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1. Bevezetés

Dinamikai rendszerek vizsgalata soran sok esetben érdekes kérdés lehet,
hogy valéban rendelkeznek-e a megoldasok kozelitése sordn észlelt kaoti-
kus vagy stabil viselkedéssel. Ennek megvilaszolasara megbizhaté techni-
kakat javasoltunk, melyek képesek eldonteni egy adott régiorél, hogy az
rendelkezik-e az ilyen viselkedésekhez sziikséges tulajdonsagokkal.

Ebben az esetben a megbizhatésdg matematikai ereji bizonyitast je-
lent, melyhez a szamitogépes részben kezelni kell minden kerekitési és
egyéb hibat. Valés szamok helyett intervallumokkal szamolunk, és ha
az eredményintervallum valamely hatarpontja nem abrazolhaté szamito-
gépen, akkor megfelelGen kifelé kerekitjiik azt.

Ezek utén, egy halmazelméleti tartalmazasokon alapulé eljarast muta-
tunk be, mely képes kimutani egy Smale-patko 1étezését, és ezzel a kaotikus
viselkedést. A kaotikus viselkedésekhez sziikséges Osszes tartalmazasi fel-
tétel felirhato 7;(W;) C Uy alakban (lasd az 1. abrat). Igy ahhoz, hogy
kimutassuk egy kaotikus régié létezését, ilyen tipust feltételeket kell ellen-
Grizni.
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1. abra. Kiilonb6z6 patkok szerkezetei.



2. Az Hénon-leképezés kaotikus régioi

Az ide tartozé problémakat az ezt vizsgalé matematikusok rendszerint
emberi beavatkozassal, ,kézzel” oldjak meg. Az egyik ilyen moédszer az,
amikor a Lipschitz-konstans hasznalataval kezelik a kozelité megoldasokat,
valamint figyelembe veszik a kerekitési hibakat is. Majd egy adott szami
racspontra szamitogéppel ellendrzik az adott feltételeket [15]. Az emberi
beavatkozas elkeriilésére egy intervallumaritmetikin alapulé automatikus
eljarast javasolunk.

2.1. Az ellenérzé eljaras

Egy szamitégépes mddszert fogunk bemutatni, mely képes egy régiorol
megmutatni, hogy teljesiti-e a kaotikus viselkedéshez sziikséges feltételeket.
Vizsgalatainkat az Hénon-leképezésen kezdjiik:

H(z,y) = (1 +y — Az?, Bx).

Zgliczynski egy korabbi cikkében [15] az Hénon-leképezés klasszikus para-
métereit (A = 1.4 és B = 0.3), valamint az alabbi kétdimenzios teriileteket
tekintette: /= Ky U Fo = {(z,y) | £ > 04, y > 028} U {(z,y) | z <
0.64, ly| < 0.01}, O = {(z,y) | x < 0.4, y > 001}, Or = {(z,y) | v <
0}.

Zgliczyniski az alabbi, 1. Tétel segitségével a Qo és ()1 paralelogram-
makra bizonyitotta a kaotikus viselkedéshez sziikséges feltételeket. Ezen
paralelogrammak két oldala parhuzamos az z tengellyel (yo = 0.01 és
y1 = 0.28), a masik kettd pedig (tan 2) szbget zar be vele. Az also csticspon-
tok x koordinatai rendre x, = 0.460, z; = 0.556, z., = 0.558 és x4 = 0.620.
A Qo és Q1 paralelogrammak Hénon-leképezés 7-dik iteraltja melletti képei
lathatok a 2. abran.

1. Tétel (Zgliczynski). Ha valamely k-ro az aldbbi feltételek teljesilnek:
Hk(a U d) C Og,
Hk(b Uc) C Oy,
HF(LUR) C (R?\ E),
akkor H* rendelkezik kaotikus régicual.

A kaotikus régié létezésének ellendrzésére egy, az intervallumaritmeti-
kan alapulo korlatozas és szétvalasztis eljarast készitettiink. Az algoritmus
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2. abra. Az Hénon-leképezés 7-dik iteraltjanak kaotikus régiéja az Hénon-
leképezés A = 1.4 és B = 0.3 paraméterei mellett. A paralelogrammak a,
b, ¢, és d oldalai a 3. abra, bal fels§ sarkaban is lathatoak.

elszoér meghatarozza a kezdd intervallumot, mely tartalmazza az ellenéri-
zendd tartomanyt:

[0.46000000000, 0.75500000000] x [0.01000000000, 0.28000000000].

Majd egymas utén ellenérzi a harom tartalmazasi tulajdonsagot. Az 4lli-
tas helyességéhez természetesen mind a harom tulajdonsagot igazolni kell.
Az Hénon-leképezés 7-dik iteraltja esetében a sziikséges transzformaciok
szama rendre 273, 523 és 1613 volt. Abban az esetben, ha az algoritmus
nem volt képes kézvetleniil igazolni az allitas helyességét egy részinterval-
lumra, akkor azt eltarolja, hogy késébb tovabb darabolhassa. A tarolo
verem maximalis mélysége az ellendrzés soran rendre 11, 13 és 14 volt. A
sziikséges CPU id6 mindossze par méasodperc volt egy atlagos PC-n.

2.2. Optimalizal6 eljaras kaotikus régiok keresésére

Bebizonyitottuk, hogy az algoritmusunk képes véges szamu 1épés utan
pozitiv valaszt adni, és a kapott valasz matematikai értelemben is megbiz-
haté. Egy ilyen teljesen automatikus eljaras a kaotikus régié bizonyitasara
célfiiggvényként hasznilhatd egy optimalizald eljarasban, mely igy alkal-
mas lehet 11j kaotikus régiok detektalasara.
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3. abra. Az L és R paralelogrammak, és az algoritmus altal generalt két-
dimenziés intervallumok, melyekre vagy teljestilnek az 1. Tételben adott
feltételek, vagy egyetlen pontot sem tartalmaznak az adott régiobol.

A megadott optimalizilé eljaras sikerességében kulcsfontossagi szem-
pont, hogy hogyan konstrudljuk meg a célfiggvényt. Korabbi, hasonld
problémak tapasztalatai alapjan, gy dontottiink, hogy 6sszeadjuk azokat
a nemnegativ értékeket, amelyek jellemzik, hogy milyen mértékben sériil-
nek az adott feltételek. Abban az esetben, ha barmely feltétel sériil, az
Osszeghez hozzdadunk egy pozitiv konstanst.



Tekintsiink egy olyan példat, mikor az egyik
T(Q)cCO

alaki feltétel sériill. Ekkor az ellenérzé rutin visszaad egy részinterval-
lumot, mely tartalmaz legalabb egy pontot, amely megsérti a feltételt.
Ezutan szamoljuk ki a transzformalt intervallum (7'(1)) és az O halmaz
Hausdorf-tavolsagat:
max inf d(z,y),
2T (1) ycO

ahol d(z,vy) egy adott metrika két kétdimenziés pont kozott. Megjegyzen-
dd, hogy ezen célfiiggvény alakja erGsen befolyasolja az optimalizalé eljaras
hatékonysagat. Fontos, hogy a minimalizalas soran a kisebb célfiiggvényér-
ték egy jobb strukturat ,sejtsen”, azaz a derivalt irdnya segitse a megfelels
paraméterek megtalalasat. Emiatt az ellenérzé eljarast gy modositottuk,
hogy a legtavolabbi, nem megfelels intervallumot adja vissza. A gyorsabb
szamitasok végett mindig a legrosszabb eredményt mutatéd intervallumot
vettiik ki a verembél. Igy, ha egy tal kicsi intervallumhoz jutottunk, ak-
kor a veremben 1év$ Gsszes elem tavolsaga kisebb a célteriilettsl, azaz a
legtavolabbi rossz intervallumot kaptuk meg. Egy jol megvalasztott cél-
fliggvény masik elénye, hogy amikor nem sériil a feltétel, akkor sem kell
azt kicserélni, hanem egyszertien szamolhatunk az eredeti formulaval.

Ezek utan az Osszes feltételre Ssszegezziik ezen fiiggvényeket. Igy az
alabbi formaban frhatjuk fel az optimalizalasi problémankat:

min g(x), abol g(z) =p <41 x| ot d(z, y)) :
melyben x egy lehetséges paramétersorozat a keresendd halmazok koor-
dinataira; X egy n-dimenziés intervallum, mely a lehetséges megoldasok
halmaza; m a feltételek szama; I az ellenérzé eljaras altal visszaadott
intervallum, amely sérti az adott feltételt; O; az i. feltétel célhalmaza;
p(y) =y + C, ha barmely I; # 0, egyébként p(y) = 0.



LO | ZO FE| PE| T
12| 413,197 | 4,086 | 17
12 112913 3,365 | 16
12| 113,569 | 4,303 | 19
12 212918 | 3,394 | 16
12 114,117 | 5,083 | 18
12| 321,391 | 7,400 | 25
12 212623 3,29 | 16
12| 0] 15,388 | 6,221 | 30
12| 313458 | 3,858 | 15
12 214,643 | 5,002 | 16

1. tablazat. Numerikus eredmények a H® kaotikus régiénak keresésére. LO
jelenti a megtalalt lokalis optimumok szamat, ZO az ezek koziil 0 optimum
értékkel rendelkezdk szamat, FE a célfiiggvény kiértékelésének a szamat,
PE a blintetd fliggvények kiértékelésének a szamat, és T a sziikséges CPU
id6t percben.

2.3. Alkalmazasok

Az optimalizalo eljarasunkat elGszor az Hénon-leképezés 5-dik iteraltjan
teszteltlik. Megjegyezziik, hogy a kisebb iteraltakra nehezebb a kaotikus
régiok megtaldlasa, tovabba a szakirodalomban sem taldlhaté a 7-nél ki-
sebb iteraltakra ilyen tartomény. Néhany kisérlet utan, az optimalizilé
eljarasunkat az alabbi keresési teriilettel hasznaltuk:

A € [1.00,2.00], B € [0.10,1.00], 24, zp, zc, 2q € [0.40,0.64].

Az eljaras hatékonysagat az 1. tablazat illusztralja, mely 10 futis nu-
merikus eredményeit tartalmazza.

Ezzel az eljarassal az Hénon-leképezés szamos kaotikus régiojat fel-
tartuk, tobbek kozott a klasszikus paraméterek mellett a 4-dik, 2-dik és
6-dik iteraltakeét (lasd a 4. abrat). Az eljaras alkalmas volt tovabba a
topologikus entrépia alsé korlatjanak megadasara is. Az eljarasok és a
kapcsolodd numerikus eredmények publikilasra keriiltek nemzetkozi folyo-
iratokban [4, 5, 6, 12] és konferenciaanyagokban [2, 3, 10].

A munkdm {6 részét a programok megvalositasa, numerikus eredmé-
nyek elérése és azok rendezése tette ki, tovabba a topologikus entropidban
elért eredmények — néhany matematikai allitas kivételével — a sajat mun-
kamnak tekinthetsk.



(a) Az Hénon-leképezés 4-dik iteraltjara.
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(¢) Az Hénon-leképezés 6-dik iteraltjara.

4. abra. Az eljaréassal talalt kaotikus régidk.



3. A kényszererss fékezett inga kaotikus visel-
kedése

A mai szakirodalomban kevés cikk tartalmaz matematikai erejd bizo-
nyitast valésnak tekinthet& mechanikai rendszer kaotikussagara. Hubbard
egy egyszertinek ting kényszererss fékezett ingarol mutatta be, hogy kao-
tikus [13], de matematikal bizonyitast nem adott annak létezésére. Ezen
dinamikai rendszer érdekessége, hogy a kaotikus viselkedést koznapi sza-
vakkal is meg lehet fogalmazni. Jelen esetben ez azt jelenti, hogy az also
ponton valé dthaladas jellegével is le lehet irni ezt a viselkedést, mely sza-
bad szemmel is tapasztalhaté jelenség.

3.1. A kényszerer(s fékezett inga

Ebben a részben egy kényszerersds fékezett ingaval foglalkoztunk, mely
egy mechanikai modell. Ebben a rendszerben egy test egy merev stlytalan
ridon fiigg, ezért a test csak egy korpalyan tud mozogni (lasd az 5. ab-
rat). A gravitacion kiviil a légellenallas is hat a rendszerre, amely az inga
sebességével ardnyos nagysagl és azzal ellentétes iranyt. Hat tovabba egy
kiilsé er6 is a testre, melynek nagysaga cost, ahol ¢ az eltelt idét jeldli.

A tekintett masodrendd differencidlegyenlet a kovetkezs:

2’ = cost—0.12' —sinz,
ahol = az inga szdge, és ' az inga forgasi sebessége.
A fenti egyenletet felirhatjuk az alabbi formaban is:

/
U - v

/
v

?

= cost—0.1v —sinw,

ahol v az inga szbge, mig v az inga szogsebessége.

5. 4bra. A kényszererss fékezett inga.



Az alabbi tételben fogalmazhatjuk meg ezen inga kaotikus viselkedését:

2. Tétel (Hubbard). Az dsszes, mindkét irdnyban végtelen hosszi e, €
{—1,0,1} sorozatra létezik olyan (x(0),2'(0)) kezddérték, amelyre az inga
az I, iddintervallumok olatt oz aldbbi mozgdst végzi:

e az Ora jarasaval megegyez$ irdnyban pontosan egyszer halodt dt az
alsé ponton, akkor és csak akkor, ha ¢, = —1,

e nem haladt dt az alsé ponton, akkor és csak akkor, ha e =0,

e az Ora jardsaval ellentétes irdnyban pontosan egyszer holadt dt az
alsé ponton, akkor és csak akkor, ha ¢, = 1.

3.2. A kéosz bizonyitidsa a kényszererds fékezett inga
esetében

Elgszor tettiink néhéany 1épést a kényszererss fékezett inga kaotikus vi-
selkedésének szamitogépes bizonyitasa felé. Ezen eredmények megerssitet-
tek minket nemcsak abban, hogy a tekintett rendszer rendelkezik kaotikus
viselkedéssel, hanem abban is, hogy képesek lehetiink numerikus eszkzok-
kel a még hianyzo bizonyitast elvégezni.

A matematikai erejii bizonyitashoz sziikségiink van a {Qy}rez négy-
szogekre, melyek ,hossztak” az instabil, és ,keskenyek” a stabil sokasig
iranyaban. A  kiilonleges” palyak Poincaré-leképezés (P) meletti képeinek
az alabbi tulajdonsagokkal kell rendelkezniiik:

1. a kiilonleges palydk benne vannak az UgezQ-ban;

2. a kiilonleges palyak konzekvensen ,Jatogatjdk meg”’ a @y négyszogeket:
ha P"(zo, x})) € Qy, valamely k, n € Z-re, akkor P" T (zo, zh) € Qp_1
vagy Pt (zo, x)) € Qp vagy P (zo, zh) € Q1.

A bizonyitasban fontos szerepet jatszik az a tény, hogy ezen kiilonleges
palyak tetszélegesen eldirt sorrendben latogathatjak meg a {Q;, }rez tég-
lalapokat. Ennek igazolasdhoz ismerniink kell ezen Qy téglalapok P(Qy)
Poincaré-képeit (lasd a 6. abrat), és bizonyitani egy Smale-patko létezését.

Erre a problémaéra alkalmaztuk a kordbban emlitett korlatozas és szét-
valasztas alapt technikdnkat, amely képes volt bizonyitani a tekintett rend-
szer kaotikus viselkedését. A bizonyitas részletei olvashatoak a [7, 8, 11]
cikkekben, melyekben a munkim — tobbek kozdtt— a szamitogépes bizo-
nyitas megvaldsitasa volt.
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6. abra. A Qg téglalap Poincaré-leképezése a t = +2x idGpillanatban.

4. A Wright-sejtés vizsgalata

E.M. Wright azt a sejtést fogalmazta meg egy 1955-ben megjelent cik-
kében [14], hogy az adott késleltetett differencialegyenlet megoldasai nul-
lahoz konvergalnak az o paraméterek széles korére. Ebben a cikkében
bebizonyitotta az allitdst o < 1.5-re, de 1.5 és 7/2 kozbtti értékekre csak
sejtette az allitas helyességét.

4.1. Megbizhato technika a trajektoria k6vetésére
E.M. Wright az alabbi késleltetett differencidlegyenletet vizsgalta:

At = —azt — DL+ (1)),

ahol « egy pozitiv konstans, és a kezdeti fiiggvény (¢(s)) azonosan ¢ > —1,
azaz ¢(s) = ¢ az Osszes s € [—1,0]-ra.

Az egyszer(ibb szamitasok céljabol hasznaljuk a z(t) = e¥® — 1 helyet-
tesitést. Ekkor 2/(t) = e¥My/(t) és 2(t — 1) = e¥*=1) — 1. Ily médon a
tekintett differencidlegyenletiink:

y'() = —a(e"V ~1)

alakban irhato fel, ahol a kezdeti fliggvény legyen ¢(s) = ¢, s € [—1,0].
Az o < 1.5 esetben ismert, hogy a trajektoria oszcillalva konvergal a

nulldhoz, mig az o > 7/2 esetén mar kiilonbh6zs periodikus palyak valame-

lyikéhez tart a megoldas (lasd a 7. abrat). Az eddigi numerikus eredmények
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(a) Az o = 1.5 eset.

(b) Az oo = 2.0 eset.

7. dbra. Kozelit6 abrak a trajektoriara.

alapjan az sejthetd, hogy itt is hasonléan viselkedik a megoldas, mint az
a < 1.5 esetben.

A nulldhoz val6é konvergencia vizsgilata numerikus modszerekkel ne-
hézkes, igy egy egyszerusitett problémat tanulminyozunk. A feladatunk
az, hogy a késleltetett differencidlegyenlet megoldasairol eldontsiik, hogy
létezik-e olyan a € RT szam, hogy az [a,a + 1] intervallumon a megol-
das abszolut értéke kisebb, mint egy adott konstans. Ez az érték a mi
esetiinkben legyen 0.075.

A hagyomanyos differencidlegyenletekre kifejlesztett, matematikal bi-
zonyitasokban is hasznalhatéd médszerek egy jo része a Taylor-soron alapul.
Igy mi is ezen az elven miikddé eljarast alkalmazunk a jelenlegi késleltetett
differencidlegyenletre.

Lagrange-féle maradéktaggal ellatott Taylor-polinom:

3
|

L — e ey (R
y(z) = (= xo)kly (o) + rp, ahol r, =
. !

(&= " (@),

o~
Il

valamely z* € [x0, 2] (x0 < z).

A kapott formulit megvizsgalva lathatd, hogy a magasabbrendd de-
rivaltak alkalmazisa esetén jobban kozelithets a fiiggvény. A kovetkezd
modon hatarozhatjuk meg a magasabbrendi derivaltakat:

k—1
k=2 :
R (1) — —ay—D( — @D — 1)y
gy t) = eyt 1)+§1< 1 )y (t =1y ().

11



Egy megbizhato algoritmusnak nem csak a szamitasaiban kell garan-
taltnak lennie, de a formuldkat is korrektiil kell hasznalnia. Az alabbi
modon tudjuk alkalmazni a Taylor-polinomot, hogy befoglaljuk a megol-
dast:

(ty —to)"

n—1 i
I

([0, t1 —ta])"™

n!

to7t1 Zyl M +Y([to7t1])n

Az algoritmus ket fix hosszu listat hasznal a megoldas befoglalas taro-
lasara. Az elsé lista a megoldés és a derivéiltak befoglalasait tartalmazza
az adott id&intervallumokon, mig a masik ugyanezeket tarolja csak ezen
idéintervallumok végpontjaiban. Minden lépésben kiszamoljuk ezen listak
] elemeit a korabban emlitett formuldkkal, majd beillesztjiik a megfelel
listaba, mikdzben tordljik a legrégebbi elemeket a listabol. Ez az elja-
ras harom parameéterrel rendelkezik: a lépés hossza, a legnagyobb derivalt
rangja, és az intervallumaritmetika pontossaga.

Osszefoglalva, a feladat bizonyitasa a teljes o = [1.5, 7/2] intervallum-
ra az oriasi CPU id6 miatt ezzel a modszerrel egyelGre nem lehetséges, bar
a program az intervallum barmely pontjara, illetve annak sziik intervallu-
mara képes matematikai bizonyitast adni. Tovabbi numerikus eredmények
a trajektoriakovetésrdl megtalalhatok az [1} cikkben.

4.2. A sejtés bizonyitasa

Ebben a fejezetben megmutatunk 4j és a korabbinal erdsebb korlat-
fiiggvényeket, amelyek alkalmasak a periodikus megoldasok szélsGértékei-
nek korlatozasara.

Jelen technika koveti Wright eredeti Gtletét, de egyben Gj Gtleteket is
felhasznal. Tekintsiink egy periodikus megoldast és legyen a harom egymas
uténi zéruspontja tg, t, és t). Definidljunk ezen periodikus megoldashoz
korlatfiiggvényeket, melyeket a 8. dbran lathatunk.

Ezen hat korlatfiiggvénybdl levezetiink erdsebb, hasonlé korlatfiiggve-
nyeket. Az Gjonnan kapott korlatfliggvényeket és az eredetieket Gsszevetve
erGsebb korlatfiiggvényt kaphatunk. Majd ezen Osszefliggéseket egy ite-
rativ eljarasba Otvozziik, melyben elGszor jobb korlatfiiggvényeket adunk
az (inc, 1) szakaszra az (inc,n) szakasz korlatjaibol, majd az (inc, 1)-bél
a (dec,n)-re és igy tovabb. Mivel periodikus megoldast vizsgalunk, igy
az eredmény korlatokat hasznalhatjuk ebben az iteraciéban indulasi korla-
tokként is. Ezen Gj korlatfliggvények megkonstrudlasakor alkalmazhatjuk

12



(upper) (upper)
(inc,1) (dec,n)

///(%ower)
L, J(inc,1)

8. abra. A trajektoriat korlatozo fiiggvények, melyeket szaggatott vonallal
jeldltiink.

Wright eredeti 6tletét, tovabba a korabban bemutatott Taylor-soron ala-
pulo eljarasunkat. Kezdetben a felsé korlatfiiggvények lehetnek konstans
M-ek, mig az als6 korlatok konstans (—m)-ek, kivéve az yllower)

(ine,1)
y((gf ” 517;) fiiggvényeket, melyek 0-ak. Minden iteracios 1épés utan ellendriz-

ziik az alabbi feltételt:

és az

Yo (1o 4 1) = M &s —m 2yl (th + 1),
és ha valamelyik nem teljesiil, akkor mondhatjuk, hogy az adott «, M és
(—m) paraméterekkel nem létezik periodikus palya.

Az elméleti eredmények utan a sejtésbdl az egyetlen, igazolasra vard
probléma az maradt, hogy az 1.5 < a < 7/2 értékekre létezik-e perio-
dikus megoldas adott pozitiv értéknél nagyobb abszolat értékd M és m
szélsGértékekkel. A 9. abra illusztralja ezen két rész kapcsolatat.

A megoldashoz implementaltunk egy 4j parhuzamositott korlatozas
és szétvalasztas eljarast, mely alkalmas a teljes sejtés bizonyitasara. A
Wright-sejtéssel és az altala elért eredményekkel Krisztin Tibor ismerte-
tett meg. A fejezetben talalhato trajektoria kovetésére szolgald eljarast és
a bizonyitasban szereplé korlatozasi sémat sajat eredményemnek tekintem.
A bizonyitas szamitogépes része részletesebben a [9] cikkben olvashato.

13



1Lk Szamitégépes rész
0.8

0.6

0.4

0.2

0

0 B ok
Elméleti rész 5

9. abra. A szamitogépes és elméleti rész kapcesolata a bizonyitasban.
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