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í .  Bevezetés
Dinamikai rendszerek vizsgálata során sok esetben érdekes kérdés lehet, 

hogy valóban rendelkeznek-e a megoldások közelítése során észlelt kaoti­
kus vagy stabil viselkedéssel. Ennek megválaszolására megbízható techni­
kákat javasoltunk, melyek képesek eldönteni egy adott régióról, hogy az 
rendelkezik-e az ilyen viselkedésekhez szükséges tulajdonságokkal.

Ebben az esetben a megbízhatóság matematikai erejű bizonyítást je­
lent, melyhez a számítógépes részben kezelni kell minden kerekítési és 
egyéb hibát. Valós számok helyett intervallumokkal számolunk, és ha 
az eredményintervallum valamely határpontja nem ábrázolható számító­
gépen, akkor megfelelően kifelé kerekítjük azt.

Ezek után, egy halmazelméleti tartalmazásokon alapuló eljárást muta­
tunk be, mely képes kimutani egy Smale-patkó létezését, és ezzel a kaotikus 
viselkedést. A kaotikus viselkedésekhez szükséges összes tartalmazási fel­
tétel felírható Tj(Wj) C Uj alakban (lásd az 1. ábrát). így ahhoz, hogy 
kimutassuk egy kaotikus régió létezését, ilyen típusú feltételeket kell ellen­
őrizni.
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1. ábra. Különböző patkók szerkezetei.
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2. Az Hénon-leképezés kaotikus régiói
Az ide tartozó problémákat az ezt vizsgáló matematikusok rendszerint 

emberi beavatkozással, „kézzel” oldják meg. Az egyik ilyen módszer az, 
amikor a Lipschitz-konstans használatával kezelik a közelítő megoldásokat, 
valamint figyelembe veszik a kerekítési hibákat is. Majd egy adott számú 
rácspontra számítógéppel ellenőrzik az adott feltételeket [15]. Az emberi 
beavatkozás elkerülésére egy intervallumaritmetikán alapuló automatikus 
eljárást javasolunk.

2.1 . A z ellenőrző eljárás
Egy számítógépes módszert fogunk bemutatni, mely képes egy régióról 

megmutatni, hogy teljesíti-e a kaotikus viselkedéshez szükséges feltételeket. 
Vizsgálatainkat az Hénon-leképezésen kezdjük:

H(x, y) =  (1 +  y — Ax2, Bx).

Zgliczynski egy korábbi cikkében [15] az Hénon-leképezés klasszikus para­
métereit (A =  1.4 és B =  0.3), valamint az alábbi kétdimenziós területeket 
tekintette: E  =  Ei U E2 =  {(x, y) | x > 0.4, y > 0.28} U {(x,y) | x <
0. 64, |y| < 0.01}, OL =  {(x,y) | x < 0.4, y > 0.01}, O r  =  {(x,y) | y < 
0}.

Zgliczynski az alábbi, 1. Tétel segítségével a Qo és Q1 paralelogram­
mákra bizonyította a kaotikus viselkedéshez szükséges feltételeket. Ezen 
paralelogrammák két oldala párhuzamos az x tengellyel (yo =  0.01 és 
y1 =  0.28), a másik kettő pedig (tan 2) szöget zár be vele. Az alsó csúcspon­
tok x koordinátái rendre x a =  0.460, x b =  0.556, xc =  0.558 és xd =  0.620. 
A Q ^ s  Q1 paralelogrammák Hénon-leképezés 7-dik iteráltja melletti képei 
láthatók a 2. ábrán.

1. T é te l (Zgliczynski). Ha valamely k-ra az alábbi feltételek teljesülnek:

H k (a U d) C Or ,

H k(b U c) C Ol ,
H k(L U R) C (R2 \  E ),

akkor H k rendelkezik kaotikus régióval.

A kaotikus régió létezésének ellenőrzésére egy, az intervallumaritmeti­
kán alapuló korlátozás és szétválasztás eljárást készítettünk. Az algoritmus
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2. ábra. Az Hénon-leképezés 7-dik iteráltjának kaotikus régiója az Hénon- 
leképezés A =  1.4 és B = 0.3 paraméterei mellett. A paralelogrammák a, 
b  c, és d oldalai a 3. ábra bal felső sarkában is láthatóak.

először meghatározza a kezdő intervallumot, mely tartalmazza az ellenőri­
zendő tartományt:

[0.46000000000,0.75500000000] x [0.01000000000,0.28000000000].

Majd egymás után ellenőrzi a három tartalmazási tulajdonságot. Az állí­
tás helyességéhez természetesen mind a három tulajdonságot igazolni kell. 
Az Hénon-leképezés 7-dik iteráltja esetében a szükséges transzformációk 
száma rendre 273, 523 és 1613 volt. Abban az esetben, ha az algoritmus 
nem volt képes közvetlenül igazolni az állítás helyességét egy részinterval­
lumra, akkor azt eltárolja, hogy később tovább darabolhassa. A tároló 
verem maximális mélysége az ellenőrzés során rendre 11, 13 és 14 volt. A 
szükséges CPU idő mindössze pár másodperc volt egy átlagos PC-n.

2.2. O ptim alizáló  eljárás kaotikus régiók keresésére
Bebizonyítottuk, hogy az algoritmusunk képes véges számú lépés után 

pozitív választ adni, és a kapott válasz matematikai értelemben is megbíz­
ható. Egy ilyen teljesen automatikus eljárás a kaotikus régió bizonyítására 
célfüggvényként használható egy optimalizáló eljárásban, mely így alkal­
mas lehet új kaotikus régiók detektálására.
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3. ábra. Az L és R paralelogrammák, és az algoritmus által generált két­
dimenziós intervallumok, melyekre vagy teljesülnek az 1. Tételben adott 
feltételek, vagy egyetlen pontot sem tartalmaznak az adott régióból.

A megadott optimalizáló eljárás sikerességében kulcsfontosságú szem­
pont, hogy hogyan konstruáljuk meg a célfüggvényt. Korábbi, hasonló 
problémák tapasztalatai alapján, úgy döntöttünk, hogy összeadjuk azokat 
a nemnegatív értékeket, amelyek jellemzik, hogy milyen mértékben sérül­
nek az adott feltételek. Abban az esetben, ha bármely feltétel sérül, az 
összeghez hozzáadunk egy pozitív konstanst.
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Tekintsünk egy olyan példát, mikor az egyik

T (Q) C O

alakú feltétel sérül. Ekkor az ellenőrző rutin visszaad egy részinterval­
lumot, mely tartalmaz legalább egy pontot, amely megsérti a feltételt. 
Ezután számoljuk ki a transzformált intervallum (T (I)) és az O halmaz 
Hausdorff-távolságát:

max inf d(z,y), 
zer(I) yeo

ahol d(z, y) egy adott metrika két kétdimenziós pont között. Megjegyzen­
dő, hogy ezen célfüggvény alakja erősen befolyásolja az optimalizáló eljárás 
hatékonyságát. Fontos, hogy a minimalizálás során a kisebb célfüggvényér­
ték egy jobb struktúrát „sejtsen”, azaz a derivált iránya segítse a megfelelő 
paraméterek megtalálását. Emiatt az ellenőrző eljárást úgy módosítottuk, 
hogy a legtávolabbi, nem megfelelő intervallumot adja vissza. A gyorsabb 
számítások végett mindig a legrosszabb eredményt mutató intervallumot 
vettük ki a veremből. így, ha egy túl kicsi intervallumhoz jutottunk, ak­
kor a veremben lévő összes elem távolsága kisebb a célterülettől, azaz a 
legtávolabbi rossz intervallumot kaptuk meg. Egy jól megválasztott cél­
függvény másik előnye, hogy amikor nem sérül a feltétel, akkor sem kell 
azt kicserélni, hanem egyszerűen számolhatunk az eredeti formulával.

Ezek után az összes feltételre összegezzük ezen függvényeket. így az 
alábbi formában írhatjuk fel az optimalizálási problémánkat:

( m
> max inf

zer(h) yeOi i=1

melyben x egy lehetséges paramétersorozat a keresendő halmazok koor­
dinátáira; X  egy n-dimenziós intervallum, mely a lehetséges megoldások 
halmaza; m a feltételek száma; I  az ellenőrző eljárás által visszaadott 
intervallum, amely sérti az adott feltételt; Oj az i. feltétel célhalmaza; 
p(y) =  y +  C, ha bármely I  =  0, egyébként p(y) =  0.

d(z,y)
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LO ZO FE PE T
12 4 13,197 4,086 17
12 1 12,913 3,365 16
12 1 13,569 4,303 19
12 2 12,918 3,394 16
12 1 14,117 5,083 18
12 3 21,391 7,400 25
12 2 12,623 3,296 16
12 0 15,388 6,221 30
12 3 13,458 3,858 15
12 2 14,643 5,002 16

1. táblázat. Numerikus eredmények a H 5 kaotikus régiónak keresésére. LO 
jelenti a megtalált lokális optimumok számát, ZO az ezek közül 0 optimum 
értékkel rendelkezők számát, FE a célfüggvény kiértékelésének a számát, 
PE a büntető függvények kiértékelésének a számát, és T a szükséges CPU 
időt percben.

2.3. A lkalm azások
Az optimalizáló eljárásunkat először az Hénon-leképezés 5-dik iteráltján 

teszteltük. Megjegyezzük, hogy a kisebb iteráltakra nehezebb a kaotikus 
régiók megtalálása, továbbá a szakirodalomban sem található a 7-nél ki­
sebb iteráltakra ilyen tartomány. Néhány kísérlet után, az optimalizáló 
eljárásunkat az alábbi keresési területtel használtuk:

A  G [1.00, 2.00], B  G [0.10,1.00], x a,x ^ ,x c,xd G [0.40, 0.64].

Az eljárás hatékonyságát az 1. táblázat illusztrálja, mely 10 futás nu­
merikus eredményeit tartalmazza.

Ezzel az eljárással az Hénon-leképezés számos kaotikus régióját fel­
tártuk, többek között a klasszikus paraméterek mellett a 4-dik, 2-dik és 
6-dik iteráltakét (lásd a 4. ábrát). Az eljárás alkalmas volt továbbá a 
topologikus entrópia alsó korlátjának megadására is. Az eljárások és a 
kapcsolódó numerikus eredmények publikálásra kerültek nemzetközi folyó­
iratokban [4, 5, 6, 12] és konferenciaanyagokban [2, 3, 10].

A munkám fő részét a programok megvalósítása, numerikus eredmé­
nyek elérése és azok rendezése tette ki, továbbá a topologikus entrópiában 
elért eredmények -  néhány matematikai állítás kivételével -  a saját mun­
kámnak tekinthetők.
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(a) Az Hénon-leképezés 4-dik ite rá ltjá ra .

(b) Az Hénon-leképezés 2-dik ite rá ltjá ra .

(c) Az Hénon-leképezés 6-dik ite rá ltjá ra .

4. ábra. Az eljárással talált kaotikus régiók.
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3. A kényszererős fékezett inga kaotikus visel­
kedése

A mai szakirodalomban kevés cikk tartalmaz matematikai erejű bizo­
nyítást valósnak tekinthető mechanikai rendszer kaotikusságára. Hubbard 
egy egyszerűnek tűnő kényszererős fékezett ingáról m utatta be, hogy kao­
tikus [13] ,  de matematikai bizonyítást nem adott annak létezésére. Ezen 
dinamikai rendszer érdekessége, hogy a kaotikus viselkedést köznapi sza­
vakkal is meg lehet fogalmazni. Jelen esetben ez azt jelenti, hogy az alsó 
ponton való áthaladás jellegével is le lehet írni ezt a viselkedést, mely sza­
bad szemmel is tapasztalható jelenség.

3.1 . A  kényszererős fék ezett inga
Ebben a részben egy kényszererős fékezett ingával foglalkoztunk, mely 

egy mechanikai modell. Ebben a rendszerben egy test egy merev súlytalan 
rúdon függ, ezért a test csak egy körpályán tud mozogni (lásd az 5. áb­
rát). A gravitáción kívül a légellenállás is hat a rendszerre, amely az inga 
sebességével arányos nagyságú és azzal ellentétes irányú. Hat továbbá egy 
külső erő is a testre, melynek nagysága cos t, ahol t az eltelt időt jelöli.

A tekintett másodrendű differenciálegyenlet a következő:

x'' =  cos t — O.lx' — sin x,

ahol x az inga szöge, és x' az inga forgási sebessége.
A fenti egyenletet felírhatjuk az alábbi formában is:

u' =  v,
v' =  cos t — O.lv — sin u,

ahol u az inga szöge, míg v az inga szögsebessége.

5. ábra. A kényszererős fékezett inga.
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Az alábbi tételben fogalmazhatjuk meg ezen inga kaotikus viselkedését:

2. T é te l (Hubbard). Az összes, mindkét irányban végtelen hosszú ek £ 
{ —1,0,1} sorozatra létezik olyan (x(0), x'(0)) kezdőérték, amelyre az inga 
az I k időintervallumok alatt az alábbi mozgást végzi:

• az óra járásával megegyező irányban pontosan egyszer haladt át az 
alsó ponton, akkor és csak akkor, ha ek = —1,

• nem haladt át az alsó ponton, akkor és csak akkor, ha ek = 0,

• az óra járásával ellentétes irányban pontosan egyszer haladt át az 
alsó ponton, akkor és csak akkor, ha ek =  1.

3.2 . A  káosz b izon y ítása  a kényszererős fék ezett inga  
ese téb en

Először tettünk néhány lépést a kényszererős fékezett inga kaotikus vi­
selkedésének számítógépes bizonyítása felé. Ezen eredmények megerősítet­
tek minket nemcsak abban, hogy a tekintett rendszer rendelkezik kaotikus 
viselkedéssel, hanem abban is, hogy képesek lehetünk numerikus eszközök­
kel a még hiányzó bizonyítást elvégezni.

A matematikai erejű bizonyításhoz szükségünk van a {Qk}kzZ négy­
szögekre, melyek „hosszúak” az instabil, és „keskenyek” a stabil sokaság 
irányában. A „különleges” pályák Poincáré-leképezés (P) meletti képeinek 
az alábbi tulajdonságokkal kell rendelkezniük:

1. a különleges pályák benne vannak az UkeZQk-ban;

2. a különleges pályák konzekvensen „látogatják meg” a Qk négyszögeket:
ha P n(x0, x'0) £ Qk valamely k ,n  £ ^ re ,  akkor P n+1(x0, x 0) £ Qk -1 
vagy P n+1(xo,x0) £ Qk vagy P n+1(xo,x0) £ Qk+1.

A bizonyításban fontos szerepet játszik az a tény, hogy ezen különleges 
pályák tetszőlegesen előírt sorrendben látogathatják meg a {Qik }keZ tég­
lalapokat. Ennek igazolásához ismernünk kell ezen Qk téglalap ok P  (Qk) 
Poincaré-képeit (lásd a 6. ábrát), és bizonyítani egy Smale-patkó létezését.

Erre a problémára alkalmaztuk a korábban említett korlátozás és szét­
választás alapú technikánkat, amely képes volt bizonyítani a tekintett rend­
szer kaotikus viselkedését. A bizonyítás részletei olvashatóak a [7, 8, 11] 
cikkekben, melyekben a munkám -  többek között- a számítógépes bizo­
nyítás megvalósítása volt.
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4. A Wright-sejtés vizsgálata
E.M. Wright azt a sejtést fogalmazta meg egy 1955-ben megjelent cik­

kében [14], hogy az adott késleltetett differenciálegyenlet megoldásai nul­
lához konvergálnak az a  paraméterek széles körére. Ebben a cikkében 
bebizonyította az állítást a  < 1.5-re, de 1.5 és n/2 közötti értékekre csak 
sejtette az állítás helyességét.

4.1. M egb ízh ató  technika a trajektória  követésére
E.M. Wright az alábbi késleltetett differenciálegyenletet vizsgálta:

z'(t) =  - a z (t — 1)(1 + z(t)),

ahol a egy pozitív konstans, és a kezdeti függvény (0(s)) azonosan c > — 1, 
azaz 0(s) =  c az összes s G [—1, 0]

z (t) =  — 1 helyet-
z' (t) =  y' (t) z (t — 1) =  ey(t-1) — 1

tekintett differenciálegyenletünk:

y' (t) =  —a(ey (t-1) — 1)

alakban írható fel, ahol a kezdeti függvény legyen 0(s) = c, s G [—1, 0].
Az a  < 1.5 esetben ismert, hogy a trajektória oszcillálva konvergál a 

nullához, míg az a  > n/2 esetén már különböző periodikus pályák valame­
lyikéhez tart a megoldás (lásd a 7. ábrát). Az eddigi numerikus eredmények
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7. ábra. Közelítő ábrák a trajektóriára.

alapján az sejthető, hogy itt is hasonlóan viselkedik a megoldás, mint az 
a < 1.5 esetben.

A nullához való konvergencia vizsgálata numerikus módszerekkel ne­
hézkes, így egy egyszerűsített problémát tanulmányozunk. A feladatunk 
az, hogy a késleltetett differenciálegyenlet megoldásairól eldöntsük, hogy 
létezik-e olyan a £ R+ szám, hogy az [a, a +1] intervallumon a megol­
dás abszolút értéke kisebb, mint egy adott konstans. Ez az érték a mi 
esetünkben legyen 0.075.

A hagyományos differenciálegyenletekre kifejlesztett, matematikai bi­
zonyításokban is használható módszerek egy jó része a Taylor-soron alapul, 
így mi is ezen az elven működő eljárást alkalmazunk a jelenlegi késleltetett 
differenciálegyenletre.

Lagrange-féle maradéktaggal ellátott Taylor-polinom:

n—1
y (x) = Y

(x -  xo)ky(k)(xo)

k=o k! +  rn, ahol rn =
(x -  xo)

-y[n){n!

valamely x* £ [x0,x\ (x0 < x).
A kapott formulát megvizsgálva látható, hogy a magasabbrendű de­

riváltak alkalmazása esetén jobban közelíthető a függvény. A következő 
módon határozhatjuk meg a magasabbrendű deriváltakat:

y(k) (t) =  - a y (k-1)(t -  1) +  Y (  ¿ - i )  -  1 )v(k-l) (t).
i= 1 ^ '
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Egy megbízható algoritmusnak nem csak a számításaiban kell garan­
táltnak lennie, de a formulákat is korrektül kell használnia. Az alábbi 
módon tudjuk alkalmazni a Taylor-polinomot, hogy befoglaljuk a megol­
dást:

Y ( < , )  =  y ; y . ( f0)(íL y M
i=0 '

Y  ([to,t1])n (fi -  to)n

Y([ío,C]) A ^ y ^ í l 0’' 1 “ íol)‘
i=0 i!i\ Y  ([to,fi])’ ([0,fi -  fo])n

Az algoritmus két fix hosszú listát használ a megoldás befoglalás táro­
lására. Az első lista a megoldás és a deriváltak befoglalásait tartalmazza 
az adott időintervallumokon, míg a másik ugyanezeket tárolja csak ezen 
időintervallumok végpontjaiban. Minden lépésben kiszámoljuk ezen listák 
új elemeit a korábban említett formulákkal, majd beillesztjük a megfelelő 
listába, miközben töröljük a legrégebbi elemeket a listából. Ez az eljá­
rás három paraméterrel rendelkezik: a lépés hossza, a legnagyobb derivált 
rangja, és az intervallumaritmetika pontossága.

Összefoglalva, a feladat bizonyítása a teljes a = [1.5, n/2] intervallum­
ra az óriási CPU idő miatt ezzel a módszerrel egyelőre nem lehetséges, bár 
a program az intervallum bármely pontjára, illetve annak szűk intervallu­
mára képes matematikai bizonyítást adni. További numerikus eredmények 
a trajektóriakövetésről megtalálhatók az fi] cikkben.

4 .2 . A  sejtés b izon yítása
Ebben a fejezetben megmutatunk új és a korábbinál erősebb korlát­

függvényeket, amelyek alkalmasak a periodikus megoldások szélsőértékei­
nek korlátozására.

Jelen technika követi Wright eredeti ötletét, de egyben új ötleteket is 
felhasznál. Tekintsünk egy periodikus megoldást és legyen a három egymás 
utáni zéruspontja t 0, 10 és t'0- Definiáljunk ezen periodikus megoldáshoz 
korlátfüggvényeket, melyeket a 8. ábrán láthatunk.

Ezen hat korlátfüggvényből levezetünk erősebb, hasonló korlátfüggvé­
nyeket. Az újonnan kapott korlátfüggvényeket és az eredetieket összevetve 
erősebb korlátfüggvényt kaphatunk. Majd ezen összefüggéseket egy ite­
ratív eljárásba ötvözzük, melyben először jobb korlátfüggvényeket adunk 
az (inc, 1) szakaszra az (inc, n) szakasz korlátjaiból, majd az (inc, 1)-ből 
a (dec, n)-re és így tovább. Mivel periodikus megoldást vizsgálunk, így 
az eredmény korlátokat használhatjuk ebben az iterációban indulási korlá­
tokként is. Ezen új korlátfüggvények megkonstruálásakor alkalmazhatjuk
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8. ábra. A trajektóriát korlátozó függvények, melyeket szaggatott vonallal 
jelöltünk.

Wright eredeti ötletét, továbbá a korábban bemutatott Taylor-soron ala­
puló eljárásunkat. Kezdetben a felső korlátfüggvények lehetnek konstans 
M-ek, míg az alsó korlátok konstans (-m )-ek, kivéve az ŷ OWCí) az
y(dec í )  függvényeket, melyek 0-ák. Minden iterációs lépés után ellenőriz­
zük az alábbi feltételt:

y!;nrt’(f» + 1) > m  & — m > y<:2y> + 1),

és ha valamelyik nem teljesül, akkor mondhatjuk, hogy az adott a, M és 
(—m) paraméterekkel nem létezik periodikus pálya.

Az elméleti eredmények után a sejtésből az egyetlen, igazolásra váró 
probléma az maradt, hogy az 1.5 < a < n /2  értékekre létezik-e perio­
dikus megoldás adott pozitív értéknél nagyobb abszolút értékű M és m 
szélsőértékekkel. A 9. ábra illusztrálja ezen két rész kapcsolatát.

A megoldáshoz implementáltunk egy új párhuzamosított korlátozás 
és szétválasztás eljárást, mely alkalmas a teljes sejtés bizonyítására. A 
Wright-sejtéssel és az általa elért eredményekkel Krisztin Tibor ismerte­
tett meg. A fejezetben található trajektória követésére szolgáló eljárást és 
a bizonyításban szereplő korlátozási sémát saját eredményemnek tekintem. 
A bizonyítás számítógépes része részletesebben a [9] cikkben olvasható.

13



M
1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

M  <  —a  (e i)

Számítógépes rész

m  >  log (mm + 1)

Elméleti rész
10

9. ábra. A számítógépes és elméleti rész kapcsolata a bizonyításban.
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