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Introduction

The theory of limit theorems is a classical and important part of probability
theory. The first of these theorems was proved by de Moivre in 1733 for
independent Bernoulli trials. This was reinvented by Laplace in 1812. The
method of characteristic functions, which can handle the problem in its full
generality, was born only at the beginning of the 20" century. Since then, an
outblasting development started in the theory, due to such excellent math-
ematicians as Ljapunov, Lévy, Lindeberg, Khinchin, Kolmogorov, Doeblin,
Gnedenko and Feller.

For a long time the only method for dealing with sums of independent
variables was Fourier analysis, which obscures the underlying probabilistic
intuition. Therefore the probabilistic approach of Csorgd, Haeusler and Ma-
son [18] was a milestone in the theory. This approach is based upon the
asymptotic behavior of the uniform empirical distribution function in con-
junction with the tail probabilities of the corresponding quantile function.
The method is applicable only when the independent random variables are
also identically distributed. However, in this case the probabilistic approach
is capable to handle lightly trimmed sums, that is when some of the largest
and some of the smallest summands are eliminated.

The semistable distributions play central role in this work. The notion
first appears in Lévy’s [30] classical work as a natural generalization of the
stable laws. Later, due to the works of Kruglov [29] and Mejzler [33], the
definition changed a bit, and the importance of semistable laws turned out.
Stable distributions arise as limiting distributions of suitably centralized and
normalized sums of iid random variables, along the whole sequence N. Ac-
cording to a famous theorem of Khinchin, when the convergence is not de-
manded along the whole sequence of natural numbers only through a subse-
quence, then every infinitely divisible distribution can be reached. If there
is a geometric growth condition on the subsequence, we get an intermediate
class, the class of semistable distributions. To be more precise (the equivalent
version of) the definition is the following:

Non-degenerate distributions that arise as limiting distributions of suit-



ably centralized and normalized sums of iid random variables along subse-
quences {k, }>2 | satisfying kyi1/kn — ¢, for some ¢ > 1 are called semistable
laws.

Megyesi [32] applied the probabilistic approach for semistable distribu-
tions, and he characterized the geometric partial attraction.

In the most general setup of limit theorems, for row-wise independent
random variables, there are necessary and sufficient conditions for the ex-
istence of the limit distribution. The case of iid random variables is also
examined in detail. The natural assumption between the two cases, that is
the case of linear combinations of iid random variables is less analyzed. This
is the subject of the current theses.

Let X4, Xs,..., X, be independent identically distributed random vari-
ables from the domain of geometric partial attraction of a semistable law.
These random variables can be viewed as the gains in ducats (losses when
negative) in an independent repetitions of a game of chance. We assume
that Peter, the banker plays exactly one game with each of the n gamblers,
Paul;, Paul,, ..., Paul,. Before they play our Pauls may agree to use a
pooling strategy p, = (Pims---;Pnn), in which the components are non-
negative, and add to unity. Under this strategy Paul; receives p;,X; +
DPonXo + -+ -+ DXy, Pauly receives py n X1 4 p1n,Xo + -+ -+ pp_1,, Xy, Pauls
receives pp—1n,X1 + PpnXo + P10 X3+ -+ Pn2nXy, ..., and Paul, receives
DonX1+P3nXo+- - +PpnXn_1+p1,X, ducats. In the theses we investigate
the properties of the weighted sum p; , X7 + p2n Xo + -+ + ppn Xy, Which in
our context is the gain of Paul; with strategy p,,.

In Chapter 1 we consider a very special case, when the game of chance is
the generalized St. Petersburg(p) game. In this game Peter tosses a possibly
biased coin, until it lands ‘heads’, and pays 7* ducats to Paul, if this happens
on the k'™ toss, that is the distribution of Paul’s gain X is P{X = r*} =
¢"1p, where r = 1/q, ¢ =1 —p, and p € (0,1) is the probability of ‘heads’
at each throw. The classical version of the game, which is played with a fair
coin, is due to Nicolaus Bernoulli from 1713. The original problem was the
fair price for n game. Once this price is agreed, it is wholly indifferent to
Peter whether the other side is our old Paul playing n games in a row, or a
company of n gamblers, Paul;, Pauly, ..., Paul,, each playing exactly one
game with respective individual winnings X, X, ..., X,,, and cooperating
among themselves. However, it turns out that there are strategies, so called
admissible strategies, which are better to every Paul, in the sense that each
of them receives more ducats, than with the individualistic strategy. The
admissible strategies play significant role in the next two chapters. These
paradoxical results for mutually beneficial sharing among any fixed number
of classical St. Petersburg gamblers were obtained by Csorgé and Simons.



The extension to the general case is not straightforward because, unlike in
the classical case with p = 1/2; admissibly pooled winnings generally fail to
stochastically dominate individual ones for more than two gamblers. Best
admissible pooling strategies are determined when p is rational, and the
algebraic depth of the problem for an irrational p is illustrated by an example.

We emphasize that in the whole chapter n, the number of Pauls will
be fixed, does not tend to infinity. Therefore here we do not deal with
asymptotic results. Thus the paradoxical results come from only the fact
that the expectation is infinite. The proofs are mainly elementary, the only
deeper tool we use, is the comparison operator, which allows us to compare
random variables with infinite mean.

This kind paradox was the motivation for the author for further investi-
gation of linear combinations. This part is the extended version of [26].

In Chapter 2 we determine the asymptotic behavior of the gain of Pauly,
in a more general St. Petersburg(a, p) game, where a € (0,2). In this game
the distribution of Paul’s winning X is P{X = r¥/*} = ¢*~!p. That is we are
still dealing with a specific distribution from the domain of geometric partial
attraction of a specific semistable law. However, this special case allows us to
prove merging asymptotic expansions for the gains, which cannot be hoped
for the general case. For an arbitrary strategy p,, = (P1n, .- ., Pnn) We define
the random variable SpP = pi/le + p;/fXg + e+ prlz{f;Xn — p/qH.(p,,),
where H,(p,) depends only on the strategy. The main results are short
asymptotic expansions, given in terms of Fourier —Stieltjes transforms and
are constructed from suitably chosen members of the classes of subsequential
semistable infinitely divisible asymptotic distributions for the total winnings
of the n players and from their pooling strategy, where the classes them-
selves are determined by the two parameters of the game. For all values
of the tail parameter the expansions yield best possible rates of uniform
merge. In the general case there is no hope for limit theorem, since by the
Doeblin — Gnedenko criterion it does not exist even for the uniform strategy.
Surprisingly, it turns out that for a subclass of strategies not containing the
averaging uniform strategy, but containing the admissible ones, our merging
approximations reduce to asymptotic expansions of the usual type derived
from a proper limiting distribution. The Fourier - Stieltjes transforms are
shown to be numerically invertible in general and it is also demonstrated
that the merging expansions provide excellent approximations even for very
small n.

We use Fourier analytic methods. One of the main tools is the Esseen-
inequality, which gives upper bound for the supremum distance of functions
in terms of the difference of their Fourier - Stieltjes transforms. The other



important thing is the existence of the mixed derivatives of semistable distri-
bution functions, which was derived by Csérgé in [10] for the St. Petersburg
case, and in [9] in general. This chapter contains the results of [12].

In Chapter 3 we investigate the asymptotic distribution of the gain in its
whole generality. Let Xi, Xs,... be iid random variables from the domain
of geometric partial attraction of a semistable law, with characteristic ex-
ponent « € (0,2). Consider the poohng strategy p,, = (p1 ny -3 DPnn), and

define the random variable S, , = = py/ ' X1/0(p1n) + p2 ' Xa/l(p2n) + -+ +

p}/,an/ﬁ(pn’n) — u(p,,), where £(-) is a slowly varying function at 0. We
prove merge theorems along the entire sequence of natural numbers for the
distribution functions of S, . For some sequences of linear combinations,
not too far from those with equal weights, the merge theorems reduce to
ordinary asymptotic distributions with semistable limits. This result finally
lightens the importance of the admissible strategies.

The first merge theorems were obtained by Csérgé [7] and there are some
merge theorems in Chapter 2 also. However, in all cases merge meant that
the supremum distance of the corresponding distribution functions tends to
0, with an appropriate rate. Therefore in these cases Esseen’s inequality did
the job, and there were no need to work out general conditions of merge. In
our case, with no more assumption on the underlying distribution function,
there is no hope for rates. We give a general definition for merge through the
Lévy metric, and we obtain sufficient conditions in terms of characteristic
functions. We note that D’Aristotile, Diaconis and Freedman [19] investi-
gated five different definitions of merge in a separable metric space. The
most important case, the case of real random variables, is passed over, and
they do not analyze the relationship of (any notion of) merge with the char-
acteristic functions. Beside of merge the most important tool in this chapter
is the probabilistic approach of Csorgd, Haeusler and Mason [18]. This part
is taken from [28].

Chapter 4 makes the whole story round. We are dealing with the asymp-
totic normality of an arbitrary linear combination of iid variables. Let
X1, X, ... be iid random variables, and consider a,, = (a14,...,0nn), an
arbitrary sequence of weights. We investigate the asymptotic normality of
the sum Sq, = a1, X1+ -+a,,X, under the natural negligibility condition
lim,, o max{|a;,| : £ =1,...,n} = 0. In the finite variance case we prove
necessary and sufficient condition for the distributional convergence. We also
show that if S, is asymptotically normal for a weight sequence a,,, in which
the components are of the same magnitude, then the common distribution
belongs to the attraction of the normal law. Here we use the classical theory
of sum of independent random variables.



Chapter 1.

Motivation: The generalized
n-Paul paradox

1.1. The St. Petersburg paradox

Peter offers to let Paul toss a fair coin until it lands heads and pays him 2*
ducats if this happens on the k™ toss. What is the price for Paul to make
the game ‘equal and fair’? If X denotes Paul’s gain, then

P{X =2"} = 2—116 thus B(X) =) 2"P{X=2"} =) "1=00,
k=1 k=1

so the price of the game is infinite number of ducats. However as Nicolaus
Bernoulli wrote, ‘there ought not be a sane man who would not happily
sell his chance for forty ducats’. This is the famous St. Petersburg para-
dox, which was first raised by Nicolaus Bernoulli [3] in 1713, in a letter to de
Montmort. The problem appears in the book Essay d’Analyse sur les Jeux de
Hazard by Pierre Rémond de Montmort in 1713, in its original form, played
with dice. Gabriel Cramer learned about the paradox in 1726, and he was,
who simplified the problem to its coin-tossing version. At that time the cen-
tral problem of probability theory was the ‘fair price’, the equitas, therefore
this phenomena of infinite expectation was so unexplainable. However, as
Feller [20] writes, ‘the modern student will hardly understand the mysterious
discussions of this paradox.” We delineate some trials from the numerous
‘resolutions’. Gabriel Cramer cut the possible gain at 2*, for some large k.
He explained that for some large integer k, a common man’s happiness for
the gain of 2% ducats is the same, as for any larger number of ducats. So the



value of a game is

E 22].-1-'2 22j /{—{—22 <2> k+1
J=1 j=k+1 7=0

ducats. But what is k7 The younger cousin of Nicolaus, Daniel Bernoulli had
a similar theory: the more money Paul has, the less is his happiness for a fix
number of ducats. This implies that the fair price of the game would depend
on the wealth of the gambler. With such moral treatments neither of them
get closer to the solution. The problem became so popular that it occurs in
the greatest work of the french enlightenment, in the Encyclopédie: Croiz ou
pile, that is Heads or Tails is written by Jean le Rond d’Alembert. For almost
200 years the greatest mathematicians (Euler, Lagrange, Laplace, Poisson)
did not get any advance in the problem. At the same time the endless
disputations about the paradox greatly promoted the utilitarian economy,
which is started by Daniel Bernoulli’s thoughts [2].

For a single game, everything can be known for the gain X from its
distribution function. One can check easily that it is

0 ifx <2

F — P X < - ’ ogo T ’

@=PX < ={ | s 03]
where |y | stands for the (lower) integer part of y, while (y) is the fractional
part and log, is the base r logarithm. Of course the real question is how much
should Paul pay for n game, in which his total gain is .S, = X1+ Xo+-- -+ X,,,
where X1, X5, ..., X,, are independent St. Petersburg random variables. The
first mathematically explicit result concerning the paradox is due to Feller
[20] in 1945. He proved the following weak law:

Sn P

_>1

)

nlog,n

where — stands for the convergence in probability, and n — oco. (Through-
out the theses, an asymptotic relationship is meant as n — oo unless oth-
erwise specified.) That is according to Feller the fair price for n games is
nlog, n ducats. However it turned out that this is a very nice example when
the strong version of the weak law is not true. Namely the stochastic limit is
the almost sure lim inf, so for Peter, the banker nlog, n ducats is not enough!
Chow and Robbins [5] and Adler [1] proved that

=1

lim sup =oo and liminf
n—oo mMlogym n—oo M log,n



almost surely. (Actually Chow and Robbins show in general that if the
expectation is infinite then no strong theorems hold.) For the deeper reasons
of the phenomena we refer to [14]. Moreover Csorgé [7] explains why the fair
price for S,, cannot be determined by laws of large numbers.

The non-existence of the strong laws of large numbers does not exhaust
the curiosity of the paradox. To be honest, enough has left, as we will see
soon. In the distribution function the numerator 2{°¢2%) is not slowly varying
at infinity. Therefore the classical Doeblin — Gnedenko criterion implies that
there is no limit theorem for the sums. The limit theorems are the topic of
the next two chapters. For further historical background we refer to [6].

1.2. The n-Paul problem

Peter agrees with two player, Paul; and Pauly, that he plays exactly one
St. Petersburg game with each of them. Our players may decide to keep
their own winnings, or before they play they agree to share the gain, each of
them receiving (X; + X3)/2 ducats. Which is the better strategy? Of course
if the expectation was finite, then these strategies would be equally good,
neither is superior. But now, as we will see soon, the averaging strategy is
better. Despite Peter pays out the same amount of ducats, each of our Pauls
get in the average one extra ducat! This is the two-Paul paradox. Indeed, let
So = X1 + Xy and Uy = 2X; + Xol{Xs < X;}, where I{A} is the indicator
function of the event A. Csorgé and Simons [15] proved the distributional
equality
S, 2 1.

With this equality we can determine how much does the averaging strategy
better than the individualistic. Following [15] we have

k—1 1 j 1 9
P{X) > 2°| X, = 2} = P{X, zzk}:1—2(5> :1‘[1—%_1] 3

Jj=1

for all k& € N, therefore P{X; > X5 | X5} = 2/X5. So we obtain that

E(X, [{X; < X,}) = E(X, P{X; > X, | X,}) = E(X2 Xi) =2,

that is the averaging strategy implies one (2/2) extra ducat for both Pauls.
Actually, we compared two random variables with infinite expectation.
Now it is natural to define the comparison operator (if it exists) of the random



variables U and V as:

E[U,V] = /OO [P{U > 2} — P{V > z}]da.

(e e}

We refer to Csorgdé and Simons [15], [17] for a detailed exposition and dis-
cussion of the comparison operator E[-,-]. We note that if the integral exists
as a Lebesgue integral, then it exists in the Riemann sense, while the con-
verse is not true. (In the followings the phrase Riemann sense is always
meant as improper Riemann sense.) For an example see [15]. Moreover
E[U, V] =E(U) — E(V), whenever E(U) and E(V) exist and at least one of
them is finite. (We use the usual convention that 00 —c¢ = £00 = ¢ — Fo0.)
With these notations in the 2-Paul case we obtained E[X; 4+ X3, 2X;] = 2,
thus E[(X; + X3)/2, X;] = 1. Csorg6 and Simons also investigated the case,
when n = 2% Pauls play one game with Peter. Then E[Sy /2%, X|] = k, for
each k, where X1,..., X, are independent St. Petersburg games, and 5, is
its sum. The 3-Paul case is much more complicated. Assume that Peter
plays exactly one game with Paul;, Paul, and Pauls, and their winnings are
X1, X5 and X3 respectively. It seems plausible that the averaging strategy,
giving each Paul S3/3 ducats, dominates the individualistic one. However, it
turns out that the two strategy are not comparable, that is the integral

E{%,Xl} = /OOO {P{% > x} - P{X; >z}

does not exist, even in the improper Riemann sense. This immediately im-
plies that the variables X; and S3/3 are stochastically incomparable. Indeed
P{X, = 2} = J and P{S3/3 = 2} = ¢ < 3, while P{X; < 8} = 2 and
P{S;/3 <8} =0.76171875 > 3.

But there are two other pooling strategies for the 3-Paul case investigated
by Csorgé and Simons [15]. The simpler is that each Paul gives his winning
to the other two, half to each. The 2-Paul case implies that this strategy
provides one extra ducat for each of the three Pauls. The second strategy is
more interesting: Paul; ends up with %Xl + }LXz + }ng, Paul, with %Xg +
1 X5+ 1X;, and Pauly with X5+ 1X; 4+ 1X,. This strategy provides one
and a half extra ducats for each of the three Pauls.

Before playing with more Pauls, we generalize the problem.

Peter offers to let Paul toss a possibly biased coin until it lands heads
and pays him r* ducats if this happens on the k' toss, k € N = {1,2,...},
where r = 1/q for ¢ = 1 — p and p € (0,1) is the probability of ‘heads’
at each throw. This is the generalized St. Petersburg(p) game, in which
P{X =¥} = ¢*"'p, k € N, for Paul’s gain X. Clearly, we get the classical

dx




version if p = 1/2. The distribution function now

0, if:L‘<T',
Fp([E):P{XSZE}:{l_qUogTJJJ:1_M’ifx27"_

Let X7, X5, ... be independent St. Petersburg(p) variables and S, its sum.
Then Feller’s weak law has the following general form

Sn

nlog, n

P
—

P
q

Return to the problem of our cooperating Pauls, whose number n is now
arbitrary. Suppose that Peter agrees to play exactly one St. Petersburg(p)
game with a company of n gamblers, Paul,, Paul,, ..., Paul,, whose respec-
tive individual winnings X, Xs,..., X,,. They may agree to use a pooling
strategy P, = (P1ns - - > Pan)s Where prp, ..., ppy > 0and > prn = 1. Un-
der this strategy, Paul; is to receive the amount py , X14+p2nXo+- 4+ DnnXn,
Paul, is to receive the amount p, , X1 + p1, X2 + -+ + pp_1,X,, Pauls is to
receive the amount p,—1, X1 + DX + p1pXs + - + ppo2nXy, ..., and
Paul,, is to receive the amount of py , X1 + p3n,Xo + -+ + PpnXpn_1 + P12 Xn
ducats. Under these rotating assignments of weights, every bit of all of the
individual winnings is paid out. Moreover, this strategy is fair to every Paul
in the sense that their winnings are equally distributed and each receives the
same added value equal to

Ap<pn) = E[pl,nXl + - +pn,an7X1]
(1.1) = / [P{anXl + -t P X, > ) — P{X; > x}} dx,
0

whenever the integral is defined, so that comparison is possible.

The aim of this chapter is to determine those strategies, so called admis-
sible strategies, for which the added value A,(p,,) exist, and we discuss the
manner of the existence (improper Riemann, or Lebesgue). If the parameter
p of the game is rational we determine the best admissible strategies, which
yield the greatest added value to our Pauls, and in the irrational case we
point out the algebraic depth of the problem by an example. These results
are the generalizations of the results of Csérgé and Simons [17].

1.3. Results and discussion

We call a strategy p,, = (D1, - - -, Pnn) admissible if each of its components
is either zero or a nonnegative integer power of ¢ = 1 — p. Individualistic



strategies (1,0, ...,0) are thus admissible for each p, otherwise the powers in
nonzero components are positive integers. The entropy of a pooling strategy
is H:(p,) = >_j_, Pjn 108, 1/pjn, Where log, denotes the base r logarithm and
0log,1/0 = 0. We say that the random variable U is stochastically larger
than the random variable V', written U >p V, if P{U > z} > P{V > z} for
all x € R.

Theorem 1.1. For any p € (0,1) and n € N, the added value A,(p,,) exists
as an improper Riemann integral if and only if p, is admissible, in which

case A,(p,) = £ H,(p,).

Csorgé and Simons [17] proved this theorem for the classical St. Peters-
burg(1/2) game, played with an unbiased coin. However, in that case they
proved the following stronger result: the independent St. Petersburg(1/2)
variables X71,..., X, can be defined on a rich enough probability space that
carries, for each admissible strategy p,, =(p1.n, - - - » Pnn), & St. Petersburg(1/2)
random variable X, and a nonnegative random variable Y}, such that T}, =
P1nX1+ +punXny = Xp +Y)p almost surely. This implies the stochastic
inequality 7;, >p X;. Hence the integrand in A;/»(p,) is nonnegative and
thus A;/o(p,) is trivially finite as a Lebesgue integral. As the next result
shows, stochastic dominance is preserved for two players for an arbitrary
St. Petersburg parameter p € (0, 1).

Theorem 1.2. For any p € (0,1), if py = (¢% ¢°) is an admissible pooling
strategy for some a,b € N, then Tp, = ¢*X; + ¢® Xy is stochastically larger
than X;.

Surprisingly, however, for n > 3 gamblers stochastic dominance generally
fails to hold for admissible strategies. Our example to demonstrate this is
whenp=(n—1)/n,q=1—p=1/n, so that r = 1/q = n is also the number
of Pauls. Then P{X = nk} = (n —1)/n*, k € N, and the averaging pooling
strategy p, = pS = (1/n,1/n,...,1/n) is admissible. For this strategy the
weighted sum is Tpo = (X1 4---+X,,)/n, so that for n = 2 Theorem 1.2 says
in particular that Sy = 2Tps = Xi + Xo 18 stochastically larger than 2.Xj.
This is not true for n > 3.

Theorem 1.3. Ifp = (n—1)/n, ¢ = 1/n and n > 3, then neither S, =
X5+ -+ X, nor nXy is stochastically larger than the other.

In view of Theorem 1.2 the integrand in (1.1) is nonnegative whenever p,
is admissible, so that the integral A,(p,) described in Theorem 1.1 strength-
ens to that of a Lebesgue integral when n = 2. While the same conclusion
holds for n > 3, Theorem 1.3 rules out so simple a line of reasoning.

10



Theorem 1.4. For every parameter p € (0,1) and every admissible strat-
egy P, = (P1ms---sDnn) the integral Ay(p,) in (1.1) is finite as a Lebesgue
integral.

Theorem 1.1 characterizes the pooling strategies that yield added val-
ues. However, admissible strategies do not exist for all, in fact, for most
parameters p € (0,1). Call a parameter p admissible, if for p there exists
an admissible strategy which is not individualistic. Theorem 1.1 then says
that p is admissible if and only if for ¢ = 1 — p there exist positive integers
ay > as > --- > ag, for some k € N, such that ¢** 4+ ¢* 4+ --- + ¢ = 1.
In this case, = 1/q is an algebraic integer. If a; > ao, then ¢ is also an
algebraic integer, thus ¢ is an algebraic unit. The set of algebraic numbers is
countable, so there are at most a countable number of admissible parameters
p. When ¢ = 1 — p is rational for an admissible p € (0, 1), the equation
implies ¢ = 1/m for some integer m > 2. Thus the set of rational admissible
parameters is {(m — 1)/m : m > 2}. In particular, it is interesting that the
classical p = 1/2 is the smallest such St. Petersburg parameter. It follows
that the set of all admissible parameters p is countable. Nevertheless, it can
be shown that this set is dense in the interval (0,1):

Theorem 1.5. The set of admissible parameters is dense in (0,1).

When a given number of our Pauls happen to have admissible strategies,
a natural question is: which is the best? In the latter rational case when
p = (m—1)/m for some integer m > 2, and sor = 1/q¢ = m > 2 is an integer,
the answer is given by the next result, in which |x] = max{k € Z : k < x}
is the integer part, [z] = min{k € Z : k > z} is the integer ceiling and
(x) =z — |x| = x + [—x] is the fractional part of a number z € R.

Theorem 1.6. Ifp = (r—1)/r and n = rl& " 4 (r —1)r,, for some integers
r>2and0<r, <rlen _ 1, then

(1.2) A(p,) = §Hr<pn> < g log, n — 6,(n) =: A%,

for every admissible strategy p,,, where §,(u) =1+ (r — 1){log, u) — rios®,
u > 0. Moreover, the bound Ay, is attainable by means of the admissible
strateqy

1

p:; - (pi”’ s 7p:17n) = (sz, s ,Tp:“p;, s )p;) with p; - m7

11



where the number of pl s and rp;, s are, respectively,

_ pllog.n] [log, n] _
™m—r r n
myp(n) = ———— and myy(n) = ——

Apart from reorderings of the components of p;,, the point of mazimum is

unique.

The continuous function J,(-) is nonnegative, its maximum is given in
formula (3.4) of Csorgé and Simons [14].

It is easy to see that if n is not in the form rl°&"l + (r — 1), then 0 must
be included among the components of the strategy, which does not increase
the entropy. So it is enough to investigate the number of players in the form
above. Here are the first few optimal strategy and the corresponding added
value, when r = 3:

. (111
AS(pE;) = 27 D3 = (_7_7_>

333
As(p3) = 2, piz(%,%,%,o>
- (1134
- e (1
s - ()
R
m) =4 5= (5555555573)

. 111111111
AB(pTO) = 47 Do = ( _________ 70)

1 1 1 1
A 42 pt=(= - -2 - 22 —
(pll) 99 pll <979797979797979727727727)
111111111 1 1
A =42 R
<p12) 99 p12 <9797979797979797277277277 )
1111111

111111)

A-(p*,) = 42 (- - - - - - - - - - -
3(Pia) = 45, Pla = (9999999272727272727

Theorem 1.6 is not applicable for an irrational p. On the other hand,
in every admissible situation A,(p,) = (r — 1)H,(p,,) by Theorem 1.3, and
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the trivial upper bound H,(p,,) < log,n = H,(pS) is valid for the entropy
of every p,,, where p¢ = (1/n,1/n,...,1/n). However equality cannot hold
in general because p{ is not admissible for every admissible parameter p.
Apart from those cases which can be reduced to the rational case, that is
when ¢ = 1 — p = 1/{%m for some integers m, k > 2, the problem of the best
admissible strategy is unsolved.

For the irrational case the simplest example is the equation ¢>+¢ = 1, the
solution of which is ¢ = 7 := (v/5 — 1)/2 =~ 0.618, the ratio of golden section.
Thus, pertaining to the irrational parameter p* = (3 — v/5)/2 ~ 0.382, the
vector (72, 7) is an admissible strategy for two players. From this strategy we
can generate admissible strategies for an arbitrary number of players. Indeed,
substituting 73 + 72 = 7 for 7, and 7* + 73 = 72 for 7%, we obtain (73,72, 7%)
and (74,73, 7), both admissible strategies for three Pauls. Continuing this
algorithm, each time substituting 7™+2 + 7™+ for 7™ if the exponent m is
present, after [ steps we obtain admissible strategies for 241 gamblers, [ € N.
However, even if we allow all possible branches generated by this algorithm,
the result is incomplete in the sense that there are admissible strategies,
such as (78,75, 7%, 75, 73,73, 73) for seven Pauls, that are avoided. Consider
all the strategies that can be generated by the branching algorithm from
(72,7), and for every n > 2 call the best among these conditionally optimal,
denoted by pr. Let f, be the n'" Fibonacci number, so that with f; = 1,
fi=1and f,11 = fun1 + fn, n € N. We can show that the conditionally
optimal strategy for f, + k players, k € {0,1,..., f,_1 — 1}, each playing a
St. Petersburg(p*) game, is

* _ n+1 n+1 n n n—1 n—1
pf"+k:—(f yee s T T G T T T ,)’
vV vV Vv
k times fn—2+k times fn—1—k times

with the corresponding added value A,(pf ;) = 7"[k(2 — 7) + nfo o7 +
(n—1)fn_1]. Because of the inherent number-theoretic difficulties, we do not
know whether these conditionally optimal strategies are optimal in general.
Here are the first few conditionally optimal strategies and the corresponding
added values:

Ap(p3) = 31 — 1~ 0.854, P, = (7_2’7_)
Ay(p3) =2 — 7~ 1.382, py = (7% 72 )

Ap}) =61 —2~ 1708,  p;= (' %71 )

A(p3) =131 —6~2034,  pi= (77750010
A,(p) =1+ 27 ~ 2.236, pi = (75, 7_4’ 74774, =) 73) .

Finally, we show that an extended form of our branching algorithm has an
interesting property concerning stochastic domination. For any admissible

13



parameter p € (0,1), let (¢, ¢, ..., ¢ ) and (¢"', ¢, ..., ¢"") be admissible
strategies for n and m Pauls for any n,m > 2. Substituting ¢+t 4 ¢qa+b2 4
oo @ T = g% for ¢, where k € {1,...,n} is arbitrary, we obtain a
strategy (¢%,q%, ..., ¢%+m=1) for n +m — 1 gamblers, where the sequence
dy > dy > -+ > dpim-1 18 a nonincreasing rearrangement of the sequence
a1, ...,0-1,05 +b1,... a5 + by, aps1,...,a,. We say that a strategy p, =
(P1ms -+ Pnm) 18 stochastically dominant if p, X1 + -+ + ppnXn >p Xi.
The last theorem states that the branching algorithm preserves stochastic
dominance. Choosing first n = m = 2, it may be used in conjunction with

Theorem 1.2 as a starting point.

Theorem 1.7. If the strategies (¢*,q%,...,q*) and (¢",q*, ..., ¢") are
both stochastically dominant, then the generated strategy (¢%, q%, . .., gdn+m-1)
15 also stochastically dominant.

All our results here are for fixed numbers of players. Csérgé and Simons
[16] proved for an arbitrary sequence of strategies p,, = (p1n,--.,Pnn) that
(p1n X1+ -+ punXn)/Hr(p,) converges in probability to p/q, as n — oo,
whenever H,(p,) — oc.

1.4. Proofs

The first four lemmas are needed for the proof of Theorem 1.1, while the
fifth lemma is used in the proof of Theorem 1.6. The first two lemmas are
the same as Lemmas 1 and 2 in Csorg6é and Simons [17], therefore we use it
without proof, while the others are the generalizations of Lemmas 3, 4 and
5 in [17].

Lemma 1.1. Let U and V' be nonnegative random variables, and assume
that E(min(U, V) is finite. Then

/Oo [P{U+V >a} - P{U>a}— PV >a}]dr =0,

where the integrals is Lebesgue-integral.

Lemma 1.2. Let Uy,...,U, be nonnegative random variables, and assume
that E(min(Ui, Uj)) < oo, foralli,j=1,...,n,1%# j. Then

/00 P{in>x}—iP{Uj>x}]dx:0,
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where the integral is Lebesque-integral.

Lemma 1.3. If X, X5 are independent St. Petersburg(p) random variables
and ¢y and ¢y positive constants, then E(min(c; X1, 2 X3)) < oo.

Proof. We know from [14] and [16] that 1—F,(z) = P{X > 2} = qll°&-2] =

r{1og:2) /3 for all z > r, and 1 otherwise. Hence, if > rmax(ci,c,), then
the inequality

P{min(c; X1, 2 X5) > 2} = P{c1 X1 > 2} P{cx Xy > 7} < c1cor? /2
holds and, therefore,
E(min(c¢; X1, 2 X5)) = / P{min(c; X1, X5) > z}dr < 00
0

Lemma 1.4. If X is a St. Petersburg(p) random variable and b > 1, then
b
/ P{X > 2} de = (r— 1) [log, b] + 1% = 1+ (r — 1) log, b— &,(b),
0
where the function §,(-) is defined in Theorem 1.6.
Proof. Notice that 1 = 1—F,(z) = P{X > 2} = gl°&-% even for z € [1,7).

So what we need to prove is that flb qUosr=l dz = (r —1)|log, b] + riloe-t) — 1
for b > 1. If ¢ = log, b > 0, then

c

/ qUogT x dr = / quJT?J logrdy = (IOg r)/ T<y>dy
1 0 0

= (logr)||c lry cr<y>
(log )[LJ/O dy+/m dy]
(c)
= [cj(r—l)—k(logr)/o rydy:(r—l)tcj—i-r@—l,

where log = log, is the natural logarithm, which is the desired equation. m

Lemma 1.5. Ifr € {2,3,...}, then the number of the smallest strictly
positive components of an admissible strateqy p,, = (P1ns - - - Pnn) 1S divisible
by r.

15



Proof. Let the smallest strictly positive component be 1/r* for some k € N.
Since 2?21 pjar® = r*, the sum must be divisible by r, so the number of

terms equal to 1 in the sum, which is the number of the components 1/r* in
p,,, is also divisible by 7. [ ]

Proof of Theorem 1.1. With the extended Lemmas 1.3 and 1.4, the proof
is an easy generalization of that in the classical case p = 1/2 in [17].

For a given strategy p, = (P1n;---,Pnn), the integral A,(p,) in (1.1) is
defined in the improper Riemann sense if and only if A,(p,,b) — A,(p,) as
b — oo, where

b
0

Using Lemma 1.2 and 1.3, we have

r

thus

P{pinXi+ -+ ppnXn >z} — ZP{pj,an > m}] dx =0,

J=1

b n n b
/ P{ ij’an > J]}dl’ = Z/ P{pijj > I'} dx + 0(1),
0 =1 j=1"0

where o(1) — 0, as b — oco. Operating in the sum with those terms, in which
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Djn > 0, using Lemma 1.4 we obtain

b n b
Ap(p,,b) = /0 P{ ZPj,an > 5U}d$—/0 P{X > z}dx
j=1

n b b
- Z/ P{pX; > o} de —/ P{X > 2} dr + o(1)
j=1"0 0
b

= ijyn/pj’nP{X>y}dy—/ P{X > z}dz + o(1)

j=1 0 0
- ij,n{llogr LJ (r—1)+ r<logr Pabn>}
=1 Pin

—[log, b (r — 1) — rt? 4 o(1)

= (r—1) En:pj,n{ logrpi = <logr pi> — log, bJ}

le j7n jvn

+ij7nlr‘<10gr pj%> _ T(logrb) + 0(1)
j=1

= (r—1)H.(p,) — ipj,n{l —(r— 1)<logr i> + r<l°gwb,n>}

j=1 Pjn

+1 — (r — 1)(log, b) + ro&-? 4 o(1),

that is A,(p,,b) = (r — 1)H,(p,) + R.(p,,b) + o(1) as b — oo, where
Ro(py,,b) = 6p(b) — D27, Pin 0p(b/pjn), and the function ¢, is defined in
Theorem 1.6. Notice that d,(ur®) = 6,(u), u > 0, for every k € Z. Thus if
p,, is admissible, then

Ba(psh) = 8,0 = im0 ) = 8,00~ S 8,0) =

pj,n

and hence A,(p,,b) = (r —1)H,.(p,) +o(1) as b — oo, which is the “if part”
of the theorem.

Conversely, suppose that A,(p,) in (1.1) exists, so that A,(p,,b) —
A,(p,) as b — oo. Using the above periodicity property of d,(-), we get
R.(p,,r*b) = R.(p,,b) for every k € Z. Fixing b > 0 and letting k — oo, so
that r*b — oo, we get R,.(p,,,b) = A,(p,)—(r—1)H.(p,). Let D=D,—D_,
where D, and D_ are the right-side and left-side differential operators, re-
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spectively. Then one can compute easily that

(s) ’";—kl,fors:rkwhenkEZ,
= 0, for all other s > 0,

from which, for all j € {1,...,n} for which p;,, > 0, we find that

Dp.. 6 (i) ) 5 for b=1"p;, when k € Z,
Pin O pjn) |0, for all other b> 0.

Consequently, we have

DR.(p,,0)|,_, =r—1=(=1)>_ pjm

jEA
where A is the set of indices j € {1,...,n} for which p;,, is an integer power
of r. Since, on the other hand, DR, (p,,,b) = 0, this implies EjeA Pimn = 1,
and thus completes the proof. [

Proof of Theorem 1.2. Let us assume that ¢* + ¢ = 1 for some a,b € N.
Then P{X; < r*} = F,(r*) = 1 — ¢* for every k € N. We estimate the
probability P{Ty < r*}, where Ty = ¢°X; + ¢*Xo. If Ty < 7", then

(1) X1, X, < ¥, or
(2) X, =kt kel and X, <R R or

(3) Xy =rFtt Rl and X <R
We obtain

P{TQ < Tk} < (1 _ qk)z + (1 _ qk—l)qk(l - qa—l) + (1 . qk—l)qk(l . qb—l)

= (1-d")"+ (1—qk1)qk<2—é>= 1—q’”+q2’“(%—1> -

Since the distribution function of X; jumps only in the points = r¥, it is

enough to show that P{T, < r*} < P{X; < r*} = P{X; <r*" 1} =1—¢F".
This is true, because

P{T, < '} = P{T <r*} — P{Ty ="}

1 2
< 1—q’“+q2’“(5—1) —P{X; =0 Xy =1"}
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completing the proof. n

Proof of Theorem 1.3. We prove that stronger statement that the graphs
of the distribution functions of S,, and n.X; cross each other infinitely often.
To be more precise we show that both P{nX; < n*} > P{S, < nf} and
P{nX, < n*} < P{S, < n*} hold whenever k > 3.

Notice that the inequality S,, < n* holds if and only if all the inequalities
X, <nfl Xy <nFY o X, < nF ! hold. This implies for arbitrary k > 2
that

P{Sngnk}zp{é{ngnk_l}}: (n—1+n—1+...+n__1)n

n nQ nk*l
1 n
- (1 B nk_1> '

Clearly, P{nX1 < nk} = P{X1 < nkil} =1-1/nF"1 so P{nXl < nk} >
P{Sn < nk}

Now consider the probabilities P{nX; < n*} and P{S, < n*}. When
k = 2, both of them are zero. So, assume k£ > 3. Noticing the equalities

P{S, < n*} = P{S, <nf} — P{S, = n*},

nk-1

—1\"
P{S, = n"} = P{X; = 0" X, = nF L, X, = b} = (”_> |
and P{nX; < n*} = P{nX; <n* '} = P{X; < nF2} we have

1\ n—1\" 1
(s, <)~ (1 -5) - (250) =1 o <t

nk—l nk—l

where elementary calculation shows that the inequality holds for n > 3 and
k> 3. [ |

Proof of Theorem 1.4. Let n > 2 be the number of Pauls. By Theorem
1.1, for every admissible strategy ¢ = 1 — p satisfies the equation ¢** + ¢** +
<o+ q% =1, where aj,as,...,a, € Nand m € {2,3,...,n}. Without loss
of generality we assume that the zeros, if any, are the last components of the
strategy, so that p,, = (¢**,¢**,...,q¢*,0,...,0). Then T}, := Z?Zl PinXj =
g Xy + -+ ¢ X,,. We estimate the probability P{T,, < r*}. If the event
{T;, < r*} occurs, then we must have all the inequalities X; < rFrai=t X, <
phtae=1 X, < rkten—l Hence,

P{Tm S Tk} S (1 . qk+a1*1) (1 o qk+a2*1) . (1 . qk+am,1)
=1 qk‘(qa1—l 4 qaz—l 4. +qam—l) + q2k02 4o +quCm
=1+ ¢*Cot -+ q"C,
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where the constants Cs, Cs, ..., C,, do not depend on k.

Since p,, is admissible, the integral [ °[P{T}, > z} — P{X; > z}] dz
exists as an improper Riemann integral. Hence it suffices to show that the
integral of the negative part g, (z) of the function g,,(x) := P{T,, > x} —
P{X; > z} is finite. Notice that

gm(z) =P{Xy <z} —P{T,, <z} >P{X) <z} —P{T,, <z} = hy,(x)

for all x > 0. Clearly, the function h,,(z) takes a minimum value on the

interval (r*=1 r*] at x = r*, for which the estimate above yields

hm(rk) P{X1 < rk} — P{Tm < rk}
1 — qkfl . (1 o qkfl + q2k02 e quCm)

v

Therefore, setting Cy = fo —(z) dz, we obtain

/ / dx<C’1—|—Z/ (@*"Col + - 4 ¢"*|Crp)d
0
Z < ) 2k|02| 4. +qu|Cm|)

=Cr+(1=q)> (¢"Cal + -+ + ¢ HC]) < o0,
k=1

which proves the theorem. [

Proof of Theorem 1.5. We will prove the equivalent statement, that

the set {¢ = 1 —p : p admissible} is dense. Let (a,b) C (0,1) be an

arbitrary open interval. For the proof of the density, it is enough to construct

a polynomial P(z) = a,2™ + -+ ajxz — 1, where n > 1 and a; € N, i =

1,...,n, such that P(a) < 0 < P(b). Now, by monotonicity P has a root
€ (a,b), so p=1— q is admissible.

Let a; be the largest integer, such that a;a < 1. Then let ay be the largest
integer, such that aja + asa® < 1. After defining a,...,a;_; let a; be the
largest integer, such that Zle aja’ < 1. By the definition, Z?Zl ajal — 1
as k — oo. So if n is large enough, we have

l—ai(b—a)/2 < Zajaj < Zajbj —ai(b—a),
j=1 j=1
which is the desired inequality. [ ]
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Proof of Theorem 1.6. This is based on the proof of Theorem 2 in
[17], so we skip the details. Without loss of generality we assume that p,,
is ordered: p1, > pan > -+ > ppn. The proof is by induction on r,. For
r, = 0 the statement is true. Now suppose that all the statements of the
theorem hold for r,, — 1 > 0, and consider the case n = rlo&n + (r — 1)r,,.
If pp,, = 0, then we have at least » — 1 zeros. Deleting them, we get a
strategy p,_(,_1), and we are done in view of the fact that the bound Aj ,
in (1.2) is nondecreasing in n. In the other case, when p,, = 1/r* for
some k € N, we have at least r of these smallest components by Lemma
1.5. Changing r of these to a single component 1/7%~!, we obtain a strategy
Py (r—1) for which H,(p,,) — H, (f’n—(r—1)) = 1/rk=1. Using the formula A% = =
(r — 1)[log, n| + (r — 1)r, /rte-" we have

Tn — Tn—(r—1)

A;n B A;:”—(r—l) - rllog, n]

)

and since r,_(,—1) = r, — 1, by the induction hypothesis we only have to show

that
1 1

< .
rk—1 — p|log, n|

Assume the contrary 1/r*=!' > 1/rl°&-") which means 1/rF > 1/rlos-nl,
Thus we have

r |log, n| n
< _

1< .
=,k rk

This is a contradiction, since 1/r* was the smallest component, and the sum
of the components is 1. To prove the uniqueness, notice that equality can
hold only if the strategy P, (,_; is optimal and 1/r*~1 = 1/rl°&). By the
induction hypothesis p,,_(,_) is uniquely determined, as the theorem states.
Computing back the strategy p,, we obtain the desires form. [ ]

Lemma 1.6. If U, V,W are independent random variables and U >p V,
then U +W >p V +W.

Proof. Let F,G and H be the distribution functions of U,V and W,
respectively. By assumption, F(z) < G(z) for all + € R. The random
variables U + W and V + W have the distribution functions FxH(-) and
GxH (-), where % denotes Lebesgue — Stieltjes convolution. Thus

Peti(a) = [ " Fle— y)dH(y) < / " G(a— y)dH(y) = GxH(x),

o0

which proves the statement. [ ]
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Proof of Theorem 1.7. Let Yi,...,Y,,, and X;,..., X, be independent
St. Petersburg(p) variables. From the assumption we get

qakerlyl 4 qak+b2}/2 4. 4 qak+bmym >p ™ X}
By Lemma 1.6 this implies

qale 4+ e+ qaklekil + ank+b11/1 44 qak+mem
~|—q“’“+1Xk+1 + -+ ¢ X,
>p ¢ X1+ A ¢ X ¢ X+ ¢ X -+ ¢ X

Now the assumption and obvious transitivity together imply the theorem.
|
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Chapter 2.

Merging asymptotic expansions
for generalized St. Petersburg
games

2.1. Introduction

We further generalize the St. Petersburg game. Of course the roles of Peter
and Pauls are the same: Peter offers to let Paul toss a possibly biased coin
repeatedly until it lands heads and pays him r*/® ducats if this happens on the
k™ toss, k € N={1,2,...}, wherer = 1/qfor ¢ = 1—p, and p € (0,1) is the
probability of heads on each throw, while a > 0 is a payoff parameter. (When
a = 1 we obtain the ‘classical’ generalized game, investigated in Chapter 1.)
Thus if X denotes Paul’s winning in this generalized St.Petersburg(a, p)
game, then P{X = r¥/*} = ¢*~1p k € N,

Put |y| =max{k € Z: k <y} and [y]| =min{k € Z: k >y} = —|—y]
for the usual integer part and ‘ceiling’ and (y) = y — |y| = y + [—y] for
the fractional part of a number y € R, where Z = {0,4+1,£2,...} and R is
the real line. Then the generalized St. Petersburg distribution function of a
single gain is

if z<rt/e

if @ > rt/e

Y

alog, x)

(2.1) Fop(z) =P{X <z} = { 1 — gletogral — 1 — rlorlos
where log, stands for the logarithm to the base r, as before. For a = 1 this
is the same as F}, in Section 1.2.. We see that the payoff parameter o > 0 is
in fact a tail parameter of the distribution. In particular, E(X*) = oo, but
E(X?) = p/(¢°/*—q) is finite for 3 € (0, ), so for a > 2 Paul’s gain X has a
finite variance, so Lévy’s central limit theorem holds. As it was pointed out
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in [7] even for a = 2 the St. Petersburg(2, p) distribution is in the domain
of attraction of the normal law. This can be checked by straightforward
calculation, using the well-known characterization of the domain of attraction
of the normal law ([23], or see the proof of Theorem 4.3). Hence for the
problems to be entertained in this chapter the case @ > 2 is either not
interesting or at least substantially different from the more difficult case
a < 2. Therefore, just as in [7] and [10] from now on we assume that
a € (0,2). Of course, the most interesting case of this is when a < 1, for
which the mean is infinite.

In the followings we are interested in the asymptotic properties of the
linear combinations. We already noted in Chapter 1 that there is no limit
theorem for the sums. This holds also for the generalized version. Since the
bounded oscillating function 7(*1°8-# in the numerator of (2.1) is not slowly
varying at infinity, by the classical Doeblin — Gnedenko criterion the underly-
ing generalized St. Petersburg distribution is not in the domain of attraction
of any stable law. That is there is no asymptotic distribution for (S, —¢,)/a,,
in the usual sense, whatever the centering and norming constants are. This is
where the main difficulty lies for all generalized St. Petersburg games, when
a < 2.

However, asymptotic distributions do exist along subsequences of N. In
the classical case Martin-Lof [31] ‘clarified the St. Petersburg paradox’, show-
ing that Sy /28 — k converge in distribution, as k& — oco. It turned out in
[11] that there are continuum different types of asymptotic distributions of
Sn/n — logyn along different subsequences of N. As Csorgé wrote [6] there
are continuum many different clarification of the St. Petersburg paradox.
The class of distribution functions of these possible limits may be given
in the form {G11/2,(-) : v € (1/2,1]}, where the values of the parame-
ter  enter as circular subsequential limits of v, = n/2le" ¢ (1/2,1],
which describes the location of n between two consecutive powers of 2.
After these results it is tempting to pick up Gi1/24,(z) to approximate
P{S,/n—logy,n < z}. The accurate version of this conjecture is the merging
theorem sup,cp [P{S,/n—logyn < x} — G124, ()| — 0, which was showed
by Csorgd in the general case in [7]. The optimality of the merge rates was
proved by short asymptotic expansions by Csoérgé in [10]. Later complete
expansions were obtained by Pap [34]. Motivated by the latter results merg-
ing asymptotic expansions for semistable distributions were proven by the
author [27]. The aim of this chapter is to generalize these results for linear
combinations of independent St. Petersburg variables, that is to examine the
gain of Pauly, in the n-Paul problem.
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2.2. Approximating semistable classes

Since we are interested in asymptotic results, we need to introduce some
limiting quantities.

For the bias parameter p € (0, 1), the payoff or tail parameter o € (0, 2)
and a third parameter v € (¢, 1], consider the infinitely divisible random
variable

1 & M), <
ap _ m/a|ypy _ 21 m/a ypyy a,p
CRI 7/{; -2 # 3y }m ,
where ..., Y2 YPYPT YPT YST, ... are independent random variables
such that
m\k
P{vr — k) = PO o g 10

k! ’

that is, Y27 has the Poisson distribution with mean pry¢™ = pvy/(qr™),
m € Z, and where

SOP — g—qt/e Al

v

(a=1)/a .
ry — p 1
{ - ql/a_q - l1—a)/a lf « % 17

—§ logrvzglogri, if a=1.

Kolmogorov’s three series theorem implies that both infinite series in 2.2
converge almost surely. Let G, (7) = P{W®? <}, x € R, denote its dis-
tribution function. As derived in [7], pp. 821-823, its characteristic function
is

[e.o]

(28)  Bapy(t) =B(e"™T7) = / € AGyps(z) =0 tER,

—00

with the finite constant

. pyletia 2 p(-a)l/a - pryla=D/a i 1
ol q — 72/oz + p2l/e q 1:0 ’}/2/0‘7"(3—&)”& T A—ala
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and right-hand-side Lévy function

~y y{log,. (vz®))

Rs’p(l’) = —yqtloer0e] = , = >0.

Tplog ()] T T g
The integral form of the exponent of the characteristic function immediately
implies that for every p € (0,1) and 7 € (g, 1] the infinitely divisible distri-
bution of Wi is semistable with exponent «; for the theory of semistable
distributions required here we refer to [32], [13] and [9]; but there is a short
introduction to the notion of semistability in Chapter 3. It follows that
Gap~(-) is infinitely many times differentiable and by classical results of
Kruglov, recently exposed in [8], E(|W?|*) = oo, but, for all p € (0,1) and
v € (g, 1], the absolute moment

25 B(W) = [ o 4G () = [ ol e () de < o0
if 8 € (0,), with the density function g, ,~(-) = G4, (-) = G((fpl)v()

As we noted before, the function x + r{*1°&-® in (2.1) is not slowly
varying at infinity, and hence it follows by the classical Doeblin — Gnedenko
criterion that F, ,(-) in (2.1) is not in the domain of attraction of any (stable)
distribution, that is, the cumulative winnings S, cannot be centered and
normalized to have a proper limiting distribution as n — oo over the entire
sequence N of natural numbers. However, it turned out in [31] and [11] that
asymptotic distributions do exist along subsequences of N when o« = 1 and
p = 1/2. In fact, subsequential limiting distributions exist for all « € (0,2)
and p € (0, 1) for the sequence

S, — P T, A a#Fl
(2.6) E*P(r) = P{—C" < $}, where 2P = { ¢/~

nl/e §nlogrn,ifoz:1,

and are regulated by the position parameter

n

(2.7) VYn = Tiog, ] € (q,1],

which describes the location of n = ~,7"°& "l € N between two consecutive
powers of » = 1/q. As an extension of one of the results in [11] it can be
shown that for any given subsequence {n;}>, of N, the sequence FP(-)
converges weakly as k — oo if and only if %kgy for some v € (q,1],
where we write v, — 7 if limy oo Y, = 7 for 7 € (g, 1], but we also write
%kﬂ L if either limy_.o v, = ¢, or the sequence {7,, }3>, has exactly two
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limit points, ¢ and 1. If this circular convergence 'ynkﬂwy takes place for
some v € (g, 1], as k — oo, then limy oo SUp,cg [ Fo? (2) — Gapq(7)] = 0.

The trouble with having many asymptotic distributions is resolved by
the selection of a merging approximation to F*?(-) for every n € N from the
class G*P = {Gap~(-): ¢ < < 1} of subsequential limits. The selection is
given by the position parameter =, itself in (2.7), and we have the following
merging theorem with rates [7]:

Theorem. For every ¢ > 0 there exists a threshold n.(a, p) € N, such that
forn > n.(a,p)

(14 ¢)<en) ifo<a<l,
<{( +g)§7’—2—“°gr“ ifa=1,
(1+€>(2(—a)/)a, ifl<a<?2,

sup
zeR

Sy — P
p {W < 95} — Gaprn (2)

where the constant C'(«,p) depends on the parameters «, p.

Finally, asymptotic expansions are established in [10] for the difference
of the distribution functions F3P(-) — Gop, () with uniform error terms
depending on a.

Now we return to the problem of multiply Pauls. As in the preceding
chapter a pooling strategy is an n dimensional vector p,, = (P1n, .-, Pnn)s
such that pi,,...,ppn > 0 and > prn, = 1. Using this strategy, Pauly
receives pj p X1 + P2, Xo + - -+ + ppn X, ducats, ..., Paul, receives py, X; +
P3nX2 + -+ -+ p1.nXn ducats. Assuming p,, = max{pi,,...,Pnn} — 0 for an
infinite sequence of strategies {p,, = (P1n,- - -+ Pnn)}, our first interest in this
chapter is the asymptotic distribution of

(28) Sp? = Zp”“ Hep(Py).
a particular type of linear combinations when « # 1, where

,_1 Zk; 1pkn7 lfa% ]‘

Zkzl Pkn log, M’ ifa=1.
Even though pl/a cee p}/ » sum to one, and hence form a strategy only for

a = 1, it is a major technical step to come up with a merging approximation
in terms of the distribution functions of the semistable random variables

n 1/ o .
{ k= lpk/n Wl;cp? 1f047é17

(2.9) Wer — . |
Zk 1pkn ) _§H1,p(pn)v ifa=1,

Pn
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where the random variables W', W'y, ..., W” are independent copies
of Wi*P| given by substituting v = 1 in (2.2). The characteristic and
the distribution functions will be denoted by g, (1) = E(e?2) and
Gapp, (x) = P{W;‘T’Lp <z}, t,z € R, respectively; the ostensible notational
clash with (2.3), the strategy p, appearing in place of v, will turn out to
be absolutely beneficial. It is easy to see that WpP is indeed a semistable
random variable with exponent « for an arbitrary strategy p,,.

In the classical case, approximations of P{S,l,’nl/ <z} by Gy, /2,p,, (T) were
obtained in [17] with rates of merge. The main goal of the present paper is
to generalize the merging asymptotic expansions in [10] to strategies, that is,
to general linear combinations, such that the classical special case a =1, p =
1/2 of the expansion will yield the rates of merge in [17] and also show that
those rates are not improvable. Our expansions here require certain mixed
derivatives and their properties, which we now introduce, following [10] and
[9]. Fix the parameters o € (0,2), p € (0,1) and v € (g, 1], and consider for
each u > 0 the infinitely divisible distribution function G, ,~(2;u), © € R,
that has characteristic function gu - (t;u) = ¢ @ that is,

Cap(tiu) = euvy () — / e dGypr(7;u), tER.

It was shown in Lemma 4 in [10] that the partial derivatives

O Gy (5 u)

(Bsd) (o)) —
Gopal?54) = "5k uj
(2.10) = QL - e—itﬂf(_it)k—l [yﬁ’p(t)]j ety (1) ¢
T J -0

are well defined at all z € R and u > 0 for every j € {0,1,2,...} and k € N,

so that

OFI Gy (5 u)
ox* oul

(2.11) G*9) (2) =

a,p7fy

;e €R, for j€{0,1,2,...},keN,

u=1

are all meaningful. Furthermore, by Lemma 6 in [10] we have the moment
property

(2.12) / |z°|GE)(2)|de <00 0< B < aforall jke{0,1,2,...},

a7p7'y

extending (2.5) from the case G(g;)v() = GSE,}’W() =G!, () = Gap~(:), and

a7p7’y

(2.13)  GEHI)(koo) = lim GUH(x) =0 for all j ke {0,1,2,...}.

a,pyy xﬁioo
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In particular, for every j, k € {0,1,2,...} the function G(kf;,r#] (+) is Lebesgue
integrable on R, and hence

/ G, k“’” x € R,

»P7’7 P,y
is a function of bounded variation on the whole R, with Fourier—Stieltjes
transform

sl = [ aate) = [ e et @) ds

o0 oo

(2.14) = (—it)* [y2P ()] apn (t) = (—it)* [y2P ()] "),

for all t € R. These results in Lemma 6 in [10] are extended in [9] to arbitrary
semistable distributions of exponent « € (0, 2).

Theorem 2.1 in the next section contains the merging asymptotic expan-
sions for the linear combinations in (2.8). However, these combinations are
satisfactory for the n Pauls who wish to pool their individual winnings only
in the case a = 1. The equivalent Theorem 2.2 contains an overall satis-
factory version after a simple transformation. As shown in [17] for p = 1/2
and in Theorem 1.1 (or in [26]) in general, for & = 1 genuine benefits of
pooling realize for a fixed n if and only if every component of the pooling
strategy p, = (Pin,---»Pnn) is either an integer power of ¢ = 1 — p or zero.
Surprisingly, it will turn out in Corollary 2.2, that for any sequence of such
admissible strategies there is a proper limiting distribution for Sp* and its
equivalent form in Theorem 2.2 for every «, and the merging approximations
reduce to asymptotic expansions of the usual type. The example of the best
admissible strategy in [17] for the classical case (o, p) = (1,1/2) is spelled out
in detail. Numerical analysis is presented in Section 2.4.; all the proofs are
placed in Section 2.5..

2.3. The expansions

Fix any strategy p,, = (P1.n,---,Pnn), and consider the position parameters
Yo = 1/(pgnrlor/Penl) € (g, 1] for each component k = 1,2,...,n for
which pg, > 0. Roughly speaking 7;, € (¢,1] determines the position
of pr, between two consecutive powers of r. Note that for the (generally
inadmissible) uniform strategy pS, = (1/n,...,1/n) all the v, reduce to
Y in (2.7). Recalling formula (2.3) for the ingredients and the notation
Sapp, (1) = E(@p)) at (2.9), for t € R we introduce the complex-valued

29



function gp?(t), defined for a # 1 as

o l — o 2 . o = +1
gp;p (t) = ga:p»Pn(t) [1 - 5 Zplz,n [y'y;fn (tﬂ + 1t81 P Zpk,n wan (t>
k=1

k=1
t? p !
7p 2 «@
+ 5 2 {(Sl ) + . Q/Oé} E pkz,n )
q q k=1

where the constant s{7 = p/(q — ¢*/*) is from (2.2), and for a = 1 as

} : 1
g;)f(t) = gl,p,pn [ pk n yyk n 1t E pk ” y’Yk . logr 2?
) p 9 5 1 1 )
+ =<4 = log? — + — E )
2 {q2 ;pkm &r Pk q £ pk,n
For any sequence c¢i, ...,y of complex numbers, where ¢, may be for-

mally undefined if p;, = 0, here and throughout we use the convention
> i PhnChn = Z{lgkgn:pk 0} PEnCn- Consider finally the function Ggf(-)
on R that has Fourier - Stieltjes transform g3 (¢), that is,

(2.15) gar(t) = / ¢ dGaP(z), tER.

—00

This is meaningful because the function Gy?(-) is a sum with four terms,
the first of which is the distribution function G »p, (), while the other three
terms will turn out to be constant multiples of sums of convolutions of well-
determined distribution functions and some mixed derivatives in (2.11). To
obtain an explicit formula of this nature for G3?(-) we need the following
scaling properties of the logarithm of the characteristic function in (2.4),
which in particular will also be useful later for proving limit theorems for
admissible strategies and which in general will add to our understanding in
(2.16) below of the merging approximation itself.

For all p € (0,1) and 7y € (g, 1] the definition in (2.4) immediately implies

t *P(t), if o #£1,
wi“”’( ):{yy(). . 7 teR.

Y yrP(t) —itsh? if a =1,

Also, lengthy but straightforward calculation shows what in fact is the semi-
stable property of the characteristic function g, , () in (2.3), which for the
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classical case (a, p) = (1,1/2) was first noticed by Martin-Lof ([31], Theorem
2), namely,

rmysP(s), if a # 1,

y,?’p(’l"%S) = { m,,1,p

My P(s) — isrmmg, ifa=1, seR,
for all m € Z. Combining these two scaling properties we get for o # 1,

a, 1/ fo
yrr (tpk,/n) =Drn Yy (), TER,

and for a =1,
P 1
Y1’ (tprn) = Phom yifn(t) +1il Epk,n log,. P teR.

We claim that for all a € (0,2), p € (0,1) and strategy p,, = (P1ns- - -, Pnn)
this implies the unified formula

(2.16) Sopp.(t) = E<eitW,?;LP> _ exp{Zp;m Yy (t)} , teER,
k=1

for the pertaining characteristic functions. Indeed, if o # 1, then

@ l/a n o
Zopp, (1) H ot < tp,/e ) H ot (mil7) = eXp{ > pea v (1) } :
k=1

while if &« = 1, then

n n
81p.p,(t) = o e ta(Pn) Hgl,p,l(tpk,n) = ¢ taHe(Pn) H ev1” (tprn)

k=1 k=1
n

1+ £
_1tZH1,p( n) e p{ |: kn y’lY;cn(t) + 1t nl r :| } I
p. X E p , pkn

k=1

which, writing out the entropy Hy,(p,) = — > 1_; Pk.n 108, Dkn, gives (2.16)
also for & = 1. Another general consequence of the scaling properties is that
for all a € (0,2) we can rewrite the functions gg?(¢) in (2.15) in the following
simpler form

« 1 . « a o« «
gpf(t) = Bapp, (1) [1 ~ 3 Z <y1 (tpl/ ) + itsy"” Zpllg/n u? pilq/n)
k=1

t2 o o
(2.17) + §{<317p)2+$}2p2{”]

k=1



for all ¢ € R, noting also from (2.2) that s;” = Plogl =0 for a=1.
Using the latter formula (2.17), we can now determine G?(+) as follows.

The semistable random variable pllflan‘ P has characteristic function
Bl W) T, e R
and distribution function

P{pzl,flanv’p < l‘} = Gapa(2p,)), z€R,

for all [ = 1,2,...,n for which p;,, > 0. Usmg (2.14) for G (z) and then

a,p,1
replacing the latter argument x by a:/ P, we obtain

1/

218) [ @) =i (s () @D, e R,

[e.9]

where G‘;’Z’l( T) = G&”;)’]l (.r/pl/a), r € R, is of bounded variation, m,j > 0.

Using (2.17) and the form

ga,p,pn(t) = ¢~ 1(e=Ditp Hip(Pn)/a H €xXp {y P tpl/a)}
k=1

from (2.9), where I(A) is the indicator of the event A, for v # 1 we obtain

a ]_ n o a,p 1/ " 1/
gp;p(t) = Bapp,(t) — 2 Z [{yl v tpl/ )} e (Phn) Heyl o )]

k=1 =1
jk
_31’p2 [pk/:: (—it)y,” (tpk:/a) et (tpi/")Hey?’p(tp;’/na)}
k=1 j=1
J#k
1 [ o - Ve
219) - [(MM%]ZW( DR | ]
2 A el B j=1
J7#k

for all ¢ € R, and, setting h,(p,,) = —pH1,(p,)/q, for a =1,

ith, (p, n n
eithp(Py) {{y%’p(tpk ) }2 eylllp(tpk,n)H ey}vp(tpj,n)l

g;,’f(t) = Bipp,(t) —

2 .
k=1 J:l
J#k
ithp(p,) ™ L n )
(220) —_ |:pz n(_it>2 eyl!p(tpk,n) H eyl’p(tpjm):| .
2 q k=1 j=1
ik

32



Consider the distribution functions F;'’(z) = =P{ Z] 1] 2k pjl/n S < }
r € R, where W' are still independent Coples of Wi in (2.2), k = 1
Clearly, its characteristic function is

n

/ oit® dF,?}f(:v) _ H eyl P(tpl/c«)7 t e R.

0o j=1
Jk
Using the notation [F x G)(z) = [* _F(z —y)dG(y) = [*. Gz —y) dF(y),

x € R, for the Lebesgue — Stleltjes convolutlon of the functlons F and G of
bounded variation and writing s{* = p/(q — ¢'/®) in from (2.2), we see by
(2.18) and (2.19) that for o # 1,

(6% 1 - (e [e%
Go?(2) = Gapp, (1) = 5 Y |Godid 2| (@)

k=1
p - Ga,p, Foop
q_ql/a Z * kn ( )
k=1
1

P’ p - |
(2.21) —-{ - — a} G Fer| @)
2 (g —q"*)?  a—¢/*) =

and by (2.18) and (2.20) that for a = 1,

1p1 1,
Z [th(pn) * Go,g,k * st} (v)
=1
1 n
2q

Gyl (z) = Grypp, (7)

|
DO | —

(2.22) - | Fhuto,) * Gy + Bt | (@)

k=1

for all x € R, where F.(x) = 0 or 1, according as = < ¢ or & > ¢, is the
degenerate distribution function of the constant ¢ € R.

The formulae (2.21) and (2.22) are very complicated and in fact useless
to prove anything directly; for & = 1 the expression (2.22) is even mislead-
ing in the sense that it does not contain the mixed derivative Gl py( ) for
any v € (g,1]. Nevertheless, they have two important consequences. One
is the immediate fact that Gg?(-) is a function of bounded variation on R,
and hence (2.15) is indeed méamngful for all @ € (0,2), p € (0,1) and
strategy p,,. The other is that we see by (2.13) that to prove the impor-
tant properties GpP(—o0) = 0 and GyP(c0) = 1 it suffices to show that

Ggi)l(ioo) = 0. This will be done in the next section, where, in turn,

these properties are the key to get a numerically manageable formula for
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GpP(-). We note that besides (2.21) and (2.22) intuitively more appeal-
ing formulae can be obtained directly by the defining formulae above (2.15)
and by (2.16). Indeed, for any u > 0 introduce the functions Gq(ff;lp]%(x) =
GUL) (g u) in (2.10) and G2, () =7 GIL (y) dy, = € R, for which
75 et AdGED,(x) = (—it)! [y (t)]] e“¥7"® ¢ ¢ R, by Lemma 6 in [10],
J,1 € {0,1,2,...}, which extends (2.14). Also, consider the semistable dis-
tribution function H, ,x(-), which for any k£ € {1,...,n} for which py,, > 0
is the convolution of Gy, apn~,,(-) for all j € {1,...,n}, j # k, for which
Pjn > 0. Then for a =1,
CL9(2) = Gapp () = 3 Zem (GO i ()

Pn »PrPn P,

2 Pk,ns1,p, Vk,n
k=1

p (1,1
Z Pl (logr n) [ka n),l,pmc - Hl,p,k} (x)
p2 - 2 > 1 1 ¢ 2 (2,0)
B 2_(]2 Zpk,n IOgr p_ _'_ 2_(] Zpk,n [Gpmv"vav’ym,n* Hl:pym] (37)

k=1 k.n k=1

for all x € R, where m € {1,...,n} is arbitrary as long as p,,,, > 0. It is
easy to write down the analogous formula also for o # 1.

Calculating directly from the corresponding special case of the formu-
lae above (2.15), we point out right away for the uniform strategy p¢ =
(1/n,...,1/n) that by (2.14) and the fact — already noticed above — that
Ve = Yo in (2.7) for all k = 1,...,n, so that g, pp(-) = Sapa(-) due to
(2.16), we obtain

Gl (1) — Cin(®) _ pCE2(e) __PPCE(w) __pGiph(a)
Dy Yn 2n ( é é 1 2 2-q 2( Z) 2&‘3‘ )
Gaz}p ($) _ q—q n 2 (q—qa ) n- o q—q
0,2 1,1 2,0 2,0
Gy () — Fhin® | PO, @logm PG @login Gl (@)
1Lpm 2n qn 2¢’n 2qn

for all x € R, where of course the upper branch is for a # 1 and the lower
branch is for a = 1. For both branches the sum of the first four terms is the
function G%P(x) in the Proposition in [10], where the fifth term was missed.
That the inclusion of this fifth term would be a desirable adjustment in [10],
at least for v # 1, was noticed by Pap [34]. Hence for any strategy p,, the
definition of GP ( ) in (2.15) is a suitable generalization of the desired full
form Ga;p () above Then the main result for the merging approximation of
the distribution function of Sp* from (2.8) is the following
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Theorem 2.1. For any sequence of strategies {p,, = (D1.n,-- -, Pnn) }nen,

O(py). if0<a<1/2,
sup ‘P{Sz’p <z}-— Gg’p(x)’ =< O(py/), if 1/2 < < 3/2;
z€R " "
) O(pU-2/2) if3/2 < a <2,
where p,, = max{pPi n, ..., Pnn}-

For the uniform strategy py,, for which S;” = = (S, —c2P)/n!/* with S, and
cP as in (2.6), Theorem 2.1 reduces to the Proposition in [10] when o <1,
with the adjusted full form of Ggip (+) replacing G&P(-), except for a refined
statement for non-lattice random variables in the case when 1/2 < a < 1.
The real effect of the adjustment to G(:) is for a € (1,2), where the
Proposition in [10] produces a worse rate for the approximation with G®(-)
which precludes a real asymptotic expansion. In fact, for a # 1 Pap [34]
refined the result for So"p to a sort of a complete asymptotic expansion,
the length of it is regulated by a: the closer o is to 0 or 2, the longer the
expansion may be taken. As more refined statements than those in Theorem
2.1 and Theorem 2.2 below, we could have aimed at the generalization of his
complete expansion to strategies, but we did not feel that the necessarily more
complicated statements could give more insight into the problem, particularly
that the more complicated terms of the approximation would be hard to
penetrate for a reasonable interpretation Finally we note that for & > 1 Pap
[34] proved the expansion for S;¢” in the stronger non-uniform form with the
multiplicative factor 1 + |z|. Agaln we could have aimed at an analogous
form here, multiplying the deviations in Theorems 2.1 and 2.2 by 1 + ||
before taking the supremum and keep the same order relations for a > 1.
However, in view of the tail behavior of the approximative distributions, for
any given a € (0,2) the useful result of this sort would be with the factor
1+ |z|* We conjecture that such non-uniform versions of Theorems 2.1 and
2.2 remain true; this would require new technical ideas and developments
even for p?.

As noted between (2.8) and (2.9), the sum of the weights pi/;f‘, e
in Sp? adds to unity only if & = 1, so for & # 1 they cannot represent a
poohng strategy. Given these Welghts we transform them to obtain a pooling
strategy for arbitrary « in the following way. Let p,, = (P1.n,D2ns - -+ Prn)
be an arbitrary strategy as before and define ¢;,, = pjl/na />, p,lg/s‘ , ] =
1,2,...,n. Then 377 gjn = 1, and 50 q,, = (q1,n:G2n, - -+ n,n) 18 also a
strategy. In fact this is a one to one correspondence because, as can be
seen easily, pjn = ¢5./ > i1 @ons J = 1,2,...,n. Of course, for a = 1 this
is the identity correspondence. Using this transformation we can rewrite
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Theorem 2.1 in an equivalent, more natural form. For an arbitrary strategy
q, = (QLna ce 7Qn,n)7 let

ap Zzzl Qk,nXk b 1 ap 22:1 qk,anf]’gp
T, = - Va T =g/ - e and Vgt = N 1/a
<Zj:1 qfn) <Zj=1 qfn) (Zj=l q?ﬂ)

if a # 1, while T;’p = Sé’p and Vql;p = W;;Lp otherwise. Notice that
(Z" q* )1/ “ in the denominators is the ,-norm of the strategy q,. Also,

7j=11)n
for a # 1 we introduce

n ol o 2 ., n a, o
> ket ql%,n [yu,fn <t>] itsi” Y ey qii yu;fn (t)
- PR +
2 (Zj:l qj,n) (Zj:l Q;Jn>
P /(= ¢) Y di

n 2/«
2 <Zj:1 Qﬁn>

ho*(t) = B (ewﬁi”) [1

], rem

where 5§ = p/(q—q"/®) still and, again, just as for p,, above, the summations
are only for those indices k € {1,...,n} for which ¢, > 0, and for such £,

ﬁ Z?:l qzn
Vgp = : -‘ - (q, 1]

_1 n el
, (logr qg,n Zj:l a5 n

For o = 1 we see that vy, reduces to v, that corresponds to ¢ ,, > 0, and we
simply put hy?(t) = gg”(t) for all t € R. Now consider the function Hg*(-),
of bounded variation on R, that has Fourier —Stieltjes transform hg? (+), so

that hg?(t) = [7_e"* dHg?(x), t € R. Then we have the following
Theorem 2.2. For any sequence of strategies {q,, = (¢1.ns- - - s @nn) tnen,
O(h2,), if0<a<1/2
sup ‘P{T;’p <z} Hg’p(a:)‘ = O(hi{f{), if1/2 < a < 3/2,
z€eR " "

O(hS>™), if 3/2 < a < 2,

where hpo = G5/ D ey Qon-

While formally these conditions are not required, Theorem 2.1 of course
gives asymptotic results only when p, — 0, while Theorem 2.2 works for a
given a only if b, , — 0. This second condition is needed because, in general,
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the conditions p,, — 0 and g,, — 0 are independent in the sense that neither
of them implies the other. This can be seen through suitably constructed
examples.

Rates of merge with the distribution functions H, p q, () = P{V"? <z},
x € R, implying that in Theorem 4 in [17], are contained in the following

Corollary 2.1. If {q, = (qin,---+qnn) nen s a sequence of strategies for
which hy, o — 0, then for every € > 0 there is a threshold n, = n.(e,a,p) € N
such that

(1+€) (aap)hnaa if0<05<1,
sup [P{T57 < &} = Hapg, (@) < § (1 +2) (1,p) G, logs L, if o =1,
(1+¢e) K(a,p) hiea™, if1 <a <2,

K
K

whenever n > n,, where the constants are
%

S if 0 < a<1,
1
2 .
K(Oj,p) = 2q2p7rCf’ ZfOé = 17
2 2/
{(q—tl?l/a)2 T q—52/a} 27r£y /2/6” ifl<a<2,

where I'(u) = foo ' Le @ dx, u > 0, is the usual gamma function, in which

0
2) e} pq(Zfa)/a
C,=C =(-) ———
1 1(04,]9) <7T> q— qg/a
and, for a <1,
21—a 21—ap
C7 = Cr(a,p) = + .
(@.p) q @ q—q/e

The admissibility condition is difficult to formulate in the context of the
q,, weights of Theorem 2.2, so in this regard we focus only on Theorem 2.1.
Since all nonzero members py ,, of an admissible strategy are integer powers
of g, the corresponding v, = 1, k = 1,2,...,n. Hence by (2.16) for any
admissible strategy p,, the distributional equallty Wpt = Wa’p holds for the
random variable Wi"* in (2.2), and the functions g vp(t) in (2.15) may be
written in the following simpler form: for a # 1,
141

a, 1 . -
gy, (t) =" - 2 ( eyl "0 Zpk" — (=it)y P (t) enr " %

2

. o, D p 1 ¢ 2/
(it p(ﬂ{ R E
(¢—q"*)?  q—¢/* )2
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and for a =1,

yl - 1

gll,f(t) — e’ _ [yi’p 2 e 5 Zpk L— ity () e (t)g p]%:,n log, —

n

—it)2en1” () 1
- L{ Zpknlogr q pi,n

kin k=1

Thus for any admissible strategy p, = (P1n,---,Pnn) by (2.14) we have for
a#1,

1
Gl (@) = Gapa(r) = Guji(a)g sz ~ G0 @)

p - p1+§
_ gl/a k,n
qa—4q 1

p n’
7p7 { q_q]./Oé q_q2/0[} Z k

and for a = 1,

0,2) p 1
G;;f:(l‘) = Gl,p,l(x) - (,p7 Zpk n 1,p,1 )5 Zpi,n lOg,r —

(2.23) — G20)(x) { Zpknlogr + - Zpkn}

7

for all x € R. Therefore, in the adrms&ble case there exists a proper limit-
ing distribution, and moreover we have real asymptotic expansions attached
to this asymptotic distribution. Concentrating on the dominant terms in
Theorem 2.1, we obtain the following

Corollary 2.2. For any sequence {p, = (P1n;---:Pnn)nen of admissible
strategies, for a € (0,1),

sup P{S;’,‘f < :L’} —

GOMUJ(:C) ap, Zpk n]

z€R
O(3), sz <a<1/2,
Clo@re), if1/2 < a < 1;
fora=1,
- 1
su PSl’p<x — | Gipa(a) + GEY ()2 , log, —
up P} <] [ o)+ 2 3 oL
2 5.9 Zpknlogr e O(pn)a
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and for a € (1,2),

2
_A(20) p 1 Pl
Gap() Ga,p,l(i){(q _ ql/a) 2/0‘}2 kz: ]

oy, ifl <a<3/2,
| 0@ i 3/2 < o< 2.

sup }P{Sz‘f < x} —

zeR

For each n € N the best admissible strategy for the classical case (o, p) =
(1,1/2), found in [17], is the following:

pn_(p17n7"'7pn7n)_(2pn7“"2pn7pn""7pn) Wlth pn_m__7

n
where the number of the p}, components is 2n — 2Mogzn] and the number of the
2p%, components is 2[°52"1 —p_ Calculating the coefficients in (2.23), we obtain

1,1/2 0,2 1,1 2,0
G2 (1) = Grijpa ()= G, () +b G ) 1 () —aGEY)) | (2), @ € R, and
1,1/2 (1,1 (2,0
SUPzeRr ‘P{SP;/ < af—[Griza(x)+b, Gl 1/)21( )—d Gl 1/)21 ” = O0(1/n)
as a special case of Corollary 2.2, where 7, = n/2/1%5271 oscillates in (1/2, 1],

Y 3-2Moeanl —9p Sy — 2

22[10g2 n]+1 n
(32Nl 2n)[log, n] — 4(2Me2"1— n)
n 22ﬂog2 n]
(B —297) logy - — 4(ym — 77)
— ; :
 (3-2Mee2n] — 2p)[log, n]? — 4(2M°62"1 — n)(2[log, n] — 1)
n 22[10g2 n]+1
(3 — i) logs 2= = 2(3 — 72) (2logy iy — 1)
— p ’
and gy 1 ,
6-21°0821 — 4n 3V — 27,
Cn =+ i

Also, since in the proof of Corollary 2.1 we show for all p € (0,1) and all
{p,,} for which p,, — 0 that for every ¢ > 0 there is an n. (e, p) € N such that
for n > n.(e,p),

2 n o2
p pkn 2 1
su P{Sl’p<x}—G )| < (1+¢ g — lo ,
xeg P, — vapn( ) —( )q27T012 — 2 gT’ pk,n
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and since the last sum for p, = pj; is exactly d,, for which the asymptotic
equality
(3 = 29,) login

2 n
is satisfied, where we write x,, ~ y, if x,/y, — 1, substituting C(1,1/2) =
2/m we obtain

dy ~

(3 = 29,) logi n
8 n

sup P{SI})};/2 < x} —Grapa(z)] < (1+¢)

z€R

whenever n > n,(¢), a slightly better bound than the one in (34) in [17].

2.4. Numerical computations

The merging semistable approximations are described only through their
characteristic functions and their mathematical properties are inferred either
through Fourier-analytic methods or by special representations, such as that
in (2.2). The same is even more true for the derivatives featured in our
expansions, for which the only conceivable tool appears to be the Fourier
method. For the purpose of numerical investigation of the expansions we use
what we call the extended Gil-Pelaez — Rosén inversion formula, which says
the following. Let H(-) be a function of bounded variation on R, consider
its total variation function Vy(z) = sup{} 7, [H(x;) — H(x;-1)] : —00 <
g < ¥ < --- < x, < x,n € N} and let h(t) = [7 e*™dH(z) be its
Fourier — Stieltjes transform, ¢ € R. If the logarithmic moment ffooo log(1 +
|z]) AV (z) < oo, then

H(z+0)— H(z—0) _ H(oco) —H(-o0) 1 lim T Jm{e "h(t)}
2 2 T T—oo /g t

dt

for every x € R, where H(+o0) = lim, 1 H(z). Gil-Pelaez [22] proved
this for distribution functions without the logarithmic moment condition, in
which case the integral is also improper Riemann at zero. Eleven years later
Rosén [36] independently proved the same formula also for a distribution
function H, for which H(co) — H(—o0) = 1 — 0 = 1, showing in particular
that under the logarithmic moment condition the integral exists as a proper
Lebesgue integral on (0,7 for all "> 0. A trivial modification of Rosén’s
proof gives the extended form above.

The Gil-Pelaez—Rosén formula is clearly applicable to the distribution
function Gopp, (-). In order to use the formula for G3P(-) we claim that
GpP(00) = 1 and GpP(—00) = 0 for every a € (0,2), p € (0,1) and strategy
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p,. As already noted in the previous section, by (2.13), (2.21) and (2.22)
it suffices to show that Ggf},%)y(ioo) = 0 for all v € (¢,1]. We know that
G&OI?L(x) = [ Ggl,},z,)y(y)dy, x € R, for the integrable function GS,,Z)«Y(),
thus Gg),ﬁ )7(—00) =0 and G(()Sﬁ )7() is of bounded variation. The logarithmic

moment property also holds by (2.12), hence by the extended Gil-Pelaez—
Rosén formula

(0,2) 0o —itz [, ,a, 2 P ()
GO2) (1) = Gaph(oo) 1 / Im{e " [y (1)) e 0} dt,
0

a,pyy 2 T t

r e R,

where we write the integral in this proper form since by Lemma 2.2 below the
function t — [y3P(t)]? e¥") /t is in fact Lebesgue integrable on (0, c0). Thus
the Riemann - Lebesgue lemma implies that Gl (c0) = G (c0)/2, and
hence Gy )7(00) = 0 indeed. We note that the same argument shows that

G&k’j)(oo) =0 for all k&,5 =0,1,... for which &k + j > 0 for any semistable
distribution function G,(-) with characteristic exponent a € (0,2); these
derivatives are developed in [9].

Now, applying the extended Gil-Pelaez—Rosén formula, we obtain

1 1 0 Jm e—ita: .p (¢
Ggf(x):———/ { gp”()}dt, rER.
0

2 0w t

Due to the mass concentrating near zero, this formula is numerically incon-
venient. The problem can be overcome by the change of variables ¢t = e,
which gives

1 1 o ~ —izre¥ _« u
G (@) =5 — — / Jm{e™" gy (") fdu, zER,

and smears that mass on the whole negative half-line. Indeed, using Simp-
son’s method for numerical integration, we found that for all values of the
parameters and for all strategies considered in the examples below it suffices
to integrate on the finite interval [—20, 3]. The idea of transforming variables
and the whole computation for the distribution functions Gy 1/2,(-) is due to
Gordon Simons. The exact same formula can be shown to produce Hg? (+)
from hg?(-) in the context of Theorem 2.2.

It was with this method that the three examples in Figures 1-3 in [10]
were obtained for the uniform averaging strategy pg = (1/n,...,1/n) for
a =3/2,1,1/2 and the respective n = 50, 10,7, all with p = 1/2. For the six
examples here we chose the same a parameters with some different, but still
very small n. Figures 1,2,3,6 are for the choices o = 3/2,1,1,1/2 and the

41



-10 5 10 15
Figure 1. Solid F;’l/folﬂ dotted G'3/2,1/2,p,,,, and dashed G?,/lig)lﬁ
strategies
(1 11 1 . (1 11 1
Pioo =\ gpr 0801200 7120 )0 P27\ g w1616 )
N ~ - ~ “ —— ———
40 times 60 times 4 times 8 times

A 11 1 (1 11 1
D2 = 10""71()1’\157""15/7 Dg = 67761277712 )7

6 times 6 times 4 times 4 times

respectively; in these four cases we still chose the unbiased situation of histori-
cal interest, that is, p = 1/2. For the most interesting case a = 1 of the tail or
payoff parameter, for which the mean becomes infinite, we also investigated
the dependence of the approximation on the bias parameter p: with p,, kept,
Figures 4 and 5 are for the choices p = 1/10 and p = 5/6. On all six figures
the solid curves depict the distribution functions FyP(z) = P{Sp? < x},
x € R, which are obtained as the empirical distribution functions of 10000
simulations of Sp?. Also on all six figures the dotted curves Go,p, (1) are
the merging semlstable distribution functions and the dashed curves are the
full approximations G?(-) of Theorem 2.1.

In Figure 1. a = 3/2 thus the rate of merge is pL/* and the order of the
approximation is p%/3. The very satisfactory full approximation provides a
dramatic improvement.
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2.5 5 7.5 10 12.5 15

. . 1,1/2 1,1/2
Figure 2. Solid F,;'"?, dotted Gy 1/2,;,, and dashed G/

For o = 1 the rate of merge is p,, logg 1/p,, and the order of the approx-
imation is p,,. The best admissible strategy can be seen in Figure 2., for
which G 1/9p: () = G11/2,1(+) for all n. The example in the next figure is
the exact opposite of this, but no particular difference is visible. The two
different values of 7412, £ = 1,2,...,12, for the strategy here, 10/16 and
15/16, differ from each other to a great extent. Roughly speaking this means
that G1,1/2,p,,(+) differs from a single distribution function G 1/2,(-), for any
v, as much as it can. But the quality of the approximation is about the same
as in Figure 2.

In Figures 4. and 5. we illustrate the dependence on p. In both cases
a = 1. In Figure 4. p = 1/10 thus r = 10/9, so that the gains, the powers
of 10/9, increase very slowly. An easy computation shows that F,%;Ll/ 10(-)
has about 8 - 10!* jump points in the interval (—3,15), so it seems to be
continuous. As the following figure shows, for a large p the situation is the
opposite. In this case r = 6, so the gains increase very fast. One can easily
count that F;;Ls/G(-) has 20 jump points in (—3,20). Thus n ought to be
larger here to obtain a better approximation.

In the last figure, for o = 1/2 the rate of merge is p,,, while the order of the
full approximation is much better, p>. The precision is almost unbelievably
good for even n = 8. We also note that despite the fact that the present
strategy is not admissible, we still have v, s = 3/4 for all k = 1,2,...,8, so
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c ‘

10

12.5

1,1/2
Figure 3. Solid F;gm, dotted G,1/2,p,,, and dashed Gp12/

2.5 5
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7.

5

.
Figure 4. Solid Fpt/'°, dotted Gy 1/10p,,, and dashed Gy

12.5
1,1/10

15
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5 10 15 20
Figure 5. Solid F;;i/(j, dotted G 5/6p,,, and dashed G%,’f;m

2 4 6 8 10 12 14

Figure 6. Solid F/*'" dotted G1/21/2p,, and dashed Gy
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that Gl/g’l/g,pg(-) = G1/2,1/2’3/4(-) by (2.16).

In general we see that, extending greatly the sums from [10] to the linear
combinations considered here, already the primary semistable merging ap-
proximations appear to be reasonably good, while the corresponding asymp-
totic expansions may be working incredibly well in a variety of different
circumstances even for small n.

2.5. Proofs

The proof of Theorem 2.1 is based on Esseen’s classical result (Theorem 5.2
in [35]), which we record here in a special case closest to our application.

Lemma 2.1. Let F be a distribution function and G be a function of bounded

variation on R with Fourier - Stieltjes transforms £(t) = [*°_e™dF(z) and
gt) = [7 e™dG(z), t € R, such that G(—o0) = lim,_._o G(z) = 0 =

F(—00) and the derivative G' of G ezists and is bounded on the whole R.
Then

f(t) — g(t)
t

Supeg |G (7)]
T

sup |F(z) — G(z)| < /

z€R T 27 -T

’dt—i—cb

for every choice of T > 0 and b > 1, where ¢, > 0 is a constant depending
only on b, which can be given as ¢, = 4bd; /7, where dy > 0 is the unique root

d of the equation %fod sin?u qy, — 1 + %

u2

For j = 1,2,5,6 the constants Cj(a,p) below are the same as in [10]
and agree with the respective constants ¢;(«,p) in [7], while the constants
Cj(a, p) numbered numbered with j = 7,8,9 are the same as in [10]. The
following lemma is Lemma 3 in [10], the proof of the first inequality is already
in [7].

Lemma 2.2. Uniformly in v € (q, 1],

9 apq(%a)/a
%eyg,p(t) < =Chlt|*, teR, where Cy=Ci(a,p)= <_> e
T) q—q¢¥°
and
532 (6)] < wvap(t), tER,
where

07804’ ZfOé 7é 1;
,Ua’p(s> o (07 + %|10g,,8|)8, ifOé =1,
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for every s > 0, and for the constant C; = Cr(cv,p) > 0 defined as

21704 217ap

q q_ql/a7 ZfOé < 17
max{6,5+9p—8p log, 2} . _
07(047]9) = 2q ) ’LfOé - 17

8p 1 1
4_a{q,q2/a + q—qa—1)/ }7 ZfOé > 1.

Proof of Theorem 2.1. The first step is to prove that the derivatives
(GpP(+)) exist and are uniformly bounded in the strategies. In fact, first we
claim that I3 = [ [t |gg?(t)|dt < oo for any j € {0,1,2,...}, which,
referring to (2.15) 1rnphes that GpP(+) is arbitrary many times differentiable
on R. First note that by (2.16), Lemma 2.2 implies that for the characteristic
function

n
|8app, ()] = exp {Zm,n Reys? (t)} <e @M teR.
k=1

Proceeding for a = 1, for which I; := [*_ [t} e~ @At < oo, using (2.17),
Lemma 2.2 and the tr1v1ahty Dn < 1 we obtain

)| (pknlt]) dt

0,Pn, 2

4p? & o I
+q—2 Zpkm/ |t|J+le C1\t|{logr(pk7n|t|)\/pk7n|t|} dt + J2-;2
k=1 0

Breaking the k-th integral under both sums at 1/py,,, using that |log, s|s <
l, == (log,e)/e, |log, s|\/s < 2l,, s € (0,1), and log, z < ¢z, x > 1, for
¢, = 1/(elogr), where log = log,, and then extending all resulting integrals
to (0,00) again, we get

C2[; 4C7p — SN
I <L+ 7ij+2 + q?p Zpkn/ |t|9+1 e—Cl‘ﬂ\log,,(
1 0

C?]; 2Cp 2> I
[;’£”§]j+7Tj+2+ q7 [l je1+cpljra] + 7 A2+ H‘;; = M}*

for all p,,. The argument is similar for a # 1; in fact it is given below for
j=0.

Thus, writing (2.15) for the first derivative and using the usual Fourier
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inversion formula, (2.17) and Lemma 2.2 again, for o # 1 we obtain

« ! 1 > —itxr .«
'(Gp;p@)) =5 /OO ' gpnp(t)dt‘
< L [Teame ]y +12n: (D)
21 J_ o 2 —

t2
, 1/« 1/a «, 2/
—|—’t$1 p‘ Zpk/n Va,p ‘t|p / ) 5{(51 p>2 2/a }Zp g ]

1 [ o C2p, t**
S _/ e—Clt |:1 _|_ 7pn + C |81,p|p1/a tl-‘roc
T Jo 2

t2 a,p\2 p —(2—a)/« dt < MeP
PR S A

where the constant M P is obtained upon replacing p,, by 1, and where we
used the trivial inequality >, _ lpkn <pPf~1 B> 1. For a = 1, the proof is
done above, so that the bound M Lp on the first derivative can be taken as
My" above.

Now we turn to the proof of the theorem, which is an extension of the
proof of the Proposition in [10]; whenever possible, we use the same or anal-
ogous notation as there. We may skip some detail for a # 1.

Using Esseen’s inequality, we get

ARP = sup !P{S""p <z}-— GP( z)|

zeR
b [T B — ggr(t Moy b

< — | ( ) gp”()|dt+cb P = AP L ADP 25
2T TP |t| Tn P 2 Pl Pn

where TP = 2K'Y/%/pl/® and on the constant K = K,, > 0 we will
introduce some restrictions as we go along. By the choice of TP we have
AP, = O(p /). The estimation of the other term requires some further
notatlon The characteristic functions of Sp” and Wy can be written in the
form

n

. a, _ - /a —it> o
E<elt5pnp) ltpHa N pn H E( 1tp;: n ) = e 1t;ZHa'p(pn) H (]. + yk:f;(t))
k=1

k=1

and
Bapp,(t) =E (eitwﬂgrlp> — o G Han(Py) H eFor (Pt teR,
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where y,.7(t) = E( exp {1tpk/an} —1) and zq,(s) = y;7(s) —is{"s, s € R.
Notice that 21 ,(s) = y;7(s). Continuing the transformations, we may write

E<eitsg;f> = exp {_uf H,,(p,) +Zlog (L4 yn(t ))}

k=1

_ exp{—w Hop(o) 43 2ol +ZR2:5,1<t>+Zw::£<t>}
k=1 k=1

k=1

= Bapp,(t)€Xp {Z (Rg,’gJ(t) + wl(::g(t)) }

k=1

= Bapm, (1) | L+ D (BiD (1) + k() + Ri(0)

= () |1 2 SWET0)E + ROI(E) + ROL() + RE(1)

2
k=1

where the error terms are wy’y (t) = log(1 + v,/ (t)) — v, (t) and

Ram Z RZ’S 1 Z (yk: n (t> ZC‘MP (pli‘/:t>) ’

k=1
l

, ZZ 1) o)

In general we use the simplifying convention R;7(t) = > /) Ry7 (t), j =
1,3, 6. Finally, using the identity y,;",’fj(t) =y (p,i,/?ft) — itp,i/gs(f’p + Rk7’£71(t),

we obtain

B(075) = gy [1__2%@ Do) +its vpzpk/a (o

RY3(t) Z'[Zwk t)+RiT (1)

=2

+t2 ( ap)2+ p . 2/a+R ( )
J— S ’ e —
2 q— qole | £l

= gp7 (1) + g (DRE(1) = g () + Ry(0),

where

nE(E) = RuP(t) + RyS(8) + RS () + Ryg(t) = RyA() + Ryg(),

n t2p
Q, Q, 2/a
Z RYP ()= |:Rk,g,1 (t) — pils ﬂq_—qya)}



and

ZRknﬁ y [ ;R?m() Ry (){y?’p(tpi,/ )—itp, st }}

k=1

Now we turn to the estimation of the remainder terms. By definition and
@2.1),
a,p itpl/an > itpl/aa:
Yer(t) = B(eWhi — 1) = [ (e~ 1) AR, (0)
0

1/‘)‘ o
(5 1)ty

I
NE

=1

and by (2.4),

o0
L 1/a 1/a 1/‘3‘ a
Zan(Dint) = (eltpk,n’“” —1—itp/? l/“) q" 1p+§ < i ! 1) ¢ 'p.
=0

Thus, using the inequality [e™ — 1 —iu| < u?/2, v € R (Lemma 4 in [7]), we
obtain

o a /O‘T/a @ _
B2 ()] = [yi0) = zap(tpils) Z\(% 1= itpr) |
\thié? = e \thi/f:p 1 o
Z = 2¢ 1—gqP1 ‘t|202pi,/n>

=0

where Cy = Cy(a, p) = p/(2(q — ¢¥*)). Since

— 2,2/ 21/a
- . ) . )
IRAOEEDY (e‘“’i A A Up+> .
=0
using this time the inequality ‘em —1-t (ﬁ;)Q ’ < %, u € R, we obtain
o Itlspi/f o Py 1 .
U e M ~ 1 Conil,
1=0 6g 1-ge

where 52(04,]9) = p/(6(q — ¢*/*)). Summing these bounds for k = 1,...,n,
we get

(2.24) |RyT(t)| < Coltf? Zpg/a and ‘Ro"p <C’2|t| Zpg/a
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Introduce 377 (t) = y; 7 (t)/pen- Then the calculation on pages 320-321 in
[10], which goes back to page 837 in [7], now yields

C5[t| + Coltlpy/s ™ ifa #1,

a7p
()] < ,, |
‘t| <T+610grm> , if a = 1,

for |t] < 2q1/“/p,t{§, where

1
Cs = Cs(a,p) = 2 a{a + q—pﬁ} and Cg = Cg(a,p) = UQL—q

Notice that C5 > 0 and Cs < 0 for o < 1, so that [z} (t)] < Cs|t|* for
a < 1. On the other hand, Cg > 0, but C5 can be both positive and negative
for @« > 1. Therefore, we need the following argument. If [t| < T™P =
2K /pA/e then |Cs||t* < [¢]|Cs||Tg#|°~" < Jelpp, {207 K@D/2| g,
where the expression in the last pair of curly braces is < 1 if K is small
enough, in which case |37 ()| < (Cs + 1)|¢] p (1-a)/e - An easy monotonicity
argument on the upper bounds implies that if K is small enough, then there
exists L = L, € (0,1) such that |y 7(t)] < L < 1 for ¢ in the interval
[—T>P T>P]. Thus we have the estimates

win ()] = [log(1+yir (1) — yen ()] < Cslyin ()%,

and
o

(0% 1 e e
IR0 < - Jl0l < ClZof
1=3
where, by the same elementary calculations as on page 323 in [10],

_ L1 1 1 1 1
Cs=C =—+-— d Cy=C =—4-—.
Using these bounds, the second statement of Lemma 2.1 and (2.24), we get

2|t‘4 n

a, 3/ R® a, 4/a
R3] < Calef? Zp/ RS0+ Co Y (0P + =5 > il
k=1 k=1
(2.25) +Cyt? Zpk vap(tpds) + CalstP IS pe,
k=1

for all t € [~T,*P, TP], where R ’¢(t) is an upper bound on |R;%5(t)], given
by

(=31 cgzw (O + Caltf? sz/a
=2
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For simplicity we now separate the three main cases: a < 1, « = 1 and

a > 1. In the followings we will use the simple identity f et dt =

DD/ for 1y > —1, ¢ > 0 and the inequality 3p_, py,,, < Po~" for > 1.

Consider first the case a € (0, 1). Since [y} (¢ )|—|pk,nxk7n( )| < penCslt]*
and v,,,([t]) = C7|t|*, we have by (2.25),

-1, ['(3/a)

Aap S p 202 —22030 F(23) + —%*102F(4/&)

pn 9 pn a
aC?e °7 ach 2 acY

M2+ a)/a)  _3- I'(3/a)
——— = 4+ Py 20 P
OZC{Q—’—Q)/Q | S1 | 3/04

TP 1
+2 / - e” O RYE(t)] dt.
0

Substituting the bounds into 1;¢(Z), we obtain

2
+Dn 20207

1
R0 < Y o [GCEltP P, + Calt P e
< le [(080 i CQMQ 2a— 2— 2a)/a) |ﬂ2a2_9n]l

=1
< Zl_ [(Cgc +C2<2K1/a>2 2a) ‘t|2a— } :

=

[\

where we used that |t|>720p2/~2 < (ToP)2-2ep2/a=2 = (2 K'/*)2=22  Then
the same calculation as in [10], page 325, yields

T, —Cit* 2 3
e 2  3R*>-2R

2 ROP(1)| dt < P2

/0 t [R5 (0)] =Pn 40022 (1 - R)2

provided that K = K, , is small enough to make
Cgcg 4 02(2K1/a)2—2a
Cy

After an easy check on the powers of p,, the proof is ready in this case.
Now consider the case o = 1. Elementary analysis shows that for each

< 1.

R = R(a,p) =2°K

§ € (0,1) the function f(t) = ° <r + Llog, %) is monotone increasing on

(0, T5P) if K < e /9. Recall that T* = 2K/p,. The monotonicity of f
easily implies that

p 2 5 p 1
A1) 21 < (2K Zlog. —
(Prnt) (T+ . L% pk,nt> < (2K) (7‘+ . Ong>
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for t € (0,T}7), k=1,2,...,n. Applying this for § = 1/3 we get

Lp(1)3 3 3
Yim () 3 L9 < P 2 ) 2 p 1 1/3
2 =pp .t [+ =log, <pitllr+=log, —= ) (2K ,
n K, % K, ,loer 17 ) (2K
if K < e 3. Using also the inequality tpy ,log, —— tp < 2Klog, 5 -1 and inte-

grating the bounds in (2.25), we obtain

I(2)
Ct

1
Ak, <5226, 450, Kr + L log, g) (2K )1/3}

03
o (3) 4Cypl'(2)
3022 04 220207 03 + D, (]012

1
2K log, K + Ap 35

1,
where AP, =2 fOT” oGty R}%(t) dt. The monotonicity of f also implies
the inequality py.(r + 2log, %)2 < Pu(r + Llog, %)2, k=1,2...,n,if

K < e 2. Hence we obtain

l
1 2\’
R <D Cgtzpn+08t22pkn(r+ log, )]

=2 L k=1 tpr,
00 1 B 9 27!
<N — | Cot?*p, + Cst?p, [r+ = lo ,
> ZZQ l' 2 pn 8 pn r gr t]_?
and since 1 — % + T‘S 0 for every [ > 2, the inequality

1)’ 2,2
Co+ Cg (7”+—10gr K) (TP 1+7

2
Cy+ Cy (7’+£10gT_ ) P17 <
q Pat

holds on (0, T'?), if K is so small that K < e~2/%. Substituting these bounds
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into A;’pﬁ and using that C(1,p) = 2/7, we get

2p Pn
Alap — TL /
Pn3

l2
2\ 122511125 2
02+08< logrt_) A ol I RN S 1
p

9 \2
Cyt? + Cyt? (r + —log, - > ]

!
2ﬁ2_26 0 (2K)l P 1 ) N +2-25
< @K ~log, -+ (—) T(l+2—2
T (2K)F® Py [! Cot+Cs|r+ q 08r 7o 5 (I + J)
P22 X ) N
= W;(H 1) [7CyK + mCs <T+—logr E) K
52-26,2-26 ° 2-28 (9 2 3
_ Pn 5 95 T P(3R* —2R?)
= W Z(l + )R =Py 23 46 KQ 2(5(1 _ R)27

=2

provided that K is small enough to make

1 1\
R =Ry, =mCs(1,p) (‘ + b log,. _) Ky, +7Cy(1,p) Ky, < 1.
q q Kip

For simplicity here we used the inequality I'(l +2 —2J) < I'(l +2) = (I + 1)!
for all I = 2,3,... . Choosing now ¢ < 1/2 and collecting all terms, we see
that the order is indeed O(p,,) as claimed.

In the final case a > 1, we have [y, (t )| = |pentin ()] < (Cs + 1 )|t|pl/a
and v, ,([t]) = Cr|t|~. Substltutlng into A>®, ) by (2.25) we obtain

1~ T(3/a) L@/a) | a1 ,T(4/a)

P10

3 3_1q
Aap S ]_9 202 +]_77{! 209(06 + 1) +p
aci/e 03/ > acile
2 r2+a)/a) _3_ o
+Pi 20207 4 (2+a3/a) pn’ 20’ 1p| 3/a)
aC)

Tﬁf’p efcﬂfa
+2 / —— |RyE(t)| dt.
0 t ’

Using the inequality

a,p 1 o)/ a)/a
IRn,()I_Z  [Cs(Co +1)°t1P, (-fa 4 Cyftf2p -]’

=2

and referring again to [10], page 329, we get

TP g=Cut® O(p if 1<a<4/3,
[7 S i< { O /
0 t ’ O(p2/*) if 4/3 < a < 2.
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Collecting all the terms and taking into account that 1/a < (4 — 2a)/« if
and only if o < 3/2, the statement in the final case also follows. |

Proof of Corollary 2.1. For simplicity we show for « < 1, « = 1 and
a > 1 that

2

a,p _ 7
ilég |P{Spn < m} Ga,p7pn(m)| < (1+ 6)27'(()(012 Dns

2
P ol

P{Si» <zl @ <(14e)—L— p, log> —,
22]113‘ { p, — .fl')} Lp,p, (l’)‘ — ( 6) 2q2ﬂ_012 Py 108, ]—)n

and

L(2/a) ([s7"1 +p/(q = ¢¥*)) 2=

21l /e

sug !P{Sg;p < :17} —G%p,pn(m)‘ < (1+¢) n
BAS
respectively, for all n large enough, where the strategy p,, with p,, — 0,
corresponds to the given strategy q,, as described before Theorem 2.2. Then
Corollary 2.1 follows by these statements exactly as Theorem 2.2 follows from
Theorem 2.1.

First, if o« < 1, then gop,p (t) > 4, pi,n[ygfn (t)]?/2 is the leading remain-
der term in g,” (t). We can estimate its inverse Fourier —Stieltjes transform

Mo(é?l’,?) (+), which is not G a,p, pn( ), by the extended Gil-Pelaez — Rosén formula

n

in Section 3:

i, )= L [ I B O} O]
0

[e272y = — t

dt, x el
™

Whence by (2.16) and Lemma 2.2,

1

*1 s “p () e .
IM%NWﬁ; P D ORI
0 k=1

n B o 02
S Z kn/ Cit® t2 1dt < 27Ta02 pn

for every x € R, finishing the first case.
242
Next, if o = 1, then g1, p (%) % > b1 pi’n log? z% is the leading remain-

der term in ng(t). For its inverse Fourier —Stieltjes transform Ml(Zpoz), (+),

which differs from G1 D (-) only in a constant factor, we obtain

1’p’pn(l‘) —_— t d.l(:7 T E R,

~ _ 2,2
T Jo
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by the extended Gil-Pelaez—Rosén formula. Thus, again by (2.16) and
Lemma 2.2,

2 n

2,0 p > n o pen Reyl? (¢ 9 1
‘Ml(,p,z)zn (CL’)| < S /0 tezk,1 Pi.n Reysy” () Zpim log,, E dt
k=1 i

<7 f: 2 log? — /OO gt < P 5 jog? -
0 e 0

s n

for every x € R, where the last inequality comes from the fact that the
function z — x logz 2 1s monotone increasing near 0.
Finally, if @ > 1, then the leading remainder term in gg?(t) is

m(2’0) (t) =g (t)ﬁ{ p2 n p } n pz/a
PP R R W R R e

For its inverse Fourier - Stieltjes transform Mc(f;’)%n(), differing again from

G((f,}?, )pn() in a constant factor, by a final application of the extended Gil-
Pelaez — Rosén formula we have

1 [ Jm{etrm{0), (¢
ME0) (z) = __/ { . 250 dt, z€eR.
WhHltn 7T 0

Therefore, using (2.16) and Lemma 2.2 for the last time, for all x € R we
obtain

1 p2 p * n n Rey2P . 2
‘Mc(fp(];))n(x)} < %{(q — i) + z/a}/o ekt P T, (O Zpk/ﬁ dt
k=1

q9—4q

<1 r P Xn:p2/a/ooecltatdt
= on (q . ql/a)Z q— q2/o¢ P k,n 0

_ I@2/a) {(q P’ p }—(H)/a

iy pn )
27 (g —qV*)*  q—q¢¥"

completing the proof. [
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Chapter 3.

Merging of linear combinations
to semistable laws

3.1. Introduction

We need the definitions and the basic properties of semistable distributions
and their domain of geometric partial attraction.

Let Y be an infinitely divisible real random variable with characteristic
function ¢(t) = E(eY) in its Lévy form ([23], p. 70), given for each t € R by

P(t) = exp{it@ — %Qtz + /_ioﬁt(m) dL(z) + /Oooﬁt(:c) dR(x)},

where "
. x
6t(x) = —1- 1+ 22

and where the constants § € R and o > 0 and the functions L(-) and R(-) are
uniquely determined: L(-) is left-continuous and non-decreasing on (—o0, 0)
with L(—o0) = 0 and R(-) is right-continuous and non-decreasing on (0, co)
with R(co) = 0, such that fi 2?dL(z) + [; 2’dR(x) < oo for every € > 0.
We need a variant of this formula for ¢(-) in connection with a probabilistic
representation of Y in [18]; the representation itself is not needed here. Let
U be the class of all non-positive, non-decreasing, right-continuous functions
¥(-), defined on (0,00), such that [ ¢?(s)ds < oo for each € > 0. Then
there is a one-to-one correspondence between the pairs of Lévy functions L(-)
and R(-) and the pairs of functions ¢ (-) and ¢s(-) taken from W if we put
Pi(s) =inf{x < 0: L(x) > s} and ¢s(s) = inf{x < 0: —R(—z) > s}, s > 0,
and, conversely, L(z) = inf{s > 0: ¢1(s) > 2}, x <0, and R(x) = —inf{s >
0:a(s) > —x}, x > 0. Let W(t)1,14,0) be an infinitely divisible random
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variable with characteristic function

E(eitW%M) - exp{— %Qt2+ /_ Lﬁt@) dL(z) + /O " B(a) dR(:zc)}
3.1) — o= Gt [Tt s [Tan)ad

where the second equality follows by Theorem 3 in [18]. The uniqueness
of 0, L(-), R(-) and the one-to-one correspondence immediately implies the
uniqueness of the triple o, 11 (+), (). A concrete version of W (1)y, 19, 0) is
given in [13] and, to keep complete accord with [13] as far as constants go,
we also introduce V (¢1, 99, 0) = W (11,19, 0) + 0(1h1) — 6(1)2), where

0(e) = 1&@»—/%&@13, bew,

o L+92(s) 1+ p2(s)
and for its distribution function we put
(3.2) Gy o) = P{V (1, 000,0) <z}, z€R.

Referring to [29], [24], [32] and [13] for background, we describe semistable
laws in the present framework as follows: an infinitely divisible law Gy, 4, » is
semistable if and only if either (¢, 1, 0) = (0,0, 0) for some o > 0, the nor-
mal distribution as a semistable distribution of exponent 2, or (1,1, 0) =

(¥1,15,0), where

o Mj(s) .
(33) wj (S) == sl/a s>0, =12,

for some « € (0,2), defining a semistable law of exponent a, where M (-) and
M, (-) are non-negative, right-continuous functions on (0, c0), either identi-
cally zero or bounded away from both zero and infinity, such that at least one
of them is not identically zero, the functions ¢$'(-) are non-decreasing and
the multiplicative periodicity property M;(cs) = M;(s) holds for all s > 0,
for some constant ¢ > 1, j = 1,2. (The superscript « in Y% is a label, not a
power exponent.) For the Lévy form this means that there exist non-negative
bounded functions My () on (—o0,0) and Mg(-) on (0,00), one of which
has strictly positive infimum and the other one either has strictly positive
infimum or is identically zero, such that L(x) = Mp(z)/|z|*, x < 0, is left-
continuous and non-decreasing on (—o0,0) and R(x) = —Mg(z)/x%, x > 0,
is right-continuous and non-decreasing on (0,00) and M (c*/*z) = M (x)
for all z < 0 and Mp(c'/*r) = Mg(x) for all x > 0, with the same period
¢ > 1. Clearly, the two descriptions are equivalent.
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Let Xy, Xs,... be independent and identically distributed random vari-
ables with the common distribution function F(-) and let V' (11,19, 0) and
Gy pn0c be as in (3.2). Then F is in the domain of partial attraction of
G = Gy, 0, written F' € D, (G), if for some centering and norming con-
stants c;, € R and a, > 0 the convergence in distribution

kn
(3.4) % (ZXJ» - ckn> > Vi, s, 0),
A\

holds along a subsequence {k,}>*, C N = {1,2,3,...}. The following theo-
rem of Kruglov [29] highlights the importance of semistability; see [32] and
[13] for further references. If (3.4) holds for some F'(-) along some {k,} for
which lim,,_, kny1/k, = ¢ for some ¢ € (1,00), then Gy, 4, is necessarily
semistable and, when the exponent o < 2, the common multiplicative pe-
riod of M;(-) and Ms(-) in (3.3) is the ¢ from the latter growth condition
on {k,}. Conversely, for an arbitrary semistable distribution Gy, 4, . there
exists a distribution function F(-) for which (3.4) holds along some {k,} C N
satisfying

(3.5) lim Fnit _ ¢ for some ¢ € [1,00).

n—o00 kn

We say that a distribution F'(-) is in the domain of geometric partial at-
traction of G- with rank ¢ > 1, written F' € ]D)g;,) (G), if (3.4) holds along a sub-
sequence {k,}°°; C N satisfying (3.5). Clearly, if Dg,(G) := >, ]D)g))(G) #
0 then G is semistable. Define ¢ = ¢(Gyoyg0) = inf{c > 1: M;(cs) =
M;(s), s >0, j = 1,2}, the minimal common period of the functions M;, M,
in ¥¢, ¥ in (3.3), and c(Gop,) = 1 for any o > 0. Megyesi®1? showed

that the entire domain Dyg,(G) = U5, ]D)g))(G) of geometric partial attrac-

tion can be produced as Dy, (G) = ]Dgfg)(G). Moreover, if ¢(G) = 1 then the
distribution G is necessarily stable.

The following characterization, that refines the one in [24], of Dy, (G) is
also taken from [32]. Fix a subsequence {k,}>°, C N satisfying (3.5). Ifc =1
thenlet v, = 1,2 > 1. If ¢ > 1, then there exists an xy large enough such that
for each x > x there is a unique index n*(x) for which k- (z)-1 < & < Ky ().
Then let v, = ©/kp+(y), for * € (29,00) and 7, = 1 otherwise. We see by
(3.5) that for any e > 0 the inequality ¢! — & < 7, < 1 holds for all z large
enough. We emphasize that ~, depends on the subsequence {k,}>,. For
s € (0,1) let Q(s) = inf{z : F(z) > s} be the quantile function of F(-),
and let () denote its right-continuous version. Then (3.4) holds along the
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previously fixed subsequence {k,}> ; for an arbitrary non-normal semistable
distribution G = Gye yo o if and only if

Q4 (s) = —s~VU(s)[My(1/71/5) + hu(s)] and
(3.6) Q(1—s) = s I(s)[Ma(1/71/5) + ha(s)] forall s € (0,1),

where [(-) is a positive right-continuous function, slowly varying at zero,
and the error terms hi(-), ho(:) are right-continuous functions such that
lim, o hj(s) = 0 if M, is continuous, while if M; has discontinuities then
h;(s) may not go to zero but lim,_. h;(t/k,) = 0 for t € C(M;), j = 1,2,
where C(f) stands for the set of continuity points of the function f. (The
slightly different form of the quantile function here and in [32], p. 412, and
[13] is due to the inverse relation between the two 7 functions: instead of the
7(-) in [32] and [13], here we use y(s) = 1/v1/5.) Conversely, if the Q(-) of
F(-) satisfies (3.6), then F' € Dy, (Gye yg0) and

. 1-1/kn
Z?:l Xj =k fl/kn/ Q(u)du

= V(45,980
kyl/al<1/kn> (w17w27 )7

where X7, X5, ... are independent with the common distribution function F'.

The form (3.6) can be simplified for the simplest possible subsequence
when (3.4) holds for k, = [c"] for ¢ = c(Gye ys,0) > 1. Then, as shown in
[32],

Qi(s) = —sVl(s) [Mi(s) + hi(s)] and
(3.7) Q(L—s) = s7*I(s)[My(s) + ha(s)] forall s € (0,1),

so we can just forget about the strange argument 1 /’yl/s = ch“Och SHJ.
Here |y] = max{m € Z: m < y} and |y| = min{m € Z: m > y} denote
the integer part and the ceiling of y € R and log, stands for the logarithm
to the base c.

Let F' € Dgp(Gye ye0) be a fixed distribution function, where Gy ya o is
an arbitrary non-normal semistable distribution with characteristic exponent
a € (0,2). Let X1, Xs, ... beindependent random variables with the common
distribution function F'(-). Then Xj, X5, ..., X,, may be viewed for each
n € N as the gains in ducats (losses when negative) of n gamblers Pauly,
Pauly, ..., Paul,, each playing one trial of the same game of chance. Asin the
preceding chapters, our Pauls may not trust their own luck and, before they
play, they may agree to use a pooling strategy p,, = (P1.ns D2.ns - - - » Pnn), Where
the components are non-negative and add to unity. Using this strategy, Paul;
receives pi p X1 +ponXo+- - - +pnn X, ducats, Paul, receives py, , X1 +p1 n Xo+
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o+ pp_1nX, ducats, ..., and Paul, receives ps , X1 + p3,,Xo + -+ p1,X,
ducats. Then all the individual winnings are pooled and this rotating system
is fair to every Paul since their pooled winnings are equally distributed. The
prototypes of such games are the generalized St. Petersburg(c,p) games,
since, as we have seen in Chapter 2, in this case X belongs to the domain of
geometric partial attraction of a semistable law, defined in (2.2); or this was
proved directly by (3.6) in [32].

Returning now to the general situation when F' € Dy, (Gye yo o), our first
main interest in this paper is the asymptotic distribution of the random
variable

n pl/a n pl/a l_pﬁ”
3.8 Sapn = 270, K 2 0 / e
(3.8) Pn ; W(pjm) 7 ; HPin) oy, o

where the slowly varying function [(-) is from the representation (3.6) of the
quantile function @) corresponding to F'. We consider a sequence of strategies
{p,} that satisfies the asymptotic negligibility condition p, = max{p;,: j =
1,2,...,n} — 0.

The main result in this paper is Theorem 3.1 below, a merge theorem
for Sqp, in (3.8). The phenomenon of merge takes place when neither of
two sequences of distributions converge weakly, but the Lévy or supremum
distance between the n-th terms goes to zero as n — oo along the entire
sequence N.

These linear combinations S, belong to a real pooling strategy only
when o = 1 and the slowly varying function /(-) = 1 in (3.6). The equivalent
Theorem 3.2 contains a satisfactory version after a simple transformation. A
surprising consequence is that for some sequences of strategies {p,, } ordinary
asymptotic distributions of S, p exist as n — oo along the entire N. In
Section 3 we investigate merge on R in general and obtain necessary and
sufficient Fourier-analytic conditions under weak assumptions. All the proofs
are placed in Section 4.

3.2. Merging semistable approximations

Let G = Gyoygo be semistable with exponent a € (0,2) as before. For
€ Uand A > 0, let xp(s) = ¥(s/\) and put w;")‘(s) = A‘l/awf(s) =
—M;(s/\)s~V* s > 0, where the functions M; are from (3.3), j = 1,2.
Introduce

(3.9) Vax(My, My) = V(@& 45, 0) and E(eVerx(Md)y — qvan®) ¢ ¢ R,
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and notice the identity V, x(M;, My) = A"V V (¢, w5, 0). The notation is
the same as in [13] with two important exceptions. The random variable that
belongs to A here, belongs to A™! there ([13], p. 96). The other exception
is the function 7, mentioned before. The reason for the deviation is that
for generalized St. Petersburg games our theorems here must reduce to the
merge theorems in Chapter 2 and [10].

We have already seen in Chapter 2 that the circular convergence plays an
important role at the limiting behavior of the sums, so it is natural to extend
its definition. For a given ¢ > 1 we say that the sequence {u,}>*, C R
converges circularly to u € (¢!, 1], written u,— u, if either u € (c7',1)
and u,, — u, or v = 1 and the sequence {u,} has limit points ¢™! or 1, or
both. (For ¢ = 1 the notion u,,~— 1 simply means that u, — 1.) Let the dis-
tribution function F' € Dy, (G) be such that (3.4) holds along a subsequence
{kn}22, satisfying (3.5), where ¢ = ¢(G); this and nothing else is assumed
for Theorems 3.1, 3.2 and the Corollary below. Part of the surprising result
in Theorem 1 in [13] is that there are as many different limiting distributions
as the continuum along different subsequences:

Theorem. (Csorgd, Megyesi). If along a subsequence {n,}>>,; C N,

Ny
Zj:l Xj — G D

Qp

(3.10)

W as r— oo

T

for a non-degenerate random variable W, then %Tc—ir> k€ (¢t 1] asr — oo,
and the distribution of W is necessarily that of an affine linear transformation
of Vs (My, Ms), namely

w 2 5VO¢,I€(M17 M2) + d>

where

1/a 1—n;t
; 1/n, ny | - s)ds
5= tim ™) G g d = tim Sz Q)ds

r—00 an r—00 an

T T

Conversely, if Yn <k € (c™1,1] as r — oo, then (3.10) holds with c,, =
n, nl:lm Q(s)ds, a,, = n,la/al(l/nr) and W =V, .(My, My).

Now let p,, = (P11, P2ns - - - s Dnn) be any strategy, so that the components
are nonnegative and Z?lem = 1, and for simplicity put v;n = Vi/p;.
if pjn > 0, 7 = 1,...,n. The merging semistable approximation to the
distribution functions of S, p in (3.8) is given in the following main result
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by the distribution functions Gap (r) = P{V,p < x}, x € R, of random
variables V,, ;, that have characteristic functions

3.11) E(ee) = [ eitdea,pnm=exp{zpj,nyw,n<t>}, teR,

. =
where y, -, () is the exponent function in the characteristic function of V4, ,
in (3.9), explicitly given in the proof of Lemma 3.1 below.

Theorem 3.1. For any sequence {p, }°, of strategies such that p,, — 0,

sup ‘P{Sa,pn < x} - Gmpn(:z:)} — 0.

zeR

It follows from the formula (3.11) that for the uniform strategies pS =
(1/n,1/n,...,1/n) the distributional equality Va,png Vi (My, M5) holds,
and hence Theorem 3.1 reduces to the most important special case of full
sums in Theorem 2 in [13].

As noted before, there is real pooling of winnings only if « = 1 and [(-) = 1
when the sum of the coefficients in (3.8) is 1. However, by a transformation
we obtain a version of Theorem 3.1 that is satisfactory in this respect. This
transformation is a generally implicit extension of that given in Chapter 2.
The function f(s) = s'/%/I(s) in (3.6) is regularly varying of order 1/a at
zero, and hence by general theory ([4], p. 23) it is asymptotically equivalent
to a non-decreasing function. Therefore, to state Theorem 3.2 below, we may
and do assume that f(s) = s'/%/I(s) is itself non-decreasing and hence, by
monotonicity, its inverse function g(s) exists and it is also non-decreasing for
s in a right neighborhood of zero. Then, if p,, = (P11, P2ns---sPnn) IS an
arbitrary strategy, consider

1/a n 1/« -1
T Upi) \ & Upen) Sy f(pen)’ I

Then, clearly, q,, = (¢1n:%2n,- - -+ qnn) Is a strategy. We need a one-to-one
correspondence, that is, we have to determine p,, in terms of g,,. Multiplying
the defining equation by Y ,_, f(pkn») and applying the inverse function g(-),
we get the equation g(¢jn > 1y f(Pkn)) = Pjn, so that summing for j we
have 7% 1 9(@jn Y _p—y f(Prn)) = 1. The monotonicity of g(-) implies that
for a given strategy q, there exists a unique constant A, > 0 for which

> i1 9(gjnAq,) = 1, s0 that Ay = >70 ) f(Pea). Thus pjn = 9(¢jnAg,),
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j=1,2,... n, that is, the correspondence between p,, and g,, is one-to-one
indeed. Now we can define the functions and random variables related to the

strategy q,,. Set Vkn = V1/g(qunq, ), K =1,...,n, introduce
1- g qdk nAqn)
Toq, = ZanXk Aq, Zan/ Q(s)ds
(qk nAqn)

and let H, 4 (-) be the semistable distribution function with characteristic
function

/ e dH, q () = exp { Z 9(knAq,) ya:l’k,n(ﬂ}‘

k=1

Then a reformulated equivalent version of Theorem 3.1 is

Theorem 3.2. For any sequence {q,,}52, of strategies such that g(q,Aq ) —
0,
sup ‘P{qun < x} — Ha,qn(a:)| — 0.

z€R

The strange-looking assumption is needed because the relations p,, — 0
and g, — 0 are independent in the sense that neither of them implies the
other. This can be seen by easily constructed examples, even in the simplest
case [(-) = 1.

Now we turn back to the setup in (3.8) and (3.11) and show that for
special sequences {p, } the merge in Theorem 3.1 reduces to ordinary limit
theorems. Since for ¢ = 1 the approximating distribution is one and the
same stable distribution already, we assume that ¢ > 1, in which case our
conclusion is truly surprising.

Let {n,}?2, C N be an increasing subsequence and consider the sequence
of strategies p,, = (1/n,,1/n.,...,1/n,,0,0,...,0) with n, non-zero ele-
ments, where n, < n < n,,;. This is the same situation as in (3.10), so
there exists a limiting distribution for {p, }>°; if and only if it exists in
(3.10) along {n,}°,. There may be too many zero components in this type
of strategies in the sense that in some of them the proportion of zeros is
approximately 1 — ¢! if lim, o, n,41/n, = c. The following notion excludes
such cases: we call a sequence {p,, }°°, of strategies balanced if

in{pjn:j=12.
lim inf mln{p] J }
n—co Mmax{pj,:j = }

Roughly speaking this condition means that each component is important.
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Classical theory says that if a limiting distribution exists for the uniform
strategies p¢ = (1/n,1/n,...,1/n), it must be stable. As an essence of
semistability, the following corollary claims that semistable limiting distri-
butions can be achieved by such balanced strategies that practically consist
of only two different components.

Corollary 3.1. For an arbitrary k € (¢!, 1] there exists a balanced sequence
{p, )22, of strategies such that S.p 2, Var(My, My), where the random
variable Vi, (M, My) is defined in (3.9). Moreover, for each n € {2,3,...}
the strategy p,, = (P11 P2ns -« - Pnn) can be constructed in such a way that
there are at most two different values among its first n — 1 components.

It will be clear from the proof that the n-th component p,, ,,, which can
have a third different value, is just to make p, a strategy, that is, to make
Z?ZI Pjn = 1. Thus in fact there are only two different important compo-
nents.

The difficulties of a closer description of the merging semistable random
variables V,p in (3.11) arise from the fact that the asymptotic equality
Yex ~ Ve, a8 & — 00, for the function 7, figuring in (3.6) does not reduce to
true equality. Nevertheless, (3.7) says that for the special sequence k,, = |c"|
we can define the function 7, through the sequence c¢" instead of |c¢"| and
obtain explicitly v, = x/c/'°®?] for all z > 0. In this case, when k, =
||, let Vayi,Vaz,...,Van be independent copies of V,1(Mi, Mz). Then

with 75, = [log.p;] and 7, = Tyt = (pjnc™n)! as before, for any
strategy p,, Lemmas 3.1 and 3.6 below imply the distributional equality

n n
(3'12) ijl/ftava,j - Z (d*mn + Pin C“/j,n) = Va,pnv

j=1 j=1

where the constants cy, A > 0, and d,,,, m € Z, are also from those lemmas.

3.3. Merge theorems in general

The systematic study of merge was initiated in [19] in the general setup of
separable metric spaces. The study there did not get down to the charac-
terization of merge in the Lévy distance on R, and the aim of the present
small section is exactly that. Of course, the deep and extended literature
on Kolmogorov’s uniform limit problem, highlighted by Arak’s and Zait-
sev’s well-known results, deals with merge in the uniform distance ever since
Prokhorov’s first result in 1955. In our list here, [7] and [13] are also examples
for merge in the uniform distance.

65



In this section X, X7, Xo,..., and Y, Y7, Y5, ... are real random variables
with distribution and characteristic functions F, Fy, Fy, ..., G,G1,Gs, ... and
O, 1, P2y .., W, 1, e, . .., Tespectively. If F;,, = G denotes weak convergence,
that is, F,(z) — G(z) at each x € C(G), where we recall that C'(G) is the set
of continuity points of GG, then of course F;,, = G is the definition of X, Ly
used above, which is equivalent to L(F,,G) — 0, where L(-,-) is Lévy’s
distance, given by L(F,G) = inf{h > 0: G(x—h)—h < F(z) < G(x+h)+h}.
Extending this, we say that X,, and Y,,, or their distribution functions F),
and G,,, merge together if L(F,,G,) — 0.

Here we give necessary and sufficient conditions for merge in terms of
characteristic functions under the weak assumption that one of the sequences,
{Y,} or equivalently {G,}, say, is stochastically compact, meaning that for
every subsequence {ny}3>; C N there is a further sug)sequence {152, C
{nr}32, and a random variable Y, such that Yy, — Y, or equivalently
Gnk]- = (G as j — oo.

Theorem 3.3. If {G,}22, is stochastically compact, then L(F,,G,) — 0 if
and only if ¢n(t) — 1, (t) — 0 for every t € R.

The next theorem is the basic tool in the proof of Theorem 3.1. It says
that if G, is absolutely continuous for all n € N and the corresponding density
functions are uniformly bounded, then even uniform convergence holds under
the same conditions.

Theorem 3.4. Assume that {G,}2, is stochastically compact and there
is a constant K > 0 such that sup,cy sup,eg |G ()] < K. Then F,(z) —
Gn(z) — 0 at every x € R if and only if ¢, (t) — ¥, (t) — 0 at every t €
R. Moreover, if this holds, then in fact the convergence is uniform, so that
SUD, ez | Ful) — Go()] — 0.

3.4. Proofs

Logic dictates to prove first the general theorems from the preceding section.
Proof of Theorem 3.3.  Suppose first that ¢,(t) — ¥,(t) — 0 for all
t € R. Let {nx}2,; be any subsequence of N. By compactness there is a
further subsequence {ng, }52, C {nx}72, and a distribution function G' such
that Gnkj = (@, so that @/)nkj(t) — (t), t € R, as j — oo by continuity
theorem. By the triangle inequality and the other direction in the continuity
theorem, Fnkj = (G, and so the triangle inequality for the Lévy metric yields
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L(Fnkj,Gnkj) — 0 as j — oo. Since {ng} was arbitrary, it follows that
L(F,,G,) — 0. The proof of the converse is similar. ]

Proof of Theorem 3.4. Necessity is trivial, while the proof of sufficiency in
the first statement is similar to the one above: using the uniform boundedness
of G}, one can show that the subsequential weak limits G are continuous,
and so weak convergence implies convergence in each point.

To prove the stronger second statement, fix any € € (0,1). Stochastic
compactness is tightness, so there exists a 7' > 0 such that G,(z) > 1 —«¢
and G,(—z) < ¢ for all x > T and n € N, and the uniform boundedness
of the densities implies the existence of a subdivision -7 = zy < 1 <

- < xy = T such that sup;<j<y ey |Gn(zr) — Gn(zr-1)| < €. Since F,
and G,, merge together at each point, there is a threshold ng € N such that
maxg—o1,. N |Fn(zr) — Gu(z)| < € if n > ng. Then by easy calculation
sup,ep |[Fn(z) — Go(x)] < 2¢ for all n > ny. n

Aiming at Theorem 3.1, first we prove six lemmas. The first is a scaling
property that expresses the exponent function y,(-) of the characteristic
function in (3.9) in terms of y, 1(+), which was used for (3.12) and is needed
for Lemmas 3.2 and 3.3.

Lemma 3.1. For every A > 0 we have y, »(t) = )\ya@(t/)\l/o‘) —itey, t € R,
where ¢y = A1/ fl//\ [08(s) — ¢f(s)] ds

Proof. Asin (3.1),let L) and Ry denote the Lévy functions of the random
variable V (w{, x0g,0) defined at (3.9). The inverse relation above (3.1) for
the two representations shows that Ly(x) = inf{s: @{(s) > z} = inf{s:
P (s/A) > x} = AL(x), x < 0, and similarly Ry(xz) = AR(z), x > 0, where
L(-) = Ly(-) and R(-) = Ry(-). Thus, since V(¢1,v9,0) = W (¢1,1¢q,0) +
0(1) — B() in (3.2).

eYor(t) — E(eitVa,A(Ml,M2)> _ E(eiﬁv(w?ws‘m) = exp {ite(kw?)/\l_/f(ﬂ/}g) }

Xexp{ / B (x)dL(x +)\/ B (m)},

from which, forcing the exponent y, 1 (¢A~Y/?) in,

e (t) eXp{—lt (ﬂﬁza))\l—/ OOT) i (lﬁza))\l—/f(lﬁ?)}

xexp{)\ltt br) — 0(ws)

R(z)

>\1/a
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for all t € R, which is nothing but e¥er® = e=#exAaa A"V where ¢y =

AVl0(bs) — 005) — MOWws) — 0(1$)}]. Now, a somewhat long but
straightforward calculation shows that () = A0(¢)) + A ] Y M t)dt. Fur-
ther simple calculation then yields the stated form of C. [ ]

Next, Lemmas 3.2 and 3.3 establish that the sequence G, in (3.11) has
uniformly bounded densities and is stochastically Compact, so that it meets
the assumptions of Theorem 3.4. Here I'(u fo “le7vdv, u > 0, is the
usual gamma function.

Lemma 3.2. For any strategy p,, the inequality

I'(1/a)
Sup ‘Ga pn )| S 1/0{
z€R 7TOéKa

holds, where the constant K, > 0 depends only on «.

Proof. It follows from a result of Kruglov(®!3) that Reya1(t) < — Ko |t]%,
t € R. Then by Lemma 3.1, Reyar(t) = AMReya 1 (tATVY) < —AK [t|oA! =
— K, |t|*, for all A > 0. Thus the distribution function of the variable in (3.9)
and hence also G, p (-) in (3.11) is infinitely many times differentiable. In
particular,

1 > —itx itVy
|Gapn ‘ = % /_Ooe i E(el ,Pn)dt‘

< L T e IS pottena, 0 b
— ex nReYq

= 27]' . p P pk, Y Vk,n
1 [ (1

< —/ exp{— K[t} df = ¢ /fj)
2m J Tk

for all x € R by the density inversion formula, proving the lemma. [ ]

Lemma 3.3. For any sequence of strategies {p,,}5°, the sequence of random
variables {Vop, Yoo, is stochastically compact.

Proof. We rewrite the characteristic function in (3.11) in a form that was
used in the St. Petersburg case in [17], p. 984. Let denote I(A) the indicator
of the event A and put Ty, (7) = >0  pjnl (vjn <7), 0 <7 < 1. Then we
have

n 1
E(eltva,pn) _ exp{ ij,nya,wj,n(t)} = exp{ / ya,'y(t) dTpn(V) }
j=1 ’
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By the multiplicative periodicity Ya,cy(t) = Ya,,(t) and by Lemma 3.1, y, (t)
is a continuous and bounded function of  in (0, 1] for each fixed t € R, while
T, is like an empirical distribution function with support contained in [0, 1].
Since no mass can escape, the lemma follows by an application of the Helly
selection theorem. [ ]

The following measure-theoretic lemma is also important in the proof of
Theorem 3.1. It allows to pass on from subsequences to the entire sequence
N. Measurability and almost everywhere assumptions are meant in the usual
Lebesgue sense and mes{-} stands for Lebesgue measure and ~— denotes
convergence in measure.

Lemma 3.4. Let q,: I — R be sequence of measurable functions, n € N,
and 6 : N — A a sequence taking values in A, where I C R and A C R
are compact intervals, and let vy: I — R be a set of measurable functions,
A € A. Suppose that if lim, .., 0(n,.) = X for a subsequence {n,}2, C
N, then ¢,,(s) — Vsmn,)(s) — 0 for almost every s € I as r — oo. Then
Gn(+) — Vo) (-) — 0, that is, mes{s € I |qn(s) — vsm)(s)| > e} — 0 for every
e>0.

Proof.  Fix any € > 0 and let A,() = {s: [gn(5) — vsm)(s)| > €}. We
have to prove that mes{A4, ()} — 0. Let {ng}?2; C N be any subsequence.
Since A is compact, by the Bolzano— Weierstrass theorem there is a further
subsequence {ng, }7°, C {ng}3>, such that o(ny,) — A for some A € A as
I — oco. By assumption we have gy, () — Vsn,,)(s) — 0 as I — oo for almost
all s € I. Then by Egorov’s theorem there exists a measurable set £ C I on
which the convergence is uniform and mes{/ \ £} <e. Thus A, (¢) CI\ E
and so mes(4,, (¢)) < € for all [ large enough. Since {n}p2; C N was
arbitrary, the proof is complete. [

Lemma 3.4 will be used in a slightly different situation. The compact
interval A will be the ‘circle’ (¢!, 1] as the points ¢! and 1 are identified,
and the convergence relation lim, . d(n,) = A will be replaced by the cor-
responding d(n,)——\ as r — oo. Obviously, the lemma remains true in this
setup.

Lemma 3.5. If {n,}°°, C N is a subsequence such that v, <>k € (¢!, 1]
as r — oo, then

Q (s/n’f) Vi a,k
n’rl‘/—;l(l/nT) - ¢1 ! (S> - O? s € C( 1 )7
Q(l B S/nT) a, Yo, a,K

S U 0, s € Ol
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asTr — OoQ.

Proof. It is shown for the same {n,} in the proof of Theorem 1 in [13]

that Q. (s/n)
WJM‘ “(s) =0, s €O,

Since ¢! = gb‘f"cfl, the scaling property ¢9*(s) = A=Y (s/\) above
(3.9) implies that """ (s) — ¥{"(s), s € C(x$") whenever x,——r. The
two properties together give the desired result. The proof of the second
statement is analogous. [ |

The following general lemma is in fact the semistable property, which is
used in this paper only for the proof of (3.12). It goes back to Lévy, and the
well-known proof is just patient calculation. (In fact, a certain converse is
also true.)

Lemma 3.6. If e%«() is a semistable characteristic function of exponent
a € (0,2) and ¢ > 0 is a multiplicative period of the functions My and M,
in (3.3), then yo(c™t) = ™yy(t) +itd,,, t € R, for every m € Z, where the
constants d,, € R depend on the distribution.

Proof of Theorem 3.1. By Lemmas 3.2 and 3.3 the sequence {V, , } is
stochastically compact and their densities are uniformly bounded. Thus by
Theorem 3.4 it suffices to prove that A, p, (t) := [E(eSern) —E(eYorn)| — 0
at each t € R.

Fixing t # 0 and setting

n 1/« 1-pin n
p‘TL Js
(3.13) u(pn)zzl(’, )/ Q(s)ds =Y ptjm,
j=1 Pjn) Jpjn j=1
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by (3.8) and (3.11) we can write

n 1/a n
. p I.n —1i
A’%Pn (t) = H E(exp{ltl< ji ) Xj }) (§ t,u,(pn) - eXp{ ij,n ya,'yjm(t) } ‘
j=1 Pjn j=1
=[] @+ ym(®) - eXp{ > Din Yoy (1) + itp(p,) H
j=1 j=1
< | TT (@ +ym(®) - eXP{ Zyj,n(t)}‘
j=1 j=1
. exp{ 5 yj,n<t>} _ exp{ S i (0 + im<pn>}|
j=1 j=1
< eXp{ > [10% (L +y5n(t) — yj,n(t)} } -1
j=1
+ exp{ Z [yj,n(t) — Djn ya,'yj,n(t> - it:uj,n} } —1 )
j=1
where

s D oo i 2o
(3.14) y;.(t)=E (exp{ttl(pjyn) Xj}—1> :/o [exp{ttl(pjjn) Q(s)} —1] ds.

Notice that y,,(t) — 0 for all j = 1,...,n by the condition p, — 0, and
so the logarithms are well defined for all n large enough; in fact for our fixed
t # 0 we will use a threshold n, € N such that |y;,(t)| <1/2,j=1,...,n,
for all n > n;. We must prove that

(3.15) Z Lin(t) = Z | log (1 + yjn(t)) — yjn(t)] — 0

and
n

(3.16) > [Win(t) = Pim Yo, (t) = itpjn] — 0.

j=1
First we consider (3.15). Expanding the logarithm, for all n > n, we
obtain

& Yin® | _ |yin(®)]* Ol
olt) = | VT = T e O = 5 S
1/ 2
< ]yjn(t)\2 < Djn b 1 expy it Djn Q(s) p — 1| ds
’ " VPin Jo Upjn)
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by (3.14). Since Z?lejn =1, it is enough to show that

(3.17) falz) = \/_/

where = € (0,1) in general. Since |e™ — 1| < min{2,u}, u € R, we see that

! 1/« v xl/a e '
/ HR(s)z /I 1‘ds</ 2ds +t / \Q(s)]ds—l—/ 2ds.

I(x)
Megyesi®1) p. 423, proved that for ho small enough there exist constants
¢; > 0 such that SUDe(0.10] | M (7,21) + hj(s)| < ¢j, where M;(-) and hy(-) are
from (3.6), and we choose ¢; so large that the inequalities supe g o) M;(s) <
c; also hold, j = 1,2. Further restrictions on hy will be introduced as we go

along. Then by (3.6),

ItQ s)xl/a/l 1’ ds —=0 as =z l 0

3.14)

l(s I(s
Qe <a ) wma o -9 <m P 0<s<n,

3.18) and ¢°Ms)< I s>0, j=1,2, forall A>0.
J 1/
S o

Hence tho 1Q4(s)|ds < & tho I(s)s~'/*ds. Here we take ho > 0 be so small
that [(-) is locally bounded on (0, hy), that is, I(-) is bounded on (g, hg) for
each € > 0. Note that [(1/v), as a function of v, is slowly varying at infinity.
We now apply Karamata’s theorem ([4], pp. 26-27) and accordingly separate
three cases of a.

If @ < 1 then i — 2> —1, and so we have the asymptotic inequality

ho (s /e 1 « 1
/x 3(1/‘1 ds :/ va 2 1(1/v)dv ~ 1 e al(z) as x]0,

1/ho -«

where we write f(u) ~ g(u) if lim,_ f(u)/g(u) = 1, and hence, as x | 0,

fola) < 4V +i{er + ) s / ) ds+ 15 | e

c+c

_4\/_+t(

) \/§(1+o(1))+t“;/ '|0(s)] ds — 0.

If « =1 then £ —2 = —1, in which case I*(x fl/w v (1 v)dv is
slowly varying at 0, so that, as x | 0,

Vv "1(s) Vi [
fl(l') §4\/E+t@ (Cl+62)[B TdS—th/};O \Q(s)]ds

=4V +t(cr +cz)\/51;(<j)> —i—t%/h . 0]@(3)|ds — 0.
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Finally if o > 1 then 2 — L > 1, so that ¢; := flo;hové’z (1/v)dv < oo
and

a3 hol(s) ra—z [L-ho
fula) < Wit e T [ Sas i [ QG)as

ho

1 1—ho
Q(s)] ds — .
I() /ho
as x | 0. Thus (3.17) and, therefore, (3.15) is completely proved.
Now we turn to (3.16). For each ;7 = 1,2,...,n using the change of
variables s = up;,, in (3.13) and in (3.14), we see that

= 4\/5 —f- t(Cl —|— 02)03

1/a

1 9

Pj,n pn
3.19 [jn :p-,n/ Q(upjn) 2~ du
( ) J J . ( J )l<pj,n)

and
®) = i | " (oot ) sy < 1)
- pw{ /Oho/m (exp{“Q(Sprﬂlz/na/ “pﬁn)} - 1> o

(1—=ho)/pjn . 1/a
+ / (exp{‘tQ(spj,n>pj,n / Z(PW} - 1> ds
h

0/Pjn
hO/pjyn
(3.20) + / (exp{ Q1 = splpyl 1pin) | 1) ds}.
0

Therefore, (3.16) to be proved is equivalent to 2?21 Pjndin(t) — 0, where

1 1/a
Pj,n SPin)Pin

Jin(t) = / exp itm — 1| ds = Yay,.(t)
0 l(p],n)

1/a

. /pf,n‘l (5P )Psln
1 l(pj,n) ‘

Since Z;‘:l pjn = 1 and p,, — 0, it suffices to show that
(3.21) ho(z) =0 as x| 0,

where

ha(z) = /0 . [exp{it@(sx)%} _ 11 ds — Yoy (1) — it /1 ilQ(s:c)% ds.
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Now we rewrite the characteristic function of G p (+) in the theorem. By
(3.1),

[e's] 1 1 a,A
(e ) _ ™ (s) . i (s)
/0 By (s)) ds /0 [e 1} ds uﬁ/o - {wf”\(s)}z ds

+/ [eiw’?’k(s) —-1- itw?’A(s)] ds

N N O
+1t/1 [1 (s) 1+{¢?’A(s)}2]d

1 e
= / [eitﬁ’A(S) - 1} ds +/ [ew?’k(s) —1—itgp{(s)|ds
0 1
_ite(lb?’)\)’

where 6(1)) as above (3.2). With the analogous form of other integral we
finally get

1 oo
Y (1) = / e _ 1] as + / [0 1~ ity (s)] ds
0 1
1 oo
+/ [eit{—wé“’*<s)} _ 1] ds +/ [eit{_wg’k(s)} —1- it{—wy(s)}} ds.
0

1
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Using this, (3.19) and (3.20), we obtain

ha(z) = /0 1 l(exp{it@(sx)fg;;} - 1) - (emﬁ’”/”(s) - 1)}013

L e

_(eitw?wl ) _ 1 twa%/z( ))]ds

(1—ho)/x ' xl/a ’ xl/a
+/ho/w [exp{tt@(sm) @) } — 1 —itQ(sz) 1) ] ds

+/01 [(exp{it@(l . sx)f(lg} . 1> . ( —it (s 1>]ds

+/1h0/$ [exp{itQ(l - sx)f(lg} 1 —itQ(l — sa;)‘f;(lg

_(e—it"pQ‘ 1 ( ) — 1 _‘_1twa’Yl/z( )>:|d8

_/oo [ 1t¢1 /(s twa ’Yl/z( ) —itzpz”Yl/w(S)_l _{_itw‘;v"ﬂ/z(s)] dS
h,

o/x

= ha1 (%) + ha2(2) + has(2) + haa(z) + has(x) — hag(z).

Using the inequality [e™ — 1 — iu| < u?/2, u € R, and then the bounds
{@D?m/w(s)}Z < 03/52/017 Jj = 1,2, established in (3.18), we see that |h,6(z)| <
271 (A +c3) fhoj/x s %%ds — 0asz | 0. Also, with the substitution sz = y,

(1—ho)/z tQQQ(sx)a:Q/O‘ x%—l 1—ho
has(x §/ ds = t2 Q*(y)dy — 0 as | 0.
sl = J T e S, OV

Clearly, ha1(-) and ha4(-) behave analogously and can be handled the
same way, and h,o(-) and h,5(-) can also be handled the same way. Hence
we deal only with h,1(-) and hso(-). First note that Lemmas 3.4 and 3.5
together imply

Q+(3/n> 2 ,%Tn

mes{O <s<N: AA7SI(1/m) L7 (s)

>5}—>0 for all >0,

convergence in measure on [0, N] for each N > 0. Using the monotonicity of
177(.) and Q(-), we show that in this convergence n~' | 0 can be extended
to z | 0. To this end, consider any z, | 0 such that v/, — k € (¢!, 1].

Then also V|14, Lk and V1 /2] L Kk, so that, according to the proof
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of Lemma 3.5, Q4 (s/yn)/{yn “1(1/ya)} — ¥"(s) and ¥ 7*"(s) — " (s),
s € C(¢1""), where y, can be chosen in both convergence relations as 1/x,,
[1/x,] and [1/2,]. Using that Qy(s/[1/x,]) < Q(szn) < Q1(s/[1/2n]),
1(1/|1/x,])/l(xy) — 1 and I1(1/]1/x,])/l(x,) — 1, we get by standard ma-
nipulation that {Q4 (sz,)zy 1)} — ;" (s) — 0 for all s € C ().
This implies by Lemma 3.4 that

Q (sz) x'/*
T
as z | 0. We note that if the functions ¢, j = 1,2, in (3.3) are continuous,
then Lemma 3.4 is needless because convergence holds pointwise.

Thus, towards the proof of (3.21), we showed that in the integrands in
ha1(-) and hyo(-) go to 0 in measure as « | 0 on each interval [0, N|. Thus, it
suffices to find common integrable bounds. For the first integral the function
2 does the job, so that h,1(x) — 0 and h,4(x) — 0 as x | 0. For the second,
by (3.18) we have

itQ(sw)z'/* itQ(sz)xt/®
S R
QQ 2/ o QQ 2/« 2

<o ey < e e

and the second term is integrable on [1,00). For the first term we need
Potter’s theorem ([4], p. 25), which for the function I (y) = I(1/y), y > 1,
slowly varying at infinity, states that for each 6 > 0 and A > 1 there is a
K = K(A,0) such that

= <amc{ () C)') wes

Take A =2 and § = (2a)™' — 47! and let hg < 1/K(2,§). Then for z < hy
and s € [1, ho/z] we have {l(sx)/l(z)} < 2max{s’, 57} = 25°, and so, first

mes{OgsgN:

. 1#?’71/1(8)‘ > 5} — 0 forall > 07

LS Ve o
+feiter O ()

by (3.18),

Qi(sx)xz/a 2 ZQ(SI) a2/ o 1 1 I(sz) ? 9 1 1

— 1 < = 27 a <4 27 a

‘ B |~ e @) T i@st) =TT
which is integrable on [1,00). Therefore, hoa(x) — 0 and he5(x) — 0 as
x | 0, proving (3.16) and hence the theorem. [ ]
Proof of Corollary 3.1. We construct a strategy p,, such that v;, = &
forall j =1,2,...,n—1, and p,, — 0. Then for the characteristic function

E(eitvmpn) — eXp{ ijn Yoo o (t)} — eya,n(t) epn,n [yaﬁn,n(t)_ya,n(t)]

) yVim Y
j=1
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so that E(eVern) — evox® ¢ € R. Since S,, and V,, merge together by
Theorem 3.1, we get S, p 2, Var(My, Ms). So it is enough to find such a
strategy.

Fix n € N sufficiently large to have k,« 1 < n < k,« for n* = n*(n), as be-
fore (3.6), and put xg = Kky+, -1 = Kkyp-—1 and w41 = Kky-11. Clearly, 7, =
k, j = 0,£1. If 29 = n, then the uniform strategy p, = (1/n,1/n,...,1/n)
is suitable.

If o # n, we begin by equating each component to 1/xy. Suppose that
xo > n. Then, starting with the first component, we proceed step by step
and substitute 1/x¢ by 1/x_1, so that the sum of the components is increased
at each step. We do this until the sum is still less than 1. Since n/x_; > 1,
we will not change all components. Finally, increase the last 1/zg to some
Pnn € (1/x0,1/x_1) that makes the sum 1, and the construction is complete.

For zyp < n the proof is similar, only we decrease 1/xy by 1/x,, at each
step. [ |
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Chapter 4.

Asymptotic normality

4.1. Introduction and results

Let X, Xy, Xs,... be iid random variables with the common distribution
function F(z) = P{X < z}. For each n € N = {1,2,...} consider the
random variable

San = al,nXl + a27nX2 + -+ an,an >

where a,, = (a1, ...,0nn) Is an arbitrary sequence of weights. We investi-
gate the asymptotic behavior of the weighted sum S, , therefore it is reason-
able to assume that each component is asymptotically negligible, that is for
every € > ()

lim sup P{|ay,Xi| >} = lim P{|X|>¢/a,} =0,

=00 1<k<n

where @,, = max{|ax,| : k =1,2,...,n}, which holds, if and only if @, — 0,
as n — 00. Therefore from now on we assume that @, — 0.

Since the possible limiting distributions of S,, are necessarily infinitely
divisible, we need the well-known representation of their characteristic func-
tions. As in the previous chapter let Y be an infinitely divisible real random
variable with characteristic function ¢(t) = E(e?) in its Lévy form (]23]
p. 70), given for each ¢ € R by

P(t) = exp{it@ — %219 + /_ioﬁt(m) dL(z) + /Oooﬁt(:c) dR(m)},

where .
it

_itx
Bie) = e =1
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and the constants # € R and ¢ > 0 and the functions L(-) and R(-) are
uniquely determined: L(-) is left-continuous and non-decreasing on (—o0, 0)
with lim, o L(z) = L(—o0) = 0 and R(-) is right-continuous and non-
decreasing on (0, co) with lim, .., R(z) = R(c0) = 0, such that LOE 22 L(x)+
Jy #*dR(x) < oo for every e > 0.

Our starting point is Theorem 25.1 in [23], which states that for an infinite
array of asymptotically negligible, row-wise independent random variables
Y10, Yo, .., Yon}oo,, with distribution functions Fjy,(x) = P{Ys, < x},
reR n=12..,k=12...n, the random variable > | Yy, — ¢y,
for an appropriate numerical sequence c¢,, converges in distribution to a non-
degenerate random variable W, with Lévy functions L and R, and normal
component o, if and only if

(4.1) Yoy Fin(z) = L(z), 2 <0, z € Cp,
Yorey Fin(z) —1— R(z), >0, z € Ckg,
and
n 2
(4.2)  limliminf { / 22 dFyp(z) — ( / wdFk,n(x)) }
gm0 n=eo = U jzl<e |z|<e

- 2
= lir% lim supz { / 2? dFy, , (7) — </ xdFkn(x)> } = o2,
E— n—oo =1 |1“S€ \x|§€

where for a real function f, C; denotes its continuity points.
The Lévy functions of the normal distribution are identically 0. Adding
the two equations in (4.1) and using Theorem 26.2 in [23] we obtain, that

Sa, — Cn L.Z~N (0,1) for some appropriate c,, if and only if for every
e>0

-t / dP — 0
‘ak,nXk|>E
2
S { / a2, X2 dP — ( / g X dP> } 1.
lag,nX|<e |ag,nXp|<e

It follows immediately from this form that Y ,_, axnXi — ¢, 2N (0,1) if

and only if Y7 |ak.| Xk — ¢, 2, N(0,1).
In the simplest case, when X has finite variance we obtain the following
characterization of convergence:
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Theorem 4.1. Let X, X1, X, ... be iid random variables with finite vari-
ance, and put = E(X). Then @, — 0 and

Z ak,n(Xk - ,U/) i) N(07 1) )
k=1

if and only if Y "p_ ai, — 1/Var(X).

Asymptotic normality of linear combinations is closely related to the fol-
lowing problem: Let (R, 1, R.2,...,R,n,) be a random vector, which takes
on the N,! permutations of (1,...,N,) with equal probabilities. Consider
{byy 01 <i<N,, v<1}and {a,; : 1 <i < N,, v <1} two double
sequence of real numbers. Héjek [25] gave necessary and sufficient condition
for the asymptotic normality of the random sum Zfi”l bu,i @y, R, ;- During the
proof of his main theorem, as a corollary he obtains Theorem 4.1 here.

Using the language of the previous chapter the reformulation of the the-
orem is

Corollary 4.1. Let X1, Xs, ... be iid random variables with 0 mean and finite
variance. Then for a sequence of strategies {p, }, there exists a normalizing
sequence a,, such that

1 n
— Zpk,nXk — N(0,1)
n =
and p,,/a, — 0, if and only if
Py

\/ ZZ:l pz,n

and in this case a, = \/Var(X) >y pim'

— 0,

An other special case of the weight sequences is the following. Let
X1, X, ... be iid random variables with E(X) = 0 and E(X?) = 1. Let
{wy}2, be a sequence of real numbers such that wy # 0 for all k£, and put
W, = w? + -+ +w?. The weight sequence is a,, = (w1 /vVWh, ..., w,/VW,).
Easy computation shows that in this particular case asymptotic negligibility
@, — 0 holds if and only if W,, — oo and w? /W,, — 0. With no more moment

assumptions on X, Fisher [21] proved that S, 2, N(0,1), if W,, — oo and
limsup,_, ., #{n : W,/w? < t}/t < oo, where #A stands for the cardinality
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of a set A. It is easy to show that these conditions imply asymptotic negligi-
bility, but the converse is not true. Later Weber [37] found some complicate
sufficient conditions for S, 2N (0,1), with higher moment assumptions,
and these assumptions also imply asymptotic negligibility. As a corollary
of Theorem 4.1 we obtain that in this special case asymptotic negligibility
immediately implies distributional convergence:

Corollary 4.2. Let X1, Xo, ..., {w,}22,, {W,}2, and a, be as above. If
W, — oo and w? /W, — 0, then Sq, i>N(O, 1) .

Now assume that the variance is infinite. In this case assumption (4.2),
especially in the normal case, becomes simpler, because by [23] p.173

[/_Zde(y)r =0(1)/_Zy2dF(y),

where o(1) — 0 as © — oc.

Recall that the distribution F' is in the domain of attraction of the a-
stable law W, a € (0, 2], written F' € D(«), if for some centering and norming
sequences ¢, and a, (3.4) holds along the whole sequence of natural numbers,

that is
1 n
_[ZX]C_CH} va
an -1

where, of course X, Xo, ..., are iid random variables with distribution func-
tion F'. Moreover, F' is in the domain of partial attraction of the infinitely
divisible random variable W, written F' € D,(WV), if there exist a subse-
quence {k,}>°; C N, and centering and norming sequences ¢, and a,,
such that (3.4) holds, that is the distributional convergence above, along the
subsequence {k,}22,. For an a-stable W we write D,(«) instead of D, (V).

Theorem 4.2. Assume that F' € D(2). If for some weight sequence a,, and

: D .
centering sequence ¢, Sq, — cn — W, where W is a nondegenerate random
variable, then W is necessarily normal.

We investigate a particular converse of the theorem above. What can
we say about the random variable X, if for some sequence a, the limit
distribution exists, and it is normal?

Theorem 4.3. Let Xi, Xs,... be itd random wvariables with common dis-
tribution function F'. If there exists a weight sequence a, and a centering

numerical sequence c,, such that Sq, — ¢, 2, N(0,1), then F € D,(2).
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In a certain sense, according to the latter theorem the distributional con-
vergence through linear combinations is not more general, than along sub-
sequences. The converse is trivially true, as we noted before Corollary 3.1.
Indeed, assume that for a given subsequence {k,} (3.4) holds. Then we can
define the weight sequence a,, = (1/ay;, ..., 1/ax;,0,...,0),if k; <n < kj,q,

where the number of 1/ak;-s is k;. Now, obviously Sa, — cx;/ax, 2w,
To exclude such cases we introduce the notion of balancedness for weight
sequences: {a,}>; is balanced if

i nl k=1,
lim inf ming |ag n} > 0.
n—oo max{|ag,| : k=1,...,n}

This means again that each component is important. We note that the defi-
nition is essentially the same as for strategies in Chapter 3, above Corollary
3.1.

The next theorem says that convergence through a balanced weight se-
quence implies convergence through the whole sequence of integers.

Theorem 4.4. Let a, be a balanced weight sequence and ¢, a centering
sequence, such that Sa, — ¢y — N(0,1). Then F € D(2).

It is important to note that in general the two types of convergence are
very different. According to the Corollary in [28] if F' € D,,(W), for a non-
degenerate semistable law W, then there is a balanced weight sequence a,,,

which contains only two different components, and for which S, — ¢, 2, W,
where ¢, is well determined. However, in this case F' is not necessarily con-
tained in the domain of attraction of any stable law. We also note that
Megyesi [32] proved for any stable law W that its domain of geometric par-
tial attraction and its domain of attraction coincide. These results show
similarity between convergence along a geometric subsequence, and conver-
gence through balanced weight sequence.

There is an interesting problem in connection with such weight sequences:
What is the class of infinitely divisible random variables, whose distribu-
tion can be obtained as the limit distribution of linear combinations of iid
variables with balanced weight sequences. We do not even know whether
nonsemistable limits of this type exist or not.

The questions treated here are also interesting in the case of a-stable
laws, where v < 2. The analogue of Theorem 4.2 remains true, however the
validity of Theorems 4.3 and 4.4 is an open problem.
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4.2. Proofs

Proof of Theorem 4.1. As we have seen before Theorem 4.1 we may
assume that the weights are nonnegative. In this case Fy,(v) = P{a;,X <
x} = F(x/agy,). We spell out the conditions again: there is asymptotic
normality if and only if

(4.3) >, [F(—x/ak’n) +1-— F(x/akn)] — 0 for every x >0, and

2
(44) S0, az,n{ [ e ([ wdrw) }% 1,
|z|<e/a,n |z|<e/a,n

for every € > 0.

We may assume, that E(X) = 0. Since @, — 0, each term in (4.4) tends
to Var(X). Thus the validity of (4.4) is equivalent to lim, .o Y, af, =
1/Var(X). Moreover in this case (4.3) also holds. Indeed, [o\;, ,¥*dF(y) =
2?(F(—z)+1— F(z)), and since the left side tends to 0 as * — oo, we have

n 2

> [Flewfana) + 1= Flafon)| = 3 % 1) — 0.

where o(1) — 0, as n — oo, proving (4.3), and thus the statement. u

Proof of Corollary 4.1. Necessity. According to Theorem 4.1 asymptotic
normality implies Y, _, p; ,/az — Var(X)~! and since Y, p, <P, < 1,
we get that ¢, is bounded. Therefore p,,/a,, — 0 implies p,, — 0, and hence

a, — 0 too. Since a, ~ \/Var(X ) he1 Dk, [for numerical sequences we

write a,, ~ b, if a, /b, — 1], we obtain

lim —Pn

n—oo  [/\n 2
Zk:l pk,n
as claimed.

Sufficiency. Put a, = \/ Var(X)> 7, pi}n for the norming sequence.

Then Y, pi,/a; = Var(X)™" and @, = ﬁn/\/Var(X) > k1 Pip — 0,50
by Theorem 4.1 the statement follows. [ ]

Proof of Theorem 4.2. [t is well known that F' € D(2) if and only if

=0.

2’ [F(—z) +1 - F(z)]
(4.5) xh_}n; f|y\§x y2dF(y)
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By (4.5) we have

> [Pleaflan + 1= Fafla] = o5 > [ at g,
k1 X k=1 Y [VI<z/|ak, x|
where o(1) is meant as o(1) — 0, if n — oo. By (4.2) the sum after o(1) on
the right-hand side of the equality is bounded for x small enough, and using
(4.1) it is easy to see that it is bounded for all > 0. Thus the right-hand
side goes to 0. Since the left-hand side converge to L(xz) — R(x), where L and
R are the Lévy functions as in (4.1), we obtain that both Lévy functions are
identically 0, which means that the limit distribution is necessarily normal.
|

Proof of Theorem 4.3. As before we may assume that the weights
are nonnegative. Suppose indirectly that X ¢ D,(2). By the well-known
characterization this means that

[ ?[F(—z)+1— F(z)]
e e 9P AR ()

Choose a > 0, which is smaller than the liminf above. Hence if x is large
enough, we have

> 0.

xQ[F(—a:)+1—F(:L’)}>a/ y? dF(z).

ly|<z

Since @, — 0 we obtain

n n CL2 .
S [F(fan) 1= Flafu) 20} % [ yrar).
k=1 k=1 ly|<z/akn
By (4.3) the left-hand side goes to 0, so the right-hand side also does, which

implies by (4.4) that o = 0. The contradiction proves the statement. n

Proof of Theorem 4.4. We assume as before that the weight sequence
is nonnegative. If E(X?) < oo then the statement is obvious, therefore we
suppose that the variance is infinite. In this case, as we mentioned before, the
second term in (4.4) is superfluous. The definition of balancedness implies
that there exists K > 1, such that @, /ax, < K, for each n and k =1,...,n.
Then writing /K instead of = in (4.3) we obtain

S [ arwzy [ arwy e[ arw).
k=1 |y\>ﬁm k=1 7 lvI>1/an ly|>1/an
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and since the left side tends to 0, so does the right.
Rewriting the left side of (4.4), without the second term, we have for
e=1

> i, / yAF(y) =) ai, / y* dF(y)
k=1 lyl<1l/ak,n k=1 ‘

y|<l/an

+> ap, /1 y*dF(y),
k=1

/akn2ly|=1/an

and for the remainder term

n

> ai, / VAF(y) <Y / dF(y)
k=1 1/akn>ly|>1/an k=1 Y /akn>ly|>1/an

<n / dF(y),
ly|>1/an

which tends to 0. This means that

/ AR Y a2, — 1
‘y|§1/an

k=1

as n — oo. Finally, since na?/K? < S 7 a2 < na?, we obtain
) n k=1 "k,n n

1 Sliminfnai/|| y* dF (y) Slimsupn&i/ y* dF(y) < K*.
yl<4- yI<4-

n—oo n—oo

From this boundedness we show that F' € D(2), with the same idea as in
23] p. 181 Put x(z) = [,.,dF(y), and H(z) = [ _, y*dF(y)/2*. Now
a, — 0 implies that for each x large enough we can find n € N such that
1/@, < x <1/Gp11. Then clearly x(z) < x(1/a,) and H(z) > H(1/G,11) —
x(1/a,). Thus

@) ()

Hz) = nH(1[au) — nx(1/a,)
We have just seen above that ny(1/a,) — 0 and nH(1/a,) is bounded, thus
x(x)/H(x) — 0, as x — oo, which is exactly the same as (4.5), that is
F € D(2) as claimed. n
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(")sszefoglalo'

Legyenek X, Xs,..., X, valamely szemistabilis eloszlas geometriai parcia-
lis vonzastartomanyabdl vett fiiggetlen azonos eloszlasu véletlen valtozok.
Ezekre a valtozékra mint egy szerencsejatékban n jaték soran nyert nyere-
ményekre (negativ érték esetén veszteségekre) gondolunk. Tegyiik fel, hogy
Péter, a bankos pontosan egy ilyen jatékot jatszik n jatékos, Paly, Péls,
..., Pal,, mindegyikével, nyereményeik rendre X, Xs,..., X,. A jatékosok,
mielott még jatszananak, nyereményiik elosztasara elére megallapodhatnak
egy P = (P1ns - - -, Pnn) 0sztozkodasi stratégidban, melyben a komponensek
nemnegativak és osszegiik egy. Ennél a stratégiandl Pal; kap py ,, X1+p2, Xo+
-+ ppn X, dukatot, Paly kap py, , X1 +p1,Xo+ - -+ Dno1, X, dukdtot, Pals
kap pn—12X1 + ponXo + D10nXs + -+ + Pp_2p X, dukdtot, ..., Pal, pedig
Do X1 + D3nXo + -+ + DunXno1 + P1aX, dukdtot kap. A disszertdciéban
a praXi 4+ penXo + - 4 P Xy véletlen valtozo aszimptotikus viselkedését
vizsgaljuk, ami esetiinkben Pal; nyereménye a p,, stratégia mellett.

Az elso fejezetben azt a specialis esetet taglaljuk, amikor a szerencsejaték
a szentpétervari(p) jaték. Péter, a bankos, felajanlja, hogy Pély, Paly, ...,
Pal,, jatékosok mindegyikével egy-egy altalanositott szentpétervari jatékot
jatszik, amelyekben mindegyik P&l ¢ 'p valészintiséggel nyer r* dukétot,
k=1,2,...,ahol0<p<1,¢g=1—pésr=1/q Pal; nyereményét X;-vel
jelolve, a jatékosok megegyeznek, hogy X; + Xo + - - - + X, Ossznyereménytik
onmaguk kozotti szétosztdsara egy p, = (P1nsDons-- -, Pnn) Valosziniiség-
eloszlassal meghatarozott egytittmiikodési stratégiat hasznalnak, ahol tehat
Pl P2y Pun > 088 370 pjn = 1, gy, hogy Pély p1, X1 + p2nXo +
o+ DX, dukatot, Paly p, n X1 +p1pnXo+- - +pp_1,X, dukdtot, ..., Pél,
pedig p2n X1 + p3pnXo + - -+ + p1,X,, dukdtot kap. Végtelen varhaté értékek
osszehasonlitdsaval meghatérozzuk azokat a stratégiakat, amelyek minden
P&l szamara eredeti sajat nyereményéhez képest extra hozamot eredményez-
nek annak ellenére, hogy Péter Osszesen ugyanazt az X; + Xo + -+ + X,
dukatot fizeti ki. Ezek a megengedett stratégiak akkor és csak akkor 1éteznek,
ha q egy specialis egyenletet kielégito algebrai szam, és ekkor egy megengedett
stratégia hozama nem egyéb, mint a stratégia r-alapu logaritmushoz tar-
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tozé entrépidjanak p/g-szorosa. Megmutatjuk, hogy ez a hozam nemcsak
improprius Riemann, hanem Lebesgue értelemben is mindig 1étezik annak
ellenére, hogy a klasszikus p = 1/2 esettél eltéréen az eredeti sajat nyere-
ményeket a megengedett stratégiakkal kapott 0sszegek sztochasztikusan csak
két jatékos esetén domindljak mindig. Legalabb harom jatékos esetén meg-
mutatjuk, hogy a sztochasztikus Osszehasonlitds altalaban nem lehetséges.
Mint kideriil, ez meg annak ellenére van igy, hogy sztochasztikusan dominéns
helyzetbol, tehat példaul két jatékostol indulva egy természetes algoritmus-
sal tovabbi jatékosokra nyert megengedett stratégiak esetén a sztochasztikus
dominancia o6roklodik. Sok érdekes specidlis esetben meghatarozzuk az op-
timélis megengedett stratégiat és ennek maximalis hozamat, az altalanos
helyzetre vonatkozdan pedig feltarjuk a kapcsolatos szamelméleti természetii
nehézségeket.

A masodik fejezetben még mindig egy specidlis esetet targyalunk, de mar
a nyeremények aszimptotikus viselkedésére koncentralva. Sét, a specialis eset
lehetové teszi, hogy nemcsak Osszetartasi tételeket, hanem o6sszetarté aszimp-
totikus sorfejtést is igazoljunk, amire az altalanos esetben nincs remény.
Legyenek tehat X, Xi,..., X, figgetlen &ltalanositott szentpétervari(a,p)
véaltozék, azaz melyekre P{X = r¥/°} = ¢*~!p ahol a € (0,2), p € (0,1),
q=1—pésr =1/q. Tetszbleges p, = (P1n,---,Pnn) stratégia esetén
definidljuk az S37 = p/t X1 + - + pin Xy — Hap(p,) véletlen viltozét,
ahol a H, ,(p,) csak a stratégiatol fiiggd allandd. A fejezet {6 eredménye egy
aszimptotikus sorfejtés, mely az Sy és bizonyos WP szemistabilis eloszlasu

véletlen valtozok Osszetartasi sebességének rendjét hatarozza meg. Altaldnos
esetben nem varhatjuk hatédreloszlas 1étezését, hiszen a Doeblin—Gnyegyenko
kritérium szerint mar az egyenletes stratégia esetén sincs hatareloszlas. Azon-
ban abban a specidlis esetben, amikor minden komponensre py , = ¢ " vagy
0, valamilyen ay, pozitiv egész szamra, belatjuk, hogy van hatéareloszlas, és
ekkor Osszetartd sorfejtéseink hagyomaéanyos aszimptotikus sorfejtésekre re-
dukalédnak.

A harmadik fejezetben a problémat teljes altalanossagaban vizsgaljuk.
Legyenek Xy, Xs, ..., X, fiiggetlen, azonos eloszlasu véletlen valtozdk, amik
benne vannak egy « € (0, 2) kitevSs szemistabilis eloszlds geometriai parciélis
vonzastartomanyéban. Tekintsiink egy tetszoleges p,, osztozkodasi stratégiat
6s definidljuk a hozzd tartozé S,, = pi(ﬁXl/é(pl,n) + pé{,?Xg/f(pQ,n) +

-+ p}/ 2 X0/ l(pnn) — u(p,) linedris kombindcidt, ahol £(+) egy 0-ban lasst
valtozasu fiiggvény, u(p,,) pedig valés allandé. A fejezet f6 eredménye egy
Osszetartdsi tétel az Sy, véletlen vdltozé és bizonyos szemistabilis eloszldsi
Vp, Vvéletlen valtozé kozott. Annak ellenére, hogy altaldban nincs hatérel-
oszlas, megadunk olyan —az egyenletes stratégiatél nem sokban kiilonboz6—
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stratégiasorozatot, mely mentén van hatareloszlas.
A negyedik fejezetben azt boncolgatjuk, mit mondhatunk akkor, ha a

hatdreloszlds normalis. Tetszlleges a, = (a1, ..., 0nn) silysorozat esetén
az Sq, = Q1pX1 + -+ + ap X, véletlen valtozd aszimptotikus normalitaséat
vizsgaljuk a természetes lim,,_,o, max{|a;,| : k =1,...,n} = 0 elhanyagol-

hatosagi feltétel mellett. A véges szorasu esetben sziikséges és elegendo
feltételt adunk az eloszlasbeli konvergenciara. Megmutatjuk, hogy ha S,
aszimptotikusan normalis egy kiegyensilyozott a,, silysorozat mellett, akkor
a kozos eloszlasfiiggvény sziikségképpen a normalis eloszlas vonzéastartoma-
nyaban van.

Fiiggetlen azonos eloszlasu véletlen valtozok linearis kombinaciéinak ha-
tareloszldsa meglep6 hasonlésagot mutat részsorozatokon vett eloszlasbeli
konvergenciaval, és a szemistabilis tulajdonsagot is 4j megvildgitasba helyezi.
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