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Introduction

This booklet summarizes the scientific results of the author of the PhD dissertation entitled “Evo-

lutionary Tree Reconstruction and its Applications in Protein Classification”. In a wider sense the

dissertation concentrates on two key topics, namely artificial intelligence and bioinformatics. Within

these fields we focus on evolutionary tree reconstruction and machine learning.

Over a hundred years the theory of evolution has became the most acknowledged model of how

animal and plant species have developed over time. The discipline which deals with the modelling

of evolution is called phylogenetics (the word is originated by the conjunction of the Greek words:

phyle = tribe, race and genesis = birth). The methods which are in widespread use in phylogenetics

represent the process of species evolution by a so-called phylogenetic tree, which corresponds to a

weighted tree-graph where the leaves represent the biological objects of interest. In connection with

the reconstruction of these kinds of trees, several problems arise which are interesting from both a

computer scientific and a biological point of view.

Earlier phylogenetics focused just on the evolution of species based on morphological characters,

but nowadays the explosive advancement in molecular biology also requires the study of proteins.

The wealth of sequenced protein data allows us to perform novel investigations. The possibility of

comparing protein sequences has moved research work towards the systematization of the proteins

isolated from distinct species. Proteins that share a high sequence identity or similarity support the

hypothesis that they share a common ancestor, and therefore we call them evolutionary related or

homologous proteins. The analysis of evolutionary-related proteins has become a key question in

phylogenetics. After our brief introduction we can state the basic goal of the phylogenetics: to

reconstruct an appropriate tree topology based on protein sequences which have a high sequence

similarity. We should mention here that the high sequence similarity of proteins usually implies that

they share common functionality as well, but it does not logically follow.

As the dissertation consists of two parts, the author’s results will also be split into two parts. In

the first part, we introduce evolutionary tree reconstruction methodologies.

Several tree building method have been worked out and some of them have become widely used,

for example the Neighbor Joining (NJ) [1] and the Unweighted Pair Group Method with Arithmetic

mean (UPGMA) [2]. These methods belong to the so-called distance-based or distant matrix methods

because they reconstruct the evolutionary history of biological objects based only on pre-determined

or observed distance values among them. Our Multi-Stack (MS) [3] algorithm methodologically falls

also into this category. Broadly speaking, the MS method finds a weighted tree topology that predicts

the observed set of distances as closely as possible. More precisely, a weighted tree defines a distance

value for all pair of leaves –i.e. the sum of the weights of edges containing the path between them.

Thus the output tree of the MS approach we expect from the distances defined by itself will differ from

the observed distances as small as possible. To find this tree is an NP-complete problem when we

have an arbitrary distance measure [4], hence it can only be applied to heuristical solutions. The idea

behind the MS method is that it builds the optimal tree for the subsets of the proteins of interest, and

then it joins these subtrees in an iterative manner. We can apply this bottom-up approach efficiently in

many test scenarios, and the MS approach often outperforms many traditional tree building methods.

Since there are many tree building methods which produce more than one possible evolutionary

history, or the different tree building methods reconstruct different trees, in many cases it is necessary
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to use those methodologies which are able to reconstruct one ”representative” tree based on several

different phylogenetic trees. These kinds of methods are called the consensus tree methods [5], and

they are usually applied as the last step of the phylogenetic analysis process.

In general, each inner point in a rooted phylogenetic tree determines a subset of the biological

object of interest (i.e. the objects which are represented by those leaves in the tree which lie below

the inner point). Exploiting this observation we can see that the concept of a phylogenetic tree

and the concept of a hierarchical set system are equivalent. The hierarchical set systems consist of

those subsets or, in other words, clusters which are pairwise compatible. Thus each phylogenetic

tree corresponds to a pairwise compatible cluster set. Most of the consensus methods determine a

compatible subset of the cluster sets of the input trees in different ways, based on the cardinality of

clusters’ occurrences in the input trees. Their calculations can be done in polynomial time. Our goal

is to find the subset of the input clusters for which the total number of the cluster occurrences is

maximal. Furthermore, we can also define an arbitrary (not necessarily occurrence-based) weighting

function on the clusters of the input trees. We solved this consensus tree building approach efficiently

[6], and we showed that it can perform a more precise phylogenetic analysis than the traditional

consensus methods such as the Majority-Rule, the Strict and Greedy consensus methods[7].

In the second part of this thesis we apply the tree building methods in protein classification

problems. Automated protein classification is a crucial task in today’s biology. The unknown

genes/proteins of the distinct organisms can be retrieved and stored in the form of character se-

quences that are several hundred in length. Nowadays, it has become routine to compare this data

to the sequences of known proteins/genes using a method of approximate string matching. Then,

applying a machine learning method, the unknown protein can be classified into a known category

(e.g. a structural or functional category) [8]. The automated data annotation system of the frequently

mentioned genome research is based on this methodology.

In this thesis we seek to develop novel and efficient protein classification algorithms. Our basic

assumption is that the structure of the biological datasets can be represented by a phylogenetic tree,

and using this representation protein classification can be carried out significantly efficiently [9; 10].

The protein classification methods, which also use phylogenetic information, belong to the field of

phylogenomics [11], hence our methods can be viewed as phylogenetic algorithms as well.
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I. Evolutionary inference methods

The definition of a phylogenetic tree

The evolutionary history of biological objects (e.g. species, genes, proteins, genomes) in general can

be represented as a tree structure, where each leaf corresponds to a biological object of interest. These

biological objects will be denoted by X. The inner points of the tree can be regarded as hypothetical

ancestors. In the terminology we follow, a phylogenetic tree is a leaf-labelled tree[12].

Definition 1 A phylogenetic tree is an ordered pair T = (T ; φ), where T is a tree (acyclic con-

nected graph) whose vertex set V (T ) contains at most one element which is of degree two and

φ : X → L(T ) is a bijection between the leaf set L(T ) of T and the set X. The function φ is called

the labelling function. A phylogenetic tree is a rooted phylogenetic tree if it has a vertex r ∈ V which

is of degree two. The vertex r is called as the root of the phylogenetic tree.

Definition 2 If every non-root interior point of a rooted phylogenetic tree T is of degree three, then

T is called a binary phylogenetic tree.

Definition 3 A phylogenetic tree is a weighted phylogenetic tree if there is a non-negative real

function on its edge set: w : E(T ) → R≥0.

Any two vertices of a tree can be joined by a path. If we demand that any edge on a path occurs at

most once, then the path is a simple path. In a tree there is precisely one simple path for two vertices

which connects them.

Corollary 1 Let us denote a weighted phylogenetic tree by T . A pair of elements will be denoted

by x, y ∈ X and the simple path which joins them in T will be denoted by p(x, y). Then the weight

function of T can be used to define a distance function on the set X:

dT (x, y) =
∑

e∈p(x,y)

w(e)

This distance function is called the patristic distance or leaf distance over the set X.

Next, we look for that evolutionary history or phylogenetic tree which can represent the evolutionary

relationship for a given criteria in a better way. The interior vertices of a phylogenetic tree can be

interpreted in many ways, depending on the type of the biological object studied. For example, if

we reconstruct a tree for a set of genes, then each interior points can be interpreted as a so-called

evolutionary event like a gene duplication or gene specialization.

We should mention here that if RB(n) stands for the set of all rooted phylogenetic tree over the

set |X| = n, then |RB(n)| = (2n − 3)!! [13]. This means that the size of tree space grows at a

superexponential rate with the size of the taxon set. This is why elementary approaches, such as

exhaustive search, are hardly suitable even for a small taxon set.

3



Distance-based approach

Numerous approaches have been developed which seek to reconstruct phylogenetic trees. The explo-

sive advancement in molecular biology requires the development of the phylogenetic methods. The

phylogenetic tree reconstruction methods can be roughly classified into three main types: distance-,

sequence and quartet-based methods [1; 14; 15]. In this dissertation we present a novel distance-based

algorithm for this task.

In the case of the distance-based approach, we shall assume that just the similarity distances

between the biological objects are available [13]. Thus, before we perform a phylogenetic analysis

we need a distance function. Using this function we can express numerically the ’similarities’ or even

the ’dissimilarities’ between the set of objects X. If we have a formal definition for a ’similarity’

measure, which can express the similarities of sequences of fixed length, then a monotone decreasing

transformation of the similarities can be used as a distance-like measure, and vice-versa. Several

distance functions are now commonly used which define distance values between character strings

over a given alphabet.

In the course of evolution the changes in the sequences are called mutations. For the assessment

of how two sequences are related from an evolutionary point of view, we need to identify these changes

in the sequences. To do this the most commonly used method is the general alignment model, which

in bioinformatics is also known as the Needleman-Wunsch algorithm. The method itself carries out

a pairwise alignment for the sequences. Based on this alignment, we can determine the number of

positions where two sequences are identical or differ from each other. Several alternative alignment

methods have been developed for this, like the Smith-Waterman and the Gotoh algorithms [16; 17].

After the alignment step, the distances of sequences are calculated based on a time-continuous

Markov Chain [18; 19]. These models determine the evolutionary distances of sequences based on

the number and type of mutations which were identified during the pairwise alignment of sequences.

This approach can take into account the case when in a certain position duplicated mutation takes

place. For example, A → C occurs in one position, and then there is a C → A mutation again.

Alignment-free sequence distances are also applied in different areas of bioinformatics, but they

are not so common as the alignment-based ones [20]. Perhaps the simplest alignment-free sequence

distance, which also has low computational requirements, is the relative entropy of the distribution of

nucleic or amino acids in a given set of sequences of interest. In early automatic protein classification

research this was mainly applied as the sequence comparison method.

The distance-based tree building algorithms have a close connection with the clustering meth-

ods. The main goal here is also to find groupings of target objects based on a predefined similarity

measure/distance function. The elements of the groupings are called clusters. Numerous traditional

agglomerative clustering methods are in use for phylogenetic analysis like the Single Linkage (SL),

Complete Linkage (CL) and UPGMA algorithms. The application of these methods in tree build-

ing is very useful because the clustering we get is represented as a tree structure. Here the known

distance-based tree building method is the Neighbor-Joining method, which is methodologically very

similar to the above-mentioned SL and CL clustering methods. The NJ method can be considered as

a divisive method, namely it constructs the phylogenetic tree via a bottom-up clustering procedure.

The reasons for the success of the NJ method are being studied nowadays, over 20 years after it was

first presented. Several of its advantages and disadvantages have been recently pointed out[21; 22].
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The tree reconstruction methods outlined above belong to the class of agglomerative hierarchical

clustering algorithms, since during each iteration they divide a cluster (top-down) or join two clusters

( bottom-up approach) based on a function defined on the clusters. Furthermore, the tree building

methods assign edge weights to the edges of the output tree. Since the vertices of a phylogenetic tree

represent biological objects (the inner points represent only hypothetical objects), the edge lengths

or edge weights represent evolutionary distances of objects. If we would like to compare the outputs

of the distance-based methods, then which tree should we select? One way of answering this is by

investigating the difference between the predefined distance values on X and the patristic distance

defined by a phylogenetic tree over X. Hence let us define the tree error eT of a phylogenetic tree T
for a distance function d by the following formula:

eT =
∑

x,y∈X

(d(x, y)− dT (x, y))2 (1)

Then the so-called path-edge incidence matrix PT for a phylogenetic tree T having n leaves is given

by:

PT (p, e) =

{
1 , if e ∈ p

0 otherwise,
(2)

whose columns correspond to the edges of T , while the rows correspond to the paths between the

leaves of T . Clearly this matrix has n − 1 columns and
(n
2

)
rows. Figure 1 shows a simple example

for the construction of the path-edge incidence matrix. Then by solving an optimization problem we

can obtain the minimal tree error, where the x vector contains the optimal edge weights of T , and

the vector d contains the distance values according to the PT topology matrix 1:

eT = min
x∈Rn−1

+

‖ (PTx− d) ‖ (3)

For a given tree T having n leaves, the minimal tree error eT can be calculated in O(n4) time

using the Least Squares methods[15]. But later it was shown that the tree error can be calculated

in O(n2) time [23]. In the literature this distance-based criteria was applied to get an optimal edge

weighting after a phylogenetic analysis [24].

Based on the minimal tree errors the weighted phylogenetic trees over a set X can be ranked.

Day showed that the problem of finding tree over a set X which has a minimal tree error is in general

NP-complete [4]. This is why we applied the so-called Multi-Stack (MS) approach in our work [3].

This approach is used in the field of speech recognition, and we adopted this method to reconstruct

phylogenetic trees because the MS approach is very suitable for finding the heuristic solution of

problems which have an enormous solution space.

The initial step of our MS method includes the exploration of all tree topologies with at most

three leaves, since for arbitrary distance values and for any tree with fewer than three leaves there is

an edge weighting such that the tree error will be zero (so the optima in Eq. 3 will be zero). After the

initial step, the method iteratively joins the examined subtrees whose tree error has been calculated.

1The arrangement according to the topology matrix PT determines an unambiguous ordering among the
(
n
2

)
entries

of the vector d.
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In the kth iteration the MS algorithm joins the trees which have k, or fewer than k leaves using a

tree joining operator. Repeatedly carrying out this iterative step we gradually get the kinds of trees

which have an increasing number of leaves. In the MS algorithm we assign a separate stack to the

trees which have the same number of leaves and store the K best candidate subtrees in the stack

according to their tree errors. Hence we can explore a relevant part of the tree space quite efficiently.

Figure 1: A phylogenetic tree and its edge-path incidence matrix, where X = {A,B,C,D, E}.

Consensus tree methods

Let us introduce the consensus tree methods and then actively exploit the analogy between the rooted

phylogenetic trees and the hierarchical set systems.

Definition 4 Let M be a finite set. A subset H of subsets of M is a hierarchy if for all A, B ∈ H,

A ∩B ∈ {∅, A,B} (4)

We call the elements of hierarchy H pairwise compatible.

Figure 2: The analogy between the phylogenetic trees and the hierarchical set systems.
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Since each inner point of a phylogenetic tree T over a set X assigns a subset of the set X (the

elements can be found below it), we can naturally map the inner points of T onto the elements of

a hierarchy over X (Figure 2). In this way we get a bijection between the two structures. In the

latter T C stands for the hierarchy belonging to the rooted phylogenetic tree T . As the consensus tree

methods result in one ’representative’ tree from many phylogenetic tree, we can describe the basis

of these methods such that they determine a pairwise compatible subset from the union of many

hierarchies.

The most widely used consensus tree methods are briefly described below. Their detailed description

and some of their properties can be found in the seminal paper by David Bryant [7]:

1. Strict consensus: it simply collects those subsets from the input set which are common to all

input phylogenetic trees.

2. Majority-rule consensus: it simply collects those subsets from the input set which can be found

in more than the half of the input phylogenetic trees.

3. Greedy consensus: first, it sorts the subsets in descending order according to their frequencies

(i.e. the number hierarchy of trees they appeared in). Then it iteratively adds the subset with

the highest frequency to our consensus subset set if it obeys the restriction of being compatible

with all previously added subsets.

All of these methods determine a compatible subset in different ways based on the cardinality of

subset occurrences in the input hierarchies. However, we can devise a more general approach as well.

Let us assume that there is a real function wC defined on C =
⋃

i T C
i such that it maps C onto the

non-negative real numbers. Our goal here is to determine a C ′ ⊆ C for which
∑

c∈C′ w (c) → max.

This approach is known as the Max Clique Consensus problem, and it is NP-complete when the

number of input trees is more than two [25].

We created a binary integer programming formulation for the MCC problem. After, we solved it

using the well-known Branch&Bound algorithm [26] efficiently. Thus the MCC approach turned out

to be suitable for phylogenetic analysis.

In our study [6] we investigated the performance of this methodology using many evolutionary

models. We also tested this method when the input trees were obtained from many different tree

building methods, then we introduced a Maximum Likelihood (ML) based weighting function.

The experiments clearly show that it is worth using this ML based weighting with the MCC

consensus tree method, as in numerous test scenarios this outperforms the other consensus tree

methods. However, we should mention here that the Strict Consensus method was better than the

other consensus method in cases where the input trees were very different in size and type.

The assessment of the accuracy of the phylogenetic analysis

The evolutionary history of proteins is usually unknown, and often there is no consensus among the

experts. Therefore it is very important to work out methods which can assess the performance of a

phylogenetic analysis, and allow us to compare the phylogenetic tree reconstruction methods. Here we

introduce a simple testing protocol that is suitable for this purpose. When we implemented the testing
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Figure 3: The process of testing phylogenetic tree reconstruction methods.

protocol we took into account many biological observations, hence the advantages and disadvantages

of the tree building methods can be easily seen.

The core of the testing process consists of three main steps:

1. We construct a model tree having N leaves whose edge lengths are generated according to

some distribution (e.g. a standard exponential distribution).

2. Based on an evolutionary model (e.g. Kimura-2-parameter model) we construct N sequences

according to the branching pattern of the model tree.

3. We build a tree using the tree building method of interest for the generated sequences. Then

we compare this output tree to the model tree using a tree similarity measure. In this way we

can evaluate the performance of the tree reconstruction method.

In step 1 we could choose a model tree based, for example, on an uniform distribution or we could

apply the Yule-Harding process [27; 28]. This process has many attractive features. For instance,

it is more likely to produce balanced trees, so generating a caterpillar tree has a higher probability

than if we use a uniform distribution in the tree space. In the second step we can use some of the

evolutionary models to generate sequences. Quite a few evolutionary models are available for this

purpose [13]. In the last step we build a tree using the tree building method of interest. By comparing

the output tree to the model tree we can infer the accuracy of the tree building. There are many tree

similarity metrics in use. If we are only interested in the similarity of the topology then we should use

the Robinson-Foulds distance[29]. If we apply this testing protocol repeatedly, we can get a reliable

measurement for the accuracy of the tree building method. Hence we can benchmark the different

tree reconstruction methods using this testing protocol.

I/1. Thesis

The author developed a Multi-Stack based phylogenetic tree building method which makes use of the

least-squares criteria. In this way he produced a novel algorithm which is competitive with the conven-

tional used distance-based tree building methods, and it can reconstruct the evolutionary history of
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datasets in a better way when the biological objects (sequences of interest) have a lower similarity [3].

This improvement can be shown using evolutionary distances and alignment-free sequence distances.

In addition, the MS method achieves better results in many test scenarios than those obtained using

the Fitch-Margoliash algorithm, which also applies the least-squares criteria.

I/2. Thesis

The author solved the Max Clique Consensus problem via a binary integer programming task. With

this approach one can find the compatible subsets of an arbitrary weighting of subsets that have

maximal weights. In addition, the author introduced a novel Maximum Likelihood weighting scheme,

which leads to an efficient phylogenetic reconstruction technique. He tested this method with different

evolutionary models and found that this approach in many cases outperforms the standard consensus

tree building methods [6]. The trees in the tests were generated by the widely-used PAUP program

package[30], and the consensus methods were compared with each other on these trees. After, the

author compared the consensus methods on a real-life database.

I/3. Thesis

The author created a testing framework where the different phylogenetic reconstruction techniques

could be compared using different evolutionary models over a wide range of data sizes [3; 6]. In this

testing methodology, the biological sequences (DNA or protein) are generated based on a predeter-

mined model evolutionary tree. Next, the tree-building method of interest is applied on this set of

sequences, and it produces an output tree, which is then compared to the predetermined model tree.

Based on the similarity values of these trees we can estimate the accuracy of the given tree recon-

struction method. This testing framework provides a more comprehensive testing environment than

the bootstrap method [13] because here we can examine the efficiency of the tree-building method

using different evolutionary models.
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II. Phylogenetic tree-based protein classification methods

Eisen first made use of evolutionary trees in protein classification, and he called this novel approach

phylogenomics [11]. Up to now many methods have been presented in the field of bioinformatics. But

most of these methods cannot cope with large-scale datasets in many cases, because in general they

are not just needed for pairwise sequence similarities but, for example, they are needed to identify

the gene duplication events or they require information from a multiple alignment. This is why the

application of these kind of methods in a real-life protein classification system is very time consuming

and difficult.

In our work we present many methods which seek to solve the protein classification task using

phylogenetic trees. In our approach we require just the similarities of the given sequences. We

store these similarity relationships in a weighted phylogenetic tree structure. All of the methods we

introduce here are based on the assumption that we can represent the similarity relations of proteins

in a better way using a weighted phylogenetic tree.

When we introduce the methods below, we assume that we have a dataset with a known class

labels. This dataset will also be called an a priori database or known dataset. These classes have a

biological meaning, e.g. they represent a functional category or a structural class. Moreover, we will

also assume that we have an element with an unknown class label which is called the query element

or simply the unknown element, which will be classified.

TreeInsert and TreeNN methods

The TreeInsert method is based on the assumption that we can construct the real phylogenetic tree

of a given known protein database. This rooted weighted phylogenetic tree T is constructed using

the similarities d(x, y) between the proteins contained the known database. Afterwards we try to

place the query element q into the phylogenetic tree T . But to find the best place for q we need to

measure the ”amount of fitting” of q into the original tree T . Following the usual conventions of

phylogenetics, we insert the q query element into the tree T as a leaf node. Below Figure 4 shows an

insertion of a the query element, where Li stands for the leaf which represents the ith proteins from

the known dataset, and pi denotes the parent of Li before the insertion. After the insertion of a q

query element, p′i will be the common ancestor of Li and Lq will represent the query element. The

variables x, y and z are the unknown edge lengths.

With this line of thinking, we need to determine the amount of fitting of an unknown element into the

phylogenetic tree T . This is why we define the insertion cost of q for a leaf Li. This insertion cost

will depend on the difference between the patristic distance of T after the insertion of the unknown

element and the d similarity values. Now let us calculate the optimal fitting of the patristic distance

between q and the other leaves and the similarities d(x, y):

min
0≤x,y




n∑

j=1

(d (Lj , Lq)− dT (Li, Lq))




2

(5)

s.t. y + z = dT (pi, Li)
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Figure 4: The insertion of an unknown q element as a leaf node of T next to the leaf Li.

These constraints ensure that the leaf-distance between Li and its parent remains unchanged. The

insertion cost for a leaf Li shall be denoted by IC(Lq, Li), and it will be the optimal value of x, when

the formula in Eq. 5 is minimal.

The TreeInsert algorithm inserts the q query elements next to each leaf into the tree separately

then, based on the minimal insertion cost, it determines the optimal place of q. In this way we can

place the unknown element into the evolutionary history of the a prior dataset. After, the TreeInsert

method assigns a class label of that leaf to the query where the insertion cost was minimal.

The TreeNN method is a simpler method than TreeInsert. In this approach we also assume that

the pairwise similarities between the elements of the a prior dataset D are known. The q query

elements will be compared to each elements of the known dataset using the same similarity measure.

Next, TreeNN constructs a weighted phylogenetic tree T using a tree building method for D and q

together . Based on the patristic distance of T we can perform the classification of q by using the

Nearest Neighbor method[31], or another like it.

Investigating these methods from a protein classification point of view, the TreeInsert method first

builds a weighted tree T for the a prior dataset, and then it looks for the place of each test element

in T where the insertion cost is minimal. In contrast with this, the TreeNN method reconstructs a

tree for a known dataset and each test element separately. TreeInsert achieves good results in protein

classification, but we need to perform n optimization tasks for the calculation of the insertion cost of

a test elements, where n denotes the size of the a prior dataset. We compared these methods with

several model evaluation techniques, and they achieved quite similar results[9].

TreeProp-N

Several methods are in use where the similarities of studied objects are stored in a special graph

structure, such as a complete graph or tree graph. Then these methods carry out a so-called propa-

gation on this graph structure, which means that the adjacent graph nodes send a message to each

other. These messages usually correspond to real numbers. These kinds of propagational methods

are, for example, the PageRank [32], Message Passing [33], Affinity Propagation [34] algorithms. In

our study we used a special form of the PageRank method, namely the Personalized PageRank algo-

rithm [35; 36], as our starting point. This method has been mostly applied in Information Retrieval

purposes, and it has been used with great success by the Google WEB surfer perhaps being the best
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known example. The main idea behind the Personalized PageRank method is the following: if we

have a query element whose similarities to the elements of known dataset are known, then let us also

take into account the similarity relationships of the dataset at the classification of the query element.

Similar to the notation used above, let us denote the unknown elements by q, and the known

dataset by D = {y1, y2, . . . , yn}. The vector

y(0) = (d(q, y1), d(q, y2), . . . , d(q, yn))

contains the original similarity values between the a prior database and the unknown element. The

similarities within the database D will be rewritten into a matrix form S = d(yi, yj). And the y(t)

vector will contain the similarity values after the tth iteration. Next, using the propagation rule

described in Eq. 6, we can get updated similarity values for the query elements where the similarity

relationships within the database D has been considered as well. The matrix S contains these similarity

relationships, and this matrix can be used in a simple way in the propagation rule:

y(t + 1) = (1− α)y(0) + αSy(t) (6)

This iterative method is quite slow in practice, because in many cases we have to work with large-scale

networks, and we have to carry out the propagation for each query element. This is why we substitute

the network by a more sparse structure, namely an unrooted weighted binary phylogenetic tree T
which is built up for the D and q, as we did in the case of TreeNN. Since we construct a phylogenetic

tree for n elements, our network will have 2n− 1 points, but each point is of degree of three at most.

Let yi(0) denotes the patristic distance of the query q and the ith element of D. In addition, the

set of points N(pi) will be the neighbors of pi in T . The propagation rule we shall has the following

form2:

yi(t + 1) = (1− α)yi(0) + α
∑

p∈N(pi)

dT (p, pi)yp(t). (7)

This approach is very similar to the Personalized PageRank method. There the similarities within

the database are represented by a weighted complete graph, but here we represent the similarity

relationships by a weighted binary phylogenetic tree.

This method can be applied easily in protein classification. Let us denote the y∗ limit point of

the y1, y2, . . . , yT , . . . convergent point series3 defined in Eq. 7. The classification can be carried out

based on the maximal component of y∗. If we set the number of iterations to zero, then this method

will be equivalent to the TreeNN method, because y0 consists of patristic distances.

TreeProp-E

In our study we also have developed another extension of TreeProp-N. The TreeProp-E method carries

out the propagation on the weight of edges based on a very similar propagation rule like TreeProp-

N. Let us denote the edge weights of a weighted phylogenetic tree T by y(0) vector, whose ith

2Since this propagation can be performed on similarities, we need to use a monotone decreasing function on the
patristic distance of T .

3The convergence can be easily obtained using the Perron-Frobenius theorem.
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component will be yi(0). We say two edges are adjacent in a tree when they have a common point.

The adjacent edges of an edge e will be denoted by N(e). After this, we shall adapt the following

propagational rule for the edge of the tree T :

yi(t + 1) = (1− α)yi(0) +
α

|N (ei) |
∑

ej∈N(ei)

yej(t). (8)

The idea behind this method is very similar to the motivation of the original PageRank algorithm.

In a weighted phylogenetic tree the edge weights represent similarities, and an edge will be elongated

–it will get a bigger edge weight– if it has more adjacent edges which represent bigger similarities.

We can use this method in protein classification: we will reconstruct a tree for the query element

q and the known database D, and then we will carry out the tree-based propagation on the tree in the

way described in Eq. 8. After the propagation4 we can calculate the patristic distance between the

query element and the known database, and we can perform the classification using a Nearest Neighbor

classifier. In many cases in our experiments TreeProp-E outperformed the traditional machine learning

algorithms like Artificial Neural Networks [37], Support Vector Machines [38].

Receiver Operating Characteristic (ROC) analysis

ROC analysis is the most commonly used evaluation technique for protein classification models,

which is applied in a wide range in bioinformatics [39] as well as in signal processing [40]. In protein

classification there are usually multi-class classification tasks. But a multi-class task can be considered

as many one versus all classification tasks, where one particular class is considered as the positive class

while the rest of the samples are treated as negatives. A binary classification task can be handled by

a binary classifier, which has trained on the training set. This binary classifier assigns a so-called class

conditional probability to all elements to be classified. Based on the class conditional probability of

the positive class, we can rank the test elements. Then each real value t ∈ [0, 1] splits the test set

into two in a natural way: we consider a test element as negative if it has a value below t, otherwise

it will be considered as positive. So each t can be treated as a decision threshold, and this decision

threshold influences the prediction of the binary classifier. When we also take into account the real

class labels of the test elements, then we can divide the test elements into four groups, depending on

the value of t:

1. The binary classifier predicts the test element as positive, and its real class label is positive.

Then this element is a true positive element. The set of these test elements shall be denoted

by TP (t).

2. The binary classifier predicts the test element as positive, but its real class label is negative.

Then this element is a false positive element. The set of these test elements shall be denoted

by FP (t).

3. The binary classifier predicts the test element as negative, but its real class label is positive.

Then this element is a false negative element. The set of these test elements shall be denoted

by FN(t).

4The experiments showed clearly that the value of yi(t) does not really change after 20 iteration.
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4. The binary classifier predicts the test element as negative, and its real class label is negative.

Then this element is a true negative element. The set of these test elements shall be denoted

by TN(t)

Using these notations we can define the False Positive Rate (FPR) and the True Positive Rate (TPR),

which depend on the value of t as well:

TPR(t) =
TP (t)

TP (t) + FN(t)
, FPR(t) =

FP (t)

FP (t) + TN(t)
(9)

Then the definition of the ROC curve is the following.

Definition 5 Given a square N = [0, 1]2, and the values of TPR(t) and FPR(t) for all t ∈ [0, 1],

the ROC curve is the point set of (TPR(t), FPR(t)).

The Area Under Curve (AUC) can be interpreted as the probability of the event when our classifier

predicts an element as positive and its real class label is also positive[40]. This is why this model

evaluation technique is more reliable than, for example, the simple accuracy one. Figure 6 shows a

simple example of the application of an ROC analysis.

Figure 5: The calculation of the ROC curve on ranked objects. On the left hand side of the picture
one can see the probabilities obtained by the binary classifier and beside it are the real class labels of
the corresponding objects. Using these the ROC curve can be plotted, as we have done on the right
hand side.

In protein sequence classification ROC analysis is also a commonly applied technique, but here we

need to evaluate sequence similarities. Hence we compare the query element to the known dataset

using a sequence similarity, and then based on these similarities we can arrange the elements of the

known dataset in decreasing order. Afterwards we can apply ROC analysis for this ranking. Here the

top list of this ranking is more important from the point of evaluation, because we expect that there
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will be more positive elements at the top of the list than later on in the raking. This is why we can

limit the top list so as to include n negatives (where n is usually taken as some plausible number like

10, 50 etc.) [39]. These are the so-called ROCn (e.g. ROC10, ROC50) values.

The main difficulties with the protein datasets are that the known classes (structural of functional

classes) are very different in size and in inner class similarities. So it is very hard to find the appropriate

n values for the ROCn analysis. We propose a method for the setting of the value of n [41]. Due to

this method we can then get a more reliable AUC value for the problematic protein classes, and ROC

analysis will not be so sensitive to the size of the training set. This method can be very useful during

the development of the protein classification databases.

II/1. Thesis

The author introduced the TreeInsert and TreeNN methods, which are novel tree-based protein classi-

fication algorithms. In contrast to the earlier methods, the algorithms he introduced here make use of

just the sequence similarities. Thus they are readily applicable in a wide range on protein classification

tasks. The author compared the tree-based methods on many protein classification tasks using ROC

analysis, and they were often significant better. The experiments showed that it is worth applying

phylogenetic information in protein classification. [9].

II/2. Thesis

The author devised two tree-based propagational methods, namely TreeProp-N and TreeProp-E. These

methods may be regarded as extensions of TreeNN, because all of these methods update the sequence

similarities using the topology of a phylogenetic tree. In experiments these propagational algorithms

usually gave a better performance in protein classification comparing to the former systems [10].

II/3. Thesis

The author created a ROC analysis-based evaluation method which is a more reliable model evaluation

technique than the original ROC analysis when the distribution of the classes is imbalanced. Applying

it, a model selection could be carried out more reliably than with the other approaches[41]. He tested

this approach on several large-scale datasets.
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Conclusions

For understanding the language of genes and proteins we have to find a suitable model of how they

have evolved in the course of evolution. Because of this we need to develop tree building methods

which discover the process of evolution. These kinds of methods have gained importance with the

advent of molecular biology in the 1970’s. Thereafter the implosive advancement in biology allows

us to investigate the sequences of the proteins, genes, as well as species/genomes. This is why the

microbiological research requires novel and novel phylogenetic analysis tools.

In the first part of this thesis we provided two phylogenetic tree reconstruction methodologies.

In the second part, to demonstrate the application of phylogenetic tree reconstruction methods in

automatic protein classification, then we introduced protein classification algorithms which make use

of phylogenetic tree building methods as well.

The main goal of the first part was to introduce methodologies which can perform a highly accurate

phylogenetic analysis. The Multi-Stack algorithm categorically is a distance-based method. Thus it

uses only the distance values of the sequences of interest to build a phylogenetic tree. This method

is suitable, for example, in constructing a guide tree before multiple alignment.

The second phylogenetic analysis tool was a consensus tree building method, namely the Max

Clique Consensus method. It is obvious from the results that the MCC consensus outperforms many

widely-used procedures, and it was easy to implement. The time requirement of this method is

reasonable (proportional to the tree building method itself), so it can be employed efficiently in a

post-processing phase of a phylogenetic analysis tool.

In the second part of this thesis we sought to develop novel and efficient protein classification

algorithms. Our basic assumption was that the structure of the biological datasets could be repre-

sented by a phylogenetic tree, and using this representation protein classification could be carried out

significantly more efficient. This new field of bioinformatics is a very promising area of research.
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