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1 Introduction

Oftentimes in life sciences an abundance of data is present where the processing of said
data requires manual labour. Extracting meaningful patterns costs a lot of time and energy
which must be covered by the professionals of the given field. As such, automatisation of
the information extraction pipeline is an area of active research. Approaches from artificial
intelligence, machine learning and deep learning are all applied to datasets in order to au-
tomatically solve a task, be it classification or regression, the two most widely spread tasks
regarding life sciences. Recently deep learning has made enormous steps in the research
areas of computer vision and natural language processing, where the architectures and
methods considered to be the most advanced are being utilized. However many of these
complex and innovative techniques can be applied to other fields, such as bioinformatics
and computational biology. Most deep learning methods thrive when data is abundantly
available. Modern analytical tools - for example Next Generation Sequencing - produce
huge amounts of raw information. Therefore the processing of nucleotide sequences with
deep learning models is an effective pairing of the two rapidly developing techniques.

1.1 Transcription Factors in Biology

One of the most important processes in a cell’s biology is an event called transcription.
In molecular biology, the central dogma describes transcription as the DNA’s conversion
to RNA. This complex pipeline has profound effects on the cell’s life as it controls and
regulates the expression of genes. Understanding the mechanics and rules behind tran-
scription is a long-standing challenge in biology. Transcription Factors (TFs) are proteins
that regulate transcription, either by inhibiting or by promoting the process. Thus revea-
ling information about the workings of TFs can be key to gaining new insights into the
regularization of gene expression.

1.2 Problem statement and motivation.

In this thesis I have explored and analysed the pairing of deep learning with a DNA-protein
binding classification task. As detecting proteins that bind DNA at specific locations is ex-
pensive experimentally, approaches that rely on data-driven methods are practical and
sought after. Deep Neural Networks (DNNs) and especially Convolutional Neural Net-
works (CNNs) have made an impact in this field by proving to be excellent detectors of
Transcription Factor Binding Sites (TFBSs) [9]. Once trained, inference on unknown enti-
ties is generally quick and accurate for most datasets. On the other hand, despite these en-
couraging results, there are many issues with deep learning on DNA sequences. Firstly, the
choice of the learner’s architecture plays an important role in the observed performance.
Secondly, the representation of DNA as nucleotide-based sequences is the traditional way
for network training. This is motivated by the fact that sequencers produce their output
in nucleotide format which can be one-hot encoded as input for learning models. How-
ever other types of DNA representation could prove to be advantageous for training [14].
Experiments run on different sequence representations show that the various aspects in
which they differ from a nucleotide based one enable the learner to exploit patterns not
directly present in the aforementioned traditional format, therefore the discovery of train-
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ing settings with appropriate network structures promises new and competitive prediction
models.

1.3 Overview of the main goals

The PhD thesis presents three key experiments all concerning the biological classifica-
tion task of transcription factor binding site detection using Deep Learning (DL). The first
chapter presents model training with the Functional Group DNA Representation (FGDR),
the second chapter shows two deep learning approaches using the Physicochemical and
Conformational Descriptors (PCDs) representation of DNA and the third and final chapter
sheds light on the problem of robustness and robust network training with regards to TFBS
classification.

2 Classification using a functional group-based data rep-
resentation

Most machine learning applications for TFBS classification use a nucleotide based repre-
sentation of DNA sequences. Depending on the type of the learner, these sequences are
often encoded into vectors using the one-hot encoding scheme. An other popular ap-
proach is to use k-mers as additional features extending the single nucleotide resolution
data. Other experiments with embedding the k-mer sequences also yielded models with
good performance. However, all of these methods rely on nucleotide data, which might
have its disadvantages that are not really known since research employing different kinds
of representations is scarce in this field. The usage of a different DNA input format can
be beneficial as most machine learning approaches are heavily influenced by the type and
format of their input data. So it is possible that a new representation might enable the
learners to explore new relations.

In Chapter 2 of the PhD thesis, experiments with the FGDR representation are con-
ducted. Several methods for different input formatting are presented as FGDR data was
originally intended as a visualization technique [8]. I found that the properties of the in-
put space have a profound impact on the learning trajectories of the models. Therefore I
conducted a systematic search to find the set of options controlling the FGDR representa-
tion’s preprocessing for optimal model training. After fixing the input details I continued to
optimize the architecture of the CNNs. Finally in an ensemble setting, where one learner
is using nucleotides and the other FGDR values, I showed an increase in performance
surpassing standalone approaches.

2.1 Input format for model training

Originally the FGDR values are calculated based on a nucleotide sequence. Its numerical
values range from 0 to 8 (or 9) and it is a 7 x L matrix where L is the sequence length and
the 7 rows represent the topological positions of the different chemical functional groups.

I presented experiments with several possible FGDR preprocessing and formatting steps,
during which I varied the extent of the numerical values’ range (between 8 or 9 - depend-
ing on an electrochemical choice). Furthermore I trained networks with an input matrix
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Figure 1: FGDR Space - Illustration taken from brc. drv. hu [8]

resembling the default FGDR values, but a one-hot encoded format resulted in better per-
formances.

2.2 Optimal architecture

After observing CNNs trained with FGDR input classify the sequences with reasonable ac-
curacy, I started to search for a set of hyper-parameters that were more suited to the repre-
sentation at hand. A thorough and extensive exploration of the search space included the
number of layers (both convolutional and dense), choice of the optimizer and its learn-
ing rate and regularization values (e.g., dropout probabilities and the strength of weight
decay).

Table 1: AUC scores

Method DeepBind Zeng Nuc. FGDR Ens.
AUC 0.863472 0.904524 0.9142 0.9145 0.9171

2.3 Ensemble learning

To further improve the performance of the learners, I trained models using both input for-
mats (FGDR and nucleotide) in an ensemble setting (results shown in Table 1). Averaging
the models output probabilities yielded further correct classifications, surpassing contem-
porary approaches, such as the work of Zeng et al. or DeepBind [9, 17]. The findings of
this thesis point have been published in a conference proceedings.

3 Training models with physico-chemical features

Building upon the previously presented idea (in Section 2), and using an other represen-
tation format from DRV [8], we experimented with TFBS classifier training with physico-
chemical features. The new Physico-Chemical Descriptor (PCD) based DNA representation
is suitable for learning models to detect binding sites. In Table 2 a sample of PCD values
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Table 2: PCD sample

Positions 1 2 3 4 5 6 7 8 9 10
Nucleotides C C A G C C C C T G

Ph
ys

ic
o-

ch
em

ic
al

D
es

cr
ip

to
rs

Aida BA transition 2.26 5.1 0.79 8.28 2.26 2.26 2.26 0.79 5.1 2.26
A-philicity 0.19 1.04 0.33 0.73 0.19 0.19 0.19 0.33 1.04 0.19
Base stacking -8.26 -6.57 -6.78 -14.59 -8.26 -8.26 -8.26 -6.78 -6.57 -8.26
B-DNA twist 35.3 37.7 30.6 38.4 35.3 35.3 35.3 30.6 37.7 35.3
Bending stiffness 130 60 60 85 130 130 130 60 60 130
Breslauer dG 3.1 1.9 1.6 3.1 3.1 3.1 3.1 1.6 1.9 3.1

based on a nucleotide sequence is shown. We theorize that showing the network the val-
ues describing the physical and chemical state of the nucleotide pairs or trios could be
beneficial as it might contain extra information about the binding sites compared to the
nucleotide input format.

In this thesis group, I present networks trained on PCDs for TFBS detection. Moreover,
as the format of the PCD representation is largely different from the typical input arrange-
ments that are employed for nucleotide based CNNs, I experimented with a novel network
architecture to better capture the binding patterns of the sequences. In the literature of
CNNs for TFBS classification one usually presents the nucleotides as the channels of the
input (quite similarly as how one inputs an RGB image regarding its colour channels to
the first layer of a CNN). While the convolutional kernels proved to be able to learn the
properties of the binding sites, I show that a different setup of architecture is more advan-
tageous. The main idea is that PCDs often contain information with respect to each other
(i.d., along the colour channels or depth axis) and the traditional CNN setup does not
make use of these relations during feature extraction. (As the convolutions only happen in
1D separately from the different PCD channels.) The improved network is outfitted with a
depthwise separable convolutional layer to better capture the relevant patterns of the PCD
representation [11]. We show that the network with Depthwise Separable Convolution us-
ing PCD input (denoted as DSC (PCD)) manages to surpass other methods with statistical
relevance on several TFBS detection tasks.

Algorithm 1 Creating feature subsets based on their correlation values in case of pcp-2

1: INPUT: PCD features for dimers from all pcp-2: (X) set
2: corr mat← pearson corr(X)
3: do:
4: xA, xB ∼ pick two PCD feature randomly
5: if corr[xA, xB] > ρ then
6: remove one randomly
7: add other to pcd subset ρ
8: while: pearson corr < ρ for all element pairs in corr mat
9: repeat from step 3 for ρ = [0.9, 0.7, 0.5]
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Table 3: TFBS classification accuracy with PCDs and nucleotides

TFs Sp1 Mafk Cjun Cmyc Max Mxi1
PCD 0.6957 0.9258 0.8320 0.7265 0.7387 0.6946
Nuc. 0.7289 0.9238 0.8462 0.7593 0.7662 0.7290

3.1 Networks trained with physico-chemical features

In the first part of Chapter 3 of the PhD thesis, TFBS detector networks trained with PCDs
using a relatively small parameter count are discussed. Moreover subsets of distinct PCD
features are shown to have a different impact on model performance. For feature selection
we developed a method for reducing the size of the input space regarding PCD subsets
(see Algorithm 1). The network architecture remained similar to the CNN presented by
Zeng et al. [17]. The number of trainable weights were kept low to be as close as possible
to the referenced work in this task for better comparisons regarding the representational
choice and classification performance. Results are in Table 3. A model structure optimized
for PCDs is presented in the following subsection.

3.2 Depthwise separable convolutions for PCDs

In the second part of Chapter 3 I presented a novel structural approach for training net-
works with PCDs. The new model structure makes use of depthwise separable convolutions
in order to learn additional relationships from the PCD features. The described architec-
ture outperforms other methods on several datasets. The observed performance in various
metrics are presented in Table 4.

Table 4: Performance of the different models and representations on the 50 datasets

Model type ACC AUC AUPR
CNN-ARCH (nuc) 0.8492 0.8491 0.8045
TBiNet (nuc) 0.7849 0.7847 0.7413
DSC (nuc) 0.8515 0.8515 0.8062
CNN (PCD) 0.8243 0.8242 0.7767
DSC (PCD) 0.8555 0.8554 0.8123

4 Translational Robustness of Nucleotide Sequence Clas-
sifiers

In this thesis point I have experimented with the nucleotide representation to train neural
networks. Recent works [13, 15, 16] suggest that suitable DL models trained on a nu-
cleotide representation are interpretable. That is, researchers are able to explain to some
degree the DL models’ decision making process or classification mechanism. While inter-
pretability is a desired property of machine learning approaches and several claims hold
true regarding modern architectures trained for TFBS detection tasks, there are probably
many unknowns still about the models’ inner behaviour. To further support the chance
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Table 5: Three shifting methods for evaluation and training. S means HaibH1hescSp1Pcr1x.

TF train
discovery occupancy

evaluation strat. evaluation strat.
No Shift Rnd Worst No Shift Rnd Worst

S-95
No Shift 0.7466 0.7463 0.6834 0.7542 0.7544 0.7017
Rnd 0.7468 0.7456 0.6894 0.7505 0.7507 0.6891
Worst 0.7607 0.7620 0.7212 0.7563 0.7571 0.7265

S-101 No Shift 0.7578 n/a. n/a. 0.7537 n/a. n/a.

of misinterpretation issues, in the field of robust neural networks and adversarial training
recent advancements highlighted several pressing concerns in connection to interpretabil-
ity. To our knowledge, the robustness of DNA-protein binding classifier models were not
examined previously, so here we present measurements to determine the translational ro-
bustness of two different networks. After observing significant performance losses, we
implement a strategy to increase the learners’ accuracy when faced with adversarial at-
tacks.

4.1 Creating adversarial examples

To our knowledge, no adversarial attacks were launched against TFBS classifier models.
Although the input matrix of a nucleotide sequence can resemble a binary image, mod-
ifying the content is not as straightforward as in the case of computer vision or image
classification tasks. While small perturbations to an image of a cat might be unrecognis-
able for humans and can be misleading for networks, the same cannot be said about DNA
sequences. It is hard to say that a modified sequence will still be a binding one. Moreover
the values are discrete binaries and not floats thus changing a nucleotide base can result
in the destruction of the original ground truth labelling, because the new sequence might
not be bound in vivo by the protein in question. Considering these issues we came up with
shifting strategies during which the original sequence (and the binding site) remains un-
changed in terms of the nucleotide content. Cropping from the flanking regions, randomly
cropping from both ends, and cropping based on the loss of all possible crop positions are
examined.

4.2 Augmenting training

We observed significant performance drops when the adversarial entities were used for
inference. Incorporating these shifting strategies as an augmentation method and train-
ing the networks while some of the sequences in a mini-batch undergo transformations
resulted in models that are more robust (results shown in Table 5).

4.3 Extracting motifs from the learners

In order to measure and observe the differences regarding humanly interpretable features
between the robustly trained and the unmodified networks, I extracted PWMs from the
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Table 6: E-values for the extracted motifs

Kernels Training Mafk occupancy Znf occupancy Sp1 occupancy

All
Non-robust 0.281168 0.331671 0.442
Robust 0.252381 0.302872 0.425485

5 best
Non-robust 3.18E-06 0.002226 0.002219
Robust 1.56E-06 0.000315 0.001415

neurons of the first convolutional layer. For each convolutional weight matrix, I scanned
over the test sequences containing binding sites and noted the positions of highest activa-
tion. Using the nucleotide frequencies gathered from these positions I constructed PPMs
and I visualised them as sequence logos. I determined the binding motifs present in the
test sequences by using MEME [10]. Then using Tomtom [12] I compared the matrices
that were extracted from the neurons with the matrices discovered by MEME.

In Table 6 a comparison for the motifs is shown. The E-values are calculated by Tomtom
from the MEME Suite. Lower E-values mean better matches. The occupancy task’s positive
test entities were used to establish the reference matrices. For the three TFs (Mafk, Sp1
and Znf143) the calculated E-values were averaged over all kernels. In addition, the
five kernels with the lowest E-values were selected for comparisons. The networks were
the same ones from before and their performances are reported above. The non-robust
networks were all middle crop variants with 90 length inputs. The Mafk and Znf143
networks were worst-crop variants, but in the case of Sp1 the random crop one was used.
We can see in Table 6 that in all cases augmented training resulted in better motifs.

5 Contributions of the thesis

In the first thesis group, my contributions are related to transcription factor binding site
detection with a new input description, FGDR. Instead of using the traditional nucleotide
format, I trained neural networks with a DNA representation based on functional groups. I
managed to outperform concurrent methods and show that an ensemble technique yields
even further improvements. Detailed discussion can be found in Chapter 2.

I / 1. I experimented with finding a suitable FGDR input format for learning convolutional
models and I presented a way for convolutional neural network training on the mod-
ified representation containing functional group information from DNA.

I / 2. I introduced an optimal network architecture, and showed that the learned models
perform the detection task with high proficiency.

I / 3. I showed that an ensemble training scenario (using the nucleotide and the FGDR
models together) is beneficial and yields additional accuracy gains.

In the second thesis group, my contributions are training TFBS classifiers using the PCD
representation, showing that selecting a good subset of PCDs (thus reducing computational
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costs) is enough for competitive performance. In addition I presented a novel architec-
ture using depthwise separable convolutions for training classifiers with good performance
scores measured in various accuracy metrics on PCD datasets. The detailed discussion can
be found in Chapter 3.

II / 1. I showed that training networks with the PCD representation can produce competi-
tive classification results.

II / 2. I proposed a feature selection approach to reduce the number of input features and
speed up training while preserving most of the classificational performance.

II / 3. I designed a new model structure for learning CNNs with PCD input format using
depthwise separable convolutions.

II / 4. I showed that the proposed network with the PCD representation can produce ac-
curate classifications outperforming other model-representation pairs.

In the third thesis group, I examined the robustness of TFBS detectors. I showed that
shifting the input sequences can result in a significant drop of performance. I proposed an
augmentation method for training more robust classifiers. In Chapter 4 of the dissertation
an in-depth discussion of this topic can be found.

III / 1. I showed that DNA-protein binding detectors are easily misled by cropping the
input test sequences.

III / 2. I proposed three shifting strategies to evaluate the vulnerabilities of the TFBS mod-
els to adversarial examples. I showed that both a smaller model trained on shorter
sequences and a more advanced model with a larger dataset fail to correctly classify
a significant number of cropped entities.

III / 3. I designed an augmentation method for training, and proved that introducing
shifted examples during fitting can improve robustness and classification accuracy.

Table 7 summarizes the relation between the thesis points and the corresponding publica-
tions.

Table 7: Correspondence between the thesis points and my publications

Publication
Thesis point

I/1 I/2 I/3 II/1 II/2 II/3 II/4 III/1 III/2 III/3
[1] • • •
[2] • •
[3] • •
[4] • • •
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6 Összefoglalás

Az értekezés mély tanulási módszereket mutat be orvosbiológiai adatokon. Az elsődleges
feladat a fehérje kötő DNS szekvenciák detektálása neurális hálózatokkal. A bemutatott
megközeĺıtések közös vonása a mély tanuló modellek vizsgálata nukleotid vagy egyéb
adatábrázolási megközeĺıtés esetében.

A munka három fő témakörből áll. Az első fejezetben a funkciós csoportokat ábrázoló,
a másodikban a fiziko-kémiai, mı́g a 3. fejezetben a nukleotid alapú megközeĺıtések
vizsgálata olvasható.

Az osztályozás funkciós csoportokra épülő reprezentációval ćımű fejezetben a neu-
ronális hálózatokat nem a hagyományos nukleotid alapú szekvenciákkal tańıtom, hanem
egy új vizualizációs módszer adatábrázolási megközeĺıtésével. A szekvenciákat dinuk-
leotidokból számolható értékekkel jellemezzük, a funckiós csoportok elektrokémiai visel-
kedéséből alaḱıtunk ki bemeneti jellemzőket. Mivel nem triviális ennek a formának a
felhasználása konvolúciós rétegek tańıtásához, első lépésként a különböző formai elren-
dezésekkel illetve előfeldolgozási lépésekkel foglalkoztam. Azután bemutattam egy olyan
modell architektúrát, amely kiemelkedő teljeśıtményt ér el transzkripciós faktor kötőhely
detekciós feladatok esetében. Végül elkésźıtettem egy együttes (ensemble) modellt, ahol
a nukleotidokra és a funkciós csoportokra épülő hálók becsléseit átlagolva a kimeneteknél
még további fejlődést értem el.

A modellek tańıtása fiziko-kémiai jellemzőkkel ćımű fejezetben szintén egy, a nuk-
leotidoktól eltérő adatábrázolási módszer seǵıtségével tańıtottam osztályozókat. Az új
reprezentáció a DNS szál különböző fizikai és kémiai tulajdonságait ı́rja le folytonos érté-
kekkel. A fejezet első felében bemutattam, hogy ezen a bemeneti fajtán is tańıthatóak
modellek, amelyek teljeśıtménye az ismertebb megoldásokhoz hasonlóan teljeśıt. Továbbá
egy jellemzőválogatásos módszer seǵıtségével csökkenthető a bemenő jellemzők száma,
ı́gy csak kis osztályozási hibanövekedés mellett gyorsabbak és olcsóbbak a tańıtások. A
fejezet második részében egy olyan megközeĺıtést mutatok be, amely lehetővé teszi a
mély tanulónak, hogy új összefüggéseket vegyen észre a fiziko-kémiai reprezentációban.
A módszer lényege az, hogy a hálózat architektúrájában mélységi szétválasztható kon-
volúciós réteget használok, amely az eddig közvetlenül nem tanulható mélységi dimenzió
mentén is tanulhatóvá tette az összefüggéseket. Így több, azonos feladatra publikált és
ismert modell teljeśıtményét sikerült számos adathalmazon felülmúlnom.

A nukleotid szekvenciákra épülő osztályozók transzlációs robusztussága ćımű fejezet-
ben mesterséges intelligencián alapuló DNS-fehérje kötő detektorok robusztusságát és az
ellenük felhasználható ellenséges példák előálĺıtásának lehetőségeit vizsgáltam. A fel-
tevésem az volt, hogy túlságosan érzékenyek ezek a modellek egyéb tényezőkre, amelyek a
valós ćımkét (azaz a szekvencia biológiai funkcióját) nem befolyásolják. Továbbgondolva,
ha arrébb toljuk a szekvenciákat úgy, hogy a kötőhely (tehát a meghatározó jellemző)
érintetlen marad, akkor azt várnánk, hogy a modellek ettől függetlenül felismerik és helye-
sen döntenek. Azonban azt tapasztaltuk, hogy egy pár nukleotidos hosszanti eltolás is
elegendő ahhoz, hogy félrevezessük a modelleket. Kidolgoztam három különböző eltolási
stratégiát, amelyek alkalmazásakor a kiértékelt hálózatok pontosságbeli romlást szenved-
nek el. Ezen felül megadtam egy augmentációs tańıtási módszert, amely seǵıtségével
a robusztus pontosság növelhető, ı́gy a hálózatok kevésbé vagy egyáltalán nem lesznek
érzékenyek a vágásokra\eltolásokra.
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