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1. BEVEZETES

1.1. ABLV tipusn tételek. A linearis operatorfélcsoportok elméletének fontos
részét alkotjak a stabilitasi vizsgalatok. Vegyilink egy A siirtin definialt, zart opera-
tort egy X komplex Banach téren, és tekintsiik az

u(t) = Au(t) (0<1),
(ACP) {u(O) =z, (zedi)

(jol-kittizott) absztrakt Cauchy problémat. Ismert, hogy e probléma megoldasai egy
(T'(t))e>0 operétorfélesoportbdl szarmaztathatoak (1d. [11]). Az operétorfélesoport
stabilitasdhoz elegendd spektralis feltételt ad az Arendt—Batty—Lyubich—Va tétel.
Az A operator spektrumat o(A), az A adjungaltjanak pontspektrumét o, (A*) jeldli.

1.1. Tétel. (ABLV) Jeldlje (T'(t))i>0 az A operdtor dltal generdlt Co-félcsoportot
és tegyiik fel, hogy minden x € X-re T(t)x korldtos. Ha o(A) NiR megszdmldlhato
és op(A*) NiR = 0, akkor

Jim [7(0)a] = 0

minden v € X -re.

E tételnek szamos altalanositasa ismert lokalisan kompakt, kommutativ félcso-
portok reprezentacioira (1d. [1], [2], [5], [3], [19], [20]). A tétel els6 nemkor-
latos kiterjesztéset Vi [41] adta meg, majd Batty és Yeates [3] tanulmanyozta
részletesen a nemkvéazianalitikus reprezentaciok spektralelméletét és stabilitasat.
A diszszertacidmban kiterjesztem Kérchy diszkrét kommutativ félcsoportokon al-
kalmazott modszerét ([19], [20]) altalanos, topologikus félcsoportokra. Ezéltal sta-
bilitasi tételeket bizonyithatunk regularis norma-viselkedésti reprezentacidokra. Az
igy kapott stabilitasi eredmények rokonsédgban allnak [3] eredményeivel, azonban a
stabilitas leirdsa, illetve a reprezentaciok norma-viselkedésére vonatkozo feltételek
lényegesen eltéréek. Ezutin a valos félegyenesen megadjuk egy karakterizéiciojat
azon Cy-félcsoportoknak, amelyek normafiiggvénye topologikusan regularis. Ezeket
az eredményeket 2-4. fejezetekben mutatjuk be. A regularitis mas iranyultsigu,
altaldnositott Toeplitz operdtokra és hasonlésagi problémékban valé alkalmazasarél
a [23], [24], illetve a [7], [8] dolgozatokban olvashatunk.

1.2. Katznelson—Tzafriri tipusa tételek. Disszertaciomban foglalkozom egy
mas tipusa stabilitasi tétellel is, a Katznelson-Trzafriri tétellel (Id. [18]). Jeldlje
A(T) azon folytonos fiiggvények halmazat a T egységkoron, amelyek Fourier egylitt-
hatoi abszolut konvergens sort alkotnak, s legyen AT (T) azon A(T)-beli fiiggvények
halmaza, amelyek negativ indexti Fourier egyiitthat6i nullaval egyenléek. A(T) Ba-

nach algebra az || f|| = 0% __|f(n)| normaval (f € A(T),{f(n)}:2, az f Fourier
egyiitthat6i). Azt mondjuk, hogy az f € AT(T) fiiggvény spektral szintézis egy
zart E C T halmazra nézve, ha létezik olyan (f,), C A(T) sorozat, hogy minden
egyes fy, eltinik F valamely kérnyezetében, és lim,, . || f— fn|| = 0. A Katznelson—

Tzafriri tétel a kovetkezSképpen szol.

1.2. Tétel. Legyen T eqy hatvdnykorldtos operdtor az X Banach téren, és legyen az
f € AY(T) fiiggvény spektrdl szintézis T periferdlis spketrumdra, azaz o(T) N T-re
nézve. Ekkor lim,,_ . |T"f(T)| = 0.

Megjegyezziik, hogy Hilbert térbeli kontrakciokra egy gazdagabb fiiggvénykalku-
lust definialhatunk az A(D) diszk algebra elemeit, azaz a D nyilt egységkorlapon
analitikus és a zart egységkorlapra folytonosan kiterjeszthet6 fliggvényeket hasznal-
va. Bizonyithatd, hogy f € A(D) pontosan akkor tiinik el T' periferalis spektruman,
ha lim, o [|[T"f(T)| = 0 [13]. Ugyanakkor kontrakciokra egy meég altalanosabb
H*° kalkulus is definidlhato, nevezetesen az Sz.Nagy—-Foias kalkulus. Vegyiink egy



2

T teljesen nemunitér Hilbert térbeli kontrakciot és legyen f egy korlatos holo-
morf fliggvény a nyilt egységkorlapon. Ekkor lim, . ||[T"f(T)| = 0 teljesiil, ha
lim, ., f(re’) = 0 minden e?-ra T periferalis spektruman. Ismeretes, hogy az
allitas forditottja nem igaz (1d. [6]).

A disszertacioban megmutatjuk, hogy a Katznelson—Tzafriri tétel feltétele gyen-
githet6 Hilbert tereken, és teljes karakterizaciojat adjuk a lim, . ||[T"Q] = 0
konvergencidnak, ha a @ operator kommutal T-vel. Errdl az eredményrdl a 6.
fejezetben szdmolunk be.

A Katznelson—Tzafriri tételnek szamos altaldnositasa sziiletett diszkrét és folytonos
reprezentaciokra, 1d. [5], [14], [17], [33], [34], [40] és [9], [2]. Megjegyezziik azonban,
hogy ezek az altalanositasok mind T egy fiiggvénykalkulusahoz kapcsolodnak vagy
a T altal generalt Banach algebrahoz.

2. AMENABILITAS FELCSOPORTOKON

Legyen (G;+) egy lokalisan kompakt, o-kompakt, kommutativ csoport. Jeldlje
S egy olyan zart részfélcsoportjat G-nek, amelynek S° belseje nemiires, S —S = G
és SN (=S) = {0} teljesiilnek. Ekkor definidlhatunk egy induktiv részbenrendezést
S-en a kovetkez6 modon: legyen s1 < s9, ha so —s1 € S (s1,82 € S). Legyen u a
G-n rogzitett i Haar-mérték megszoritdsa S-re. A p-re nézve lényegében korlatos,
S-en mérhetd fiiggvények Banach terét a tovabbiakban L°(S) jeloli. Egy f: S — C
fliggveny s' € S-vel valo eltoltja az fo(s) := f(s+ &) (s € S) figgvény.

Az L>°(S)* dualis tér egy m funkcionéljat invarians kozépnek hivjuk, ha

o Iml =m(1) =1,
o m(fs) =m(f) minden f € L>°(S)-re és s € S-re.
(Itt 1 a konstans 1 fiiggvényt jeloli.)

Igazolhato, hogy az S-en értelmezett invarians kézepek halmaza nemiires. Ezt a
halmazt M(S)-sel jeldljiik. Altaldban amenabilisnek nevezziik azokat a (nem sziik-
ségképpen kommutativ) félcsoportokat (csoportokat) amelyeken talalhat6 invaridns
kozép. Az amenabilitas sziikséges és elegends feltételét (erds) Folner sorozatok
segitségével adhatjuk meg.

2.1. Definicié. Egy G lokilisan kompakt csoport nemiires belsejd, kompakt hal-
mazokbol all6 { K\ }rea irdnyitott sorozatat erds Fglner sorozatnak nevezziik, ha
(i) Ky, € K, valahdnyszor A\ < \g,
(i) G =UK3,
(iii) a((xz+Kx) A Ky)/(Kx) — 0 (A — o) kompakt halmazokon atfut6é a-re
nézve egyenletesen (A két halmaz szimmetrikus kiilonbségét jeloli).

Ha csak (iil) teljesiilését tessziik fel, akkor a {K}rca sorozatot Falner sorozatnak
hivjuk.

Példaul G = R esetén a K, :== [—n,n| (n € N) halmazok egy Fglner sorozat alkot-
nak. Az amenabilis csoportok karakterizacios tétele [36, Theorem 4.16] kimondja,
hogy egy G lokalisan kompakt csoport pontosan akkor amenébilis, ha taldlhaté raj-
ta er6s irdnyitott Folner sorozat, illetve erds Fglner sorozat a o-kompakt esetben.

A Markov-Kakutani fixpont tétel segitségével bebizonyithato, hogy minden kom-
mutativ csoport amenabilis, igy talalhaté rajta Folner sorozat. E sorozat elemeit
eltolva az is igazolhat6, hogy Felner sorozat nemcsak G-ben, hanem S belsejében,
S°-ban is 1étezik.

2.1. Topologikusan invarians koézepek. Disszertaciomban sziikségem van az
invarians kozepek egy specilis részhalmazara is. A topologikusan invaridns kzepe-
ket A. Hulanicki definialta lokalisan kompakt Hausdor{l csoportokon (I1d. [36, 9.
old.]). Félcsoportokon a kovetkezs definiciot hasznaljuk. ElSszor is legyen G(S)



azon nemnegativ, mérhets g fliggvények halmaza S-en, amelyekre [ g(s)dpu(s) = 1.
Tetsz6leges f 6 LOO(S) és g E Gg(s ) eseten defmnlaljuk az alabbi f x g € L*°(S)
konvoltuciot: = g f(s+y)g(s) du(s).

2.2. Definicié. Azt mondjuk, hogy egy m € L°°(S)* funkcional topologikusan
invaridns kézép, ha

o [m|=m(1)=1,

o m(f *g) =m(f) minden f € L>(S) és g € G(S5) fiiggvényre.

Igazolhat6, hogy az S-en értelmezett topologikusan invarians kézepek M (S)
halmaza nemiires. Kénnyen belathaté tovabba, hogy minden m topologikusan in-
varidns kozép eltolas invaridns. Valoban, tetszélegesen rogzitett f € L°°(S) fiige-
vényre és y € S-re, valasszunk egy g € G(95) fliggvényt, amelynek tartéja y+ S-ben
fekszik. Ekkor

m(f) = m(f*g) = m ( G0 du(8)> — m(fy % gy) = m(f,).

mert g, a G(S) halmaz eleme, tehat M(S) C M(S) teljesiil.

A kovetkezokben megadunk egy konstrukciot, amely megmutatja, hogy az My (S)
C M(S) tartalmazas lehet szigori, azaz létezhet invarians kozép, amely nem topolo-
gikusan invarians. Legyen S = R, és legyen 71,72,... a nemnegativ racionalis
szamok egy felsorolasa. Jeldlje fo az Q@ N R, halmaz karakterisztikus fiiggvényét,
ahol @ = o2 (r, — 27", 1, + 27 ™). Egyszertien bizonyithato, hogy m(fo) = 0
minden m € My (R} ) kdzépre, ugyanakkor az alabbi teljesiil [28, Proposition 2].

2.3. Propozicié. Létezik olyan m invaridns kozép L (R4)-on, amelyre m(fo) = 1.

Altalaban csoportok széles osztalyara ismert, hogy M (G) # M(G). Pontosab-
ban, ha G egy amenébilis, nemkompakt, nemdiszkrét és lokalisan kompakt csoport,
akkor az M(G) és M(G) halmazok kiilonbozdek (Id. [36, 277.0ld.| és [15], [37],
[38])-

A topologikusan invaridns kozepek halmaza jol jellemezhets az L™°(S)* duélis
térben. A kovetkezs allitas csoportokra vonatkozd megfelel§jét C. Chou bizonyi-
totta [36, 138.0.]. Tetsz6leges pozitiv merteku K C S kompakt halmazra vegyiik
a pi kozepet L>°(S)-n, ahol ok (f) := M(K) S f(s) du(s) (f € L>(S)). Ekkor a
kivetkez$ igazolhato [28, Theorem 3] a csoport esethez hasonléan.

2.4. Tétel. Az M(S) halmaz megegyezik a

{@Kn+8n}n€N ({sn}n € SN)a

sorozatok gyenge-x torldddsi pontjai konvex burkdnak gyenge-x lezdrtjdval, ahol
{K,}n egy tetszdlegesen vdlasztott, rigzitett Folner sorozat S°-ban.

2.2. Konvergencia tipusok félcsoportokon. Célunk, hogy stabilitési tételeket
bizonyithassunk, illetve operator-félcsoportok aszimptotikus tulajdonsagait vizsgal-
hassuk. A legtobb esetben a palyak szokasos konvergencidjanal gyengébb fogal-
makat hasznalunk majd, amelyek bevezetéséhez sziikségiink van a koradbban tar-
gyalt kozepekre. Latni fogjuk azt is, hogy ezek a konvergencidk integralkozepekkel
is leirhatoak.

A < részbenrendezéssel az S halmaz egy iranyitott halmazza valik. Azt mond-
juk, hogy az f: S — C fiiggvény a végtelenben 0-hoz konvergal, ha tetszéleges
e > 0-hoz létezik so € S hogy |f(s)] < e teljesiil minden sy < s esetben. Inva-
ridns kozepeket hasznalva az el6z6 konvergencia fogalomnal gyengébb fogalom, az
ugynevezett (erSs) majdnem konvergencia definialhato.
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2.5. Definici6. Egy f € L*°(S) fiiggvény majdnem konvergens, ha az {m(f) : m €
M(S)} halmaz egyelemt. Jelolésben, a-limf = ¢, ha m(f) = ¢ minden m € M(S)
kozépre.

2.6. Definicié. Azt mondjuk, hogy az f € L*°(S) fliiggvény erds értelemben majd-
nem konvergdl egy ¢ € C szamhoz, ha a-lim|f — ¢| = 0 teljesiil.

Az el6z6ekhez hasonld moédon bevezethetiink egy modositott konvergenciat is,
ha az M(S) halmaz helyett az M;(S) halmazt hasznaljuk.

2.7. Definicié. Egy f € L°(S) fliggvény topologikusan majdnem konvergens ha
{m(f) : m € My(S)} egyelemd. Jeldlésben, at-limf = ¢ ha m(f) = ¢ az Ssszes
m € M(S) kbzépre. Azt mondjuk, hogy egy f € L*°(S) fiiggvény erds értelemben
topologikusan majdnem konvergdl egy ¢ € C szamhoz, ha at-lim|f — ¢| = 0.

A kovetkez§ allitas jol jellemzi ezt a fajta konvergenciat. Megjegyezziik, hogy
a tétel £°°(Z4)-on éppen Lorentz klasszikus eredményét adja vissza a majdnem
konvergens sorozatokrol [30].

2.8. Propozici6. |28, Proposition 4, Remark| Egy f € L>(S) fiigguény akkor és
csak akkor topologikusan majdnem konvergdl ¢ € C-hez, ha

1
Jim s /K (5 () = e

az y € S-re nézve egyenletesen, ahol {K,}, egy tetszélegesen vdlasztott Folner
sorozat.

Eszrevehetjiik, hogy ha f € L*°(S) majdnem konvergens fiiggvény, akkor az
el6z6 integralfeltétel mindig teljesiil.

2.9. Kévetkezmény. [25, Proposition 7] Tegyiik fel, hogy az f € L*(S) figguény
magjdnem konvergens, a-lim [ = ¢, és {K,}, Folner sorozat S-ben. Ekkor

. 1
Jim s /K 1) d(s) = ¢

azy € S-re nézve egyenletesen.

Az sllitas megforditdsa altalaban nem teljesiil (1d. Propozicio 2.3).
Ezen elkésziiletek utan ratérhetiink a regularis norma-viselkedést reprezenta-
ciok vizsgalatara.

3. REPREZENTACIOK REGULARIS NORMAFUGGVENNYEL

Legyen adott egy X komplex Banach tér, és jellje £(X) az X-en hato korla-
tos linearis operatorok algebrajat. Egy p: S — L(X) félcsoport homomorfizmust
reprezentacionak hivunk, ha folytonos az erds operator topologiaban, tehat

° p(0)=1,
o p(s+1t) = p(s)p(t) minden s,t € S-re,
e ap,: S — X, s+ p(s)r palya folytonos minden = € X-re.

3.1. Limeszfunkcional és regularitas. A regularis normafiiggvény értelmezése
Osszefoglaljuk ezek legfontosabb tulajdonsdgait. Azt mondjuk, hogy egy p: S —
(0,00) fiiggvény mormalizdld fiigguény, ha mérhetd és minden s € S-re ps/p €
L>(S) er6s értelemben majdnem konvergél egy pozitiv c,(s) szamhoz. A ¢, figg-
vényt a p fiiggvényhez tartozo limeszfunkciondlnak nevezziik.

A limeszfunkcionél egy fontos és alapvets tulajdonsaga, melyet t&bb bizonyitas
soran is kihasznalunk, a kovetkezd.
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3.1. Lemma. |25, Lemma 9] Ha p egy olyan normalizdls figgvény, amelyre p(s) >
1 teljestil minden s € S esetben, akkor c,(s) > 1 minden s € S-re.

Az S félcsoport nem azonosan zérd, komplex értékii folytonos homomorfizmusait
karaktereknek nevezziik és halmazukat S*-gal jeloljiik.

3.2. Kovetkezmény. [25, Corollary 10] Legyen x € S*, amelyre ¢, < |x| < p.
Ekkor |x| = ¢p.

A tovabbiakban eléfordul6 minden p normalizalé fliggvényrdl feltessziik, hogy S
kompakt részhalmazain korlatos, és p > 1 teljesiil.

Azt mondjuk, hogy egy p: S — L(X) reprezentacié a p normalizdld fiiggvényre
nézve requldris norma viselkedési vagy p-reguldris normafiggvényd, ha ||p(s)|| <
p(s) minden s € S-re, és nem &ll fenn az a-limg||p(s)||/p(s) = 0 sszefiigges.

A limeszfunkciondl legfontosabb tulajdonsagait a kovetkezs két tételben foglaljuk
Ossze.

3.3. Tétel. [25, Theorem 13] Legyen p normalizdlé figguény S-en és tegyiik fel,
hogy Ilétezik eqy p-requldris normafigguényd p: S — L(X) reprezentdcid. Ekkor a
p normalizdlo figgvény c, limeszfunkciondlja S egy pozitiv karaktere.

3.4. Tétel. [25, Theorem 14| Ha a p: S — L(X) reprezenticidé requldris norma
viselkedést a p és q normalizdld figguényekre nézve, akkor

Cp = Cq.

Az el6z6 tétel lehetévé teszi a kovetkezs definiciot. A ¢, := ¢, fliggvényt, amely
a normalizalé fiiggvény megvilasztasatol fliggetlen, a p-regularis normafiiggvényt
p reprezentdcid limeszfunkciondljdnak nevezziik.

A limeszfunkciondl és a spektralsugar-fiiggvény kapcsolatat egy egyenlStlenséggel
irhatjuk le. Diszkrét félcsoportokhoz hasonléan (1d. [20]) igazolhato, hogy

co(s) <r(p(s)), se8,

ahol r(p(s)) a p(s) operator spektralsugarat jeloli. Kérchy bizonyitotta [19]-ben,
hogy ha S = Z , akkor val6jaban egyenlSség all fonn a két oldal kézott. Az S =R,
esetben a kévetkezd analog allitas teljesiil [25, Proposition 16].

3.5. Propozicié. Ha a T: Ry — L(X) reprezentdcio reguldris norma-viselkedési
(egy p normalizdlé figguényre nézve), akkor cr(s) = r(T(s)) (s € Ry) teljesiil.

Megjegyezziik, hogy altalaban a spektralsugar-fliggvény és a limeszfunkcional
eltéréek lehetnek [25, Example 17].

3.2. Reprezentacié spektruma. Legyen f € C.(S) egy kompakt tartoju, foly-
tonos fliggvény S-en. Az f fiiggvény p: S — L(X) reprezentaci6é szerinti Fourier
transzformaltjan az

Fip) = /S £(5)p(s) du(s)

operatort értjiik. Az integral pontonként definialt: f(p)x = [ f(s)p(s)x du(s)
(z € X) Bochner értelemben ([16, Chapter 7.5]). Vildgos, hogy f(p) € L(X).
Hasonloan értelmezhetjiik f(x)—t tetszoleges x € Sf-re is, hiszen S karakterei egy-
dimenziés reprezentaciok.

Ezek utan bevezetjiik a nemkorlatos reprezentéciok kiilénféle spektrumfogalmait,
melyek rokonsagban allnak a Lyubich altal hasznalt d-spektrummal [31], illetve

Kérchy algebrai és kiegyensulyozott spektrumaval [20].
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3.6. Definicié. A p reprezentacié algebrai spekiruma a

oa(p) == { x € §° 1 |F0)1 < IF(p)| minden f € C(S)-re}

halmaz.
A p reprezentéacio kiegyensilyozott spektruma definicio szerint

ob(p) = 0a(p) N S,

ahol Sg = {x € S%: x(s) # 0 minden s € S-re}.
Egy regularis norma viselkedésii p reprezentacié spektrumdn a

a(p) :={x € galp) : x| < c,}

halmazt értjiik, ahol ¢, jeldli p limeszfunkcionéljét.

A limeszfunkciondl 1étezése lehet6vé teszi a szamunkra, hogy értelmezhessiik a
periferalis spektrumot.

3.7. Definici6. A p: S — L(X) regularis normafiiggvényt reprezentacio periferdlis
spektruma:

oper(p) :={x € o(p) : |x(s)| = cy(s) minden s € S-re }.

A karakterek S* halmazat a kompakt-nyilt topologiaval ellatva, az el6z6 halma-
zok lokélisan kompakt, Hausdorff teret alkotnak [25, Proposition 22|. Végezetiil a
p: S — L(X) reprezentacié pontspektruma a

op(p) :={x € S létezik 0 # = € X hogy p(s)z = x(s)z minden s € S-re}

halmaz.

A p reprezentacio adjungaltja, p*(s) := p(s)* (s € S), nem feltétleniil er6sen
folytonos, igy p* spektruma altalaban nem értelmezhetd. Ugyanakkor o, (p*) telje-
sen hasonléan definidlhaté, mint ahogy o,(p)-t bevezettiik.

A spektrumokkal kapcsolatos eredményiink szerint a kiegyensilyozott spektrum
mindig része a reprezentéacio spektrumanak [25, Proposition 19].

3.8. Propozicié. Legyen a p: S — L(X) reprezentdcid requldris normafigguényi.
Ekkor on(p) C o(p).

Mivel a Z% és R" félcsoportok karakterei seholsem ttinnek el, ezért az el6zd
allitasbol azonnal kovetkezik, hogy ekkor a o.(p), op(p) halmazok egybeesnek és
megegyeznek o(p)-val, ha a reprezentacié normafiiggvénye regularis.

3.3. A spektrum leirasa. (a) Legyen T egy korlatos, linearis operator X-en.
Jelolje pr: Z4 — E(/Xl aT alﬁxbgeneralt reprezentciot. Ekkor igazolhat6, hogy
oa(pr) = ob(pr) = o(T), ahol o(T) a T operator o(T) spektrumanak polinomialisan
konvex burka [35, Theorem 2.10.3].

(b) Az el6z6hoz geometriailag hasonlé eredmény bizonyithaté Ry reprezentécioi-
ra, azaz Co-félcsoportokra is [28, Proposition 5 és Corollary 6]. Legyen T: Ry —
L(X) egy Co-félesoport, amelynek generatora A, és legyen poo(A) a C\ o(A) hal-
maznak az a komponense, amely tartalmazza a {z € C: Re z > wo(T)} félsikot,
ahol wo(T) := lims—,00 (log || T(s)]])/s-

3.9. Tétel. Az el6z6 jeloléseket haszndlva,
0a(T) = ou(T') = C\ poo(A).

(¢) Vegyiink egy korlatos p: S — L(X) reprezentaciot, és legyen o := sup{||p(s)|| :
s € S} < oco. Ha ||p(so)]| < 1 teljesiil egy sg € S-re, akkor ||p(nso + s)|| <
llo(s0)]|" @ (n € N) mutatja, hogy limg ||p(s)|| = 0, azaz p egyenletesen stabil.



7

Feltéve, hogy ||p(s)|| > 1 teljesiil minden s € S-re, kénnyen lathato, hogy p
normafiiggvénye regularis a p(s) := a (s € S) normalizalo fliggvény szerint; a
¢, limeszfunkciondl a konstans 1 fuggvény. Ekkor oper(p) megegyezik p unitér
spektrumdval oy (p) := {x € a(p) : |x| = 1}, s6t ga.(p) = o(p) is teljesiil.

A C.(S) halmaz egy stirt részhalmaza L'(S)-nek, igy kénnyen lathat6, hogy
o(p) egybeesik Batty és Vi korlatos reprezentacidkra definialt spektruméval [5]. A
definici6é csoport esetén megadja Lyubich véges L-spektrumat, illetve az Arveson
spektrumot (Id. [31] és [10]).

(d) Vegylink egy regularis normaftiggvényd p: S — L(X) reprezentaciot. Mivel
cp € Sﬂ, ap:= c;lp: S — L(X) reprezentacié szintén regularis normafiiggvényt
lesz és ¢; = 1. Jelolje a x € oper(p) karakter G csoportra valo kiterjesztését x.
Bizonyithato, hogy oper(p) azonosithatd az Sp,(p) unitér spektrummal (1d. [3]),

nevezetesen Oper(p) = {X|S : X € Spy(P)}- Igy oper(p) = {c(XIS) : X € Spy(p)}-

4. A STABILITASI TETEL

4.1. Regularitas és izometrikus reprezentaciok. A stabilitasi tétel bizonyita-
sanak egyik fontos eleme, hogy az eredeti reprezentaciénkhoz hozza tudunk rendelni
egy izometrikus reprezentaciot. Az allitas jol ismert korlatos reprezentéiciok e-
setében, regularis norma-viselkedés mellett pedig a kovetkezd mddon terjeszthetd
ki [25, Theorem 23].

4.1. Tétel. Tetszdleges p-reguldris norma-viselkedésd p: S — L(X) reprezentd-
cidhoz megadhato eqy Y Banach téren haté : S — L(Y) izometrikus reprezentdcio
és eqy Q € L(X,Y) kontrakcid gy, hogy :
(i) ker Q@ = {z € X : a-lim, ||p(s)z||/p(s) = 0}, és ran Q si@rd Y-ban;
(i) Qp(s) = cp(s) ¥(s)Q teljesil minden s € S-re;
(iil) minden C operdtorhoz, amely a {p(S)} kommutdnsnak eleme, létezik pon-
tosan egy olyan D € {(S)} operdtor, amelyre QC = DQ; tovdbbd a
v: {p(S)}Y — {w(S)},C — D leképezés eqy kontraktiv algerba homomor-
fizmus;
(iv) a(p) 2 cpo(¥),  Tper(p) 2 cpoper(¥), op(p*) 2 cpop(¥™).

4.2. Stabilitasi tétel A kovetkezs allitas a disszertacio egyik {6 eredménye, egy
Arend-Batty—Lyubich—Va tipust tétel regularis normafiiggvényi reprezentacidkra
[25, Theorem 25].

4.2, Tétel. Legyen a p: S — L(X) reprezentdcio p-regquldris normafigguényd. Ha
Oper(p) megszamldlhato és o, (p*) N {x € S¥: |x| = c,} iires, akkor

a-lim 1221 _ g

s p(s)
minden T € X-re.

A tétel kovetkezménye az alabbi allitas [25, Corollary 26].

4.3. Koévetkezmény. Legyen a p: S — L(X) reprezentdcid p-reguldris morma-
viselkedésti. Ha oper(p) megszdimldlhatd és op(p*) N {x € S* : |x| = ¢,} iires, akkor

. 1 llp(s)z| _
s p(K) /K p(s) dpls) =0

igaz minden x € X-re, ahol {K;}; tetszdleges Folner sorozat.

Az el6z6 tétel altalanositdsa [5] korlatos reprezentéaciokra vonatkozé stabilitasi
tételének. A 4.2 Tétel spektralis feltételei lényegében megegyeznek [3] cikkben
szereplS f6 eredmeény feltételeivel (1d. [3, Theorem 3.2]). Az alapvetd kiilonbségek



a két eredmény k6z6tt a p norméajara vonatkozo feltételekben és a stablilitast leird
konvergencidban talalhatok.

4.3. Reprezentacidk és topologikus regularitas. Megjegyezziik, hogy a regu-
larités értelmezéséhez invarians kézepeket hasznaltunk, ugyanakkor az el6z6 ered-
mények érvényben maradnak akkor is, ha definiciéinkban csupén a topologikusan
invaridns kozepek sziikebb halmazat hasznaljuk. (A f6bb allitasok, pl. limesz-
funkcional létezése, izometrikus reprezenticio tarsitasa hasonléan igazolhatd, mint
korabban.) Diszkrét félcsoportokon ez az értelmezés nem ad Gjat, hiszen a kozepek
e két osztalya a diszkrét esetben egybeesik. A kovetkezs fejezetben részletesen
megvizsgaljuk a masodik alternativat a félegyenesen, bevezetve a topologikusan
reguléris normafiiggvény reprezentaciokat.

5. Cy-FELCSOPORTOK ES TOPOLOGIKUS REGULARITAS

A topologikus regularitast a koévetkezé moédon definidljuk. Azt mondjuk, hogy
egy p: Ry — [1,00) fliggvény topologikus normalizdlo fiiggvény, ha (i) mérhetd,
(ii) lokalisan korlatos (azaz minden kompakt halmazon korlatos), (iii) minden K C
R, kompakt részhalmazon sup,ej supser, ps(t)/p(t) < oo, és (iv) minden s €
R4-re, ps/p topologikusan majdnem konvergél erds értelemben egy pozitiv c,(s)
szdmhoz. A ¢, fliggvényt a p normalizalé fiiggvény limeszfunkcionaljanak nevez-
ziik. A topologikus normalizalé fliggvények halmazat Pi-vel jeloljik. Az Ry fél-
egyenes reprezentacioit a szokasoknak megfelelGen Cy-félcsoportoknak nevezziik a
tovabbiakban.

5.1. Definicié. A T: Ry — L(X) Cy-félcsoport reguldris norma viselkedésd a p
topologikus normalizdlé figgvényre nézve vagy p-reguldris norma fliggvényd ha (i)
IT(s)]] < p(s) teljesiil minden s € Ry-re, és (ii) at-lim4||T(s)||/p(s) = 0 nem all
fenn.

A regularis normasorozatok karakterizacidja Kérchytsl és Miillertsl szarmazik
[21], [26]. A diszkrét esethez hasonléan bevezethetjik a regularitasi konstansot
minden olyan (T'(s))s>o félcsoport esetén, ahol 7(T'(s)) > 0 (s € Ry). Legyen

L awyrana) ( swo e ron) |
()

n s<y<s+n

k7 := inf sup
neNseRr,

Vilagos, hogy 0 < k7 < 1. A regularitasi konstans lehetévé teszi, hogy jellemez-
ziik azokat a félcsoportokat, amelyek normafiiggvénye topologikusan regulédris. A
kivetkezd tételt [28]-ban bizonyitottuk.

5.2. Tétel. Tekintsiink egqy T: Ry — L(X) Cy-félesoportot. Ekkor az aldbbi dllitd-
sok ekvivalensek:
(i) létezik olyan p € Py, amelyre T normafiiggvénye p-requldris;
(i) létezik olyan folytonos p € Py, amelyre T normafiggvénye p-requldris;
(iii) |T(s)|| > 1 minden s € Ry-re és kp > 0.

6. KATZNELSON-TZAFRIRI TIPUSU TETEL HILBERT TEREKEN

Az ABLV tétellel rokonsagot mutaté operatorelméleti dllitas a Katznelson—Tzafri-
ri tétel (a két tétel kapcesolatarol 1d. [13]). Az S = Z, esetben megadjuk a tétel
egy kiterjesztését Hilbert tereken.

Jelolje I az identikus leképezést X-en. Ha f € AT(T) és T € L(X) hatvanykor-
latos operator, akkor értelmezhets f(T) = Y ;- f(k)T’“ € L(X), ahol f(N) =

Y, FRAE 65 00 | F (k)| < oo



Kiindulasi pontunk az aladbbi észrevétel, amelyet egy lemmaban fogalmazunk
meg [29, Lemma 2.2].

6.1. Lemma. Legyen T hatvinykorldtos operdtor az X komplex Banach téren és
legyen f € AT(T). Ekkor minden X € T esetén a kivetkezd teljesiil

n—1
nlgréo% S ONTETE(F(T) - FD)|| =0.
k=0

Az uniform ergodikus tétel alapjan %ZZ;& T* norméaban nullihoz konvergsl
pontosan akkor, ha 1 a T rezolvensének eleme (1d. [27, Theorem 2.7]). Innen az

alabbi allitas azonnal adodik [29, Corollary 2.3].

6.2. Kovetkezmény. Legyen T hatvdnykorldtos operdtor az X Banach téren és
f € AY(T). Ekkor tetszdleges A € o(T) N'T esetén,

n—oo N

n—1
1
f(A) =0 akkor és csak akkor, ha lim — Z ANRTRF(T) || = 0.
k=0

Kovetkezs eredményiink Hilbert terekre vonatkozik [29, Theorem 2.1].

6.3. Tétel. Legyen T hatvdnykorldtos operdtor a H Hilbert téren. Ha Q € L(H)
és TQ = QT, akkor a kévetkezd dllitasok ekvivalensek:
n—1

1 ;
(i) lim -~ Z A RTRQI = 0 minden A € o(T) N T-re,
k=0

(ii) limy,—eo [|[T™Q] = 0.
Tovibbd, ha Q = f(T) valamely f € AT (T)-re, akkor (i) és (ii) ekvivalens az
aldabbival

(iii) f(A) =0 minden X\ € o(T) N T-re.

A bizonyitas soran részben Vi modszerét ([39], [40]) kovetjiik, azaz a problémat
izometriara redukélva elészor (i)-bdl kiindulva az ers konvergenciat igazoljuk (ii)-
ben. A bizonyitast ultrahatvanyok alkalmazasaval fejezziik be.

Nyitott marad az a probléma, hogy milyen hasonlé allitds bizonyithaté Cpy-
félcsoportokra, illetve altalanosabb reprezentaciokra. Tovabbi kérdés, hogy Hilbert
tér helyett vehetiink-e dltalanosabb tereket, pl. LP-teret (1 < p < 00) vagy szuper-
reflexiv Banach teret.
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