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1 Introduction

In computer science, a tree is a widely used abstract data type. In particular, we can use
trees to represent or manipulate hierarchical data. For instance, each of the following ap-
plications involves a tree-like abstract data type: the directory structure of each file system,
the class-hierarchy in object-oriented programming without allowing multiple inheritance,
abstract syntax trees for computer languages, parse trees in Natural Language Processing
(NLP), Document Object Models (“DOM tree”) of XML and HTML documents, etc. Inter-
estingly, even JSON and YAML documents can be considered as trees, but they are typically
represented in a different way.

In the PhD thesis we deal only with finite trees over ranked alphabets. A ranked alpha-

bet ⌃ is a finite and nonempty set of symbols in which we associate with each symbol a
unique rank, i.e., a nonnegative integer. For each nonnegative integer k, we denote the set
of all symbols in ⌃ of rank k by ⌃(k). Then a tree over ⌃ is a finite, labeled, and ordered
tree such that if a node of the tree has k children, then that node is labeled by an element
of ⌃(k). The set of all trees over ⌃ is denoted by T⌃. Furthermore, each subset of T⌃ is
called a tree language over ⌃.

The classical model of finite-state tree automata (for short: fta) [45, 50–52] was in-
vented to recognize a tree language over some ranked alphabet. An fta A over a ranked al-
phabet ⌃ consists of a finite and nonempty set Q (states), a family � = (�k | k is an integer)
of relations �k ✓ Qk ⇥ ⌃(k) ⇥ Q (k-ary transitions), and a set F ✓ Q (root states). Then
a tree ⇠ over ⌃ is recognized by A if we can associate to each node of ⇠ a state in the fol-
lowing way: (1) if a node is labeled by a symbol � 2 ⌃(k) and the states associated to that
node and its k children are q and q1, . . . , qk, respectively, then (q1, . . . , qk, �, q) is a k-ary
transition in �k and (2) the state associated to the root of ⇠ is a root state. The tree lan-
guage recognized by A is called a recognizable tree language. Moreover, two fta are said
to be equivalent if they recognize the same tree language. It is well known that with fta
qualitative properties of recognizable tree languages can be described, such as emptiness,
finiteness, etc.. For surveys on the theory of fta we refer to [19, 29, 38].

In parallel and later, further concepts were introduced and proved to be equivalent to
fta such as tree generating regular systems (for short: tgrs) [16]; rational tree languages
[29, 38, 53]; monadic second-order logic for trees [20, 53]; regular tree grammars [16,
38]; representable tree languages [38]. Moreover, each tree language recognized by an
fta is the image of a local tree language under a deterministic tree relabeling [29, 38, 51].

Later the idea came up to describe not only qualitative but also quantitative properties
of recognizable tree languages, like degree of ambiguity or costs of acceptance. Clearly,
each tree language can be considered as a mapping from the set of input trees to the
Boolean semiring {0, 1}. Moreover, by replacing the Boolean semiring in such a mapping
by any other semiring B, and allowing that the mapping associates arbitrary elements of
B to the trees, a way was opened to describe also those quantitative properties. More
precisely, each quantitative property can be interpreted as a mapping from the set of in-
put trees to some semiring or more generally to the carrier set of some weight structure.
Mappings describing quantitative properties of tree languages are called weighted tree lan-

guages (or formal power series over trees). To recognize such weighted tree languages, the
model of weighted tree automata (for short: wta) was invented. The concept of wta is a
natural extension of the concept of fta by adding weights to each transition and to each
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state. More precisely, a wta A over a ranked alphabet ⌃ and a weight structure B with
carrier set B (for short: (⌃,B)-wta) consists of a finite and nonempty set Q (states), a
family � = (�k | k is an integer) of mappings �k : Qk ⇥ ⌃(k) ⇥ Q ! B (k-ary transition
weight mapping), and a mapping F : Q ! B (root weight mapping). Then the operations
of B allow to combine the transition weights while processing the input tree.

The first such wta over a complete distributive lattice was introduced in [41] (also
see [32]) under the name fuzzy tree automata. Over the years, several other weight
algebras were used to enrich the expressive power of wta: e.g., fields [9], commutative
semirings [7], multioperator monoids [34, 35, 42, 43], strong bimonoids [1, 3, 47], and
tree-valuation monoids [24]. In the thesis we consider the model of wta over strong
bimonoids. A strong bimonoid B = (B,�,⌦, 0, 1) [18, 26, 28, 47] is basically a semiring in
which ⌦ does not necessarily distribute over �.

For a wta A over a strong bimonoid B, two semantics can be defined: the initial algebra
semantics and the run semantics [3, 36, 37, 47]. In general, the two kinds of semantics
may differ [26]; however, if B is a semiring or A is bottom-up deterministic1, then they
coincide, see, e.g., [12, Lm. 4.1.13] and [47, Thm. 4.1] and [3, Thm. 3.10]. In the thesis
we deal only with the run semantics.

A run of A on a tree ⇠ is a mapping ⇢ from the nodes of ⇠ to Q. Moreover, a run ⇢
is said to be a q-run if it associates to the root of ⇠ the state q 2 Q. The weight of a run

⇢ of A for ⇠, denoted by wt(⇠, ⇢), is the element in B defined by induction as follows: if
⇠ = �(⇠1, . . . , ⇠k) for some natural number k, � 2 ⌃(k), and ⇠1, . . . , ⇠k 2 T⌃, then

wt(⇠, ⇢) =
⇣ kO

i=1

wtA(⇠i, ⇢|i)
⌘
⌦ �k

�
⇢(1) · · · ⇢(k), �, ⇢(")

�
, (1)

where ⇢|i denotes a restriction of ⇢ such that ⇢|i is a run of A on ⇠i for each i 2 {1, . . . , k}.
Then the (run) semantics of A, denoted by [[A]], is the mapping [[A]] : T⌃ ! B defined, for
each ⇠ 2 T⌃, by

[[A]](⇠) =
M

q2Q

M

⇢ is a q-run of A on ⇠

wt(⇠, ⇢)⌦ F (q) .

Furthermore, two wta A and A0 are said to be equivalent if we have [[A]] = [[A0]].
The theory of wta has a huge literature. Several questions have been studied through-

out the years, e.g., the pumping lemma for wta [11] and the determinization problem for
wta [14, 17, 36]. Furthermore, similarly to the unweighted case, additional concepts were
invented and shown to be equivalent to wta, see, e.g., weighted regular tree grammars [7]
and the Kleene theorem for wta [7, 25]; monadic second-order logic and the Büchi-Elgot-
Trakhtenbrot’s theorem for recognizable weighted tree languages [27, 35] (cf. [21–23] for
the string case); and weighted representable tree languages [39, 40]. It is also known that
each weighted tree language recognized by a wta is the image of a local weighted tree
language under a deterministic tree relabeling [33]. For a survey on the theory of wta we
refer to [30, 36, 37].

In the thesis we deal with two research topics. The first topic is the equivalence of
wta and weighted tree generating regular systems (for short: wtgrs) over semirings. In
[4] the concept of wtgrs over a strong bimonoid was introduced as a natural extension of

1A (⌃,B)-wta A is said to be bottom-up deterministic if, for every natural number k, w 2 Qk, and � 2 ⌃(k),
there exists at most one q 2 Q such that �k(w,�, q) 6= 0.
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the concept of tree generating regular system (for short: tgrs) [16] to the weighted case,
but, despite the expectations, the semantics of wtgrs was not defined as a straightforward
generalization of the original semantics of tgrs. More precisely, in [4] an alternative, but
essentially equivalent semantics was introduced for tgrs, of which the generalization to the
weighted case opens a way to prove the equivalence of tgrs and Boolean wtgrs, and the
desired equivalence of wta and wtgrs (like the equivalence of fta and tgrs in [16]). In the
thesis, the main results of [4] are recalled as Theorems 4.2.8 and 4.3.4 and 4.4.5.

The second topic is the crisp-determinization problem. The determinization problem

shows up if we wish to specify a problem (e.g., a tree language) in a nondeterministic way
and to calculate its solution (e.g., membership) in a deterministic way. More precisely,
the determinization problem asks the following: for a given nondeterministic device A of
a given type (or class), does there exist a bottom-up deterministic device A0 of the same
type which is equivalent to A0?

It is well known that the determinization problem is solved positively for the class of all
fta (cf., e.g., [53, Thm. 1], [29, Thm. 3.8] , and [38, Thm. 2.2.6]), i.e., for each fta A, there
is an equivalent bottom-up deterministic fta A0. The construction of A0 from A is called
powerset construction. However, the situation changes drastically if we consider the class
of all wta. More precisely, there exists a wta to which there does not exist an equivalent
bottom-up deterministic wta [7, 9, 31, 42]. On the other side, there are subclasses of
the class of all wta for which the determinization problem can be solved positively [14,
Cor. 4.9 and Thm. 4.24], [36, Thm. 3.17], and [17, Thm. 5.2].

A special case of determinization of wta over strong bimonoids is when we require that
the resulting deterministic wta is crisp-deterministic. We call a wta crisp-deterministic if it
is total2 and bottom-up deterministic, and each of its transitions carries either the additive
unit 0 or the multiplicative unit 1 of the underlying strong bimonoid B; weights different
from these units may only appear at the root of the given input tree. Then the crisp-

determinization problem (of wta over strong bimonoids) deals with the following question:
for a given wta A, does there exist a crisp-deterministic wta A0 such that A0 is equivalent
to A? If the answer to this question is “yes”, i.e., such a wta A0 exists, then we say that the
wta A is crisp-determinizable.

It is clear that the notion of crisp-deterministic wta is quite restrictive. However, in
spite of this fact, it is worth to investigate crisp-deterministic wta as they have a strong
relationship with fuzzy questions (cf. [37, Ch. 19]).

Recent results in connection with the crisp-determinization problem are published in
[1–3]. In [3] a sufficient condition for crisp-determinization was given. In the thesis we re-
call that result as Theorem 5.2.8 (also cf. Theorem 5.2.12). Moreover, in [3], regarding the
crisp-determinization problem, undecidability results were given. Inspired by those unde-
cidability results, in the thesis we prove two undecidability results (cf. Theorems 5.3.7 and
5.3.14). Finally, in [1], also regarding the crisp-determinization problem, a decidability
result was given. In the thesis we recall that decidability result as Theorem 5.4.15. To
prove the decidability result, in [1, 2] two new pumping lemmas for wta were presented.
In the thesis we recall those pumping lemmas as Theorems 3.2.3 and 3.2.4.

2A (⌃,B)-wta A is said to be total if, for every natural number k, w 2 Qk, and � 2 ⌃(k), there exists at
least one q 2 Q such that �k(w,�, q) 6= 0.
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2 Pumping lemmas

In the thesis we first deal with pumping lemmas for runs of wta. We use them to prove our
decidability result (cf. Theorem 5.4.15). With a pumping lemma one can achieve structural
implications on small or particular large trees (cf. [38, Lm. 2.10.1] and [11, Lm. 5.5]).
Such pumping lemmas already exist for wta (cf. [11, Sect. 5]). However, Borchardt’s
setting in [11] deals with bottom-up deterministic wta over semirings and employs ini-
tial algebra semantics, whereas in our setting we deal with (arbitrary) wta over strong
bimonoids and employ run semantics. Nevertheless, if we consider the class of all bottom-
up deterministic wta over semirings, then the two settings coincide.

Next we explain our pumping lemma. Essentially, we follow the classical approach for
fta with an analysis of Equality (1). More precisely, let A = (Q, �, F ) be a (⌃,B)-wta,
⇠ 2 T⌃ with height(⇠) � |Q|, and ⇢ be a run of A on ⇠. As for fta, we choose a path, i.e.,
a linearly ordered subset of positions, in ⇠ of which the length equals height(⇠). Clearly,
since height(⇠) � |Q|, there exist distinct positions u and v in this path with ⇢(u) = ⇢(v)
in Q. Assume that u is above v, i.e., there exists a position w such that v = uw. Now we
consider the subtree ⇠|u (respectively, ⇠|v) of ⇠ at u (respectively, v) comprising all positions
of ⇠ which are equal to or below u (respectively, v) (cf. Figure 1).

⇠

⇠|u

⇠|v

u

v = uw

Figure 1: Illustration of the tree ⇠, the positions u and v, and the subtrees ⇠|u and ⇠|v.

In Figure 1 the shaded part is called a context. Evidently, since ⇢(u) = ⇢(v), we can cut
out that context from ⇠, i.e., we can replace the subtree ⇠|u by ⇠|v, and thus, we can obtain
a smaller tree for which a restriction of the run ⇢ leads to the same state as ⇢. But, we can
also substitute a copy of that context at position v and copy the corresponding part of the
run ⇢, and hence, obtain a larger tree ⇠0 and a run ⇢0 of A on ⇠0 leading again to the same
root state as ⇢.

A careful extension and analysis of Equality (1) shows that the product of weights of a
run ✓ on a context c can be split into two factors, a ’left one’, denoted by lc,✓, and a ’right
one’, denoted by rc,✓. Hence, if we substitute a copy of a context c into a tree ⇠, then, in
order to calculate the weight of the run ⇢0 on the resulting new tree ⇠0, we just replace the
two factors lc,✓ and rc,✓ by their powers. In fact, it turns out that, to calculate wt(⇠0, ⇢0), an
additional ’left factor’ lc0,✓0 and an additional ’right factor’ rc0,✓0 are required, which come
from dividing the context c0 between the root of ⇠ and the position u (cf. Figure 1). Now
we show our pumping lemmas.
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Theorem 3.2.3. [1, Thm. 8] and [2, Lm. 5.3] (also cf. [11, Lm. 5.3]) Let ⌃ be

a ranked alphabet such that ⌃(0) 6= ;, and B be a strong bimonoid. Moreover, let

A = (Q, �, F ) be a (⌃,B)-wta. Then, for every ⌃-contexts c0 and c, ⌃-tree ⇠, states q0

and q in Q, (q0, q)-run ✓0 of A on c0, (q, q)-run ✓ of A on c, and q-run ⇢ of A on ⇠, and

for each n 2 N, we have

wt(c0[cn[⇠]], ✓0[✓n[⇢]]) = lc0,✓0 ⌦ (lc,✓)
n ⌦ wt(⇠, ⇢)⌦ (rc,✓)

n ⌦ rc0,✓0 .

Theorem 3.2.4. [1, Thm. 9] and [2, Thm. 5.4] (also cf. [11, Lm. 5.5]) Let ⌃ be

a ranked alphabet such that ⌃(0) 6= ;, and B be a strong bimonoid. Moreover, let

A = (Q, �, F ) be a (⌃,B)-wta. For every ⌃-tree ⇠0, state q0 in Q, and q0-run ⇢0 of A on ⇠0,
if height(⇠0) � |Q|, then there exist ⌃-contexts c0 and c, ⌃-tree ⇠, state q in Q, (q0, q)-run

✓0 of A on c0, (q, q)-run ✓ of A on c, and q-run ⇢ of A on ⇠ such that the following

conditions hold true: ⇠0 = c0[c[⇠]], ⇢0 = ✓0[✓[⇢]], height(c) > 0, height(c[⇠]) < |Q|, and,

for each n 2 N, we have

wt(c0[cn[⇠]], ✓0[✓n[⇢]]) = lc0,✓0 ⌦ (lc,✓)
n ⌦ wt(⇠, ⇢)⌦ (rc,✓)

n ⌦ rc0,✓0 .

Detailed description of Theorems 3.2.3 and 3.2.4 can be found in Section 3.2 of the
thesis.

Contribution. The author of the thesis declares that his contribution to Theorems 3.2.3
and 3.2.4 is significant, and also that Theorems 3.2.3 and 3.2.4 are published in [1, 2].

3 Weighted tree generating regular systems

The concept of weighted tree generating regular system over a ranked alphabet ⌃ and a
strong bimonoid B (for short: (⌃,B)-wtgrs, or just: wtgrs) was introduced in [4]. Then
the equivalence of wta and weighted tree generating regular systems over semirings was
proven, i.e., a further characterization of recognizable weighted tree languages was given
in [4]. The concept of (⌃,B)-wtgrs was defined in the way that the following two require-
ments were fulfilled:

(a) Each wtgrs S over ⌃ and the Boolean semiring {0, 1} is ”equivalent”
to a tgrs S over ⌃, and vice versa (cf. Theorem 4.3.4).

(b) Under some mild conditions, each wtgrs S over ⌃ and a semiring B (2)
is equivalent to a (⌃,B)-wta A, and vice versa (cf. Theorem 4.4.5)
(correspondingly to the fact that tgrs and fta are equivalent, cf. [16]).

To fully understand those results, here we briefly recall the concept of tgrs and its deriva-
tion semantics introduced by Brainerd in [16]. Moreover, we show that the seemingly
natural generalization of the derivation semantics to the weighted case does not work,
i.e., it does not fulfill Requirement (2)(b). Finally, we explain the two characteristics of
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our alternative semantics, called reduction semantics. In fact, the reduction semantics is
essentially the same as the derivation semantics (cf. Theorem 4.2.8).

A ⌃-tgrs (or just tgrs) S consists of a ground term rewriting system [8, 19] P over some
ranked alphabet � and a finite subset Z of designated trees over �. The ranked alphabet �
is partitioned into two sets: the set ⌃ of terminals and the set N of nonterminals. Moreover,
we call elements of P productions and elements of Z axioms. The ground term rewrite
relation )S induced by S is defined in the standard way (cf. [8, Def. 3.1.8]). Furthermore,
the derivation semantics of S (for short: d-semantics of S), denoted by Ld(S), is the tree
language Ld(S) ✓ T⌃ defined as follows: a ⇠ over ⌃ is in Ld(S) if there exist an axiom
⇣ 2 Z and a ⇣-computation of P for ⇠ under )S, i.e., ⇣ )⇤

S ⇠. Moreover, a tree language is
said to be d-generated if it is a d-semantics of some ⌃-tgrs.

Observe that if in certain steps of a ⇣-computation d of P for ⇠ under )S we could
replace at incomparable positions3, then there may exist several other ⇣-computations of
P for ⇠ under )S.

Now we define a (⌃,B)-wtgrs to be a ⌃-tgrs in which to each production and to each
axiom a weight in B is associated, i.e., a (⌃,B)-wtgrs S consists of a ⌃-tgrs S = (N,Z, P ),
a mapping wt : P ! B (production weight mapping), and a mapping X : Z ! B (axiom
weight mapping). The natural generalization of the d-semantics of tgrs to the weighted
case, i.e., the d-semantics of S, would be as follows. For a tree ⇠ over ⌃ and an axiom
⇣ 2 Z, and for a ⇣-computation d of P for ⇠ under )S, to calculate the weight of d,
we would multiply the weights of the productions in a fixed order determined by d by
applying the multiplication operation ⌦ of B. Then we calculate the d-semantics of S for a
tree ⇠ over ⌃ as follows: by using the addition operation � of B we sum up all weights of
⇣-computations of P for ⇠ under )S multiplied by the axiom weight X(⇣). However, this
is not suitable to fulfill Requirement (2)(b) for the following reason. When we associate
a (⌃,B)-wtgrs S to a (⌃,B)-wta A, more than one computation of P may correspond to a
single run of A. Furthermore, since � is not necessarily idempotent, this may yield that
the d-semantics of S and the semantics of A differ.

In order to avoid that phenomenon, we advocate an alternative semantics, called re-

duction semantics (for short: r-semantics), for tgrs. The d-semantics and the r-semantics of
tgrs are essentially equivalent (cf. Theorem 4.2.8). Moreover, we introduce the concept of
wtgrs with the natural generalization of the r-semantics of tgrs to the weighted case. The
r-semantics of a tgrs S has two characteristics:

(i) it is based on a restriction of the term rewriting relation, denoted by )S,dp, in which
replacements can be performed only at the minimal position (with respect to the
depth-first post-ordering of positions) at which a replacement is possible and

(ii) the r-semantics of S, denoted by Lr(S), is the tree language Lr(S) ✓ T⌃ defined such
that a tree ⇣ over ⌃ is in Lr(S) if there exists an axiom ⇠ 2 Z and a ⇣-computation of
P for ⇠ under )S,dp.

Then a tree language is said to be r-generated if it is an r-semantics of some ⌃-tgrs.
In conclusion, we introduce the r-semantics for the following reasons. For each tgrs S

there exists a tgrs S 0 such that Ld(S) = Lr(S 0). Vice versa, for each tgrs S there exists a
tgrs S 0 such that Lr(S) = Ld(S 0). Hence, we obtain the following result.

3We call two positions of a tree incomparable if none of them is a prefix of the other one.

6



Theorem 4.2.8. [4, Thm. 15] Let ⌃ be a ranked alphabet such that ⌃(0) 6= ;. Then,

for each L ✓ T⌃, the ⌃-tree language L is d-generated if and only if it is r-generated.

The semantics of a (⌃,B)-wtgrs S, denoted by [[S]], is introduced by the natural gener-
alization of the r-semantics of tgrs to the weighted case.

Since [[S]] is a weighted tree language over ⌃ and B, the support of [[S]] with respect to

B, denoted by suppB([[S]]), is the tree language suppB([[S]]) ✓ T⌃ defined such that a tree
⇣ 2 T⌃ is in suppB([[S]]) if we have [[S]](⇣) 6= 0. Then the equivalence of tgrs and wtgrs can
be formulated as follows (cf. Requirement (2)(a)).

Theorem 4.3.4. [4, Thm. 25] Let ⌃ be a ranked alphabet such that ⌃(0) 6= ;. Moreover,

let L be a ⌃-tree language. Then the following statements are equivalent.

1. We can construct a ⌃-tgrs such that Lr(S) = L.

2. We can construct a (⌃,Boole)-wtgrs such that suppBoole([[S]]) = L.

A weighted tree language  is said to r-generated if there exists a wtgrs S such that
 = [[S]]. Using this concept, the equivalence of wta and wtgrs over semirings can be
stated as follows (cf. Requirement (2)(b)).

Theorem 4.4.5. cf. [4, Thm. 34] Let ⌃ be a ranked alphabet such that ⌃(0) 6= ;. Then,

for every semiring B and (⌃,B)-weighted tree language  , the following statements hold

true.

1. If B is complete, then  is recognizable iff it is r-generated.

2. If B is computable, then we can construct a (⌃,B)-wta A such that [[A]] =  iff

we can construct a finite-reductional (⌃,B)-wtgrs S such that [[S]] =  .

Detailed description of Theorems 4.2.8, 4.3.4, and 4.4.5 can be found in Sections 4.2,
4.3, and 4.4 of the thesis, respectively.

Contribution. The author of the thesis declares that Theorems 4.2.8, 4.3.4, and 4.4.5
are due to his own work, and those results are published in [4].

4 Crisp-determinization of wta

A crisp-deterministic wta A over B has several desirable properties such as [[A]] has a finite
image (called finite-image property) or, for each b 2 B, the set of all trees with weight b
under [[A]] is a recognizable tree language (called preimage property). In fact, the class of
all crisp-deterministic wta can be characterized using only those two properties cf. [3]. For
further properties of crisp-deterministic wta we refer to [37]. It is worth to study crisp-
deterministic wta also for the following reason. Fuzzy automata, languages, and grammars
have been of interest for a long time e.g. [15, 32, 41]; for a survey we refer to [48]. The
underlying weight structure of these formal models is some bounded lattice. Recall that,
each bounded lattice is, basically, a bi-locally finite strong bimonoid. In fact, in [3] it was
shown that each wta over a bi-locally finite strong bimonoid is crisp-determinizable, i.e.,
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advantages of crisp-deterministic wta are available during the investigation of fuzzy formal
models.

There are subclasses of all weighted string automata (for short: wsa) for which the
crisp-determinization problem is solved positively [18, 26]. They correspond to subclasses
of wta over string ranked alphabets4, cf. [37, Lm. 3.3.3]. In [3] the positive results of
[18, 26] were extended to further subclasses of all wta as follows. By a straightforward
generalization of [18, Sect. 8] from strings to trees, the concept of the finite-order property
of wta was introduced. Moreover, it was shown that if a (⌃,B)-wta A has finite order, then
A is crisp-determinizable. In the thesis that result is given as follows.

Theorem 5.2.8. [3, Thm. 7.3] (also cf. [18, Thm. 8.2]) Let ⌃ be a ranked alphabet

such that ⌃(0) 6= ;, and B be a strong bimonoid. Moreover, let A be a (⌃,B)-wta

such that A has finite order. Then there exists a (⌃,B)-wta A0
such that A0

is crisp-

deterministic and it is equivalent to A.

If, in addition, B is computable, then we can even construct A0.

Theorem 5.2.12. Let ⌃ be a ranked alphabet such that ⌃(0) 6= ;, and B be a com-

putable strong bimonoid. Moreover, let A be a (⌃,B)-wta such that A has finite order.

Then we can construct a (⌃,B)-wta A0
such that A0

is crisp-deterministic and it is

equivalent to A.

Detailed discussion of Theorems 5.2.8 and 5.2.12 can be found in Section 5.2 of the
thesis. Furthermore, in the thesis we deal with decidability questions related to the crisp-
determinization problem. In the literature there had been some promising partial results
regarding the undecidability (decidability) of crisp-determinization. These results justify
the relevance of such questions, and create a solid base for further investigations. For
instance, each wsa over a finite semiring or over the semiring of natural numbers has
the preimage property; or each wsa over a commutative ring which has the finite-image
property also has the preimage property [10, 27, 44]. Moreover, for each wsa over any
subsemiring of the rational numbers, the finite-image property is decidable [46] (also
cf. the classical Burnside property for semigroups [49]). Keeping in mind these existing
partial results, undecidability (decidability) results related to the crisp-determinization
problem were proven in [1–3] as follows.

By Theorems 5.2.8 and 5.2.12, a wta A is crisp-determinizable if A has finite order.
Hence, in particular, we are interested in the following decidability questions.
(Q1) Is it decidable for an arbitrary wta A, whether A has finite order?
(Q2) Is it decidable for an arbitrary wta A, whether A is crisp-determinizable?
In the thesis we recall that the answer to both questions is negative.

Theorem 5.3.7. cf. [3, Thm. 8.9] It is undecidable, for arbitrary string ranked alpha-

bet ⌃, computable and idempotent semiring S, and bottom-up deterministic (⌃, S)-wta

A, whether A has finite order.

4A ranked alphabet ⌃ is called a string ranked alphabet if ⌃ = (⌃(1) [ ⌃(0)), |⌃(1)| � 1, and |⌃(0)| = 1.

8



Theorem 5.3.14. cf. [3, Thm. 8.5] It is undecidable, for arbitrary string ranked alpha-

bet ⌃, computable and idempotent semiring S, and bottom-up deterministic (⌃, S)-wta

A, whether A is crisp-determinizable.

Detailed discussion of Theorems 5.3.7 and 5.3.14 can be found in Section 5.3 of the the-
sis. Finally, in [1] two subclasses of wta were identified for which the crisp-determinization
problem is decidable. For that, in the spirit of [13, Def. 12], the concept of past-finite
monotonic strong bimonoid was introduced. These particular weight structures have sev-
eral desirable properties cf. [13]. Hence, if B is past-finite monotonic, then the characteri-
zation of crisp-determinizability given in [3] can be simplified as follows: for an arbitrary
(⌃,B)-wta A, the wta A is crisp-determinizable if and only if im([[A]]) is finite. Moreover,
if, in addition, B is additively locally finite or A is unambiguous, then im([[A]]) is finite.
Consequently, the following result can be obtained.

Theorem 5.4.15. [1, Thm. 10] Let ⌃ be a ranked alphabet such that ⌃(0) 6= ;. More-

over, let B = (B,�,⌦, 0, 1) be a strong bimonoid and � be a partial ordering on B such

that B is past-finite monotonic with respect to �, and B has effective tests for {0, 1}.

Then the following statements hold true.

1. If, in addition, B is additively locally finite, then it is decidable, for arbitrary

(⌃,B)-wta A, whether A is crisp-determinizable.

2. It is decidable, for arbitrary unambiguous (⌃,B)-wta A, whether A is crisp-

determinizable.

Detailed discussion of Theorem 5.4.15 can be found in Section 5.4.

Contribution. The author of the thesis declares that his contribution to Theorems 5.2.8,
5.2.12, 5.3.7, 5.3.14, and 5.4.15 is decisive, that Theorems 5.2.8 and 5.4.15 are published
in [3] and [1], respectively, and also that Theorems 5.3.7 and 5.3.14 are slightly stronger
than [3, Thm. 8.9] and [3, Thm. 8.5], respectively, but are based on the same ideas.
Finally, we mention that [2, Thm. 6.6], [5, Thms. 7 and 11], and [2, Thms. 7.5, 7.7, and
7.15] supersede Theorems 5.2.8, 5.3.14, and 5.4.15, respectively, but the contribution of
the author to those stronger results is not decisive.
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[3] Z. Fülöp, D. Kószó, and H. Vogler. “Crisp-determinization of weighted tree au-
tomata over strong bimonoids”. In: Discrete Mathematics & Theoretical Computer

Science 23(1) (2021), #18.
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Összefoglalás

Az informatikában a fa egy széles körben használt absztrakt adatt́ıpus. Elsősorban arra
használjuk ezt az adatt́ıpust, hogy függelmi viszonyokat, fölé- és alárendeltségek rend-
szerét tudjuk kifejezni. A következő gyakorlati alkalmazási területeken találkozhatunk
a fa adatt́ıpussal: egy fájlrendszer könyvtárszerkezete, többszörös öröklődés nélküli ob-
jektumorientált programozásban az osztályhierarchia, a programozási nyelvek absztrakt
szintaxis fái, a természetes nyelvi feldolgozásban az elemzőfák, az XML és HTML doku-
mentumok Dokumentum Objektum Modelljei, stb.

Ebben az értekezésben csak rangolt ábécé feletti véges fákkal foglalkozunk. Az ezen
fákat felismerő formális modelleket véges faautomatáknak nevezzük. A véges faautomaták
természetes kiterjesztései a súlyozott esetre a súlyozott faautomaták.

Az értekezés két fő témakörből áll. Az első témakör keretében a súlyozott faau-
tomaták és a súlyozott fageneráló reguláris rendszerek ekvivalenciáját tárgyaljuk. A
súlyozott fageneráló reguláris rendszer fogalma a fageneráló reguláris rendszer fo-
galmának természetes általánośıtása a súlyozott esetre, azonban a szemantika kiterjesztése
a súlyozott esetben nem közvetlenül történik. Az értekezés 4.2-es fejezetében egy másik,
de a meglévővel ekvivalens szemantikát definiálunk a fageneráló reguláris rendszereknek.
Majd a 4.3-as fejezetben a súlyozott fageneráló reguláris rendszer szemantikáját már en-
nek a másik szemantikának a kiterjesztésével adjuk meg. Végül a 4.4-es fejezetben bebi-
zonýıtjuk a korábban emĺıtett ekvivalenciát.

A másik témakör a súlyozott faautomaták egységdeterminizálása, amely a de-
terminizálás speciális esete. Az 5.2-es fejezetben egy elegendőségi feltételt adunk
meg erre vonatkozóan. Az 5.3-as fejezetben az egységdeterminizálásra vonatkozó
eldönthetetlenségi, mı́g az 5.4-es fejezetben eldönthetőségi eredményeket közlünk.
Az eldönthetőségi eredmények bizonýıtása közben mellékeredményként új pumpáló
lemmákat is bebizonýıtunk, melyeket a 3.2-es fejezetben tárgyalunk.
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