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The development of the theory of Fourier series in mathematical analysis began in

the 18th century. The �rst exactly proved result was published in Dirichlet's (1805�

1859) paper in 1829. That theorem concerns the convergence of Fourier series of piecewise

monotonic functions. The result of this theorem was extended by Jordan (1838�1922)

to functions of bounded variation in 1881. In the literature it is known as Diriclet�Jordan

test.

In the �rst part of our dissertation two classical and two later results of the theory

of single Fourier series are introduced. The former ones are: the Dini test on the pointwise

convergence of Fourier series (Dini (1845�1918), italian mathematician) and the Pring-

sheim test on the pointwise convergence of series conjugate to Fourier series (Pringsheim

(1850�1941), german mathematician). The latter theorems are: the quantitative version of

the well-known Diriclet�Jordan test by Bojani¢ [2] and its further developped version by

Telyakovskii [18]. In the further part of the dissertation these theorems are extended

to functions in two variables and their applicability to functions in the multiplicative

Lipscitz/Zygmund classes is examined.

1 Known results in one dimension

Dini test

Given a periodic (with period 2π) complex-valued function f ∈ L1(T), where

T := [−π, π) is the one-dimensional torus. We consider the pointwise convergence of

Fourier series

(1) f(x) ∼
∑
k∈Z

f̂(k)eikx,

where the Fourier coe�cients of function f are de�ned by

f̂(k) :=
1

2π

∫
T
f(u)e−iku du, k ∈ Z.

The simple properties of these follow by the Riemann�Lebesgue lemma (see, e.g.,

[19, Vol. I, p. 48]):

f̂(k)→ 0 as |k| → ∞.

The unsymmetric partial sums of the series in (1) are de�ned by

Sm,n(f ;x) :=
n∑

k=m

f̂(k)eikx, m, n ∈ Z, m ≤ n.

In the particular case when m = −n, the shorter notation Sn(f ;x) (n ∈ N) is used; and

they are called the symmetric partial sums.

The Dini test reads as follows.
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Theorem 1.1. Assume f ∈ L1(T).

(i) If for some x0 ∈ T,

(2)
f(x0 − u) + f(x0 + u)− 2f(x0)

u
∈ L1(T),

then Sn(f ;x0)→ f(x0) as n→∞.

(ii) If for some x0 ∈ T,

(3)
f(x0 + u)− f(x0)

u
∈ L1(T),

then Sm,n(f ;x0)→ f(x0) as m→ −∞ and n→∞.

The proof of Statement (i) is well known (see, e.g., [19, Vol. I, p. 52] in the case

when x0 := 0). It hinges on the Riemann�Lebesgue lemma and the representation

Sn(f ;x0)− f(x0) =
1

2π

∫
T
[f(x0 − u) + f(x0 + u)− 2f(x0)]Dn(u) du,

where Dn(u) is the Dirichlet kernel. The proof of Statement (ii) is less known (see, e.g.,

[3]).

Condition (3) is clearly satis�ed for every x0 ∈ T if f is in the periodic Lipschitz

class Lip(α) for some α > 0. Likewise, condition (2) is satis�ed for every x0 ∈ T if f is in

periodic Zygmund class Zyg(α) for some α > 0.

Pringsheim test

The series conjugate to the Fourier series in (1), or brie�y: the conjugate series, is

de�ned by

(4)
∑
k∈Z

(−i sign k)f̂(k)eikx,

whose unsymmetric and symmetric partial sums are denoted by S̃m,n(f ;x) and S̃n(f ;x),

respectively.

We recall that the function conjugate to f , or brie�y: the conjugate function f̃ , is

de�ned as a Cauchy principal value integral:

f̃(x) := (P.V.)
1

π

∫ π

0

f(x− u)− f(x+ u)

2 tan 1
2
u

du = lim
ε→0+0

{
1

π

∫ π

ε

}
.

As is well-known f̃(x) exists at almost every x ∈ T, whenever f ∈ L1(T), but generally

f̃ /∈ L1(T).

Statement (i) in the next theorem is known as the Pringsheim test (see, e.g., [19,

Vol. I, p. 52]).
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Theorem 1.2. Assume f ∈ L1(T).

(i) If for some x0 ∈ T,

(5)
f(x0 + u)− f(x0 − u)

u
∈ L1(T),

then f̃(x0) exists in the sense of Lebesgue integral and S̃n(f ;x0)→ f̃(x0) as n→∞.

(ii) If for some x0 ∈ T,

(6)
f(x0 + u)− f(x0)

u
∈ L1(T),

then S̃m,n(f ;x0)→ f̃(x0) as m→ −∞ and n→∞.

The proof of Statement (i) hinges on the Riemann�Lebesgue lemma and the representation

S̃n(f ;x) =
1

π

∫
T
f(x− u)D̃n(u) du =

1

2π

∫
T
[f(x− u)− f(x+ u)]D̃n(u) du,

where D̃n(u) is the conjugate Dirichlet kernel. A proof of the less known Statement (ii)

can be found, e.g., in [3] by Cherno�.

Conditions (5) and (6) are clearly satis�ed at every x0 ∈ T if f is in the periodic

Lipschitz class Lip(α) for some α > 0.

Theorems of Bojani¢ and Telyakovskii

According to the Dirichlet�Jordan theorem, the Fourier series of a periodic function

f of bounded variation converges to 1
2
[f(x− 0) + f(x+ 0)] at each point x, that is,

lim
n→∞

Sn(f, x) =
1

2
[f(x− 0) + f(x+ 0)].

For the rate of this convergence, Bojani¢ [2] gave the following estimate in the case

when f(x) = 1
2
[f(x− 0) + f(x+ 0)].

Theorem 1.3. If a periodic function f is of bounded variation on the interval [−π, π],

then the following estimate holds for every x and n = 1, 2, . . . :

(7) |Sn(f, x)− f(x)| ≤ 3

n

n∑
k=1

V
(
ϕx,
[
0,
π

k

])
,

where ϕx(u) := f(x+ u) + f(x− u)− 2f(x), u ∈ [0, π].

We note that the function ϕx(t) is of bounded variation, too; and it is continuous

at the point t = 0. Therefore the total variation function V (ϕx, [0, t]) is also continuous

at t = 0; in particular, we have

V
(
ϕx,
[
0,
π

k

])
→ 0, k →∞.
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Hence it follows that the expression on the right-hand side of (7) converges to zero as

n→∞, that is, Theorem 1.3 is a sharpening of the Dirichlet�Jordan theorem.

The statement of Theorem 1.3 was developped by Telyakovskii [18] as follows.

Theorem 1.4. Let m1 = 1 < m2 < · · · < mp < . . . be a sequence of natural numbers

such that the condition

(8)
∞∑
p=p0

1

mp

≤ A

mp0

, p0 = 1, 2, . . .

is satis�ed, where A > 1 is a constant. If a function f is of bounded variation, then for

every µ and x the following estimate holds:

|f(x)− Sµ(f, x)| =

∣∣∣∣∣∣
∞∑

|k|=µ+1

f̂(k)eikx

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
mp0−1∑
|k|=µ+1

f̂(k)eikx

∣∣∣∣∣∣+
∞∑
p=p0

∣∣∣∣∣∣
mp+1−1∑
k=mp

f̂(k)eikx

∣∣∣∣∣∣ ≤
≤ CA

µ+ 1

µ+1∑
k=1

V
(
ϕx,
[
0,
π

k

])
,

where mp0−1 ≤ µ < mp0 and A is the constant occurring in (8).

Following the scheme of Telyakovskii's proof and making use of Lemma 1.5 (see

[12, Lemma 1-2]), one can achieve the following stronger estimate:
∞∑
p=p0

max
mp≤m≤M<mp+1

∣∣∣∣∣
M∑
k=m

f̂(k)eikx

∣∣∣∣∣ ≤ (π + 4)A

πmp0

mp0∑
k=1

V
(
ϕx,
[
0,
π

k

])
.

We extend this form of statement to functions in two variables.

Lemma 1.5. If m1 = 1 < m2 < . . . < mp < . . . is a sequence of natural numbers such

that the condition (8) is satis�ed, then the following estimates hold:

∞∑
p=p0

max
mp≤m≤M<mp+1

∣∣∣∣∣
M∑
k=m

sin ku

k

∣∣∣∣∣ ≤ πA

mp0u
, 0 < u ≤ π,

∞∑
p=1

max
mp≤m≤M<mp+1

∣∣∣∣∣
M∑
k=m

sin ku

k

∣∣∣∣∣ ≤ (π + 2)A, u ∈ R.

2 New results in two dimensions

Extension of the Dini test to double Fourier series

The double Fourier series of a complex-valued periodic (with period 2π) function

f ∈ L1(T2) is de�ned by

(9) f(x, y) ∼
∑
k∈Z

∑
l∈Z

f̂(k, l)ei(kx+ly),
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wherethe Fourier coe�cients f̂(k, l) az f are de�ned by

f̂(k, l) :=
1

4π2

∫∫
T2

f(u, v)e−i(ku+lv) du dv, (k, l) ∈ Z2.

By the Riemann�Lebesgue lemma (see, e.g., [19, Vol. II, p. 301]), if f ∈ L1(T2), then

f̂(k, l)→ 0 as max {|k|, |l|} → ∞.

This fact will be of vital importance in the proofs of our theorems.

The unsymmetric rectangular partial sums of the series in (9) are de�ned by

Sm1,n1;m2,n2(f ;x, y) :=

n1∑
k=m1

n2∑
l=m2

f̂(k, l)ei(kx+ly), mj, nj ∈ Z, mj ≤ nj, j = 1, 2.

In the particular case whenmj = −nj (nj ∈ N), we use the shorter notation Sn1,n2(f ;x, y),

and they are called the symmetric rectangular partial sums.

In our �rst theorem [10, Theorem 1], we give a su�cient condition for the conver-

gence of the symmetric rectangular partial sums of the Fourier series in (9) at a given

point (x0, y0) ∈ T2. This convergence also depends on the convergence of the single Fourier

series of the so-called marginal functions f(x, y0), x ∈ T, and f(x0, y), y ∈ T, at x := x0

and y := y0, respectively. For these single Fourier series, we use the following notations:

(10) f(x, y0) ∼
∑
k∈Z

f(·, y0)
∧(k)eikx,

where

f(·, y0)
∧(k) :=

1

2π

∫
T
f(u, y0)e

−iku du, k ∈ Z;

and analogously

(11) f(x0, y) ∼
∑
l∈Z

f(x0, ·)∧(l)eily,

where

f(x0, ·)∧(l) :=
1

2π

∫
T
f(x0, v)e−ilv dv, l ∈ Z.

Theorem 2.1. Assume f ∈ L1(T2), A,A1, A2 ∈ C, and for some (x0, y0) ∈ T2,

u−1v−1∆2,2(f ;x0, y0;u, v;A1 + A2 − A) ∈ L1(T2).

If the symmetric partial sums of the single Fourier series in (10) and (11) converge

to A1 and A2 at x := x0 and y := y0, respectively, then

(12) Sn1,n2(f ;x0, y0)→ A as nj →∞, j = 1, 2.

Conversely, if (12) is satis�ed and if the symmetric partial sums of one of the

Fourier series in (10) and (11) converge, then so do the symmetric partial sums of the

other Fourier series.
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Combining Statement (i) in Theorem 1.1 with Theorem 2.1 in the special case

when A = A1 = A2 := f(x0, y0) yields the following consequence [10, Corollary 1].

Corollary 2.1. Assume f ∈ L1(T2), f(·, y0) ∈ L1(T) and f(x0, ·) ∈ L1(T) for some

(x0, y0) ∈ T2. If

(13) u−1v−1∆2,2(f ;x0, y0;u, v) ∈ L1(T2),

u−1[f(x0 − u, y0) + f(x0 + u, y0)− 2f(x0, y0)] ∈ L1(T),

and

v−1[f(x0, y0 − v) + f(x0, y0 + v)− 2f(x0, y0)] ∈ L1(T),

then we have Sn1,n2(f ;x0, y0)→ f(x0, y0) as nj →∞ (j = 1, 2).

In second theorem [10, Theorem 2], we give a su�cient condition for the convergence of

the unsymmetric rectangular partial sums of Fourier series in (9) at a given point.

Theorem 2.2. Assume f ∈ L1(T2) and for some (x0, y0) ∈ T2,

(14) u−1v−1∆1,1(f ;x0, y0;u, v) ∈ L1(T2).

If the unsymmetric partial sums of the single Fourier series in (10) and (11) con-

verge to f(x0, y0), then

(15) Sm1,n1;m2,n2(f ;x0, y0)→ f(x0, y0) as mj → −∞ and nj →∞, j = 1, 2.

Conversely, if (15) is satis�ed and if the unsymmetric partial sums of one of the

Fourier series in (10) and (11) converge f(x0, y0), then so do the unsymmetric partial

sums of the other Fourier series.

Combining Statement (ii) in Theorem 1.1 with Theorem 2.2 yields the following

corollary [10, Corollary 2].

Corollary 2.2. Assume f ∈ L1(T2), f(·, y0) ∈ L1(T) and f(x0, ·) ∈ L1(T) for some

(x0, y0) ∈ T2. If condition (14) and the following two more conditions are satis�ed:

u−1[f(u, y0)− f(x0, y0)] ∈ L1(T) and v−1[f(x0, v)− f(x0, y0)] ∈ L1(T),

then (15) is also satis�ed.

It is obvious that if f ∈ L1(T2) ∩ Zyg(α, β) for some α, β > 0, then condition (13)

is satis�ed at every point (x0, y0). Likewise, if f ∈ L1(T2) ∩ Lip(α, β) for some α, β > 0,

then condition (14) is satis�ed at every point (x0, y0).
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Extension of the Pringsheim test to double Fourier series

The series conjugate to the double Fourier series in (9) can be de�ned in several

ways. The conjugate series with respect to the �rst variable is de�ned by

(16)
∑
k∈Z

∑
l∈Z

(−i sign k)f̂(k, l)ei(kx+ly),

the conjugate series with respect to the second variable is de�ned by

(17)
∑
k∈Z

∑
l∈Z

(−i sign l)f̂(k, l)ei(kx+ly),

and the conjugate series with respect to both variables is de�ned by

(18)
∑
k∈Z

∑
l∈Z

(−i sign k)(−i sign l)f̂(k, l)ei(kx+ly).

The unsymmetric rectangular partial sums of series (16)�(18) are denoted by

S̃(1,0)
m1,n1;m2,n2

(f ;x, y), S̃(0,1)
m1,n1;m2,n2

(f ;x, y), and S̃(1,1)
m1,n1;m2,n2

(f ;x, y),

respectively. The symmetric rectangular partial sums of the same series are denoted by

S̃
(1,0)
n1,n2(f ;x, y), S̃(0,1)

n1,n2(f ;x, y) and S̃(1,1)
n1,n2(f ;x, y), respectively.

In the investigation of convergence of double conjugate series, the conjugate series

of the single Fourier series (10) and (11) play important roles. They are the following

ones: ∑
k∈Z

(−i sign k)f(·, y0)
∧(k)eikx,(19) ∑

l∈Z

(−i sign l)f(x0, ·)∧(l)eily.(20)

In our next theorem [11, Theorem 1] we give a su�cient and necessary condition

for the convergence of thy symmetric rectangular partial sums of conjugate series (16).

Theorem 2.3. Assume f ∈ L1(T2). If for some (x0, y0) ∈ T2,

(21) u−1v−1∆1,2(f ;x0, y0;u, v) ∈ L1(T2),

then the limit of S̃
(1,0)
n1,n2(f ;x0, y0) as nj →∞ (j = 1, 2) exists if and only if the symmetric

partial sums of the conjugate series (19) converge at x := x0, and in this case two limits

coincide.

The symmetric counterpart of Theorem 2.3 reads as follows [11, Theorem 2].
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Theorem 2.4. Assume f ∈ L1(T2). If for some (x0, y0) ∈ T2,

(22) u−1v−1∆2,1(f ;x0, y0;u, v) ∈ L1(T2),

then the limit of S̃
(0,1)
n1,n2(f ;x0, y0) as nj →∞ (j = 1, 2) exists if and only if the symmetric

partial sums of the conjugate series (20) converge at y := y0, and in this case the two

limits coincide.

Under a stronger condition, one can prove the convergence of the unsymmetric

rectangular partial sums of the conjugate series (16)�(18) [11, Theorem 3].

Theorem 2.5. Assume f ∈ L1(T2) and that for some (x0, y0) ∈ T2,

(23) u−1v−1∆1,1(f ;x0, y0;u, v) ∈ L1(T2).

(i) The limit of S̃
(1,0)
m1,n1;m2,n2(f ;x0, y0) as mj → −∞ and nj →∞ (j = 1, 2) exists if

and only if the unsymmetric partial sums of the conjugate series (19) converge at x := x0,

and in this case the two limits coincide.

(ii) The limit of S̃
(0,1)
m1,n1;m2,n2(f ;x0, y0) as mj → −∞ and nj →∞ (j = 1, 2) exists if

and only if the unsymmetric partial sums of the conjugate series (20) converge at y := y0,

and in this case the two limits coincide.

(iii) The limit of S̃
(1,1)
m1,n1;m2,n2(f ;x0, y0) as mj → −∞ and nj →∞ (j = 1, 2) exists.

We note that condition (21) in Theorem 2.3 is certainly satis�ed at every (x0, y0) ∈
T2 if f ∈ LZ(α, β) for some α, β > 0; condition (22) in Theorem 2.4 is satis�ed at every

(x0, y0) ∈ T2 if f ∈ ZL(α, β) for some α, β > 0; and condition (23) in Theorem 2.5 is

satis�ed if f ∈ Lip(α, β) for some α, β > 0.

Combining Theorems 2.3�2.5 with the Theorem 1.2 yields the following corollaries

[11, Corollary 1-3].

Corollary 2.3. Assume f ∈ L1(T2) and that condition (21) is satis�ed for some (x0, y0) ∈
T2. If f(·, y0) ∈ L1(T) and

u−1[f(x0 + u, y0)− f(x0 − u, y0)] ∈ L1(T),

then S̃
(1,0)
n1,n2(f ;x0, y0)→ f(·, y0)

∼(x0) as nj →∞ (j = 1, 2).

Corollary 2.4. Assume f ∈ L1(T2) and that condition (22) is satis�ed for some (x0, y0) ∈
T2. If f(x0, ·) ∈ L1(T) and

v−1[f(x0, y0 + v)− f(x0, y0 − v)] ∈ L1(T),

then S̃
(0,1)
n1,n2(f ;x0, y0)→ f(x0, ·)∼(y0) as nj →∞ (j = 1, 2).
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Corollary 2.5. Assume f ∈ L1(T2) and that condition (23) is satis�ed for some (x0, y0) ∈
T2.

(i) If f(·, y0) ∈ L1(T) and

u−1[f(x0 + u, y0)− f(x0, y0)] ∈ L1(T),

akkor S̃
(1,0)
m1,n1;m2,n2(f ;x0, y0)→ f(·, y0)

∼(x0) as mj → −∞ and nj →∞ (j = 1, 2).

(ii) If f(x0, ·) ∈ L1(T) and

v−1[f(x0, y0 + v)− f(x0, y0)] ∈ L1(T),

then S̃
(0,1)
m1,n1;m2,n2(f ;x0, y0)→ f(x0, ·)∼(y0) as mj → −∞ and nj →∞ (j = 1, 2).

Extension of Telyakovskii's theorem to function in two variables

Telyakovskii's theorem is extended as follows [12, Theorem 3].

Theorem 2.6. Let m1 = 1 < m2 < · · · < mp < . . . and n1 = 1 < n2 < · · · < nq < . . .

be sequences of natural numbers such that the conditions

∞∑
p=p0

1

mp

≤ A

mp0

, p0 = 1, 2, . . . ,(24)

∞∑
q=q0

1

nq
≤ B

nq0
, q0 = 1, 2, . . . ,(25)

are satis�ed, where A,B > 1 are constants. If a periodic function f is of bounded variation

over the rectangle [−π, π] × [−π, π] in the sense of Hardy and Krause (see [4]), then the

following estimate holds for all natural numbers p0, q0 and all points (x, y):

∞∑
p=p0

∞∑
q=q0

max
mp≤m≤M<mp+1

max
nq≤n≤N<nq+1

∣∣∣∣∣∣
M∑
|k|=m

N∑
|l|=n

f̂(k, l)ei(kx+ly)

∣∣∣∣∣∣ ≤(26)

≤ (π + 4)2AB

mp0nq0

mp0∑
k=1

nq0∑
l=1

V
(
ϕxy,

[
0,
π

k

]
×
[
0,
π

l

])
,

∞∑
p=p0

max
mp≤m≤M<mp+1

∣∣∣∣∣∣
M∑
|k|=m

nq0−1∑
|l|=0

f̂(k, l)ei(kx+ly)

∣∣∣∣∣∣ ≤(27)

≤ (π + 4)A

mp0

mp0∑
k=1

V
(
ϕx(f(·, y)),

[
0,
π

k

])
+

+
(π + 4)2AB

mp0nq0

mp0∑
k=1

nq0∑
l=1

V
(
ϕxy,

[
0,
π

k

]
×
[
0,
π

l

])
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and

∞∑
q=q0

max
nq≤n≤N<nq+1

∣∣∣∣∣∣
mp0−1∑
|k|=0

N∑
|l|=n

f̂(k, l)ei(kx+ly)

∣∣∣∣∣∣ ≤(28)

≤ (π + 4)B

nq0

nq0∑
l=1

V
(
ϕy(f(x, ·)),

[
0,
π

l

])
+

+
(π + 4)2AB

mp0nq0

mp0∑
k=1

nq0∑
l=1

V
(
ϕxy,

[
0,
π

k

]
×
[
0,
π

l

])
,

where A and B are the constants occurring in (24) and a (25), and

ϕxy(u, v) := f(x+ u, y + v) + f(x− u, y + v) +

+f(x+ u, y − v + f(x− u, y − v)− 4f(x, y), (u, v) ∈ [0, π]× [0, π].

An immediate consequence of Theorem 2.6 is the following [12, Corollary].

Corollary 2.6. If a periodic (with period 2π) function f(x, y) is of bounded variation

over the rectangle [−π, π]× [−π, π] and

(29) f(x, y) =
1

4
[f(x− 0, y − 0)− f(x− 0, y + 0)− f(x+ 0, y − 0) + f(x+ 0, y + 0)],

then for all integers m,n ≥ 0 we have

|Sm,n(f ;x, y)− f(x, y)| ≤ C1A

m+ 1

m+1∑
k=1

V
(
ϕx(f(·, y)),

[
0,
π

k

])
+

+
C2B

n+ 1

n+1∑
l=1

V
(
ϕy(f(x, ·)),

[
0,
π

l

])
+

+
C3AB

(m+ 1)(n+ 1)

m+1∑
k=1

n+1∑
l=1

V
(
ϕxy,

[
0,
π

k

]
×
[
0,
π

l

])
.

Clearly, the inequality in Theorem 2.6 is stronger than the latter one. We note that

Móricz [13, Theorem 3] proved the inequality in Corollary 2.6 in a di�erent way.

We also note that Corollary 2.6 is a two-dimensional extension of Theorem 1.3

by Bojani¢. Furthermore, Theorem 2.7 below by Hardy [8], which is a two-dimensional

extension of the classical Dirichlet�Jordan theorem (see, e.g., [19, Vol. I, p. 57]) can be

early obtained from Corollary 2.6.

Theorem 2.7 (Hardy). If a periodic (with period 2π) function f is of bounded variation

over the rectangle [−π, π] × [−π, π] and satis�es condition (29), then its double Fourier

series converges to f(x, y) at each point (x, y).
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