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Contents

Introduction 1

1. Motivation: The generalized n-Paul paradox 5
1.1. The St. Petersburg paradox . . . . . . . . . . . . . . . . . . . 5
1.2. The n-Paul problem . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. Results and discussion . . . . . . . . . . . . . . . . . . . . . . 9
1.4. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Merging asymptotic expansions for generalized St. Peters-
burg games 23
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2. Approximating semistable classes . . . . . . . . . . . . . . . . 25
2.3. The expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4. Numerical computations . . . . . . . . . . . . . . . . . . . . . 40
2.5. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3. Merging of linear combinations to semistable laws 57
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2. Merging semistable approximations . . . . . . . . . . . . . . . 61
3.3. Merge theorems in general . . . . . . . . . . . . . . . . . . . . 65
3.4. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4. Asymptotic normality 78
4.1. Introduction and results . . . . . . . . . . . . . . . . . . . . . 78
4.2. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Acknowledgement 86
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Introduction

The theory of limit theorems is a classical and important part of probability
theory. The first of these theorems was proved by de Moivre in 1733 for
independent Bernoulli trials. This was reinvented by Laplace in 1812. The
method of characteristic functions, which can handle the problem in its full
generality, was born only at the beginning of the 20th century. Since then, an
outblasting development started in the theory, due to such excellent math-
ematicians as Ljapunov, Lévy, Lindeberg, Khinchin, Kolmogorov, Doeblin,
Gnedenko and Feller.

For a long time the only method for dealing with sums of independent
variables was Fourier analysis, which obscures the underlying probabilistic
intuition. Therefore the probabilistic approach of Csörgő, Haeusler and Ma-
son [18] was a milestone in the theory. This approach is based upon the
asymptotic behavior of the uniform empirical distribution function in con-
junction with the tail probabilities of the corresponding quantile function.
The method is applicable only when the independent random variables are
also identically distributed. However, in this case the probabilistic approach
is capable to handle lightly trimmed sums, that is when some of the largest
and some of the smallest summands are eliminated.

The semistable distributions play central role in this work. The notion
first appears in Lévy’s [30] classical work as a natural generalization of the
stable laws. Later, due to the works of Kruglov [29] and Mejzler [33], the
definition changed a bit, and the importance of semistable laws turned out.
Stable distributions arise as limiting distributions of suitably centralized and
normalized sums of iid random variables, along the whole sequence N. Ac-
cording to a famous theorem of Khinchin, when the convergence is not de-
manded along the whole sequence of natural numbers only through a subse-
quence, then every infinitely divisible distribution can be reached. If there
is a geometric growth condition on the subsequence, we get an intermediate
class, the class of semistable distributions. To be more precise (the equivalent
version of) the definition is the following:

Non-degenerate distributions that arise as limiting distributions of suit-
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ably centralized and normalized sums of iid random variables along subse-
quences {kn}∞n=1 satisfying kn+1/kn → c, for some c ≥ 1 are called semistable
laws.

Megyesi [32] applied the probabilistic approach for semistable distribu-
tions, and he characterized the geometric partial attraction.

In the most general setup of limit theorems, for row-wise independent
random variables, there are necessary and sufficient conditions for the ex-
istence of the limit distribution. The case of iid random variables is also
examined in detail. The natural assumption between the two cases, that is
the case of linear combinations of iid random variables is less analyzed. This
is the subject of the current theses.

Let X1, X2, . . . , Xn be independent identically distributed random vari-
ables from the domain of geometric partial attraction of a semistable law.
These random variables can be viewed as the gains in ducats (losses when
negative) in an independent repetitions of a game of chance. We assume
that Peter, the banker plays exactly one game with each of the n gamblers,
Paul1, Paul2, . . ., Pauln. Before they play our Pauls may agree to use a
pooling strategy pn = (p1,n, . . . , pn,n), in which the components are non-
negative, and add to unity. Under this strategy Paul1 receives p1,nX1 +
p2,nX2 + · · ·+ pn,nXn, Paul2 receives pn,nX1 + p1,nX2 + · · ·+ pn−1,nXn, Paul3
receives pn−1,nX1 + pn,nX2 + p1,nX3 + · · ·+ pn−2,nXn, . . ., and Pauln receives
p2,nX1 +p3,nX2 + · · ·+pn,nXn−1 +p1,nXn ducats. In the theses we investigate
the properties of the weighted sum p1,nX1 + p2,nX2 + · · ·+ pn,nXn, which in
our context is the gain of Paul1 with strategy pn.

In Chapter 1 we consider a very special case, when the game of chance is
the generalized St. Petersburg(p) game. In this game Peter tosses a possibly
biased coin, until it lands ‘heads’, and pays rk ducats to Paul, if this happens
on the kth toss, that is the distribution of Paul’s gain X is P{X = rk} =
qk−1p, where r = 1/q, q = 1 − p, and p ∈ (0, 1) is the probability of ‘heads’
at each throw. The classical version of the game, which is played with a fair
coin, is due to Nicolaus Bernoulli from 1713. The original problem was the
fair price for n game. Once this price is agreed, it is wholly indifferent to
Peter whether the other side is our old Paul playing n games in a row, or a
company of n gamblers, Paul1, Paul2, . . ., Pauln, each playing exactly one
game with respective individual winnings X1, X2, . . . , Xn, and cooperating
among themselves. However, it turns out that there are strategies, so called
admissible strategies, which are better to every Paul, in the sense that each
of them receives more ducats, than with the individualistic strategy. The
admissible strategies play significant role in the next two chapters. These
paradoxical results for mutually beneficial sharing among any fixed number
of classical St. Petersburg gamblers were obtained by Csörgő and Simons.
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The extension to the general case is not straightforward because, unlike in
the classical case with p = 1/2, admissibly pooled winnings generally fail to
stochastically dominate individual ones for more than two gamblers. Best
admissible pooling strategies are determined when p is rational, and the
algebraic depth of the problem for an irrational p is illustrated by an example.

We emphasize that in the whole chapter n, the number of Pauls will
be fixed, does not tend to infinity. Therefore here we do not deal with
asymptotic results. Thus the paradoxical results come from only the fact
that the expectation is infinite. The proofs are mainly elementary, the only
deeper tool we use, is the comparison operator, which allows us to compare
random variables with infinite mean.

This kind paradox was the motivation for the author for further investi-
gation of linear combinations. This part is the extended version of [26].

In Chapter 2 we determine the asymptotic behavior of the gain of Paul1,
in a more general St. Petersburg(α, p) game, where α ∈ (0, 2). In this game
the distribution of Paul’s winning X is P{X = rk/α} = qk−1p. That is we are
still dealing with a specific distribution from the domain of geometric partial
attraction of a specific semistable law. However, this special case allows us to
prove merging asymptotic expansions for the gains, which cannot be hoped
for the general case. For an arbitrary strategy pn = (p1,n, . . . , pn,n) we define

the random variable Sα,p
pn

= p
1/α
1,n X1 + p

1/α
2,n X2 + · · · + p

1/α
n,n Xn − p/qHα(pn),

where Hα(pn) depends only on the strategy. The main results are short
asymptotic expansions, given in terms of Fourier – Stieltjes transforms and
are constructed from suitably chosen members of the classes of subsequential
semistable infinitely divisible asymptotic distributions for the total winnings
of the n players and from their pooling strategy, where the classes them-
selves are determined by the two parameters of the game. For all values
of the tail parameter the expansions yield best possible rates of uniform
merge. In the general case there is no hope for limit theorem, since by the
Doeblin – Gnedenko criterion it does not exist even for the uniform strategy.
Surprisingly, it turns out that for a subclass of strategies not containing the
averaging uniform strategy, but containing the admissible ones, our merging
approximations reduce to asymptotic expansions of the usual type derived
from a proper limiting distribution. The Fourier – Stieltjes transforms are
shown to be numerically invertible in general and it is also demonstrated
that the merging expansions provide excellent approximations even for very
small n.

We use Fourier analytic methods. One of the main tools is the Esseen-
inequality, which gives upper bound for the supremum distance of functions
in terms of the difference of their Fourier – Stieltjes transforms. The other
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important thing is the existence of the mixed derivatives of semistable distri-
bution functions, which was derived by Csörgő in [10] for the St. Petersburg
case, and in [9] in general. This chapter contains the results of [12].

In Chapter 3 we investigate the asymptotic distribution of the gain in its
whole generality. Let X1, X2, . . . be iid random variables from the domain
of geometric partial attraction of a semistable law, with characteristic ex-
ponent α ∈ (0, 2). Consider the pooling strategy pn = (p1,n, . . . , pn,n), and

define the random variable Sα,pn
= p

1/α
1,n X1/`(p1,n) + p

1/α
2,n X2/`(p2,n) + · · · +

p
1/α
n,n Xn/`(pn,n) − µ(pn), where `(·) is a slowly varying function at 0. We

prove merge theorems along the entire sequence of natural numbers for the
distribution functions of Sα,pn

. For some sequences of linear combinations,
not too far from those with equal weights, the merge theorems reduce to
ordinary asymptotic distributions with semistable limits. This result finally
lightens the importance of the admissible strategies.

The first merge theorems were obtained by Csörgő [7] and there are some
merge theorems in Chapter 2 also. However, in all cases merge meant that
the supremum distance of the corresponding distribution functions tends to
0, with an appropriate rate. Therefore in these cases Esseen’s inequality did
the job, and there were no need to work out general conditions of merge. In
our case, with no more assumption on the underlying distribution function,
there is no hope for rates. We give a general definition for merge through the
Lévy metric, and we obtain sufficient conditions in terms of characteristic
functions. We note that D’Aristotile, Diaconis and Freedman [19] investi-
gated five different definitions of merge in a separable metric space. The
most important case, the case of real random variables, is passed over, and
they do not analyze the relationship of (any notion of) merge with the char-
acteristic functions. Beside of merge the most important tool in this chapter
is the probabilistic approach of Csörgő, Haeusler and Mason [18]. This part
is taken from [28].

Chapter 4 makes the whole story round. We are dealing with the asymp-
totic normality of an arbitrary linear combination of iid variables. Let
X1, X2, . . . be iid random variables, and consider an = (a1,n, . . . , an,n), an
arbitrary sequence of weights. We investigate the asymptotic normality of
the sum San = a1,nX1 + · · ·+an,nXn under the natural negligibility condition
limn→∞ max{|ak,n| : k = 1, . . . , n} = 0. In the finite variance case we prove
necessary and sufficient condition for the distributional convergence. We also
show that if San is asymptotically normal for a weight sequence an, in which
the components are of the same magnitude, then the common distribution
belongs to the attraction of the normal law. Here we use the classical theory
of sum of independent random variables.

4



Chapter 1.

Motivation: The generalized
n-Paul paradox

1.1. The St. Petersburg paradox

Peter offers to let Paul toss a fair coin until it lands heads and pays him 2k

ducats if this happens on the kth toss. What is the price for Paul to make
the game ‘equal and fair’? If X denotes Paul’s gain, then

P
{
X = 2k

}
=

1

2k
thus E(X) =

∞∑

k=1

2k P
{
X = 2k

}
=

∞∑

k=1

1 = ∞,

so the price of the game is infinite number of ducats. However as Nicolaus
Bernoulli wrote, ‘there ought not be a sane man who would not happily
sell his chance for forty ducats’. This is the famous St. Petersburg para-
dox, which was first raised by Nicolaus Bernoulli [3] in 1713, in a letter to de
Montmort. The problem appears in the book Essay d’Analyse sur les Jeux de
Hazard by Pierre Rémond de Montmort in 1713, in its original form, played
with dice. Gabriel Cramer learned about the paradox in 1726, and he was,
who simplified the problem to its coin-tossing version. At that time the cen-
tral problem of probability theory was the ‘fair price’, the equitas, therefore
this phenomena of infinite expectation was so unexplainable. However, as
Feller [20] writes, ‘the modern student will hardly understand the mysterious
discussions of this paradox.’ We delineate some trials from the numerous
‘resolutions’. Gabriel Cramer cut the possible gain at 2k, for some large k.
He explained that for some large integer k, a common man’s happiness for
the gain of 2k ducats is the same, as for any larger number of ducats. So the
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value of a game is

k∑
j=1

2j 1

2j
+

∞∑

j=k+1

2k 1

2j
= k +

1

2

∞∑
j=0

(
1

2

)j

= k + 1

ducats. But what is k? The younger cousin of Nicolaus, Daniel Bernoulli had
a similar theory: the more money Paul has, the less is his happiness for a fix
number of ducats. This implies that the fair price of the game would depend
on the wealth of the gambler. With such moral treatments neither of them
get closer to the solution. The problem became so popular that it occurs in
the greatest work of the french enlightenment, in the Encyclopédie: Croix ou
pile, that is Heads or Tails is written by Jean le Rond d’Alembert. For almost
200 years the greatest mathematicians (Euler, Lagrange, Laplace, Poisson)
did not get any advance in the problem. At the same time the endless
disputations about the paradox greatly promoted the utilitarian economy,
which is started by Daniel Bernoulli’s thoughts [2].

For a single game, everything can be known for the gain X from its
distribution function. One can check easily that it is

F (x) = P{X ≤ x} =

{
0, if x < 2 ,

1− 1
2blog2 xc = 1− 2〈log2 x〉

x
, if x ≥ 2 ,

where byc stands for the (lower) integer part of y, while 〈y〉 is the fractional
part and logr is the base r logarithm. Of course the real question is how much
should Paul pay for n game, in which his total gain is Sn = X1+X2+· · ·+Xn,
where X1, X2, . . . , Xn are independent St. Petersburg random variables. The
first mathematically explicit result concerning the paradox is due to Feller
[20] in 1945. He proved the following weak law:

Sn

n log2 n

P−→ 1 ,

where
P−→ stands for the convergence in probability, and n →∞. (Through-

out the theses, an asymptotic relationship is meant as n → ∞ unless oth-
erwise specified.) That is according to Feller the fair price for n games is
n log2 n ducats. However it turned out that this is a very nice example when
the strong version of the weak law is not true. Namely the stochastic limit is
the almost sure lim inf, so for Peter, the banker n log2 n ducats is not enough!
Chow and Robbins [5] and Adler [1] proved that

lim sup
n→∞

Sn

n log2 n
= ∞ and lim inf

n→∞
Sn

n log2 n
= 1
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almost surely. (Actually Chow and Robbins show in general that if the
expectation is infinite then no strong theorems hold.) For the deeper reasons
of the phenomena we refer to [14]. Moreover Csörgő [7] explains why the fair
price for Sn cannot be determined by laws of large numbers.

The non-existence of the strong laws of large numbers does not exhaust
the curiosity of the paradox. To be honest, enough has left, as we will see
soon. In the distribution function the numerator 2〈log2 x〉 is not slowly varying
at infinity. Therefore the classical Doeblin – Gnedenko criterion implies that
there is no limit theorem for the sums. The limit theorems are the topic of
the next two chapters. For further historical background we refer to [6].

1.2. The n-Paul problem

Peter agrees with two player, Paul1 and Paul2, that he plays exactly one
St. Petersburg game with each of them. Our players may decide to keep
their own winnings, or before they play they agree to share the gain, each of
them receiving (X1 +X2)/2 ducats. Which is the better strategy? Of course
if the expectation was finite, then these strategies would be equally good,
neither is superior. But now, as we will see soon, the averaging strategy is
better. Despite Peter pays out the same amount of ducats, each of our Pauls
get in the average one extra ducat! This is the two-Paul paradox. Indeed, let
S2 = X1 + X2 and U2 = 2X1 + X2I{X2 ≤ X1}, where I{A} is the indicator
function of the event A. Csörgő and Simons [15] proved the distributional
equality

S2
D
= U2.

With this equality we can determine how much does the averaging strategy
better than the individualistic. Following [15] we have

P
{
X1 ≥ 2k |X2 = 2k

}
= P

{
X1 ≥ 2k

}
= 1−

k−1∑
j=1

(
1

2

)j

= 1−
[
1− 1

2k−1

]
=

2

2k

for all k ∈ N, therefore P{X1 ≥ X2 |X2} = 2/X2. So we obtain that

E
(
X2 I{X2 ≤ X1}

)
= E

(
X2 P{X1 ≥ X2 |X2}

)
= E

(
X2

2

X2

)
= 2,

that is the averaging strategy implies one (2/2) extra ducat for both Pauls.
Actually, we compared two random variables with infinite expectation.

Now it is natural to define the comparison operator (if it exists) of the random
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variables U and V as:

E[U, V ] =

∫ ∞

−∞

[
P{U > x} −P{V > x}]dx.

We refer to Csörgő and Simons [15], [17] for a detailed exposition and dis-
cussion of the comparison operator E[· , ·]. We note that if the integral exists
as a Lebesgue integral, then it exists in the Riemann sense, while the con-
verse is not true. (In the followings the phrase Riemann sense is always
meant as improper Riemann sense.) For an example see [15]. Moreover
E[U, V ] = E(U)−E(V ), whenever E(U) and E(V ) exist and at least one of
them is finite. (We use the usual convention that ±∞−c = ±∞ = c−∓∞.)

With these notations in the 2-Paul case we obtained E[X1+X2, 2X1] = 2,
thus E[(X1 + X2)/2, X1] = 1. Csörgő and Simons also investigated the case,
when n = 2k Pauls play one game with Peter. Then E[S2k/2k, X1] = k, for
each k, where X1, . . . , Xn are independent St. Petersburg games, and Sn is
its sum. The 3-Paul case is much more complicated. Assume that Peter
plays exactly one game with Paul1, Paul2 and Paul3, and their winnings are
X1, X2 and X3 respectively. It seems plausible that the averaging strategy,
giving each Paul S3/3 ducats, dominates the individualistic one. However, it
turns out that the two strategy are not comparable, that is the integral

E

[
S3

3
, X1

]
=

∫ ∞

0

[
P

{
S3

3
> x

}
−P{X1 > x}

]
dx

does not exist, even in the improper Riemann sense. This immediately im-
plies that the variables X1 and S3/3 are stochastically incomparable. Indeed
P{X1 = 2} = 1

2
and P

{
S3/3 = 2

}
= 1

8
< 1

2
, while P{X1 < 8} = 3

4
and

P
{
S3/3 < 8

}
= 0.76171875 > 3

4
.

But there are two other pooling strategies for the 3-Paul case investigated
by Csörgő and Simons [15]. The simpler is that each Paul gives his winning
to the other two, half to each. The 2-Paul case implies that this strategy
provides one extra ducat for each of the three Pauls. The second strategy is
more interesting: Paul1 ends up with 1

2
X1 + 1

4
X2 + 1

4
X3, Paul2 with 1

2
X2 +

1
4
X3 + 1

4
X1, and Paul3 with 1

2
X3 + 1

4
X1 + 1

4
X2. This strategy provides one

and a half extra ducats for each of the three Pauls.
Before playing with more Pauls, we generalize the problem.
Peter offers to let Paul toss a possibly biased coin until it lands heads

and pays him rk ducats if this happens on the kth toss, k ∈ N = {1, 2, . . .},
where r = 1/q for q = 1 − p and p ∈ (0, 1) is the probability of ‘heads’
at each throw. This is the generalized St. Petersburg(p) game, in which
P{X = rk} = qk−1p, k ∈ N, for Paul’s gain X. Clearly, we get the classical
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version if p = 1/2. The distribution function now

Fp(x) = P{X ≤ x} =

{
0, if x < r ,

1− qblogr xc = 1− r〈logr x〉
x

, if x ≥ r .

Let X1, X2, . . . be independent St. Petersburg(p) variables and Sn its sum.
Then Feller’s weak law has the following general form

Sn

n logr n

P−→ p

q
.

Return to the problem of our cooperating Pauls, whose number n is now
arbitrary. Suppose that Peter agrees to play exactly one St. Petersburg(p)
game with a company of n gamblers, Paul1, Paul2, . . ., Pauln, whose respec-
tive individual winnings X1, X2, . . . , Xn. They may agree to use a pooling
strategy pn = (p1,n, . . . , pn,n), where p1,n, . . . , pn,n ≥ 0 and

∑n
k=1 pk,n = 1. Un-

der this strategy, Paul1 is to receive the amount p1,nX1+p2,nX2+· · ·+pn,nXn,
Paul2 is to receive the amount pn,nX1 + p1,nX2 + · · ·+ pn−1,nXn, Paul3 is to
receive the amount pn−1,nX1 + pn,nX2 + p1,nX3 + · · · + pn−2,nXn, . . ., and
Pauln is to receive the amount of p2,nX1 + p3,nX2 + · · ·+ pn,nXn−1 + p1,nXn

ducats. Under these rotating assignments of weights, every bit of all of the
individual winnings is paid out. Moreover, this strategy is fair to every Paul
in the sense that their winnings are equally distributed and each receives the
same added value equal to

Ap(pn) = E[ p1,nX1 + · · ·+ pn,nXn, X1]

=

∫ ∞

0

[
P{p1,nX1 + · · ·+ pn,nXn > x} −P{X1 > x}] dx,(1.1)

whenever the integral is defined, so that comparison is possible.
The aim of this chapter is to determine those strategies, so called admis-

sible strategies, for which the added value Ap(pn) exist, and we discuss the
manner of the existence (improper Riemann, or Lebesgue). If the parameter
p of the game is rational we determine the best admissible strategies, which
yield the greatest added value to our Pauls, and in the irrational case we
point out the algebraic depth of the problem by an example. These results
are the generalizations of the results of Csörgő and Simons [17].

1.3. Results and discussion

We call a strategy pn = (p1,n, . . . , pn,n) admissible if each of its components
is either zero or a nonnegative integer power of q = 1 − p. Individualistic

9



strategies (1, 0, . . . , 0) are thus admissible for each p, otherwise the powers in
nonzero components are positive integers. The entropy of a pooling strategy
is Hr(pn) =

∑n
j=1 pj,n logr 1/pj,n, where logr denotes the base r logarithm and

0 logr 1/0 = 0. We say that the random variable U is stochastically larger
than the random variable V , written U ≥D V , if P{U > x} ≥ P{V > x} for
all x ∈ R.

Theorem 1.1. For any p ∈ (0, 1) and n ∈ N, the added value Ap(pn) exists
as an improper Riemann integral if and only if pn is admissible, in which
case Ap(pn) = p

q
Hr(pn).

Csörgő and Simons [17] proved this theorem for the classical St. Peters-
burg(1/2) game, played with an unbiased coin. However, in that case they
proved the following stronger result: the independent St. Petersburg(1/2)
variables X1, . . . , Xn can be defined on a rich enough probability space that
carries, for each admissible strategy pn=(p1,n, . . . , pn,n), a St. Petersburg(1/2)
random variable Xpn

and a nonnegative random variable Ypn
such that Tpn

=
p1,nX1 + · · ·+ pn,nXn = Xpn

+ Ypn
almost surely. This implies the stochastic

inequality Tpn
≥D X1. Hence the integrand in A1/2(pn) is nonnegative and

thus A1/2(pn) is trivially finite as a Lebesgue integral. As the next result
shows, stochastic dominance is preserved for two players for an arbitrary
St. Petersburg parameter p ∈ (0, 1).

Theorem 1.2. For any p ∈ (0, 1), if p2 = (qa, qb) is an admissible pooling
strategy for some a, b ∈ N, then Tp2

= qaX1 + qbX2 is stochastically larger
than X1.

Surprisingly, however, for n ≥ 3 gamblers stochastic dominance generally
fails to hold for admissible strategies. Our example to demonstrate this is
when p = (n−1)/n, q = 1−p = 1/n, so that r = 1/q = n is also the number
of Pauls. Then P{X = nk} = (n− 1)/nk, k ∈ N, and the averaging pooling
strategy pn = p¦n = (1/n, 1/n, . . . , 1/n) is admissible. For this strategy the
weighted sum is Tp¦n = (X1 + · · ·+Xn)/n, so that for n = 2 Theorem 1.2 says
in particular that S2 = 2Tp¦2 = X1 + X2 is stochastically larger than 2X1.
This is not true for n ≥ 3.

Theorem 1.3. If p = (n − 1)/n, q = 1/n and n ≥ 3, then neither Sn =
X1 + · · ·+ Xn nor nX1 is stochastically larger than the other.

In view of Theorem 1.2 the integrand in (1.1) is nonnegative whenever p2

is admissible, so that the integral Ap(p2) described in Theorem 1.1 strength-
ens to that of a Lebesgue integral when n = 2. While the same conclusion
holds for n ≥ 3, Theorem 1.3 rules out so simple a line of reasoning.
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Theorem 1.4. For every parameter p ∈ (0, 1) and every admissible strat-
egy pn = (p1,n, . . . , pn,n) the integral Ap(pn) in (1.1) is finite as a Lebesgue
integral.

Theorem 1.1 characterizes the pooling strategies that yield added val-
ues. However, admissible strategies do not exist for all, in fact, for most
parameters p ∈ (0, 1). Call a parameter p admissible, if for p there exists
an admissible strategy which is not individualistic. Theorem 1.1 then says
that p is admissible if and only if for q = 1 − p there exist positive integers
a1 ≥ a2 ≥ · · · ≥ ak, for some k ∈ N, such that qa1 + qa2 + · · · + qak = 1.
In this case, r = 1/q is an algebraic integer. If a1 > a2, then q is also an
algebraic integer, thus q is an algebraic unit. The set of algebraic numbers is
countable, so there are at most a countable number of admissible parameters
p. When q = 1 − p is rational for an admissible p ∈ (0, 1), the equation
implies q = 1/m for some integer m ≥ 2. Thus the set of rational admissible
parameters is {(m− 1)/m : m ≥ 2}. In particular, it is interesting that the
classical p = 1/2 is the smallest such St. Petersburg parameter. It follows
that the set of all admissible parameters p is countable. Nevertheless, it can
be shown that this set is dense in the interval (0, 1):

Theorem 1.5. The set of admissible parameters is dense in (0, 1).

When a given number of our Pauls happen to have admissible strategies,
a natural question is: which is the best? In the latter rational case when
p = (m−1)/m for some integer m ≥ 2, and so r = 1/q = m ≥ 2 is an integer,
the answer is given by the next result, in which bxc = max{k ∈ Z : k ≤ x}
is the integer part, dxe = min{k ∈ Z : k ≥ x} is the integer ceiling and
〈x〉 = x− bxc = x + d−xe is the fractional part of a number x ∈ R.

Theorem 1.6. If p = (r−1)/r and n = rblogr nc+(r−1)rn for some integers
r ≥ 2 and 0 ≤ rn ≤ rblogr nc − 1, then

(1.2) Ap(pn) =
p

q
Hr(pn) ≤ p

q
logr n− δp(n) =: A∗

p,n

for every admissible strategy pn, where δp(u) = 1 + (r − 1)〈logr u〉 − r〈logr u〉,
u > 0. Moreover, the bound A∗

p,n is attainable by means of the admissible
strategy

p∗n = (p∗1,n, . . . , p∗n,n) = (rp∗n, . . . , rp∗n, p∗n, . . . , p∗n) with p∗n =
1

rdlogr ne ,

11



where the number of p∗n s and rp∗n s are, respectively,

m1,p(n) =
rn− rdlogr ne

r − 1
and m2,p(n) =

rdlogr ne − n

r − 1
.

Apart from reorderings of the components of p∗n, the point of maximum is
unique.

The continuous function δp(·) is nonnegative, its maximum is given in
formula (3.4) of Csörgő and Simons [14].

It is easy to see that if n is not in the form rblogr nc+(r−1)rn, then 0 must
be included among the components of the strategy, which does not increase
the entropy. So it is enough to investigate the number of players in the form
above. Here are the first few optimal strategy and the corresponding added
value, when r = 3:

A3(p
∗
3) = 2, p∗3 =

(
1

3
,
1

3
,
1

3

)

A3(p
∗
4) = 2, p∗4 =

(
1

3
,
1

3
,
1

3
, 0

)

A3(p
∗
5) = 22

3
, p∗5 =

(
1

3
,
1

3
,
1

9
,
1

9
,
1

9

)

A3(p
∗
6) = 22

3
, p∗6 =

(
1

3
,
1

3
,
1

9
,
1

9
,
1

9
, 0

)

A3(p
∗
7) = 31

3
, p∗7 =

(
1

3
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9

)

A3(p
∗
8) = 31

3
, p∗8 =

(
1

3
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
, 0

)

A3(p
∗
9) = 4, p∗9 =

(
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9

)

A3(p
∗
10) = 4, p∗10 =

(
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
, 0

)

A3(p
∗
11) = 42

9
, p∗11 =

(
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

27
,

1

27
,

1

27

)

A3(p
∗
12) = 42

9
, p∗12 =

(
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

27
,

1

27
,

1

27
, 0

)

A3(p
∗
13) = 44

9
, p∗13 =

(
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

27
,

1

27
,

1

27
,

1

27
,

1

27
,

1

27

)
.

Theorem 1.6 is not applicable for an irrational p. On the other hand,
in every admissible situation Ap(pn) = (r − 1)Hr(pn) by Theorem 1.3, and
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the trivial upper bound Hr(pn) ≤ logr n = Hr(p
¦
n) is valid for the entropy

of every pn, where p¦n = (1/n, 1/n, . . . , 1/n). However equality cannot hold
in general because p¦n is not admissible for every admissible parameter p.
Apart from those cases which can be reduced to the rational case, that is
when q = 1− p = 1/ k

√
m for some integers m, k ≥ 2, the problem of the best

admissible strategy is unsolved.
For the irrational case the simplest example is the equation q2+q = 1, the

solution of which is q = τ := (
√

5− 1)/2 ≈ 0.618, the ratio of golden section.
Thus, pertaining to the irrational parameter p? = (3 − √5)/2 ≈ 0.382, the
vector (τ 2, τ) is an admissible strategy for two players. From this strategy we
can generate admissible strategies for an arbitrary number of players. Indeed,
substituting τ 3 + τ 2 = τ for τ , and τ 4 + τ 3 = τ 2 for τ 2, we obtain (τ 3, τ 2, τ 2)
and (τ 4, τ 3, τ), both admissible strategies for three Pauls. Continuing this
algorithm, each time substituting τm+2 + τm+1 for τm if the exponent m is
present, after l steps we obtain admissible strategies for 2+ l gamblers, l ∈ N.
However, even if we allow all possible branches generated by this algorithm,
the result is incomplete in the sense that there are admissible strategies,
such as (τ 8, τ 5, τ 5, τ 5, τ 3, τ 3, τ 3) for seven Pauls, that are avoided. Consider
all the strategies that can be generated by the branching algorithm from
(τ 2, τ), and for every n ≥ 2 call the best among these conditionally optimal,
denoted by p?

n. Let fn be the nth Fibonacci number, so that with f0 = 1,
f1 = 1 and fn+1 = fn−1 + fn, n ∈ N. We can show that the conditionally
optimal strategy for fn + k players, k ∈ {0, 1, . . . , fn−1 − 1}, each playing a
St. Petersburg(p?) game, is

p?
fn+k =

(
τn+1, . . . , τn+1

︸ ︷︷ ︸
k times

, τn, . . . , τn

︸ ︷︷ ︸
fn−2+k times

, τn−1, . . . , τn−1

︸ ︷︷ ︸
fn−1−k times

)
,

with the corresponding added value Ap(p
?
fn+k) = τn[k(2 − τ) + nfn−2 τ +

(n−1)fn−1]. Because of the inherent number-theoretic difficulties, we do not
know whether these conditionally optimal strategies are optimal in general.
Here are the first few conditionally optimal strategies and the corresponding
added values:

Ap(p
∗
2) = 3τ − 1 ≈ 0.854, p∗2 =

(
τ 2, τ

)

Ap(p
∗
3) = 2− τ ≈ 1.382, p∗3 =

(
τ 3, τ 2, τ 2

)

Ap(p
∗
4) = 6τ − 2 ≈ 1.708, p∗4 =

(
τ 4, τ 3, τ 3, τ 2

)

Ap(p
∗
5) = 13τ − 6 ≈ 2.034, p∗5 =

(
τ 4, τ 4, τ 3, τ 3, τ 3

)

Ap(p
∗
6) = 1 + 2τ ≈ 2.236, p∗6 =

(
τ 5, τ 4, τ 4, τ 4, τ 3, τ 3

)
.

Finally, we show that an extended form of our branching algorithm has an
interesting property concerning stochastic domination. For any admissible
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parameter p ∈ (0, 1), let (qa1 , qa2 , . . . , qan) and (qb1 , qb2 , . . . , qbm) be admissible
strategies for n and m Pauls for any n, m ≥ 2. Substituting qak+b1 + qak+b2 +
· · · + qak+bm = qak for qak , where k ∈ {1, . . . , n} is arbitrary, we obtain a
strategy (qd1 , qd2 , . . . , qdn+m−1) for n + m − 1 gamblers, where the sequence
d1 ≥ d2 ≥ · · · ≥ dn+m−1 is a nonincreasing rearrangement of the sequence
a1, . . . , ak−1, ak + b1, . . . , ak + bm, ak+1, . . . , an. We say that a strategy pn =
(p1,n, . . . , pn,n) is stochastically dominant if p1,nX1 + · · · + pn,nXn ≥D X1.
The last theorem states that the branching algorithm preserves stochastic
dominance. Choosing first n = m = 2, it may be used in conjunction with
Theorem 1.2 as a starting point.

Theorem 1.7. If the strategies (qa1 , qa2 , . . . , qan) and (qb1 , qb2 , . . . , qbm) are
both stochastically dominant, then the generated strategy (qd1, qd2, . . . , qdn+m−1)
is also stochastically dominant.

All our results here are for fixed numbers of players. Csörgő and Simons
[16] proved for an arbitrary sequence of strategies pn = (p1,n, . . . , pn,n) that
(p1,nX1 + · · · + pn,nXn)/Hr(pn) converges in probability to p/q, as n → ∞,
whenever Hr(pn) →∞.

1.4. Proofs

The first four lemmas are needed for the proof of Theorem 1.1, while the
fifth lemma is used in the proof of Theorem 1.6. The first two lemmas are
the same as Lemmas 1 and 2 in Csörgő and Simons [17], therefore we use it
without proof, while the others are the generalizations of Lemmas 3, 4 and
5 in [17].

Lemma 1.1. Let U and V be nonnegative random variables, and assume
that E(min(U, V )) is finite. Then

∫ ∞

0

[
P{U + V > x} −P{U > x} −P{V > x}]dx = 0,

where the integrals is Lebesgue-integral.

Lemma 1.2. Let U1, . . . , Un be nonnegative random variables, and assume
that E

(
min(Ui, Uj)

)
< ∞, for all i, j = 1, . . . , n, i 6= j. Then

∫ ∞

0

[
P

{
n∑

j=1

Uj > x

}
−

n∑
j=1

P{Uj > x}
]
dx = 0,

14



where the integral is Lebesgue-integral.

Lemma 1.3. If X1, X2 are independent St. Petersburg(p) random variables
and c1 and c2 positive constants, then E(min(c1X1, c2X2)) < ∞.

Proof. We know from [14] and [16] that 1−Fp(x) = P{X > x} = qblogr xc =
r〈logr x〉/x for all x ≥ r, and 1 otherwise. Hence, if x ≥ r max(c1, c2), then
the inequality

P{min(c1X1, c2X2) > x} = P{c1X1 > x}P{c2X2 > x} < c1c2r
2/x2

holds and, therefore,

E(min(c1X1, c2X2)) =

∫ ∞

0

P{min(c1X1, c2X2) > x} dx < ∞ .

Lemma 1.4. If X is a St. Petersburg(p) random variable and b ≥ 1, then

∫ b

0

P{X > x} dx = (r − 1)blogr bc+ r〈logr b〉 = 1 + (r − 1) logr b− δp(b),

where the function δp(·) is defined in Theorem 1.6.

Proof. Notice that 1 = 1−Fp(x) = P{X > x} = qblogr xc even for x ∈ [1, r).

So what we need to prove is that
∫ b

1
qblogr xc dx = (r− 1)blogr bc+ r〈logr b〉− 1

for b > 1. If c = logr b > 0, then

∫ rc

1

qblogr xc dx =

∫ c

0

qbycry log r dy = (log r)

∫ c

0

r〈y〉dy

= (log r)

[
bcc

∫ 1

0

rydy +

∫ c

bcc
r〈y〉dy

]

= bcc(r − 1) + (log r)

∫ 〈c〉

0

ry dy = (r − 1)bcc+ r〈c〉 − 1,

where log = loge is the natural logarithm, which is the desired equation.

Lemma 1.5. If r ∈ {2, 3, . . .}, then the number of the smallest strictly
positive components of an admissible strategy pn = (p1,n, . . . , pn,n) is divisible
by r.
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Proof. Let the smallest strictly positive component be 1/rk for some k ∈ N.
Since

∑n
j=1 pj,nr

k = rk, the sum must be divisible by r, so the number of

terms equal to 1 in the sum, which is the number of the components 1/rk in
pn, is also divisible by r.

Proof of Theorem 1.1. With the extended Lemmas 1.3 and 1.4, the proof
is an easy generalization of that in the classical case p = 1/2 in [17].

For a given strategy pn = (p1,n, . . . , pn,n), the integral Ap(pn) in (1.1) is
defined in the improper Riemann sense if and only if Ap(pn, b) → Ap(pn) as
b →∞, where

Ap(pn, b) =

∫ b

0

[
P{p1,nX1 + · · ·+ pn,nXn > x} −P{X1 > x}]dx.

Using Lemma 1.2 and 1.3, we have

∫ ∞

0

[
P{p1,nX1 + · · ·+ pn,nXn > x} −

n∑
j=1

P{pj,nXj > x}
]
dx = 0,

thus

∫ b

0

P

{
n∑

j=1

pj,nXj > x

}
dx =

n∑
j=1

∫ b

0

P{pj,nXj > x} dx + o(1),

where o(1) → 0, as b →∞. Operating in the sum with those terms, in which
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pj,n > 0, using Lemma 1.4 we obtain

Ap(pn, b) =

∫ b

0

P

{
n∑

j=1

pj,nXj > x

}
dx−

∫ b

0

P{X > x} dx

=
n∑

j=1

∫ b

0

P{pj,nXj > x} dx−
∫ b

0

P{X > x} dx + o(1)

=
n∑

j=1

pj,n

∫ b
pj,n

0

P{X > y} dy −
∫ b

0

P{X > x} dx + o(1)

=
n∑

j=1

pj,n

{⌊
logr

b

pj,n

⌋
(r − 1) + r

〈
logr

b
pj,n

〉}

−blogr bc(r − 1)− r〈logr b〉 + o(1)

= (r − 1)
n∑

j=1

pj,n

{
logr

b

pj,n

−
〈

logr

b

pj,n

〉
− blogr bc

}

+
n∑

j=1

pj,nr

〈
logr

b
pj,n

〉
− r〈logr b〉 + o(1)

= (r − 1)Hr(pn)−
n∑

j=1

pj,n

{
1− (r − 1)

〈
logr

b

pj,n

〉
+ r

〈
logr

b
pj,n

〉}

+1− (r − 1)〈logr b〉+ r〈logr b〉 + o(1),

that is Ap(pn, b) = (r − 1)Hr(pn) + Rr(pn, b) + o(1) as b → ∞, where
Rr(pn, b) = δp(b) −

∑n
j=1 pj,n δp(b/pj,n), and the function δp is defined in

Theorem 1.6. Notice that δp(urk) = δp(u), u > 0, for every k ∈ Z. Thus if
pn is admissible, then

Rr(pn, b) = δp(b)−
n∑

j=1

pj,n δp

(
b

pj,n

)
= δp(b)−

n∑
j=1

pj,n δp(b) = 0,

and hence Ap(pn, b) = (r− 1)Hr(pn) + o(1) as b →∞, which is the “if part”
of the theorem.

Conversely, suppose that Ap(pn) in (1.1) exists, so that Ap(pn, b) →
Ap(pn) as b → ∞. Using the above periodicity property of δp(·), we get
Rr(pn, r

kb) = Rr(pn, b) for every k ∈ Z. Fixing b > 0 and letting k →∞, so
that rkb →∞, we get Rr(pn, b) = Ap(pn)−(r−1)Hr(pn). Let D = D+−D−,
where D+ and D− are the right-side and left-side differential operators, re-
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spectively. Then one can compute easily that

Dδp(s) =

{
r−1
rk , for s = rk when k ∈ Z,

0, for all other s > 0,

from which, for all j ∈ {1, . . . , n} for which pj,n > 0, we find that

D pj,n δp

(
b

pj,n

)
=

{
r−1
rk , for b = rk pj,n when k ∈ Z,

0, for all other b > 0.

Consequently, we have

DRr(pn, b)
∣∣
b=1

= r − 1− (r − 1)
∑
j∈A

pj,n,

where A is the set of indices j ∈ {1, . . . , n} for which pj,n is an integer power
of r. Since, on the other hand, DRr(pn, b) = 0, this implies

∑
j∈A pj,n = 1,

and thus completes the proof.

Proof of Theorem 1.2. Let us assume that qa + qb = 1 for some a, b ∈ N.
Then P{X1 ≤ rk} = Fp(r

k) = 1 − qk for every k ∈ N. We estimate the
probability P{T2 ≤ rk}, where T2 = qaX1 + qbX2. If T2 ≤ rk, then

(1) X1, X2 ≤ rk, or

(2) X1 = rk+1, . . . , rk+a−1 and X2 ≤ rk−1, or

(3) X2 = rk+1, . . . , rk+b−1 and X1 ≤ rk−1.

We obtain

P
{
T2 ≤ rk

} ≤ (
1− qk

)2
+

(
1− qk−1

)
qk

(
1− qa−1

)
+

(
1− qk−1

)
qk

(
1− qb−1

)

=
(
1− qk

)2
+

(
1− qk−1

)
qk

(
2− 1

q

)
= 1− qk−1 + q2k

(
1

q
− 1

)2

.

Since the distribution function of X1 jumps only in the points x = rk, it is
enough to show that P

{
T2 < rk

} ≤ P{X1 < rk} = P{X1 ≤ rk−1} = 1−qk−1.
This is true, because

P
{
T2 < rk

}
= P

{
T2 ≤ rk

}−P
{
T2 = rk

}

≤ 1− qk−1 + q2k

(
1

q
− 1

)2

−P
{
X1 = rk, X2 = rk

}

= 1− qk−1,
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completing the proof.

Proof of Theorem 1.3. We prove that stronger statement that the graphs
of the distribution functions of Sn and nX1 cross each other infinitely often.
To be more precise we show that both P{nX1 ≤ nk} > P{Sn ≤ nk} and
P{nX1 < nk} < P{Sn < nk} hold whenever k ≥ 3.

Notice that the inequality Sn ≤ nk holds if and only if all the inequalities
X1 ≤ nk−1, X2 ≤ nk−1, . . . , Xn ≤ nk−1 hold. This implies for arbitrary k ≥ 2
that

P
{
Sn ≤ nk

}
= P

{ n⋂
j=1

{
Xj ≤ nk−1

}}
=

(
n− 1

n
+

n− 1

n2
+ · · ·+ n− 1

nk−1

)n

=
(
1− 1

nk−1

)n

.

Clearly, P
{
nX1 ≤ nk

}
= P

{
X1 ≤ nk−1

}
= 1− 1/nk−1, so P

{
nX1 ≤ nk

}
>

P
{
Sn ≤ nk

}
.

Now consider the probabilities P{nX1 < nk} and P{Sn < nk}. When
k = 2, both of them are zero. So, assume k ≥ 3. Noticing the equalities
P{Sn < nk} = P{Sn ≤ nk} −P{Sn = nk},

P
{
Sn = nk

}
= P

{
X1 = nk−1, X2 = nk−1, . . . , Xn = nk−1

}
=

(
n− 1

nk−1

)n

,

and P{nX1 < nk} = P{nX1 ≤ nk−1} = P{X1 ≤ nk−2}, we have

P
{
Sn < nk

}
=

(
1− 1

nk−1

)n

−
(

n− 1

nk−1

)n

> 1− 1

nk−2
= P{nX1 < nk},

where elementary calculation shows that the inequality holds for n ≥ 3 and
k ≥ 3.

Proof of Theorem 1.4. Let n ≥ 2 be the number of Pauls. By Theorem
1.1, for every admissible strategy q = 1− p satisfies the equation qa1 + qa2 +
· · · + qam = 1, where a1, a2, . . . , am ∈ N and m ∈ {2, 3, . . . , n}. Without loss
of generality we assume that the zeros, if any, are the last components of the
strategy, so that pn = (qa1 , qa2 , . . . , qam , 0, . . . , 0). Then Tm :=

∑n
j=1 pj,nXj =

qa1X1 + · · ·+ qamXm. We estimate the probability P{Tm ≤ rk}. If the event
{Tm ≤ rk} occurs, then we must have all the inequalities X1 ≤ rk+a1−1, X2 ≤
rk+a2−1, . . . , Xm ≤ rk+am−1. Hence,

P
{
Tm ≤ rk

} ≤ (
1− qk+a1−1

)(
1− qk+a2−1

) · · · (1− qk+am−1
)

= 1− qk
(
qa1−1 + qa2−1 + · · ·+ qam−1

)
+ q2kC2 + · · ·+ qmkCm

= 1− qk−1 + q2kC2 + · · ·+ qmkCm ,
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where the constants C2, C3, . . . , Cm do not depend on k.
Since pn is admissible, the integral

∫∞
0

[
P{Tm > x} − P{X1 > x}] dx

exists as an improper Riemann integral. Hence it suffices to show that the
integral of the negative part g−m(x) of the function gm(x) := P{Tm > x} −
P{X1 > x} is finite. Notice that

gm(x) = P{X1 ≤ x} −P{Tm ≤ x} ≥ P{X1 < x} −P{Tm ≤ x} =: hm(x)

for all x > 0. Clearly, the function hm(x) takes a minimum value on the
interval (rk−1, rk] at x = rk, for which the estimate above yields

hm(rk) = P
{
X1 < rk

}−P
{
Tm ≤ rk

}

≥ 1− qk−1 − (
1− qk−1 + q2kC2 + · · ·+ qmkCm

)

= −(
q2kC2 + · · ·+ qmkCm

)
.

Therefore, setting C1 =
∫ 1

0
h−m(x) dx, we obtain

∫ ∞

0

g−m(x) dx ≤
∫ ∞

0

h−m(x)dx ≤ C1 +
∞∑

k=1

∫ rk

rk−1

(
q2k|C2|+ · · ·+ qmk|Cm|

)
dx

= C1 +
∞∑

k=1

rk

(
1− 1

r

)(
q2k|C2|+ · · ·+ qmk|Cm|

)

= C1 + (1− q)
∞∑

k=1

(
qk|C2|+ · · ·+ q(m−1)k|Cm|

)
< ∞,

which proves the theorem.

Proof of Theorem 1.5. We will prove the equivalent statement, that
the set {q = 1 − p : p admissible} is dense. Let (a, b) ⊂ (0, 1) be an
arbitrary open interval. For the proof of the density, it is enough to construct
a polynomial P (x) = anxn + · · · + a1x − 1, where n ≥ 1 and ai ∈ N, i =
1, . . . , n, such that P (a) < 0 < P (b). Now, by monotonicity P has a root
q ∈ (a, b), so p = 1− q is admissible.

Let a1 be the largest integer, such that a1a < 1. Then let a2 be the largest
integer, such that a1a + a2a

2 < 1. After defining a1, . . . , ak−1 let ak be the
largest integer, such that

∑k
j=1 aja

j < 1. By the definition,
∑k

j=1 aja
j → 1

as k →∞. So if n is large enough, we have

1− a1(b− a)/2 <

n∑
j=1

aja
j <

n∑
j=1

ajb
j − a1(b− a),

which is the desired inequality.
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Proof of Theorem 1.6. This is based on the proof of Theorem 2 in
[17], so we skip the details. Without loss of generality we assume that pn

is ordered: p1,n ≥ p2,n ≥ · · · ≥ pn,n. The proof is by induction on rn. For
rn = 0 the statement is true. Now suppose that all the statements of the
theorem hold for rn − 1 ≥ 0, and consider the case n = rblogr nc + (r − 1)rn.
If pn,n = 0, then we have at least r − 1 zeros. Deleting them, we get a
strategy p̂n−(r−1), and we are done in view of the fact that the bound A∗

p,n

in (1.2) is nondecreasing in n. In the other case, when pn,n = 1/rk for
some k ∈ N, we have at least r of these smallest components by Lemma
1.5. Changing r of these to a single component 1/rk−1, we obtain a strategy
p̂n−(r−1) for which Hr(pn)−Hr

(
p̂n−(r−1)

)
= 1/rk−1. Using the formula A∗

p,n =

(r − 1)blogr nc+ (r − 1)rn/rblogr nc, we have

A∗
p,n − A∗

p,n−(r−1) =
rn − rn−(r−1)

rblogr nc ,

and since rn−(r−1) = rn−1, by the induction hypothesis we only have to show
that

1

rk−1
≤ 1

rblogr nc .

Assume the contrary 1/rk−1 > 1/rblogr nc which means 1/rk ≥ 1/rblogr nc.
Thus we have

1 ≤ rblogr nc

rk
<

n

rk
.

This is a contradiction, since 1/rk was the smallest component, and the sum
of the components is 1. To prove the uniqueness, notice that equality can
hold only if the strategy p̂n−(r−1) is optimal and 1/rk−1 = 1/rblogr nc. By the
induction hypothesis p̂n−(r−1) is uniquely determined, as the theorem states.
Computing back the strategy pn we obtain the desires form.

Lemma 1.6. If U, V, W are independent random variables and U ≥D V ,
then U + W ≥D V + W .

Proof. Let F,G and H be the distribution functions of U, V and W ,
respectively. By assumption, F (x) ≤ G(x) for all x ∈ R. The random
variables U + W and V + W have the distribution functions F∗H(·) and
G∗H(·), where ∗ denotes Lebesgue – Stieltjes convolution. Thus

F∗H(x) =

∫ ∞

−∞
F (x− y)dH(y) ≤

∫ ∞

−∞
G(x− y)dH(y) = G∗H(x),

which proves the statement.
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Proof of Theorem 1.7. Let Y1, . . . , Ym, and X1, . . . , Xn be independent
St. Petersburg(p) variables. From the assumption we get

qak+b1Y1 + qak+b2Y2 + · · ·+ qak+bmYm ≥D qakXk.

By Lemma 1.6 this implies

qa1X1 + · · ·+ qak−1Xk−1 + cqak+b1Y1 + · · ·+ qak+bmYm

+qak+1Xk+1 + · · ·+ qanXn

≥D qa1X1 + · · ·+ qak−1Xk−1 + qakXk + qak+1Xk+1 + · · ·+ qanXn.

Now the assumption and obvious transitivity together imply the theorem.
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Chapter 2.

Merging asymptotic expansions
for generalized St. Petersburg
games

2.1. Introduction

We further generalize the St. Petersburg game. Of course the roles of Peter
and Pauls are the same: Peter offers to let Paul toss a possibly biased coin
repeatedly until it lands heads and pays him rk/α ducats if this happens on the
k th toss, k ∈ N = {1, 2, . . .}, where r = 1/q for q = 1−p, and p ∈ (0, 1) is the
probability of heads on each throw, while α > 0 is a payoff parameter. (When
α = 1 we obtain the ‘classical’ generalized game, investigated in Chapter 1.)
Thus if X denotes Paul’s winning in this generalized St. Petersburg(α, p)
game, then P{X = rk/α} = qk−1p, k ∈ N.

Put byc = max{k ∈ Z : k ≤ y} and dye = min{k ∈ Z : k ≥ y} = −b−yc
for the usual integer part and ‘ceiling’ and 〈y〉 = y − byc = y + d−ye for
the fractional part of a number y ∈ R, where Z = {0,±1,±2, . . .} and R is
the real line. Then the generalized St. Petersburg distribution function of a
single gain is

(2.1) Fα,p(x) = P{X ≤ x} =

{
0, if x < r1/α,

1− qbα logr xc = 1− r〈α logr x〉
xα , if x ≥ r1/α,

where logr stands for the logarithm to the base r, as before. For α = 1 this
is the same as Fp in Section 1.2.. We see that the payoff parameter α > 0 is
in fact a tail parameter of the distribution. In particular, E(Xα) = ∞, but
E(Xβ) = p/(qβ/α−q) is finite for β ∈ (0, α), so for α > 2 Paul’s gain X has a
finite variance, so Lévy’s central limit theorem holds. As it was pointed out
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in [7] even for α = 2 the St. Petersburg(2, p) distribution is in the domain
of attraction of the normal law. This can be checked by straightforward
calculation, using the well-known characterization of the domain of attraction
of the normal law ([23], or see the proof of Theorem 4.3). Hence for the
problems to be entertained in this chapter the case α ≥ 2 is either not
interesting or at least substantially different from the more difficult case
α < 2. Therefore, just as in [7] and [10] from now on we assume that
α ∈ (0, 2). Of course, the most interesting case of this is when α ≤ 1, for
which the mean is infinite.

In the followings we are interested in the asymptotic properties of the
linear combinations. We already noted in Chapter 1 that there is no limit
theorem for the sums. This holds also for the generalized version. Since the
bounded oscillating function r〈α logr x〉 in the numerator of (2.1) is not slowly
varying at infinity, by the classical Doeblin – Gnedenko criterion the underly-
ing generalized St. Petersburg distribution is not in the domain of attraction
of any stable law. That is there is no asymptotic distribution for (Sn−cn)/an,
in the usual sense, whatever the centering and norming constants are. This is
where the main difficulty lies for all generalized St. Petersburg games, when
α < 2.

However, asymptotic distributions do exist along subsequences of N. In
the classical case Martin-Löf [31] ‘clarified the St. Petersburg paradox’, show-
ing that S2k/2k − k converge in distribution, as k → ∞. It turned out in
[11] that there are continuum different types of asymptotic distributions of
Sn/n − log2 n along different subsequences of N. As Csörgő wrote [6] there
are continuum many different clarification of the St. Petersburg paradox.
The class of distribution functions of these possible limits may be given
in the form {G1,1/2,γ(·) : γ ∈ (1/2, 1]}, where the values of the parame-
ter γ enter as circular subsequential limits of γn = n/2blog2 nc ∈ (1/2, 1],
which describes the location of n between two consecutive powers of 2.
After these results it is tempting to pick up G1,1/2,γn(x) to approximate
P{Sn/n− log2 n ≤ x}. The accurate version of this conjecture is the merging
theorem supx∈R |P{Sn/n− log2 n ≤ x}−G1,1/2,γn(x)| → 0, which was showed
by Csörgő in the general case in [7]. The optimality of the merge rates was
proved by short asymptotic expansions by Csörgő in [10]. Later complete
expansions were obtained by Pap [34]. Motivated by the latter results merg-
ing asymptotic expansions for semistable distributions were proven by the
author [27]. The aim of this chapter is to generalize these results for linear
combinations of independent St. Petersburg variables, that is to examine the
gain of Paul1, in the n-Paul problem.
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2.2. Approximating semistable classes

Since we are interested in asymptotic results, we need to introduce some
limiting quantities.

For the bias parameter p ∈ (0, 1), the payoff or tail parameter α ∈ (0, 2)
and a third parameter γ ∈ (q, 1], consider the infinitely divisible random
variable

(2.2) Wα,p
γ =

1

γ1/α

{ −∞∑
m=0

rm/α

[
Y p,γ

m − pγ

qrm

]
+

∞∑
m=1

rm/α Y p,γ
m

}
+ sα,p

γ ,

where . . . , Y p,γ
−2 , Y p,γ

−1 , Y p,γ
0 , Y p,γ

1 , Y p,γ
2 , . . . are independent random variables

such that

P{Y p,γ
m = k} =

(prγqm)k

k!
e−prγqm

, k = 0, 1, 2, . . . ,

that is, Y p,γ
m has the Poisson distribution with mean prγqm = pγ/(qrm),

m ∈ Z, and where

sα,p
γ =

{
−pγ(α−1)/α

q1/α−q
= p

q−q1/α
1

γ(1−α)/α , if α 6= 1,

−p
q

logr γ = p
q

logr
1
γ

, if α = 1.

Kolmogorov’s three series theorem implies that both infinite series in 2.2
converge almost surely. Let Gα,p,γ(x) = P{Wα,p

γ ≤ x}, x ∈ R, denote its dis-
tribution function. As derived in [7], pp. 821–823, its characteristic function
is

(2.3) gα,p,γ(t) = E
(
eitW α,p

γ
)

=

∫ ∞

−∞
eitx dGα,p,γ(x) = eyα,p

γ (t), t ∈ R,

where

yα,p
γ (t) = itsα,p

γ +
−∞∑

l=0

(
exp

{
itr

l
α

γ
1
α

}
− 1− itr

l
α

γ
1
α

)
pγ

qrl
+

∞∑

l=1

(
exp

{
itr

l
α

γ1α

}
−1

)
pγ

qrl

= exp

{
it
[
sα,p

γ + uα,p
γ

]
+

∫ ∞

0

(
eitx − 1− itx

1 + x2

)
dRα,p

γ (x)

}
(2.4)

with the finite constant

uα,p
γ =

pγ(α+1)/α

q

∞∑

l=1

r(1−α)l/α

γ2/α + r2l/α
− pγ(α−1)/α

q

∞∑

l=0

1

γ2/αr(3−α)l/α + r(1−α)l/α
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and right-hand-side Lévy function

Rα,p
γ (x) = − γqblogr(γxα)c = − γ

rblogr(γxα)c = −r〈logr(γxα)〉

xα
, x > 0.

The integral form of the exponent of the characteristic function immediately
implies that for every p ∈ (0, 1) and γ ∈ (q, 1] the infinitely divisible distri-
bution of Wα,p

γ is semistable with exponent α; for the theory of semistable
distributions required here we refer to [32], [13] and [9]; but there is a short
introduction to the notion of semistability in Chapter 3. It follows that
Gα,p,γ(·) is infinitely many times differentiable and by classical results of
Kruglov, recently exposed in [8], E(|Wα,p

γ |α) = ∞, but, for all p ∈ (0, 1) and
γ ∈ (q, 1], the absolute moment

(2.5) E
(
|Wα,p

γ |β
)

=

∫ ∞

−∞
|x|β dGα,p,γ(x) =

∫ ∞

−∞
|x|βgα,p,γ(x) dx < ∞

if β ∈ (0, α), with the density function gα,p,γ(·) = G ′
α,p,γ(·) = G

(2.1)
α,p,γ(·).

As we noted before, the function x 7→ r〈α logr x〉 in (2.1) is not slowly
varying at infinity, and hence it follows by the classical Doeblin – Gnedenko
criterion that Fα,p(·) in (2.1) is not in the domain of attraction of any (stable)
distribution, that is, the cumulative winnings Sn cannot be centered and
normalized to have a proper limiting distribution as n → ∞ over the entire
sequence N of natural numbers. However, it turned out in [31] and [11] that
asymptotic distributions do exist along subsequences of N when α = 1 and
p = 1/2. In fact, subsequential limiting distributions exist for all α ∈ (0, 2)
and p ∈ (0, 1) for the sequence

(2.6) Fα,p
n (x) = P

{
Sn − cα,p

n

n1/α
≤ x

}
, where cα,p

n =

{
p n

q1/α−q
, if α 6= 1,

p
q
n logr n , if α = 1,

and are regulated by the position parameter

(2.7) γn =
n

rdlogr ne ∈ (q, 1],

which describes the location of n = γnr
dlogr ne ∈ N between two consecutive

powers of r = 1/q. As an extension of one of the results in [11] it can be
shown that for any given subsequence {nk}∞k=1 of N, the sequence Fα,p

nk
(·)

converges weakly as k → ∞ if and only if γnk

cir−→ γ for some γ ∈ (q, 1],
where we write γnk

cir−→ γ if limk→∞ γnk
= γ for γ ∈ (q, 1], but we also write

γnk

cir−→ 1 if either limk→∞ γnk
= q, or the sequence {γnk

}∞k=1 has exactly two
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limit points, q and 1. If this circular convergence γnk

cir−→ γ takes place for
some γ ∈ (q, 1], as k →∞, then limk→∞ supx∈R |Fα,p

nk
(x)−Gα,p,γ(x)| = 0.

The trouble with having many asymptotic distributions is resolved by
the selection of a merging approximation to Fα,p

n (·) for every n ∈ N from the
class Gα,p = {Gα,p,γ(·) : q < γ ≤ 1

}
of subsequential limits. The selection is

given by the position parameter γn itself in (2.7), and we have the following
merging theorem with rates [7]:

Theorem. For every ε > 0 there exists a threshold nε(α, p) ∈ N, such that
for n > nε(α, p)

sup
x∈R

∣∣∣∣P
{

Sn − cα,p
n

n1/α
≤ x

}
−Gα,p,γn(x)

∣∣∣∣ ≤





(1 + ε)C(α,p)
n

, if 0 < α < 1 ,

(1 + ε)π
8

p2

q2

blogr nc2
n

, if α = 1 ,

(1 + ε) C(α,p)

n(2−α)/α , if 1 < α < 2 ,

where the constant C(α, p) depends on the parameters α, p.

Finally, asymptotic expansions are established in [10] for the difference
of the distribution functions Fα,p

n (·) − Gα,p,γn(·) with uniform error terms
depending on α.

Now we return to the problem of multiply Pauls. As in the preceding
chapter a pooling strategy is an n dimensional vector pn = (p1,n, . . . , pn,n),
such that p1,n, . . . , pn,n ≥ 0 and

∑n
k=1 pk,n = 1. Using this strategy, Paul1

receives p1,nX1 + p2,nX2 + · · · + pn,nXn ducats, . . ., Pauln receives p2,nX1 +
p3,nX2 + · · ·+ p1,nXn ducats. Assuming pn = max{p1,n, . . . , pn,n} → 0 for an
infinite sequence of strategies {pn = (p1,n, . . . , pn,n)}, our first interest in this
chapter is the asymptotic distribution of

(2.8) Sα,p
pn

=
n∑

k=1

p
1/α
k,n Xk − p

q
Hα,p(pn),

a particular type of linear combinations when α 6= 1, where

Hα,p(pn) =




− 1

1−q
1
α−1

∑n
k=1 p

1/α
k,n , if α 6= 1,

∑n
k=1 pk,n logr

1
pk,n

, if α = 1.

Even though p
1/α
1,n , . . . , p

1/α
n,n sum to one, and hence form a strategy only for

α = 1, it is a major technical step to come up with a merging approximation
in terms of the distribution functions of the semistable random variables

(2.9) Wα,p
pn

=

{ ∑n
k=1 p

1/α
k,n W α,p

1,k , if α 6= 1,
∑n

k=1 pk,nW 1,p
1,k − p

q
H1,p(pn), if α = 1,
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where the random variables Wα,p
1,1 ,W α,p

1,2 , . . . , W α,p
1,n are independent copies

of W α,p
1 , given by substituting γ = 1 in (2.2). The characteristic and

the distribution functions will be denoted by gα,p,pn
(t) = E(eitW α,p

pn ) and
Gα,p,pn

(x) = P{Wα,p
pn

≤ x}, t, x ∈ R, respectively; the ostensible notational
clash with (2.3), the strategy pn appearing in place of γ, will turn out to
be absolutely beneficial. It is easy to see that Wα,p

pn
is indeed a semistable

random variable with exponent α for an arbitrary strategy pn.

In the classical case, approximations of P{S1,1/2
pn

≤ x} by G1,1/2,pn
(x) were

obtained in [17] with rates of merge. The main goal of the present paper is
to generalize the merging asymptotic expansions in [10] to strategies, that is,
to general linear combinations, such that the classical special case α = 1, p =
1/2 of the expansion will yield the rates of merge in [17] and also show that
those rates are not improvable. Our expansions here require certain mixed
derivatives and their properties, which we now introduce, following [10] and
[9]. Fix the parameters α ∈ (0, 2), p ∈ (0, 1) and γ ∈ (q, 1], and consider for
each u > 0 the infinitely divisible distribution function Gα,p,γ(x ; u), x ∈ R,
that has characteristic function gα,p,γ(t ; u) = euyα,p

γ (t), that is,

gα,p,γ(t ; u) = euyα,p
γ (t) =

∫ ∞

−∞
eitx dGα,p,γ(x ; u), t ∈ R.

It was shown in Lemma 4 in [10] that the partial derivatives

G(k,j)
α,p,γ(x ; u) =

∂k+j Gα,p,γ(x ; u)

∂xk ∂uj

=
1

2π

∫ ∞

−∞
e−itx(−it)k−1

[
yα,p

γ (t)
]j

euyα,p
γ (t) dt(2.10)

are well defined at all x ∈ R and u > 0 for every j ∈ {0, 1, 2, . . .} and k ∈ N,
so that

(2.11) G(k,j)
α,p,γ(x) =

∂k+j Gα,p,γ(x ; u)

∂xk ∂uj

∣∣∣∣
u=1

, x ∈ R, for j ∈ {0, 1, 2, . . .}, k ∈ N,

are all meaningful. Furthermore, by Lemma 6 in [10] we have the moment
property

(2.12)

∫ ∞

−∞
|x|β

∣∣G(k+1,j)
α,p,γ (x)

∣∣ dx < ∞ 0 ≤ β < α for all j, k ∈ {0, 1, 2, . . .},

extending (2.5) from the case G
(1,0)
α,p,γ(·) = G

(2.1)
α,p,γ(·) = G ′

α,p,γ(·) = gα,p,γ(·), and

(2.13) G(k+1,j)
α,p,γ (±∞) = lim

x→±∞
G(k+1,j)

α,p,γ (x) = 0 for all j, k ∈ {0, 1, 2, . . .}.
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In particular, for every j, k ∈ {0, 1, 2, . . .} the function G
(k+1,j)
α,p,γ (·) is Lebesgue

integrable on R, and hence

G(k,j)
α,p,γ(x) =

∫ x

−∞
G(k+1,j)

α,p,γ (v) dv, x ∈ R,

is a function of bounded variation on the whole R, with Fourier – Stieltjes
transform

g(k,j)
α,p,γ(t) =

∫ ∞

−∞
eitx dG(k,j)

α,p,γ(x) =

∫ ∞

−∞
eitx G(k+1,j)

α,p,γ (x) dx

= (−it)k
[
yα,p

γ (t)
]j

gα,p,γ(t) = (−it)k
[
yα,p

γ (t)
]j

eyα,p
γ (t),(2.14)

for all t ∈ R. These results in Lemma 6 in [10] are extended in [9] to arbitrary
semistable distributions of exponent α ∈ (0, 2).

Theorem 2.1 in the next section contains the merging asymptotic expan-
sions for the linear combinations in (2.8). However, these combinations are
satisfactory for the n Pauls who wish to pool their individual winnings only
in the case α = 1. The equivalent Theorem 2.2 contains an overall satis-
factory version after a simple transformation. As shown in [17] for p = 1/2
and in Theorem 1.1 (or in [26]) in general, for α = 1 genuine benefits of
pooling realize for a fixed n if and only if every component of the pooling
strategy pn = (p1,n, . . . , pn,n) is either an integer power of q = 1− p or zero.
Surprisingly, it will turn out in Corollary 2.2, that for any sequence of such
admissible strategies there is a proper limiting distribution for Sα,p

pn
and its

equivalent form in Theorem 2.2 for every α, and the merging approximations
reduce to asymptotic expansions of the usual type. The example of the best
admissible strategy in [17] for the classical case (α, p) = (1, 1/2) is spelled out
in detail. Numerical analysis is presented in Section 2.4., all the proofs are
placed in Section 2.5..

2.3. The expansions

Fix any strategy pn = (p1,n, . . . , pn,n), and consider the position parameters
γk,n = 1/(pk,nrdlogr 1/pk,ne) ∈ (q, 1] for each component k = 1, 2, . . . , n for
which pk,n > 0. Roughly speaking γk,n ∈ (q, 1] determines the position
of pk,n between two consecutive powers of r. Note that for the (generally
inadmissible) uniform strategy p¦n = (1/n, . . . , 1/n) all the γk,n reduce to
γn in (2.7). Recalling formula (2.3) for the ingredients and the notation
gα,p,pn

(t) = E(eitW α,p
pn ) at (2.9), for t ∈ R we introduce the complex-valued
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function gα,p
pn

(t), defined for α 6= 1 as

gα,p
pn

(t) = gα,p,pn
(t)

[
1 − 1

2

n∑

k=1

p2
k,n

[
yα,p

γk,n
(t)

]2
+ itsα,p

1

n∑

k=1

p
1+ 1

α
k,n yα,p

γk,n
(t)

+
t2

2

{
(sα,p

1 )2 +
p

q − q2/α

} n∑

k=1

p
2
α
k,n

]
,

where the constant sα,p
1 = p/(q − q1/α) is from (2.2), and for α = 1 as

g1,p
pn

(t) = g1,p,pn
(t)

[
1 − 1

2

n∑

k=1

p2
k,n

[
y1,p

γk,n
(t)

]2 − it
p

q

n∑

k=1

p2
k,n y1,p

γk,n
(t) logr

1

pk,n

+
t2

2

{
p2

q2

n∑

k=1

p2
k,n log2

r

1

pk,n

+
1

q

n∑

k=1

p2
k,n

}]
.

For any sequence c1,n, . . . , cn,n of complex numbers, where ck,n may be for-
mally undefined if pk,n = 0, here and throughout we use the convention∑n

k=1 pk,nck,n =
∑

{1≤k≤n: pk,n 6=0} pk,nck,n. Consider finally the function Gα,p
pn

(·)
on R that has Fourier – Stieltjes transform gα,p

pn
(t), that is,

(2.15) gα,p
pn

(t) =

∫ ∞

−∞
eitx dGα,p

pn
(x), t ∈ R.

This is meaningful because the function Gα,p
pn

(·) is a sum with four terms,
the first of which is the distribution function Gα,p,pn

(·), while the other three
terms will turn out to be constant multiples of sums of convolutions of well-
determined distribution functions and some mixed derivatives in (2.11). To
obtain an explicit formula of this nature for Gα,p

pn
(·) we need the following

scaling properties of the logarithm of the characteristic function in (2.4),
which in particular will also be useful later for proving limit theorems for
admissible strategies and which in general will add to our understanding in
(2.16) below of the merging approximation itself.

For all p ∈ (0, 1) and γ ∈ (q, 1] the definition in (2.4) immediately implies

γ yα,p
1

(
t

γ1/α

)
=

{
yα,p

γ (t), if α 6= 1,

y1,p
γ (t)− its1,p

γ , if α = 1,
t ∈ R.

Also, lengthy but straightforward calculation shows what in fact is the semi-
stable property of the characteristic function gα,p,γ(·) in (2.3), which for the
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classical case (α, p) = (1, 1/2) was first noticed by Martin-Löf ([31], Theorem
2), namely,

yα,p
γ

(
r

m
α s

)
=

{
rmyα,p

γ (s), if α 6= 1,

rmy1,p
γ (s)− isrmmp

q
, if α = 1, s ∈ R,

for all m ∈ Z. Combining these two scaling properties we get for α 6= 1,

yα,p
1

(
tp

1/α
k,n

)
= pk,n yα,p

γk,n
(t), t ∈ R,

and for α = 1,

y1,p
1 (tpk,n) = pk,n y1,p

γk,n
(t) + it

p

q
pk,n logr

1

pk,n

, t ∈ R.

We claim that for all α ∈ (0, 2), p ∈ (0, 1) and strategy pn = (p1,n, . . . , pn,n)
this implies the unified formula

(2.16) gα,p,pn
(t) = E

(
eitW α,p

pn

)
= exp

{
n∑

k=1

pk,n yα,p
γk,n

(t)

}
, t ∈ R,

for the pertaining characteristic functions. Indeed, if α 6= 1, then

gα,p,pn
(t) =

n∏

k=1

gα,p,1

(
tp

1/α
k,n

)
=

n∏

k=1

e yα,p
1

(
tp

1/α
k,n

)
= exp

{
n∑

k=1

pk,n yα,p
γk,n

(t)

}
,

while if α = 1, then

g1,p,pn
(t) = e−it p

q
H1,p(pn)

n∏

k=1

g1,p,1(tpk,n) = e−it p
q
H1,p(pn)

n∏

k=1

e y1,p
1 (tpk,n)

= e−it p
q
H1,p(pn) exp

{
n∑

k=1

[
pk,n y1,p

γk,n
(t) + it

p

q
pk,n logr

1

pk,n

]}
,

which, writing out the entropy H1,p(pn) = −∑n
k=1 pk,n logr pk,n, gives (2.16)

also for α = 1. Another general consequence of the scaling properties is that
for all α ∈ (0, 2) we can rewrite the functions gα,p

pn
(t) in (2.15) in the following

simpler form

gα,p
pn

(t) = gα,p,pn
(t)

[
1 − 1

2

n∑

k=1

(
yα,p

1

(
tp

1/α
k,n

))2

+ itsα,p
1

n∑

k=1

p
1/α
k,n yα,p

1

(
tp

1/α
k,n

)

+
t2

2

{(
sα,p
1

)2
+

p

q − q2/α

} n∑

k=1

p
2/α
k,n

]
(2.17)
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for all t ∈ R, noting also from (2.2) that s1,p
1 = p

q
log 1 = 0 for α = 1.

Using the latter formula (2.17), we can now determine Gα,p
pn

(·) as follows.

The semistable random variable p
1/α
l,n W α,p

1 has characteristic function

E
(
eitp

1/α
l,n W α,p

1

)
= eyα,p

1 (tp
1/α
l,n ), t ∈ R,

and distribution function

P
{

p
1/α
l,n Wα,p

1 ≤ x
}

= Gα,p,1

(
xp

−1/α
l,n

)
, x ∈ R,

for all l = 1, 2, . . . , n for which pl,n > 0. Using (2.14) for G
(m,j)
α,p,1 (x) and then

replacing the latter argument x by x/p
1/α
l,n , we obtain

(2.18)

∫ ∞

−∞
eitxdGα,p,1

m,j,l(x) = p
m/α
l,n (−it)m

(
yα,p

1

(
tp

1/α
l,n

))j

eyα,p
1 (tp

1/α
l,n ), t ∈ R,

where Gα,p,1
m,j,l(x) = G

(m,j)
α,p,1 (x/p

1/α
l,n ), x ∈ R, is of bounded variation, m, j ≥ 0.

Using (2.17) and the form

gα,p,pn
(t) = e−I(α=1)itp H1,p(pn)/q

n∏

k=1

exp
{
yα,p

1 (tp
1/α
k,n )

}

from (2.9), where I(A) is the indicator of the event A, for α 6= 1 we obtain

gα,p
pn

(t) = gα,p,pn
(t)− 1

2

n∑

k=1

[
{
yα,p

1 (tp
1/α
k,n )

}2
eyα,p

1 (tp
1/α
k,n )

n∏
j=1
j 6=k

eyα,p
1 (tp

1/α
j,n )

]

−sα,p
1

n∑

k=1

[
p

1/α
k,n (−it)yα,p

1

(
tp

1/α
k,n

)
eyα,p

1 (tp
1/α
k,n )

n∏
j=1
j 6=k

eyα,p
1 (tp

1/α
j,n )

]

−1

2

[
(sα,p

1 )2 +
p

q − q2/α

] n∑

k=1

[
p

2/α
k,n (−it)2eyα,p

1 (tp
1/α
k,n )

n∏
j=1
j 6=k

eyα,p
1 (tp

1/α
j,n )

]
(2.19)

for all t ∈ R, and, setting hp(pn) = −pH1,p(pn)/q, for α = 1,

g1,p
pn

(t) = g1,p,pn
(t) − eithp(pn)

2

n∑

k=1

[{
y1,p

1 (tpk,n)
}2

ey1,p
1 (tpk,n)

n∏
j=1
j 6=k

ey1,p
1 (tpj,n)

]

− eithp(pn)

2 q

n∑

k=1

[
p2

k,n(−it)2 ey1,p
1 (tpk,n)

n∏
j=1
j 6=k

ey1,p
1 (tpj,n)

]
.(2.20)

32



Consider the distribution functions Fα,p
k,n (x) = P

{∑n
j=1,j 6=k p

1/α
j,n W α,p

1,j ≤ x
}
,

x ∈ R, where W α,p
1,j are still independent copies of W α,p

1 in (2.2), k = 1, . . . , n.
Clearly, its characteristic function is

∫ ∞

−∞
eitx dFα,p

k,n (x) =
n∏

j=1
j 6=k

eyα,p
1 (tp

1/α
j,n ), t ∈ R.

Using the notation [F ? G](x) =
∫∞
−∞F (x− y) dG(y) =

∫∞
−∞G(x− y) dF (y),

x ∈ R, for the Lebesgue – Stieltjes convolution of the functions F and G of
bounded variation and writing sα,p

1 = p/(q − q1/α) in from (2.2), we see by
(2.18) and (2.19) that for α 6= 1,

Gα,p
pn

(x) = Gα,p,pn
(x)− 1

2

n∑

k=1

[
Gα,p,1

0,2,k ? Fα,p
k,n

]
(x)

− p

q − q1/α

n∑

k=1

[
Gα,p,1

1,1,k ? Fα,p
k,n

]
(x)

−1

2

{
p2

(q − q1/α)2
+

p

q − q2/α

} n∑

k=1

[
Gα,p,1

2,0,k ? Fα,p
k,n

]
(x)(2.21)

and by (2.18) and (2.20) that for α = 1,

G1,p
pn

(x) = G1,p,pn
(x) − 1

2

n∑

k=1

[
Fhp(pn) ? G1,p,1

0,2,k ? F 1,p
k,n

]
(x)

− 1

2 q

n∑

k=1

[
Fhp(pn) ? G1,p,1

2,0,k ? F 1,p
k,n

]
(x)(2.22)

for all x ∈ R, where Fc(x) = 0 or 1, according as x < c or x ≥ c, is the
degenerate distribution function of the constant c ∈ R.

The formulae (2.21) and (2.22) are very complicated and in fact useless
to prove anything directly; for α = 1 the expression (2.22) is even mislead-

ing in the sense that it does not contain the mixed derivative G
(1,1)
1,p,γ(·) for

any γ ∈ (q, 1]. Nevertheless, they have two important consequences. One
is the immediate fact that Gα,p

pn
(·) is a function of bounded variation on R,

and hence (2.15) is indeed meaningful for all α ∈ (0, 2), p ∈ (0, 1) and
strategy pn. The other is that we see by (2.13) that to prove the impor-
tant properties Gα,p

pn
(−∞) = 0 and Gα,p

pn
(∞) = 1 it suffices to show that

G
(0,2)
α,p,1(±∞) = 0. This will be done in the next section, where, in turn,

these properties are the key to get a numerically manageable formula for
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Gα,p
pn

(·). We note that besides (2.21) and (2.22) intuitively more appeal-
ing formulae can be obtained directly by the defining formulae above (2.15)

and by (2.16). Indeed, for any u > 0 introduce the functions G
(l+1,j)
u,α,p,γ(x) =

G
(l+1,j)
α,p,γ (x ; u) in (2.10) and G

(l,j)
u,α,p,γ(x) =

∫ x

−∞G
(l+1,j)
u,α,p,γ(y) dy, x ∈ R, for which∫∞

−∞eitx dG
(l,j)
u,α,p,γ(x) = (−it)l[yα,p

γ (t)]j eu yα,p
γ (t), t ∈ R, by Lemma 6 in [10],

j, l ∈ {0, 1, 2, . . .}, which extends (2.14). Also, consider the semistable dis-
tribution function Hα,p,k(·), which for any k ∈ {1, . . . , n} for which pk,n > 0
is the convolution of Gpj,n,α,p,γj,n

(·) for all j ∈ {1, . . . , n}, j 6= k, for which
pj,n > 0. Then for α = 1,

G1,p
pn

(x) = G1,p,pn
(x)−

n∑

k=1

p2
k,n

2

[
G

(0,2)
pk,n,1,p,γk,n

? H1,p,k

]
(x)

+
p

q

n∑

k=1

p2
k,n

(
logr

1

pk,n

)[
G

(1,1)
pk,n,1,p,γk,n

? H1,p,k

]
(x)

−
{

p2

2q2

n∑

k=1

p2
k,n log2

r

1

pk,n

+
1

2q

n∑

k=1

p2
k,n

}[
G

(2,0)
pm,n,1,p,γm,n

? H1,p,m

]
(x)

for all x ∈ R, where m ∈ {1, . . . , n} is arbitrary as long as pm,n > 0. It is
easy to write down the analogous formula also for α 6= 1.

Calculating directly from the corresponding special case of the formu-
lae above (2.15), we point out right away for the uniform strategy p¦n =
(1/n, . . . , 1/n) that by (2.14) and the fact — already noticed above — that
γk,n = γn in (2.7) for all k = 1, . . . , n, so that gα,p,p¦n(·) = gα,p,γn(·) due to
(2.16), we obtain

Gα,p
p¦n (x)=





Gα,p,γn(x)−G
(0,2)
α,p,γn(x)

2 n
− pG

(1,1)
α,p,γn(x)(

q−q
1
α

)
n

1
α
− p2G

(2,0)
α,p,γn(x)

2
(

q−q
1
α

)2

n
2−α

α

− pG
(2,0)
α,p,γn(x)

2
(

q−q
2
α

)
n

2−α
α

,

G1,p,γn(x)−G
(0,2)
1,p,γn

(x)

2 n
+

pG
(1,1)
1,p,γn

(x) logr n

q n
− p2G

(2,0)
1,p,γn

(x) log2
r n

2 q2 n
−G

(2,0)
1,p,γn

(x)

2 q n
,

for all x ∈ R, where of course the upper branch is for α 6= 1 and the lower
branch is for α = 1. For both branches the sum of the first four terms is the
function Gα,p

n (x) in the Proposition in [10], where the fifth term was missed.
That the inclusion of this fifth term would be a desirable adjustment in [10],
at least for α 6= 1, was noticed by Pap [34]. Hence for any strategy pn the
definition of Gα,p

pn
(·) in (2.15) is a suitable generalization of the desired full

form Gα,p
p¦n (·) above. Then the main result for the merging approximation of

the distribution function of Sα,p
pn

from (2.8) is the following
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Theorem 2.1. For any sequence of strategies {pn = (p1,n, . . . , pn,n)}n∈N,

sup
x∈R

∣∣∣P
{
Sα,p

pn
≤ x

}−Gα,p
pn

(x)
∣∣∣ =





O
(
p 2

n

)
, if 0 < α < 1/2,

O
(
p 1/α

n

)
, if 1/2 ≤ α < 3/2;

O
(
p (4−2α)/α

n

)
, if 3/2 ≤ α < 2,

where pn = max{p1,n, . . . , pn,n}.

For the uniform strategy p¦n, for which Sα,p
p¦n = (Sn−cα,p

n )/n1/α with Sn and
cα,p
n as in (2.6), Theorem 2.1 reduces to the Proposition in [10] when α ≤ 1,

with the adjusted full form of Gα,p
p¦n (·) replacing Gα,p

n (·), except for a refined
statement for non-lattice random variables in the case when 1/2 < α < 1.
The real effect of the adjustment to Gα,p

p¦n (·) is for α ∈ (1, 2), where the
Proposition in [10] produces a worse rate for the approximation with Gα,p

n (·)
which precludes a real asymptotic expansion. In fact, for α 6= 1 Pap [34]
refined the result for Sα,p

p¦n to a sort of a complete asymptotic expansion,
the length of it is regulated by α: the closer α is to 0 or 2, the longer the
expansion may be taken. As more refined statements than those in Theorem
2.1 and Theorem 2.2 below, we could have aimed at the generalization of his
complete expansion to strategies, but we did not feel that the necessarily more
complicated statements could give more insight into the problem, particularly
that the more complicated terms of the approximation would be hard to
penetrate for a reasonable interpretation. Finally we note that for α > 1 Pap
[34] proved the expansion for Sα,p

p¦n in the stronger non-uniform form with the
multiplicative factor 1 + |x|. Again, we could have aimed at an analogous
form here, multiplying the deviations in Theorems 2.1 and 2.2 by 1 + |x|
before taking the supremum and keep the same order relations for α > 1.
However, in view of the tail behavior of the approximative distributions, for
any given α ∈ (0, 2) the useful result of this sort would be with the factor
1 + |x|α. We conjecture that such non-uniform versions of Theorems 2.1 and
2.2 remain true; this would require new technical ideas and developments
even for p¦n.

As noted between (2.8) and (2.9), the sum of the weights p
1/α
1,n , . . . , p

1/α
n,n

in Sα,p
pn

adds to unity only if α = 1, so for α 6= 1 they cannot represent a
pooling strategy. Given these weights, we transform them to obtain a pooling
strategy for arbitrary α in the following way. Let pn = (p1,n, p2,n, . . . , pn,n)

be an arbitrary strategy as before and define qj,n = p
1/α
j,n /

∑n
k=1 p

1/α
k,n , j =

1, 2, . . . , n. Then
∑n

j=1 qj,n = 1, and so qn = (q1,n, q2,n, . . . , qn,n) is also a
strategy. In fact this is a one to one correspondence because, as can be
seen easily, pj,n = qα

j,n/
∑n

k=1 qα
k,n, j = 1, 2, . . . , n. Of course, for α = 1 this

is the identity correspondence. Using this transformation we can rewrite
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Theorem 2.1 in an equivalent, more natural form. For an arbitrary strategy
qn = (q1,n, . . . , qn,n), let

T α,p
qn

=

∑n
k=1 qk,nXk(∑n
j=1 qα

j,n

)1/α
+

p

q − q1/α

1(∑n
j=1 qα

j,n

)1/α
and V α,p

qn
=

∑n
k=1 qk,nWα,p

1,k(∑n
j=1 qα

j,n

)1/α

if α 6= 1, while T 1,p
qn

= S1,p
qn

and V 1,p
qn

= W 1,p
qn

otherwise. Notice that( ∑n
j=1 qα

j,n

)1/α
in the denominators is the `α-norm of the strategy qn. Also,

for α 6= 1 we introduce

hα,p
qn

(t) = E
(
eitV α,p

qn

)[
1 −

∑n
k=1 q2α

k,n

[
yα,p

νk,n
(t)

]2

2
(∑n

j=1 qα
j,n

)2 +
itsα,p

1

∑n
k=1 q1+α

k,n yα,p
νk,n

(t)
(∑n

j=1 qα
j,n

)1+ 1
α

+
t2

(
(sα,p

1 )2 + p/(q − q2/α)
) ∑n

k=1 q2
k,n

2
(∑n

j=1 qα
j,n

)2/α

]
, t ∈ R,

where sα,p
1 = p/(q−q1/α) still and, again, just as for pn above, the summations

are only for those indices k ∈ {1, . . . , n} for which qk,n > 0, and for such k,

νk,n =

1
qα
k,n

∑n
j=1 qα

j,n

r

⌈
logr

1
qα
k,n

∑n
j=1 qα

j,n

⌉ ∈ (q, 1].

For α = 1 we see that νk,n reduces to γk,n that corresponds to qk,n > 0, and we
simply put h1,p

qn
(t) = g1,p

qn
(t) for all t ∈ R. Now consider the function Hα,p

qn
(·),

of bounded variation on R, that has Fourier – Stieltjes transform hα,p
qn

(·), so

that hα,p
qn

(t) =
∫∞
−∞ eitx dHα,p

qn
(x), t ∈ R. Then we have the following

Theorem 2.2. For any sequence of strategies {qn = (q1,n, . . . , qn,n)}n∈N,

sup
x∈R

∣∣∣P
{
T α,p

qn
≤ x

}−Hα,p
qn

(x)
∣∣∣ =





O
(
h2

n,α

)
, if 0 < α < 1/2,

O
(
h

1/α
n,α

)
, if 1/2 ≤ α < 3/2,

O
(
h

(4−2α)/α
n,α

)
, if 3/2 ≤ α < 2,

where hn,α = q α
n /

∑n
k=1 qα

k,n.

While formally these conditions are not required, Theorem 2.1 of course
gives asymptotic results only when pn → 0, while Theorem 2.2 works for a
given α only if hn,α → 0. This second condition is needed because, in general,
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the conditions pn → 0 and qn → 0 are independent in the sense that neither
of them implies the other. This can be seen through suitably constructed
examples.

Rates of merge with the distribution functions Hα,p,qn
(x) = P{V α,p

qn
≤ x},

x ∈ R, implying that in Theorem 4 in [17], are contained in the following

Corollary 2.1. If {qn = (q1,n, . . . , qn,n)}n∈N is a sequence of strategies for
which hn,α → 0, then for every ε > 0 there is a threshold n∗ = n∗(ε, α, p) ∈ N
such that

sup
x∈R

∣∣P{
T α,p

qn
≤ x

}−Hα,p,qn
(x)

∣∣ ≤





(1 + ε) K(α, p) hn,α, if 0 < α < 1,

(1 + ε) K(1, p) qn log2
r

1
qn

, if α = 1,

(1 + ε) K(α, p) h
(2−α)/α
n,α , if 1 < α < 2,

whenever n ≥ n∗, where the constants are

K(α, p) =





C2
7

2παC2
1
, if 0 < α < 1,

p2

2q2πC2
1
, if α = 1,

{
p2

(q−q1/α)2
+ p

q−q2/α

}
Γ(2/α)

2παC
2/α
1

, if 1 < α < 2,

where Γ(u) =
∫∞
0

xu−1 e−x dx, u > 0, is the usual gamma function, in which

C1 = C1(α, p) =

(
2

π

)α
pq(2−α)/α

q − q2/α

and, for α < 1,

C7 = C7(α, p) =
21−α

q
+

21−αp

q − q1/α
.

The admissibility condition is difficult to formulate in the context of the
qn weights of Theorem 2.2, so in this regard we focus only on Theorem 2.1.
Since all nonzero members pk,n of an admissible strategy are integer powers
of q, the corresponding γk,n = 1, k = 1, 2, . . . , n. Hence by (2.16) for any
admissible strategy pn the distributional equality Wα,p

pn

D
= W α,p

1 holds for the
random variable W α,p

1 in (2.2), and the functions gα,p
pn

(t) in (2.15) may be
written in the following simpler form: for α 6= 1,

gα,p
pn

(t) = eyα,p
1 (t)−[

yα,p
1 (t)

]2
eyα,p

1 (t) 1

2

n∑

k=1

p2
k,n − (−it)yα,p

1 (t) eyα,p
1 (t)

p
∑n

k=1 p
1+ 1

α
k,n

q − q1/α

− (−it)2eyα,p
1 (t)

{
p2

(q − q1/α)2
+

p

q − q2/α

}
1

2

n∑

k=1

p
2/α
k,n ,

37



and for α = 1,

g1,p
pn

(t) = ey1,p
1 (t)−[

y1,p
1 (t)

]2
ey1,p

1 (t) 1

2

n∑

k=1

p2
k,n− ity1,p

1 (t) ey1,p
1 (t)p

q

n∑

k=1

p2
k,n logr

1

pk,n

− (−it)2ey1,p
1 (t)

2

{
p2

q2

n∑

k=1

p2
k,n log2

r

1

pk,n

+
1

q

n∑

k=1

p2
k,n

}
.

Thus for any admissible strategy pn = (p1,n, . . . , pn,n) by (2.14) we have for
α 6= 1,

Gα,p
pn

(x) = Gα,p,1(x) − G
(0,2)
α,p,1(x)

1

2

n∑

k=1

p2
k,n −G

(1,1)
α,p,1(x)

p

q − q1/α

n∑

k=1

p
1+ 1

α
k,n

− G
(2,0)
α,p,1(x)

{
p2

(q − q1/α)2
+

p

q − q2/α

}
1

2

n∑

k=1

p
2
α
k,n,

and for α = 1,

G1,p
pn

(x) = G1,p,1(x) − G
(0,2)
1,p,1(x)

1

2

n∑

k=1

p2
k,n + G

(1,1)
1,p,1(x)

p

q

n∑

k=1

p2
k,n logr

1

pk,n

− G
(2,0)
1,p,1(x)

1

2

{
p2

q2

n∑

k=1

p2
k,n log2

r

1

pk,n

+
1

q

n∑

k=1

p2
k,n

}
(2.23)

for all x ∈ R. Therefore, in the admissible case there exists a proper limit-
ing distribution, and moreover we have real asymptotic expansions attached
to this asymptotic distribution. Concentrating on the dominant terms in
Theorem 2.1, we obtain the following

Corollary 2.2. For any sequence {pn = (p1,n, . . . , pn,n)}n∈N of admissible
strategies, for α ∈ (0, 1),

sup
x∈R

∣∣∣∣∣P
{
Sα,p

pn
≤ x

}−
[
Gα,p,1(x) − G

(0,2)
α,p,1(x)

1

2

n∑

k=1

p2
k,n

]∣∣∣∣∣

=

{
O(p 2

n), if 0 < α ≤ 1/2,

O(p 1/α
n ), if 1/2 < α < 1;

for α = 1,

sup
x∈R

∣∣∣∣∣P
{
S1,p

pn
≤ x

}−
[

G1,p,1(x) + G
(1,1)
1,p,1(x)

p

q

n∑

k=1

p2
k,n logr

1

pk,n

− G
(2,0)
1,p,1(x)

p2

2q2

n∑

k=1

p2
k,n log2

r

1

pk,n

]∣∣∣∣∣ = O(pn);

38



and for α ∈ (1, 2),

sup
x∈R

∣∣∣∣∣P
{
Sα,p

pn
≤ x

}−
[
Gα,p,1(x)−G

(2,0)
α,p,1(x)

{
p2

(q − q1/α)2
+

p

q − q2/α

}
1

2

n∑

k=1

p
2/α
k,n

]∣∣∣∣∣

=

{
O(p 1/α

n ), if 1 < α ≤ 3/2,

O(p (4−2α)/α
n ), if 3/2 < α < 2.

For each n ∈ N the best admissible strategy for the classical case (α, p) =
(1, 1/2), found in [17], is the following:

p∗n = (p∗1,n, . . . , p
∗
n,n) = (2p∗n, . . . , 2p∗n, p

∗
n, . . . , p

∗
n) with p∗n =

1

2dlog2 ne =
γn

n
,

where the number of the p∗n components is 2n−2dlog2 ne and the number of the
2p∗n components is 2dlog2 ne−n. Calculating the coefficients in (2.23), we obtain

G
1,1/2
p∗n (x) = G1,1/2,1(x)−anG

(0,2)
1,1/2,1(x)+bnG

(1,1)
1,1/2,1(x)−cnG

(2,0)
1,1/2,1(x), x ∈ R, and

supx∈R
∣∣P{

S
1,1/2
p∗n ≤ x

}−[
G1,1/2,1(x)+bnG

(1,1)
1,1/2,1(x)−dnG

(2,0)
1,1/2,1(x)

]∣∣ = O(1/n)

as a special case of Corollary 2.2, where γn = n/2dlog2 ne oscillates in (1/2, 1],

an =
3·2dlog2 ne − 2n

22dlog2 ne+1
=

3
2
γn − γ2

n

n
,

bn =
(3 · 2dlog2 ne− 2n)dlog2 ne − 4(2dlog2 ne− n)

22dlog2 ne

=
(3γn − 2γ2

n) log2
n
γn
− 4(γn − γ2

n)

n
,

dn =
(3·2dlog2 ne − 2n)dlog2 ne2 − 4(2dlog2 ne − n)(2dlog2 ne − 1)

22dlog2 ne+1

=
(3

2
γn − γ2

n) log2
2

n
γn
− 2(γn − γ2

n)(2 log2 nγn − 1)

n
,

and

cn = dn +
6·2dlog2 ne − 4n

22dlog2 ne+1
= dn +

3γn − 2γ2
n

n
.

Also, since in the proof of Corollary 2.1 we show for all p ∈ (0, 1) and all
{pn} for which pn → 0 that for every ε > 0 there is an n∗(ε, p) ∈ N such that
for n ≥ n∗(ε, p),

sup
x∈R

∣∣∣P
{

S1,p
pn
≤ x

}
−G1,p,pn

(x)
∣∣∣ ≤ (1 + ε)

p2

q2πC2
1

n∑

k=1

p2
k,n

2
log2

r

1

pk,n

,
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and since the last sum for pn = p∗n is exactly dn, for which the asymptotic
equality

dn ∼ γn(3− 2γn)

2

log2
2 n

n
,

is satisfied, where we write xn ∼ yn if xn/yn → 1, substituting C1(1, 1/2) =
2/π we obtain

sup
x∈R

∣∣∣P
{

S
1,1/2
p∗n ≤ x

}
−G1,1/2,1(x)

∣∣∣ ≤ (1 + ε)
πγn(3− 2γn)

8

log2
2 n

n

whenever n ≥ n∗(ε), a slightly better bound than the one in (34) in [17].

2.4. Numerical computations

The merging semistable approximations are described only through their
characteristic functions and their mathematical properties are inferred either
through Fourier-analytic methods or by special representations, such as that
in (2.2). The same is even more true for the derivatives featured in our
expansions, for which the only conceivable tool appears to be the Fourier
method. For the purpose of numerical investigation of the expansions we use
what we call the extended Gil-Pelaez –Rosén inversion formula, which says
the following. Let H(·) be a function of bounded variation on R, consider
its total variation function VH(x) = sup{∑n

j=1 |H(xj) − H(xj−1)| : −∞ <

x0 < x1 < · · · < xn ≤ x, n ∈ N} and let h(t) =
∫∞
−∞ eitxdH(x) be its

Fourier – Stieltjes transform, t ∈ R. If the logarithmic moment
∫∞
−∞ log(1 +

|x|) dVH(x) < ∞, then

H(x + 0)−H(x− 0)

2
=

H(∞)−H(−∞)

2
− 1

π
lim

T→∞

∫ T

0

Im
{
e−itxh(t)

}

t
dt

for every x ∈ R, where H(±∞) = limx→±∞H(x). Gil-Pelaez [22] proved
this for distribution functions without the logarithmic moment condition, in
which case the integral is also improper Riemann at zero. Eleven years later
Rosén [36] independently proved the same formula also for a distribution
function H, for which H(∞) − H(−∞) = 1 − 0 = 1, showing in particular
that under the logarithmic moment condition the integral exists as a proper
Lebesgue integral on (0, T ] for all T > 0. A trivial modification of Rosén’s
proof gives the extended form above.

The Gil-Pelaez – Rosén formula is clearly applicable to the distribution
function Gα,p,pn

(·). In order to use the formula for Gα,p
pn

(·) we claim that
Gα,p

pn
(∞) = 1 and Gα,p

pn
(−∞) = 0 for every α ∈ (0, 2), p ∈ (0, 1) and strategy
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pn. As already noted in the previous section, by (2.13), (2.21) and (2.22)

it suffices to show that G
(0,2)
α,p,γ(±∞) = 0 for all γ ∈ (q, 1]. We know that

G
(0,2)
α,p,γ(x) =

∫ x

−∞ G
(1,2)
α,p,γ(y)dy, x ∈ R, for the integrable function G

(1,2)
α,p,γ(·),

thus G
(0,2)
α,p,γ(−∞) = 0 and G

(0,2)
α,p,γ(·) is of bounded variation. The logarithmic

moment property also holds by (2.12), hence by the extended Gil-Pelaez –
Rosén formula

G(0,2)
α,p,γ(x) =

G
(0,2)
α,p,γ(∞)

2
− 1

π

∫ ∞

0

Im
{
e−itx

[
yα,p

γ (t)
]2

e yα,p
γ (t)

}

t
dt, x ∈ R,

where we write the integral in this proper form since by Lemma 2.2 below the
function t 7→ [yα,p

γ (t)]2 eyα,p
γ (t)/t is in fact Lebesgue integrable on (0,∞). Thus

the Riemann – Lebesgue lemma implies that G
(0,2)
α,p,γ(∞) = G

(0,2)
α,p,γ(∞)/2, and

hence G
(0,2)
α,p,γ(∞) = 0 indeed. We note that the same argument shows that

G
(k,j)
α (∞) = 0 for all k, j = 0, 1, . . . for which k + j > 0 for any semistable

distribution function Gα(·) with characteristic exponent α ∈ (0, 2); these
derivatives are developed in [9].

Now, applying the extended Gil-Pelaez – Rosén formula, we obtain

Gα,p
pn

(x) =
1

2
− 1

π

∫ ∞

0

Im
{
e−itxgα,p

pn
(t)

}

t
dt, x ∈ R.

Due to the mass concentrating near zero, this formula is numerically incon-
venient. The problem can be overcome by the change of variables t = eu,
which gives

Gα,p
pn

(x) =
1

2
− 1

π

∫ ∞

−∞
Im

{
e−ixeu

gα,p
pn

(eu)
}

du, x ∈ R,

and smears that mass on the whole negative half-line. Indeed, using Simp-
son’s method for numerical integration, we found that for all values of the
parameters and for all strategies considered in the examples below it suffices
to integrate on the finite interval [−20, 3]. The idea of transforming variables
and the whole computation for the distribution functions G1,1/2,γ(·) is due to
Gordon Simons. The exact same formula can be shown to produce Hα,p

qn
(·)

from hα,p
qn

(·) in the context of Theorem 2.2.
It was with this method that the three examples in Figures 1–3 in [10]

were obtained for the uniform averaging strategy p¦n = (1/n, . . . , 1/n) for
α = 3/2, 1, 1/2 and the respective n = 50, 10, 7, all with p = 1/2. For the six
examples here we chose the same α parameters with some different, but still
very small n. Figures 1, 2, 3, 6 are for the choices α = 3/2, 1, 1, 1/2 and the
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0.2

0.4
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1

Figure 1. Solid F
3/2,1/2
p100

, dotted G3/2,1/2,p100
, and dashed G

3/2,1/2
p100

strategies

p100 =

(
1

80
, . . . ,

1

80︸ ︷︷ ︸
40 times

,
1

120
, . . . ,

1

120︸ ︷︷ ︸
60 times

)
, p∗12 =

(
1

8
, . . . ,

1

8︸ ︷︷ ︸
4 times

,
1

16
, . . . ,

1

16︸ ︷︷ ︸
8 times

)
,

p12 =

(
1

10
, . . . ,

1

10︸ ︷︷ ︸
6 times

,
1

15
, . . . ,

1

15︸ ︷︷ ︸
6 times

)
, p8 =

(
1

6
, . . . ,

1

6︸ ︷︷ ︸
4 times

,
1

12
, . . . ,

1

12︸ ︷︷ ︸
4 times

)
,

respectively; in these four cases we still chose the unbiased situation of histori-
cal interest, that is, p = 1/2. For the most interesting case α = 1 of the tail or
payoff parameter, for which the mean becomes infinite, we also investigated
the dependence of the approximation on the bias parameter p: with p12 kept,
Figures 4 and 5 are for the choices p = 1/10 and p = 5/6. On all six figures
the solid curves depict the distribution functions Fα,p

pn
(x) = P{Sα,p

pn
≤ x},

x ∈ R, which are obtained as the empirical distribution functions of 10 000
simulations of Sα,p

pn
. Also on all six figures the dotted curves Gα,p,pn

(·) are
the merging semistable distribution functions and the dashed curves are the
full approximations Gα,p

pn
(·) of Theorem 2.1.

In Figure 1. α = 3/2, thus the rate of merge is p1/3
n and the order of the

approximation is p2/3
n . The very satisfactory full approximation provides a

dramatic improvement.
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Figure 2. Solid F
1,1/2
p∗12

, dotted G1,1/2,p∗12 , and dashed G
1,1/2
p∗12

For α = 1 the rate of merge is pn log2
2 1/pn and the order of the approx-

imation is pn. The best admissible strategy can be seen in Figure 2., for
which G1,1/2,p∗n(·) ≡ G1,1/2,1(·) for all n. The example in the next figure is
the exact opposite of this, but no particular difference is visible. The two
different values of γk,12, k = 1, 2, . . . , 12, for the strategy here, 10/16 and
15/16, differ from each other to a great extent. Roughly speaking this means
that G1,1/2,p12

(·) differs from a single distribution function G1,1/2,γ(·), for any
γ, as much as it can. But the quality of the approximation is about the same
as in Figure 2.

In Figures 4. and 5. we illustrate the dependence on p. In both cases
α = 1. In Figure 4. p = 1/10 thus r = 10/9, so that the gains, the powers

of 10/9, increase very slowly. An easy computation shows that F
1,1/10
pn

(·)
has about 8 · 1011 jump points in the interval (−3, 15), so it seems to be
continuous. As the following figure shows, for a large p the situation is the
opposite. In this case r = 6, so the gains increase very fast. One can easily
count that F

1,5/6
pn

(·) has 20 jump points in (−3, 20). Thus n ought to be
larger here to obtain a better approximation.

In the last figure, for α = 1/2 the rate of merge is pn, while the order of the
full approximation is much better, p2

n. The precision is almost unbelievably
good for even n = 8. We also note that despite the fact that the present
strategy is not admissible, we still have γk,8 ≡ 3/4 for all k = 1, 2, . . . , 8, so
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Figure 3. Solid F
1,1/2
p12

, dotted G1,1/2,p12
, and dashed G

1,1/2
p12
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Figure 4. Solid F
1,1/10
p12

, dotted G1,1/10,p12
, and dashed G

1,1/10
p12
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Figure 5. Solid F
1,5/6
p12

, dotted G1,5/6,p12
, and dashed G

1,5/6
p12
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Figure 6. Solid F
1/2,1/2
p8

, dotted G1/2,1/2,p8
, and dashed G

1/2,1/2
p8
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that G1/2,1/2,p8
(·) ≡ G1/2,1/2,3/4(·) by (2.16).

In general we see that, extending greatly the sums from [10] to the linear
combinations considered here, already the primary semistable merging ap-
proximations appear to be reasonably good, while the corresponding asymp-
totic expansions may be working incredibly well in a variety of different
circumstances even for small n.

2.5. Proofs

The proof of Theorem 2.1 is based on Esseen’s classical result (Theorem 5.2
in [35]), which we record here in a special case closest to our application.

Lemma 2.1. Let F be a distribution function and G be a function of bounded
variation on R with Fourier – Stieltjes transforms f(t) =

∫∞
−∞ eitxdF (x) and

g(t) =
∫∞
−∞ eitxdG(x), t ∈ R, such that G(−∞) = limx→−∞ G(x) = 0 =

F (−∞) and the derivative G ′ of G exists and is bounded on the whole R.
Then

sup
x∈R

|F (x)−G(x)| ≤ b

2π

∫ T

−T

∣∣∣∣
f(t)− g(t)

t

∣∣∣∣ dt + cb
supx∈R |G ′(x)|

T

for every choice of T > 0 and b > 1, where cb > 0 is a constant depending
only on b, which can be given as cb = 4bd2

b/π, where db > 0 is the unique root

d of the equation 4
π

∫ d

0
sin2 u

u2 du = 1 + 1
b
.

For j = 1, 2, 5, 6 the constants Cj(α, p) below are the same as in [10]
and agree with the respective constants cj(α, p) in [7], while the constants
Cj(α, p) numbered numbered with j = 7, 8, 9 are the same as in [10]. The
following lemma is Lemma 3 in [10], the proof of the first inequality is already
in [7].

Lemma 2.2. Uniformly in γ ∈ (q, 1],

Reyα,p
γ (t) ≤ −C1|t|α, t ∈ R, where C1 = C1(α, p) =

(
2

π

)α
pq(2−α)/α

q − q2/α
,

and ∣∣yα,p
γ (t)

∣∣ ≤ vα,p(|t|), t ∈ R,

where

vα,p(s) =

{
C7 sα, if α 6= 1,(
C7 + 2p

q
| logr s|)s, if α = 1,
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for every s ≥ 0, and for the constant C7 = C7(α, p) > 0 defined as

C7(α, p) =





21−α

q
+ 21−αp

q−q1/α , if α < 1,

max{6 , 5+9p−8p logr 2}
2q

, if α = 1,

8p
4α

{
1

q−q2/α + 1
q−q(2α−1)/α

}
, if α > 1.

Proof of Theorem 2.1. The first step is to prove that the derivatives
(Gα,p

pn
(·))′ exist and are uniformly bounded in the strategies. In fact, first we

claim that Iα,p
j,pn

:=
∫∞
−∞ |t|j |gα,p

pn
(t)| dt < ∞ for any j ∈ {0, 1, 2, . . .}, which,

referring to (2.15), implies that Gα,p
pn

(·) is arbitrary many times differentiable
on R. First note that by (2.16), Lemma 2.2 implies that for the characteristic
function

∣∣gα,p,pn
(t)

∣∣ = exp

{
n∑

k=1

pk,n Reyα,p
γk,n

(t)

}
≤ e−C1|t|α , t ∈ R.

Proceeding for α = 1, for which Ij :=
∫∞
−∞ |t|j e−C1|t|dt < ∞, using (2.17),

Lemma 2.2 and the triviality pn ≤ 1, we obtain

I1,p
j,pn

≤ Ij +
C2

7Ij+2

2
+

4C7p

q

n∑

k=1

pk,n

∫ ∞

0

|t|j+1 e−C1|t|∣∣ logr(pk,n|t|)
∣∣(pk,n|t|) dt

+
4p2

q2

n∑

k=1

pk,n

∫ ∞

0

|t|j+1 e−C1|t|
{

logr(pk,n|t|)
√

pk,n|t|
}2

dt +
Ij+2

2q
.

Breaking the k-th integral under both sums at 1/pk,n, using that | logr s|s ≤
lp := (logr e)/e, | logr s|√s ≤ 2lp, s ∈ (0, 1), and logr x ≤ cpx, x ≥ 1, for
cp = 1/(e log r), where log = loge, and then extending all resulting integrals
to (0,∞) again, we get

I1,p
j,pn

≤ Ij+
C2

7Ij+2

2
+

2C7p

q

[
lpIj+1+cpIj+2

]
+

2p2

q2

[
4l2pIj+1+c2

pIj+4

]
+

Ij+2

2q
=:M1,p

j

for all pn. The argument is similar for α 6= 1; in fact it is given below for
j = 0.

Thus, writing (2.15) for the first derivative and using the usual Fourier
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inversion formula, (2.17) and Lemma 2.2 again, for α 6= 1 we obtain

∣∣∣∣
(
Gα,p

pn
(x)

)′∣∣∣∣ =
1

2π

∣∣∣∣
∫ ∞

−∞
e−itxgα,p

pn
(t)dt

∣∣∣∣

≤ 1

2π

∫ ∞

−∞
e−C1|t|α

[
1 +

1

2

n∑

k=1

v2
α,p(|t|p1/α

k,n )

+|tsα,p
1 |

n∑

k=1

p
1/α
k,n vα,p(|t|p1/α

k,n ) +
t2

2

{
(sα,p

1 )2 +
p

q − q2/α

} n∑

k=1

p
2/α
k,n

]
dt

≤ 1

π

∫ ∞

0

e−C1tα
[
1 +

C2
7pnt2α

2
+ C7|sα,p

1 |p 1/α
n t1+α

+
t2

2

{
(sα,p

1 )2 +
p

q − q2/α

}
p (2−α)/α

n

]
dt ≤ Mα,p,

where the constant Mα,p is obtained upon replacing pn by 1, and where we
used the trivial inequality

∑n
k=1 pβ

k,n ≤ pβ−1
n , β > 1. For α = 1, the proof is

done above, so that the bound M1,p on the first derivative can be taken as
M1,p

0 above.
Now we turn to the proof of the theorem, which is an extension of the

proof of the Proposition in [10]; whenever possible, we use the same or anal-
ogous notation as there. We may skip some detail for α 6= 1.

Using Esseen’s inequality, we get

∆α,p
pn

:= sup
x∈R

∣∣P{
Sα,p

pn
≤ x

}−Gα,p
pn

(x)
∣∣

≤ b

2π

∫ T α,p
n

−T α,p
n

∣∣E(eitSα,p
pn )− gα,p

pn
(t)

∣∣
|t| dt + cb

Mα,p

T α,p
n

=:
b

2π
∆α,p

pn,1 + cb ∆α,p
pn,2 ,

where Tα,p
n = 2K1/α/p 1/α

n , and on the constant K = Kα,p > 0 we will
introduce some restrictions as we go along. By the choice of T α,p

n we have
∆α,p

pn,2 = O(p 1/α
n ). The estimation of the other term requires some further

notation. The characteristic functions of Sα,p
pn

and Wα,p
pn

can be written in the
form

E
(
eitSα,p

pn

)
= e−it p

q
Hα,p(pn)

n∏

k=1

E
(
eitp

1/α
k,n Xk

)
= e−it p

q
Hα,p(pn)

n∏

k=1

(
1 + yα,p

k,n(t)
)

and

gα,p,pn
(t) = E

(
eitW α,p

pn

)
= e−it p

q
Hα,p(pn)

n∏

k=1

ezα,p(p
1/α
k,n t), t ∈ R,
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where yα,p
k,n(t) = E

(
exp

{
itp

1/α
k,n Xk

}− 1
)

and zα,p(s) = yα,p
1 (s)− isα,p

1 s, s ∈ R.

Notice that z1,p(s) = y1,p
1 (s). Continuing the transformations, we may write

E
(
eitSα,p

pn

)
= exp

{
−it

p

q
Hα,p(pn) +

n∑

k=1

log(1 + yα,p
k,n(t))

}

= exp

{
−it

p

q
Hα,p(pn)+

n∑

k=1

zα,p(p
1/α
k,n t)+

n∑

k=1

Rα,p
k,n,1(t)+

n∑

k=1

wα,p
k,n(t)

}

= gα,p,pn
(t) exp

{
n∑

k=1

(
Rα,p

k,n,1(t) + wα,p
k,n(t)

)
}

= gα,p,pn
(t)

[
1 +

n∑

k=1

(
Rα,p

k,n,1(t) + wα,p
k,n(t)

)
+ Rα,p

n,2(t)

]

= gα,p,pn
(t)

[
1− 1

2

n∑

k=1

(yα,p
k,n(t))2 + Rα,p

n,1(t) + Rα,p
n,2(t) + Rα,p

n,3(t)

]
,

where the error terms are wα,p
k,n(t) = log(1 + yα,p

k,n(t))− yα,p
k,n(t) and

Rα,p
n,1(t) =

n∑

k=1

Rα,p
k,n,1(t) =

n∑

k=1

(
yα,p

k,n(t)− zα,p(p
1/α
k,n t)

)
,

Rα,p
n,2(t) =

∞∑

l=2

1

l!

[
n∑

k=1

wα,p
k,n(t)+Rα,p

k,n,1(t)

]l

, Rα,p
n,3(t) =

n∑

k=1

∞∑

l=3

(−1)l+1 1

l
(yα,p

k,n(t))l.

In general we use the simplifying convention Rα,p
n,j (t) =

∑n
k=1 Rα,p

k,n,j(t), j =

1, 3, 6. Finally, using the identity yα,p
k,n(t) = yα,p

1 (p
1/α
k,n t)− itp

1/α
k,n sα,p

1 + Rα,p
k,n,1(t),

we obtain

E
(
eitSα,p

pn

)
= gα,p,pn

(t)

[
1− 1

2

n∑

k=1

yα,p
1 (p

1/α
k,n t)2 + itsα,p

1

n∑

k=1

p
1/α
k,n yα,p

1 (p
1/α
k,n t)

+
t2

2

{
(sα,p

1 )2 +
p

q − q2/α

} n∑

k=1

p
2/α
k,n + Rα,p

n,5(t)

]

= gα,p
pn

(t) + gα,p
pn

(t)Rα,p
n,5(t) = gα,p

pn
(t) + Rα,p

n,7(t),

where

Rα,p
n,5(t) = R̃α,p

n,1(t) + Rα,p
n,2(t) + Rα,p

n,3(t) + Rα,p
n,6(t) = Rα,p

n,4(t) + Rα,p
n,6(t),

R̃α,p
n,1(t) =

n∑

k=1

R̃α,p
k,n,1(t) =

n∑

k=1

[
Rα,p

k,n,1(t)− p
2/α
k,n

t2 p

2 (q − q2/α)

]
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and

Rα,p
n,6(t) =

n∑

k=1

Rα,p
k,n,6(t)=

n∑

k=1

[
−1

2
Rα,p

k,n,1(t)
2−Rα,p

k,n,1(t)
{

yα,p
1 (tp

1/α
k,n )−itp

1/α
k,n sα,p

1

}]
.

Now we turn to the estimation of the remainder terms. By definition and
(2.1),

yα,p
k,n(t) = E

(
eitp

1/α
k,n Xk − 1

)
=

∫ ∞

0

(
eitp

1/α
k,n x − 1

)
dFα,p(x)

=
∞∑

l=1

(
eitp

1/α
k,n rl/α − 1

)
ql−1 p,

and by (2.4),

zα,p(p
1/α
k,n t) =

−∞∑

l=0

(
eitp

1/α
k,n rl/α− 1− itp

1/α
k,n rl/α

)
ql−1p+

∞∑

l=1

(
eitp

1/α
k,n rl/α − 1

)
ql−1p.

Thus, using the inequality |eiu − 1− iu| ≤ u2/2, u ∈ R (Lemma 4 in [7]), we
obtain

|Rα,p
k,n,1(t)| =

∣∣∣yα,p
k,n(t)− zα,p(tp

1/α
k,n )

∣∣∣ ≤
−∞∑

l=0

∣∣∣
(
eitp

1/α
k,n rl/α − 1− itp

1/α
k,n rl/α

)
ql−1p

∣∣∣

≤ |t|2p2/α
k,n p

2q

∞∑

l=0

q( 2
α
−1)l =

|t|2p2/α
k,n p

2q

1

1− q2α−1
= |t|2 C2 p

2/α
k,n ,

where C2 = C2(α, p) = p/(2(q − q2/α)). Since

R̃α,p
k,n,1(t) = −

−∞∑

l=0

(
eitp

1/α
k,n rl/α − 1− itp

1/α
k,n rl/α − (it)2p

2/α
k,n r2l/α

2

)
ql−1p,

using this time the inequality
∣∣eiu − 1− iu− (iu)2

2

∣∣ ≤ |u|3
6

, u ∈ R, we obtain

∣∣R̃α,p
k,n,1(t)

∣∣ ≤ |t|3p3/α
k,n p

6 q

∞∑

l=0

q( 3
α
−1)l =

|t|3p3/α
k,n p

6 q

1

1− q
3
α
−1

= |t|3 C̃2 p
3/α
k,n ,

where C̃2(α, p) = p/(6(q − q3/α)). Summing these bounds for k = 1, . . . , n,
we get

(2.24)
∣∣Rα,p

n,1(t)
∣∣ ≤ C2|t|2

n∑

k=1

p
2/α
k,n and

∣∣R̃α,p
n,1(t)

∣∣ ≤ C̃2|t|3
n∑

k=1

p
3/α
k,n .
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Introduce xα,p
k,n(t) = yα,p

k,n(t)/pk,n. Then the calculation on pages 320–321 in
[10], which goes back to page 837 in [7], now yields

|xα,p
k,n(t)| ≤





C5|t|α + C6|t|p1/α−1
k,n , if α 6= 1,

|t|
(
r + p

q
logr

2
|t|pk,n

)
, if α = 1,

for |t| ≤ 2q1/α/p
1/α
k,n , where

C5 = C5(α, p) = 21−α

{
1

q
+

p

q − q1/α

}
and C6 = C6(α, p) =

p

q1/α − q
.

Notice that C5 > 0 and C6 < 0 for α < 1, so that |xα,p
k,n(t)| ≤ C5|t|α for

α < 1. On the other hand, C6 > 0, but C5 can be both positive and negative
for α > 1. Therefore, we need the following argument. If |t| ≤ T α,p

n =

2K1/α/p 1/α
n then |C5||t|α ≤ |t||C5||Tα,p

n |α−1 ≤ |t|p(1−α)/α
k,n

{
2α−1K(α−1)/α|C5|

}
,

where the expression in the last pair of curly braces is < 1 if K is small
enough, in which case |xα,p

k,n(t)| ≤ (C6 + 1)|t| p(1−α)/α
k,n . An easy monotonicity

argument on the upper bounds implies that if K is small enough, then there
exists L = Lα,p ∈ (0, 1) such that |yα,p

k,n(t)| ≤ L < 1 for t in the interval
[−T α,p

n , Tα,p
n ]. Thus we have the estimates

|wα,p
k,n(t)| = | log(1 + yα,p

k,n(t))− yα,p
k,n(t)| ≤ C8|yα,p

k,n(t)|2,
and

|Rα,p
k,n,3(t)| ≤

∞∑

l=3

1

l
|yα,p

k,n(t)|l ≤ C9|yα,p
k,n(t)|3

where, by the same elementary calculations as on page 323 in [10],

C8 = C8(α, p) =
1

6
+

1

3

1

1− Lα,p

and C9 = C9(α, p) =
1

12
+

1

4

1

1− Lα,p

.

Using these bounds, the second statement of Lemma 2.1 and (2.24), we get

|Rα,p
n,5(t)| ≤ C̃2|t|3

n∑

k=1

p
3/α
k,n + Rα,p

n,8(t) + C9

n∑

k=1

|yα,p
k,n(t)|3 +

C2
2 |t|4
2

n∑

k=1

p
4/α
k,n

+C2t
2

n∑

k=1

p
2/α
k,n vα,p(tp

1/α
k,n ) + C2|sα,p

1 ||t|3
n∑

k=1

p
3/α
k,n ,(2.25)

for all t ∈ [−Tα,p
n , T α,p

n ], where Rα,p
n,8(t) is an upper bound on |Rα,p

n,2(t)|, given
by

Rα,p
n,8(t) =

∞∑

l=2

1

l!

[
C8

n∑

k=1

|yα,p
k,n(t)|2 + C2|t|2

n∑

k=1

p
2/α
k,n

]l

.
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For simplicity we now separate the three main cases: α < 1, α = 1 and
α > 1. In the followings we will use the simple identity

∫∞
0

tηe−ctαdt =
Γ((η+1)/α)

αc(η+1)/α , for η > −1, c > 0 and the inequality
∑n

k=1 pβ
k,n ≤ pβ−1

n for β > 1.
Consider first the case α ∈ (0, 1). Since |yα,p

k,n(t)|= |pk,nx
α,p
k,n(t)| ≤ pk,nC5|t|α

and vα,p(|t|) = C7|t|α, we have by (2.25),

∆α,p
pn,1 ≤ p

3
α
−1

n 2C̃2
Γ(3/α)

αC
3/α
1

+ p2
n2C3

5C9
Γ(2.3)

αC3
1

+ p
4
α
−1

n C2
2

Γ(4/α)

αC
4/α
1

+p
2
α
n 2C2C7

Γ((2 + α)/α)

αC
(2+α)/α
1

+ p
3
α
−1

n 2C2

∣∣sα,p
1

∣∣Γ(3/α)

αC
3/α
1

+2

∫ T α,p
n

0

1

t
e−C1tα |Rα,p

n,8(t)| dt.

Substituting the bounds into Rα,p
n,8(t), we obtain

|Rα,p
n,8(t)| ≤

∞∑

l=2

1

l!

[
C8C

2
5 |t|2αpn + C2|t|2p (2−α)/α

n

]l

≤
∞∑

l=2

1

l!

[(
C8C

2
5 + C2|t|2−2αp (2−2α)/α

n

) |t|2αpn

]l

≤
∞∑

l=2

1

l!

[(
C8C

2
5 + C2(2K

1/α)2−2α
) |t|2αpn

]l
,

where we used that |t|2−2αp2/α−2
n ≤ (T α,p

n )2−2αp2/α−2
n = (2K1/α)2−2α. Then

the same calculation as in [10], page 325, yields

2

∫ T α,p
n

0

e−C1tα

t
|Rα,p

n,8(t)| dt ≤ p 2
n

2

α4αC2
1K

2

3R2 − 2R3

(1−R)2
,

provided that K = Kα,p is small enough to make

R = R(α, p) = 2αK
C8C

2
5 + C2(2K

1/α)2−2α

C1

< 1.

After an easy check on the powers of pn the proof is ready in this case.
Now consider the case α = 1. Elementary analysis shows that for each

δ ∈ (0, 1) the function f(t) = tδ
(
r + p

q
logr

2
pnt

)
is monotone increasing on

(0, T 1,p
n ) if K < e−1/δ. Recall that T 1,p

n = 2K/pn. The monotonicity of f
easily implies that

(pk,nt)δ

(
r +

p

q
logr

2

pk,nt

)
≤ (2K)δ

(
r +

p

q
logr

1

K

)
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for t ∈ (0, T 1,p
n ), k = 1, 2, . . . , n. Applying this for δ = 1/3 we get

y1,p
k,n(t)3

t
= p3

k,nt2
(

r +
p

q
logr

2

tpk,n

)3

≤ p2
k,nt

[(
r +

p

q
logr

1

K

)
(2K)1/3

]3

,

if K < e−3. Using also the inequality tpk,n logr
1

tpk,n
≤ 2K logr

1
2K

and inte-

grating the bounds in (2.25), we obtain

∆1,p
pn,1 ≤ p 2

n2C̃2
Γ(3)

C3
1

+ pn2C9

[(
r +

p

q
logr

1

K

)
(2K)1/3

]3
Γ(2)

C2
1

+p 3
nC2

2

Γ(4)

C4
1

+ p 2
n2C2C7

Γ(3)

C3
1

+ pn

4C2pΓ(2)

qC2
1

2K logr

1

2K
+ ∆1,p

pn,3,

where ∆1,p
pn,3 = 2

∫ T 1,p
n

0
e−C1t t−1 R1,p

n,8(t) dt. The monotonicity of f also implies

the inequality pk,n(r + p
q
logr

2
tpk,n

)2 ≤ pn(r + p
q
logr

2
tpn

)2, k = 1, 2, . . . , n, if

K < e−2. Hence we obtain

R1,p
n,8(t) ≤

∞∑

l=2

1

l!

[
C2t

2pn + C8t
2

n∑

k=1

p2
k,n

(
r +

p

q
logr

2

tpk,n

)2
]l

≤
∞∑

l=2

1

l!

[
C2t

2pn + C8t
2pn

(
r +

p

q
logr

2

tpn

)2
]l

,

and since 1− 2
l
+ 2δ

l
≥ δ for every l ≥ 2, the inequality

[
C2 + C8

(
r+

p

q
logr

2

pnt

)2
]

t1−
2
l
+ 2δ

l ≤
[
C2 + C8

(
r+

p

q
logr

1

K

)2
]
(T 1,p

n )1− 2
l
+ 2δ

l

holds on (0, T 1,p
n ), if K is so small that K < e−2/δ. Substituting these bounds

53



into ∆1,p
pn,3 and using that C1(1, p) = 2/π, we get

∆1,p
pn,3 =

∞∑

l=2

2p l
n

l!

∫ 2K
pn

0

[
C2t

2 + C8t
2

(
r +

p

q
logr

2

tpn

)2
]l

e−
2
π

t

t
dt

=
∞∑

l=2

2p l
n

l!

∫ 2K
pn

0

[{
C2 + C8

(
r +

p

q
logr

2

tpn

)2
}

t1−
2
l
+ 2δ

l

]l

tl+1−2δ e−
2
π

t dt

≤ 2p 2−2δ
n

(2K)2−2δ

∞∑

l=2

(2K)l

l!

[
C2 + C8

(
r +

p

q
logr

1

K

)2
]l(π

2

)l+2−2δ

Γ(l + 2− 2δ)

≤ p 2−2δ
n π2−2δ

23−4δ K2−2δ

∞∑

l=2

(l + 1)

[
πC2K + πC8

(
r +

p

q
logr

1

K

)2

K

]l

=
p 2−2δ

n π2−2δ

23−4δ K2−2δ

∞∑

l=2

(l + 1)Rl = p2−2δ
n

π2−2δ(3R2 − 2R3)

23−4δ K2−2δ(1−R)2
,

provided that K is small enough to make

R = R1,p = πC8(1, p)

(
1

q
+

p

q
logr

1

K1,p

)2

K1,p + πC2(1, p)K1,p < 1.

For simplicity here we used the inequality Γ(l + 2− 2δ) < Γ(l + 2) = (l + 1)!
for all l = 2, 3, . . . . Choosing now δ < 1/2 and collecting all terms, we see
that the order is indeed O(pn) as claimed.

In the final case α > 1, we have |yα,p
k,n(t)| = |pk,nxα,p

k,n(t)| ≤ (C6 + 1)|t|p1/α
k,n

and vα,p(|t|) = C7|t|α. Substituting into ∆α,p
pn,1, by (2.25) we obtain

∆α,p
pn,1 ≤ p

3
α
−1

n 2C̃2
Γ(3/α)

αC
3/α
1

+ p
3
α
−1

n 2C9(C6 + 1)3 Γ(3/α)

αC
3/α
1

+ p
4
α
−1

n C2
2

Γ(4/α)

αC
4/α
1

+p
2
α
n 2C2C7

Γ((2 + α)/α)

αC
(2+α)/α
1

+ p
3
α
−1

n 2C2

∣∣sα,p
1

∣∣Γ(3/α)

αC
3/α
1

+2

∫ T α,p
n

0

e−C1tα

t

∣∣Rα,p
n,8(t)

∣∣ dt.

Using the inequality

|Rα,p
n,8(t)| ≤

∞∑

l=2

1

l!

[
C8(C6 + 1)2|t|2p (2−α)/α

n + C2|t|2p (2−α)/α
n

]l
,

and referring again to [10], page 329, we get
∫ T α,p

n

0

e−C1tα

t
|Rα,p

n,8(t)| dt ≤
{

O
(
pn

)
, if 1 < α < 4/3,

O
(
p 2(2−α)/α

n

)
, if 4/3 ≤ α < 2.
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Collecting all the terms and taking into account that 1/α < (4 − 2α)/α if
and only if α < 3/2, the statement in the final case also follows.

Proof of Corollary 2.1. For simplicity we show for α < 1, α = 1 and
α > 1 that

sup
x∈R

∣∣P{
Sα,p

pn
≤ x

}−Gα,p,pn
(x)

∣∣ ≤ (1 + ε)
C2

7

2παC2
1

pn,

sup
x∈R

∣∣P{
S1,p

pn
≤ x

}−G1,p,pn
(x)

∣∣ ≤ (1 + ε)
p2

2q2πC2
1

pn log2
r

1

pn

,

and

sup
x∈R

∣∣P{
Sα,p

pn
≤ x

}−Gα,p,pn
(x)

∣∣ ≤ (1+ε)
Γ(2/α)

(
[sα,p

1 ]2 + p/(q − q2/α)
)

2παC
2/α
1

p
2−α

α
n ,

respectively, for all n large enough, where the strategy pn, with pn → 0,
corresponds to the given strategy qn as described before Theorem 2.2. Then
Corollary 2.1 follows by these statements exactly as Theorem 2.2 follows from
Theorem 2.1.

First, if α < 1, then gα,p,pn
(t)

∑n
k=1 p2

k,n[yα,p
γk,n

(t)]2/2 is the leading remain-

der term in gα,p
pn

(t). We can estimate its inverse Fourier – Stieltjes transform

M
(0,2)
α,p,pn

(·), which is not G
(0,2)
α,p,pn

(·), by the extended Gil-Pelaez – Rosén formula
in Section 3:

M (0,2)
α,p,pn

(x) = − 1

π

∫ ∞

0

Im
{
e−itxgα,p,pn

(t)1
2

∑n
k=1 p2

k,n[yα,p
γk,n

(t)]2
}

t
dt, x ∈ R.

Whence by (2.16) and Lemma 2.2,

∣∣M (0,2)
α,p,pn

(x)
∣∣ ≤ 1

2π

∫ ∞

0

1

t
e
∑n

k=1 pk,n Reyα,p
γk,n

(t)
n∑

k=1

p2
k,n|yα,p

γk,n
(t)|2dt

≤ C2
7

2π

n∑

k=1

p2
k,n

∫ ∞

0

e−C1tα t2α−1 dt ≤ C2
7

2παC2
1

pn

for every x ∈ R, finishing the first case.
Next, if α = 1, then g1,p,pn

(t) p2t2

2q2

∑n
k=1 p2

k,n log2
r

1
pk,n

is the leading remain-

der term in g1,p
pn

(t). For its inverse Fourier – Stieltjes transform M
(2,0)
1,p,pn

(·),
which differs from G

(2,0)
1,p,pn

(·) only in a constant factor, we obtain

M
(2,0)
1,p,pn

(x) = − 1

π

∫ ∞

0

Im
{
e−itxg1,p,pn

(t) t2p2

2q2

∑n
k=1 p2

k,n log2
r

1
pk,n

}

t
dt, x ∈ R,
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by the extended Gil-Pelaez – Rosén formula. Thus, again by (2.16) and
Lemma 2.2,

∣∣M (2,0)
1,p,pn

(x)
∣∣ ≤ p2

2q2π

∫ ∞

0

t e
∑n

k=1 pk,n Rey1,p
γk,n

(t)
n∑

k=1

p2
k,n log2

r

1

pk,n

dt

≤ p2

2q2π

n∑

k=1

p2
k,n log2

r

1

pk,n

∫ ∞

0

e−C1t t dt ≤ p2

2πq2C2
1

pn log2
r

1

pn

for every x ∈ R, where the last inequality comes from the fact that the
function x 7→ x log2

r x is monotone increasing near 0.
Finally, if α > 1, then the leading remainder term in gα,p

pn
(t) is

m(2,0)
α,p,pn

(t) = gα,p,pn
(t)

t2

2

{
p2

(q − q1/α)2
+

p

q − q2/α

} n∑

k=1

p
2/α
k,n .

For its inverse Fourier – Stieltjes transform M
(2,0)
α,p,pn

(·), differing again from

G
(2,0)
α,p,pn

(·) in a constant factor, by a final application of the extended Gil-
Pelaez – Rosén formula we have

M (2,0)
α,p,pn

(x) = − 1

π

∫ ∞

0

Im
{
e−itxm

(2,0)
α,p,pn

(t)
}

t
dt, x ∈ R.

Therefore, using (2.16) and Lemma 2.2 for the last time, for all x ∈ R we
obtain

∣∣M (2,0)
α,p,pn

(x)
∣∣ ≤ 1

2π

{
p2

(q − q1/α)2
+

p

q − q2/α

}∫ ∞

0

te
∑n

k=1 pk,n Reyα,p
γk,n

(t)
n∑

k=1

p
2/α
k,n dt

≤ 1

2π

{
p2

(q − q1/α)2
+

p

q − q2/α

} n∑

k=1

p
2/α
k,n

∫ ∞

0

e−C1tα t dt

≤ Γ(2/α)

2πC
2/α
1

{
p2

(q − q1/α)2
+

p

q − q2/α

}
p (2−α)/α

n ,

completing the proof.
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Chapter 3.

Merging of linear combinations
to semistable laws

3.1. Introduction

We need the definitions and the basic properties of semistable distributions
and their domain of geometric partial attraction.

Let Y be an infinitely divisible real random variable with characteristic
function φ(t) = E(eitY ) in its Lévy form ([23], p. 70), given for each t ∈ R by

φ(t) = exp

{
itθ − σ2

2
t2 +

∫ 0

−∞
βt(x) dL(x) +

∫ ∞

0

βt(x) dR(x)

}
,

where

βt(x) = eitx − 1− itx

1 + x2

and where the constants θ ∈ R and σ ≥ 0 and the functions L(·) and R(·) are
uniquely determined: L(·) is left-continuous and non-decreasing on (−∞, 0)
with L(−∞) = 0 and R(·) is right-continuous and non-decreasing on (0,∞)

with R(∞) = 0, such that
∫ 0

−ε
x2dL(x) +

∫ ε

0
x2dR(x) < ∞ for every ε > 0.

We need a variant of this formula for φ(·) in connection with a probabilistic
representation of Y in [18]; the representation itself is not needed here. Let
Ψ be the class of all non-positive, non-decreasing, right-continuous functions
ψ(·), defined on (0,∞), such that

∫∞
ε

ψ2(s)ds < ∞ for each ε > 0. Then
there is a one-to-one correspondence between the pairs of Lévy functions L(·)
and R(·) and the pairs of functions ψ1(·) and ψ2(·) taken from Ψ if we put
ψ1(s) = inf{x < 0 : L(x) > s} and ψ2(s) = inf{x < 0 : −R(−x) > s}, s > 0,
and, conversely, L(x) = inf{s > 0 : ψ1(s) ≥ x}, x < 0, and R(x) = − inf{s >
0 : ψ2(s) ≥ −x}, x > 0. Let W (ψ1, ψ2, σ) be an infinitely divisible random
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variable with characteristic function

E
(
eitW (ψ1,ψ2,σ)

)
= exp

{
− σ2

2
t2 +

∫ 0

−∞
βt(x) dL(x) +

∫ ∞

0

βt(x) dR(x)

}

= exp

{
− σ2

2
t2 +

∫ ∞

0

βt(ψ1(u)) du +

∫ ∞

0

βt(−ψ2(u)) du

}
,(3.1)

where the second equality follows by Theorem 3 in [18]. The uniqueness
of σ, L(·), R(·) and the one-to-one correspondence immediately implies the
uniqueness of the triple σ, ψ1(·), ψ2(·). A concrete version of W (ψ1, ψ2, σ) is
given in [13] and, to keep complete accord with [13] as far as constants go,
we also introduce V (ψ1, ψ2, σ) = W (ψ1, ψ2, σ) + θ(ψ1)− θ(ψ2), where

θ(ψ) =

∫ 1

0

ψ(s)

1 + ψ2(s)
ds−

∫ ∞

1

ψ3(s)

1 + ψ2(s)
ds, ψ ∈ Ψ,

and for its distribution function we put

(3.2) Gψ1,ψ2,σ(x) = P
{
V (ψ1, ψ2, σ) ≤ x

}
, x ∈ R.

Referring to [29], [24], [32] and [13] for background, we describe semistable
laws in the present framework as follows: an infinitely divisible law Gψ1,ψ2,σ is
semistable if and only if either (ψ1, ψ2, σ) = (0, 0, σ) for some σ > 0, the nor-
mal distribution as a semistable distribution of exponent 2, or (ψ1, ψ2, σ) =
(ψα

1 , ψα
2 , 0), where

(3.3) ψα
j (s) = −Mj(s)

s1/α
, s > 0, j = 1, 2,

for some α ∈ (0, 2), defining a semistable law of exponent α, where M1(·) and
M2(·) are non-negative, right-continuous functions on (0,∞), either identi-
cally zero or bounded away from both zero and infinity, such that at least one
of them is not identically zero, the functions ψα

j (·) are non-decreasing and
the multiplicative periodicity property Mj(cs) = Mj(s) holds for all s > 0,
for some constant c > 1, j = 1, 2. (The superscript α in ψα

j is a label, not a
power exponent.) For the Lévy form this means that there exist non-negative
bounded functions ML(·) on (−∞, 0) and MR(·) on (0,∞), one of which
has strictly positive infimum and the other one either has strictly positive
infimum or is identically zero, such that L(x) = ML(x)/|x|α, x < 0, is left-
continuous and non-decreasing on (−∞, 0) and R(x) = −MR(x)/xα, x > 0,
is right-continuous and non-decreasing on (0,∞) and ML(c1/αx) = ML(x)
for all x < 0 and MR(c1/αx) = MR(x) for all x > 0, with the same period
c > 1. Clearly, the two descriptions are equivalent.
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Let X1, X2, . . . be independent and identically distributed random vari-
ables with the common distribution function F (·) and let V (ψ1, ψ2, σ) and
Gψ1,ψ2,σ be as in (3.2). Then F is in the domain of partial attraction of
G = Gψ1,ψ2,σ, written F ∈ Dp(G), if for some centering and norming con-
stants ckn ∈ R and akn > 0 the convergence in distribution

(3.4)
1

akn

(
kn∑
j=1

Xj − ckn

)
D−→ V (ψ1, ψ2, σ),

holds along a subsequence {kn}∞n=1 ⊂ N = {1, 2, 3, . . .}. The following theo-
rem of Kruglov [29] highlights the importance of semistability; see [32] and
[13] for further references. If (3.4) holds for some F (·) along some {kn} for
which limn→∞ kn+1/kn = c for some c ∈ (1,∞), then Gψ1,ψ2,σ is necessarily
semistable and, when the exponent α < 2, the common multiplicative pe-
riod of M1(·) and M2(·) in (3.3) is the c from the latter growth condition
on {kn}. Conversely, for an arbitrary semistable distribution Gψ1,ψ2,σ there
exists a distribution function F (·) for which (3.4) holds along some {kn} ⊂ N
satisfying

(3.5) lim
n→∞

kn+1

kn

= c for some c ∈ [1,∞).

We say that a distribution F (·) is in the domain of geometric partial at-

traction of G with rank c ≥ 1, written F ∈ D(c)
gp (G), if (3.4) holds along a sub-

sequence {kn}∞n=1 ⊂ N satisfying (3.5). Clearly, if Dgp(G) :=
⋃

c≥1D
(c)
gp (G) 6=

∅ then G is semistable. Define c = c(Gψα
1 ,ψα

2 ,0) = inf{c > 1 : Mj(cs) =
Mj(s), s > 0, j = 1, 2}, the minimal common period of the functions M1, M2

in ψα
1 , ψα

2 in (3.3), and c(G0,0,σ) = 1 for any σ > 0. Megyesi(3.14) showed

that the entire domain Dgp(G) =
⋃

c≥1D
(c)
gp (G) of geometric partial attrac-

tion can be produced as Dgp(G) = D(c)
gp (G). Moreover, if c(G) = 1 then the

distribution G is necessarily stable.
The following characterization, that refines the one in [24], of Dgp(G) is

also taken from [32]. Fix a subsequence {kn}∞n=1 ⊂ N satisfying (3.5). If c = 1
then let γx ≡ 1, x ≥ 1. If c > 1, then there exists an x0 large enough such that
for each x > x0 there is a unique index n∗(x) for which kn∗(x)−1 < x ≤ kn∗(x).
Then let γx = x/kn∗(x), for x ∈ (x0,∞) and γx = 1 otherwise. We see by
(3.5) that for any ε > 0 the inequality c−1 − ε ≤ γx ≤ 1 holds for all x large
enough. We emphasize that γx depends on the subsequence {kn}∞n=1. For
s ∈ (0, 1) let Q(s) = inf{x : F (x) ≥ s} be the quantile function of F (·),
and let Q+(·) denote its right-continuous version. Then (3.4) holds along the
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previously fixed subsequence {kn}∞n=1 for an arbitrary non-normal semistable
distribution G = Gψα

1 ,ψα
2 ,0 if and only if

Q+(s) = −s−1/α l(s)
[
M1(1/γ1/s) + h1(s)

]
and

Q(1− s) = s−1/α l(s)
[
M2(1/γ1/s) + h2(s)

]
for all s ∈ (0, 1),(3.6)

where l(·) is a positive right-continuous function, slowly varying at zero,
and the error terms h1(·), h2(·) are right-continuous functions such that
lims↓0 hj(s) = 0 if Mj is continuous, while if Mj has discontinuities then
hj(s) may not go to zero but limn→∞ hj(t/kn) = 0 for t ∈ C(Mj), j = 1, 2,
where C(f) stands for the set of continuity points of the function f . (The
slightly different form of the quantile function here and in [32], p. 412, and
[13] is due to the inverse relation between the two γ functions: instead of the
γ(·) in [32] and [13], here we use γ(s) = 1/γ1/s.) Conversely, if the Q(·) of
F (·) satisfies (3.6), then F ∈ Dgp(Gψα

1 ,ψα
2 ,0) and

∑kn

j=1 Xj − kn

∫ 1−1/kn

1/kn
Q(u)du

k
1/α
n l(1/kn)

D−→ V (ψα
1 , ψα

2 , 0),

where X1, X2, . . . are independent with the common distribution function F .
The form (3.6) can be simplified for the simplest possible subsequence

when (3.4) holds for kn ≡ bcnc for c = c(Gψα
1 ,ψα

2 ,0) > 1. Then, as shown in
[32],

Q+(s) = −s−1/α l(s)
[
M1(s) + h1(s)

]
and

Q(1− s) = s−1/α l(s)
[
M2(s) + h2(s)

]
for all s ∈ (0, 1),(3.7)

so we can just forget about the strange argument 1/γ1/s = sbcdlogcd1/seec.
Here byc = max{m ∈ Z : m ≤ y} and dye = min{m ∈ Z : m ≥ y} denote
the integer part and the ceiling of y ∈ R and logc stands for the logarithm
to the base c.

Let F ∈ Dgp(Gψα
1 ,ψα

2 ,0) be a fixed distribution function, where Gψα
1 ,ψα

2 ,0 is
an arbitrary non-normal semistable distribution with characteristic exponent
α ∈ (0, 2). Let X1, X2, . . . be independent random variables with the common
distribution function F (·). Then X1, X2, . . . , Xn may be viewed for each
n ∈ N as the gains in ducats (losses when negative) of n gamblers Paul1,
Paul2, . . ., Pauln, each playing one trial of the same game of chance. As in the
preceding chapters, our Pauls may not trust their own luck and, before they
play, they may agree to use a pooling strategy pn = (p1,n, p2,n, . . . , pn,n), where
the components are non-negative and add to unity. Using this strategy, Paul1
receives p1,nX1+p2,nX2+· · ·+pn,nXn ducats, Paul2 receives pn,nX1+p1,nX2+
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· · ·+ pn−1,nXn ducats, . . ., and Pauln receives p2,nX1 + p3,nX2 + · · ·+ p1,nXn

ducats. Then all the individual winnings are pooled and this rotating system
is fair to every Paul since their pooled winnings are equally distributed. The
prototypes of such games are the generalized St. Petersburg(α, p) games,
since, as we have seen in Chapter 2, in this case X belongs to the domain of
geometric partial attraction of a semistable law, defined in (2.2); or this was
proved directly by (3.6) in [32].

Returning now to the general situation when F ∈ Dgp(Gψα
1 ,ψα

2 ,0), our first
main interest in this paper is the asymptotic distribution of the random
variable

(3.8) Sα,pn
=

n∑
j=1

p
1/α
j,n

l(pj,n)
Xj −

n∑
j=1

p
1/α
j,n

l(pj,n)

∫ 1−pj,n

pj,n

Q(s) ds,

where the slowly varying function l(·) is from the representation (3.6) of the
quantile function Q corresponding to F . We consider a sequence of strategies
{pn} that satisfies the asymptotic negligibility condition pn = max{pj,n : j =
1, 2, . . . , n} → 0.

The main result in this paper is Theorem 3.1 below, a merge theorem
for Sα,pn

in (3.8). The phenomenon of merge takes place when neither of
two sequences of distributions converge weakly, but the Lévy or supremum
distance between the n-th terms goes to zero as n → ∞ along the entire
sequence N.

These linear combinations Sα,pn
belong to a real pooling strategy only

when α = 1 and the slowly varying function l(·) ≡ 1 in (3.6). The equivalent
Theorem 3.2 contains a satisfactory version after a simple transformation. A
surprising consequence is that for some sequences of strategies {pn} ordinary
asymptotic distributions of Sα,pn

exist as n → ∞ along the entire N. In
Section 3 we investigate merge on R in general and obtain necessary and
sufficient Fourier–analytic conditions under weak assumptions. All the proofs
are placed in Section 4.

3.2. Merging semistable approximations

Let G = Gψα
1 ,ψα

2 ,0 be semistable with exponent α ∈ (0, 2) as before. For

ψ ∈ Ψ and λ > 0, let λψ(s) = ψ(s/λ) and put ψα,λ
j (s) = λ−1/α

λψ
α
j (s) =

−Mj(s/λ)s−1/α, s > 0, where the functions Mj are from (3.3), j = 1, 2.
Introduce

(3.9) Vα,λ(M1,M2) = V (ψα,λ
1 , ψα,λ

2 , 0) and E(eitVα,λ(M1,M2)) = eyα,λ(t), t ∈ R,
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and notice the identity Vα,λ(M1,M2) = λ−1/α V (λψ
α
1 , λψ

α
2 , 0). The notation is

the same as in [13] with two important exceptions. The random variable that
belongs to λ here, belongs to λ−1 there ([13], p. 96). The other exception
is the function γx mentioned before. The reason for the deviation is that
for generalized St. Petersburg games our theorems here must reduce to the
merge theorems in Chapter 2 and [10].

We have already seen in Chapter 2 that the circular convergence plays an
important role at the limiting behavior of the sums, so it is natural to extend
its definition. For a given c > 1 we say that the sequence {un}∞n=1 ⊂ R
converges circularly to u ∈ (c−1, 1], written un

cir−→u, if either u ∈ (c−1, 1)
and un → u, or u = 1 and the sequence {un} has limit points c−1 or 1, or
both. (For c = 1 the notion un

cir−→ 1 simply means that un → 1.) Let the dis-
tribution function F ∈ Dgp(G) be such that (3.4) holds along a subsequence
{kn}∞n=1 satisfying (3.5), where c = c(G); this and nothing else is assumed
for Theorems 3.1, 3.2 and the Corollary below. Part of the surprising result
in Theorem 1 in [13] is that there are as many different limiting distributions
as the continuum along different subsequences:

Theorem. (Csörgő, Megyesi). If along a subsequence {nr}∞r=1 ⊂ N,

(3.10)

∑nr

j=1 Xj − cnr

anr

D−→ W as r →∞

for a non-degenerate random variable W , then γnr

cir−→κ ∈ (c−1, 1] as r →∞,
and the distribution of W is necessarily that of an affine linear transformation
of Vα,κ(M1,M2), namely

W
D
= δVα,κ(M1,M2) + d,

where

δ = lim
r→∞

n
1/α
r l(1/nr)

anr

> 0 and d = lim
r→∞

nr

∫ 1−n−1
r

n−1
r

Q(s)ds

anr

.

Conversely, if γnr

cir−→κ ∈ (c−1, 1] as r → ∞, then (3.10) holds with cnr =

nr

∫ 1−n−1
r

n−1
r

Q(s) ds, anr = n
1/α
r l(1/nr) and W = Vα,κ(M1,M2).

Now let pn = (p1,n, p2,n, . . . , pn,n) be any strategy, so that the components
are nonnegative and

∑n
j=1 pj,n = 1, and for simplicity put γj,n = γ1/pj,n

if pj,n > 0, j = 1, . . . , n. The merging semistable approximation to the
distribution functions of Sα,pn

in (3.8) is given in the following main result
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by the distribution functions Gα,pn
(x) = P{Vα,pn

≤ x}, x ∈ R, of random
variables Vα,pn

that have characteristic functions

(3.11) E
(
eitVα,pn

)
=

∫ ∞

−∞
eitx dGα,pn

(x) = exp

{
n∑

j=1

pj,n yα,γj,n
(t)

}
, t ∈ R,

where yα,γj,n
(·) is the exponent function in the characteristic function of Vα,γj,n

in (3.9), explicitly given in the proof of Lemma 3.1 below.

Theorem 3.1. For any sequence {pn}∞n=1 of strategies such that pn → 0,

sup
x∈R

∣∣P{
Sα,pn

≤ x
}−Gα,pn

(x)
∣∣ → 0.

It follows from the formula (3.11) that for the uniform strategies p¦n =
(1/n, 1/n, . . . , 1/n) the distributional equality Vα,pn

D
= Vα,γn(M1,M2) holds,

and hence Theorem 3.1 reduces to the most important special case of full
sums in Theorem 2 in [13].

As noted before, there is real pooling of winnings only if α = 1 and l(·) ≡ 1
when the sum of the coefficients in (3.8) is 1. However, by a transformation
we obtain a version of Theorem 3.1 that is satisfactory in this respect. This
transformation is a generally implicit extension of that given in Chapter 2.
The function f(s) = s1/α/l(s) in (3.6) is regularly varying of order 1/α at
zero, and hence by general theory ([4], p. 23) it is asymptotically equivalent
to a non-decreasing function. Therefore, to state Theorem 3.2 below, we may
and do assume that f(s) = s1/α/l(s) is itself non-decreasing and hence, by
monotonicity, its inverse function g(s) exists and it is also non-decreasing for
s in a right neighborhood of zero. Then, if pn = (p1,n, p2,n, . . . , pn,n) is an
arbitrary strategy, consider

qj,n =
p

1/α
j,n

l(pj,n)

(
n∑

k=1

p
1/α
k,n

l(pk,n)

)−1

=
f(pj,n)∑n

k=1 f(pk,n)
, j = 1, 2, . . . , n.

Then, clearly, qn = (q1,n, q2,n, . . . , qn,n) is a strategy. We need a one-to-one
correspondence, that is, we have to determine pn in terms of qn. Multiplying
the defining equation by

∑n
k=1 f(pk,n) and applying the inverse function g(·),

we get the equation g(qj,n

∑n
k=1 f(pk,n)) = pj,n, so that summing for j we

have
∑n

j=1 g(qj,n

∑n
k=1 f(pk,n)) = 1. The monotonicity of g(·) implies that

for a given strategy qn there exists a unique constant Aqn
> 0 for which∑n

j=1 g(qj,nAqn
) = 1, so that Aqn

=
∑n

k=1 f(pk,n). Thus pj,n = g(qj,nAqn
),
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j = 1, 2, . . . , n, that is, the correspondence between pn and qn is one-to-one
indeed. Now we can define the functions and random variables related to the
strategy qn. Set νk,n = γ1/g(qk,nAqn), k = 1, . . . , n, introduce

Tα,qn
= Aqn

n∑

k=1

qk,nXk − Aqn

n∑

k=1

qk,n

∫ 1−g(qk,nAqn )

g(qk,nAqn )

Q(s) ds

and let Hα,qn
(·) be the semistable distribution function with characteristic

function

∫ ∞

−∞
eitx dHα,qn

(x) = exp

{
n∑

k=1

g(qk,nAqn
) yα,νk,n

(t)

}
.

Then a reformulated equivalent version of Theorem 3.1 is

Theorem 3.2. For any sequence {qn}∞n=1 of strategies such that g(qnAqn
) →

0,
sup
x∈R

∣∣P{
Tα,qn

≤ x
}−Hα,qn

(x)
∣∣ → 0.

The strange-looking assumption is needed because the relations pn → 0
and qn → 0 are independent in the sense that neither of them implies the
other. This can be seen by easily constructed examples, even in the simplest
case l(·) ≡ 1.

Now we turn back to the setup in (3.8) and (3.11) and show that for
special sequences {pn} the merge in Theorem 3.1 reduces to ordinary limit
theorems. Since for c = 1 the approximating distribution is one and the
same stable distribution already, we assume that c > 1, in which case our
conclusion is truly surprising.

Let {nr}∞r=1 ⊂ N be an increasing subsequence and consider the sequence
of strategies pn = (1/nr, 1/nr, . . . , 1/nr, 0, 0, . . . , 0) with nr non-zero ele-
ments, where nr ≤ n < nr+1. This is the same situation as in (3.10), so
there exists a limiting distribution for {pn}∞n=1 if and only if it exists in
(3.10) along {nr}∞r=1. There may be too many zero components in this type
of strategies in the sense that in some of them the proportion of zeros is
approximately 1− c−1 if limr→∞ nr+1/nr = c. The following notion excludes
such cases: we call a sequence {pn}∞n=1 of strategies balanced if

lim inf
n→∞

min{pj,n : j = 1, 2, . . . , n}
max{pj,n : j = 1, 2, . . . , n} > 0.

Roughly speaking this condition means that each component is important.
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Classical theory says that if a limiting distribution exists for the uniform
strategies p¦n = (1/n, 1/n, . . . , 1/n), it must be stable. As an essence of
semistability, the following corollary claims that semistable limiting distri-
butions can be achieved by such balanced strategies that practically consist
of only two different components.

Corollary 3.1. For an arbitrary κ ∈ (c−1, 1] there exists a balanced sequence
{pn}∞n=1 of strategies such that Sα,pn

D−→ Vα,κ(M1,M2), where the random
variable Vα,κ(M1,M2) is defined in (3.9). Moreover, for each n ∈ {2, 3, . . .}
the strategy pn = (p1,n, p2,n, . . . , pn,n) can be constructed in such a way that
there are at most two different values among its first n− 1 components.

It will be clear from the proof that the n-th component pn,n, which can
have a third different value, is just to make pn a strategy, that is, to make∑n

j=1 pj,n = 1. Thus in fact there are only two different important compo-
nents.

The difficulties of a closer description of the merging semistable random
variables Vα,pn

in (3.11) arise from the fact that the asymptotic equality
γcx ∼ γx, as x →∞, for the function γx figuring in (3.6) does not reduce to
true equality. Nevertheless, (3.7) says that for the special sequence kn ≡ bcnc
we can define the function γx through the sequence cn instead of bcnc and
obtain explicitly γx = x/cdlogc xe for all x > 0. In this case, when kn ≡
bcnc, let Vα,1, Vα,2, . . . , Vα,n be independent copies of Vα,1(M1,M2). Then
with rj,n = dlogc p−1

j,ne and γj,n = γp−1
j,n

= (pj,nc
rj,n)−1 as before, for any

strategy pn Lemmas 3.1 and 3.6 below imply the distributional equality

(3.12)
n∑

j=1

p
1/α
j,n Vα,j −

n∑
j=1

(
d−rj,n

+ pj,n cγj,n

) D
= Vα,pn

,

where the constants cλ, λ > 0, and dm, m ∈ Z, are also from those lemmas.

3.3. Merge theorems in general

The systematic study of merge was initiated in [19] in the general setup of
separable metric spaces. The study there did not get down to the charac-
terization of merge in the Lévy distance on R, and the aim of the present
small section is exactly that. Of course, the deep and extended literature
on Kolmogorov’s uniform limit problem, highlighted by Arak’s and Zait-
sev’s well-known results, deals with merge in the uniform distance ever since
Prokhorov’s first result in 1955. In our list here, [7] and [13] are also examples
for merge in the uniform distance.
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In this section X, X1, X2, . . ., and Y, Y1, Y2, . . . are real random variables
with distribution and characteristic functions F, F1, F2, . . ., G,G1, G2, . . . and
φ, φ1, φ2, . . ., ψ, ψ1, ψ2, . . ., respectively. If Fn ⇒ G denotes weak convergence,
that is, Fn(x) → G(x) at each x ∈ C(G), where we recall that C(G) is the set
of continuity points of G, then of course Fn ⇒ G is the definition of Xn

D−→ Y
used above, which is equivalent to L(Fn, G) → 0, where L(· , ·) is Lévy’s
distance, given by L(F, G) = inf{h > 0: G(x−h)−h ≤ F (x) ≤ G(x+h)+h}.
Extending this, we say that Xn and Yn, or their distribution functions Fn

and Gn, merge together if L(Fn, Gn) → 0.
Here we give necessary and sufficient conditions for merge in terms of

characteristic functions under the weak assumption that one of the sequences,
{Yn} or equivalently {Gn}, say, is stochastically compact, meaning that for
every subsequence {nk}∞k=1 ⊂ N there is a further subsequence {nkj

}∞j=1 ⊂
{nk}∞k=1 and a random variable Y , such that Ynkj

D−→ Y , or equivalently
Gnkj

⇒ G as j →∞.

Theorem 3.3. If {Gn}∞n=1 is stochastically compact, then L(Fn, Gn) → 0 if
and only if φn(t)− ψn(t) → 0 for every t ∈ R.

The next theorem is the basic tool in the proof of Theorem 3.1. It says
that if Gn is absolutely continuous for all n ∈ N and the corresponding density
functions are uniformly bounded, then even uniform convergence holds under
the same conditions.

Theorem 3.4. Assume that {Gn}∞n=1 is stochastically compact and there
is a constant K > 0 such that supn∈N supx∈R |G ′

n(x)| ≤ K. Then Fn(x) −
Gn(x) → 0 at every x ∈ R if and only if φn(t) − ψn(t) → 0 at every t ∈
R. Moreover, if this holds, then in fact the convergence is uniform, so that
supx∈R |Fn(x)−Gn(x)| → 0.

3.4. Proofs

Logic dictates to prove first the general theorems from the preceding section.

Proof of Theorem 3.3. Suppose first that φn(t) − ψn(t) → 0 for all
t ∈ R. Let {nk}∞k=1 be any subsequence of N. By compactness there is a
further subsequence {nkj

}∞j=1 ⊂ {nk}∞k=1 and a distribution function G such
that Gnkj

⇒ G, so that ψnkj
(t) → ψ(t), t ∈ R, as j → ∞ by continuity

theorem. By the triangle inequality and the other direction in the continuity
theorem, Fnkj

⇒ G, and so the triangle inequality for the Lévy metric yields
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L(Fnkj
, Gnkj

) → 0 as j → ∞. Since {nk} was arbitrary, it follows that

L(Fn, Gn) → 0. The proof of the converse is similar.

Proof of Theorem 3.4. Necessity is trivial, while the proof of sufficiency in
the first statement is similar to the one above: using the uniform boundedness
of G ′

n, one can show that the subsequential weak limits G are continuous,
and so weak convergence implies convergence in each point.

To prove the stronger second statement, fix any ε ∈ (0, 1). Stochastic
compactness is tightness, so there exists a T > 0 such that Gn(x) > 1 − ε
and Gn(−x) < ε for all x > T and n ∈ N, and the uniform boundedness
of the densities implies the existence of a subdivision −T = x0 < x1 <
· · · < xN = T such that sup1≤k≤N, n∈N |Gn(xk) − Gn(xk−1)| < ε. Since Fn

and Gn merge together at each point, there is a threshold n0 ∈ N such that
maxk=0,1,...,N |Fn(xk) − Gn(xk)| < ε if n ≥ n0. Then by easy calculation
supx∈R |Fn(x)−Gn(x)| < 2ε for all n ≥ n0.

Aiming at Theorem 3.1, first we prove six lemmas. The first is a scaling
property that expresses the exponent function yα,λ(·) of the characteristic
function in (3.9) in terms of yα,1(·), which was used for (3.12) and is needed
for Lemmas 3.2 and 3.3.

Lemma 3.1. For every λ > 0 we have yα,λ(t) = λ yα,1(t/λ
1/α)− itcλ, t ∈ R,

where cλ = λ1−1/α
∫ 1/λ

1

[
ψα

2 (s)− ψα
1 (s)

]
ds.

Proof. As in (3.1), let Lλ and Rλ denote the Lévy functions of the random
variable V (λψ

α
1 , λψ

α
2 , 0) defined at (3.9). The inverse relation above (3.1) for

the two representations shows that Lλ(x) = inf{s : λψ
α
1 (s) ≥ x} = inf{s :

ψα
1 (s/λ) ≥ x} = λL(x), x < 0, and similarly Rλ(x) = λR(x), x > 0, where

L(·) = L1(·) and R(·) = R1(·). Thus, since V (ψ1, ψ2, σ) = W (ψ1, ψ2, σ) +
θ(ψ1)− θ(ψ2) in (3.2),

eyα,λ(t) = E
(
eitVα,λ(M1,M2)

)
= E

(
e
i t

λ1/α
V (λψ

α
1 ,λψ

α
2 ,0)

)
= exp

{
it

θ(λψ
α
1 )− θ(λψ

α
2 )

λ1/α

}

× exp

{
λ

∫ 0

−∞
β t

λ1/α
(x) dL(x) + λ

∫ ∞

0

β t

λ1/α
(x) dR(x)

}
,

from which, forcing the exponent yα,1(tλ
−1/α) in,

eyα,λ(t) = exp

{
− it

θ(λψ
α
2 )− θ(λψ

α
1 )

λ1/α
+ itλ

θ(ψα
2 )− θ(ψα

1 )

λ1/α

}

× exp

{
λ

[
it

θ(ψα
1 )− θ(ψα

2 )

λ1/α
+

∫ 0

−∞
β t

λ1/α
(x) dL(x) +

∫ ∞

0

β t

λ1/α
(x) dR(x)

]}
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for all t ∈ R, which is nothing but eyα,λ(t) = e−itcλeλyα,1(tλ−1/α), where cλ =
λ−1/α[θ(λψ

α
2 ) − θ(λψ

α
1 ) − λ{θ(ψα

2 ) − θ(ψα
1 )}]. Now, a somewhat long but

straightforward calculation shows that θ(λψ) = λ θ(ψ) + λ
∫ 1/λ

1
ψ(t) dt. Fur-

ther simple calculation then yields the stated form of cλ.

Next, Lemmas 3.2 and 3.3 establish that the sequence Gα,pn
in (3.11) has

uniformly bounded densities and is stochastically compact, so that it meets
the assumptions of Theorem 3.4. Here Γ(u) =

∫∞
0

vu−1e−v dv, u > 0, is the
usual gamma function.

Lemma 3.2. For any strategy pn the inequality

sup
x∈R

∣∣G ′
α,pn

(x)
∣∣ ≤ Γ(1/α)

παK
1/α
α

holds, where the constant Kα > 0 depends only on α.

Proof. It follows from a result of Kruglov(3.13) that Reyα,1(t) ≤ −Kα|t|α,
t ∈ R. Then by Lemma 3.1, Reyα,λ(t) = λReyα,1(tλ

−1/α) ≤ −λKα|t|αλ−1 =
−Kα|t|α, for all λ > 0. Thus the distribution function of the variable in (3.9)
and hence also Gα,pn

(·) in (3.11) is infinitely many times differentiable. In
particular,

∣∣G ′
α,pn

(x)
∣∣ =

1

2π

∣∣∣∣
∫ ∞

−∞
e−itxE

(
eitVα,pn

)
dt

∣∣∣∣

≤ 1

2π

∫ ∞

−∞
exp

{
n∑

k=1

pk,nReyα,γk,n
(t)

}
dt

≤ 1

2π

∫ ∞

−∞
exp{−Kα|t|α} dt =

Γ(1/α)

παK
1/α
α

for all x ∈ R by the density inversion formula, proving the lemma.

Lemma 3.3. For any sequence of strategies {pn}∞n=1, the sequence of random
variables {Vα,pn

}∞n=1 is stochastically compact.

Proof. We rewrite the characteristic function in (3.11) in a form that was
used in the St. Petersburg case in [17], p. 984. Let denote I(A) the indicator
of the event A and put Tpn

(γ) =
∑n

j=1 pj,nI(γj,n ≤ γ), 0 < γ ≤ 1. Then we
have

E
(
eitVα,pn

)
= exp

{
n∑

j=1

pj,nyα,γj,n
(t)

}
= exp

{ ∫ 1

0

yα,γ(t) dTpn
(γ)

}
.
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By the multiplicative periodicity yα,cγ(t) = yα,γ(t) and by Lemma 3.1, yα,γ(t)
is a continuous and bounded function of γ in (0, 1] for each fixed t ∈ R, while
Tpn

is like an empirical distribution function with support contained in [0, 1].
Since no mass can escape, the lemma follows by an application of the Helly
selection theorem.

The following measure-theoretic lemma is also important in the proof of
Theorem 3.1. It allows to pass on from subsequences to the entire sequence
N. Measurability and almost everywhere assumptions are meant in the usual
Lebesgue sense and mes{·} stands for Lebesgue measure and

mes−→ denotes
convergence in measure.

Lemma 3.4. Let qn : I → R be sequence of measurable functions, n ∈ N,
and δ : N → Λ a sequence taking values in Λ, where I ⊂ R and Λ ⊂ R
are compact intervals, and let νλ : I → R be a set of measurable functions,
λ ∈ Λ. Suppose that if limr→∞ δ(nr) = λ for a subsequence {nr}∞r=1 ⊂
N, then qnr(s) − νδ(nr)(s) → 0 for almost every s ∈ I as r → ∞. Then
qn(·)−νδ(n)(·) mes−→ 0, that is, mes{s ∈ I : |qn(s)−νδ(n)(s)| > ε} → 0 for every
ε > 0.

Proof. Fix any ε > 0 and let An(ε) = {s : |qn(s) − νδ(n)(s)| > ε}. We
have to prove that mes{An(ε)} → 0. Let {nk}∞k=1 ⊂ N be any subsequence.
Since Λ is compact, by the Bolzano – Weierstrass theorem there is a further
subsequence {nkl

}∞l=1 ⊂ {nk}∞k=1 such that δ(nkl
) → λ for some λ ∈ Λ as

l →∞. By assumption we have qnkl
(s)− νδ(nkl

)(s) → 0 as l →∞ for almost
all s ∈ I. Then by Egorov’s theorem there exists a measurable set E ⊂ I on
which the convergence is uniform and mes{I \E} < ε. Thus Ankl

(ε) ⊂ I \E
and so mes(Ankl

(ε)) < ε for all l large enough. Since {nk}∞k=1 ⊂ N was
arbitrary, the proof is complete.

Lemma 3.4 will be used in a slightly different situation. The compact
interval Λ will be the ‘circle’ (c−1, 1] as the points c−1 and 1 are identified,
and the convergence relation limr→∞ δ(nr) = λ will be replaced by the cor-
responding δ(nr)

cir−→λ as r →∞. Obviously, the lemma remains true in this
setup.

Lemma 3.5. If {nr}∞r=1 ⊂ N is a subsequence such that γnr

cir−→κ ∈ (c−1, 1]
as r →∞, then

Q+(s/nr)

n
1/α
r l(1/nr)

− ψ
α,γnr
1 (s) → 0, s ∈ C(ψα,κ

1 ),

− Q(1− s/nr)

n
1/α
r l(1/nr)

− ψ
α,γnr
2 (s) → 0, s ∈ C(ψα,κ

2 )
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as r →∞.

Proof. It is shown for the same {nr} in the proof of Theorem 1 in [13]
that

Q+(s/nr)

n
1/α
r l(1/nr)

− ψα,κ
1 (s) → 0, s ∈ C(ψα,κ

1 ).

Since ψα,1
1 ≡ ψα,c−1

1 , the scaling property ψα,λ
1 (s) = λ−1/αψα,1

1 (s/λ) above
(3.9) implies that ψα,κn

1 (s) → ψα,κ
1 (s), s ∈ C(ψα,κ

1 ) whenever κn
cir−→κ. The

two properties together give the desired result. The proof of the second
statement is analogous.

The following general lemma is in fact the semistable property, which is
used in this paper only for the proof of (3.12). It goes back to Lévy, and the
well-known proof is just patient calculation. (In fact, a certain converse is
also true.)

Lemma 3.6. If eyα(·) is a semistable characteristic function of exponent
α ∈ (0, 2) and c > 0 is a multiplicative period of the functions M1 and M2

in (3.3), then yα(cm/αt) = cmyα(t) + itdm, t ∈ R, for every m ∈ Z, where the
constants dm ∈ R depend on the distribution.

Proof of Theorem 3.1. By Lemmas 3.2 and 3.3 the sequence {Vα,pn
} is

stochastically compact and their densities are uniformly bounded. Thus by
Theorem 3.4 it suffices to prove that ∆α,pn

(t) := |E(eitSα,pn )−E(eitVα,pn )| → 0
at each t ∈ R.

Fixing t 6= 0 and setting

(3.13) µ(pn) =
n∑

j=1

p
1/α
j,n

l(pj,n)

∫ 1−pj,n

pj,n

Q(s) ds =:
n∑

j=1

µj,n,
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by (3.8) and (3.11) we can write

∆α,pn
(t) =

∣∣∣∣∣
n∏

j=1

E

(
exp

{
it

p
1/α
j,n

l(pj,n)
Xj

})
e−itµ(pn) − exp

{
n∑

j=1

pj,n yα,γj,n
(t)

}∣∣∣∣∣

=

∣∣∣∣∣
n∏

j=1

(
1 + yj,n(t)

)− exp

{
n∑

j=1

pj,n yα,γj,n
(t) + itµ(pn)

}∣∣∣∣∣

≤
∣∣∣∣∣

n∏
j=1

(
1 + yj,n(t)

)− exp

{
n∑

j=1

yj,n(t)

}∣∣∣∣∣

+

∣∣∣∣∣ exp

{
n∑

j=1

yj,n(t)

}
− exp

{
n∑

j=1

pj,n yα,γj,n
(t) + itµ(pn)

}∣∣∣∣∣

≤
∣∣∣∣∣ exp

{
n∑

j=1

[
log

(
1 + yj,n(t)

)− yj,n(t)
]}

− 1

∣∣∣∣∣

+

∣∣∣∣∣ exp

{
n∑

j=1

[
yj,n(t)− pj,n yα,γj,n

(t)− itµj,n

]}
− 1

∣∣∣∣∣,

where

(3.14) yj,n(t)=E

(
exp

{
it

p
1/α
j,n

l(pj,n)
Xj

}
−1

)
=

∫ 1

0

[
exp

{
it

p
1/α
j,n

l(pj,n)
Q(s)

}
−1

]
ds.

Notice that yj,n(t) → 0 for all j = 1, . . . , n by the condition pn → 0, and
so the logarithms are well defined for all n large enough; in fact for our fixed
t 6= 0 we will use a threshold nt ∈ N such that |yj,n(t)| ≤ 1/2, j = 1, . . . , n,
for all n ≥ nt. We must prove that

(3.15)
n∑

j=1

Ij,n(t) :=
n∑

j=1

∣∣ log
(
1 + yj,n(t)

)− yj,n(t)
∣∣ → 0

and

(3.16)
n∑

j=1

[
yj,n(t)− pj,n yα,γj,n

(t)− itµj,n

] → 0.

First we consider (3.15). Expanding the logarithm, for all n ≥ nt we
obtain

Ij,n(t) =

∣∣∣∣∣
∞∑

l=2

(−1)l+1
yl

j,n(t)

l

∣∣∣∣∣ ≤
|yj,n(t)|2

2

∞∑

l=0

∣∣yj,n(t)
∣∣l =

|yj,n(t)|2
2{1− |yj,n(t)|}

≤ |yj,n(t)|2 ≤ pj,n

[
1√
pj,n

∫ 1

0

∣∣∣∣∣ exp

{
it

p
1/α
j,n

l(pj,n)
Q(s)

}
− 1

∣∣∣∣∣ ds

]2
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by (3.14). Since
∑n

j=1 pj,n = 1, it is enough to show that

(3.17) fα(x) :=
1√
x

∫ 1

0

∣∣∣eitQ(s)x1/α/l(x) − 1
∣∣∣ ds → 0 as x ↓ 0

where x ∈ (0, 1) in general. Since |eiu − 1| ≤ min{2, u}, u ∈ R, we see that
∫ 1

0

∣∣∣eitQ(s)x1/α/l(x) − 1
∣∣∣ ds ≤

∫ x

0

2 ds + t
x1/α

l(x)

∫ 1−x

x

|Q(s)| ds +

∫ 1

1−x

2 ds.

Megyesi(3.14), p. 423, proved that for h0 small enough there exist constants
cj > 0 such that sups∈(0,h0] |Mj(γ

−1
s−1)+hj(s)| ≤ cj, where Mj(·) and hj(·) are

from (3.6), and we choose cj so large that the inequalities sups∈(0,∞) Mj(s) ≤
cj also hold, j = 1, 2. Further restrictions on h0 will be introduced as we go
along. Then by (3.6),

∣∣Q+(s)
∣∣ ≤ c1

l(s)

s1/α
and

∣∣Q(1− s)
∣∣ ≤ c2

l(s)

s1/α
, 0 < s ≤ h0,

and ψα,λ
j (s) ≤ cj

s1/α
, s > 0, j = 1, 2, for all λ > 0.(3.18)

Hence
∫ h0

x

∣∣Q+(s)
∣∣ ds ≤ c1

∫ h0

x
l(s)s−1/α ds. Here we take h0 > 0 be so small

that l(·) is locally bounded on (0, h0), that is, l(·) is bounded on (ε, h0) for
each ε > 0. Note that l(1/v), as a function of v, is slowly varying at infinity.
We now apply Karamata’s theorem ([4], pp. 26–27) and accordingly separate
three cases of α.

If α < 1 then 1
α
− 2 > −1, and so we have the asymptotic inequality

∫ h0

x

l(s)

s1/α
ds =

∫ 1/x

1/h0

v
1
α
−2 l(1/v) dv ∼ α

1− α
x1− 1

α l(x) as x ↓ 0,

where we write f(u) ∼ g(u) if limu→∞ f(u)/g(u) = 1, and hence, as x ↓ 0,

fα(x) ≤ 4
√

x + t(c1 + c2)
x

1
α
− 1

2

l(x)

∫ h0

x

l(s)

s1/α
ds + t

x
1
α
− 1

2

l(x)

∫ 1−h0

h0

|Q(s)| ds

= 4
√

x + t
(c1 + c2)α

1− α

√
x

(
1 + o(1)

)
+ t

x
1
α
− 1

2

l(x)

∫ 1−h0

h0

|Q(s)| ds → 0.

If α = 1 then 1
α
− 2 = −1, in which case l∗(x) =

∫ 1/x

1/h0
v−1l(1/v) dv is

slowly varying at 0, so that, as x ↓ 0,

f1(x) ≤ 4
√

x + t

√
x

l(x)
(c1 + c2)

∫ h0

x

l(s)

s
ds + t

√
x

l(x)

∫ 1−h0

h0

|Q(s)| ds

= 4
√

x + t(c1 + c2)
√

x
l∗(x)

l(x)
+ t

√
x

l(x)

∫ 1−h0

h0

|Q(s)| ds → 0.
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Finally if α > 1 then 2 − 1
α

> 1, so that c3 :=
∫∞
1/h0

v
1
α
−2 l(1/v) dv < ∞

and

fα(x) ≤ 4
√

x + t(c1 + c2)
x

1
α
− 1

2

l(x)

∫ h0

x

l(s)

s1/α
ds + t

x
1
α
− 1

2

l(x)

∫ 1−h0

h0

|Q(s)| ds

= 4
√

x + t(c1 + c2)c3
x

1
α
− 1

2

l(x)
+ t

x
1
α
− 1

2

l(x)

∫ 1−h0

h0

|Q(s)| ds → 0,

as x ↓ 0. Thus (3.17) and, therefore, (3.15) is completely proved.
Now we turn to (3.16). For each j = 1, 2, . . . , n using the change of

variables s = upj,n in (3.13) and in (3.14), we see that

(3.19) µj,n = pj,n

∫ 1
pj,n

−1

1

Q(upj,n)
p

1/α
j,n

l(pj,n)
du

and

yj,n(t) = pj,n

∫ 1/pj,n

0

(
exp

{
itQ(upj,n)p

1/α
j,n /l(pj,n)

}
− 1

)
du

= pj,n

{ ∫ h0/pj,n

0

(
exp

{
itQ(spj,n)p

1/α
j,n /l(pj,n)

}
− 1

)
ds

+

∫ (1−h0)/pj,n

h0/pj,n

(
exp

{
itQ(spj,n)p

1/α
j,n /l(pj,n)

}
− 1

)
ds

+

∫ h0/pj,n

0

(
exp

{
itQ(1− spj,n)p

1/α
j,n /l(pj,n)

}
− 1

)
ds

}
.(3.20)

Therefore, (3.16) to be proved is equivalent to
∑n

j=1 pj,nJj,n(t) → 0, where

Jj,n(t) =

∫ 1
pj,n

0

[
exp

{
it

Q(spj,n)p
1/α
j,n

l(pj,n)

}
− 1

]
ds− yα,γj,n

(t)

−it

∫ 1
pj,n

−1

1

Q(spj,n)p
1/α
j,n

l(pj,n)
ds .

Since
∑n

j=1 pj,n = 1 and pn → 0, it suffices to show that

(3.21) hα(x) → 0 as x ↓ 0,

where

hα(x) =

∫ 1
x

0

[
exp

{
itQ(sx)

x1/α

l(x)

}
− 1

]
ds− yα,γ1/x

(t)− it

∫ 1
x
−1

1

Q(sx)
x1/α

l(x)
ds.
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Now we rewrite the characteristic function of Gα,pn
(·) in the theorem. By

(3.1),

∫ ∞

0

βt(ψ
(α,λ)
1 (s)) ds =

∫ 1

0

[
eitψα,λ

1 (s) − 1
]
ds− it

∫ 1

0

ψα,λ
1 (s)

1 +
{
ψα,λ

1 (s)
}2 ds

+

∫ ∞

1

[
eitψα,λ

1 (s) − 1− itψα,λ
1 (s)

]
ds

+it

∫ ∞

1

[
ψα,λ

1 (s)− ψα,λ
1 (s)

1 +
{
ψα,λ

1 (s)
}2

]
ds

=

∫ 1

0

[
eitψα,λ

1 (s) − 1
]
ds +

∫ ∞

1

[
eitψα,λ

1 (s) − 1− itψα,λ
1 (s)

]
ds

−itθ
(
ψα,λ

1

)
,

where θ(ψ) as above (3.2). With the analogous form of other integral we
finally get

yα,λ(t) =

∫ 1

0

[
eitψα,λ

1 (s) − 1
]
ds +

∫ ∞

1

[
eitψα,λ

1 (s) − 1− itψα,λ
1 (s)

]
ds

+

∫ 1

0

[
eit{−ψα,λ

2 (s)} − 1
]
ds +

∫ ∞

1

[
eit{−ψα,λ

2 (s)} − 1− it{−ψα,λ
2 (s)}

]
ds.
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Using this, (3.19) and (3.20), we obtain

hα(x) =

∫ 1

0

[(
exp

{
itQ(sx)

x1/α

l(x)

}
− 1

)
−

(
eitψ

α,γ1/x
1 (s) − 1

)]
ds

+

∫ h0/x

1

[
exp

{
itQ(sx)

x1/α

l(x)

}
− 1− itQ(sx)

x1/α

l(x)

−
(
eitψ

α,γ1/x
1 (s) − 1− itψ

α,γ1/x

1 (s)
)]

ds

+

∫ (1−h0)/x

h0/x

[
exp

{
itQ(sx)

x1/α

l(x)

}
− 1− itQ(sx)

x1/α

l(x)

]
ds

+

∫ 1

0

[(
exp

{
itQ(1− sx)

x1/α

l(x)

}
− 1

)
−

(
e−itψ

α,γ1/x
2 (s) − 1

)]
ds

+

∫ h0/x

1

[
exp

{
itQ(1− sx)

x1/α

l(x)

}
− 1− itQ(1− sx)

x1/α

l(x)

−
(
e−itψ

α,γ1/x
2 (s) − 1 + itψ

α,γ1/x

2 (s)
)]

ds

−
∫ ∞

h0/x

[
eitψ

α,γ1/x
1 (s)− 1− itψ

α,γ1/x

1 (s) + e−itψ
α,γ1/x
2 (s)−1 +itψ

α,γ1/x

2 (s)
]
ds

=: hα,1(x) + hα,2(x) + hα,3(x) + hα,4(x) + hα,5(x)− hα,6(x).

Using the inequality |eiu − 1 − iu| ≤ u2/2, u ∈ R, and then the bounds
{ψα,γ1/x

j (s)}2 ≤ c2
j/s

2/α, j = 1, 2, established in (3.18), we see that |hα,6(x)| ≤
2−1(c2

1 +c2
2) t2

∫∞
h0/x

s−2/α ds → 0 as x ↓ 0. Also, with the substitution sx = y,

|hα,3(x)| ≤
∫ (1−h0)/x

h0/x

t2Q2(sx)x2/α

l2(x)
ds =

x
2
α
−1

l2(x)
t2

∫ 1−h0

h0

Q2(y) dy → 0 as ↓ 0.

Clearly, hα,1(·) and hα,4(·) behave analogously and can be handled the
same way, and hα,2(·) and hα,5(·) can also be handled the same way. Hence
we deal only with hα,1(·) and hα,2(·). First note that Lemmas 3.4 and 3.5
together imply

mes

{
0 ≤ s ≤ N :

∣∣∣∣
Q+(s/n)

n1/αl(1/n)
− ψα,γn

1 (s)

∣∣∣∣ > ε

}
→ 0 for all ε > 0,

convergence in measure on [0, N ] for each N > 0. Using the monotonicity of
ψ

α,γ1/x

1 (·) and Q(·), we show that in this convergence n−1 ↓ 0 can be extended
to x ↓ 0. To this end, consider any xn ↓ 0 such that γ1/xn

cir−→κ ∈ (c−1, 1].
Then also γb1/xnc

cir−→κ and γd1/xne
cir−→κ, so that, according to the proof
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of Lemma 3.5, Q+(s/yn)/{y1/α
n l(1/yn)} → ψα,κ

1 (s) and ψ
α,γyn
1 (s) → ψα,κ

1 (s),
s ∈ C(ψα,κ

1 ), where yn can be chosen in both convergence relations as 1/xn,
d1/xne and b1/xnc. Using that Q+(s/d1/xne) ≤ Q+(sxn) ≤ Q+(s/b1/xnc),
l(1/b1/xnc)/l(xn) → 1 and l(1/d1/xne)/l(xn) → 1, we get by standard ma-

nipulation that {Q+(sxn)x
1/α
n /l(xn)} − ψ

α,γ1/xn

1 (s) → 0 for all s ∈ C(ψα,κ
1 ).

This implies by Lemma 3.4 that

mes

{
0 ≤ s ≤ N :

∣∣∣∣
Q+(sx) x1/α

l(x)
− ψ

α,γ1/x

1 (s)

∣∣∣∣ > ε

}
→ 0 for all ε > 0,

as x ↓ 0. We note that if the functions ψα
j , j = 1, 2, in (3.3) are continuous,

then Lemma 3.4 is needless because convergence holds pointwise.
Thus, towards the proof of (3.21), we showed that in the integrands in

hα,1(·) and hα,2(·) go to 0 in measure as x ↓ 0 on each interval [0, N ]. Thus, it
suffices to find common integrable bounds. For the first integral the function
2 does the job, so that hα,1(x) → 0 and hα,4(x) → 0 as x ↓ 0. For the second,
by (3.18) we have

∣∣∣∣ exp

{
itQ(sx)x1/α

l(x)

}
− 1− itQ(s x)x1/α

l(x)

∣∣∣∣ +
∣∣∣eitψ

α,γ1/x
1 (s) − 1− itψ

α,γ1/x

1 (s)
∣∣∣

≤ t2
Q2(sx)x2/α

l2(x)
+ t2{ψα,γ1/x

1 (s)}2 ≤ t2
Q2(sx)x2/α

l2(x)
+ t2

c2
1

s2/α
,

and the second term is integrable on [1,∞). For the first term we need
Potter’s theorem ([4], p. 25), which for the function l∞(y) = l(1/y), y ≥ 1,
slowly varying at infinity, states that for each δ > 0 and A > 1 there is a
K = K(A, δ) such that

l∞(y)

l∞(z)
≤ A max

{(y

z

)δ

,
(z

y

)δ
}

, y, z > K.

Take A = 2 and δ = (2α)−1 − 4−1 and let h0 < 1/K(2, δ). Then for x < h0

and s ∈ [1, h0/x] we have {l(sx)/l(x)} ≤ 2 max{sδ, s−δ} = 2sδ, and so, first
by (3.18),

∣∣∣∣
Q2

+(sx)x2/α

l2(x)

∣∣∣∣ ≤ c2
1

l2(sx)

(sx)2/α

x2/α

l2(x)
= c2

1s
− 1

2
− 1

α

(
l(sx)

l(x)sδ

)2

≤ 4c2
1s
− 1

2
− 1

α ,

which is integrable on [1,∞). Therefore, hα,2(x) → 0 and hα,5(x) → 0 as
x ↓ 0, proving (3.16) and hence the theorem.

Proof of Corollary 3.1. We construct a strategy pn such that γj,n = κ
for all j = 1, 2, . . . , n− 1, and pn,n → 0. Then for the characteristic function

E(eitVα,pn ) = exp

{
n∑

j=1

pj,n yα,γj,n
(t)

}
= eyα,κ(t) epn,n [yα,γn,n(t)−yα,κ(t)],
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so that E(eitVα,pn ) → eyα,κ(t), t ∈ R. Since Sα,pn
and Vα,pn

merge together by
Theorem 3.1, we get Sα,pn

D−→Vα,κ(M1,M2). So it is enough to find such a
strategy.

Fix n ∈ N sufficiently large to have kn∗−1 < n ≤ kn∗ for n∗ = n∗(n), as be-
fore (3.6), and put x0 = κkn∗ , x−1 = κkn∗−1 and x+1 = κkn∗+1. Clearly, γxj

=
κ, j = 0,±1. If x0 = n, then the uniform strategy pn = (1/n, 1/n, . . . , 1/n)
is suitable.

If x0 6= n, we begin by equating each component to 1/x0. Suppose that
x0 > n. Then, starting with the first component, we proceed step by step
and substitute 1/x0 by 1/x−1, so that the sum of the components is increased
at each step. We do this until the sum is still less than 1. Since n/x−1 > 1,
we will not change all components. Finally, increase the last 1/x0 to some
pn,n ∈ (1/x0, 1/x−1) that makes the sum 1, and the construction is complete.

For x0 < n the proof is similar, only we decrease 1/x0 by 1/x+1 at each
step.
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Chapter 4.

Asymptotic normality

4.1. Introduction and results

Let X, X1, X2, . . . be iid random variables with the common distribution
function F (x) = P{X ≤ x}. For each n ∈ N = {1, 2, . . .} consider the
random variable

San = a1,nX1 + a2,nX2 + · · ·+ an,nXn ,

where an = (a1,n, . . . , an,n) is an arbitrary sequence of weights. We investi-
gate the asymptotic behavior of the weighted sum San , therefore it is reason-
able to assume that each component is asymptotically negligible, that is for
every ε > 0

lim
n→∞

sup
1≤k≤n

P{|ak,nXk| ≥ ε} = lim
n→∞

P{|X| ≥ ε/an} = 0,

where an = max{|ak,n| : k = 1, 2, . . . , n}, which holds, if and only if an → 0,
as n →∞. Therefore from now on we assume that an → 0.

Since the possible limiting distributions of San are necessarily infinitely
divisible, we need the well-known representation of their characteristic func-
tions. As in the previous chapter let Y be an infinitely divisible real random
variable with characteristic function φ(t) = E(eitY ) in its Lévy form ([23]
p. 70), given for each t ∈ R by

φ(t) = exp

{
itθ − σ2

2
t2 +

∫ 0

−∞
βt(x) dL(x) +

∫ ∞

0

βt(x) dR(x)

}
,

where

βt(x) = eitx − 1− itx

1 + x2
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and the constants θ ∈ R and σ ≥ 0 and the functions L(·) and R(·) are
uniquely determined: L(·) is left-continuous and non-decreasing on (−∞, 0)
with limx→−∞ L(x) = L(−∞) = 0 and R(·) is right-continuous and non-

decreasing on (0,∞) with limx→∞ R(x) = R(∞) = 0, such that
∫ 0

−ε
x2dL(x)+∫ ε

0
x2dR(x) < ∞ for every ε > 0.
Our starting point is Theorem 25.1 in [23], which states that for an infinite

array of asymptotically negligible, row-wise independent random variables
{Y1,n, Y2,n, . . . , Yn,n}∞n=1, with distribution functions Fk,n(x) = P{Yk,n ≤ x},
x ∈ R, n = 1, 2, . . ., k = 1, 2, . . . , n, the random variable

∑n
k=1 Yk,n − cn,

for an appropriate numerical sequence cn, converges in distribution to a non-
degenerate random variable W , with Lévy functions L and R, and normal
component σ, if and only if

∑n
k=1 Fk,n(x) → L(x), x < 0, x ∈ CL ,(4.1) ∑n
k=1 Fk,n(x)− 1 → R(x), x > 0, x ∈ CR ,

and

lim
ε→0

lim inf
n→∞

n∑

k=1

{∫

|x|≤ε

x2 dFk,n(x)−
( ∫

|x|≤ε

x dFk,n(x)
)2

}
(4.2)

= lim
ε→0

lim sup
n→∞

n∑

k=1

{ ∫

|x|≤ε

x2 dFk,n(x)−
( ∫

|x|≤ε

x dFk,n(x)
)2

}
= σ2,

where for a real function f , Cf denotes its continuity points.
The Lévy functions of the normal distribution are identically 0. Adding

the two equations in (4.1) and using Theorem 26.2 in [23] we obtain, that

San − cn
D−→Z ∼ N(0, 1) for some appropriate cn, if and only if for every

ε > 0

∑n
k=1

∫

|ak,nXk|>ε

dP → 0

∑n
k=1

{∫

|ak,nXk|<ε

a2
k,nX

2
k dP−

( ∫

|ak,nXk|<ε

ak,nXk dP
)2

}
→ 1 .

It follows immediately from this form that
∑n

k=1 ak,nXk − cn
D−→N(0, 1) if

and only if
∑n

k=1 |ak,n|Xk − cn
D−→N(0, 1).

In the simplest case, when X has finite variance we obtain the following
characterization of convergence:
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Theorem 4.1. Let X,X1, X2, . . . be iid random variables with finite vari-
ance, and put µ = E(X). Then an → 0 and

n∑

k=1

ak,n(Xk − µ)
D−→N(0, 1) ,

if and only if
∑n

k=1 a2
k,n → 1/Var(X).

Asymptotic normality of linear combinations is closely related to the fol-
lowing problem: Let (Rν,1, Rν,2, . . . , Rν,Nν ) be a random vector, which takes
on the Nν ! permutations of (1, . . . , Nν) with equal probabilities. Consider
{bν,i : 1 ≤ i ≤ Nν , ν ≤ 1} and {aν,i : 1 ≤ i ≤ Nν , ν ≤ 1} two double
sequence of real numbers. Hájek [25] gave necessary and sufficient condition
for the asymptotic normality of the random sum

∑Nν

i=1 bν,i aν,Rν,i
. During the

proof of his main theorem, as a corollary he obtains Theorem 4.1 here.
Using the language of the previous chapter the reformulation of the the-

orem is

Corollary 4.1. Let X1, X2, . . . be iid random variables with 0 mean and finite
variance. Then for a sequence of strategies {pn}, there exists a normalizing
sequence an, such that

1

an

n∑

k=1

pk,nXk
D−→N(0, 1)

and pn/an → 0, if and only if

pn√∑n
k=1 p2

k,n

→ 0 ,

and in this case an =
√

Var(X)
∑n

k=1 p2
k,n.

An other special case of the weight sequences is the following. Let
X1, X2, . . . be iid random variables with E(X) = 0 and E(X2) = 1. Let
{wk}∞k=1 be a sequence of real numbers such that wk 6= 0 for all k, and put
Wn = w2

1 + · · ·+ w2
n. The weight sequence is an = (w1/

√
Wn, . . . , wn/

√
Wn).

Easy computation shows that in this particular case asymptotic negligibility
an → 0 holds if and only if Wn →∞ and w2

n/Wn → 0. With no more moment

assumptions on X, Fisher [21] proved that San

D−→N(0, 1), if Wn →∞ and
lim supt→∞ #{n : Wn/w

2
n < t}/t < ∞, where #A stands for the cardinality
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of a set A. It is easy to show that these conditions imply asymptotic negligi-
bility, but the converse is not true. Later Weber [37] found some complicate

sufficient conditions for San

D−→N(0, 1), with higher moment assumptions,
and these assumptions also imply asymptotic negligibility. As a corollary
of Theorem 4.1 we obtain that in this special case asymptotic negligibility
immediately implies distributional convergence:

Corollary 4.2. Let X1, X2, . . ., {wn}∞n=1, {Wn}∞n=1 and an be as above. If

Wn →∞ and w2
n/Wn → 0, then San

D−→N(0, 1) .

Now assume that the variance is infinite. In this case assumption (4.2),
especially in the normal case, becomes simpler, because by [23] p.173

[∫ x

−x

y dF (y)

]2

= o(1)

∫ x

−x

y2 dF (y),

where o(1) → 0 as x →∞.
Recall that the distribution F is in the domain of attraction of the α-

stable law W , α ∈ (0, 2], written F ∈ D(α), if for some centering and norming
sequences cn and an (3.4) holds along the whole sequence of natural numbers,
that is

1

an

[ n∑

k=1

Xk − cn

] D−→W ,

where, of course X1, X2, . . . , are iid random variables with distribution func-
tion F . Moreover, F is in the domain of partial attraction of the infinitely
divisible random variable W , written F ∈ Dp(W ), if there exist a subse-
quence {kn}∞n=1 ⊂ N, and centering and norming sequences ckn and akn ,
such that (3.4) holds, that is the distributional convergence above, along the
subsequence {kn}∞n=1. For an α-stable W we write Dp(α) instead of Dp(W ).

Theorem 4.2. Assume that F ∈ D(2). If for some weight sequence an and

centering sequence cn, San − cn
D−→W , where W is a nondegenerate random

variable, then W is necessarily normal.

We investigate a particular converse of the theorem above. What can
we say about the random variable X, if for some sequence an the limit
distribution exists, and it is normal?

Theorem 4.3. Let X1, X2, . . . be iid random variables with common dis-
tribution function F . If there exists a weight sequence an and a centering

numerical sequence cn, such that San − cn
D−→N(0, 1), then F ∈ Dp(2).
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In a certain sense, according to the latter theorem the distributional con-
vergence through linear combinations is not more general, than along sub-
sequences. The converse is trivially true, as we noted before Corollary 3.1.
Indeed, assume that for a given subsequence {kn} (3.4) holds. Then we can
define the weight sequence an = (1/akj

, . . . , 1/akj
, 0, . . . , 0), if kj ≤ n < kj+1,

where the number of 1/akj-s is kj. Now, obviously San − ckj
/akj

D−→W .
To exclude such cases we introduce the notion of balancedness for weight
sequences: {an}∞n=1 is balanced if

lim inf
n→∞

min{|ak,n| : k = 1, . . . , n}
max{|ak,n| : k = 1, . . . , n} > 0 .

This means again that each component is important. We note that the defi-
nition is essentially the same as for strategies in Chapter 3, above Corollary
3.1.

The next theorem says that convergence through a balanced weight se-
quence implies convergence through the whole sequence of integers.

Theorem 4.4. Let an be a balanced weight sequence and cn a centering

sequence, such that San − cn
D−→N(0, 1). Then F ∈ D(2).

It is important to note that in general the two types of convergence are
very different. According to the Corollary in [28] if F ∈ Dgp(W ), for a non-
degenerate semistable law W , then there is a balanced weight sequence an,

which contains only two different components, and for which San−cn
D−→W ,

where cn is well determined. However, in this case F is not necessarily con-
tained in the domain of attraction of any stable law. We also note that
Megyesi [32] proved for any stable law W that its domain of geometric par-
tial attraction and its domain of attraction coincide. These results show
similarity between convergence along a geometric subsequence, and conver-
gence through balanced weight sequence.

There is an interesting problem in connection with such weight sequences:
What is the class of infinitely divisible random variables, whose distribu-
tion can be obtained as the limit distribution of linear combinations of iid
variables with balanced weight sequences. We do not even know whether
nonsemistable limits of this type exist or not.

The questions treated here are also interesting in the case of α-stable
laws, where α < 2. The analogue of Theorem 4.2 remains true, however the
validity of Theorems 4.3 and 4.4 is an open problem.
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4.2. Proofs

Proof of Theorem 4.1. As we have seen before Theorem 4.1 we may
assume that the weights are nonnegative. In this case Fk,n(x) = P{ak,nX ≤
x} = F (x/ak,n). We spell out the conditions again: there is asymptotic
normality if and only if

∑n
k=1

[
F (−x/ak,n) + 1− F (x/ak,n)

]
→ 0 for every x > 0 , and(4.3)

∑n
k=1 a2

k,n

{ ∫

|x|≤ε/ak,n

x2 dF (x)−
( ∫

|x|≤ε/ak,n

x dF (x)
)2

}
→ 1 ,(4.4)

for every ε > 0.
We may assume, that E(X) = 0. Since an → 0, each term in (4.4) tends

to Var(X). Thus the validity of (4.4) is equivalent to limn→∞
∑n

k=1 a2
k,n =

1/Var(X). Moreover in this case (4.3) also holds. Indeed,
∫
R\[−x,x]

y2 dF (y) ≥
x2(F (−x) + 1− F (x)), and since the left side tends to 0 as x →∞, we have

n∑

k=1

[
F (−x/ak,n) + 1− F (x/ak,n)

]
=

n∑

k=1

a2
k,n

x2
o(1) → 0 ,

where o(1) → 0, as n →∞, proving (4.3), and thus the statement.

Proof of Corollary 4.1. Necessity. According to Theorem 4.1 asymptotic
normality implies

∑n
k=1 p2

k,n/a2
n → Var(X)−1 and since

∑n
k=1 p2

k,n ≤ pn ≤ 1,
we get that cn is bounded. Therefore pn/an → 0 implies pn → 0, and hence

an → 0 too. Since an ∼
√

Var(X)
∑n

k=1 p2
k,n [for numerical sequences we

write an ∼ bn if an/bn → 1], we obtain

lim
n→∞

pn√∑n
k=1 p2

k,n

= 0 ,

as claimed.
Sufficiency. Put an =

√
Var(X)

∑n
k=1 p2

k,n for the norming sequence.

Then
∑n

k=1 p2
k,n/a2

n = Var(X)−1 and an = pn/
√

Var(X)
∑n

k=1 p2
k,n → 0, so

by Theorem 4.1 the statement follows.

Proof of Theorem 4.2. It is well known that F ∈ D(2) if and only if

(4.5) lim
x→∞

x2 [F (−x) + 1− F (x)]∫
|y|≤x

y2 dF (y)
= 0 .
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By (4.5) we have

n∑

k=1

[
F (−x/|ak,n|) + 1− F (x/|ak,n|)

]
= o(1)

1

x2

n∑

k=1

∫

|y|≤x/|ak,n|
a2

k,n y2 dF (y) ,

where o(1) is meant as o(1) → 0, if n → ∞. By (4.2) the sum after o(1) on
the right-hand side of the equality is bounded for x small enough, and using
(4.1) it is easy to see that it is bounded for all x > 0. Thus the right-hand
side goes to 0. Since the left-hand side converge to L(x)−R(x), where L and
R are the Lévy functions as in (4.1), we obtain that both Lévy functions are
identically 0, which means that the limit distribution is necessarily normal.

Proof of Theorem 4.3. As before we may assume that the weights
are nonnegative. Suppose indirectly that X 6∈ Dp(2). By the well-known
characterization this means that

lim inf
x→∞

x2
[
F (−x) + 1− F (x)

]
∫
|y|≤x

y2 dF (y)
> 0 .

Choose a > 0, which is smaller than the lim inf above. Hence if x is large
enough, we have

x2
[
F (−x) + 1− F (x)

]
> a

∫

|y|≤x

y2 dF (x) .

Since an → 0 we obtain

n∑

k=1

[F (−x/ak,n) + 1− F (x/ak,n)] ≥ a

n∑

k=1

a2
k,n

x2

∫

|y|≤x/ak,n

y2 dF (y) .

By (4.3) the left-hand side goes to 0, so the right-hand side also does, which
implies by (4.4) that σ = 0. The contradiction proves the statement.

Proof of Theorem 4.4. We assume as before that the weight sequence
is nonnegative. If E(X2) < ∞ then the statement is obvious, therefore we
suppose that the variance is infinite. In this case, as we mentioned before, the
second term in (4.4) is superfluous. The definition of balancedness implies
that there exists K > 1, such that an/ak,n < K, for each n and k = 1, . . . , n.
Then writing x/K instead of x in (4.3) we obtain

n∑

k=1

∫

|y|> 1
Kak,n

dF (y) ≥
n∑

k=1

∫

|y|>1/an

dF (y) = n

∫

|y|>1/an

dF (y) ,
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and since the left side tends to 0, so does the right.
Rewriting the left side of (4.4), without the second term, we have for

ε = 1

n∑

k=1

a2
k,n

∫

|y|<1/ak,n

y2 dF (y) =
n∑

k=1

a2
k,n

∫

|y|<1/an

y2 dF (y)

+
n∑

k=1

a2
k,n

∫

1/ak,n≥|y|≥1/an

y2 dF (y) ,

and for the remainder term

n∑

k=1

a2
k,n

∫

1/ak,n≥|y|≥1/an

y2 dF (y) ≤
n∑

k=1

∫

1/ak,n≥|y|≥1/an

dF (y)

≤ n

∫

|y|≥1/an

dF (y) ,

which tends to 0. This means that

∫

|y|≤1/an

y2 dF (y)
n∑

k=1

a2
k,n → 1

as n →∞. Finally, since na2
n/K2 ≤ ∑n

k=1 a2
k,n ≤ na2

n, we obtain

1 ≤ lim inf
n→∞

n a2
n

∫

|y|≤ 1
an

y2 dF (y) ≤ lim sup
n→∞

n a2
n

∫

|y|≤ 1
an

y2 dF (y) ≤ K2 .

From this boundedness we show that F ∈ D(2), with the same idea as in
[23] p. 181. Put χ(x) =

∫
|y|>x

dF (y), and H(x) =
∫
|y|<x

y2 dF (y)/x2. Now

an → 0 implies that for each x large enough we can find n ∈ N such that
1/an < x ≤ 1/an+1. Then clearly χ(x) ≤ χ(1/an) and H(x) ≥ H(1/an+1)−
χ(1/an). Thus

χ(x)

H(x)
≤ nχ(1/an)

nH(1/an+1)− nχ(1/an)
.

We have just seen above that nχ(1/an) → 0 and nH(1/an) is bounded, thus
χ(x)/H(x) → 0, as x → ∞, which is exactly the same as (4.5), that is
F ∈ D(2) as claimed.
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Összefoglaló

Legyenek X1, X2, . . . , Xn valamely szemistabilis eloszlás geometriai parciá-
lis vonzástartományából vett független azonos eloszlású véletlen változók.
Ezekre a változókra mint egy szerencsejátékban n játék során nyert nyere-
ményekre (negat́ıv érték esetén veszteségekre) gondolunk. Tegyük fel, hogy
Péter, a bankos pontosan egy ilyen játékot játszik n játékos, Pál1, Pál2,
. . ., Páln mindegyikével, nyereményeik rendre X1, X2, . . . , Xn. A játékosok,
mielőtt még játszanának, nyereményük elosztására előre megállapodhatnak
egy pn = (p1,n, . . . , pn,n) osztozkodási stratégiában, melyben a komponensek
nemnegat́ıvak és összegük egy. Ennél a stratégiánál Pál1 kap p1,nX1+p2,nX2+
· · ·+pn,nXn dukátot, Pál2 kap pn,nX1 +p1,nX2 + · · ·+pn−1,nXn dukátot, Pál3
kap pn−1,nX1 + pn,nX2 + p1,nX3 + · · · + pn−2,nXn dukátot, . . ., Páln pedig
p2,nX1 + p3,nX2 + · · · + pn,nXn−1 + p1,nXn dukátot kap. A disszertációban
a p1,nX1 + p2,nX2 + · · ·+ pn,nXn véletlen változó aszimptotikus viselkedését
vizsgáljuk, ami esetünkben Pál1 nyereménye a pn stratégia mellett.

Az első fejezetben azt a speciális esetet taglaljuk, amikor a szerencsejáték
a szentpétervári(p) játék. Péter, a bankos, felajánlja, hogy Pál1, Pál2, . . .,
Páln játékosok mindegyikével egy-egy általánośıtott szentpétervári játékot
játszik, amelyekben mindegyik Pál qk−1p valósźınűséggel nyer rk dukátot,
k = 1, 2, . . ., ahol 0 < p < 1, q = 1− p és r = 1/q. Pálj nyereményét Xj-vel
jelölve, a játékosok megegyeznek, hogy X1 + X2 + · · ·+Xn össznyereményük
önmaguk közötti szétosztására egy pn = (p1,n, p2,n, . . . , pn,n) valósźınűség-
eloszlással meghatározott együttműködési stratégiát használnak, ahol tehát
p1,n, p2,n, . . . , pn,n ≥ 0 és

∑n
j=1 pj,n = 1, úgy, hogy Pál1 p1,nX1 + p2,nX2 +

· · ·+pn,nXn dukátot, Pál2 pn,nX1 +p1,nX2 + · · ·+pn−1,nXn dukátot, . . ., Páln
pedig p2,nX1 + p3,nX2 + · · ·+ p1,nXn dukátot kap. Végtelen várható értékek
összehasonĺıtásával meghatározzuk azokat a stratégiákat, amelyek minden
Pál számára eredeti saját nyereményéhez képest extra hozamot eredményez-
nek annak ellenére, hogy Péter összesen ugyanazt az X1 + X2 + · · · + Xn

dukátot fizeti ki. Ezek a megengedett stratégiák akkor és csak akkor léteznek,
ha q egy speciális egyenletet kieléǵıtő algebrai szám, és ekkor egy megengedett
stratégia hozama nem egyéb, mint a stratégia r-alapú logaritmushoz tar-
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tozó entrópiájának p/q-szorosa. Megmutatjuk, hogy ez a hozam nemcsak
improprius Riemann, hanem Lebesgue értelemben is mindig létezik annak
ellenére, hogy a klasszikus p = 1/2 esettől eltérően az eredeti saját nyere-
ményeket a megengedett stratégiákkal kapott összegek sztochasztikusan csak
két játékos esetén dominálják mindig. Legalább három játékos esetén meg-
mutatjuk, hogy a sztochasztikus összehasonĺıtás általában nem lehetséges.
Mint kiderül, ez meg annak ellenére van ı́gy, hogy sztochasztikusan domináns
helyzetből, tehát például két játékostól indulva egy természetes algoritmus-
sal további játékosokra nyert megengedett stratégiák esetén a sztochasztikus
dominancia öröklődik. Sok érdekes speciális esetben meghatározzuk az op-
timális megengedett stratégiát és ennek maximális hozamát, az általános
helyzetre vonatkozóan pedig feltárjuk a kapcsolatos számelméleti természetű
nehézségeket.

A második fejezetben még mindig egy speciális esetet tárgyalunk, de már
a nyeremények aszimptotikus viselkedésére koncentrálva. Sőt, a speciális eset
lehetővé teszi, hogy nemcsak összetartási tételeket, hanem összetartó aszimp-
totikus sorfejtést is igazoljunk, amire az általános esetben nincs remény.
Legyenek tehát X, X1, . . . , Xn független általánośıtott szentpétervári(α, p)
változók, azaz melyekre P{X = rk/α} = qk−1p, ahol α ∈ (0, 2), p ∈ (0, 1),
q = 1 − p és r = 1/q. Tetszőleges pn = (p1,n, . . . , pn,n) stratégia esetén

definiáljuk az Sα,p
pn

= p
1/α
1,n X1 + · · · + p

1/α
n,n Xn − Hα,p(pn) véletlen változót,

ahol a Hα,p(pn) csak a stratégiától függő állandó. A fejezet fő eredménye egy
aszimptotikus sorfejtés, mely az Sα,p

pn
és bizonyos Wα,p

pn
szemistabilis eloszlású

véletlen változók összetartási sebességének rendjét határozza meg. Általános
esetben nem várhatjuk határeloszlás létezését, hiszen a Doeblin–Gnyegyenko
kritérium szerint már az egyenletes stratégia esetén sincs határeloszlás. Azon-
ban abban a speciális esetben, amikor minden komponensre pk,n = qak,n vagy
0, valamilyen ak,n pozit́ıv egész számra, belátjuk, hogy van határeloszlás, és
ekkor összetartó sorfejtéseink hagyományos aszimptotikus sorfejtésekre re-
dukálódnak.

A harmadik fejezetben a problémát teljes általánosságában vizsgáljuk.
Legyenek X1, X2, . . . , Xn független, azonos eloszlású véletlen változók, amik
benne vannak egy α ∈ (0, 2) kitevős szemistabilis eloszlás geometriai parciális
vonzástartományában. Tekintsünk egy tetszőleges pn osztozkodási stratégiát

és definiáljuk a hozzá tartozó Sα,pn
= p

1/α
1,n X1/`(p1,n) + p

1/α
2,n X2/`(p2,n) +

· · · + p
1/α
n,n Xn/`(pn,n) − µ(pn) lineáris kombinációt, ahol `(·) egy 0-ban lassú

változású függvény, µ(pn) pedig valós állandó. A fejezet fő eredménye egy
összetartási tétel az Spn

véletlen változó és bizonyos szemistabilis eloszlású
Vpn

véletlen változó között. Annak ellenére, hogy általában nincs határel-
oszlás, megadunk olyan –az egyenletes stratégiától nem sokban különböző–
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stratégiasorozatot, mely mentén van határeloszlás.
A negyedik fejezetben azt boncolgatjuk, mit mondhatunk akkor, ha a

határeloszlás normális. Tetszőleges an = (a1,n, . . . , an,n) súlysorozat esetén
az San = a1,nX1 + · · · + an,nXn véletlen változó aszimptotikus normalitását
vizsgáljuk a természetes limn→∞ max{|ak,n| : k = 1, . . . , n} = 0 elhanyagol-
hatósági feltétel mellett. A véges szórású esetben szükséges és elegendő
feltételt adunk az eloszlásbeli konvergenciára. Megmutatjuk, hogy ha San

aszimptotikusan normális egy kiegyensúlyozott an súlysorozat mellett, akkor
a közös eloszlásfüggvény szükségképpen a normális eloszlás vonzástartomá-
nyában van.

Független azonos eloszlású véletlen változók lineáris kombinációinak ha-
táreloszlása meglepő hasonlóságot mutat részsorozatokon vett eloszlásbeli
konvergenciával, és a szemistabilis tulajdonságot is új megviláǵıtásba helyezi.
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[9] Csörgő, S. (2007). Fourier analysis of semistable distributions. Acta
Appl. Math. 96, 159–175.
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[11] Csörgő, S., and Dodunekova, R. (1991). Limit theorems for the Peters-
burg game. In: Sums, Trimmed Sums and Extremes (M. G. Hahn, D. M.
Mason and D. C. Weiner, eds.), Progress in Probability 23, Birkhäuser
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