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Introduction

The aim of the thesis is to develop and analyse dynamical models for the transmission
dynamics and propagation of infectious diseases. Our approach can be used to the practical
problems of epidemiology, with serious implications to public health policy, prevention,
control and mitigation strategies in public health emergencies such as the ongoing pandemic.

Diseases have always been an important part of the life of societies. Since the beginning
of written history there have been records of epidemics causing significant burden on human
populations, often recurring years or decades later. For example, the Black Death spread
from Asia throughout Europe in waves beginning in 1346, and is estimated to have caused
the death of more than 30% of the population of Europe between 1346 and 1350. The
disease returned regularly in several parts of Europe for centuries, most famously as the
Great Plague of London in 1665-1666. After the first World War, the Spanish flu estimated
to cause 25 - 50 million deaths worldwide, followed by other severe influenza pandemics in the
50’s and 60’s. There are still annual influenza epidemics that cause up to 650,000 fatalities
worldwide, according to WHO. Recently, we are struggling with the COVID-19 pandemic,
with 6,400,000 reported deaths until September 2022, while the true number of deaths may
reach 20 millions.

The objective of medical screening and testing is to identify the disease in its still curable
phase. This may have been an old challenge in medicine and for a successful testing at least
four conditions need to be met: the availability of simple, validated and acceptable forms
of tests, the discovery of effective treatments, the establishment of a screening protocol,
and the wide access to health care. There are many successes from the history of medical
screening: testing for syphilis in the United States army (one of the first applications of
group testing), screening for cervical cancer using the Pap test, and screening for breast
cancer by mammography. The evaluation of the impact of screening on human health slowly
progressed, from obvious changes in the vital statistics to less obvious such as the decline
in mortality of cancer of the uterus, to finally more subtle changes, such as the impact of
mammography screening on breast cancer mortality.

Screening in non-infectious diseases such as cancer has the main goal of early identification
of cases that drastically increases the chance of successful treatment for that individual.
The main advantage of testing in combating infectious diseases beyond treating the tested
individual is that it enables to recognize asymptomatic infected, who may have a very
important role in disease transmission dynamics, thus potentially by breaking chains of
infection the testing benefits indirectly all other members of the population. Hence, strategic
testing can be used as a mitigation tool of the epidemic on the population level. Testing
helps to estimate the proportion of asymptomatic carriers and their role in disease spread.
It also helps to find clusters of cases and to have a more precise estimate on transmission
rates and death rates. With the application of these results, testing provides a guide to make
decisions on social distancing policy and other measures including the allocation of medical
resources.

We start with an overview of simple SIS models, then we discuss some of the most
important and feasible extensions and generalizations. Then, we introduce a basic mass-
testing and isolation intervention and we point out that this modification induces a completely
different and richer dynamics.
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Then, we investigate the mathematical analysis of a multistage SIS model, where infected
hosts progress through different stages of the disease. We calculate the basic reproduction
number R0, and discuss the existence of the endemic equilibrium. Our main result is that
the stability of the endemic equilibrium depends strongly on the number of stages: the
endemic equilibrium is always stable when n ≤ 3, while for any n > 3 it can be either
stable or unstable, depending on the particular choice of the parameters. We generalize
previous stability results for SIRS models as well and point out a mistake in the literature
for multistage SEIRS models.

Then, we consider an extended SEIR-type model for the transmission dynamics of
COVID-19. We incorporate symptom-based testing of patients and isolation upon positive
result i.e. removal from the chain of transmission. The clinical symptoms that trigger the
testing of individuals is referred to as indicator symptoms. The force of testing is defined as
the per capita rate at which infected individuals are tested. It is described by a nonlinear
function of the state of the epidemic and of all individuals displaying the indicator symptom
at a given time, with or without COVID-19 infection, hence, it is considerably different from
previous approaches. Our goal is to understand the impact, and especially the limitations
of this testing strategy, hence we model neither contact-tracing of patients with positive
tests nor the testing of a fraction of non-symptomatic contacts, both of which are common
and efficient improvements and result in removal of additional patients from the chain of
transmission.

Then, we develop a compartmental model to study the applicability of group testing
and compare different pooling strategies: regular and Dorfman pooling. The model includes
isolated compartments as well, from where individuals rejoin the active population after
some time delay. We develop a method to optimize Dorfman pooling depending on disease
prevalence and establish an adaptive strategy to select variable pool sizes during the course
of the epidemic. It is shown that optimizing the pool size can avert a significant number
of infections. The adaptive strategy is even more efficient, and may prevent an epidemic
outbreak in situations when a fixed pool size strategy can not. The dissertation is based on
three articles of the author. These publications are the following:

[1] G. Röst, T. Tekeli, Stability and oscillations of multistage SIS models depend on the
number of stages, App. Math. and Comp., (380), 2020, 125259, 0096-3003, https:
//doi.org/10.1016/j.amc.2020.125259.

[2] F. Bartha, J. Karsai, T. Tekeli, G. Röst, Symptom-based testing in a compartmental
model of COVID-19, in: P. Agarwal, J. J. Nieto, M. Ruzhansky, D. F. M. Torres (Eds.),
Analysis of infectious disease problems (Covid-19) and their global impact, Springer,
Singapore, 2021, pp. 357–376. https://doi.org/10.1007/978-981-16-2450-6_16

[3] T. Tekeli, A. Dénes, G. Röst, Adaptive group testing in a compartmental model of
COVID-19. Math. Biosci. and Eng., 2022, 19(11): 11018-11033, https://doi.org/
10.3934/mbe.2022513

https://doi.org/10.1016/j.amc.2020.125259.
https://doi.org/10.1016/j.amc.2020.125259.
https://doi.org/10.1007/978-981-16-2450-6_16
https://doi.org/10.3934/mbe.2022513 
https://doi.org/10.3934/mbe.2022513 
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SIS epidemic models

The simplest SIS model is

S ′(t) = −βS(t)I(t) + γI(t), (1)

I ′(t) = βS(t)I(t)− γI(t), (2)

where β is the transmission rate and γ is the recovery rate.
The dynamics of the infected population is equivalent to the dynamics of the logistic

equation, so that for all I(0) ≥ 0 it holds that

if
β

γ
< 1, then lim

t→∞
I(t) = 0;

if
β

γ
≥ 1, then lim

t→∞
I(t) = 1− γ

β
= 1− 1

R0

,

where the basic reproduction number R0 =
β

γ
shows the expected number of new infections

directly generated by one infectious person in a completely susceptible population. A
reasonable extension to make the simple SIS model more realistic is to divide the infectious
period into stages I1, I2, . . . , In, following the progression of the disease within the host, given
that the infectiousness of an individual may change during the course of infection. The so-
called linear chain trick consists in replacing a single infectious stage with n exponentially
distributed sub-stages as substage Ii having its own mean period γ−1

i . We can consider such
cases with the help of a probability density function. Let’s denote the density of a cohort
whose infection age is v at time moment t by g(t, v). Then

g(t, v) = β (1− I(t− v)) I(t− v)F(v), (3)

where we denote by F(a) the probability of an individual being infected after time a since
infection. Here F is non-increasing with

F : [0,∞] → [0, 1] ,

F(0) = 1 and lim
t→∞

F(t) = 0.

Integration of (3) yields

I(t) = β

∫ ∞

0

(1− I(t− v)) I(t− v)F(v)dv. (4)

Hethcote and van den Driessche made the conjecture that the endemic equilibrium, whenever
it exists, is globally asymptomatically stable, regardless of the particular form of F . Röst
and Nakata proved in [4] that this conjecture holds, if the support of F is compact. This
model assumes constant β infectivity, regardless of infection age. We generalize this by
varying (4) to

I(t) =

∫ ∞

0

β(v)I(t− v) (1− I(t− v))F(v)dv, (5)
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and show that varying infectivity can cause richer, oscillatory dynamics. We prove this for
a discretized version of (5) with multiple stages. Moreover, extending (1) with introducing
a simple testing and isolating method can also change its dynamics.

The following simple delay differential equation model can be derived from the basic
SIS-setup by adding testing and a quarantined compartment with fixed length of isolation:

S ′(t) = −β · S(t) · I(t) + γ · I(t) + σ · I(t− τ)

I ′(t) = β · S(t) · I(t)− γ · I(t)− σ · I(t) (6)

Q′(t) = σ · I(t)− σ · I(t− τ).

Theorem 1. The endemic equilibrium of system (6) can be stable or unstable, depending on
parameters β, γ, σ and τ .

Stability and instability in multistage SIS models

We investigate the stage progression SIS model

S ′(t) = b(N(t)) + pnIn(t)−
n∑

k=1

βkIk(t)S(t)− µS(t),

I ′1(t) =
n∑

k=1

βkIk(t)S(t)− p1I1(t)− µI1(t),

I ′2(t) = p1I1(t)− p2I2(t)− µI2(t), (7)

...

I ′n(t) = pn−1In−1(t)− pnIn(t)− µIn(t),

which describes the spread of a non-fatal infectious disease in a population with recruitment
rate b(N) and natural death rate µ. For simplicity, we will assume b(N) = µN , hence the
total population N(t) = S(t) +

∑n
j=1 Ij(t) will remain constant. Here, S = S(t) represents

the susceptible compartment, I1 = I1(t), I2 = I2(t), . . . , In = In(t) represent the infected
compartments corresponding to stages 1, 2, . . . , n. We denote by βi (i = 1, 2, . . . , n) the
disease transmission rates in compartment Ii, and by pi (i = 1, 2, . . . , n) the progression rates
from disease stage i to i + 1, i.e. from compartment Ii to Ii+1. Normalizing the constant
population to unity yields S = 1−

∑n
k=1 Ik, therefore we can decouple the S-equation from

(7) to

I ′1 =
n∑

k=1

βkIk

(
1−

n∑
k=1

Ik

)
− p1I1 − µI1,

I ′2 = p1I1 − p2I2 − µI2,

... (8)

I ′n = pn−1In−1 − pnIn − µIn.
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Proposition 1. The basic reproduction number of system (8) is

R0 =
n∑

k=1

βk

pk + µ

(
k−1∏
j=1

pj
pj + µ

)
. (9)

Proposition 2. For system (8), a unique endemic equilibrium (I∗1 , I
∗
2 , . . . I

∗
n) (with I∗k > 0

for all 1 ≤ k ≤ n) exists if and only if R0 > 1. It is given by

I∗k =
pk+1 + µ

pk
. . .

pn + µ

pn−1

·
1− 1

R0

Q
,where Q = 1 +

pn + µ

pn−1

+ · · ·+
n−1∏
i=1

pi+1 + µ

pi
. (10)

We introduce the notation D = {I ∈ Rn
+|
∑n

j=1 Ij ≤ 1} for the feasible phase space of
model (8).

Theorem 2. If R0 ≤ 1 then the disease free equilibrium is globally asymptotically stable in
the domain D, that is, the disease will be eradicated. If R0 > 1 then the disease persists
uniformly in the population.

Theorem 3. In (8), if R0 > 1 and n = 1, 2, 3, then, the endemic equilibrium is locally
asymptotically stable.

Stable cases in higher dimensions

Let us set in (8) β := β1 = β2 = · · · = βn, and p := p1 = . . . pn, and µ = 0. Then we have

I ′1 = β
n∑

k=1

Ik

(
1−

n∑
k=1

Ik

)
− pI1,

I ′2 = pI1 − pI2,

... (11)

I ′n = pIn−1 − pIn.

From (9) and (10), we obtain the basic reproduction number and the endemic equilibrium
as

R0 =
β · n
p

, I∗1 = I∗2 = · · · = I∗n =
1− p

βn

n
. (12)

Proposition 3. The characteristic polynomial of (11) at the endemic equilibrium is

χn(λ) = (−1)n

(
(p+ λ)n +

(
β − 2p

n

)
·
n−1∑
i=0

(p+ λ)i · pn−1−i

)
. (13)

Theorem 4. The endemic equilibrium of (11) is stable.
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Unstable cases in higher dimensions

If we set in (8) β1 = β > 0, β2 = β3 = · · · = βn = 0, p1 = p > 0, p2 = p3 = · · · = pn = q > 0
and µ = 0, then (8) is reduced to

I ′1 = βI1

(
1−

n∑
k=1

Ik

)
− pI1,

I ′2 = pI1 − qI2,

I ′3 = qI2 − qI3,

...

I ′n = qIn−1 − qIn.

(14)

It is easy to calculate the basic reproduction number as R0 =
β

p
. The endemic equilibrium

satisfies I∗2 = · · · = I∗n = p
q
I∗1 , and substituting to the first equation yields

I∗1 =
1− p

β

(n− 1)p
q
+ 1

, I∗2 = · · · = I∗n =
p

q

1− p
β

(n− 1)p
q
+ 1

. (15)

Proposition 4. The characteristic polynomial of (14) is

χn(λ) = (−1)n
(
(q + λ)n−1(β · I∗1 + λ) +

p · β · I∗1
λ

(
(q + λ)n−1 − qn−1

))
. (16)

Theorem 5. For every n ≥ 4 there is a suitable parameter set p, q, ω > 0 that the
characteristic polynomial χn(λ) has pure imaginary roots λ = iω and the appropriate transversality
condition is satisfied.

Instability in an SEIRS model

In [5], the transmission dynamics of an SEIRS model was investigated for an infectious
disease with n infectious stages, given by the system

S ′ = π + θR−
n∑

k=1

βkIk
N

S − µSS,

E ′ =
n∑

k=1

βkIk
N

S − σEE − µEE,

I ′1 = σEE − σ1I1 − µ1I1 − δ1I1,

I ′j = σj−1Ij−1 − σjIj − µjIj − δjIj, j = 2, 3, . . . , n

R′ = σnIn − θR− µRR,

(17)

where π is the recruitment rate of susceptible individuals into the population, θ is the rate
of the loss of immunity among recovered individuals, βk are the effective contact rates and
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σE, σIk , µS, µE, µIk , µR, δk (k = 1, 2, . . . , n) describe per capita rates of disease progression,
natural death and disease-induced death, respectively. We assume that all these parameters
are nonnegative. We denote by N the total population (N = S+E+

∑n
k=1 Ik+R), by E the

compartment of exposed individuals, by Ij the compartment of infected individuals in disease
stage j, and by R the compartment of recovered and immune individuals. By applying a
similar method as in Theorem 5, we can show that the endemic equilibrium can be unstable.
In [5], the authors claimed that the endemic equilibrium is always stable whenever exists,
which we disprove.

Proposition 5. There exist a parameter set for (17) such that the endemic equilibrium exists
and it is unstable.

Dynamics of a COVID-type model with symptom-based

testing

To assess the effectiveness of indicator symptom based testing in controlling the spread of
COVID-19, we developed a compartmental population model based on the general SEIR
formulation without vital dynamics. The equations read as

S ′(t) = −β
S(t)

N(t)
(P (t) + I(t)) ,

L′(t) = β
S(t)

N(t)
(P (t) + I(t))− αL(t),

P ′(t) = αL(t)− ρP (t),

I ′(t) = ρP (t)− γI(t)− k
pI(t)

pI(t) + σ
,

R′(t) = γI(t) + k
pI(t)

pI(t) + σ
.

(18)

The force of infection is the rate associated with the outward flow from S to L, namely,

λ = β
1

N
(P + I).

The indicator symptom-based testing is represented by the term

k
pI

pI + σ
,

where k gives the number of tests done per unit time also referred to as the testing rate, the
probability p describes how likely is that a member of compartment I displays the chosen
indicator symptom. Note that this probability removes the need for an asymptomatic/mild
compartment as it is straightforward to adjust p to account for all COVID-19 patients. The
final term σ (possibly time-dependent) represents those individuals who are not infected
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by COVID-19, yet they show the very same symptom we base our testing upon. In this
chapter, we refer to σ as the secondary symptom pool, whereas, the primary symptom pool
Σ is composed of all members (with or without COVID-19 infection) of the population
displaying the indicator symptom at a given time, that is

Σ = pI + σ.

The testing rate k has a natural upper bound, namely,

k ≤ Σ

as we solely test patients displaying the indicator symptom. By reformulating the testing
term as

k
pI

pI + σ
=

k

Σ
· p · I,

it is interpreted as the removal of the k
Σ

fraction of COVID-19 patients displaying the
indicator symptom.

The rate of the testing-induced outward flow from I to R is referred to as the force of
testing given by

τk,p,σ = k
p

pI + σ
. (19)

Finally, we introduce the positivity rate of testing as

θ =
pI

pI + σ
, (20)

that may serve as a real-time indicator of the severity of an ongoing epidemic, and the

adequateness of the testing rate. The basic reproduction number R0 = β
(

1
ρ
+ 1

γ

)
is

obtained by the next generation matrix method. Similar key characteristics are the control
reproduction number Rc and the effective reproduction number Rt. The former describes
the epidemic incorporating the effect of interventions, in our case indicator symptom-based
testing, but still at the beginning of the outbreak. In contrast, the latter is suitable to
measure the spread of the disease as the epidemic is progressing. The corresponding formulae
may be obtained via analogous computations to those above as

Rc = β

(
1

ρ
+

σ

σγ + kp

)
(21)

and

Rt = β
S(t)

N

(
1

ρ
+

1

γ + τk,p,σ

)
.

We analyzed the symptom-based testing strategy with emphasis on how the force of testing
and the effective reproduction number are affected by the particular choice of strategy.

Proposition 6. Given a fixed state of (18), the force of testing τk,p,σ is

a) monotonically increasing in k,



10

b) monotonically increasing in k
Σ
.

Proposition 7. The force of testing τk,p,σ is monotonically decreasing in σ
p
.

Proposition 8. Given a fixed state of (18), consider two secondary symptom pools, 0 ≤
σ1 ≤ σ2 for the same indicator symptom that appears amongst members of the compartment
I with probability p. Let k1 and k2 be two testing rates corresponding to the testing strategies
for σ1 and σ2, respectively. Then,

k2
k1

=
σ2

σ1

implies
τk1,p,σ1 ≤ τk2,p,σ2 .

Proposition 9. Let 0 ≤ k1 ≤ k2 be two testing rates. Consider an epidemic described by
(18) with daily testing rate k, and the associated effective reproduction number Rt(k) as a
function of k. Then, the following inequality holds:

max

{
k1
k2

,
γ

ρ+ γ

}
≤ Rt(k2)

Rt(k1)
≤ 1.

The implications of Prop. 9 on goals for the testing strategy are rather important as
they point out some hard limitations. For COVID-19 parameters, 0.43 ∼ γ

ρ+γ
. As an

example, if our current estimates for Rt are above 2.4, then we cannot expect the pure
indicator symptom-based testing strategy (without contact-tracing) to be able to suppress
the epidemic, no matter our testing capacity or indicator symptom, since 2.4 · 0.43 > 1. We
have discussed from various aspects that increasing the testing rate k decreases the effective
reproduction number Rt, mitigating the severity of the epidemic. Nevertheless, this positive
effect is gradually decreasing as described by the following Proposition.

Proposition 10. The logarithmic derivative of Rt w.r.t. the testing rate k,

R∗
t =

∂

∂k
log(Rt),

is negative and monotonically increasing in k.

This relationship between θ and I(t) carries a certain benefit for the authorities as the
increase of the positivity rate precedes that of the epidemic curve, hence, it may serve as a
primary indicator for the progress of an epidemic.

Adaptive group testing in a compartmental model of

COVID-19

In this section, we develop a compartmental model to describe mass testing along with the
application of various pooling methods and confinement of those tested positively. In the
case of regular pooling, we select k individuals and perform a single RT-PCR test on their
combined (pooled) samples. Even if the test comes back as positive, no additional tests are
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performed to identify the infected individuals, instead of that, everybody in the pool will be
confined. The delay differential equation system describing the dynamics (we start to test
individuals at t = 0) can be written as

S ′(t) = − β
S(t)

N(t)
(I(t) + P (t))− σ · S(t)

N(t)
· U(t)

+ σ · S(t− τ)

N(t− τ)
· U(t− τ) ·H(t− τ),

L′(t) = β
S(t)

N(t)
(I(t) + P (t))− α

L
L(t)− pσ

L(t)

N(t)
,

P ′(t) = α
L
L(t)− α

P
P (t)− pσ

P (t)

N(t)
,

I ′(t) = α
P
P (t)− γI(t)− pσ

I(t)

N(t)
,

R′(t) = γI(t)− U(t)σ
R(t)

N(t)

+H(t− τ)pσ
L(t− τ) + P (t− τ) + I(t− τ)

N(t− τ)

+H(t− τ) · U(t− τ)σ
R(t− τ)

N(t− τ)
,

(22)

where

H(t− τ) =

{
0, t < τ,

1, t ≥ τ

is the Heaviside step function and

U(t) =

[
1−

(
S(t)+R(t)

N(t)

)k−1
]
· p+

(
S(t)+R(t)

N(t)

)k−1

· ρ

=
[
1− (1− π(t))k−1

]
· p+ (1− π(t))k−1 · ρ

is the expected number of individuals being isolated from the S or R compartment, where
π(t) = L(t)+P (t)+I(t)

N(t)
stands for the disease prevalence. The parameter β is used for disease

transmission rate, α−1
L

denotes the average length of the latent period, α−1
P

stands for the
average time from becoming infectious until symptoms onset, while γ denotes recovery rate.

The above mentioned compartment Q(t) is aggregated as

Q′(t) = U(t) · σS(t) +R(t)

N(t)
−H(t− τ)U(t− τ)σ

S(t− τ) +R(t− τ)

N(t− τ)

+ pσ
L(t) + P (t) + I(t)

N(t)
−H(t− τ)pσ

L(t− τ) + P (t− τ) + I(t− τ)

N(t− τ)
.

In the case of Dorfman pooling, we select k individuals and perform a single RT-PCR
test on their combined (pooled) samples. If the pooled test yields a positive result, then
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each sample is retested separately and we only remove those individuals who were retested
as positive; otherwise, everyone is declared negative. The system describing the dynamics
can be written as

S ′(t) = − β
S(t)

N(t)
(I(t) + P (t))− U(t) · σ S(t)

N(t)
+H(t− τ)U(t− τ)σ

S(t− τ)

N(t− τ)
,

L′(t) = β
S(t)

N(t)
(I(t) + P (t))− α

L
L(t)− p2σ

L(t)

N(t)
,

P ′(t) = α
L
L(t)− α

P
P (t)− p2σ

P (t)

N(t)
, (23)

I ′(t) = α
P
P (t)− γI(t)− p2σ

I(t)

N(t)
,

R′(t) = γI(t)− U(t)σ
R(t)

N(t)
+H(t− τ)p2σ

L(t− τ) + P (t− τ) + I(t− τ)

N(t− τ)

+H(t− τ) · U(t− τ)σ
R(t− τ)

N(t− τ)
,

where

U(t) =

([
1−

(
S(t)+R(t)

N(t)

)k−1
]
· p · ρ+

(
S(t)+R(t)

N(t)

)k−1

· ρ2
)
.

The equation for the quarantine compartment Q(t) is obtained as

Q′(t) = U(t) · σS(t) +R(t)

N(t)
−H(t− τ)U(t− τ)σ

S(t− τ) +R(t− τ)

N(t− τ)

+ p2σ
L(t) + P (t) + I(t)

N(t)
−H(t− τ)p2σ

L(t− τ) + P (t− τ) + I(t− τ)

N(t− τ)
.

Theorem 6. The following relation holds:

σ =
T

1

k
+ P (a pool is positive)

=
T

1

k
+

(
1−

(
1− π

)k) · p+
(
1− π

)k · ρ. (24)

To determine the optimal pool size k in order to maximize the denominator in (24), we

differentiate
1

k
+

(
1−
(
1−π

)k) ·p+
(
1−π

)k ·ρ w.r.t. k to obtain the extreme value rounded

up to the nearest integer, depending on π, see Figure 1.

First we consider different pool size values k which we apply in (23) regardless of the
prevalence, and a corresponding optimized σ according to (24). In the example, the daily
testing capacity T is fixed to 100, 000 which is 1% of the total population. Figure 1 shows
a comparison for these scenarios for different k values. We can see that choosing pool size
k = 4 is the best strategy, and considering Π = 10, 000, 000, 2% of the total population can
avoid the infection simply by choosing another, more appropriate pool size.
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Figure 1: Optimal pool size as a function of disease prevalence (left) and epidemic curves of
the cumulative infected with a fixed pool size during the course of the epidemic (right).

Finally, we consider a changing pool size k(π(t)) dependent on the disease prevalence. We
state that choosing a large pool size and a corresponding σ at the early phase of the epidemic
allows a widespread testing opportunity in the population. Sometimes this intervention
is enough to prevent an outbreak. In the case of a higher reproduction rate, it becomes
necessary to reduce the pool size when prevalence increases, but even in this case the adaptive
strategy is capable to shift the peak and flatten the curve for a foreseeable time period.

Összefoglaló

A disszertáció célja, hogy fertőző betegségek terjedésének dinamikáját léıró matematikai
modelleket álĺıtson fel, valamint e modellek matematikai anaĺızisét végezze el. Először az
SIS járványterjedési modelleket tekintjük át, a legegyszerűbbtől kezdve az általánośıtott és
továbbfejlesztett konstrukciókig.

Majd, egy több fertőző szakaszból álló SI1I2 . . . InS modellt vizsgálunk. Fő eredményünk,
hogy ha a fertőző I osztályt n = 1, 2 vagy 3 szakaszra osztjuk, a paraméterek választásától
függetlenül az endemikus egyensúly mindig stabil, amikor létezik. Viszont, n ≥ 4 fertőző
szakasz esetén minden n-re választhatók a paraméterek úgy, hogy az endemikus egyensúly
stabil legyen, de ugyanolyan n-re létezik olyan paraméterválasztás is, hogy az endemikus
egyensúly instabil legyen.

Ezután a COVID-19 indikátortünet-alapú tesztelésének hatásait vizsgáljuk. A k tesztelési
ráta növelésének előnyeit mutatjuk be. Az indikátortünet megfelelő megválasztása is nagy
jelentőséggel b́ır, megmutatjuk, hogy ehhez nem csak a p prevalenciát kell figyelembe venni,
hanem az ún. másodlagos tünetesek csoportjának méretét és szezonalitását. Szimulációink
megmutatják, hogy az indikátortünet-alapú tesztelés önmagában nem alkalmas egy járványki-
törés megelőzésére, pusztán a járvány csúcsának mérsékelt késleltetésére és a terjedés csillaṕı-
tására.
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Végül, tömeges tesztelési eljárások modellezését mutatjuk be. Kétféle ún. pooling tesztelés-
sel is foglalkozunk, bemutatjuk e tesztelés reguláris, illetve Dorfman-féle variációját. Megmu-
tatjuk, hogy Dorfman-féle tesztelésnél, optimalizált csoportméretet választva, jelentős számú
megbetegedést és elhalálozást akadályozhatunk meg. Továbbá rámutatunk, hogy adapt́ıv
módszerrel, a prevalenciától függő, optimalizált csoportméretet használva a járvány terjedése
még jobban csillaṕıtható.
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