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1. Bevezetés
1.1. ABLV típusú tételek. A lineáris operátorfélcsoportok elméletének fontos
részét alkotják a stabilitási vizsgálatok. Vegyünk egy A s¶r¶n de�niált, zárt operá-
tort egy X komplex Banach téren, és tekintsük az

(ACP)
{
u̇(t) = Au(t) (0 ≤ t),
u(0) = x, (x ∈ X )

(jól-kit¶zött) absztrakt Cauchy problémát. Ismert, hogy e probléma megoldásai egy
(T (t))t≥0 operátorfélcsoportból származtathatóak (ld. [11]). Az operátorfélcsoport
stabilitásához elegend® spektrális feltételt ad az Arendt�Batty�Lyubich�V�u tétel.
Az A operátor spektrumát σ(A), az A adjungáltjának pontspektrumát σp(A∗) jelöli.
1.1. Tétel. (ABLV) Jelölje (T (t))t≥0 az A operátor által generált C0-félcsoportot
és tegyük fel, hogy minden x ∈ X -re T (t)x korlátos. Ha σ(A) ∩ iR megszámlálható
és σp(A∗) ∩ iR = ∅, akkor

lim
t→∞

‖T (t)x‖ = 0

minden x ∈ X -re.
E tételnek számos általánosítása ismert lokálisan kompakt, kommutatív félcso-

portok reprezentációira (ld. [1], [2], [5], [3], [19], [20]). A tétel els® nemkor-
látos kiterjesztését V�u [41] adta meg, majd Batty és Yeates [3] tanulmányozta
részletesen a nemkvázianalitikus reprezentációk spektrálelméletét és stabilitását.
A diszszertációmban kiterjesztem Kérchy diszkrét kommutatív félcsoportokon al-
kalmazott módszerét ([19], [20]) általános, topologikus félcsoportokra. Ezáltal sta-
bilitási tételeket bizonyíthatunk reguláris norma-viselkedés¶ reprezentációkra. Az
így kapott stabilitási eredmények rokonságban állnak [3] eredményeivel, azonban a
stabilitás leírása, illetve a reprezentációk norma-viselkedésére vonatkozó feltételek
lényegesen eltér®ek. Ezután a valós félegyenesen megadjuk egy karakterizációját
azon C0-félcsoportoknak, amelyek normafüggvénye topologikusan reguláris. Ezeket
az eredményeket 2-4. fejezetekben mutatjuk be. A regularitás más irányultságú,
általánosított Toeplitz operátokra és hasonlósági problémákban való alkalmazásáról
a [23], [24], illetve a [7], [8] dolgozatokban olvashatunk.
1.2. Katznelson�Tzafriri típusú tételek. Disszertációmban foglalkozom egy
más típusú stabilitási tétellel is, a Katznelson�Tzafriri tétellel (ld. [18]). Jelölje
A(T) azon folytonos függvények halmazát a T egységkörön, amelyek Fourier együtt-
hatói abszolút konvergens sort alkotnak, s legyen A+(T) azon A(T)-beli függvények
halmaza, amelyek negatív index¶ Fourier együtthatói nullával egyenl®ek. A(T) Ba-
nach algebra az ‖f‖ =

∑∞
n=−∞ |f̂(n)| normával (f ∈ A(T), {f̂(n)}∞n=1 az f Fourier

együtthatói). Azt mondjuk, hogy az f ∈ A+(T) függvény spektrál szintézis egy
zárt E ⊆ T halmazra nézve, ha létezik olyan (fn)n ⊂ A(T) sorozat, hogy minden
egyes fn elt¶nik E valamely környezetében, és limn→∞ ‖f−fn‖ = 0. A Katznelson�
Tzafriri tétel a következ®képpen szól.
1.2. Tétel. Legyen T egy hatványkorlátos operátor az X Banach téren, és legyen az
f ∈ A+(T) függvény spektrál szintézis T periferális spketrumára, azaz σ(T ) ∩ T-re
nézve. Ekkor limn→∞ ‖Tnf(T )‖ = 0.

Megjegyezzük, hogy Hilbert térbeli kontrakciókra egy gazdagabb függvénykalku-
lust de�niálhatunk az A(D) diszk algebra elemeit, azaz a D nyílt egységkörlapon
analitikus és a zárt egységkörlapra folytonosan kiterjeszthet® függvényeket használ-
va. Bizonyítható, hogy f ∈ A(D) pontosan akkor t¶nik el T periferális spektrumán,
ha limn→∞ ‖Tnf(T )‖ = 0 [13]. Ugyanakkor kontrakciókra egy még általánosabb
H∞ kalkulus is de�niálható, nevezetesen az Sz.Nagy�Foias kalkulus. Vegyünk egy
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T teljesen nemunitér Hilbert térbeli kontrakciót és legyen f egy korlátos holo-
morf függvény a nyílt egységkörlapon. Ekkor limn→∞ ‖Tnf(T )‖ = 0 teljesül, ha
limr→1 f(reiθ) = 0 minden eiθ-ra T periferális spektrumán. Ismeretes, hogy az
állítás fordítottja nem igaz (ld. [6]).

A disszertációban megmutatjuk, hogy a Katznelson�Tzafriri tétel feltétele gyen-
gíthet® Hilbert tereken, és teljes karakterizációját adjuk a limn→∞ ‖TnQ‖ = 0
konvergenciának, ha a Q operátor kommutál T -vel. Err®l az eredményr®l a 6.
fejezetben számolunk be.

A Katznelson�Tzafriri tételnek számos általánosítása született diszkrét és folytonos
reprezentációkra, ld. [5], [14], [17], [33], [34], [40] és [9], [2]. Megjegyezzük azonban,
hogy ezek az általánosítások mind T egy függvénykalkulusához kapcsolódnak vagy
a T által generált Banach algebrához.

2. Amenábilitás félcsoportokon
Legyen (G; +) egy lokálisan kompakt, σ-kompakt, kommutatív csoport. Jelölje

S egy olyan zárt részfélcsoportját G-nek, amelynek S◦ belseje nemüres, S − S = G
és S ∩ (−S) = {0} teljesülnek. Ekkor de�niálhatunk egy induktív részbenrendezést
S-en a következ® módon: legyen s1 � s2, ha s2 − s1 ∈ S (s1, s2 ∈ S). Legyen µ a
G-n rögzített µ̃ Haar-mérték megszorítása S-re. A µ-re nézve lényegében korlátos,
S-en mérhet® függvények Banach terét a továbbiakban L∞(S) jelöli. Egy f : S → C
függvény s′ ∈ S-vel való eltoltja az fs′(s) := f(s+ s′) (s ∈ S) függvény.

Az L∞(S)∗ duális tér egy m funkcionálját invariáns középnek hívjuk, ha
• ‖m‖ = m(1) = 1,
• m(fs) = m(f) minden f ∈ L∞(S)-re és s ∈ S-re.

(Itt 1 a konstans 1 függvényt jelöli.)
Igazolható, hogy az S-en értelmezett invariáns közepek halmaza nemüres. Ezt a

halmaztM(S)-sel jelöljük. Általában amenábilisnek nevezzük azokat a (nem szük-
ségképpen kommutatív) félcsoportokat (csoportokat) amelyeken található invariáns
közép. Az amenábilitás szükséges és elegend® feltételét (er®s) Følner sorozatok
segítségével adhatjuk meg.
2.1. De�níció. Egy G lokálisan kompakt csoport nemüres belsej¶, kompakt hal-
mazokból álló {Kλ}λ∈Λ irányított sorozatát er®s Følner sorozatnak nevezzük, ha

(i) Kλ1 ⊆ Kλ2 valahányszor λ1 � λ2,
(ii) G =

⋃
K◦λ,

(iii) µ̃((x+Kλ) 4 Kλ)/µ̃(Kλ) → 0 (λ → ∞) kompakt halmazokon átfutó x-re
nézve egyenletesen (4 két halmaz szimmetrikus különbségét jelöli).

Ha csak (iii) teljesülését tesszük fel, akkor a {Kλ}λ∈Λ sorozatot Følner sorozatnak
hívjuk.

PéldáulG = R esetén aKn := [−n, n] (n ∈ N) halmazok egy Følner sorozat alkot-
nak. Az amenábilis csoportok karakterizációs tétele [36, Theorem 4.16] kimondja,
hogy egy G lokálisan kompakt csoport pontosan akkor amenábilis, ha található raj-
ta er®s irányított Følner sorozat, illetve er®s Følner sorozat a σ-kompakt esetben.

A Markov�Kakutani �xpont tétel segítségével bebizonyítható, hogy minden kom-
mutatív csoport amenábilis, így található rajta Følner sorozat. E sorozat elemeit
eltolva az is igazolható, hogy Følner sorozat nemcsak G-ben, hanem S belsejében,
S◦-ban is létezik.

2.1. Topologikusan invariáns közepek. Disszertációmban szükségem van az
invariáns közepek egy speciális részhalmazára is. A topologikusan invariáns közepe-
ket A. Hulanicki de�niálta lokálisan kompakt Hausdor� csoportokon (ld. [36, 9.
old.]). Félcsoportokon a következ® de�níciót használjuk. El®ször is legyen G(S)
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azon nemnegatív, mérhet® g függvények halmaza S-en, amelyekre
∫
S
g(s)dµ(s) = 1.

Tetsz®leges f ∈ L∞(S) és g ∈ G(S) esetén defniniáljuk az alábbi f ∗ g ∈ L∞(S)
konvolúciót: (f ∗ g)(y) =

∫
S
f(s+ y)g(s) dµ(s).

2.2. De�níció. Azt mondjuk, hogy egy m ∈ L∞(S)∗ funkcionál topologikusan
invariáns közép, ha

• ‖m‖ = m(1) = 1,
• m(f ∗ g) = m(f) minden f ∈ L∞(S) és g ∈ G(S) függvényre.

Igazolható, hogy az S-en értelmezett topologikusan invariáns közepek Mt(S)
halmaza nemüres. Könnyen belátható továbbá, hogy minden m topologikusan in-
variáns közép eltolás invariáns. Valóban, tetsz®legesen rögzített f ∈ L∞(S) függ-
vényre és y ∈ S-re, válasszunk egy g ∈ G(S) függvényt, amelynek tartója y+S-ben
fekszik. Ekkor

m(f) = m(f ∗ g) = m

(∫

y+S

f( ·+ s)g(s) dµ(s)
)

= m(fy ∗ gy) = m(fy),

mert gy a G(S) halmaz eleme, tehátMt(S) ⊆M(S) teljesül.
A következ®kben megadunk egy konstrukciót, amely megmutatja, hogy azMt(S)

⊆M(S) tartalmazás lehet szigorú, azaz létezhet invariáns közép, amely nem topolo-
gikusan invariáns. Legyen S = R+, és legyen r1, r2, . . . a nemnegatív racionális
számok egy felsorolása. Jelölje f0 az Ω ∩ R+ halmaz karakterisztikus függvényét,
ahol Ω =

⋃∞
n=1(rn − 2−n, rn + 2−n). Egyszer¶en bizonyítható, hogy m(f0) = 0

minden m ∈Mt(R+) középre, ugyanakkor az alábbi teljesül [28, Proposition 2].

2.3. Propozíció. Létezik olyanm invariáns közép L∞(R+)-on, amelyrem(f0) = 1.

Általában csoportok széles osztályára ismert, hogyMt(G) 6=M(G). Pontosab-
ban, ha G egy amenábilis, nemkompakt, nemdiszkrét és lokálisan kompakt csoport,
akkor az Mt(G) és M(G) halmazok különböz®ek (ld. [36, 277.old.] és [15], [37],
[38]).

A topologikusan invariáns közepek halmaza jól jellemezhet® az L∞(S)∗ duális
térben. A következ® állítás csoportokra vonatkozó megfelel®jét C. Chou bizonyí-
totta [36, 138.o.]. Tetsz®leges pozitív mérték¶ K ⊆ S kompakt halmazra vegyük
a ϕK közepet L∞(S)-n, ahol ϕK(f) := 1

µ(K)

∫
K
f(s) dµ(s) (f ∈ L∞(S)). Ekkor a

következ® igazolható [28, Theorem 3] a csoport esethez hasonlóan.

2.4. Tétel. AzMt(S) halmaz megegyezik a

{ϕKn+sn}n∈N ({sn}n ∈ SN),

sorozatok gyenge-∗ torlódási pontjai konvex burkának gyenge-∗ lezártjával, ahol
{Kn}n egy tetsz®legesen választott, rögzített Følner sorozat S◦-ban.

2.2. Konvergencia típusok félcsoportokon. Célunk, hogy stabilitási tételeket
bizonyíthassunk, illetve operátor-félcsoportok aszimptotikus tulajdonságait vizsgál-
hassuk. A legtöbb esetben a pályák szokásos konvergenciájánál gyengébb fogal-
makat használunk majd, amelyek bevezetéséhez szükségünk van a korábban tár-
gyalt közepekre. Látni fogjuk azt is, hogy ezek a konvergenciák integrálközepekkel
is leírhatóak.

A � részbenrendezéssel az S halmaz egy irányított halmazzá válik. Azt mond-
juk, hogy az f : S → C függvény a végtelenben 0-hoz konvergál, ha tetsz®leges
ε > 0-hoz létezik s0 ∈ S hogy |f(s)| < ε teljesül minden s0 � s esetben. Inva-
riáns közepeket használva az el®z® konvergencia fogalomnál gyengébb fogalom, az
úgynevezett (er®s) majdnem konvergencia de�niálható.
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2.5. De�níció. Egy f ∈ L∞(S) függvény majdnem konvergens, ha az {m(f) : m ∈
M(S)} halmaz egyelem¶. Jelölésben, a-limf = c, ha m(f) = c minden m ∈M(S)
középre.
2.6. De�níció. Azt mondjuk, hogy az f ∈ L∞(S) függvény er®s értelemben majd-
nem konvergál egy c ∈ C számhoz, ha a-lim|f − c| = 0 teljesül.

Az el®z®ekhez hasonló módon bevezethetünk egy módosított konvergenciát is,
ha azM(S) halmaz helyett azMt(S) halmazt használjuk.
2.7. De�níció. Egy f ∈ L∞(S) függvény topologikusan majdnem konvergens ha
{m(f) : m ∈ Mt(S)} egyelem¶. Jelölésben, at-limf = c ha m(f) = c az összes
m ∈Mt(S) középre. Azt mondjuk, hogy egy f ∈ L∞(S) függvény er®s értelemben
topologikusan majdnem konvergál egy c ∈ C számhoz, ha at-lim|f − c| = 0.

A következ® állítás jól jellemzi ezt a fajta konvergenciát. Megjegyezzük, hogy
a tétel `∞(Z+)-on éppen Lorentz klasszikus eredményét adja vissza a majdnem
konvergens sorozatokról [30].
2.8. Propozíció. [28, Proposition 4, Remark] Egy f ∈ L∞(S) függvény akkor és
csak akkor topologikusan majdnem konvergál c ∈ C-hez, ha

lim
n→∞

1
µ(Kn)

∫

Kn

fy(s) dµ(s) = c

az y ∈ S-re nézve egyenletesen, ahol {Kn}n egy tetsz®legesen választott Følner
sorozat.

Észrevehetjük, hogy ha f ∈ L∞(S) majdnem konvergens függvény, akkor az
el®z® integrálfeltétel mindig teljesül.
2.9. Következmény. [25, Proposition 7] Tegyük fel, hogy az f ∈ L∞(S) függvény
majdnem konvergens, a-lim f = c, és {Kn}n Følner sorozat S-ben. Ekkor

lim
n→∞

1
µ(Kn)

∫

Kn

fy(s) dµ(s) = c

az y ∈ S-re nézve egyenletesen.
Az állítás megfordítása általában nem teljesül (ld. Propozíció 2.3).
Ezen el®készületek után rátérhetünk a reguláris norma-viselkedés¶ reprezentá-

ciók vizsgálatára.

3. Reprezentációk reguláris normafüggvénnyel
Legyen adott egy X komplex Banach tér, és jelölje L(X ) az X -en ható korlá-

tos lineáris operátorok algebráját. Egy ρ : S → L(X ) félcsoport homomor�zmust
reprezentációnak hívunk, ha folytonos az er®s operátor topológiában, tehát

• ρ(0) = I,
• ρ(s+ t) = ρ(s)ρ(t) minden s, t ∈ S-re,
• a ρx : S → X , s 7→ ρ(s)x pálya folytonos minden x ∈ X -re.

3.1. Limeszfunkcionál és regularitás. A reguláris normafüggvény értelmezése
el®tt megadjuk a normalizáló függvény és a limeszfunkcionál de�nícióját, illetve
összefoglaljuk ezek legfontosabb tulajdonságait. Azt mondjuk, hogy egy p : S →
(0,∞) függvény normalizáló függvény, ha mérhet® és minden s ∈ S-re ps/p ∈
L∞(S) er®s értelemben majdnem konvergál egy pozitív cp(s) számhoz. A cp függ-
vényt a p függvényhez tartozó limeszfunkcionálnak nevezzük.

A limeszfunkcionál egy fontos és alapvet® tulajdonsága, melyet több bizonyítás
során is kihasználunk, a következ®.
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3.1. Lemma. [25, Lemma 9] Ha p egy olyan normalizáló függvény, amelyre p(s) ≥
1 teljesül minden s ∈ S esetben, akkor cp(s) ≥ 1 minden s ∈ S-re.

Az S félcsoport nem azonosan zéró, komplex érték¶ folytonos homomor�zmusait
karaktereknek nevezzük és halmazukat S]-gal jelöljük.

3.2. Következmény. [25, Corollary 10] Legyen χ ∈ S], amelyre cp ≤ |χ| ≤ p.
Ekkor |χ| = cp.

A továbbiakban el®forduló minden p normalizáló függvényr®l feltesszük, hogy S
kompakt részhalmazain korlátos, és p ≥ 1 teljesül.

Azt mondjuk, hogy egy ρ : S → L(X ) reprezentáció a p normalizáló függvényre
nézve reguláris norma viselkedés¶ vagy p-reguláris normafüggvény¶, ha ‖ρ(s)‖ ≤
p(s) minden s ∈ S-re, és nem áll fenn az a-lims‖ρ(s)‖/p(s) = 0 összefüggés.

A limeszfunkcionál legfontosabb tulajdonságait a következ® két tételben foglaljuk
össze.

3.3. Tétel. [25, Theorem 13] Legyen p normalizáló függvény S-en és tegyük fel,
hogy létezik egy p-reguláris normafüggvény¶ ρ : S → L(X ) reprezentáció. Ekkor a
p normalizáló függvény cp limeszfunkcionálja S egy pozitív karaktere.

3.4. Tétel. [25, Theorem 14] Ha a ρ : S → L(X ) reprezentáció reguláris norma
viselkedés¶ a p és q normalizáló függvényekre nézve, akkor

cp = cq.

Az el®z® tétel lehet®vé teszi a következ® de�niciót. A cρ := cp függvényt, amely
a normalizáló függvény megválasztásától független, a p-reguláris normafüggvény¶
ρ reprezentáció limeszfunkcionáljának nevezzük.

A limeszfunkcionál és a spektrálsugár-függvény kapcsolatát egy egyenl®tlenséggel
írhatjuk le. Diszkrét félcsoportokhoz hasonlóan (ld. [20]) igazolható, hogy

cρ(s) ≤ r(ρ(s)), s ∈ S,
ahol r(ρ(s)) a ρ(s) operátor spektrálsugarát jelöli. Kérchy bizonyította [19]-ben,
hogy ha S = Z+, akkor valójában egyenl®ség áll fönn a két oldal között. Az S = R+

esetben a következ® analóg állítás teljesül [25, Proposition 16].

3.5. Propozíció. Ha a T : R+ → L(X ) reprezentáció reguláris norma-viselkedés¶
(egy p normalizáló függvényre nézve), akkor cT (s) = r(T (s)) (s ∈ R+) teljesül.

Megjegyezzük, hogy általában a spektrálsugár-függvény és a limeszfunkcionál
eltér®ek lehetnek [25, Example 17].

3.2. Reprezentáció spektruma. Legyen f ∈ Cc(S) egy kompakt tartójú, foly-
tonos függvény S-en. Az f függvény ρ : S → L(X ) reprezentáció szerinti Fourier
transzformáltján az

f̂(ρ) :=
∫

S

f(s)ρ(s) dµ(s)

operátort értjük. Az integrál pontonként de�niált: f̂(ρ)x =
∫
S
f(s)ρ(s)x dµ(s)

(x ∈ X ) Bochner értelemben ([16, Chapter 7.5]). Világos, hogy f̂(ρ) ∈ L(X ).
Hasonlóan értelmezhetjük f̂(χ)-t tetsz®leges χ ∈ S]-re is, hiszen S karakterei egy-
dimenziós reprezentációk.

Ezek után bevezetjük a nemkorlátos reprezentációk különféle spektrumfogalmait,
melyek rokonságban állnak a Lyubich által használt δ-spektrummal [31], illetve
Kérchy algebrai és kiegyensúlyozott spektrumával [20].
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3.6. De�níció. A ρ reprezentáció algebrai spektruma a

σa(ρ) :=
{
χ ∈ S] : |f̂(χ)| ≤ ‖f̂(ρ)‖ minden f ∈ Cc(S)-re

}

halmaz.
A ρ reprezentáció kiegyensúlyozott spektruma de�níció szerint

σb(ρ) := σa(ρ) ∩ S]b,
ahol S]b := { χ ∈ S] : χ(s) 6= 0 minden s ∈ S-re}.
Egy reguláris norma viselkedés¶ ρ reprezentáció spektrumán a

σ(ρ) := {χ ∈ σa(ρ) : |χ| ≤ cρ}
halmazt értjük, ahol cρ jelöli ρ limeszfunkcionálját.

A limeszfunkcionál létezése lehet®vé teszi a számunkra, hogy értelmezhessük a
periferális spektrumot.

3.7. De�níció. A ρ : S → L(X ) reguláris normafüggvény¶ reprezentáció periferális
spektruma:

σper(ρ) := { χ ∈ σ(ρ) : |χ(s)| = cρ(s) minden s ∈ S-re }.
A karakterek S] halmazát a kompakt-nyílt topológiával ellátva, az el®z® halma-

zok lokálisan kompakt, Hausdor� teret alkotnak [25, Proposition 22]. Végezetül a
ρ : S → L(X ) reprezentáció pontspektruma a

σp(ρ) :=
{
χ ∈ S] : létezik 0 6= x ∈ X hogy ρ(s)x = χ(s)x minden s ∈ S-re}

halmaz.
A ρ reprezentáció adjungáltja, ρ∗(s) := ρ(s)∗ (s ∈ S), nem feltétlenül er®sen

folytonos, így ρ∗ spektruma általában nem értelmezhet®. Ugyanakkor σp(ρ∗) telje-
sen hasonlóan de�niálható, mint ahogy σp(ρ)-t bevezettük.

A spektrumokkal kapcsolatos eredményünk szerint a kiegyensúlyozott spektrum
mindig része a reprezentáció spektrumának [25, Proposition 19].

3.8. Propozíció. Legyen a ρ : S → L(X ) reprezentáció reguláris normafüggvény¶.
Ekkor σb(ρ) ⊆ σ(ρ).

Mivel a Zn+ és Rn+ félcsoportok karakterei seholsem t¶nnek el, ezért az el®z®
állításból azonnal következik, hogy ekkor a σa(ρ), σb(ρ) halmazok egybeesnek és
megegyeznek σ(ρ)-val, ha a reprezentáció normafüggvénye reguláris.

3.3. A spektrum leírása. (a) Legyen T egy korlátos, lineáris operátor X -en.
Jelölje ρT : Z+ → L(X ) a T által generált reprezentációt. Ekkor igazolható, hogy
σa(ρT ) = σb(ρT ) = σ̂(T ), ahol σ̂(T ) a T operátor σ(T ) spektrumának polinomiálisan
konvex burka [35, Theorem 2.10.3].

(b) Az el®z®höz geometriailag hasonló eredmény bizonyítható R+ reprezentációi-
ra, azaz C0-félcsoportokra is [28, Proposition 5 és Corollary 6]. Legyen T : R+ →
L(X ) egy C0-félcsoport, amelynek generátora A, és legyen ρ∞(A) a C \ σ(A) hal-
maznak az a komponense, amely tartalmazza a {z ∈ C : Re z > ω0(T )} félsíkot,
ahol ω0(T ) := lims→∞(log ‖T (s)‖)/s.
3.9. Tétel. Az el®z® jelöléseket használva,

σa(T ) = σb(T ) = C \ ρ∞(A).

(c) Vegyünk egy korlátos ρ : S → L(X ) reprezentációt, és legyen α := sup{‖ρ(s)‖ :
s ∈ S} < ∞. Ha ‖ρ(s0)‖ < 1 teljesül egy s0 ∈ S-re, akkor ‖ρ(ns0 + s)‖ ≤
‖ρ(s0)‖nα (n ∈ N) mutatja, hogy lims ‖ρ(s)‖ = 0, azaz ρ egyenletesen stabil.
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Feltéve, hogy ‖ρ(s)‖ ≥ 1 teljesül minden s ∈ S-re, könnyen látható, hogy ρ
normafüggvénye reguláris a p(s) := α (s ∈ S) normalizáló függvény szerint; a
cρ limeszfunkcionál a konstans 1 függvény. Ekkor σper(ρ) megegyezik ρ unitér
spektrumával σu(ρ) := {χ ∈ σ(ρ) : |χ| = 1}, s®t σa(ρ) = σ(ρ) is teljesül.

A Cc(S) halmaz egy s¶r¶ részhalmaza L1(S)-nek, így könnyen látható, hogy
σ(ρ) egybeesik Batty és V�u korlátos reprezentációkra de�niált spektrumával [5]. A
de�níció csoport esetén megadja Lyubich véges L-spektrumát, illetve az Arveson
spektrumot (ld. [31] és [10]).

(d) Vegyünk egy reguláris normafüggvény¶ ρ : S → L(X ) reprezentációt. Mivel
cρ ∈ S]b, a ρ̃ := c−1

ρ ρ : S → L(X ) reprezentáció szintén reguláris normafüggvény¶
lesz és cρ̃ = 1. Jelölje a χ ∈ σper(ρ̃) karakter G csoportra való kiterjesztését χ̃.
Bizonyítható, hogy σper(ρ̃) azonosítható az Spu(ρ̃) unitér spektrummal (ld. [3]),
nevezetesen σper(ρ̃) = {χ̃|S : χ̃ ∈ Spu(ρ̃)}. Így σper(ρ) = {cρ(χ̃|S) : χ̃ ∈ Spu(ρ̃)}.

4. A stabilitási tétel
4.1. Regularitás és izometrikus reprezentációk. A stabilitási tétel bizonyítá-
sának egyik fontos eleme, hogy az eredeti reprezentációnkhoz hozzá tudunk rendelni
egy izometrikus reprezentációt. Az állítás jól ismert korlátos reprezentációk e-
setében, reguláris norma-viselkedés mellett pedig a következ® módon terjeszthet®
ki [25, Theorem 23].
4.1. Tétel. Tetsz®leges p-reguláris norma-viselkedés¶ ρ : S → L(X ) reprezentá-
cióhoz megadható egy Y Banach téren ható ψ : S → L(Y) izometrikus reprezentáció
és egy Q ∈ L(X ,Y) kontrakció úgy, hogy :

(i) ker Q = {x ∈ X : a- lims ‖ρ(s)x‖/p(s) = 0}, és ran Q s¶r¶ Y-ban;
(ii) Qρ(s) = cρ(s) ψ(s)Q teljesül minden s ∈ S-re;

(iii) minden C operátorhoz, amely a {ρ(S)}′ kommutánsnak eleme, létezik pon-
tosan egy olyan D ∈ {ψ(S)}′ operátor, amelyre QC = DQ; továbbá a
γ : {ρ(S)}′ 7→ {ψ(S)}′, C 7→ D leképezés egy kontraktív algerba homomor-
�zmus;

(iv) σ(ρ) ⊇ cρσ(ψ), σper(ρ) ⊇ cρσper(ψ), σp(ρ∗) ⊇ cρσp(ψ∗).

4.2. Stabilitási tétel A következ® állítás a disszertáció egyik f® eredménye, egy
Arend�Batty�Lyubich�V�u típusú tétel reguláris normafüggvény¶ reprezentációkra
[25, Theorem 25].
4.2. Tétel. Legyen a ρ : S → L(X ) reprezentáció p-reguláris normafüggvény¶. Ha
σper(ρ) megszámlálható és σp(ρ∗) ∩ {χ ∈ S] : |χ| = cρ} üres, akkor

a- lim
s

‖ρ(s)x‖
p(s)

= 0

minden x ∈ X -re.
A tétel következménye az alábbi állítás [25, Corollary 26].

4.3. Következmény. Legyen a ρ : S → L(X ) reprezentáció p-reguláris norma-
viselkedés¶. Ha σper(ρ) megszámlálható és σp(ρ∗) ∩ {χ ∈ S] : |χ| = cρ} üres, akkor

lim
i→∞

1
µ(Ki)

∫

Ki

‖ρ(s)x‖
p(s)

dµ(s) = 0

igaz minden x ∈ X -re, ahol {Ki}i tetsz®leges Følner sorozat.
Az el®z® tétel általánosítása [5] korlátos reprezentációkra vonatkozó stabilitási

tételének. A 4.2 Tétel spektrális feltételei lényegében megegyeznek [3] cikkben
szerepl® f® eredmény feltételeivel (ld. [3, Theorem 3.2]). Az alapvet® különbségek
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a két eredmény között a ρ normájára vonatkozó feltételekben és a stablilitást leíró
konvergenciában találhatók.

4.3. Reprezentációk és topologikus regularitás. Megjegyezzük, hogy a regu-
laritás értelmezéséhez invariáns közepeket használtunk, ugyanakkor az el®z® ered-
mények érvényben maradnak akkor is, ha de�nícióinkban csupán a topologikusan
invariáns közepek sz¶kebb halmazát használjuk. (A f®bb állítások, pl. limesz-
funkcionál létezése, izometrikus reprezentáció társítása hasonlóan igazolható, mint
korábban.) Diszkrét félcsoportokon ez az értelmezés nem ad újat, hiszen a közepek
e két osztálya a diszkrét esetben egybeesik. A következ® fejezetben részletesen
megvizsgáljuk a második alternatívát a félegyenesen, bevezetve a topologikusan
reguláris normafüggvény¶ reprezentációkat.

5. C0-félcsoportok és topologikus regularitás
A topologikus regularitást a következ® módon de�niáljuk. Azt mondjuk, hogy

egy p : R+ → [1,∞) függvény topologikus normalizáló függvény, ha (i) mérhet®,
(ii) lokálisan korlátos (azaz minden kompakt halmazon korlátos), (iii) minden K ⊆
R+ kompakt részhalmazon sups∈K supt∈R+

ps(t)/p(t) < ∞, és (iv) minden s ∈
R+-re, ps/p topologikusan majdnem konvergál er®s értelemben egy pozitív cp(s)
számhoz. A cp függvényt a p normalizáló függvény limeszfunkcionáljának nevez-
zük. A topologikus normalizáló függvények halmazát Pt-vel jelöljük. Az R+ fél-
egyenes reprezentációit a szokásoknak megfelel®en C0-félcsoportoknak nevezzük a
továbbiakban.

5.1. De�níció. A T : R+ → L(X ) C0-félcsoport reguláris norma viselkedés¶ a p
topologikus normalizáló függvényre nézve vagy p-reguláris norma függvény¶ ha (i)
‖T (s)‖ ≤ p(s) teljesül minden s ∈ R+-re, és (ii) at-lims‖T (s)‖/p(s) = 0 nem áll
fenn.

A reguláris normasorozatok karakterizációja Kérchyt®l és Müllert®l származik
[21], [26]. A diszkrét esethez hasonlóan bevezethetjük a regularitási konstansot
minden olyan (T (s))s≥0 félcsoport esetén, ahol r(T (s)) > 0 (s ∈ R+). Legyen

κT := inf
n∈N

sup
s∈R+

[(
1
n

∫ s+n

s

r(T (t))−1‖T (t)‖ dt
)(

sup
s≤y≤s+n

r(T (y))−1‖T (y)‖
)−1

]
.

Világos, hogy 0 ≤ κT ≤ 1. A regularitási konstans lehet®vé teszi, hogy jellemez-
zük azokat a félcsoportokat, amelyek normafüggvénye topologikusan reguláris. A
következ® tételt [28]-ban bizonyítottuk.

5.2. Tétel. Tekintsünk egy T : R+ → L(X ) C0-félcsoportot. Ekkor az alábbi állítá-
sok ekvivalensek:

(i) létezik olyan p ∈ Pt, amelyre T normafüggvénye p-reguláris;
(ii) létezik olyan folytonos p ∈ Pt, amelyre T normafüggvénye p-reguláris;

(iii) ‖T (s)‖ ≥ 1 minden s ∈ R+-re és κT > 0.

6. Katznelson�Tzafriri típusú tétel Hilbert tereken
Az ABLV tétellel rokonságot mutató operátorelméleti állítás a Katznelson�Tzafri-

ri tétel (a két tétel kapcsolatáról ld. [13]). Az S = Z+ esetben megadjuk a tétel
egy kiterjesztését Hilbert tereken.

Jelölje I az identikus leképezést X -en. Ha f ∈ A+(T) és T ∈ L(X ) hatványkor-
látos operátor, akkor értelmezhet® f(T ) :=

∑∞
k=0 f̂(k)T k ∈ L(X ), ahol f(λ) =∑∞

k=0 f̂(k)λk és
∑∞
k=0 |f̂(k)| <∞.
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Kiindulási pontunk az alábbi észrevétel, amelyet egy lemmában fogalmazunk
meg [29, Lemma 2.2].
6.1. Lemma. Legyen T hatványkorlátos operátor az X komplex Banach téren és
legyen f ∈ A+(T). Ekkor minden λ ∈ T esetén a következ® teljesül

lim
n→∞

1
n

∥∥∥∥∥
n−1∑

k=0

λ−kT k (f(T )− f(λ)I)

∥∥∥∥∥ = 0.

Az uniform ergodikus tétel alapján 1
n

∑n−1
k=0 T

k normában nullához konvergál
pontosan akkor, ha 1 a T rezolvensének eleme (ld. [27, Theorem 2.7]). Innen az
alábbi állítás azonnal adódik [29, Corollary 2.3].
6.2. Következmény. Legyen T hatványkorlátos operátor az X Banach téren és
f ∈ A+(T). Ekkor tetsz®leges λ ∈ σ(T ) ∩ T esetén,

f(λ) = 0 akkor és csak akkor, ha lim
n→∞

1
n

∥∥∥∥∥
n−1∑

k=0

λ−kT kf(T )

∥∥∥∥∥ = 0.

Következ® eredményünk Hilbert terekre vonatkozik [29, Theorem 2.1].
6.3. Tétel. Legyen T hatványkorlátos operátor a H Hilbert téren. Ha Q ∈ L(H)
és TQ = QT, akkor a következ® állítások ekvivalensek:

(i) lim
n→∞

1
n

∥∥∥∥∥
n−1∑

k=0

λ−kT kQ

∥∥∥∥∥ = 0 minden λ ∈ σ(T ) ∩ T-re,

(ii) limn→∞ ‖TnQ‖ = 0.
Továbbá, ha Q = f(T ) valamely f ∈ A+(T)-re, akkor (i) és (ii) ekvivalens az
alábbival

(iii) f(λ) = 0 minden λ ∈ σ(T ) ∩ T-re.
A bizonyítás során részben V�u módszerét ([39], [40]) követjük, azaz a problémát

izometriára redukálva el®ször (i)-b®l kiindulva az er®s konvergenciát igazoljuk (ii)-
ben. A bizonyítást ultrahatványok alkalmazásával fejezzük be.

Nyitott marad az a probléma, hogy milyen hasonló állítás bizonyítható C0-
félcsoportokra, illetve általánosabb reprezentációkra. További kérdés, hogy Hilbert
tér helyett vehetünk-e általánosabb tereket, pl. Lp-teret (1 < p <∞) vagy szuper-
re�exív Banach teret.
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