(G[K))-
nek, ugyanis ha p(w;) = p(ws), akkor G[KS]C”E[KS](“’I) megegyezik G[KS]CTLZ'[KS](MZ)_

vel. Az {N;},ev(q) részkomplexus rendszerre

NK@GIE) = |J N

veV(G)

Ezek utan vizsgaljuk meg az {IN;},cv(g) fedérendszer nemiires, véges metsze-
teinek Osszefiiggoségét. Ehhez az N komplexus egy join felbontasat vessziikk. A
G[Ks]cn’é[
A kovetkezo allitas szerint ezen join szorzat szomszédsagi komplexusiat homotopia

e részgraf izomorf a K, * Gy (»)[K] join szorzattal, ahol p(w) = v.
erejéig majdnem meghatdrozza a Gy, (v)[Ks] részgraf szomszédsigi komplexusa.
37. Allitas. (Osztényi [12]) Legyen H egy tetszbleges grif és 0 < s, ekkor

INK(H * K[| ~ INIC(H)|| 57

Bizonyitas. A H x K, graf izomorf a (H % Ks_1) * Ky graffal. fgy felhasznalva
azt a tényt, hogy S® ... % S? 22 §5~1 clég azt bizonyitani, hogy |NK (K, * H)| ~

sX

INKC(H)|| * S°. Ezt pedig Gyarfas és tarsai [17]-ben megmutattdk.

Tehat
NS~ N (Geng (o) [KD | #5571 ()
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Ezt felhasznélva alsé becslést adhatunk az {N;},cv () fedérendszer nemiires, véges
metszeteinek Osszefiiggiségére.

38. Lemma. (Osztényi [12])
(i) Az NS részkomplezus legaldbb (s — 1)-dsszefiiggd.
(ii)) Az N; NNy, N...NN; részkomplerus legaldbb (ts — 3)-6sszefiiggd, ha nem iires.

Bizonyitas. (i) A
lens  |[N(Geng (v [ K]l
(conn(N(Gepg (v)[Ks])) + 5)-Osszefiiggd az 1. Allitds szerint, azaz legalabb (s — 1)-

graf barmely v cstcsara ||[N|| homotép ekviva-

G
* Ss—l

-gyel, (xx) szerint. fgy az N; részkomplexus

Osszefiiggd.

(i7) Tegyiik fel, hogy U = {v1,va,...,v:} a V(G) csucshalmaz egy részhalmaza,
melyre N; N N5 N...NN; #0ést>2. Legyen U =p(V(N; NN;, N...0N;)).
Vegyiik észre, hogy U’ = Ni_;cng (v;). Két eset lehetséges:

1. Ha létezik v;,, v, € U, hogy v;; & eng(viy), azaz (vi,,vi,) € E(G). Ekkor legyen
Up={v;, €U: U Cecng(v)} és Uy = U \ Uy. Nyilvan Uy # (), hiszen v;, € Uj.
A 0,1y szimplex eleme N részkomplexusnak minden v; € Uy-re. A v;, cstics
pedig eleme V(Genx (v;))-nek minden v; € Us-re és U’ C CnGcng(vj)(Uh)’ igy
op-1(v) eleme Ny -nak is. Azaz Nj N Nj N...NNj = o,-1(yr) €8 igy pontra
osszehuzhato.

2. Ha v;, € eng(v;,) az Osszes v;,,v;, € U csicsparra, ekkor Gy egy teljes graf és
U' =UUcng(U). Igy N; NNy N...0N; = N(Gu/[Ks]). A Gy graf izomorf
a Gu * Geng ) = Ky * Gep vy gréaffal. Tehat ha cng(U) # 0, akkor

NG, NG, N NG L= IN (G % Geng o) [ =

HN(Kts * Gan(U)[KS])H ~ ”N(Gcng(U)[Ks])H % Siﬁs—l7

(#x) szerint. Vagyis (conn(N (G cpn ) [Ks]))+ts)-Osszefiiggd, ami lealdbb (ts—1).
Ha pedig cng(U) = 0, akkor N; N N3 N...NN; = N(Gu[K]) = N(Kys). Igy
Ny NNy N...NNg (ts — 3)-0sszefiiggd.

Osszegezve, conn(N; NN5 N...NN;7)>ts—3, barmely N; N N5 N...NN5 #0
és t > 2 esetén.
|
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Ha [ < s, akkor az el6z6 lemma szerint
conn(Ny NNy N...NN;)>ts=3>s—1—-t+1>1—-t+1
ley az {N}} fedérendszerre teljesiilnek az Ideg tétel feltételei | < s esetén, tehat:

39. Allit4s. (Osztényi [12]) Tetszbleges s > | > 2 egészek és G graf esetén az
NK(G[Ks)) komplexus akkor és csakis akkor l-0sszefiiggd, ha az N({NZ}) komplezus

l-6sszefiiggo.
Most pedig meghatarozzuk az {N; },cv(g) fedérendszer ideg komplexusat:

40. Lemma. (Osztényi [12]) Az {N;},ev(q) feddrendszer ideg komplerusa meg-

eqyezik a G kiegészitett szomszédsagi komplexusdval.

Bizonyitas. Eldszér megmutatjuk, hogy EN(G) € N({Nj}ev(a)): legyen B C
V(G) egy szimplexe EN(G)-nek. Ekkor van G-nek egy v cstcsa, hogy B C end, (v).
Ebben az esetben a N,,cp N, metszet nem iires, mivel (v, 1) eleme Ny,,cp N, -nek.
Most pedig beldtjuk, hogy N{Ni}t,ev(a) € EN(G): tegyiik fel, hogy U =
{v1,v2,...,v¢} olyan részhalmaza V(G)-nek, melyre N NN5 N...NNg # (. Legyen
w egy csiucsa N NNy N...NN; -nek. Ekkor p(w) = v; vagy p(w) € eng(v;) minden
1 < i <t-re. Legyen p(w) = v, ekkor U C cn§ (v), azaz U egy szimplex EN(G)-ben.
|

Ezekutan a 39. allitast a kovetkezoképpen irhatjuk at:

41. Tétel. (Osztényi [12]) Tetszdleges s > | > 2 egészek és G grdf esetén az
NK(G[K,]) komplexus akkor és csakis akkor l-0sszefiiggd, ha az EN(G) komplexus
l-0sszefliggd.

Specidlisan conn(EN(G)) végessége esetén conn(NK(G[K;])) = conn(EN(G))
minden s > conn(EN(G)) + 2-re. Igy a Lovasz-féle alsé korlat ebben az esetben

Xs(G) > conn(EN(G)) + 3,

minden s > conn(EN(G)) + 2-re. A 26. tétel szerint ys(G) szigorian monoton
né s-ben, igy conn(EN(G)) végessége esetén a Lovdsz-féle alsé korlat és G adott
multikromatikus szama kozti kiilonbség akarmilyen nagy lehet.
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A Babson-Kozlov-féle alsdkorlat tétel a lexikografikus szorzatra

Ebben az alfejezetben a Hom(Ks, G[K;]|) grafhomomorfizmus komplexus Zo-
indexe és a G grafban taldlhat6 legnagyobb teljes részgraf mérete, w(G) kozti kapcso-
latot mutatjuk meg.

42. Tétel. (Csorba [12]) Tetszbleges G grdf és s > |V (G)| egész esetén

ind(Hom(Kq, G[K;])) +2 =5 - w(G).

Bizonyitas. Ismeretes, hogy ind(Hom(Ks2,G)) +2 > w(G). Mivel w(G[K,]) =
s - w(@), gy ind(Hom (K3, G[Ks])) + 2 > s - w(G). Ezért még azt kell bizonyitani,
hogy ind(Hom (K2, G[Ks)))+2 < s-w(G). Ehhez megadunk egy p parcidlis parositédst
a P(Hom(Ks, G[K;])) lapposeten.

u definidlasahoz vegyiik a G graf komplementer iranyitott grafjat, a G* grafot.
GC élei az W és v iranyitott élek lesznek az Gsszes olyan u, v csicsparra, melyre uv ¢
E(G). Vélasszunk egy tetszéleges linedaris rendezést ezen iranyitott élek halmazan.
Egy AW B € Hom(K2,G[K]) csicsra tekintsiik G azon, nem feltétleniil diszjunkt
irdnyitott részgrafjait, melyeket a p(A) és p(B) csicsok indukélnak, ezeket jeldlje 1TA)>
és zTBj A zTAj részgraf egy uv irdnyitott éle rossz, ha A tartalmaz egy olyan (u, i)
csucsot, melyre ¢ > 1. Hasonléan a zTBj részgraf egy uv irdnyitott éle rossz, ha B
tartalmaz egy olyan (u,?) cstcsot, melyre ¢ > 1. Egy rossz él nem lehet egyszerre
M—ban és ]TB))—ben, mivel A Osszes cstiicsa B Osszes cstucsaval Ossze van kotve. A
Hom (K2, G[K]) komplexus egy o szimplexére, egy A1 W By C ... C A, W B, lancra,

jelolje p(o) a p(Ay) és p(B,,) részgrafok rossz élei kozziil a legkisebbiket, ha van ilyen.

Most méar készen vagyunk a p pérositas definidldsara. Legyen o = (A; W By C
— —

... C A,WB,) egy szimplexe a Hom (K5, G[K]) komplexusnak. Ha p(A,,) vagy p(B,,)
tartalmaz rossz irdanyitott élet, akkor az altalanossag megszoritasa nélkiil feltehetjiik,
hogy p(A,,) tartalmazza az uv legkisebb rossz élet. Eldszor tegyiik fel, hogy (u, 1) &
A;. Legyen m = max{i: (u,1) ¢ A;}. Ha A1 # A U (u,1) vagy Biit1 # Bm
(vagy m = n), akkor legyen X := A,, U (u,1) és Y := B,,,. Mivel (v,i) € A,, nincs
osszekotve (u, 1)-gyel G[K]-ben, igy (u,1) € B, tehdt X NY = (. Legyen o € ¥ és

(o) =(AiWwB; C...CAUB, CXWY CA,t1WUBh1 C...C A, UB,).
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Ekkor o € pu(X), ha Ayp1 = A U(u, 1) vagy By+1 = By A p parositas jol definialt
az u valasztdsa miatt. Konnyi ellenérizni, hogy p(o) = p(u(o)).

Most nézziik azt az esetet, amikor (u,1) € A;. Legyen ¢ = max{i: (u,i) € A, }.
A rossz élek definicigjabdl kovetkezik, hogy ¢ > 1. Legyen | = min{i: (u,q) € A;}.
Definidljuk X := A;\ (u,q) és Y := B;. Ha l = 1, akkor legyen o € ¥ és

plo) = (XwY C A WB; C...CA,¥UB,).
Hal>1és A;_1WB;_1 # XWY, akkor legyen o € ¥ és definidljuk
,u(a) = (AlHJBlC...CAl_lL-HBl_lCXLﬂYCAlH-JBlC...CAnLﬂBn>.

Ebben az esetben, (u,1) € Ay, 0 € pu(¥) pontosan akkor, ha A; = A;—1 U (u,q)
vagy B; = Bj_1. A pérositds ezen kitertjesztése joldefinidlt, ugyanis X # () mivel
tartalmazza (u, 1)-et. Ezzel a kiterjesztésel is a o és u(o) szimplexeknek ugyanugy
A, W B, a legnagyobb cstcsa, igy p(o) = p(u(o)).

Megmutatjuk, hogy u egy kormentes parcialis parositas. Indirekt tegytik fel, hogy
o1, 1(01),...,0q, u(og) egy kor P(Hom(Kz, G[K]))-ben (¢ > 1), melyben p mindig
egy U4j csicsot ad az o; lanchoz. A o, ;1(0;) 1épésben nem véltozik a legkisebb rossz
él. Ha a p(oj), 0,41 1épésben a p(o;)-nek megfelel6 lanc maximalis elemét toroljiik,
akkor mivel A; W B; C A;11 W B;11, a megfelel6 legkisebb rossz él csak nohet. fgy a
kor 1étezése miatt a legkisebb rossz él végig ugyanaz marad.

Elészér tegytik fel, hogy a o1-nek megfelelé 1anc 6sszes pontja tartalmazza (u, 1)-
et. Ez azt jelenti, hogy a kor 6sszes szimplexének Osszes pontja rendelkezik ezzel a
tulajdonsaggal, ugyanis p mindig egy olyan pontot ad a lanchoz, mely tartalmazza
(u,1)-et, és nem tartalmazza (u,q)-t. Igy amikor p(o;j)-bol oj41-be megyiik nem
torolhetiink olyan pontot, mely tartalmazza (u, ¢)-t. Kiilénben a korben haladva az o
lancok (u, ¢)-t tartalmazé pontjainak szima monoton cstkkenne, ez pedig ellentmond
a kor 1étezésének. Igy p(o;)-bol egy (u,q)-t nem tartalmazé pontot térliink. Ebben
az esetben viszont, mivel o; # o0;41, kénnyen lathaté, hogy 041 € 2.

Maésodjara tegyiik fel, hogy a oi-nek megfelel6 lancnak van olyan pontja mely
nem tartalmazza (u,1)-et. Ebben az estben is x4 mindig olyan pontot ad a lanchoz,
mely tartalmazza (u,1)-et. Igy amikor p(oj)-bél o4 1-be megyiik csak olyan pontot
torlhetiink, mely (u,1)-et tartalmazza. Kiilonben a korben haladva az o; ldncok
(u, 1)-et nem tartalmazo6 pontjainak szdma monoton cstkkenne, ami ellentmond a kor
létezésének. Tehat p(o;)-bol egy (u, 1)-et tartalmazé pontot torliink. Ami viszont azt
jelenti, hogy 0,11 € X, mivel 041 # 0;. Vagyis i egy kérmentes parcidlis parositas.
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A kritikus pontok azon szimplexek, melyekre p értelmezve van. fgy egy H. C
Hom(Ks, G[K;]) Zo-részkomplexust alkotnak. A 13. tétel szerint Hom(Ks2, G[Kj))
Zo-homotdp ekvivalens H.-vel, ugyanis p felcserélheté a Hom(Ksy, G[K,]) 1évé stan-
dard v Zs-hatéssal.

Ezekutan a H. részkomplexus dimenzidjanak egy felsé korlatjat adjuk meg. Le-
gyeno = (A1WBy C ... C A,WB,) egy kritikus szimplex, ennek dimenzidja legfeljebb
|An| + |Bn| — 2, ugyanis A; és B; sem iires. Legyen K, és K egy-egy legnagyobb
teljes részgraf p(A,)-ben és p(B,)-ben. Ha p(A,) és p(B,) teljes graf, akkor, mivel
A, és B, csicsai G|K,]-ben 6ssze vannak kétve, A, U B, is egy teljes graf. Igy
|An| + |Bn| < s-w(G). Ha p(A,,) vagy p(B,) nem teljes graf, akkor az altalanossag
megszoritasa nélkil feltehetjik, hogy létezik egy u € p(A,,) csucs, melyre u & K,. Mi-
vel K, egy legnagyobb teljes részgraf, igy 1étezik egy v € K, csics, melyre uv € E(G).
o egy kritikus szimplex, igy p~!(u,v) C A, csak (u, 1) és (v, 1)-et tartalmazhatja. De
igy B, nem tartalmazza (v,i)-t, mivel (u,1) € A,,. Hasonlbéan ez az eset p(4,,) vagy
p(B,,) minden olyan csicsara, mely nem cstucsa K, vagy Kj-nek. fgy

|Anl+|Bn] < s (w(G)— 1)+ (|[V(G)| —w(G)+1) =s-w(G)+ |V(G)] — s —w(G) + 1.

Kihasznalva, hogy s > |V(G)| és w(G) > 1, kapjuk, hogy |A,| + |B,| < s - w(G). gy
a 6. allitasbol kapjuk, hogy

ind(H.) <s-w(G) —2.

Ez a H. és Hom(K2, G[K]) komplexusok Zs-homotdp ekvivalencidja miatt azt jelenti,

hogy
ind(Hom (K2, G[K;])) < s-w(G) — 2.

Ez a kovetkezo trivialis alsé korlatot adja a multikromatikus szamokra.
43. Tétel. (Csorba [12]) Tetszdleges G graf és s > |V(G)| egész esetén

Xs(G) > s w(G).



5. A STAHL SEJTES VIZSGALATA

Ebben a fejezetben eloszor a multikromatikus szamokra adott topologikus alsé-
korlat tételeket alkalmazzuk a Kneser grafokra. Ezutan a Walker-féle s-szeres szi-
nezhetdségi poset &llitasbdl (32. allitasbdl) adéddéan az LP(K Gy, ) — LP(KGy s)
Lovész posetek kozti ortoleképezések 1étezését vizsgaljuk. Az LP(KG,, ,) ortoposete-
ket tanulményozva azt kapjuk, hogy mig |CIC(K G, )| — |LK(K Gy s)| Zo-leképezés
létezik, ha m—2n < t—2s, addig egy L(v) : LP(K Gy, n) — LP(KG, ) ortoleképezés
nem létezik, ha az LP(KG,, )-beli ”ortogdmbfeliiletek” szimplicidlis mérete kisebb,
mint az LP(KG; s)-belieké.

5.1. TOPOLOGIKUS ALSO KORLATOK A KNESER GRAFOK MULTIKROMA-
TIKUS SZAMAIRA

El6szor a 4.1. alfejezetben adott Walker-féle topologikus alsé korlat altalanosi-
tasat alkalmazzuk a KG,, , Kneser grafra. A 33. tétel szerint
Xs(KGm ) > ind(LK(KGp,.n)) + 2s.
Amint azt mar meghataroztuk, ind(LK(KGy, ) = m — 2n, igy a
Xs(KGmpn) > m—2n+ 2s

alsé korlatot kapjuk. Ez az s = 1,...,n esetekben megadja a multikromatikus sza-

mokat, am n < s esetén mar nem éles.

Maésodjara azt nézziik meg, hogy mit kapunk, ha a Babson-Kozlov-féle topologi-
kus alsékorlat tétel altalanositasat alkalmazzuk a KG,, , Kneser grafra. A 36. tétel

szerint minden | < |2 |-re
n

Xs(KGpmn) > ind(Hom (K, KGp,.n)) + sl.
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A 34. tételben meghatéroztuk a Hom(K;, KG,,. ) komplexus homotdpia tipusat, ami
szerint ind(Hom(K;, KG,, »)) = m —nl, igy

Xs(KGum.n) > m —nl + sl. (x * %)

Ez tgyszintén, az [ = 2 valasztassal, megadja az igazsagot s = 1,...,n-re. Tovabba
tekintsiik (x x x)-ot az [ = | "] és s = n 4+, 1 <r < n esetekben

m
Xn+r(KGm,n) >m+ LEJT
Ekkor mar nem éles, am a Stahl-féle alsé korlatnal,
Xnir(KGmp) > 2m — 2n + 2r — (n® — 3n +4),

élesebb az m < n? —n +4 + meznjr esetekben. Altalaban, az s > 2n esetekben,

mér nem hasznalhatd, némi hozadéka van még n|m esetén.

5.2. TOPOLOGIKUS ALSO KORLATOK A KNESER GRAFOK LEXIKOGRAFI-
KUS SZORZATANAK KROMATIKUS SZAMARA

A Lovasz-féle alsé6 korlat a KG,, ,[K,| graf kromatikus szamara

A KG,, K| grafra alkalmazva a Lovéasz-féle alsé korlatot a kovetkezét kapjuk
a KGy, n Kneser graf multikormatikus szdmaira:

Xs(KGm.n) = X(KGp, 0 [Ks]) > conn(NK(G[Ks])) + 3. (%)

Stahl sejtése szerint a x (K G, n) multikromatikus szamok egy szigori monoton né-
vekvé sorozatot alkotnak s-ben, igy (x) akkor hasznélhat6 a Stahl sejtés megoldasara,
ha a conn(NK(K G, n[Ks])) Osszefiiggségi szamok is egy szigori monoton névekvd
sorozatot adnak s-ben. A 41. tétel szerint az NK(K G, n[K]) komplexus Osszefiig-
gbségét meghatérozza az EN (K Gy, ) komplexus Gsszefiiggésége. Igy, EN(KGom.n)
s-t6l valo fiiggetlensége miatt, EN (K Gy ) [-0sszefiggd kell legyen minden [ € N-re.
Ez azt jelenti a Whitehead tétel szerint, hogy EN (K G,, ) pontra osszehizhaté. Ha
viszont pontra osszehiizhatd, akkor a 7. allitas szerint aciklikus és igy a 8. allitas sze-
rint barmely |EN(KGp.n)| — [EN(KGp )| folytonos leképezésének van fixpontja.
Am mi most megadunk egy EN(KGpmn) — EN(KG,,.,) szimplicialis leképezést,
melynek nincs fixpontja, ami conn(EN (K Gy, ) végességét adja.

Legyen 7, ,, a kovetkez6 permutécidja az [m| halmaznak:
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(12...m) ,ham>2nés n fm

Tomm =
’ (12...m —1) kiilénben.

Az EN(KG,, ) komplexus egy tetszéleges v C [m] cstcséra my, n(v) = {Tm.n(i) :
i € v} csicsa EN(KGy, n)-nek. Megmutatjuk, hogy a 7y, @ EN(KGppn) —
EN(KG, ) indukélt leképezés szimplicidlis. Barmely o € EN(KG,, ) szimplex
esetén létezik egy v cstcs, hogy V(o) C cnjeq  (v). Vagyis minden u € V(o) \ {v}-
re uNv =0 6és igy mm n(w) N mmn(v) = 0. Ezért Tmn(W) € cnka,, . (Tmn(v)) és
Tmn(0) C g, (Fmn(v)). Azaz 7y, (o) szimplex EN(K Gy, )-ban.

44. Allitas. (Osztényi [12]) Tetszdleges m és n > 1 pozitiv egészek esetén a Ty, p
EN(KGppn) — EN(KG,, ) szimplicidlis leképezésnek nincs fixpontja.

Bizonyitas. Indirekt tegyiik fel, hogy 7y, , szimplicidlis leképezésnek van fixpontja.
Ekkor 1étezik egy o € EN(KG,, ) invaridns szimplexe 7, ,-nek. Azaz 7, , egy
permutécié V(o)-dn. Két eset lehetséges:

1. Létezik v € V(KGp, ) csucs, hogy V(o) C cngkg,,,(v). Ebben az esetben
vNu = 0 minden v € V(o)ra. A m, , permutdcié dltal generdlt részcsoport
tranzitivan hat [m]-en vagy [m — 1]-en, igy minden u € V(o) cstics esetén 1étezik
egy minimaélis [, € NT, hogy ﬁlm“n(u) Nwv # 0, ami ellentmondas.

2. Létezik v € V(o) cstics, hogy V(o) C enjq,  (v). Ebben az esetben v Nu = ()
minden u € V(o) \ {v}-re. Legyen v = {vl,vé, .oy Un} € [m], ahol vy, ve, ..., v,
monoton nové sorozat. Mint az el6bb most is létezik minim4lis I, € N*, hogy
7l (v) Nv # 0, ekkor @l (v) = v. Tegyiik fel, hogy m > 2n és n Jm, ekkor
Wﬁgm(vi) = v; + l, modulé m. [, minimalitdsa miatt v;4 1 = v; + [, és ekkor
vy + nl, = v1 + m, ami azt jelenti, hogy m = 2n vagy n | m. Tehédt megint
ellentmonddsra jutottunk. Most tegyiik fel, hogy m = 2n vagy n | m. Ebben az
esetben v = {v1,v2,...,v,} C [m —1] és ﬂfqun(vi) = v; + I, modulé m — 1. Igy
Viy1 = v; + 1y, és ekkor vy + nl, = v +m — 1, ami csak akkor lehetséges, ha
n = 1. Vagyis ebben az esetben is ellentmondésra jutottunk.

|

45. Kovetkezmény. (Osztényi [12]) Az EN(KG,,n) komplexus dsszefiiggdsége
véges minden m és n > 1 pozitiv egészek esetén.

Ez azt jelenti, hogy conn(NK(KG,, n[Ks])) sorozat konstans a 41. tétel sze-
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rint, ha s > conn(EN(KG,, n)) + 2. Tehat a Lovész-féle alsé korldtot alkalmazva a
KG,, K] grafra, nem kapjuk meg a KG,, ,, Kneser graf multikromatikus szdmait.

A Babson-Kozlov-féle alsé korlat a KG,, ,[K;] graf kromatikus szamara

A Babson-Kozlov-féle alsé korlatot (23. tételt) alkalmazva a KG,, ,[K] grafra

Xs(KGmn) = X(KGmn[Ks]) > ind(Hom(Ka, KGyy n[Ks])) + 2

als6 korlatot kapjuk a KG,, , Kneser graf multikromatikus szdmaira. Amint azt a
42. tételben meghataroztuk

ind(Hom(Ka, KGu n[Ks])) +2 =5 w(KGp.n),

igy felhasznalva, hogy w(KGpn) = [ 2], a

m

Xs(KGm,n) > s[—]|

n

also korlatot kapjuk. Am ez a Babson-Kozlov-féle alsé korldt altaldnositasaval adott
korlatnal ((x x *)-ndl) gyengébb, az n|m eseteket kivéve, amikor azzal megegyezik.

5.3. WALKER-FELE ALSO KORLAT A KNESER GRAFOK MULTIKROMATI-
KUS SZAMAIRA

Definicié szerint egy KG,, , Kneser graf s-szeres szinezése ¢ szinnel egy v :
KG,,n — KG;, grithomomorfizmus. Ezen v leképezés indukal mind a Lovasz
posetek, mind a Lovasz komplexusok kozti 2.2. alfejezetben szereplé L(7y) orto-,
illetve ¢ Zs-leképezéseket. Amint az 5.1.-es alfejezetben lattuk ilyen ¢ nem létezik,
ha m —2n > t — 2s. Ugyanis az LK(KG,,,,) Lovész komplexus homotdp ekvi-
valens egy (m — 2n)-dimenzids gombcsokorral a 24. 4&llitds szerint, hasonléan az
LI(KG,,s) Lovasz komplexus egy (t — 2s)-dimenzids gdmbcsokorral homotép ekvi-
valens, igy a 3. A&llitds szerint nem létezik ¢ Zso-leképezés, ha m — 2n > t — 2s.
Az altalunk vizsgdlt topologikus alsé korlatok életlensége abbdl adodik, hogy a vizs-
galt esetek nagy részében ez éppen forditva van. Azaz ha m — 2n < t — 2s, akkor
[IC(KG,s)|-ben nagyobb dimenzids Zs-gémbfelilletek vannak, mint |[[C(K Gy, »,)|-ben.
Tehdt |[LK(KGomn)| — |[LK(K Gy s)| Zo-leképezés 1étezhet, ha m—2n < t—2s, viszont
egy L(v) : LP(KGy, ) — LP(KG,s) ortoleképezés létezése mar akadalyba iitkozhet,

ugyanis ezen leképezések érzékenyek a ”gombfeliiletek” szimplicidlis méretére is.
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Elészor a Cap4q paratlan hosszu korok multikromatikus szamait hatarozzuk meg
az LP(Capi1) — LP(KG, ) ortoleképezéseket vizsgélva. Az itt szerzett tapasztala-
tokat felhaszndlva vizsgaljuk majd az L(v) : LP(KGy, ) — LP(KG, ) ortoleképe-
zések 1étezését.

7. abra: A (7 graf és szomszédsagi komplexusa.

Egy Cop41 paratlan kor csticsainak egy A részhalmazara a cnc,,,,(A) akkor és
csakis akkor nem tires, ha A egyelemi vagy A egy csucs két szomszédja. Tehat az
NK(Capt1) szomszédségi komplexus egy 1-dimenzids komplexus, melynek geometriai
realizaltja egy 2p + 1 csticsi poligon. A P(NK(Cap1)) poset Gsszes cstcsa zart, igy
LP(Cyp+1) Lovész poset egy 4p+2 csticst ortokorlesz. Az LK(Copi1) = NK'(Copir)
Lovész komplexus poliédere homeomorf S!-gyel. A Walker-féle topologikus alsé korlat
altalanositdsa (33. tétel) a Capyq kOr esetén a kovetkezd alsé korldtot adja

indz, (LK(Czp41)) + 25 < Xs(Copt),
ami az |LK(Copi1)| = ST miatt a
2s + 1 S X5(02p+1)- <**>

Az jol ismert, hogy x1(Cap+1) = 3, igy a 26. tételbdl is ez adédik.

(1.2} (12,3}
(3.4 (3.4} {5.6.7} {4,5.6}
(2,3.4}
(1.2} {15} {1,2,7}
(45 123 (1,67} {345}

8. abra: A (C; graf 2-szeres és 3-szoros szinezése.

Példaként tekintsiik a 7. &bran szereplé C7 kort, melyre tehat x1(C7) = 3. A
fenti 8. dbra alapjan x2(C7) < 5 és x3(C7) < 7, (%) szerint ennyi szin kell is, azaz
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x2(C7) = 5 és x3(C7) = 7. Am 4-szeresen csak 10 szinnel tudjuk kiszinezni. Tehat
(xx) nem ad éles alsé6 korlatot.

Ezért a Cypy1 korok multikromatikus szamainak meghatdrozasahoz vizsgal-
juk a L(y) : LP(Cypt1) — LP(KG:s) ortoleképezéseket, ahol mint tudjuk,
LP(KG;s) = Bys. Legyen x,2' € V(Cyp41) ortogondlis pontjai LP(Capyq)-nek,
azaz * C Cng,,,,(z'). Tehdt x és 2’ szomszédosak Copyi-ben, feltehetjiik, hogy
¥ = x —1 mod 2p + 1. Ekkor létezik koztitk 2p hosszii 4t LP(Captq)-ben:
Ty = T,T1,...,T2p—1,T2p = &', ahol z; = x + ¢ mod 2p + 1 , ha ¢ péros, és
x; = {xi—1,%iy1}, ha i paratlan. Tehat d(z,z’) < 2p. Legyen y; € B, az z;
pont képe L(7) mellett. Ekkor y és ¢’ olyan diszjunkt (ortogonalis) pontjai By s-nek,
melyek tavolsaga legfeljebb 2p.

Két tetszdleges By s-beli pont tavolsdga alulrdl becsiilhetd a kovetkezd értékkel.

46. Allitas. (Osztényi [28]) Tetszdleges y,y’ € By s-re

WALy (WA < gy,

Bizonyitas. Legyen y = yo,y1,...,y: =y a legrovidebb ut y és y' kozott By s-ben.
Vegyiik észre, hogy ahhoz hogy y-b6l y/-be eljussunk egy tton az 3\ y halmaz minden
elemét be kell venniink valamely felfelé 1épés soran. Egy (y;,y;+1) felfelé 1épés esetén

az yip1 \ yi-beli elemek széma legfeljebb ¢ — 2s. Igy legfeljebb t — 2s darab y/-beli
ly"\yl
t—2s

van a fenti itban. Hasonldan a lefelé 1épések szdma legalabb [%] Igy

elemet adhatunk y;-hez ebben a felfelé 1épésben. Vagyis legalabb | | felfelé 1épés

WAV A < gy,

Vagyis ha y és y' diszjunkt pontjai By s-nek, akkor

ly| Y| $
> 2 .
—28—‘+[t—28—|_ (t—2s]

d(y,y') > r

Tehat ha létezik s-szeres szinezése a Capiq kornek ¢ szinnel, akkor léteznek y és
diszjunkt pontjai By s-nek, melyekre d(y,y’) < 2p, és igy

A" N<w (o)
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Ezen egyenl6tlenséget felhasznalva megkapjuk a xs(Capy1) multikromatikus szdmo-
kat.

47. Tétel. (Stahl [32]) Tetszdleges p és s pozitiv egészekre legyen s = qp + r, ahol
0<q és0<r<p egészek. Ekkor

Xs(02p+1) = 2s + 1 + q.

Bizonyitas. A bizonyitds q szerinti indukcioval megy. Eloszér tekintsiikk a ¢ = 0
esetet. Az ismert, hogy x1(C2p+1) = 3 minden p-re, és igy 2s+1 < x5(Capt1) minden
s < p-re a 26. tétel szerint. Valamint tekintsiik a kovetkezd v : Copy1 — KGosy1,s
leképezést s < p-re

{(i—1)s+jmod2s+1)+1:0<j<s—1}, hai<2s+1
(i) := {j:1<j<s}, ha 2s + 1 < i és paros
{s+j:1<j<s}, ha 2s + 1 < ¢ és paratlan

Mivel y(¢) Ny(i+1) = @ minden i € [2p] és v(1)Ny(2p+ 1) = 0, {gy 7 egy grathomo-
morfizmus. Tehat xs(Czpy1) < 25+ 1 minden s < p-re, és igy

XS(CQP+1) = 28 + 1

minden s < p-re. Azaz az indukcié elindul.

Most pedig legyen g egy tetszoleges pozitiv egész és tegylik fel, hogy minden
q < g-ra igaz az allitds. Ekkor egyrészt

Xap++(C2p+1) < X(g—1)p+r(Copr1) + Xp(Copt1) =

2(g—Dp+r)+1+(qg—1)+2p+1=2(qp+7r)+1+¢q

az indukcié és a 25. tétel szerint. Masrészt

20gp+ 1)+ 14+ ¢ < Xgpr(Copt1),

ugyanis indirekt tegytik fel, hogy a Cy,41 kornek létezik s = gp + r-szeres szinezése
t =2(gp+r)+q szinnel. Ekkor a 32. tétel szerint 1étezik L(Capy1) — Ba(gptr)+q,pg+r
ortoleképezés, ami a fenti (o) egyenl6tlenség miatt

qgp +r

[ . 1 <p,




5. A STAHL SEJTES VIZSGALATA 58

ami ellentmondas.

Most vegyiink egy tetszoleges K Gy, », Kneser grafot és tegytik fel, hogy s-szeresen
szinezhetd t szinnel, azaz létezik v : KG,, , — KGy s grathomomorfizmus. Ekkor a
32. tétel szerint létezik

L(y) : Byn — Buis

ortoleképezés. A Stahl sejtés szerint, ha s = gn — r, ahol 0 < ¢ és 0 < r < n,
akkor gm — 2r < t. A C9,4;1 esethez hasonléan legyen z,z’ KG,, , olyan csicsai,
melyek diszjunkt (ortogondlis) pontjai B, ,-nek, azaz x Nz’ = (). Feltehetjiik, hogy
x={1,2,...,n}és '’ ={n+1,n+2,...,2n}. Létezik koztiik 2[n/m — 2n] hosszi
Ut By n-ben: 2o = 2,01, .., Zafn/m—2n]—1, L2[n/m—2n] = ', ahol

xo; = {i(m —2n) + 1,i(m — 2n) + 2,...,i(m — 2n) + n}
és
Toit1 ={i(m —2n)+ 1,i(m —2n)+2,...,(i+ 1)(m — 2n) + n}.

Tehat d(x,z') < 2[n/m —2n]. Legyen y; € B, 5 az x; pont képe L(7) mellett. Ekkor
y és y' olyan diszjunkt pontjai By s-nek, melyek tavolsdga legfeljebb 2[n/m — 2n]|.
Maésrészt a 46. allitas szerint

s
t—2s

dy) 2 (A0 4 1y 02,

t—2 t— 2s

Tehat
n

1,

melybe behelyettesitve az s = qn — r és t = gm — 2r — 1 értékeket a

S
20— | < <2

qn—r
g(m —2n)—1

n

2] 1 <dy,y") <2[

—|7

m —2n

egyenl6tlenséget kapjuk, mely trividlisan teljesiil, ha [n/m — 2n] < r. Azaz a m >
2n + 1 esetén Ossztettebb vizsgdlatra van sziikség. A B, , poset altaldnositdsaként
kapott Cﬁ%n posetekben is igaz marad a 46. allitasban kapott alsé korlat.

48. Allitas. (Osztényi [28]) Tetszbleges p,p’ € Ch ,-re

(|p>€p’|]+(|p’;pl] < dp.p).
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A bizonyitas teljesen megegyezik a 46. allitas bizonyitasaval. Vizsgaljuk meg
inkébb az olyan ortogondlis p és p’ pontok elhelyezkedését Cﬁ%n—ben, melyek minimalis
tavolsagra vannak egymastol. Az el6zo allitas szerint

) > 2 2]y,

mivel ebben az esetben p\ p’ = p és p’ \ p = p’. Legyen n = uk + v, ahol 0 < u és

0<wv <k, igy
uk + v n uk + v

P

bérmely p és p’ CF, | -beli diszjunt elemekre.

d(p,p’) > T | =2u+2

A kovetkezé allitasban karakterizaljuk azon p és p’ C’T";L’n—beli diszjunkt pontpa-
rokat, melyekre d(p,p’) minimalis.

49. Allitss. (Osztényi [28]) Legyen p és p/ C’f,"%n—belz' diszjunt pontpdr, és legyen
n=uk+ v, ahol0 <wu és 0 <v < k. Ekkor az alabbi két dllitds ekvivalens

1. d(p,p') =2u+2.

2. p,p € C’ﬁ%_,f és pl + |p'| < Qu+ 1)k +v.

Bizonyitas. 1. = 2.
Ez az irdny bizonyitdsahoz legyen |p| = uk +wv, és |p'| = uk +v, valamely v, v, > v-
re. Ekkor

2ut2=dp,p') 2 [0 + 1) = o 727 4 1227,

Igy vp, Uy < k, tehdt p,p’ € C’,’j;ﬁ’

Legyen p = po,p1,---,Doutre = P’ egy tut, mely Osszekoti p-t és p/-t C’f’n,n—ben.
Ha (po,p1) egy felfelé 1épés, akkor p; \ po elemeinek a szama legfeljebb n + k — |p|.
Minden egyes tovabbi u darab felfelé 1épés sordn legfeljebb k elemet vesziink be p'-
bdl. Ahhoz hogy eljussunk p-bél p’-be p’ dsszes elemét be kell venniink valamely felfelé
1épés sordn, igy

| <n+k—|p|+uk ésigy |p|+[p|<(u+1)k+w.
Ha (pg,p1) lefelé 1épés volt, akkor a fenti gondolatmenethez hasonléan

| <ku+|p'|—n ésigy n <ku,
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kellene hogy teljesiiljon, ami ellentmond az n-re és v-re tett feltetételeinknek.

2. = 1.
Tegyiik fel, hogy p,p’ € C’ﬁ%_,}: és p| + [p'| < (2u + 1)k + v. Megadunk egy (2u + 2)
hosszi utat p-bol p’-be. Legyen |p| = ny és |p'| = na. Az altaldnossdg megszoritas

nélkiil feltehetjiik, hogy p = po az elsé ny pozitiv egészet tartalmazza, és hogy p’ =
Poutz = {n1 +1,...,m1 +na}. Han < k, akkor u = 0és p; = pUyp € Ck

m,n’
mivel [pUp/| < k+wv. Igy p = po C p1 D p2 = p/ egy 2 hosszi 1t p-b8l p'-be
C’f;,n—ben. Egyébként legyen po; = {ik +j : 1 < 7 < n} minden 1 < i < u-ra. Ekkor

p2i € {1,2,...,2n + k}, mivel uk + n = 2uk + v < 2uk + 2v + k. Valamint legyen
P2it1 = P2i U paiye minden 0 < ¢ < w-ra. Nyilvdnvaléan [pe; 1| < n + k minden
0 < i <wu— 1l-re, és még megmutatjuk, hogy |p2y,+1| < n + k. Definicié szerint

pou = {uk +1,...,2uk + v}.
Mivel ny +ns < (2u+ 1)k + v, igy
Poutz C{n1+1,...,2u+ 1)k + v}.
Tovabba uk + 1 < ny + 1 miatt
DP2ut1 = Pou Upouts C{uk+1,...,(2u+ 1)k + v}.
Tehat |pay+1| < n+ k. Vagyis
P=poCprOp2C... D P2 =0p

egy (2u+ 2) hosszti it p-b8l p’-be CF,  -ben.
|

Ezen el6késziiletek utdn a kovetkezo alsé korlatot adhatjuk a KG, , Kneser graf
multikromatikus szamaira.

50. Tétel. (Osztényi [28]) Tetszdleges 0 < m,n,q és0 < r < n egészek esetén legyen
[ egész olyan, hogy 1 <1 <m —2n, 0 <r <lIn/(m —2n). Ekkor

an—r(KGm,n) >mq — 2r — 1.

A tétel bizonyitasa a kovetkezd két lemmaén alapszik.
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51. Lemma. (Osztényi [28]) Tegyik fel, hogy létezik L : C’ﬁ%n — C’g,,];__l%_l’qn_r
ortoleképezés, ahol 0 < m,n, k és q tetszdleges egészek. Az r ésl pedig olyan egészek,
melyekre 0 < r <mn, és 1 <1<k, 0 <r <lIn/k. Tovdbbd legyen n = uk + v, ahol
0<ués0<v<k. Hav <k, akkor
L(Ck—v) C CQ(k—U)—l
m,n/ =

qgm—2r—Il,qn—r"

—v

Bizonyitas. Legyen p,p’ két olyan diszjunkt pontja Cff%n -nek, melyre |p'| = n =
uk +v. Ekkor [p| + |p'| < (2u+ 1)k + v, igy a 49. &llitas szerint d(p,p’) = 2u + 2.
Az L leképezés rendezérstartd, ezért d(L(p), L(p')) < 2u + 2. Maésrészt a 48. allitas

szerint
|L(p)| [L(p")]

d(L(p), L(p")) > [

ugyanis L(p) és L(p') diszjunkt pontjai C7%~" -nek. Igy

gm—2r—l,gn—r

|L(p)| |L(p")|

2 2>
w2z [T+ B,

Tovébbd vegyiik észre, hogy gn —r = q(uk +v) —r > q(uk +v) — [2] +1 =
(gk — Du+qu— %7 +1, ahol 0 < qv — [&] + 1. Tgy

Hi@h . ((qk ~—Du +qu z_ ] 41
q q

1>u+1

Tehat (‘jk(f )H = u + 1, hasonléan ['qu(f )l|] = u+ 1. Ami azt jelenti, hogy

IL(p)| < (u+1)(gk =1) = (qgn—7r) —ul —qu+7r+qk =1 < (gn —7) + q(k —v) — [,

ugyanis r < In/k = lu + lv/k. Vagyis tetsz6leges p € C’T’f{ﬁ’ pont esetén L(p) eleme
Cq(k:fv)fl

quQTfl,qnfr_nek'

52. Kovetkezmény. (Osztényi [28]) Tegyiik fel, hogy létezik L : CF, ,, — Cg,,’i;qln_,,
ortoleképezés, ekkor létezik Ly : C*t — O~ W™ peoszoritdsa, hogy 1 < ky < k és

m,n qm,qn—r
n = (Ut + 1)kt

53. Lemma. (Osztényi [28]) Tetszdleges 0 < m,n,q és 0 < r < n egészek esetén
legyen 1 egész olyan, hogy 1 <1 <m —2n, 0 <r <lIn/(m — 2n). Ekkor nem létezik

Byyn — Bym—2r—1,qn—r ortoleképezés.
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Bizonyitas. Indirekt tegyiik fel, hogy létezik L : B,,, — Bgm—2r—i,gn—r OI-
toleképezés valamely g és 0 < r < In/(m — 2n) pozitiv egészekre, azaz létezik
L: C’ff,’%n — C’gsl__l%_l’qn_r ortoleképezés, ahol k = m — 2n.

Az 52. kovetkezmény miatt feltehetjiik, hogy k | n. Legyen p és p’ két pontja
Cfnvn—nak, melyekre p N p’ =0 és |p|, [p'| = n. A 49. allités szerint d(p,p’) = 2u + 2,
ahol n = (u + 1)k. Ezt felhasznalva

2u+2=d(p,p') > d(L(p), L(p')).
Mivel gn —r = (¢gk = D)(u+ 1) +l(u+ 1) — 7

|L(p)| |L(p")]
qk — l] * (qk —1

d(L(p), L(p")) > [ 1>

(gk—D(u+1)+l(u+1)—r (gk —D)(u+1)+l(u+1)—r
qk — 1 1+ qk — 1

[

ami ellentmondas.

| =2u+4,

Az el6z6 lemma és a 19. allitést felhasznalva a K Gy, , Kneser graf nem szinezhetd

(gn — r)-szeresen gm — 2r — | szinnel, azaz
an—T(KGm7n) > qm — 2r — 1.

Ez, tetsz6leges m,n esetén, megadja a xs(K Gy, ) multikromatikus szamokat a gn —

| —"5-] < s < gn indexekre, az Gsszes g pozitiv egészekre. Ez m < 3n esetén djabb,

eddig nem ismert s-ekre igazolja a sejtést. Ezeken kiviil, m < 3n esetén, a tobbi
indexre élesebb alsé korldtot ad, mint ami eddig ismert volt.
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A dolgozat a grafok multikromatikus szamaira vonatkozoé topologikus alsékorlat
tételek vizsgalatdval foglalkozik. Az 1970-es években Gilbert [18] definidlta a grafok
s-szeres szinezését, ami szamos gyakorlati probléma matematikai modelljét adta [27].
Az ezzel kapcsolatos els6 eredményeket Saul Stahl 1978-as [32] cikke tartalmazza. Eb-
ben a cikkében Stahl megfogalmazta a Kneser sejtés altalanositasat, a Kneser grafok
multikromatikus szdmaira vonatkozo sejtését. Ezt ma Stahl sejtésnek nevezziik. A ha-
gyomanyos kromatikus szamra vonatkozo legelsé topologikus alsokorlat tételt Lovasz
Lészlé bizonyitotta 1978-as, a Kneser sejtést megolddsat tartalmazd [22] cikkében.
A Lovasz altal bevezetett topologikus médszerrel tovabbi alsokorlat tételek sziilet-
tek, illetve az ez iranyu kutatasok még napjainkban is folynak. Eddigi cikkeimben a
Stahl sejtés altal motivalva a grafok kromatikus szamara vonatkozo alsékorlat tételek
multikromatikus szdmokra val6 altalanositasat vizsgaltam, valamint ezen tételeket

alkalmazva alsé korlatot adtam a Kneser grafok multikromatikus szamaira.

A téma tobb teriiletre terjed ki. A grafelmélet, az algebrai topldgia és a kombina-
torika fogalmait, eszkozeit és modszereit is hasznélja. Az 1. fejezetben Osszegyijtjik
a legalapvetobb grafelméleti és algebrai topoldgiai fogalmakat, jeloléseket. Itt tar-
gyaljuk azokat a kombinatorikus topoldgiai médszereket, melyek hatékony eszkozként
szolgalnak a komplexusok homotodpia tipusanak, illetve topologikus Gsszefiiggoségének
meghatarozasaban.

A kovetkez6 két fejezetben a torténeti hatteret tekintjiik at. Elészor, a 2. feje-
zetben, a hagyoményos kromatikus szamra vonatkozé topologikus alsdkorlat tételeket
néziink meg. Ezek mindegyikének a vazat az alabbi eljaras adja.

G graf — K(G) grafkomplexus

!
alsé korldt x(G)-re «— K(G) topologikus tulajdonsiga

Lovéasz [22] egy tetszbleges G gréthoz az NK(G) szomszédsagi komplexust rendeli.
JW. Walker [35] az LI(G) Lovész komplexussal dolgozik. Babson és Kozlov [2] a
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szomszédsagi komplexus Lovasz Laszlé dltal definidlt dltalanositasaval, a Hom(H, G)
grathomomorfizmus komplexussal dolgoznak.

Az altalunk tanulmanyozott topologikus alsékorlat tételek bizonyitdsai a Zo-
terekre vonatkozé Borsuk-Ulam tipusu tételen alapulnak. Ugyanis egy G graf ¢
szinnel valé szinezése, azaz egy v : G — K; grafhomomorfizmus, valamennyi Zs-
grafkomplexus esetén indukdl egy ¢ : |K(G)| — |K(K¢)| Zo-leképezést. Az NIC(Ky)
szomszédsagi, illetve LI (K;) Lovasz komplexus homotép ekvivalens az S¢~2) gémb-
felillettel, mig a Hom (K, K;) komplexus homotép ekvivalens egy (¢t — [)-dimenzids
gombcesokorral minden 2 < [ < t-re. fgy ezen ismert homotopia tipusok folytan a
c: |K(G)| — |K(Ky)| Za-leképezések csak bizonyos t-kre 1éteznek.

A Kneser sejtés legtobb bizonyitdsanak alapjat a KG,,, Kneser graf
NK(KG,, ) szomszédsigi komplexusdnak egy (m — 2n)-dimenziés gémbcsokorral
valé homotép ekvivalencidja adja. A fejezet végén ezen eredmény egy 1j bizonyitasat
adjuk, a dolgozatban tobbszor alkalmazott diszkrét Morse elméletet hasznélva.

A 3. fejezetben a grafok s-szeres szinezésének elozményeit targyaljuk. A fogal-
mat 1972-ben Gilbert vezette be [18]-ban a radidfrekvencia kiosztasi probléméval kap-
csolatban. Tovabbi gyakorlati problémak, igymint flottaszervizelés, munkafeladatok
iitemezése vagy forgalomszinkronizdlas tanulményozasa is a grafok s-szeres szinezésé-
nek feladatdra vezettek [27]. Ezen problémdk matematikai modelljében a kévetkez6
feladatot kell megoldanunk: egy megfelel6 graf csicsaihoz egy bizonyos szinhalmaz s
elemii részhalmazainak egy olyan hozzarendelését adjuk meg, mely éllel 6sszekotott

csucsokhoz diszjunkt részhalmazokat rendel.

Az s-szeres szinezéssel kapcsolatos legalapvetébb eredményeket Saul Stahl 1978-
as [32] cikke tartalmazza. Ebben a multikromatikus szdmok szdmos tulajdonségét
bizonyitotta, valamint azokat tobb grafosztalyra kiszamolta. Egy G graf s-szeres
szinezése t szinnel, egyenértékd egy v : G — K Gy s grafhomomorfizmus megadasédval.
A KG; s Kneser grafok e kozponti szerepe kapcsan Stahl vizsgélta a multikromatikus
szamaikat, melyeket tobb esetben kiszamolt. Ezek alapjan megfogalmazta a Kneser

sejtés altalanositasat, amely megadna az 6sszes multikromatikus szamot.

30. Sejtés. (Stahl [32]) Tetszdleges n és m > 2n pozitiv egészek esetén legyen
s=qgn—r, ahol 0 < q és 0 <r <n egészek, ekkor

Xs(KGmpn) = qgm — 2r.

Stahl kovetkezo [33] cikkében tijabb specidlis esetekben igazolta a sejtést, illetve
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az alabbi alsé korlatot adta.

31. Tétel. (Stahl [33]) Tetszbleges n és m > 2n pozitiv egészek esetén legyen
s=qn—r, ahol 0 < q és 0 <r <n egészek, ekkor

Xs(KGmpn) > gm — 21 — (n2 —3n+4).

A sejtést igazolnd a xgn(KGmpn) és Xgn+1(K Gy ) multikromatikus szamok
kozti m — 2n + 2-es ugras bizonyitdsa, ugyanis Stahl megmutatta [32]-ben, hogy
Xs+1 = Xs + 2 minden s pozitiv egészre. Az el6bbi tételben szereplo alsé korlat
s = qn + 1 esetén,

Xgn+1(KGmn) 2 Xqn(KGmn) +m —2n — (n2 —3n+4),

éppen azt mutatja, hogy a X¢n(KGmn) és Xgnt1(K G, ) multikromatikus szamok
kozott rogzitett n esetén akarmilyen nagy ugras lehet.

Ebben a témaban elért eddigi eredményeimet az utolsé két fejezetben fejtettem
ki. A 4. fejezetben a 2. fejezetbeli, hagyomanyos kromatikus szamra vonatkozo, to-
pologikus alsékorlat tételek altalanositasait adjuk meg a multikromatikus szamokra.
Amint lattuk, egy G graf s-szeres szinezése t szinnel, azonos egy v : G — KG; s graf-
homomorfizmussal. A 2. fejezetben definidlt valamennyi Zs-grafkomplexus esetén a
~ indukél egy ¢ : |[K(G)| — |[K(KGy)| Zo-leképezést. Igy a K(KGy,) komplexu-
sok homotépia tipusat meghatérozva a G graf multikromatikus szamaira vonatkozé
topologikus alsokorlat tételeket kapunk.

Az LK(K Gy, s) Lovész komplexus mar ismert homotépia tipusabdl egyszerii meg-
gondolassal ad6dik a Walker-féle tétel altalanositasa.

33. Tétel. (Osztényi) Tetszbleges G grif esetén és s > 1-re
Xs(G) > ind(L(G)) + 2s.
A Babson-Kozlov-féle tétel altaldnositasahoz a Hom(K,,, KG¢ s) komplexus ho-
motopia tipusat hatarozzuk meg.

34. Tétel. (Osztényi [29]) Tetszdleges n,s és t > 2s pozitiv egészek esetén a
Hom(K,,, KGys) komplezus homotdp ekvivalens egy (t — ns)-dimenzids gombesokor-

ral.
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Ezt felhasznélva a kovetkezo topologikus alsokorlat tételt kapjuk.

36. Tétel. (Osztényi [29]) Tetszbleges G grdfra, s és | > 2 pozitiv egész szamokra
Xs(G) > ind(Hom(K;, G)) + sl.

A 4. fejezet médsodik felében a G[K,] lexikografikus szorzat NK(G[K]) szom-
szédsdgi, illetve Hom (K2, G[K,]) grafhomomorfizmus komplexusét vizsgaljuk. Mivel
egy G graf s-szeres szinezése ekvivalens a G[K| graf egyszeres szinezésével, igy a
G[K;] graf hagyomanyos kromatikus szamara adott alsé korlat a G graf multikroma-
tikus szamaéra ad alsé korldtot. Elészor a G[K ] graf szomszédsagi komplexusa és a G
graf agynevezett kiegészitett szomszédsagi komplexusa kozotti Osszefiiggést mutatjuk

meg.

41. Tétel. (Osztényi [12]) Tetszdleges s > | > 2 egészek és G grdf esetén az
NK(G[K,]) komplezus akkor és csakis akkor 1-0sszefiiggd, ha az EN(G) komplexus
l-0sszefliggao.

Ez azt is jelenti, hogy az EN(G) komplexus véges Osszefiiggbsége esetén a Lovész-
féle tételbdl kapott
Xs(G) = conn(NK(G[KS])) + 3

alsé korlat akarmilyen rossz lehet.

Ezutén a Hom(Ko, G[K;]) grafhomomorfizmus komplexus Zs-indexe és a G graf-
ban talalhato legnagyobb teljes részgraf mérete kozti kapcsolatra mutatunk ra.

42. Tétel. (Csorba [12]) Tetszdleges G grif és s > |V (G)| egész esetén

ind(Hom(K2, G[K,])) +2 = s - w(G).

Ez a Babson-Kozlov-féle tétellel egyiitt a kovetkezo topologikus alsokorlat tételt
adja a multikromatikus szamokra.

43. Tétel. (Csorba [12]) Tetszdleges G graf és s > |V (G)| egész esetén

Xs(G) > s w(G).

Az 5. fejezetben a Stahl sejtés vizsgalataval foglalkozunk. A Walker-féle, illetve
Babson-Kozlov-féle tételek altalanositasai csak bizonyos, mar eddig is ismert, esetek-

ben oldjdk meg a sejtést, a tobbi esetben nem adnak éles als6 korlatot a KG,, p
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Kneser graf multikromatikus szamaira. Az EN(KG,, ,,) komplexus Osszefiiggdségérol
megmutatjuk, hogy véges. Ebbdl az dertilt ki, hogy a Lovasz-féle alsé korlatot alkal-
mazva K Gy, K| grafra az nem oldja meg a Stahl sejtést. Az 43. tételt alkalmazva
a KG,, , Kneser grafra csak a Babson-Kozlov-féle tétel altalanositdasaval (36. tétel)
adott also korlattal megegyezz6 vagy annal gyengébb alsé korlatot kapunk.

A KG,,,, Kneser graf s-szeres szinezése ¢ szinnel megegyezik egy KG,, ,n —
KGy s grathomomorfizmussal. A Stahl sejtés éppen azt mondja meg, hogy mely
indexekre léteznek ilyen grafhomomorfizmusok. Egy v : KG,,n — KGy s graf-
homomorfizmus létezése esetén valamennyi K(-) Zo-grafkomplexusra létezik egy c :
IK(KGmn)| — [K(KGys)| Zo-leképezés. Egy ilyen c leképezés 1étezésének akadalya
a Borsuk-Ulam tétel szerint, ha |IC(KG,, »)|-ben nagyobb dimenzids Za-gémbfeliilet
van, mint [IC(K Gy s)|-ben. Az altalunk vizsgalt topologikus alsé korlatok életlensége
abbdl adodik, hogy a vizsgalt esetek nagy részében ez éppen forditva van. Azaz ha
m — 2n < t — 2s, akkor |[C(K Gy s)|-ben nagyobb dimenzids Zg-gémbfeliiletek van-
nak, mint |[C(K G, )|-ben. Tehat |[CK(KGp )| — |LK(K Gy s)| Zo-leképezés 1étez-
het, ha m — 2n < t — 2s. Ezért a Walker altal [35]-ben definiélt, a Lovédsz posetek
kozti, LP(K Gy, n) — LP(KG,s) ortoleképezés 1étezését vizsgdljuk, mely leképezés
érzékeny a gombfeliiletek ”szimplicidlis méretére” is. Az LP(KG,, ) ortoposetbeli

szimplicialis ortokorok méretét vizsgalva a kovetkezd also korlatot kapjuk.

50. Tétel. (Osztényi [28]) Tetszdleges 0 < m,n,q és 0 < r < n egészek esetén legyen
[ egész olyan, hogy 1 <1 <m —2n, 0 <r <lIn/(m —2n). Ekkor

an—r(KGmJL) > qm — 2r — 1.

Ez megadja a xs(KGpn,n) multikromatikus szamokat a gn — [ —"5-| < 5 < qn
esetekben, tetszoleges m,n és q pozitiv egészekre. Ami m < 3n esetén djabb, eddig

nem bizonyitott, részesetekben igazolja a sejtést.

Amint azt a fenti tétel is mutatja az LP(KG,, ) ortoposetbeli a gémbfeliile-
tek ”szimplicidlis méretét” vizsgalva djabb xs(K G, ) multikromatikus szamokat
hatarozhatunk meg. Am az egy dimenziés esethez képeset a magasabb dimenzids
esetekben tovabbi nehézségek addédnak, melyek lekiizdése a tovabbi kutatasok targya
lehet.



SUMMARY

In this dissertation we study topological lower bounds for the multichromatic
number of graphs. In the early 1970’s Gilbert [18] introduced s-tuple colorings of
graphs motivated by practical problems. Saul Stahl studied the properties of this
colorings in [32]. In this paper he formulated the conjecture on the multichromatic
number of the Kneser graphs. The first topological lower bound was given by Laszl
Lovész, when he settled the famous Kneser conjecture in [22]. Lovasz’s method pro-
duced further lower bounds for the chromatic number (see [35,24,3]). Motivated by
Stahl’s conjecture we generalize these bounds for the multichromatic number of G in
[12,29], and we apply these bounds for the Kneser graph KG,, ,, in [28].

The topic of the dissertation is ranging over three fields. We apply the tools
of graph theory, algebraic topology and combinatorics. In Chapter 1 we recall some
basic facts about graph theory and algebraic topology and give a short introduction
to combinatorial topology.

In Chapter 2 we describe some topological lower bounds for the chromatic num-
ber. The general idea for obtaining a lower bound on the chromatic number of a
graph G is first associating a graph complex IC(G) to G and then bound the chro-
matic number of G by a certain topological invariant of the complex K(G). This is
summarized by the following scheme.

Graph G — Graph complex K(G)

l
Lower bound for x(G) «— Topological invariant of K(G)

We study various graph complexes: the neighborhood complex NK(G) (introduced
by L. Lovész [22]), the Lovédsz complex LK(G) (defined by J.W. Walker [35]) and the
graph homomorphism complex Hom(H, G) (constructed by Babson and Kozlov [2]).

In Chapter 2 we describe the method for obtaining lower bounds for x(G) coming

from a topological invariant of K(G) in detail. A coloring of G with t colors is a
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v : G — K; graph homomorphism. This induces a Zgo-map ¢ : |K(G)| — |[K(K%)| for
all Zo-graph complexes KC(+). The complex N (K), respectively LK(K}) is homotopy
equivalent to the sphere S*=2) and Hom/(K], K}) is homotopy equivalent to a wedge
of (¢t — l)-dimensional spheres. So the Zs-map ¢ : |[K(G)| — |K(Ky)| exists only for
certain t according to a Borsuk-Ulam type theorem. This gives a topological lower
bound for the chromatic number of G.

Most of the proofs of the Kneser conjecture rely on the fact that the Lovasz
complex LI(KGy, ) is homotopy equivalent to a wedge of (m — 2n)-dimensional
spheres. This was first verified by Lovasz in [22]. We give a new proof of this fact in
this chapter. The advantage of our proof is that it also provides a recursive formula
for the number of the spheres.

Chapter 3 summarizes the previous results on the s-tuple colorings of graphs.
The idea of s-tuple colorings was introduced by Gilbert [18] in connection with the
mobile radio frequency assignment problem. Other applications of s-tuple colorings
include fleet maintance, task assignment, and traffic phasing discussed in [27]. The
graph-theoretical formulation of these problems is the following: There is a graph G.
Make an assignment on GG which assigns a set of s colors to each vertex of G so that

the sets of colors assigned to adjacent vertices are disjoint.

In the early 1970’s S. Stahl formulated the following conjecture on the multichro-
matic number of the Kneser graph in [32].

Conjecture 30. (Stahl [32]) If s = gn — r where 0 < q and 0 < r < n, then

Xs(KGmn) = qgm — 2r.

The case s = 1 is the famous Kneser conjecture, which was settled by Lovasz in
[22]. Further, Stahl confirmed his conjecture for the case s = ¢n in [32] by showing
that xqn(KGp,n) = gm for any positive integers n, m and ¢ where 2n < m. He also
proved that xs+1 > xs + 2 for any positive integer s. Since xp (K G n) = m, this
yields

Xs(KGmn) = Xs—1(KGmpn)+2 for 1<s<n.

In general, the inequality

an+1(KGm,n) Z an(KGm,n) + Xl(KGm,n)

would imply the conjecture.
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The multichromatic numbers of the Kneser graph KG,, ,, are trivial for n =1
and S. Stahl computed them for n = 2, n = 3 and m = 2n + 1 in [32] and [33].
Moreover, he proved the following inequality in [33].

Theorem 31. (Stahl [33]) For any positive integers 2n < m, and s
qgm —2r — (n* —3n +4) < xs(KGmn) < gm — 2r,

where s=qn —r, 0 <r <n and 0 < q.

This proposition gives that Xgn(KGmn) + X1(KGmn) — f(1) < Xgnt1(KGmn),
where f(n) = n? — 3n + 4. Since f doesn’t depend on m, for a fixed n and ¢ € (0,1)
we have Xgn(KGm.n) + cX1(KGmn) < Xgnt1 (K G ) for m large enough. But if
m < n?—n+4, then Stahl’s result implies only that X gn(KGm.n)+2 < Xgn+1(KGmn).

Our own results are discussed in the last two chapters, Chapter 4 contains results
on topological lower bounds for multichromatic numbers and Chapter 5 describes
applications of these bounds for the Kneser graph.

In Chapter 4 we use two methods for obtaining lower bounds on multichromatic
numbers. First, we generalize the lower bounds described in Chapter 2 to the mul-
tichromatic number of G. An s-tuple coloring of G with ¢ colorsisa v: G — KGy s
graph homomorphism. This induces a ¢ : |[K(G)| — |K(KGys)| Zao-map for all Zo-
graph complexes (). By computing the homotopy type of the complex K(K Gy s)
we obtain topological lower bounds for the multichromatic number of G. We apply
this idea first to the Lovasz complex then to the graph homomorphism complex.

We have seen in Chapter 2 that the Lovasz complex LK(KGy ) is homotopy
equivalent to a wedge of (¢t — 2s)-dimensional spheres. Using this fact, it is easy to
deduce the generalization of the Walker’s Theorem for the multichromatic number.

Theorem 33. (Osztényi) Let G be a graph and s positive integer, then
xs(G) > ind(LK(G)) + 2s.

After obtaining this lower bound we determine the homotopy type of the graph
homomorphism complex Hom(K,,, KG; s) as a generalization of the Theorem of Bab-
son and Kozlov.

Theorem 34. (Osztényi [29]) For any positive integers n,l and m with
max{2n,in} < m, Hom(K;, KG,, ) is homotopy equivalent to a wedge of (m — In)-
dimensional spheres.
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Using this theorem, we give a topological lower bound on the multichromatic

number.

Theorem 36. (Osztényi [29]) Let G be a graph and l,n positive integers, then
Xn(G) > ind(Hom(K, G)) + In.

In the second part of chapter 4 we study the neighborhood complex NKC(G[K])
and graph homomorphism complex Hom (K3, G[K,]) of the lexicographical product
G[K;]. An s-tuple coloring of G is equivalent to an ordinary coloring of the lexi-
cographical product G[K]. Therefore, the topological lower bounds for the ordinary
chromatic number of G[Kj| give another lower bound for the multichromatic number
of G. First, Lovasz’s Theorem yields the following lower bound for the multichromatic
number of a graph G:

xs(G) > conn(NK(G[K])) + 3.

Investigating the neighborhood complex NK(G[Ks]) we find a connection bet-
ween the topological connectivity of NIC(G[K,]) and the topological connectivity of
the so-called extended neighborhood complex of GG described by the following theorem.

Theorem 41. (Osztényi [12]) For any positive integers s > 1 > 2 and any graph G,
the simplicial complex NK(G|[Ks)) is l-connected if and only if the extended neighbor-
hood complex EN (G) is l-connected.

The theorem implies that if conn(EN(G)) is finite, then conn(N(G[K,,])) =
conn(EN(G)) for all m > conn(EN(G)) + 2. Consequently, in this case the gaps
between the multichromatic number and this lower bound can be arbitrarily large.

Examining further, the graph homomorphism complex Hom(K2, G[K;]) provides
us a connection between the Zs-index of Hom(Ks, G[K,]) and the size of the largest
clique (complete subgraph) of G described by Theorem 42.

Theorem 42. (Csorba [12]) Let G be a graph and s > |V (G)| positive integer, then
ind(Hom(K2, G[K,])) +2 = s w(G).
The great advantage of this result is that the expression ind(Hom/(Ksy, G[K;]))+2

is exactly the same as the lower bound for the multichromatic number asserted by

the Theorem of Babson and Kozlov. This can be summarized as follows:
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Theorem 43. (Csorba [12]) Let G be a graph and s > |V (G)| positive integer, then

Xs(G) > s w(G).

In Chapter 5 we study Stahl’s conjecture. The generalization of Walker’s and
Babson-Kozlov’s theorems seems to be a good idea, however this method does not
lead to sharper bounds for the multichromatic number of KG,, ,, than those already
known. On the other hand we show in the chapter that the topological connectivity
number of the complex EN (K G, ) is finite, thus applying Lovdsz’s theorem to the
lexicographical product KG,, ,[K;] remains also fruitless in proving Stahl’s conjec-
ture. Another trial for proving the conjecture is using Csorba’s result (Theorem 43).
Unfortunately this does not improve the previously obtained lower bound. These
subsequent unsuccessfull trials indicate that the applied toplogical methods alone are
not sufficient for dealing with the problem. To overcome this difficulty we use the
Lovasz poset. An s-tuple coloring of the Kneser graph K G, , with ¢ color is a graph
homomorphism KG,,,, — KG} s, which induces an orthomap between the Lovasz
posets LP(KG,, ) — LP(KGys). The advantage of this poset method is that this
orthomap is sensitive for the ”simplicial size” of ortospheres. In the case of the poset
LP(KG,, ) we describe the lenght of the shortest orthocircle, which leads to the
following lower bound.

Theorem 50. (Osztényi [28]) For positive integers m,n,q and 0 < r < n let | be an
integer such that 1 <1 <m —2n and 0 <r <lIn/(m — 2n), then

an—T(KGm,n) > qm — 2r — 1.

This gives the multichromatic number x (K G,,,,,) for the indices gn — | 5] <
s < gn. If m < 3n then Theorem 50 proves the Stahl conjecture for previously

unknown cases.

Theorem 50 indicates that studying the ”simplicial size” of ortospheres in
LP(KGp,,,) we can find further multichromatic numbers xs(KG,, ) by more and
more sharpening the lower bound for xs(K G, ). To determine the ”simplicial size”
of ortosphere presents difficulty in the higher dimensional cases.
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