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Introduction

Let us start with a short story that demonstrates well the topic of the dissertation and also
the current status of artificial intelligence research.

Clever Hans was a horse that gained fame in the early 20th century for apparently being
able to perform complex arithmetic and other intellectual tasks. The horse was owned by
a German mathematics teacher named Wilhelm von Osten, who claimed to have taught
him these skills.

Von Osten became a sensation in Germany, with many people flocking to see the amaz-
ing horse. However, skeptics suspected that there was more to the horse’s abilities than met
the eye. A psychologist named Oskar Pfungst investigated the phenomenon and concluded
that Clever Hans was not actually performing arithmetic, but was instead responding to
subtle cues from his trainer and audience.

Pfungst discovered that von Osten was unwittingly providing the horse with cues, such
as body language or slight head movements that told it when the horse had actually found
the correct answer. Once this was realized and providing cues was prevented, Clever
Hans was no longer able to perform the same feats of arithmetic when his trainer was not
present or when he was blindfolded.

The case of Clever Hans became an important milestone in the history of psychology, as
it demonstrated the importance of experimental controls and the potential for unconscious
cueing to influence the behavior of both humans and animals.

Artificial intelligence has reached a similar milestone. A subfield called deep learning
gained significant popularity in the 2010s. While the concept of neural networks and
deep learning has existed for several decades, it was during this period that several factors
converged, leading to a surge in its popularity.

One of the main catalysts was the availability of large datasets and advancements in
computational power, which allowed researchers to train deeper neural networks and pro-
cess massive amounts of data more efficiently. And the development of specialized hard-
ware, such as graphics processing units (GPUs), accelerated the training of deep learning
models.

Another crucial factor was the breakthrough in performance achieved by deep learning
models in various challenging tasks. Deep learning architectures, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), demonstrated superior
performance in image recognition, speech recognition, natural language processing, and
other domains, often surpassing traditional machine learning approaches.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 played a
pivotal role in showcasing the power of deep learning. The winning team, led by Geoffrey
Hinton, utilized deep convolutional neural networks and significantly outperformed other
methods. This event served as a turning point and drew attention from classical machine
learning methods to the capabilities of deep learning.

The success and breakthroughs in deep learning, combined with the increasing avail-
ability of open-source tools and libraries, made it more accessible to researchers and prac-
titioners. This accessibility, along with the growing interest from both academia and in-
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Figure 1: A sample adversarial image. Left: original image (prediction: ’Gila monster’);
Middle: adversarial perturbation; Right: adversarial image (DenseNet201 prediction: ’cus-
tard apple’). The adversarial modification is invisible to the human eye but it changes the
neural network prediction.

dustry, contributed to the rapid proliferation and popularity of deep learning.
Since then, deep learning has continued to make strides in various fields, and its popu-

larity has only increased. It has become the dominant approach in many areas of artificial
intelligence and machine learning, shaping advancements in sectors ranging from health-
care and finance to automotive and entertainment.

A few years after the ImageNet challenge, Szegedy et al. discovered intriguing prop-
erties of these highly successful deep neural networks [17]. They found that deep neural
networks are discontinuous to a certain extent. They showed that it is possible to cause the
network to misclassify an image by applying a certain imperceptible perturbation, which
is obtained by maximizing the network’s prediction error. They coined the phrase adver-
sarial examples for these perturbed and misclassified images, which is now widely used in
the literature. The presence of adversarial examples was also confirmed by Goodfellow et
al. [15]. A sample of an adversarial image shown in fig. 1.

Here, we will focus on the problem of image classification. In it, the sensitivity of the
current models to adversarial input indicates that these models are not in complete accord
to human perception. Similar to Clever Hans, after this sensitivity was noted the networks
were no longer able to solve their given task.

Summary of the Thesis Results

The PhD thesis presents different applications of adversarial robustness analysis in ma-
chine learning. The dissertation consists of three major parts. In Thesis 1, we analyzed the
robustness of linear models from regularization and dimensionality points of view that is
also presented in chapter 3 of the dissertation. Next, Thesis 2 presents attack algorithms
that are able to generate such perturbation which can mislead multiple models simulta-
neously. The corresponding part of the dissertation is chapter 3. In Thesis 3, we analyze
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Thesis 1 Thesis 2 Thesis 3
ESANN 2019 [2] •
ESANN 2020 [3] •
IJCNN 2020 [4] •
IJCNN 2021 [5] •
PRAI 2023(submitted for publication) [1] •

Table 1: The connection between the theses and publications.

defense methods for the problem of robust classification and robust out-of-distribution
detection which is detailed in chapter 4.

Here, we will give a brief summary of each thesis. The ideas, figures, tables and results
included in the dissertation were published in scientific papers (listed at the end of the
booklet). In table 1, we indicate the connection between the theses and publications.

Thesis 1: Adversarial Robustness of Linear Models

Many machine learning models are sensitive to adversarial input, meaning that very small
but carefully designed noise added to correctly classified examples may lead to misclassi-
fication. The reasons for this are still poorly understood, even in the simple case of linear
models. In this thesis, we study linear models and offer a number of novel insights.

We focus on the effect of regularization and dimensionality and we demonstrate that
even in the case of simple binary classification problems with linear models, the adversarial
problem is real and it strongly depends on regularization and the less obvious properties
of high-dimensional spaces. Namely, in very high dimensions adversarial robustness is
inherently very low due to some mathematical properties of high-dimensional spaces that
have received little attention so far.

Also, in higher dimensions an overly weak regularization setting might result in a sig-
nificantly harder optimization problem in some cases. Our empirical analysis confirmed
that—although regularization may help—adversarial robustness is harder to achieve than
high accuracy during the learning process as we can see in fig. 2. This is typically over-
looked when researchers set optimization meta-parameters.

Moreover, we showed that the optimal regularization strength is very different for ad-
versarial robustness and prediction accuracy. This higlights that, the two metrics requires
significantly different meta-parameters. Our experiments were conducted on two binary
classification dataset a real and a generated one.

The main contribution of the author are the related experimental design, implementa-
tion, and analysis of the results. The corresponding publication and thesis chapter are [2]
and chapter 3 respectively.
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Figure 2: Convergence of normalized distance and accuracy in d = 28 × 28 dimensions
for the real dataset (top) and the generated dataset (bottom), with regularization coefficient
α = 10−4 (left) and α = 10−1 (right).

Thesis 2: Adversarial attacks on model sets

The original formulation of the adversarial image search problem in [17] assumes that we
are given a model and a correctly classified example. The attacker wishes to find a minimal
perturbation of the example such that the model predicts any wrong label (untargeted
attack) or a given desired label (targeted attack). Since then, a large number of methods
have been proposed to create better adversarial examples [14, 16].

In this thesis, we study the question of whether the list of predictions made by a list
of models can also be changed arbitrarily by a single small perturbation. Clearly, this is
a harder problem since one has to simultaneously mislead several models using the same
perturbation, where the target classes assigned to the models might differ. This attack has
several applications over models designed by different manufacturers for a similar pur-
pose. One might want a single perturbation that acts differently on each model; like only
misleading a subset, or making each model predict a different label. Also, one might want
a perturbation that misleads each model the same way and thereby create a transferable
perturbation. Current approaches are not applicable for this general problem directly.

We proposes an algorithm( algorithm 1) in this thesis that is able to find a perturbation
that satisfies several kinds of attack patterns. For example, all the models could have
the same target class, or different random target classes, or target classes designed to be
maximally contradicting. Example images of the contradicting pattern shown in fig. 3.

The corresponding part of the dissertation(chapter 4) has two major parts. In section
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Algorithm 1 Multi-model adversarial perturbation

1: Input: example x, models F , adversarial patterns P
2: x0 ← x
3: i← 0
4: while i < imax and K(xi) /∈ P do
5: for pk ∈ P do
6: rk ← approximateQP(xi, pk)
7: end for
8: r ← rargmink ∥rk∥2 ▷ rk with the smallest norm
9: r ← min(η/∥r∥2, 1) · r ▷ enforce ∥r∥2 ≤ η

10: xi+1 ← xi + r
11: i← i+ 1
12: end while
13: return xi ▷ the perturbed input

4.1 of the dissertaion, we introduced an initial version of the algorithm which applies the
first-order approximation of the decision boundaries used in the DeepFool method. We
evaluated the algorithm on a number of model sets over MNIST and CIFAR-10 datasets
and generated transferable as well as non-transferable examples. We found that the al-
gorithm consistently produces small perturbations in all the cases we examined. Perhaps
the most interesting result is that small adversarial perturbations are present even when a
non-transferable adversarial example was generated for the most robust model in the set,
despite the fact that the models differed only in the regularization coefficient.

In section 4.2 of the dissertaion, we show a generalized version of the method which
has many interesting applications, it is still able to generate transferable adversarial exam-
ples as well as generating a single perturbation such that all the models in a given model
set predict specified, different classes. The latter scenario allows us to explore the decision
boundaries of the model set from a new perspective.

The algorithm can be regarded as a generalization of the DeepFool method to model
sets. This generalized version is in algorithm 1. Also, we improved the DeepFool algo-
rithm itself by adding the step size parameter. We evaluated our algorithm on three model
sets using four attack patterns over the ImageNet database. We found that the algorithm
produces small and successful perturbations reliably in all the attack scenarios we exam-
ined. Here, the most interesting result is that imperceptible adversarial perturbations were
found even when the labels were selected to make the problem as hard as possible. This
was surprising to us, even in the light of the vast literature on adversarial attacks.

The perturbation sizes over the three model sets offered some interesting insights as
well. The set with different model architectures (mobile set) needed somewhat larger
perturbations, but we expected just the opposite. Increasing the size of the model set
increased perturbation size as well. Nevertheless, all the perturbations we found are im-
perceptible to the human eye. A sample of the found perturbation shown in fig. 3.

The corresponding publications are [3] and [4]. The experimental design, evaluation,
as well as the formalism of the problem and the algorithm, were carried out by the author.
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Figure 3: The diverse(contradicting) attack pattern over the mobile set (left: abacus→ [soft-
coated-wheaten terrier, soft-coated wheaten terrier, apron]), dense set (middle: comic book
→ [sturgeon, black stork, capuchin]), and all the models (right: Australian terrier→ [Saluki,
borzoi, black stork, Saluki, gorilla, kuvasz]).
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Figure 4: OOD detection AUC over CIFAR-10 under three different kinds of attack scenarios:
no attack, only OOD samples are perturbed and both in-distribution and OOD samples are
perturbed. The strong attack scenario is where both in-distribution and OOD examples are
adversarially perturbed to mislead OOD detection.

Thesis 3: Combining Robust Classification and Robust
out-of-Distribution Detection

Classification models in machine learning often make over-confident but incorrect predic-
tions on input samples that do not belong to any of the output classes. Such samples
are called out-of-distribution (OOD) samples. This problem has received considerable at-
tention, because this represents a vulnerability similar to adversarial input perturbation,
where models make incorrect predictions on seemingly in-distribution input samples that
contain a very small but adversarial perturbation.

In this thesis, we are interested in models that are robust to both OOD samples and
adversarially perturbed in-distribution samples. Furthermore, we require that OOD detec-
tion be robust to adversarial input perturbation. That is, OOD samples and in-distribution
samples should not have adversarial perturbations that makes them appear to be in-
distribution and OOD samples, respectively. Several related studies apply an ad-hoc com-
bination of several design choices to achieve similar goals. One can use several functions
over the logit or soft-max layer for defining training objectives, OOD detection methods
and adversarial attacks.

The contribution of this thesis is that we defined a design space, where one can system-
ically analyze the problem of robust OOD detection and robust classification. The main
components were identied as the training objectives, detection methods and attack meth-
ods for the combination of the robust OOD detection problem and the robust classification
problem with the help of a set of score functions. Also, we introduced a strong threat
model in which both in-distribution and OOD samples are adversarially perturbed to mis-
lead OOD detection. In fig. 4, we can see the OOD detection performances measured
in different attack scenarious(including the proposed one where both in-distribution and
OOD samples are adversarially perturbed).

We draw several interesting conclusions based on our empirical analysis of this design
space. Most importantly, we argue that the key factor is not the OOD training or detection
method in itself, but rather the application of matching detection and training methods.
The OOD detection performances shown in fig. 5 as the function of detection methods
and training methods. Moreover, we performed a thorough empirical evaluation of this
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Figure 5: Minimum OOD detection AUC over MNIST and CIFAR-10 under combinations
of OOD datasets used during training and detection. The databases used for training are
indicated on the vertical axis. The training objectives were ρuniout in both cases. Under each
training OOD dataset, 4 different score functions are indicated that are used for detection. The
horizontal axis indicates OOD datasets used for evaluation. The CIFAR-10 plot also includes
the smallest and largest network architecture, indicated on the vertical axis.

framework. We found that adding an adversarial OOD objective to the training method
does not harm robust in-distribution accuracy, in fact, a significant improvement can be
seen in some cases. This indicates that it is always safe to add such an objective.

We also found that it is impossible to pick a score function for robust OOD detection
independently of how the model in question was trained. Instead, we get the best results
when training and detection is based on the same score function. In other words, while
non-robust OOD detection is more robust to the training procedure, in robust OOD detec-
tion it is more important to align the detection method with the training method, that is, to
use the same score function in both. Also, a similar state- ment can be formulated in terms
of the OOD detection method and the attack on this detection method. The most success-
ful attack is performed using the same score function as the one used by the detection
method.

The corresponding part of the dissertation is chapter 5 and related publications are [1]
and [5]. The unified treatment of the combined problems, implementation and the design
of the related experiments were all done by the author.
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Összefoglalás

A PhD értekezés az ellenséges robusztusság elemzésének különböző alkalmazásait mu-
tatja be a gépi tanulásban. A disszertáció három fő részből áll. A 3. fejezetben lineáris
modellek robosztusságát elemezzük a regularizáció és a dimenzionalitás szempontjából.
A 4. fejezetben olyan támadási algoritmusokat mutat be, amelyek képesek olyan per-
turbációt generálni, amelyek egyszerre több modellt is félrevezethetnek. Az 5. fejezetben
védekezési módszereket vizsgálunk a robosztus osztályozás és a robosztus outlier de-
tektálás problémájára.

Lineáris modellek ellenséges robusztussága

Számos gépi tanuló modell érzékeny az ellenséges bemenetre, ami azt jelenti, hogy a
helyesen osztályozott példákhoz hozzáadott nagyon kicsi, de gondosan megtervezett zaj
téves osztályozáshoz vezethet. Ennek okai még mindig tisztázatlanok, még az egyszerű
lineáris modellek esetében is. A diszertáció 3. fejezetében a lineáris modelleket vizsgáljuk,
és számos új meglátást ḱınálunk. A regularizáció és a dimenzionalitás hatására összpon-
tośıtunk. Megmutatjuk, hogy nagyon nagy dimenziókban az ellenséges robusztusság ere-
dendően alacsony a nagydimenziós terek néhány olyan matematikai tulajdonsága miatt,
amelyek eddig kevés figyelmet kaptak. Azt is megmutatjuk, hogy - bár a regularizáció
seǵıthet - az ellenséges robusztusságot nehezebb elérni, mint a nagy pontosságot a tanulási
folyamat során. Ezt jellemzően a kutatók figyelmen ḱıvül hagyják, amikor optimalizációs
metaparamétereket álĺıtanak be.

Ellenséges támadások modellhalmazok ellen

A gépi tanuló modellek sérülékenyek a nagyon kis bemeneti zavarokkal szemben. A disz-
ertáció 4. fejezetében azt a kérdést vizsgáljuk, hogy a modellek listája által késźıtett
előrejelzések listája is tetszőlegesen megváltoztatható-e egyetlen kis perturbációval. Ez ny-
ilvánvalóan nehezebb probléma, mivel egyidejűleg kell több modellt félrevezetni ugyanaz-
zal a perturbációval, ahol a modellekhez rendelt célosztályok eltérhetnek. Ennek a táma-
dásnak többféle alkalmazása is elképzelhető a különböző gyártók által hasonló célra ter-
vezett modellek esetében. Lehet, hogy egyetlen olyan perturbációt szeretnénk, amely min-
den modellre másképp hat; például csak egy részhalmazt vezethetünk félre, vagy minden
modell más-más ćımkét jósolhat. Az is előfordulhat, hogy olyan perturbációra van szükség,
amely minden modellt ugyanúgy vezet félre, és ezáltal egy hordozható perturbációt hoz
létre. A jelenlegi megközeĺıtések nem alkalmazhatók közvetlenül erre az általános prob-
lémára. A diszertáció 4. fejezetében egy olyan algoritmust javasolunk, amely képes
olyan perturbációt találni, amely többféle támadási mintát is kieléǵıt. Például az összes
modellnek lehet ugyanaz a célosztálya, vagy különböző véletlenszerű célosztályok, vagy
olyan célosztályok, amelyeket úgy terveztek, hogy hogy maximálisan ellentmondásosak
legyenek.
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A robusztus osztályozás és a robusztus outlier detekció kombinálása

A gépi tanulásban alkalmazott osztályozási modellek gyakran túlságosan magabiztos, de
helytelen előrejelzéseket adnak olyan bemeneti mintákra, amelyek nem tartoznak egyik
kimeneti osztályba sem. Az ilyen mintákat eloszláson ḱıvüli (outlier) mintáknak nevezzük.
Ez a probléma jelentős figyelmet kapott, mivel az ellenséges bemeneti perturbációhoz
hasonló sebezhetőséget jelent, amely során a modellek hibás előrejelzéseket tesznek a
látszólag eloszláson belüli bemeneti mintákra, amelyek nagyon kicsi, de ellenséges per-
turbációt tartalmaznak. A diszertáció 5. fejezetében olyan modellek iránt érdeklődünk,
amelyek mind az outlier mintákra, mind az ellenségesen perturbált eloszláson belüli min-
tákra robusztusak. Továbbá megköveteljük, hogy az outlier felismerés robosztus legyen
az ellenséges bemeneti perturbációval szemben. Vagyis az outlier minták és az eloszláson
belüli minták esetén sem lehetnek olyan ellenséges hatású perturbációk, amelyek miatt
azok eloszláson belüli, illetve outlier mintáknak tűnnek. Számos kapcsolódó tanulmány
több tervezési lehetőség ad-hoc kombinációját alkalmazza hasonló célok elérése érdekében.
A logit vagy softmax réteg felett több függvényt is használhatunk a képzési célok, az out-
lier felismerési módszerek és az ellenséges támadások meghatározására. A diszertáció
5. fejezetében bemutatunk egy olyan tervezési teret, amely tartalmazza ezen választási
lehetőségeket, valamint a hálózatok kiértékelésének elvi módját adja meg. Ez magában
foglal egy erős támadási forgatókönyvet, ahol mind az eloszláson belüli, mind az outlier
példákat ellenséges módon megzavarják, hogy félrevezessék az outlier észlelést. Ennek
a tervezési térnek az empirikus elemzése alapján számos érdekes következtetést vonunk
le. A legfontosabb tanulság, hogy a kulcstényező nem az outlier képzési vagy -felismerési
módszer önmagában, hanem inkább a megfelelő felismerési és képzési módszerek alka-
lmazása.
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