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Foreword

In this thesis, we address the modeling issues of cell movement and division with a
special focus on the phenomenon of volume exclusion in lattice-based, exact stochastic
simulation frameworks.

After a brief introduction, in Chapter 2, we present the central modeling framework
of the thesis, Gillespie’s stochastic simulation algorithm (SSA) for well-stirred chemical
systems. We then show how Baker and Simpson [35] applied the SSA to model popu-
lations of cells that move, divide and die on a lattice. Finally, with a short example we
also point out the limitations of this algorithm in the case of a crowded environment.

In Chapter 3, Preliminaries, we introduce the basic assumptions in our lattice based
framework and the new reaction types we shall incorporate to our novel modeling
framework: contact-inhibited, contact-promoted, and spontaneous reactions.

Reactions are random events that may occur with a given probability during the
life of the simulated cells according to the considerations of the model. The rate
of contact-inhibited reactions of a cell decreases as the number of its free neighbors
increases. Therefore, migration and proliferation naturally fall into this reaction type,
and further physiological processes that are inhibited in a crowded environment may
also be accounted for in this category. In a similar manner, the rate of contact-promoted
reactions of a cell increases as the number of occupied neighbors increase. On the other
hand, the rate of spontaneous reactions is not affected by the number of occupied
neighboring lattice sites. We shall explain these concepts in details in 3.2.

To the best of our knowledge, these reaction types have not been taken into account
in lattice-based stochastic simulations of cell cultures. These new types of reactions
may be easily applied to complicated systems, enabling the generation of biologically
feasible stochastic cell culture simulations.

In Chapter 4 we describe in detail the extended version of Baker and Simpson’s
method which we call the Prompt Decision Method (PDM). Then, we propose a novel
exact method, called Reduced Rate Method (RRM), that is based on different premises
and substantially quicker than the PDM for large number of cells.
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Furthermore, we show that the PDM algorithm and our RRM algorithm are math-
ematically equivalent in the sense that the next reaction to be realized and the cor-
responding waiting time both belong to the same reaction and time distributions in
the two approaches – even with the newly introduced reaction types. However, the
number of calculations required by the two algorithms to produce a single stochastic
realization of the system can be drastically different. At the end of the chapter we
present numerical comparisons of the running times and two toy models to illustrate
the effect of contact dependent and spontaneous reactions.

In Chapter 5 we take a step back and incorporate realistic cell cycle length to our
models. We present the surprising behavior of the dynamics due to the non-Markovian
approach: the synchronization of cells. We also fit our model to in vitro experimental
data measured by Vitadello et al. [46].

In Chapter 6, we bring together the tools we have developed so far to propose the
Go or Grow algorithms. These methods are created to model cells with realistic cell
cycle distribution in a lattice based framework. Finally, in Chapter 7, a delay differen-
tial equation mean field model is presented and compared with the stochastic model.

Exact, agent-based, stochastic methods of cell culture simulations seem to be underval-
ued and are mostly used as benchmarking tools to validate deterministic approxima-
tions of the corresponding stochastic models. Our proposed methods are exact, they
are easy to implement, have a high predictive value, and can be conveniently extended
with new features. We believe these approaches promise a great potential.
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2

Introduction

With the emergence of personalized therapeutic approaches, computational drug test-
ing, and even artificial tissue engineering modeling of cell cultures have become a
prominent area of mathematical and in silico biology. Understanding the complex
collective behavior emerging from simple phenomena, such as migration, proliferation,
or intercellular communication of individual cells is essential to be productive in these
fields. Researchers use a wide variety of mathematical and numerical tools to describe
the behavior of populations. Parunak et al. [45] distinguishes between equation-based
models and agent-based models.

2.1 Equation based models

Equation-based models are typically composed of deterministic or stochastic approaches
and provide well-established methods for both analytical and numerical treatments of
the problem. For example, to determine the evolution of a population over time or to
predict certain events. They are also used to prove or rule out specific behaviors of
the system: such as extinction of a population, chaotic phenomena, or the absence of
periodic behavior, for instance.

Deterministic models consist of systems of ordinary, partial, or delay differential
equations and are used with great success to predict and analyze the behavior of real-
world systems [2] [32]. These models usually treat the state variables, as well as the
actual individuals in the population model, as if they were continuous quantities (densi-
ties or concentrations), although, populations or even chemical solutions are composed
of discrete individuals (particles). Moreover, for these models to be predictive, one has
to assume that the size of the population is large or apply corrections into the model.
We refer to the infamous atto-fox problem and Fowler’s article [20] for a detailed dis-
cussion and feasible solutions. The time evolution of the model can be obtained with
various numerical methods.

When it is important to work with discrete individuals or when the number of indi-

4



viduals is small, the theory of stochastic processes may provide a feasible alternative,
especially when stochastic effects play an important role in the evolution of the system.
These are mostly Markovian stochastic processes with a discrete state space in discrete
or continuous time [3] [32] [40]. Analytical treatment of complex stochastic models is
usually not trivial, the gold standard among the numerical approaches is Gillespie’s
stochastic simulation algorithm (SSA) [27] [28] and its variants [12] [29]. We shall
adapt this algorithm to the simulation of cell cultures in this article.

2.2 Agent based models

Agent-based models (ABMs) or individual-based models [21] [45] [47] are feasible alter-
natives to the equation based models. ABMs, unlike continuum models, regard every
particle as an individual that follows a prescribed set of rules. Information about the
system can be obtained by analyzing the collective behavior of the agents with statisti-
cal methods. This technique offers a broader description of individual behavior and ac-
counts for stochastic effects caused by the finite number of agents and their interactions.
As Bonabeau [8] points out: "Individual behavior exhibits memory, path-dependence,
and hysteresis, non-Markovian behavior, or temporal correlations, including learning
and adaptation". However, the rigorous mathematical analysis is usually difficult, and
simulations can be resource-intensive. ABMs are subject for existential-type proofs, to
prove the existence of a certain behavior of the population, even in cases when the for-
mulation of a corresponding equation-based model is not evident [47]. Equation-based
models have a well-developed mathematical theory, yet agent-based models are mostly
expressed as computer routines.

In the case of equation-based population models, we usually decrease the complexity
of the investigated phenomena by applying a classification on the individuals according
to the trait we intend to examine – assuming that the differences in this attribute can be
averaged out within a class or can be accounted for with a corresponding distribution.
We usually aim to keep the number of classes, and, hence, the number of parameters
required as low as possible. Meanwhile, the model remains of a manageable size,
yet it still captures the essence of the modeled phenomena. In contrast, ABMs are
mainly used when the number of these classes is close to the number of members in
the population, i. e., the classifying traits are parameter-specific to the individuals and
highly influence their behavior. Therefore, in these complex cases, we may use ABMs
and focus on simulations.
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2.3 Gillespie’s stochastic simulation algorithms

Gillespie [27, 28] formulated the SSA in order to produce computer-based numerical
experiments of chemical reactions. It is assumed that chemical species or reactants
(S1, S2, . . . , Sm) interact via reaction channels (R1, R2, . . . , RM) in a well-stirred reac-
tion chamber.

Time evolution of the amount of reactants (S(t) = (S1(t), S2(t), . . . , Sm(t))) is de-
scribed by a Markov process that is continuous in time (t ∈ [0,∞)) and discrete in
state space (S(t) ∈ Nm

0 ). The SSA obtains stochastic realizations of the system by
answering two questions [27]:

(i) In what time (τ) will the next reaction occur?
(ii) What kind of reaction (R1, R2, . . . , RM) will the next reaction be?

To answer these questions, Gillespie developed two separate but mathematically
equivalent variants of the SSA: the ’direct method’ (DM) and the ’first-reaction method’
(FRM). The main difference is in the way of deciding which reaction channel to fire. The
first-reaction method generates M random time values (τ1, . . . , τM) for the M possible
reactions from the corresponding exponential distributions and selects the reaction
channel with the least time to fire. Alternatively, the direct method only requires
two random numbers (one from a uniform distribution and one from an exponential
distribution). Considering the fact that if there are more than 2 possible reactions then
the FRM requires more computation and memory than the DM, moreover drawing M

random numbers from exponential distributions requires calculating M logarithms, the
computational cost of the first-reaction method is greater [27]. For a comparison of the
variants of the SSA, we refer to Gillespie’s original article [27] and to the work by Cao
et al. [12].

The direct method algorithm

Starting from the vector of initial values (S1(0), . . . , Sm(0)) ∈ Nm
0 , the time series of the

state variables S(t) is generated by constantly updating the state variables in properly
generated subsequent times (τ) according to the answers to question (i) and (ii). To
this end, the reaction probability density function, P (τ, µ)dτ , is defined [27]. That is,
at time t, the next reaction in the reaction chamber will occur in the differential time
interval (t + τ, t + τ + dτ) with the probability P (τ, µ)dτ , and will be an Rµ reaction
(µ ∈ 1, . . . ,M).

With the procedure of conditioning [27], the two-variable density function P (τ, µ)

can be written as the product of two one-variable probability density functions:

P (τ, µ) = P1(τ) · P2(µ|τ). (2.1)
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In particular, from [27], it turns out that

P (τ, µ) = aµ · e−τ ·a,

where the symbol aµ (µ ∈ {1, . . . ,M}) stands for the so-called propensity function that
characterizes reaction Rµ, and may depend on the quality and the actual number of
the reactants, their number of combinations or environmental factors, etc. In [27] it is
assumed that aµ = cµhµ, where cµ corresponds to the rate constant of the reaction Rµ

and hµ is the number of distinct combinations of reactants participating in Rµ, being
present in the reaction chamber at time t. Although aµ and hµ clearly depend on time
via the number of reactants at time t, the time dependence is usually not indicated
to simplify the notations. Variable a stands for the sum of the propensity functions:
a =

∑M
µ=1 aµ. In Table 2.1 we summarized the formula for hµ in case of some important

reactant combinations. For detailed explanation consult [27].

Reaction type Reactant combinations
Si → products hµ = Si(t)

Si + Sk → products
(i ̸= k)

hµ = Si(t)Sk(t)

2Si → products hµ = Si(t)(Si(t)− 1)/2
Si + Sk + Sl → products

(i ̸= k ̸= l ̸= i)
hµ = Si(t)Sk(t)Sl(t)

Si + 2Sk → products
(i ̸= k)

hµ = Si(t)Sk(t)(Sk(t)− 1)/2

3Si → products hµ = Si(t)(Si(t)− 1)(Si(t)− 2)/6
Table 2.1: Common reactant combinations in chemical reactions A subset of chemical species {S1, . . . , Sn}
may react in various combinations hµ in the reaction chamber. The first row corresponds to the decay of species Si.
The second and third row correspond to the two possible bimolecular reactions: the reactants are different or the same
chemical species, respectively. Rows 4, 5, and 6 correspond to the possible trimolecular reaction types in which all three
molecules are of different species, two are of the same species, and all of the same species, respectively.

Let P1(τ)dτ be the probability that the next reaction will occur between times t+τ

and t + τ + dτ , independent of which reaction it might be. Similarly, P2(µ|τ) is the
probability that the next reaction will be the Rµ reaction, given that the next reaction
occurs at t+τ . The probability P1(τ)dτ is the marginal distribution for τ , and obtained
by summing the reaction probability density function over all possible µ values:

P1(τ) =
m∑

µ=1

P (τ, µ) = a · e−τ ·a. (2.2)

Substituting P1(τ) into (2.1) and solving for P2(µ|τ) we obtain

P2(µ|τ) =
aµ
a
. (2.3)

From which it is clear that
∫∞
0

P1(τ)dτ =
∫∞
0

a · e−τ ·a = 1 and
∑M

µ=1 P2(µ|τ) =

7



∑M
µ=1 aµ/a = 1. The so-called sojourn time (or waiting time) τ between consecutive

reactions is an exponentially distributed continuous random variable with parameter
a, the sum of the reaction propensity functions: τ ∼ Exp(a). The algorithm ran-
domly selects reaction index µ, which is a discrete random variable, from the discrete
(categorical) distribution (Eq. 2.3).

One may generate such τ from Eq. (2.2) by selecting r1 ∈ (0, 1) with a continuous
uniform distribution and calculate τ = 1/a ln(1/r1). To generate a reaction index µ

from Eq. (2.3), one has to select r2 ∈ (0, 1) with a continuous uniform distribution
and choose µ to be the index for which

∑µ−1
ν=1 aν < r2a ≤

∑µ
ν=1 aν holds. This is

discussed in details in [27], and most programming languages have highly optimised
built-in functions to execute this task.

Upon choosing reaction Rµ and τ , the algorithm has to obtain the change vector
(∆S1, . . . ,∆Sm) ∈ Zm that describes the change in the amount of reactants according
to Rµ. Finally, both time and the state variables have to be updated. Gillespie’s SSA
requires a simple data structure to record the time evolution of the system: a list
containing the subsequently appended values (S1(t), . . . , Sm(t)) after each iteration.
With these notations and probability distributions, the direct method SSA can be
summarized as follows.

Direct Method Stochastic Simulation Algorithm
1. Initialization:

(i) Initialize data structure that stores time series.
(ii) set t← 0,
(iii) set initial values (S1(0), . . . , Sm(0)) ∈ Nm

0 ,
(iv) prescribe halting conditions H.

2. Calculate propensity functions aµ for all µ ∈ {1, 2, . . . ,M}, calculate a.
3. Decide when the next reaction will occur: choose τ according to Eq. (2.2),
4. Reaction selection: draw µ according to Eq. (2.3),
5. Update time and state variables:

(i) set t← t+ τ

(ii) obtain the change (∆S1, . . . ,∆Sm) ∈ Zm in number of reactants according to Rµ,
(iii) change the number of molecules according to

(S1(t+ τ), . . . , Sm(t+ τ)) = (S1(t), . . . , Sm(t)) + (∆S1, . . . ,∆Sm).

(iv) Update data structure.
6. Halt if H = True else continue the process with Step (2).
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The first reaction method algorithm

The first-reaction method algorithm generates M so-called putative times (τ1, . . . , τM)

for the M possible reactions. Each τν is drawn from exponential distribution with
parameter aν : τν ∼ Exp(aν), ν ∈ {1, . . . ,M}. Then, the algorithm selects reaction
with index µ for which the corresponding putative time is the minimal element of the
set of the generated putative times: τµ = min{τ1, . . . , τM}. Finally, let the waiting
time until the next reaction be τ̃ := τµ.

The DM and FRM algorithms are mathematically equivalent since in a given state
S(t) of the system the probability of selecting reaction Rν for all ν ∈ {1, . . . ,M} is the
same in both approaches and the waiting times between two consecutive reactions τ

and τ̃ are both of exponential distribution with parameter a. In fact, this follows from
the following well known theorem.

Theorem 2.1. Suppose τ1, . . . , τM are independent exponentially distributed random
variables with rate parameters aν and cumulative distribution functions Fτν (x) = 1 −
e−aνx for ν ∈ {1, . . . ,M}. Then
(i) τµ = min{τ1, . . . , τM} is exponentially distributed, with parameter a =

∑M
ν=1 aν and

(ii) index µ is chosen with probability P (τµ = min{τ1, . . . , τM}) = aµ/a.

Proof. (i) Considering the cumulative distribution functions, direct calculation yields:

P (min{τ1, . . . , τM} < τ̃) = 1− P (τ1 > τ̃, . . . , τM > τ̃)

= 1− P (τ1 > τ̃) . . . P (τM > τ̃)

= 1− (1− Fτ1(τ̃)) . . . (1− FτM (τ̃))

= 1− e−a1τ̃ . . . e−aM τ̃ = 1− e−aτ̃

Thus, τ̃ ∼ Exp(a), which proves the first part of the theorem.
(ii) Let I = {1, . . . , µ− 1, µ+ 1, . . .M}.

P (τµ = min{τ1, . . . , τM}) =
∫ ∞

0

P (τ̃ = τµ) · P (τ̃ < τν , ∀ν ∈ I)dτ̃

=

∫ ∞

0

aµe
−aµτ̃

∏
ν∈I

e−aν τ̃dτ̃ = aµ

∫ ∞

0

e−aτ̃dτ̃ =
aµ
a
.

■
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First Reaction Method Stochastic Simulation Algorithm
1. Initialization:

(i) Initialize data structure that stores time series.
(ii) set t← 0,
(iii) set initial values (S1(0), . . . , Sm(0)) ∈ Nm

0 ,
(iv) prescribe halting conditions H.

2. Calculate propensity functions aν for all ν ∈ {1, 2, . . . ,M}.
3. Calculate putative times τν ∼ Exp(aν) for all ν ∈ {1, 2, . . . ,M},
4. Reaction selection: choose µ for which τµ = min{τ1, . . . , τM},
5. Update time and state variables:

(i) set t← t+ τµ

(ii) obtain the change (∆S1, . . . ,∆Sm) ∈ Zm in number of reactants according to Rµ,
(iii) change the number of molecules according to

(S1(t+ τ), . . . , Sm(t+ τ)) = (S1(t), . . . , Sm(t)) + (∆S1, . . . ,∆Sm).

(iv) Update data structure.
6. Halt if H = True else continue the process with Step (2).

Strengths and limitations of the SSA

It became apparent that Gillespie’s approach is particularly beneficial in case of cer-
tain biological systems when only a small quantity of reactants are present in the
reaction chamber, thus stochastic fluctuations play an important role in the modeled
physiological process. A well-known example of a process of this type is intracellular
gene regulation [36], where only a few copies of the corresponding regulatory molecules
are present in the cell [19]. In addition to chemical kinetics [17] [30] [44], the SSA
has been proven useful for studying epidemic spread [1] [7] and describing ecological
phenomena [15], among a variety of further applications.

Since the SSA produces the time evolution of the system by recording every single
reaction, it may be time consuming for systems that are characterized by large state
space or contain reactions that have a high rate compared to other reaction rates
in the system. There have been several attempts to solve these problems, the most
influential of these may be the one by Gibson and Bruck [25]. Their Next Reaction
Method (NRM) is an extension of Gillespie’s first reaction method. They introduced
the so-called reaction dependency graph, that specifies which propensity functions need
to be changed after the selected reaction Rµ is executed. Cao et al. [12] made a
detailed comparison of the DM, the FRM, and the NRM, and found that “even with
the best data structure, the NRM is less efficient than the DM, except for a very specific
class of problems.” The NRM handles a complicated data structure and according to
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Schwehm [41]: “the simulator engine spends most of its execution time maintaining the
priority queue of the tentative reaction times”.

Cao et al. (2004) [12] optimized the algorithm by using the clever observation that
in case of robust systems, the reactions are usually multiscale, which means that some
of the reactions fire more frequently than others. Therefore, by sorting the indices of
the reactions in decreasing order based on how often they fire, they were able to speed
up the reaction selection step. Moreover they adopted the core idea of the NRM [25]
and only updated the propensities of the reaction channels that were affected by the
last reaction. The idea of separating fast and slow reactions was further improved
in the slow-scale stochastic simulation algorithm by Cao et al. (2005) [10]. Finally,
we would also like to mention Gillespie’s tau-leaping method [29] and its improved
versions [9] [11]. It is an approximate method analogous to the Euler method in deter-
ministic systems, and it executes several reactions in a time interval before updating
the propensities.

2.4 Modeling cellular behavior

Cells are mesoscopic entities in multicellular organisms. Depending on the scale at
which their population is examined and on the complexity of the investigated phenom-
ena, one may find an appropriate approach among the modeling paradigms described
above. However, a typical approach is to approximate the behavior of the population
with a continuum mean field model [16], such as a variant of the logistic equation or
the Fisher–Kolmogorov equation [4] [5], incorporate corrections if spatial effects play
an important role [6] [35], and analyze the obtained deterministic model with rigorous
analytical means. Thus, the underlying ABM play the role of a benchmarking tool.
We would like to acknowledge the early, but still significant review by Fredrickson et
al. [22] and the excellent review by Charlebois and Balázsi [13].

The development of cell cultures is influenced by a number of important phenomena.
The two most studied ones may well be cell movement and cell division. These two
phenomena play notable roles in several important processes, including wound healing,
tissue development, or even cancer propagation (Maini and Baker [34]; or for a more
experimental viewpoint, see Méhes and Vicsek [37]). In most cases, approximating
cells as point-like particles may not be sufficient, since spatial effects usually affect the
development of the cell population [6]. Volume exclusion is such a significant spatial
effect, which expresses that two cells cannot occupy the same volume in space, thus
cells are physical obstacles to each other. Technically, the ’excluded volume’ of a cell is
the space that is unavailable to other cells in the population as a result of the presence
of the first cell.
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2.4.1 The lattice-based variant of the DM-SSA

Probably the most convenient way to incorporate volume exclusion into cell culture
models is discretizing the space by an underlying lattice. Even though there are sev-
eral well known on-lattice methods: cellular automaton models, cellular Potts models,
or cellular lattice gas models, we improved a variant of Gillespie’s SSA by Baker and
Simpson that is extended to work in spatially inhomogeneous environment and in-
corporates volume exclusion [6]. The algorithm incorporates volume exclusion and it
was used as a tool to produce numerical experiments to benchmark the mean field
approximations of the authors.

Spherical cells (with uniform size of diameter d) are placed on a finite, regular,
square lattice of two dimension with grid constant d and von Neumann neighborhood.
A cell may engage in three events: movement (R1), division (R2) or death (R3) with the
corresponding rates r1, r2, r3, in order. In every iteration, the corresponding propensity
functions aµ = rµN , µ ∈ {1, 2, 3}, a = a1 + a2 + a3 are calculated, where N = N(t) is
the number of cells in the population at t.

A random waiting time is generated from the distribution τ ∼ Exp(a) and the
time of the system is updated: t ← t + τ . A target cell is randomly selected from
the population with discrete uniform distribution. Then, the next possible reaction is
selected from the distribution P (µ|τ) = aµ/a and executed on the target cell with the
following constraints:

• in the case of movement, the cell moves to a randomly selected neighboring lattice
site if it is empty; if the lattice site is occupied, the reaction is rejected,

• in the case of division, the cell places a daughter cell on a randomly selected
neighboring lattice site if it is empty and the population size is increased by 1; if
the lattice site is occupied, the reaction is rejected,

• in the case of death, the cell dies without any particular restriction, in this case
the lattice site of the cell is turned empty and the size of the population is
decreased by 1.

Thus, whenever movement or proliferation cannot be executed because of the vol-
ume exclusion, we reject the selected reaction. However, we always keep the generated
sojourn time τ . We will not present the algorithm in any more detail here, as we will
soon introduce an extended version of it.

A major limitation of the approach is that the target cell, that is about to take
action in a given iteration of the simulation, is selected randomly from all the cells
in the population with a discrete uniform distribution. Thus, there is a chance that
the algorithm selects a cell that is unable to move or divide. In fact, with nonzero
proliferation rate and zero death rate the population grows monotonically. On a finite
lattice the probability of choosing a cell that cannot engage in any of the possible events
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grows as the cells would have less empty adjacent sites over time.
For an extreme example, suppose that the grid is finite of size K = n1 · n2 with a

periodic boundary condition, thus the maximum number of cells on the lattice is K,
and suppose that the current number of cells is K − 1 while the death rate is zero.
In such a setting, it is easy to show that the selected event is expected to be rejected
K− 1 times before acceptance. Indeed, in these cases, i. e., in a crowded environment,
it is computationally intensive to run the simulation, not only because “nothing seems
to happen” most of the time, but also because generating the random waiting time
from an exponential distribution requires calculation of a logarithm, which is a rather
demanding task. Clearly, in this framework we cannot just choose the cell ‘wisely’
or choose an empty adjacent site ‘on purpose’ to speed up the simulation, as we are
also sampling the distribution of the waiting time. Therefore, the number of times we
discard a reaction is just as important as the reaction itself.

In our reduced rate method we are using another approach to define the reactions
and the corresponding propensities. In addition, the algorithm has a different basis, so
that all the reactions that are drawn are always executed.

2.4.2 The lattice-based variant of the FRM-SSA

We may also formulate the reaction selection and the waiting time selection of the
previous lattice based algorithm in terms of the First Reaction Method. Naturally,
according to Thm. 2.1, the two approaches would be mathematically equivalent if the
implementation of the target cell selection and the way we decide whether to accept
or reject the reaction remains the same.
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3

Preliminaries

3.1 Lattice discretization and state space

All of the presented methods make the following assumptions: consider spherical cells
of equal size, with diameter d, place the cells on a 2-dimensional square lattice with
grid constant d and size (n1×n2) where n1, n2 ∈ {1, 2, . . . } are finite or infinite. Thus,
the lattice has unit length spacing, allowing us to compare various cell lines with their
characteristic cell sizes. We use the terms grid and lattice interchangeably. Also the
terms neighbor, grid neighbor and adjacent site refer to the same concept.

We assume that the cells use chemical or mechanical mechanisms to sense each
other’s presence – specifically, whether or not their immediate grid neighbors are oc-
cupied. In the case of a finite lattice, we use a reflective boundary condition: the
boundaries of the grid are perceived by the cells as occupied neighbors. A cell has only
free and occupied neighbors: an adjacent site that is not free is occupied and vice versa.
In our example models, we assume von Neumann neighborhood, thus a given cell has
four adjacent neighbors on the lattice, η = 4 (up, down, left, right). Consequently, a
cell may have j ∈ {0, . . . , η} free and (η − j) occupied neighbors. From now on, index
j will always denote the number of free adjacent sites of the concerned cell or cells.
The method we shall discuss may be applied immediately to three dimensions, other
lattice types, other neighborhood types (see Fig.3.1), and even to lattices with special
shapes.

We assume that the principle of volume exclusion applies for all cells: there can be
at most one cell per lattice site under the above conditions. Thus, by volume exclusion,
the capacity of a finite grid with size (n1×n2), where n1, n2 <∞, is K = n1 ·n2. Which
means that the lattice can support at most K cells.

State descriptors Let t ∈ [0,∞) represent time, and Nj(t) denote the number of
cells in the population with j free neighbors at time t. Then let N = N(t) =

∑4
j=0 Nj(t)

be the total number of cells in the grid at time t (the time dependence is usually not
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von Neumann
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with Moore
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Figure 3.1: Common lattice types in two dimensions. Square and hexagonal lattices are widely used in lattice-
based cell population models, triangular lattices are mostly used in lattice gas models. Each lattice contains one
circular cell (purple) and the adjacent lattice sites are shaded green. The number of neighboring sites in these types
are η = 4, 8, 6, 3 in order. Thus a cell may have j ∈ {0, . . . , η} free and (η− j) occupied adjacent sites. Throughout the
paper, we use a square lattice with von Neumann neighborhood (leftmost figure). In this case we assume that the cell
has diameter d matching with the grid constant of the lattice as indicated on the figure.

denoted for simplicity).
We introduce the state descriptor

X(t) = (C1(t), . . . , CN(t), S1(t), . . . , Sm(t)) (3.1)

where Ci(t) is the coordinates of the cell with index i ∈ {1, . . . , N} at time t on the
lattice. By volume exclusion, it is clear that no two cells have the same coordinates at
t. Scalar variables Ss(t) ∈ N0 (s ∈ {1, . . . ,m}) store the amount of chemical species
present in the cell space at time t. In order to ease the notation we refer to the state
of the cells and the state of chemicals the following way:

C = (C1(t), . . . , CN(t)) and S = (S1(t), . . . , Sm(t)).

Fig.3.2 shows the time evolution of a cell population along with a snapshot of the
lattice configuration at time t∗.

3.2 Reactions

We use the term ’reactions’ in the sense it is used in chemical modeling. We also refer
to movement, division or cell death as reactions. We will adopt the usual notation to
denote the reaction index by µ ∈ {1, . . . ,M}. Our goal is to provide a generalized
and therefore, a rather flexible modeling framework for cell culture simulation that can
be utilized to capture exceptionally complex mechanisms occurring in cell cultures.
In order to achieve this, any number and combination of the reactions described in
this section can be included in the model the researcher is working on, which covers
a multitude of possible activities in a modeled cell culture with very few technical
restrictions.

It is important to keep in mind that selecting the reaction and selecting the target
cell taking the action are executed in substantially different ways in the PDM and

15



E

D

C

B

A

A

Figure 3.2: Time evolution of a cell culture. The top left figure shows the time evolution of a proliferating cell
population on a lattice with carrying capacity K = 2500. In this experiment we chose the proliferation rate to be 1 and
we assumed that no other reaction can happen to the cells. The bottom left figure shows a snapshot of the ratio of cells
with j free neighbors in the population at t∗ = 4.8 (see the formula in the figure). In this state the total number of cells
is N(t∗) = 1000 and very few cells – only 1.1% of the population – have j = 4 free adjacent sites. In fact, most of the
cells have j = 2 neighbors at t∗. The top right figure shows a snapshot of the lattice configuration at t∗ and the bottom
right figure is an enlarged part of the highlighted area of the whole lattice. On this latter figure we selected some cells:
A, B, C, D, and E having 0 . . . 4 free adjacent sites, in order. Their corresponding free neighbors are colored green and
the border of the lattice is marked in gray. We assume that the cells perceive the boundary as an occupied neighbor –
thus both ’A’ cells have zero neighbors at t∗.

RRM algorithms. At this point, we only focus on what happens to the state variables
if a reaction is ’successful ’ in the sense that it is selected and can be executed. The
differences will be highlighted in the following sections, when we introduce the methods.
Next, we describe the reactions (Table 3.1.) that are introduced into the model during
the prompt decision and reduced rate methods.

Reaction In a finite environment...

Contact-inhibited

Movement (⊗)
the per capita rate decreases

as the population grows,
Division (⊗)
Cell death

Cellular biochemical reaction

Spontaneous
Cell death the per capita rate is

independent of pop. size,Cellular biochemical reaction
Non-cellular biochemical reaction

Contact-promoted Cell death the per capita rate increases
as the population grows.Cellular biochemical reaction

Table 3.1: Common types of reactions that may occur in a cell culture. Symbol ⊗ indicates volume exclusion.
The reactions defined in this table are intended to provide a modeling framework for the exact simulation of cell
cultures, that can be easily adapted to the problem the reader is considering. A prominent aspect of this work would
be to show that, using these types of reactions, the PDM and RRM algorithms are mathematically equivalent. For
detailed explanations and possible interpretations see Sec. 3.2.
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3.2.1 Non-biochemical reactions

We define the contact-dependent and contact-independent movement, proliferation,
and death of the cells as non-biochemical reactions.

Contact-inhibited reactions: movement, proliferation, and cell death
Contact-inhibited reaction rates of a cell decreases as the number of its free neighbors
decreases. Typical examples are the volume excluding reactions, movement and pro-
liferation, but we shall define two other types of such reactions as well. First, consider
the movement and division of the cells.

Cells may perform random walk on the grid with a motility rate rmot per unit time,
moving to another adjacent lattice site or divide with a proliferation rate rdiv per unit
time giving rise to another agent, such that the principle of volume exclusion applies.
Consequently, a movement rate of rmot and a division rate of rdiv can only be measured
for a sufficiently sparse population of cells. In a dense population, the cells are expected
to interfere with each other, thus lower r1 and r2 rates are observed.

After selecting the movement or division reaction, a target cell is selected from
the population. If the reaction is a successful movement, then the cell is moved to
its selected free adjacent position on the lattice and its coordinates are updated in
X(t). If the reaction is a successful cell division, the target cell places a daughter cell
(XN+1) onto a selected free adjacent site on the lattice and the new cell along with its
coordinates is appended to the state descriptor X(t).

Cell-cell communication with local cellular signals are crucial factors to maintain
a cell culture. In fact, abandoned cells that do not respond to the environment are
destined to die in a healthy tissue. Contact-inhibited cell death may be a model for
death due to the lack of these local effects. In case of a cell death reaction, the target
cell is removed from the lattice and its coordinates are deleted from the state descriptor
X(t).

Spontaneous (contact-independent) reaction: cell death It is also assumed
that cells can be involved in events that are not influenced by the number of free adja-
cent sites. Such a reaction is, for example, spontaneous cell death, which is a standard
model of naturally occurring death events due to the finite lifespan of the individu-
als. Spontaneous cell death affects all cells equally, regardless of their adjacencies, and
when it occurs, the cell that is randomly selected from the whole population would be
removed from the lattice, and also from the state descriptor.

Contact-promoted reaction: cell death The rate of contact-promoted reactions
increase as the environment gets more crowded. Thus, contact-promoted cell death
may serve as a model for death due to competition for resources, such as oxygen or
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glucose, between the cells. For example, in tumor pathology, it is a well known effect
that the core of some tumors suffer from hypoxia and substrate deprivation due to the
lack of sufficient vascularization. Contact-promoted death may be a good candidate to
model death in such cancer models. In case of a successful contact-promoted death,
the target cell is removed from the lattice and also from the state descriptor.

3.2.2 Biochemical reactions

These reactions include (bio)chemical reactions that do or do not involve the cells them-
selves, called cellular and non-cellular biochemical reactions respectively. Examples of
these reactions would be cell-cell communication, product synthesis (proteins, nucleic
acids, hormones, signaling factors, toxins etc.), or substrate consumption.

Cellular biochemical reactions We assume that a subset of reactants {S1, . . . , Sm}
in reactant combination hµ and a cell Xi(t) may interact and engage in cellular bio-
chemical reactions. These reactions may be contact-dependent (inhibited or promoted)
or spontaneous reactions. Cellular biochemical reactions may have four types of out-
comes: i) cell movement, ii) division, iii) death or iv) a (∆S1, . . . ,∆Sm) ∈ Zm change
in the number of the reactants. The state descriptor has to be updated according to
the ways we discussed so far in this section or in Sec. 2.3.

Non-cellular biochemical reactions A subset of the reactants {S1, . . . , Sm} may
also participate in spontaneous non-cellular chemical reactions in reactant combination
hµ. Non-cellular biochemical reactions are independent from the cells and only depend
on the reactants. These reactions may result in a (∆S1, . . . ,∆Sm) ∈ Zm change in the
number of the reactants. The state descriptor has to be updated according to the ways
we explained in Sec. 2.3.

Note that if we exclude all other reactions, including movement and cell division,
and keep only the non-cellular chemical reactions, the cell culture simulation algorithm
reduces to Gillespie’s SSA.

3.2.3 Some restrictions concerning the reactants

We intend to show that the PDM and RRM algorithms are mathematically equivalent
ways to obtain realizations of a given stochastic process concerning a cell culture. In
order to achieve this, we must apply some restrictions on the reactants and the state
space, limiting the algorithms for the sake of this proof. We assume that the state
of the cells is only determined by their individual positions on the lattice (and its
neighborhood), and they do not differ in any other way. Also, reactants S1, . . . , Sm do
not diffuse in the intercellular space.
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These conditions restrict the possibilities enabled by the RRM algorithm, but these
conditions are necessary for a direct comparison and proof of equivalence between
the RRM and the more limited PDM approaches. A model defined using the RRM
algorithm without these restrictions may be impossible to implement in the PDM
approach.

Under these confined conditions, we may still implement a multitude of biological
mechanisms: the reactants may be secretions from an internal or external secretory
gland, which are not released into the intercellular space but into the bloodstream or
into a lumen. Or we may also assume homogenous mixing of the reactants in the cell
space so that the products of the cellular or non-cellular chemical reactions reach all
cells equally. This can be easily achieved in an experimental setup where we assume a
layer of fluid over the cells on a 2D surface, homogenized by continuous mixing.
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4

Cell Culture Simulation Algorithms

4.1 The aim of this chapter

In this chapter we present the prompt decision method (PDM) that applies the vol-
ume exclusion principle directly and incorporates the newly defined reactions. Then,
we introduce our other novel approach, the reduced rate method (RRM), which ap-
plies volume exclusion in an indirect way. We also obtain an equivalent, but simplified
version of the RRM algorithm, the marginal RRM (mRMM), that is expected to be
easier to implement. After that, we intend to prove that in a given state of the system
the time until the next reaction to be realized and also the next reaction to be realized
are drawn from the same time and event distribution in both the PDM and the RRM
algorithms, therefore, they are mathematically equivalent and are interchangeable. Fi-
nally, we experiment with some toy models to illustrate the potential in the newly
incorporated contact dependent reactions.

4.1.1 Some important notations

In order to ease the further notations, for every reaction µ ∈ {1, , . . . ,M} we introduce

rµ = cµhµ. (4.1)

Where cµ is the reaction rate of reaction µ. We have to adjust the definition of hµ, as
there may be reactions in the Cell Culture Simulation Algorithms in which chemicals
S1, . . . , Sm are not involved.

hµ =

{
1 if chemical species are not involved in µ

Nr. of distinct reactant combinations if chemical species are involved in µ

(4.2)

See Table 2.1 and [27] for some reactions and the corresponding hµ. Note that
this notation slightly differs from Gillespie’s original notation, where cµhµ would be
the propensity function corresponding to reaction µ. In the cell culture simulation
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algorithms most reactions depend on the state C of the cells, this is what we are
intended to emphasize with this distinguished notation. Basically, aµ = rµ · f(C),
where the definition of the function f : C→ [0,∞) is essentially different in the PDM
and the RRM formulation.

Given that the two simulation methods differ not only in the algorithm but also in
the definition of the reactions, we will denote reactions, events, and variables specific
to the PDM with a hat (•̂) symbol. In case of the RRM, we do not use any specific
notation. Some variables, events, and their probabilities depend only on the state of the
system: e.g. the number of cells Nj with j free neighboring lattice sites, the reaction
rates cµ, reactant combinations hµ etc. In a given state their values are the same in
both methods, so we use the same notations for these in the algorithms.

4.2 The Prompt Decision Method (PDM)

The PDM is an extended version of the stochastic simulation algorithm introduced by
Baker et al. [6]. It is a classical acceptance-rejection sampling method that samples the
two-variable density function P (τ, µ) given the state X(t) of the system, that contains
information of the number N(t) and positions Ci(t) of the cells, as well as the amount
of the interacting chemical species Ss(t). Thus, the PDM directly incorporates the
principle of volume exclusion by rejecting reactions that are impossible due to the
configuration of the cells on the lattice.

4.2.1 Propensities and probabilities

For the reactions R̂µ of types we discussed in Sec. 3.2 (also see Table 3.1) at time t,
state X(t), we define propensity functions âµ and their sum â the following way:

âµ = rµN, â =
M∑
µ=1

âµ = N

M∑
µ=1

rµ. (4.3)

Notice that at first glance non-cellular chemical reactions do not fit in this formulation,
since by definition, their propensities only depend on S(t) and do not depend on the
state of the cells. To overcome this we may think of the number of cells as a scaling
factor 1/N to the reaction rate constant. Then, for a non-cellular chemical reaction µ

we have
âµ = cµhµ =

cµhµ

N
N = rµN.

With this notation, non-cellular chemical reactions reduce to a special case of the
spontaneous type cellular biochemical reactions. Let P̂1(τ̂) denote the probability
density function of the sojourn time until the next possible event and P̂2(µ|τ̂) denote
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the probability mass function of the next possible event:

P̂1(τ̂) = âe−âτ̂ , P̂2(µ|τ̂) = âµ/â, µ ∈ {1, . . . ,M}. (4.4)

4.2.2 Assumptions in the PDM algorithm

The algorithm is derived from the following assumptions:
• Selecting the next possible reaction: from P̂2(µ|τ̂) (Eq. 4.4) we draw reac-

tion index µ. We will use the notation R̂µ for a selected reaction in the PDM
algorithm. It is easy to see that the probability of selecting R̂µ does not depend
on the actual number of cells in this approach (cf. Eq. 4.3 and 4.4).

• Target cell selection: a target cell is selected from the population with a
discrete uniform distribution, without taking the position of the cells into account.
Let Êj denote the random event that we select a target cell that has j free
neighbors.

• The execution of the reaction depends on the neighborhood of the
target cell, the spontaneous reactions are always executed, contact-inhibited or
contact-promoted events may be discarded depending on the neighborhood of
the target cell. A more detailed explanation of this acceptance-rejection step is
about to come later. During one iteration we make trials to decide if the selected
possible reaction can be the next reaction to be realized.

• Selecting the waiting time: as we may discard the selected possible reactions
several times during one iteration, we introduce l ∈ {1, 2 . . . , } to index the trials
during one iteration. Thus, in a given iteration for the l-th trial we generate
sojourn time τ̂l ∼ Exp(â) (Eq. 4.4) corresponding to the next possible event.
For the sake of clarity (and the convenience of the proof), we define the variable
T̂ , into which we sum the sojourn times generated for the possible events during
one iteration. Accordingly, the time elapsed between two consecutive realized
events is

T̂ =
k∑

l=1

τ̂l, (4.5)

given that we were able to execute the reaction in the k-th attempt (i. e., k − 1

possible events were discarded in this case). Naturally k is a discrete random
variable that is geometrically distributed, as we shall see later. In practice, book
the intervent time τ̂l right after generating it: T̂ ← T̂ + τ̂l.

• During the decision step at the l-th attempt

– In case of contact-inhibited reactions, randomly select a neighboring site of
the target cell from its neighbors with discrete uniform distribution. If the
site is occupied, or it is outside the border, reject the reaction. If the site is
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empty execute the reaction and increase the system time: t← t+ T̂ and set
T̂ = 0.

– In case of spontaneous reactions execute the reaction on the selected cell
and increase the system time: t← t+ T̂ and set T̂ = 0.

– In case of contact-promoted reactions, randomly select a neighboring site of
the target cell from its neighbors with discrete uniform distribution. If the
site is occupied, or it is outside the border, execute the reaction, increase
the system time: t ← t + T̂ and set T̂ = 0. If the site is empty, reject the
reaction.

The steps of the algorithm do not follow the order of the assumptions, we chose this
order to streamline the explanation. We solely introduced the variable T̂ to make the
proof more convenient. In practice, it is not necessary to occupy memory space for
T̂ and waste machine time by updating it. One may simply increase the system time
right after generating the waiting time.

4.2.3 Data structure

From a practical point of view, the implementation of X(t) is a list or an array. However,
we need a data structure that allows us to easily determine whether a lattice site (x∗, y∗)

is empty or occupied (x∗ ∈ {1, . . . , n1}, y∗ ∈ {1, . . . , n2}). Searching in arrays or lists
typically has O(N) time complexity, thus it is more convenient to use the underlying
lattice to book-keep the occupied lattice sites.

Hence, we define the matrix L ∈ {0, 1}n1×n2 for n1, n2 <∞, where 0 and 1 stand for
an empty and an occupied site, respectively. Checking the value of an element L[x∗, y∗]

usually has a constant time complexity, O(1). Using X(t) and L simultaneously has
two advantages. First, randomly selecting the target cell from the list X(t) is of O(1),
but it can be very time consuming to randomly select a target cell from L. Second,
with using L we may obtain the occupancy of a lattice site in constant time. These
assumptions hold for most programming languages, e. g., for Python that we shall use
to implement our toy models. With the introduced notations, the Prompt Decision
Method is as follows.

Algorithm Prompt Decision Method
1. Initialization:

(i) set t← 0, prescribe halting conditions H,
(ii) initialize the lattice L with size n1 × n2,

place N(0) ≤ n1 · n2 cells on the lattice according to essay,
store location of cells and amount of chemical species in X(t)
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2. Calculate propensity functions âµ for all µ ∈ {1, . . . ,M} according to Eq.
(4.3) and set T̂ = 0.

3. Generate intervent time: choose τ̂ ∼ Exp(â) (Eq. 4.4) and set T̂ ← T̂ + τ̂ .
4. Reaction selection: choose µ according to P̂2(µ|τ̂) (Eq. 4.4).
5. Cell selection: draw target cell Xk(t) from the population X(t) with discrete

uniform distribution.
6. Decision step:

• In case of a non-cellular chemical reaction execute the reaction on the con-
cerned chemical species.
Update data structure. Go to Step 7.

• In case of a spontaneous reaction, execute the reaction on target cell and
update data structures.
Go to Step 7.

• In case of a contact-inhibited reaction, randomly select a neighboring site of
the target cell from its adjacent sites, with discrete uniform distribution.

– If the target site is occupied, or it is outside the border, reject the
reaction. Go to Step 3.

– If the site is empty execute the reaction and update data structures. Go
to Step 7.

• In case of a contact-promoted reaction, randomly select a neighboring target
site of the target cell from its adjacent sites, with discrete uniform distribu-
tion.

– If the site is empty, reject the reaction. Go to Step 3.
– If the site is occupied, or it is outside the border, execute the reaction,

update data structures. Go to Step 7.
7. Update time: set t← t+ T̂ .
8. Halt if H = True else continue the process with Step 2.

4.3 The Reduced Rate Method (RRM)

The essence of the method is the classification of the cells according to the number
of their free neighbors on the lattice. From a theoretical viewpoint, this approach
enables us to define a state space in which the system is ’well-stirred’ in the sense that
the probability of a reaction to happen in the next time interval δt does not depend
explicitly on the positions of the reactants (cells), it only depends on the number of
their free adjacent sites. Thus, with the proper scaling of the reaction rates and some
appropriate assumptions, we reduce the problem to Gillespie’s SSA formalism.

24



4.3.1 Assumptions in the RRM algorithm

According to the restrictions we made, the products of the cellular and non-cellular
(bio)chemical reactions neither change the state of the cells nor diffuse: the cells only
differ in their positions on the lattice. Based on this assumption, we may classify the
cells at state X(t), according to the number of their free adjacent sites j. We refer
to cells that have j free adjacent sites as class-j cells. At any state X(t), the value of
Nj = Nj(t) for ∀j ∈ {0, . . . , η} and the positions of the cells in class-j are known, thus,
we can define the propensities and choose the target cells based on this information.

We assume that contact dependent reactions occur between cells and either
their j free or (η− j) occupied neighbors. Thus, in the RRM algorithm selecting a
reaction defines two things: i) the reaction index µ, that defines the change in the state
X and ii) the class-j of the target cell. We define reaction Rµ,j, that is reaction with
index µ acting on a cell having j free neighbors (and possibly causes a (∆S1, . . . ,∆Sm)

change in the number of the chemical species).

4.3.2 Propensities

For all µ ∈ {1, . . . ,M} and all j ∈ {0, . . . , η} we define propensity functions aµ,j

according to the following considerations.
Contact-inhibited reactions occur when a cell ’reacts’ with one of its empty

neighbors. Thus, in this case the reactants are the cells and their empty adjacent sites
on the lattice. The number of possible combinations between the class-j cells and their
free adjacent sites is j ·Nj. The reaction rate of an elementary reaction, with one empty
neighbor, is rµ/η. Thus, the propensity function of the contact-inhibited reaction µ

acting on a cell with j free adjacent sites is:

aµ,j =
rµ
η
jNj, ∀j ∈ {0, . . . , η}. (4.6a)

The propensities of spontaneous reactions does not depend on the number of
free neighbors of the cell. Nevertheless, we use the two-index notation to simplify the
proof later.

aµ,j = rµNj, ∀j ∈ {0, . . . , η}. (4.6b)

For non-cellular chemical reactions we use the same scaling we used in the PDM algo-
rithm:

aµ,j =
cµhµ

N
Nj = rµNj ∀j ∈ {0, . . . , η}. (4.6c)

Contact-promoted reactions occur when a cell ’reacts’ with one of its occupied
neighbors. The number of possible combinations between the class-j cells and their
occupied η − j neighbors is: (η − j) · Nj. The rate of such an elementary reaction is
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rµ/η. The propensity function of the contact-promoted reaction µ acting on a class-j
cell is:

aµ,j =
rµ
η
(η − j)Nj(t), ∀j ∈ {0, . . . , η}. (4.6d)

We assume that reaction indices µ ∈ {1, . . . , α} belong to the contact-inhibited, µ ∈
{α + 1, . . . , α + β} belong to the spontaneous and µ ∈ {α + β + 1, . . . ,M} belong to
the contact dependent reactions. The sum of the propensities is:

a =
M∑
µ=1

η∑
j=0

aµ,j =
1

η

α∑
µ=1

rµ

η∑
j=0

jNj +

α+β∑
µ=α+1

rµN +
1

η

M∑
µ=α+β+1

rµ

η∑
j=0

(η − j)Nj (4.7)

Unlike in the PDM, in case of the RRM a may be zero in some models even with
N > 0. We have to ensure that this does not cause problems while drawing the waiting
time.

With these notations aµ,jδt is the probability, to first order in δt, that a reaction with
index µ will occur to a class-j cell on the lattice and possibly cause a (∆S1, . . . ,∆Sm)

change in the number of the chemical species in the next time interval δt. The propen-
sity functions explicitly specify the corresponding (µ, j) pairs, thus, we obtain the joint
probability of executing reaction µ on a cell of class-j. We denote the corresponding
event Rµ,j.

4.3.3 Obtaining the waiting time distribution and the proba-

bilities of the reactions from first principles

Now, we obtain the formula for the joint probability P (τ, Rµ,j) with the direct appli-
cation of Gillespie’s reasoning [27]. The probability that Rµ,j occurs in the differential
time interval [t+ τ, t+ τ + dτ ] is

P (τ, Rµ,j)dτ = P0(τ) · aµ,jdτ, (4.8)

where P0(τ) is the probability at time t that none of the reactions occur in (t, t+ τ).
We divide the interval (t, t + τ) to κ subintervals with equal length of ϵ = τ/κ.

Assume the Markov property holds for the system, then the probability that none of
the Rµ,j reactions occur in any of the subintervals is P0(τ) = [1−

∑
ν,l aν,l · ϵ+ o(ϵ)]κ =

[1−
∑

ν,l aν,l · τ/κ+ o(κ−1)]κ. Taking the limit κ→∞ we obtain

P0(τ) = lim
k→∞

[
1−

M∑
ν=1

η∑
l=0

aν,l · τ/κ+ o(κ−1)

]κ
= exp

(
−

M∑
ν=1

η∑
l=0

aν,lτ

)
= e−aτ .

(4.9)
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Substituting Eq. (4.9) into Eq. (4.8) yields

P (τ, Rµ,j)dτ = e−aτ · aµ,jdτ. (4.10)

As the reactions are mutually exclusive we may obtain the marginal distribution P1(τ)

for the waiting time by summing Eq. (4.10) over all (µ, j) pairs:

P1(τ)dτ = e−aτ

M∑
µ=1

η∑
j=0

aµ,jdτ = a · e−aτdτ. (4.11)

Finally, by conditioning P (τ, Rµ,j) on τ , we obtain

P (τ, Rµ,j)dτ = P1(τ) · P2(Rµ,j|τ)dτ. (4.12)

Substituting Eq. (4.10) and (4.11) into Eq. (4.12) and solving for P2 we obtain the
joint probability that the next reaction would be of index µ and would be executed on
a class-j cell given waiting time τ :

P2 (Rµ,j|τ) =
aµ,j
a

=: P (Rµ,j) µ ∈ {1, . . . ,M}, j ∈ {0, . . . , η}. (4.13)

Hence, following Gillespie’s argument, we have derived the probability density function
of the waiting time and the probabilities of the reactions in the Reduced Rate Method
Cell Culture Simulation Algorithm from first principles.

4.3.4 Data structure

Note that in case of a movement, proliferation, or a cell death event, the class of several
cells can change at once. Thus, we need to reach the cells as quick as possible to adjust
the corresponding changes. A convenient data structure for this (in Python) consists
of five dictionaries, that we will store in one list, called D. Dictionary D[j] contains
the cells that have j free adjacent sites in the following way: the indices of cells are the
keys and the corresponding coordinates are the values. Naturally, the length of D[j] is
Nj. We also store the amount of chemical substances in a dedicated list B.

We keep the underlying lattice L to check if a particular lattice site is occupied
or empty. A convenient data structure is a matrix L ∈ Nn1×n2 , where entry L[x∗, y∗]

is the index of the cell in the population. Note that every newborn cell has to be
given a unique index to avoid complications. Thus, in some models the value of some
indices may be greater than the capacity K of the population. With these notations
and assumptions, the Reduced Rate Method is as follows.
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Algorithm Reduced Rate Method
1. Initialization:

(i) set t← 0, prescribe halting conditions H,
(ii) initialize the lattice L with size n1 × n2, initialize D,

place N(0) ≤ n1 · n2 cells on the lattice according to essay,
store location of class-j cells in dictionary D[j],

(iii) initialize B, store initial amount of chemical species in list B.
2. Calculate propensity functions aµ,j and a for all µ ∈ {1, . . . ,M} and j ∈ {0, . . . , 4}

according to Eqs. (4.6) and (4.7). If a = 0 halt the algorithm.
3. Generate intervent time: choose τ according to P1(τ) from Eq. (4.11).
4. Select event and cell type: choose (µ, j) according to P (Rµ,j) from Eq. (4.13).

Select target cell from class-j with discrete uniform distribution.
In case of a movement, or cell division, select one of the j free adjacent sites of the
target cell with discrete uniform distribution.

5. Execute and update:

(i) Update time: set t← t+ τ .
(ii) Execute the event. Update D,B and L.

6. Halt if H = True else continue the process with Step (2).

It is clear that this formulation of the RRM is of direct method type. We will refer to
this implementation as RRM in the thesis. However, we would like to point out that
Theorem 2.1 guarantees that we may easily apply Gillespie’s first reaction method
formalism to the RRM.

Algorithm Reduced Rate Method (First Reaction Method formalism)
1. Initialization:

(i) set t← 0, prescribe halting conditions H,
(ii) initialize the lattice L with size n1 × n2, initialize D,

place N(0) ≤ n1 · n2 cells on the lattice according to essay,
store location of class-j cells in dictionary D[j],

(iii) initialize B, store initial amount of chemical species in list B.
2. Calculate propensity functions aν,l for all ν ∈ {1, 2, . . . ,M} and l ∈ {0, . . . , η}.
3. Calculate putative times τν,l ∼ Exp(aν,l) for all ν ∈ {1, 2, . . . ,M} and l ∈ {0, . . . , η},
4. Reaction selection: choose Rµ,j for which τµ,j = min{τν,l : ν ∈ {1, 2, . . . ,M} and l ∈
{0, . . . , η}},

• Select target cell from class-j with discrete uniform distribution.
• In case of a movement, or cell division, select one of the j free adjacent sites of

the target cell with discrete uniform distribution
5. Update time and state variables:

(i) set t← t+ τµ,j
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(ii) Execute the event. Update D,B and L.
6. Halt if H = True else continue the process with Step (2).

4.3.5 The well stirred case

We may reach the well stirred system of the cell population by extending the neigh-
borhood of the cells to the whole volume of the container minus the volume of the cell
itself. Thus, we would have only one adjacency class that contains all cells N(t) of
the population. The number of free sites would then be K − N and the number η of
adjacent sites would be K − 1, which we one may approximate with K − 1 ≈ K for
large K. Thus, we may obtain the following propensities for this ‘well stirred’ system:

aµ =


rµ

K−1
(K −N)N(t) µ ∈ {1, . . . , α}

rµN(t) µ ∈ {α + 1, . . . , α + β}
rµ

K−1
(N − 1)N(t) µ ∈ {α + β + 1, . . . ,M}

(4.14)

Cell division is contact inhibited by our earlier assumptions, cell death and also bio-
chemical reactions may be modeled by any type of reaction, see Chapter 3.

A remarkable consequence of this is the fact that adivision = rµ
K−1

(K−N)N(t) is itself
able to model a population that grows in a logistic fashion. Classical stochastic logistic
models and variants are assumed to be birth and death processes [3]. Unlike those,
the logistic model we obtained here does not involve cell death. Since cell division is
supposed to be a reaction between cells and free adjacent sites, the effect the shrinking
‘free’ space takes on the cells is sufficient to produce logistic behavior. Thus, we gained
a new interpretation of the logistic growth model, which, to the best of our knowledge
has not been considered so far. In Chapter 5 we will improve this idea to obtain a
method that efficiently simulates the dynamics of populations with realistic cell cycle
length.

4.4 The marginal Reduced Rate Method (mRRM)

Next, we describe a variant of the RRM in which the reaction index µ and the cell
type j are selected in two distinct steps. With this approach, we may reduce the
number of propensity functions which may make the implementation more convenient
and may reduce the simulation runtime. In the mRRM algorithm we use the same data
structure we introduced in case of the RRM algorithm. Assume that reactions with
index µ ∈ {1, . . . , α} are contact-inhibited, µ ∈ {α+1, . . . , α+β} are spontaneous and
µ ∈ {α + β + 1, . . . ,M} are contact dependent reactions.
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4.4.1 Propensities and probabilities

Consider the propensity functions aµ,j of the RRM (Eq. 4.6) and the joint probabilities
P (Rµ,j) = aµ,j/a obtained from them. First, for every reaction µ ∈ {1, . . . ,M}, we
sum over j obtaining the marginal probabilities P (Rµ) = aµ/a for reaction Rµ. The
corresponding propensities aµ =

∑η
j=0 aµ,j are of form:

aµ =


rµ
η

∑η
j=0 jNj(t) µ ∈ {1, . . . , α}

rµN(t) µ ∈ {α + 1, . . . , α + β}
rµ
η

∑η
j=0(η − j)Nj(t) µ ∈ {α + β + 1, . . . ,M}

(4.15)

Naturally, the sum of the propensity functions are the same in the RRM and mRRM
algorithms:

a =
M∑
µ=1

η∑
j=0

aµ,j =
M∑
µ=1

aµ. (4.16)

In case a > 0, the probability density function P1(τ) of the waiting time τ until the
next reaction, and the probability P2(µ|τ) of the next reaction Rµ are:

P1(τ) = ae−aτ , P2 (µ|τ) =
aµ
a

=: P (Rµ), µ ∈ {1, . . . ,M}. (4.17)

4.4.2 Target cell selection

Finally, we have to obtain a method for selecting the target cell in the mRRM algorithm.
It would be tempting to simply choose the class-j of the target cell according to Nj/N ,
in case of all reaction types. But this would lead to a wrong result in general. Suppose,
we chose cell movement to execute and suppose N0 > 0. There would be a positive
probability to choose class-0 from which to select the target cell, and thus select a cell
with no free neighbors, even though such a cell is not able to move.

In the original RRM algorithm the probability of executing reaction µ on a type
j cell is P (Rµ,j). We saw that in the mRRM algorithm, selecting reaction Rµ and
selecting the type j of the target cell is executed in two distinct steps, but these steps
are not independent from each other. In the mRRM algorithm, let Aj denote the event
that the target cell is of class j. For every reaction Rµ, we look for the probability
P (Aj|Rµ), with which P (Aj|Rµ) · P (Rµ) = P (Rµ,j) in the original RRM algorithm.
That is:

P (Aj|Rµ) =


jNj∑η
j=0 jNj

µ ∈ {1, . . . , α}

Nj/N µ ∈ {α + 1, . . . , α + β}
(η−j)Nj∑η
j=0(η−j)Nj

µ ∈ {α + β + 1, . . . ,M}
(4.18)

Notice that with Eq. (4.18) it is not possible to select class-0 in case of a contact-
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inhibited reaction. Likewise, it is not possible to select class-4 in case of a contact-
promoted reaction. On Fig. 4.1 we illustrate Eq. (4.18) in a concrete example, the
case of the snapshot of the simulation introduced on Fig.3.2 (Sec.3.1). After selecting
the class j of the target cell according to Eq. (4.18), the algorithm chooses a target
cell from the class j cells with discrete uniform distribution.

It easy to see that the RRM and mRRM algorithms are mathematically equiva-
lent formulations to obtain realizations of a given stochastic process concerning a cell
culture.

Figure 4.1: Illustration of the distributions in Eq. (4.18) The figures correspond to the snapshot of Fig.3.2.
Suppose we had all three reaction types in the simulation at state X(t∗) of the system. In case the next reaction would
be a spontaneous reaction, we should choose the class j of the target cell according to the distribution on the middle
figure, and then choose a particular target cell from class j at random. This is equivalent of choosing a cell randomly
from the total population. It is clear from the figure that we would choose the cell class j = 2 cell with the highest
probability, as the ratio of cells with two free adjacent sites is the highest in the population. Since there are cells in all
five classes, we may choose any class with nonzero probability in a spontaneous reaction. If the next reaction would be
a contact-inhibited reaction, we should choose the class of the target cell according to the distribution on the left figure.
Since 0 ·N0 = 0, we choose class j = 0 with zero probability. Thus cells with zero free neighbors do not participate in
contact-inhibited reactions. At this state of the system we would choose a class j = 2 cell with the highest probability.
If the next reaction would be a contact-promoted reaction, we should choose the target cell type from the distribution
on the right. Since (4− 4) ·N4 = 0, we choose class j = 4 with zero probability – cells with 4 free adjacent sites do not
participate in contact-promoted reactions. We would choose class j = 1 with the highest probability at this state.

Algorithm marginal Reduced Rate Method
1. Initialization:

(i) set t← 0, prescribe halting conditions H,
(ii) initialize the lattice L with size n1 × n2, initialize D,

place N(0) ≤ n1 · n2 cells on the lattice according to essay,
store location of class-j cells in dictionary D[j],

(iii) initialize B, store initial amount of chemical species in list B.
2. Calculate propensity functions aµ and a for all µ ∈ {1, . . . ,M} according to

Eq. (4.15) and (4.16).
If a = 0 halt the algorithm.

3. Generate intervent time: choose τ according to P1(τ) from Eq. (4.17).
4. Select event: choose µ according to P2(µ|τ) from Eq. (4.17).
5. Select cell:

• Choose the class j of cells according to P (Aj|Rµ) from Eq. (4.18).
• Choose a target cell randomly with uniform distribution from class j.
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• If Rµ correspond to movement or division, then choose one of the free neigh-
bors of the target cell with discrete uniform distribution.

6. Execute and update:

(i) Update time: set t← t+ τ .
(ii) Execute the event.
(iii) Update D,B and L.

7. Halt if H = True else continue the process with Step (2).

4.5 Equivalence of the algorithms

Before stating our main theorem, we would like to emphasize the differences between
the PDM and the RRM algorithms. The first important difference is in the definition of
the propensity functions: in case of the PDM, the propensity functions always depend
on the total number of cells (Eq. 4.3). In contrast, in the RRM we classify the cells
according to the number of their free neighbors. Only ’spontaneous’ reactions and
the corresponding propensities depend on the total number of cells (Eq. 4.6b) other
reactions occur between cells and their empty neighbors (Eq. 4.6a) or between cells
and their occupied neighbors (Eq. 4.6d).

The second important difference is that the drawn event does not always occur in
the PDA approach, whereas the drawn event is always executed in the RRA approach.
The third important difference is that drawing reaction R̂µ and randomly selecting a
target cell (that has j free neighbors, event Êj) are independent in the case of PDM. In
the RRM, Rµ,j uniquely determines that the reaction with index µ has to be executed
on a cell having j free neighbors and maybe alters the state of the chemical species as
well.

During the proof we assume that there are M possible reactions in the PDM and
RRM and the order of reaction indices are the same in both algorithms. Suppose that
reactions with index µ ∈ {1, . . . , α} are contact-inhibited, µ ∈ {α + 1, . . . , α + β} are
spontaneous and µ ∈ {α + β + 1, . . . ,M} are contact dependent reactions.

Theorem 4.1 (On the equivalence of the PDM and RRM algorithms). Using the
notations introduced so far, consider the state X(t) of the system at time t. Suppose
that, in this state both â, a > 0 in PDM and RRM, respectively. Suppose we start both
algorithms from X(t) (i. e., T̂ = 0 in case of the PDM).

In the PDM algorithm let R̂µ denote the drawn reaction in the k-th attempt during
the ’Reaction selection step’ and let Êj denote the event that we choose a target cell
with j free neighbors in the corresponding ’Cell selection step’ and let Ŝ denote the
random event that we would be able to execute R̂µ in the ’Decision step’.

In the RRM algorithm let Rµ,j denote the next reaction. Let T̂ and τ denote the
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soujurn times until the next executed reaction in the PDM and the RRM, respectively.
Then
(a) P̂ ((R̂µ ∩ Êj)|Ŝ) = P (Rµ,j), and
(b) T̂ ∼ Exp(a) and τ ∼ Exp(a) with parameter a defined in (4.7).

Proof. We will use a direct proof. Let us start with the probability of the events.
(a) In the RRM algorithm P (Rµ,j) = aµ,j/a (Eq. 4.13). We will show that in the

PDM P̂ ((R̂µ ∩ Êj)|S) = aµ,j/a with the definition of aµ,j (Eq. 4.6) and a (Eq. 4.7).
In the PDM algorithm let P̂ (Ŝ) denote the probability of the random event Ŝ, that

is, we would execute the selected R̂µ in the ’Decision step’. With Bayes theorem we
obtain:

P̂ (R̂µ ∩ Êj|Ŝ) =
P̂ (Ŝ|R̂µ ∩ Êj) · P̂ (R̂µ ∩ Êj)

P̂ (Ŝ)
. (4.19)

During the ’Cell selection step’ in the PDA algorithm, Êj is the event when we
choose a target cell that has j free neighbors. The probability of this is the proportion
of cells with j neighbors in the population: P̂ (Êj) = Nj/N . Now, because R̂µ and Êj

are independent events:

P̂ (R̂µ ∩ Êj) = P̂ (R̂µ) · P̂ (Êj) = âµ/â ·Nj/N. (4.20)

In the PDM, during the Decision step spontaneous reactions are executed with a
probability of 1. Contact-inhibited reactions are executed if we choose a target cell
that has at least one free neighbor and we choose one of its free neighbors. Thus, in
the PDM algorithm, we introduce the random event F̂ , which occurs when a contact-
inhibited reaction is executed. Contact-promoted reactions are executed if we choose
a target cell that has occupied neighbor and we choose one of them. We shall denote
the corresponding event F̂ . Since, R̂µ and F̂ are independent, we may obtain:

P̂ (Ŝ) =

∑α
µ=1 âµ

â
P̂ (F̂ ) +

∑α+β
µ=α+1 âµ

â
+

∑M
µ=α+β+1 âµ

â
P̂ (F̂ ). (4.21)

Now, we need the probabilities P̂ (F̂ ) and P̂ (F̂ ). The probability that a randomly
chosen neighbor of a cell is free, given that the cell has j ∈ {0, . . . , η} free neighbors is
P̂ (F̂ |Êj) = j/η. Since Ê0, . . . , Êη are pairwise disjoint events whose union is the entire
sample space (i. e., we randomly choose a cell from the population that has 0 to η free
neighbors), we may obtain P̂ (F̂ ) by the law of total probability:

P̂ (F̂ ) =

η∑
j=0

(
P̂ (F̂ |Êj) · P̂ (Êj)

)
=

1

ηN

η∑
j=0

jNj. (4.22)

Since F̂ is the complement event of F̂ : P̂ (F̂ ) = 1− P̂ (F̂ ) = 1
ηN

∑η
j=0(η − j)Nj. Thus,
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we have a formula for every term in Eq. (4.21).
Finally, we have to evaluate P̂ (Ŝ|R̂µ∩ Êj) that is the probability that the currently

selected reaction can be executed given that it is a reaction R̂µ and the target cell has j
free neighbors. Given the reaction and the target cell, we have to choose one neighbor
of the target cell at random with discrete uniform distribution. In case of a CIR we
can execute R̂µ if the site is empty, with probability j/η. Similarly, a CPR can be
executed if the chosen site is occupied, it occurs with probability (η− j)/η, and we can
always execute a spontaneous reaction. For all pairs (µ, j), where j ∈ {0, . . . , η}:

P̂ (Ŝ|R̂µ ∩ Êj) =


j/η µ ∈ {1, . . . , α}
1 µ ∈ {α + 1, . . . , α + β}
(η − j)/η µ ∈ {α + β + 1, . . . ,M}

(4.23)

Now, from Eqs. (4.3), (4.7), (4.21) and from the definition of â we have:

âP̂ (Ŝ) =
1

4

α∑
ν=1

rν

4∑
j=0

jNj +

α+β∑
ν=α+1

rνN +
1

4

M∑
ν=α+β+1

rν

4∑
j=0

(4− j)Nj = a. (4.24)

Thus, in the case of the contact-inhibited reaction µ ∈ {1, . . . , α}, for the probability
(4.19), with using (4.20), (4.21), (4.22), (4.23), and (4.24) we obtain:

P̂ (R̂µ ∩ Êj|Ŝ) =
j
4

Nj

N
· âµ

â

P̂ (Ŝ)
=

1
4N

(jNj) · rµN
a

=
rµ
4
jNj

a
=

aµ,j
a

= P (Rµ,j) (4.25)

For the spontaneous reactions µ ∈ {α + 1, . . . , α + β}:

P̂ (R̂µ ∩ Êj|Ŝ) =
1 · Nj

N
· âµ

â

P̂ (Ŝ)
= · · · = aµ,j

a
= P (Rµ,j) (4.26)

For the contact-promoted reactions µ ∈ {α + β + 1, . . . ,M}:

P̂ (R̂µ ∩ Êj|Ŝ) =
4−j
4
· Nj

N
· âµ

â

P̂ (Ŝ)
= · · · = aµ,j

a
= P (Rµ,j) (4.27)

This proves part (a) of the theorem.
(b) We now show that in PDM the sojourn time T̂ until the next successful event

has the same probability density function as the sojourn time τ in RRM. From the
previous part of the proof we know that the reaction in PDM is only successful with
probability P̂ (Ŝ) (Eq.4.21), thus we discard the reaction with probability 1 − P̂ (Ŝ).
Let us introduce the discrete random variable ξ ∈ {1, 2, . . . } that, in a given state X(t)

of the system, counts how many times the PDM algorithm has to repeat the Decision
step in one iteration, until a reaction can be executed. In this case, the reaction is
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discarded ξ − 1 times until the next realized events.
ξ is of a geometric distribution with parameter P̂ (Ŝ), the probability of repeating

the Decision step k times in one iteration of the algorithm is:

P̂ (ξ = k) = (1− P̂ (Ŝ))k−1P̂ (Ŝ) (4.28)

In every trial l ∈ {1, . . . , k} the algorithm generates a random sojourn time τl ∼
Exp(â). Given that there were k trials, and since τ̂1, . . . τ̂k are independent and expo-
nentially distributed with parameter â, the sum of these soujurn times T̂ =

∑k
l=1 τ̂l is a

continuous random variable of Erlang-k distrubution. Its probability density function
can be calculated with convolution resulting f(t, k, â) and its cumulative distribution
function is F (t, k, â) with t, â > 0, and k ∈ {1, 2, . . . } [43]:

f(t, k, â) =
âk · tk−1

(k − 1)!
· e−ât F (t, k, â) = 1− e−ât

k−1∑
l=0

1

l!
(ât)l.

We may obtain a formula for the joint probability P̂ (T̂ < t, ξ) by conditioning on ξ:

P̂

(
k∑

l=1

τ̂l < t, ξ=k

)
= P̂

(
k∑

l=1

τ̂l < t|ξ=k

)
·P̂ (ξ=k) =

(
1− e−ât

k−1∑
l=0

1

l!
(ât)l

)
·(1−P̂ (Ŝ))k−1P̂ (Ŝ).

The marginal distribution P̂ (T̂ < t) can be derived with summation for k:

P̂ (T̂ < t) =
∞∑
k=1

(
1− e−ât

k−1∑
l=0

1

l!
(ât)l

)
· (1− P̂ (Ŝ))k−1P̂ (Ŝ)

=
∞∑
k=1

(1− P̂ (Ŝ))k−1P̂ (Ŝ)−
∞∑
k=1

e−ât
k−1∑
l=0

1

l!
(ât)l(1− P̂ (Ŝ))k−1P̂ (Ŝ).
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Where the first sum is trivially 1. To obtain the second sum, we rearrange the terms
and change the summation index l to m = l + 1:

P̂ (T̂ < t) = 1− e−ât
∞∑
k=1

k∑
m=1

(ât)m−1

(m− 1)!
(1− P̂ (Ŝ))k−1P̂ (Ŝ)

= 1− P̂ (Ŝ)e−ât
∞∑

m=1

(ât)m−1

(m− 1)!

∞∑
k=m

(1− P̂ (Ŝ))k−1

= 1− P̂ (Ŝ)e−ât
∞∑

m=1

(ât)m−1

(m− 1)!

∞∑
n=0

(1− P̂ (Ŝ))n+m−1

= 1− P̂ (Ŝ)e−ât
∞∑

m=1

(ât(1− P̂ (Ŝ)))

(m− 1)!

m−1 ∞∑
n=0

(1− P̂ (Ŝ))n

= 1− e−âteât(1−P̂ (Ŝ)) = 1− e−âP̂ (Ŝ)t,

since
∑∞

n=0(1−P̂ (Ŝ))n = 1/P̂ (Ŝ). With Eq. (4.24), we have P̂ (T̂ < t) = 1−e−at, which
is the cumulative distribution function of the exponential distribution with parameter
a. Hence, we proved that T̂ ∼ Exp(a) with parameter a defined in the RRM algorithm
(Eq. 4.7). ■

Corollary 4.2 (On the interchangeability of the algorithms). The immediate conse-
quence of the theorem is that in any state of the system, with â, a > 0, after the last
step of the currently running algorithm (which is step 8 for PDM and step 6 for RRM),
the running algorithm can be interchanged with the other one.

4.5.1 Some notes on the equivalence

A distinct advantage of the RRM and mRRM methods compared to the PDM is that
they use much more information about the state of the system. Naturally, equivalence
only holds when both algorithms can be implemented and this is guaranteed by the re-
strictions we made in Sec. 3.2. We may relax these restrictions, but it is not guaranteed
that we would be able to implement the desired model in the PDM framework.

One possible and useful extension is considering not one, but several cell types in
the model. This requires a non-trivial data structure to efficiently follow the differ-
ent types of cells in the population. In our paper, Propensity matrix method for age
dependent stochastic infectious disease models, we proposed such a framework, the so
called ‘propensity matrix’ that is designed to account an inhomogeneous population.
In the original context, we applied age stratification on a human population, but this
approach may be easily transferred to the context of cell cultures. This way one may
build and efficiently simulate exact stochastic tissue models with several different cell
types.
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4.6 Running time

We may expect that different machine times are required due to the different formu-
lation of the algorithms to execute a full iteration in a given state of the system. The
key point between the PDM and the RRM is that the PDM may repeat Steps 3-6
several times according to the model and the state of the system. We shall examine
this problem in this section.

4.6.1 The number of trials in the PDM algorithm

First, we obtain an exact formula for the expected number of trials mξ (the number of
repeating the Decision step between two consecutive, realized reactions) in the PDM
algorithm.

Proposition 4.3. In the PDM algorithm, given that the system is at state X(t), during
one iteration the expected number of trials is:

mξ =

∑M
µ=1 rµN

1
4

∑α
ν=1 rν

∑4
j=0 jNj +

∑α+β
ν=α+1 rνN + 1

4

∑M
ν=α+β+1 rν

∑4
j=0(4− j)Nj

. (4.29)

Where N is the number of cells in the population and Nj is the number of cells with j

free neighbors in state X(t).

Proof. As shown in the proof of the equivalence, the number of trials during one iter-
ation ξ is of geometric distribution with parameter P̂ (Ŝ). Thus, the expected number
of trials is mξ = (P̂ (Ŝ))−1. After simplification, we arrive at the relationship of the
proposition. ■

Proposition 4.4. In the PDM algorithm, consider a model in which the capacity K

of the lattice is finite, i. e., there can be at most K cells in the population.
If N → K, then

mξ →
∑M

µ=1 rµ∑M
ν=α+1 rν

.

Proof. Because of N → K for the number of empty sites e = (K−N), we have e→ 0.
Hence, for the number of cells with 0 free neighbors we have N0 → K. And because
of N −N0 → 0 we have N −N0 = (N1 + · · ·+N4)→ 0. And since N0, . . . , N4 ≥ 0 we
have

∑4
j=0 jNj → 0K = 0 és

∑4
j=0(4− j)Nj → 4K. Taking N → K in Eq. (4.29) and

substituting these limits we obtain the proposition. ■

Corollary 4.5. In the PDM algorithm, consider a model in which the capacity K of
the lattice is finite, and suppose that the model only has contact-inhibited reactions
(rν = 0 for ν ∈ {α + 1, . . . ,M}). Now, if N → K, then mξ →∞.
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In this latter case, the number of trials in the PDM algorithm, and also its running
time, grows without bonds. Naturally, this would never happen in practice, as we
would stop the simulation whenever N = K. Nevertheless, these propositions show
that the number of trials and the simulation time may be extremely large. In contrast,
in the RRM algorithm we never face this issue, since the selected reactions are always
executed.

4.6.2 Numerical comparison

Fig. 4.2 shows a numerical comparison of the running times of the PDM and the
mRRM algorithms. We choose a lattice of size K = 100 · 100 and fixed proliferation
rate rp = 1. Then we experimented with 3 different mobility rates: rm = 1, 0.5, 0. In
case of each rm we randomly occupied q = N(0)/K, q ∈ {5%, 10%, . . . , 95%} of the
lattice with initial cells, then run and averaged out 50 simulations. The markers show
the corresponding simulation times ΘmRRM(rm, q) for each initial setting q normalized
to the running time ΘPDM(rm, q) of the PDM algorithm, see the horizontal line on the
figure, for easier comparison.

With our implementation and with the data structure we chose, for rm = 1 and a
small number of initial cells the mRRM is 30% slower than the PDM, however with
zero mobility rate the mRRM may be 30% faster than the PDM. In the other hand, for
greater than 50% initial occupancy the mRRM always perform better, in fact it may
be up to 10 times faster than the PDM. Therefore, depending on the implementation
and data structure, mRRM can indeed provide a notable speed increase.

In some situations, e. g., in a scratch essay the number of modeled cells may
affect the outcome of the simulation as the cells may engage in other reactions, such
as the cellular or non-cellular (bio)chemical reactions, that are able to influence the
time evolution of the population. Therefore, enabling larger lattices can offer extensive
benefits in terms of the reliability and the biological relevance of the model.

4.6.3 Methods to decrease running time

In Sec. 2.3 we described several resourceful methods to speed up the algorithm. Prob-
ably the most convenient approach at first is to only update the propensities if there
were changes involving them. Rearranging the reaction indices and checking the rapid
reactions first is also a feasible approach. Identifying and separating fast and slow
reactions or tau leaping can be easily applied to product synthetic reactions, but must
be treated with care in case of motility, division or any type of death event as con-
flict between reactions may arise (movement of a dead cell to a non empty site, as an
extreme example).

Finally, according to corollary 4.2, the PDM and any version of the RRM can be
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Figure 4.2: Normalized running times of the mRRM algorithm compared to the PDM algorithm. In these
experiments the proliferation rate rp = 1 is fixed and different mobility rates rm = 1, 0.5, 0 were set (corresponding to
the markers). For each rm q ∈ {5, 10, . . . , 95} percent of the lattice was occupied by randomly placed cells, then 50
simulations were run and averaged out. We may observe a dramatic relative speed increase of the mRRM algorithm
compared to the PDM after 50% of lattice utilization.

used interchangeably. Therefore, after some pre-runs and considering Proposition 4.3,
one may identify the algorithm that performs the best at the regime of the state space
under consideration.

4.7 Examples

In this section, we present two toy models to illustrate the newly introduced reac-
tions. We used the mRRM algorithm in both simulations. We ran and averaged out 30
stochastic realizations with synthetic parameters. Any of the experiments can be read-
ily repeated with the provided Python code. We present our findings without rigorous
mathematical treatment.

4.7.1 Contact dependent and spontaneous product synthesis

Synthesis and secretion of biochemical substances are fundamental physiological pro-
cesses in living organisms. Cells communicate, defend themselves, and influence each
other with these processes. In this section, we demonstrate experiments with the three
essentially different types of synthesis reactions we introduced in Sec. 3.2 (see Table
3.1). As it can be seen on Fig. 4.3, we started to grow a cell population on a lattice with
capacity K = 50 · 50 = 2500. The initial number of cells were 1% of the capacity, that
is N(0) = 25 cells randomly placed on the lattice. We assumed that the cells engage
in contact-inhibited, spontaneous and contact-promoted cellular biochemical synthesis
reactions µ = 2, 3, 4, producing one unit amount of chemical substances Sci, Ss, Scp,
respectively. We chose Sci(0) = Ss(0) = Scp(0) = 0 for initial conditions. Let the index
of the proliferation reaction be µ = 1. We assumed there are no other reactions in
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this system. We assume that these products are synthesized independently from each
other, thus in r2, r3, r4 the reactant combinations h2 = h3 = h4 = 1, we chose r1 = 1.
The corresponding propensities are:

a1 =
r1
4

4∑
j=0

jNj, a2 =
r2
4

4∑
j=0

jNj, a3 = r3N, a4 =
r4
4

4∑
j=0

(4− j)Nj.

With little calculation we can simplify the sum a to:

a = (r3 + r4)N +
r1 + r2 − r4

4

4∑
j=0

jNj.

The waiting time and the next reaction is selected according to Eq.(4.17) and the
class of the proliferating cell is selected according to Eq.(4.18). We made the following
assumptions: there is no cell death in the population, the probability of cell division is

p1 =
r1
4

∑4
j=0 jNj(t)

(r3 + r4)N + r1+r2−r4
4

∑4
j=0 jNj

> 0

whenever 0 < N < K, and only zero when N = K. Therefore, for the number of cells
we expect N → K as t→∞, as it can be seen on the figure.

Figure 4.3: The effect of contact dependent and spontaneous product synthesis

We now estimate the time evolution of products Sci(t), Ss(t), Scp(t). Following the
reasoning of Proposition 4.4, it is easy to show that as N → K, p1, p2 → 0 and
p3 → r3/(r3 + r4) and p4 → r4/(r3 + r4). Thus we expect Sci(t) to go into saturation
after the size of the population reached the capacity of the lattice, leaving only the
spontaneous and contact-promoted synthesis reactions to fire. From their limiting
probabilities we may expect that the averaged curves Ss(t), Scp(t) approximate straight
lines, as the same amount of product Ss and Scp is generated on average per unit time,
and the population remains constant after it reached the available capacity. Notice
that 0 < 1/4 ·

∑4
j=0 jNj ≤ 1/4 ·

∑4
j=0 4Nj = N for all N ∈ {1, . . . , K}. Thus, in

case r2 ≤ r3, the probability of the contact-inhibited synthesis reaction is less than
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or equal to the probability of the spontaneous synthesis reaction. We may expect a
similar relation between the contact-promoted reaction and the spontaneous reaction
as 0 ≤ 1/4 ·

∑4
j=0(4− j)Nj = N − 1/4 ·

∑4
j=0 jNj ≤ N .

In the experiment of subfigure (A) of Fig.4.3, we chose r2 = r3 = r4 = 1. We can
see that Ss(t) > Scp(t) and the curves smooth to two parallell lines (since r2 = r3) as we
may expect based on the above. On subfigure (B), we set r2 = 1, r3 = 0.085, r4 = 0.1.
In the beginning, the amount of product synthesized in the contact-inhibited reaction
is much grater than the amount of products generated by the other two reactions, due
to the difference in their reaction rates. Since r3 ≤ r4 Ss(t) and Scp(t) do not align to
parallel lines for any N , in fact, they intersect as it is indicated in the figure.

4.7.2 Contact dependent and spontaneous cell death

In this section, using this toy model, we illustrate the effect of the three possible types
of death that were introduced in Sec.3.2. Fig. 4.4 represents the averaged output of
the corresponding 30 independent simulations of six different experimental settings.
Specifically, in every single experiment we set the proliferation rate to r1 = 1 and chose
exactly one type of cell death also with rate 1. Initially N(0) cells were randomly
placed on the lattice. The waiting time and the next reaction is selected according to
Eq.(4.17) and the class of the target cell is selected according to Eq.(4.18).

Figure 4.4: The effect of different types of cell death on the population. The figure shows the average
outcome of six independent experiments after 30 runs. We assumed that in all cases the capacity of the lattice was
K = 50 · 50 = 2500 and the proliferation rate was r1 = 1; each curve corresponds to one experiment. Blue pink, and
purple curves illustrate the effect of contact-inhibited, contact-promoted, and spontaneous cell deaths, respectively.

During the first three experiments (blue curves) we assumed contact-inhibited cell
death with three different initial conditions, N(0) = 0.75K, 0.5K, 0.25K. The corre-
sponding propensities and probabilities are:

abirth =
1

4

4∑
j=0

jNj(t), adeath =
1

4

4∑
j=0

jNj(t), pbirth = pdeath =
1

2
.
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As proliferation is also a contact-inhibited event, the probabilities of proliferation and
death are the same at any state X(t). Thus, we may expect that the population can
be sustained in a constant level if N(0) is sufficiently large that N(t) cannot drop to
the absorbing state N = 0 due to stochastic fluctuations.

In our second experiment (pink curves) we assumed contact-promoted cell death
and chose N(0) = K, 0.1K. The corresponding propensities are:

abirth =
1

4

4∑
j=0

jNj(t), adeath =
1

4

4∑
j=0

(4− j)Nj(t).

With both initial conditions the size of the population tends to K/2 > N ≈ 1205 where
the probabilities of proliferation and death equals. Notice that these curves are under
the blue dashed curve, which is around K/2. This is due to the reflecting boundary
conditions we use in the experiments (see Sec. 3.1): any cell on the boundary can have
at most 3 free adjacent sites.

In the third experiment (purple curve) we assumed spontaneous cell death. The
propensities are

abirth = 1/4 ·
4∑

j=0

jNj, adeath = N.

And since r1 = r2 = 1 and 1/4 ·
∑4

j=0 jNj ≤ N for N ∈ {1, . . . , K} the probability of
death is always greater than the probability of cell division, thus we may expect the
population to die out in the long term, as it can be seen on the figure.

4.8 Discussion

In this chapter, we provided an extended version of the cell simulation algorithm in-
troduced by Baker and Simpson [6] that includes new reaction types. We call this
algorithm the Prompt Decision Method (PDM).

The PDM algorithm is a classical accept–reject montecarlo simulation algorithm
that may be very computationally intensive due to the possible large number of rejec-
tions in a crowded environment.

We introduced the Reduced Rate Method (RRM) algorithm that is based on the
classification of cells according to their free adjacent sites. In this algorithm, every
selected reaction is executed, and therefore, the running time and the resource require-
ments see dramatic reductions. Furthermore, we also showed that the PDM and the
RRM methods generate the same stochastic process as the distribution of the waiting
time until the next successful reaction; also, the probabilities of the next successful
reaction are the same in both approaches in a given state of the system. The RRM
algorithm is an exact stochastic simulation algorithm that is derived from Gillespie’s
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method from its first principle. Since the RRM algorithm is equivalent to to PDM
method, the PDM method is also an exact stochastic simulation method. Indirectly,
we showed that the algorithm introduced by Baker and Simpson, which is a special
case of PDM, is also exact.

We also introduced an equivalent, but simplified version of the RRM, called the
marginal Reduced Rate Method (mRRM). Even though this algorithm is easier to
implement, it still retains all the benefits of the RRM algorithm. The RRM and
mRRM algorithms have several advantages compared to PDM:

• RRM is considerably faster in a crowded population. In contrast with PDM, in
the RRM and mRRM algorithms the selected reaction is always executed due
to the different formulation of the propensities. This is a particularly important
feature in cell culture models, as the immotile cells or the ones that are unable
to proliferate do not slow down the simulation time. Moreover, this ’seemingly
unnecessary’ population of cells may still engage in other important processes
needed for the development of the whole population.

• Furthermore, as a result of this, the probability of the events is known in every
iteration of the algorithm. Thus, giving a probabilistic interpretation of differ-
ent emerging phenomena is more straightforward in a simulation done with the
mRRM algorithm (see Sec. 4.7).

• Since the design of the RRM and mRRM algorithm is based on the classification of
cells according to their free adjacent sites, including new classes to this method is
straightforward. For example, one may include several cell types, or even extend
the model incorporating the fact that the chemical substances S1, . . . , Sω may
influence the state of the cells. This could be achieved in the PDM method only
in very inconvenient ways, if it is possible at all.
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5

Cell culture simulation with
explicit cell cycle length

5.1 Motivation

Cell cycle is a series of precisely controlled events that take place in a cell as it grows
and divides. During the cycle, cells undergo many structural changes, each of which
takes a considerable amount of time. As we will see later, this makes it much more
difficult to use classical compartmental models, which assume that the time spent in
each compartment is exponentially distributed. But what does actually happen during
cell cycle?

Division of eukaryotic cells starts with the synthesis of the necessary RNA and
protein structures during the so called G1 phase. Cells go through several checkpoints
to ensure that the necessary number of molecules are present to start the replication
of the genetic material. The last such checkpoint is the so called no return point after
which the molecular machinery that is assembled in G1 begins to copy the DNA of
the cell. This is called the S phase, where ‘S’ stands for the synthesis of the nuclear
DNA. When the two DNA copies are ready for the two daughter cell, the mother cell
enters the G2 phase in which continues protein and RNA synthesis and approximately
doubles its size. Then, the mother cell goes through nuclear division (mitosis) and cell
division (cytokinesis) producing two daughter cells during the M phase. After M, cells
may go into the quiescent G0 phase, that may last hours or even the whole lifetime
of the cells (depending on its type and the circumstances), or start the whole process
over. For further details we refer to the excellent textbook by Nelson and Cox [38], the
cell cycle is illustrated in Fig. 5.1.

Given a cell population, cells may be in different stages of the cell cycle. A popu-
lation is synchronized, when the cells are in more or less the same state. In contrast,
when most of the cells are in different state, the population is asynchronous. Naturally,
it may be partially synchronized as well (c.f. Fig. 5.1).
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Figure 5.1: Cell cycle, the series of biochemical events that lead to cell division. The diagram on the left illustrates the
order of the phases in the cycle: G1, S, G2, M. After mitosis cells may enter the quiescent G0 phase. The whole cycle
(without G0) last for several hours, typically between 8-24 hours. The diagram in the middle illustrates a synchronous
population, when most of the cells are in the same phase in their cycles. The one on the right illustrate an asynchronous
population.

5.1.1 Mathematical models of cell cycle

Cell cycle complicates both mathematical modeling and simulating cell cultures. In
fact, when cell cycle play important role in the behavior of the cell culture, exponen-
tially distributed cell cycle length may lead to false conclusions as “the most probable
time for a cell to divide is the current time” (Yates et al. [48]). Each phase of the cycle
is of typical length, usually several hours. Thus, when the length of the cell cycle plays
an important role, assuming exponentially distributed length is a poor choice.

Moreover, as Vitadello et al. point out, the classical exponential and logistic cell
population models, and their variants inherently assume that the concerned population
is asynchronous throughout the modeled period of time [46]. This may have important
implications on various fields, including tissue development or even tumor therapy.
The classical approach, with system of a small number of ODEs, is neither capable
of capturing the true dynamics influenced by the length of the cell cycle, nor able to
model synchronized population or spontaneous synchronization.

Based on 77 data sets for 16 cell types, Golubev found that the best fitting distribu-
tion for the experimentally measured cell cycle lengths was the exponentially modified
gamma or exponentially modified Gaussian distribution [31]. To approximate this, us-
ing an integer shape parameter k to keep the Markovian property of the agent based
stochastic framework, Yates et al. modeled the cell cycle with an exponentially modi-
fied Erlang distribution. They suggest a general multistage model of the cell cycle that
consists of a chain of consecutive states, where the transition rate between Xi → Xi+1

for i ∈ {1, . . . , k − 1} is λ1, cells spend an exponentially distributed waiting time in
each state with mean λ−1

1 . Finally, cells leave the terminal state of the cycle and split
to two daughter cells with rate λ2 [48]:

X1
λ1−→ X2

λ1−→ . . .
λ1−→ Xk

λ2−→ 2X1.
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Vitadello et al. applied this approach to explain the behavior of certain melanoma
cell lines [46]. They used a cell cycle dependent fluorescent dye (FUCCI) to label
cells with different colors according to three states in the cycle: G1, early S, and
from late S till the end of the mitosis. They recorded the change of the number of
cells in the states. The authors assumed that the time cells spend in these 3 stages
are all of independent Erlang distributions with the corresponding typical parameters.
They managed to achieve a remarkably good fit to experimental data at the cost of an
extreme large number of intermediate stages. The number k of stages varies between
30-120, depending on the considered cell line [46].

We may therefore say that multistage models usually require a large number of
artifact stages that make it problematic to investigate analytically and interpret bio-
logically. Moreover, such models, relying on a Markovian process does not include the
length of the cell cycle as an explicit parameter.

Our framework is highly motivated by the transition probability model (TPM) by
Smith and Martin [42]. They observed that phase S and G2 are of characteristic length
for the cell type and do not show significant variation in a given population. Thus, it
is legitimate to think that the length of these phases is deterministic. On the other
hand, the length of phase G1 shows high variability even in a homogeneous population.
According to their TPM model, the life of the cell can be divided into two states, a
proliferating state that lasts for a deterministic period of time (consists of phase S, G2
and M), and an inter division phase that we shall call motile state (consists of phase G0
and G1) that lasts for a random period of time, but the probability of leaving this state
is always constant. The latter assumption about the constant transition rate implies
that the length of the motile state is exponentially distributed [42].

5.1.2 The aim of this chapter

In this chapter, we take a step back and leave the spatial cell culture models for a short
detour. First we include realistic cell cycle length to well stirred cell culture models
and present a model that is able to incorporate cell cycle length of any distribution.
Then we explain the spontaneous synchronization of cells that has been observed in the
in vitro experiments by Vitadello et al. [46], but cannot be explained in the context of
the presented multi stage model [46,48]. Finally, we fit our model to the experimental
data by Vitadello et al. [46].

5.2 The stochastic model

Now, we shall extend the well known logistic growth model N ′ = rM
(
1− M

K

)
with

realistic cell cycle length. One possible way to implement the logistic growth model in
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the stochastic simulation formalism is to incorporate two events: cell division and cell
death. In this case the population size may show large fluctuation overshooting the
carrying capacity K. Since, we want a direct comparison with the results by Vitadello
et al. [46] and also with our lattice based framework, that includes volume exclusion,
we choose the way we introduced in Sec 4.3.5.

Suppose that motile (M) cells commit to division and switch to the proliferating (P)
phenotype in a contact inhibited reaction with proliferation rate r. Then ϑ time later,
upon the cell cycle elapsed, P cells divide and switch back to the motile phenotype. To
avoid overshooting and to keep the contact inhibited nature of the reaction, we assume
that cells only switch phenotype, when they managed reserve space for the daughter
cell. With carrying capacity K, the number of free spaces at time t is K −M(t) −
P (t)−Q(t), where Q(t) = P (t) stands for the reserved spaces. Thus, in the well stirred
model, we may obtain the following differential equation with delay:

M ′(t) = −rM(t)
K −M(t)− P (t)−Q(t)

K
+ 2rM

K −M(t− ϑ)− P (t− ϑ)−Q(t− ϑ)

K

P ′(t) = rM(t)
K −M(t)− P (t)−Q(t)

K
− rM

K −M(t− ϑ)− P (t− ϑ)−Q(t− ϑ)

K
(5.1)

In the last chapter of the thesis we will investigate this mean field model and present
a detailed comparison with the lattice based model that is about to be introduced in
the following chapter. Now, we focus on the simulation of the well stirred system.

Based on the above considerations we have two reactions: the phenotype switch
M → P , that is a random contact inhibited reaction with rate r/K between the M

cells and the virtual K − M − 2P vacant spaces, and the scheduled cell divisions
P → 2M . The propensity of the phenotype switching and the distribution of the
corresponding waiting time is:

a =
r

K
M(K −M − 2P ), P (τ) = ae−aτ . (5.2)

The deterministic cell cycle is of length ϑ, which may be constant, such as in the mean
field model Eq. (5.1) or chosen from any distribution. Suppose that in a given state
we have P number of proliferation cells and their division reactions are scheduled for
time Θ1, . . . ,ΘP . From which the next delayed reaction will occur at time tRD

, where

tRD
= min{Θi : i = 1, . . . , P} (5.3)

Thus, we may summarize the transition between the states with the following flow
chart:

M
r
K
(K−M−2P )
−−−−−−−−→ P

ϑ
==⇒ 2M,

where ⇒ stands for the delayed reaction. The required data structure is an integer
valued variable, which we shall call M , to store the number of motile cells; and a list P
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to store the the scheduled times of the division reactions. The algorithm is as follows:

Logistic growth with explicit cell cycle length SSA
1. Initialization:

(i) set t← 0, prescribe halting conditions H,
(ii) initialize variables M,P.

2. Calculate propensity functions a according to Eq. (5.2).
3. Generate stochastic waiting time τ according to Eq. (5.2).
4. Obtain the termination time of the next deterministic reaction tRD

according
to Eq. (5.3).

5. Reaction selection and execution step:

• If t+ τ < tRD
, the next reaction is a phenotype switching

set t← t+ τ , execute the reaction, update data structure.
• Else, the next reaction RD is the proliferation reaction of the cell for which Θi is

minimal for i ∈ {1, . . . , NP },
set t← tRD

, execute the reaction, update data structure.
6. Halt if H = True else continue the process with Step (2).

5.3 Comparison with the mean field logistic growth

The parameters of the mean field logistic growth model are the proliferation rate r and
the capacity K of the environment. It is inherently assumed that the inter division
times are exponentially distributed and the cell cycle takes no time to complete. Thus,
we may expect that the mean field logistic model gives a good approximation to the
averaged output of the delayed logistic growth in case the length of the cell cycle is
small.

To illustrate this, on Fig 5.2 we fixed r = 1 and K = 104 and chose initial condition
M(0) = 500, P (0) = 0. The total number of cells is N(t) = P (t) +M(t). Every figure
shows the average of 20 realizations of the stochastic model with varying values of delay
ϑ ∈ {0.01, 1, 5}.

We may obtain a really good fit with ϑ = 0.01 and it can be seen that almost all
cells are in the inter division M state, as it is expected. For ϑ = 1 the agreement
between the logistic model and the stochastic simulation with cell cycle is very poor.
The delay, caused by the cycle slows the development of the population shifting the
curves to the right. It also creates a transient oscillation that we will investigate in
the next section. A significant amount of proliferating cell appear due to the large
cell cycle causing the N(t) and M(t) curves not to coincide. Finally, for ϑ = 5, the
non-monotonic behavior of the P (t) curve becomes exaggerated making the transient
oscillation last longer.
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Figure 5.2: Logistic growth with explicit cell cycle length. The figure illustrates the effect of cell cycle on the dynamics.
Each figure shows the averaged output of 20 independent runs with r = 1,K = 104 and initial condition M(0) =
500, P (0) = 0. The delay parameter, the length of the cell cycle varies on the figure: from left to right the value of ϑ is
0.01, 1, 5, respectively. The legend on the bottom applies for all figures, Nmf (t) stands for the mean field logistic curve.

5.4 Synchronicity

Synchronicity may occur when the time r−1 a cell spends in motile mode is small
compared to the length of its cell cycle: r−1 ≪ ϑ. This causes the cells to enter the
proliferating state more or less together resulting the unusual step-like growth dynamics
that can be seen on the left part of Fig. 5.3. This special dynamics may last until the
population reaches the capacity K in case of certain parameter configuration. We will
spend more time investigating this in the very next chapter. Remarkably, cells are not
coupled in any way, they do not influence each other’s behavior. Thus, it is different
from the synchronization of coupled oscillators.

Figure 5.3: Step-wise synchronization of cells may last for a long time, but it is sensitive for the initial conditions.
The figures show that the characteristic step-like dynamics may cease to exist if the initial cell population is in the
proliferating state and their scheduled division events are scattered uniformly in the interval [0, ϑ].

Synchronization is very sensitive for initial conditions: on Fig. 5.3 we set ϑ = 1

and r = 100 for all figures, then we plotted the averaged time series of 20 runs for 3
different initial conditions. In case of the leftmost figure all cells are motile initially,
M(0) = 500. The high rate forces the cells to enter the proliferating state during a very
short time interval. Then, the cells spend as long as ϑ = 1 time in state P, resulting a
horizontal line of length about ϑ. Upon the cell cycle elapsed, the population doubles
its size in a short time.

On the middle plot of Fig. 5.3 the number of motile and proliferating cells are the
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same: M(0) = P (0) = 250. As cells may be in infinitely many stages in their cell cycle
we have to prescribe initial conditions for the cells in state P. We chose the scheduled
times Θ for the delays from continuous uniform distribution Θ ∼ Uniform(0, ϑ) as ini-
tial condition. It is well known that on any finite interval [a, b] among all the continuous
distributions, for which the support is this interval, Uniform(a, b) has the maximum
entropy. Since the scheduled delay reactions are scattered uniformly in the interval
[0, ϑ] the time between them is approximately the same, ϑ/250. Making the cells to
reenter state M with a constant rate, causing a slope in the straight line segments.

Finally, on the middle plot of Fig. 5.3 all cells are proliferating and their scheduled
divisions are scattered uniformly in the interval [0, ϑ]. This eliminates the synchroniza-
tion.

5.5 Applying the model to experimental data

5.5.1 Experimental data

Now, we apply our model to the experimental data provided by Vitadello et al. in the
supplementary material of their article Mathematical models incorporating a multi-stage
cell cycle replicate normally-hidden inherent synchronization in cell proliferation [46].

The authors run several in vitro laboratory experiments on three melanoma cell
lines: C8161, WM983C, and 1205Lu. The cells were transfected to express a cell cycle
dependent fluorescent dye, FUCCI. This dye labels cells according to their state in
the cell cycle. The nucleus of a cell in phase G1 fluoresces red, it fluoresces green in
phase S, G2, and M, and in the early phase of S both colors appear and the nucleus
fluoresces yellow. The population was monitored for 48 hours and photographed every
15 minutes under microscope. Then, from each image, the number of cells were counted
and a multistage mathematical model were fit to the time series. The authors claim
that they applied a careful preparation on the cell culture to prevent any induced
synchronization. For further details we refer to the supplementary material of [46].

5.5.2 Fitting to the data

According to the multistage model [46] the cell cycle length is of exponentially modified
Erlang distribution, where its shape parameter k corresponds to the number of stages.
As we use delay to model the cell cycle we do not have to stick to the integer value of the
shape parameter. We assume that the length of the cell cycle is of gamma distribution
with shape parameter α and rate parameter λ to be fitted, ϑ ∼ Gamma(α, λ). The
initial condition for the number of motile cells M(0) and the number of proliferating
cells P (0) is given by the experiment. However, the initial distribution of cells in the
proliferating state (the length of the remaining times of their cell cycle) have to be
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determined. We assume that it is also of gamma distribution with parameters α0 and
λ0. Finally, we have to determine the proliferation rate r, that is the parameter of the
waiting time τ of exponential distribution: τ ∼ Exp(r). Carrying capacity K was set
to 105.

Thus, the vector of parameters to be determined is: (r, α, λ, α0, λ0). We used the
Nelder-Mead simplex optimization method implemented in the Scipy Python library
to minimize the square of the difference between the simulated and the measured time
series.

The parameter fitting was performed on one experiment each for cell lines C8161 and
WM983C (Fig. 5.4). As shown in the figure, our model fits the data series remarkably
well in case of cell line C8161 and WM983C. However, for cell line 1205Lu, the fitting
did not show such good results, which could be due to the data series being too noisy
or the one class delay scheme not being sufficient. Probably a model that splits the
cell cycle into two phases is needed. This shall be a subject of further investigations.

Figure 5.4: Cell cycle model with delay fitted to the experimental data by Vitadello et al. [46]. The scatter plot
represents the measured data points, the solid lines are the simulation outputs with the fitted parameters.

5.6 Discussion

In this chapter, we have presented an exact stochastic simulation model, which is a
feasible alternative to the multi-state models [46,48], we have presented in the beginning
of the chapter. In agreement with the TPM [42] hypothesis, our model divides the cell
cycle into two stages. One state from which cells leave with constant probability and
one whose length is of any distribution required by the model.

Our approach includes a delay instead of several stages in a linear chain. One
advantage of this approach is that we can model a cell cycle with length of arbitrary
distribution. The cell cycle may even be of constant length, which is only possible in
the limiting case of the multilevel model when the number of stages k tend to infinity.
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Another advantage of our approach is low computational cost. Unlike in our model,
in multistage models the system spends most of the simulation time to move cells be-
tween stages. Thus, with k number of stages the simulation engine has to perform
at least k units of calculations (including waiting time and reaction selection and ac-
counting the change in the state variables) to push one cell through the stages. In
our model one cell goes through the cell cycle in only two steps requiring two units of
calculations.

Third, our model has far less parameters than the proposed multistage model by
Vitadello et al. Thus, fitting parameters and initial conditions is much easier. It is
worth noting that in a multistage model the number k of stages is also a subject to
parameter fitting. And k may vary between experiments even in case of one cell line.
On the other hand, parameters in our method may be easily interpreted by measurable
real life quantities.

Additionally, we use a version of a logistic model, which allows us to account for the
limitation K of the living space. Also, for large K and small population we approximate
exponential growth.

Finally, we have shown that our model allows for synchronicity of cells and fits well
to real experimental data.
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6

Go-or-Grow models
with realistic cell cycle length

6.1 Motivation

Observation of certain tumor cells, the so called Malignant Gliomas, suggest that there
is a trade-off between cell proliferation and migration [26]. The go-or-grow hypothesis
emerged from this phenomenon.

This hypothesis asserts that the proliferation and the migration of certain cells spa-
tiotemporarily exclude each other. Experiments suggest that, in the case of glioblas-
toma, one can distinguish two phenotypes of the malignant cells: the ‘high prolifer-
ation–low migration’ proliferating type and ‘low proliferation–high migration’ motile
type [26]. The mechanisms of the phenotype switching is highly investigated in med-
ical research, although there is no convincing explanation for the phenomena on the
molecular level so far. However, it is suggested that cytoskeleton dynamics, which
has a significant role in both migration and proliferation, is a limiting factor of the
process [24].

The go-or-grow hypothesis was tested in the extensive study of Concoran et al. [14]
and Garay et al. [23] and was not verified for lung, mesothelioma and melanoma cancer
cell types. Nevertheless, Garay and colleagues [23] point out that “tumor cells from
various organ systems may differently regulate migration and proliferation”.

In contrast, according to the analysis in [18] there is a strong evidence that trans-
planted “glioma cells (...) migrated in a saltatory fashion with burst of migration sepa-
rated by periods of immobility” (Farin et al. [18]). Using time-lapse video-microscopy,
the authors observed that “cells proliferated en route, pausing for as short as an hour
to divide before the daughter cells resumed migrating” (Farin et al. [18]).
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6.1.1 The aim of this chapter

This chapter has two objectives. First, we extend the method we proposed in the
previous chapter to model cells on a grid with a realistic cell cycle length. Then, we
investigate the go-or-grow phenomenon by obtaining new appropriate spatial stochastic
models with a delay that includes the cell cycle length as an explicit parameter. As
we discussed in Chapter 5, Vitadello et al. experimentally showed that cells are able
to synchronize even in an initially asynchronous population. They also provided a
multistage model that fits well to experimental data.

6.2 The agent based model

Suppose that motile cells perform unbiased random walk on a two-dimensional lattice
with motility rate rM . With proliferation rate rP motile cells switch to proliferating
type and stop for a fixed period of time ϑ to complete cell cycle, upon which they
attempt to divide and place a daughter cell on a randomly selected neighboring lattice
site.

This brings forward the following problem: the randomly selected lattice site of
the second daughter cell may be occupied. In other words, if the population consists
of more than one cell, there is a positive probability that the neighboring sites of the
mother cell would be occupied by other migrating or proliferating cells by the end of
its cell cycle. It is even true when all the adjacent sites of a mother cell are vacant in
the beginning of its cell cycle. This effect occurs because the memoryless property of
the system is violated.

To overcome this problem, Yates et al. [48] made two assumptions: i) when cells
are not able to divide they abort the whole process and return to mobile mode or ii)
cells wait until a site opens up in their neighborhood. They applied their multistage
models to these cases.

We made four assumptions that involve four essentially different agent-based stochas-
tic models with delay. We hypothesize that cell division may occur according to one of
the following four ways (H1–H4). The first hypothesis (H1) corresponds to the model
we proposed in the previous chapter. It is assumed that the mother cell attempts to
reserve a free adjacent site in a contact-inhibited reaction. If this occurs, it switches to
the proliferating phenotype and starts cell cycle. Upon which a mobile daughter cell
is placed on the reserved site and the daughter cell situated at the site of the mother
cell goes back to mobile mode.

In the other three hypotheses it is assumed that a motile cell switches to the pro-
liferating phenotype in a spontaneous reaction. Then the mother cell:

• (H2) begins cell cycle, upon which it randomly selects an adjacent site.
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If the site is empty, a motile daughter cell is placed there and the cell goes back
to mobile mode. If the site is occupied, the reaction is rejected and the mother
cell goes back to mobile mode.

• (H3) begins cell cycle, upon which it attempts to divide in a contact-inhibited
reaction. Thus, the cell doesn’t leave the cell cycle until space opens up for the
2nd daughter cell. We call the cells that are waiting to be able to divide non-
motile waiting type cells. If the division is successful, a motile daughter cell is
placed on a free neighboring site and the cell goes back to mobile mode.

• (H4) attempts to reserve a randomly selected free adjacent site. If succeeds, the
mother cell begins cell cycle, upon which it places a motile daughter cell there
and turns back to mobile mode. If the selected site is occupied, the mother cell
turns to non-motile waiting type and waits until it can reserve a site to begin the
cell cycle.

Naturally, a reserved site is considered to be occupied so neither the other cells can
enter that site, nor they can reserve it. In this chapter we are focusing on the early
stages of the development of the cell population, thus we do not include cell death
into the models and chemical reactions are also not considered. In the following, we
provide the Go-or-Grow Algorithms and discuss the models; then, we investigate the
model predictions, such as cell synchronization and a ’step like’ growth curve.

6.3 The Go-or-Grow Algorithms

In this section, a model is proposed for each hypothesis. We use the direct method
combined with the prompt decision formulation to obtain the algorithms. According to
the previous section, three cell types will be considered and we denote them with the
characters M, P, W, standing for the motile, proliferating and waiting types. Naturally,
the number of these cells at time t will be denoted by M(t), P (t), and W (t), respectively.
We will use the Prompt Decision Method approach that we introduced in Chapter 4
during the implementation.

6.3.1 Model 1: reserving site at first

In (H1), the cell that goes into proliferation attempts to reserve one random neigh-
boring site at first. If it is occupied, the proliferation is discarded and the cell remains
type M. If it is free, the cell turns to the proliferating type P. After the cell cycle one
type M daughter cell is placed at the reserved place and the cell turns back to type M.

Reactions in M1
• RM – movement of type M cells with rate rM .
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• RP – a randomly selected type M cell attempts to reserve a random neighboring
site with rate rP . If possible, it turns to type P, if not, the proliferation is
discarded and the cell remains of type M.

• RD – the type P cell with the least remaining time of its cell cycle finishes pro-
liferation (turns back to type M ) and places one type M daughter cell to the
reserved neighboring site.

6.3.2 Model 2: rejecting the reaction

According to (H2), right after completing the cell cycle, the proliferating cell goes back
to mobile mode M and a randomly chosen neighboring site is occupied for one type M
daughter cell if it is free. If it is occupied, then the proliferation will be discarded and
no daughter cell will be created.

Reactions in M2
• RM – movement of type M cells with rate rM ,
• RP – a randomly selected type M cell undergoes proliferation and turns type P

with rate rP and stops moving for τ ,
• RD – the proliferating cell with the least remaining time of its cell cycle finishes

proliferation, turns to type M. The cell randomly selects a neighboring site, if it
is vacant, then places one type M cell there. If it is occupied, nothing happens.

6.3.3 Model 3: waiting for cell division

In (H3), after the cell cycle elapsed, the proliferating cell attempts to place one type
M daughter cell at a randomly selected neighboring site if it is free, then turns back to
type M. If it is occupied, the proliferating cell turns to non-motile waiting type (type
W ) and, with activation rate rW , attempts to place one type M daughter cell to one
randomly chosen neighboring site if it succeeds then it turns back to type M, but it
remains in waiting mode if it fails.

Reactions in M3
• RM – movement of Type M cells with rate rM .
• RP – a randomly selected Type M cell undergoes proliferation and turns Type P

with rate rP and stops moving for τ .
• RD – the type P cell with the least remaining time of its cell cycle finishes pro-

liferation and attempts to put one type M cell to a random neighboring site. If
it is possible the cell turns back to type M, if not, it turns to type W.

• RW – a type W cell attempts to divide into a randomly selected neighboring site,
if the neighbor is vacant it turns back to type M and leaves one daughter cell in
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it. If the neighbor is occupied, the cell remains of type W.

6.3.4 Model 4: reserving site or waiting

In (H4) a cell that undergoes proliferation turns to type P and randomly reserves one
neighboring site at first if possible. After the period of the cell cycle, one daughter cell
is placed at the reserved site and the proliferating cell turns back to mobile mode. If
the selected place is occupied, the proliferating cell turns to type W. W cells attempt
to randomly reserve a neighboring site with activation rate rW in order to turn to type
P to complete the cell cycle.

Reactions in M4
• RM – movement of type M cells with rate rM .
• RP – a randomly selected type M cell attempts to reserve a random neighboring

site with rate rP . If possible, it turns to type P, if not, it turns to type W.
• RW – a type W cell attempts to reserve a randomly selected neighboring site.

If succeeds, it turns to type P and starts proliferation, if it does not succeed,
nothing happens.

• RD – the type P cell with the least remaining time of its cell cycle finishes prolifer-
ation (turns back to type M ) and puts one type M cell to the reserved neighboring
site.

6.3.5 State space and data structure

Let t ∈ [0,∞) represent time, and NM(t), NP (t), NW (t) ∈ N0 denote the number of
motile, proliferating and waiting cells in the population at time t, respectively. The
total number of cells in the population at t is N = N(t) = NM(t) +NP (t) +NW (t).

For type M, P, and W cells, we introduce the state descriptors:

M(t) = (M1(t), . . . ,MNM
(t))

P(t) = (P1(t), . . . , PNP
(t)),

W(t) = (W1(t), . . . ,WNW
(t)),

(6.1)

where Mm(t),Ww(t) is the coordinates of the motile or waiting cell with index m ∈
{1, . . . , NM}, w ∈ {1, . . . , NW} at time t on the lattice. In case of the proliferating cells,
the 3 entries of vector Pp(t) = (xp, yp,Θp) stand for the x, y spatial coordinate and the
scheduled time Θ of the cell division of the cell with index p for p ∈ {1, . . . , NP}.

A convenient data structure for the above state space (in Python) consists of three
lists: M,P,W. We also keep the underlying lattice L to check if a particular lattice site
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is occupied or empty. In the implementation, L is a matrix L ∈ Nn1×n2 , where entry
L[x∗, y∗] is 1 if a cell occupies the corresponding site and 0 if it is empty.

6.3.6 Propensities and probabilities

To facilitate the description of the algorithms, we assume that reactions RM , RP , and
RW are present in all four models, but in case of M1 and M2 (where there is no waiting
type cell) the activation rate rW = 0. Thus, for reaction RM , RP , and RW we define
the propensities in order:

aM = rMNM , aP = rPNM , aW = rWNW , a = aM + aP + aW (6.2)

The possible waiting time and the next possible reaction, generated by the stochastic
part of the system is obtained from:

P(τ) = ae−aτ , P(µ|τ) = aµ
a
, µ ∈ {M,P,W} (6.3)

The deterministic reactions are scheduled for time Θ1, . . . ,ΘNP
. From which the

next delayed reaction will occur at time tRD
, where

tRD
= min{Θi : i = 1, . . . , NP} (6.4)

General script of the Go or Grow Algorithm
1. Initialization:

(i) set t← 0, prescribe halting conditions H,
(ii) initialize the lattice L with size n1 × n2

place NM (0) +NP (0) +NW (0) ≤ n1 · n2 cells on the lattice according to essay,
(iii) initialize lists M,P,W

store location of M,P,W cells in the corresponding list.
2. Calculate propensity functions aM , aP , aW and a according to Eq. (6.2). Note that

rW = 0 in case of model 1 and model 2.
3. Generate stochastic waiting time τ according to P(τ) from Eq. (6.3).
4. Obtain the termination time of the next deterministic reaction tRD

according
to Eq. (6.4).

5. Reaction selection step:

• If t+ τ < tRD
select the next reaction from P(µ|τ) (Eq. (6.3)),

set t← t+ τ .
• Else, the next reaction RD is the proliferation reaction of the cell for which Θi is

minimal for i ∈ {1, . . . , NP },
set t← tRD
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6. Decision step: execute the selected reaction if possible. Reject the reaction if it is not
possible. Update data structure.

7. Halt if H = True else continue the process with Step (2).

6.4 Results

6.4.1 Typical dynamics and snapshots

In this section, we present the typical behavior of the above models. The experiments
shown in the figures were performed on a 100 × 100 grid (K = 104), with N(0) =

M(0) = 500 initial moving cells. In each experiment the mobility rate was unity,
rM = 1.

Each figure illustrates the behavior of the corresponding model with two simula-
tions. The top rows correspond to a simulation where the proliferation rate is rP = 2

and the cell cycle length is ϑ = 0.05. In the bottom row, the proliferation rate is
rP = 100 and the cell cycle length is ϑ = 2.

The inverse r−1
P of the proliferation rate is the expected value of the time a cell

in a sparse population spends in mobile mode. Thus, in each experiment, the cells
corresponding to the top row corresponds are expected to spend r−1

P = 0.5 time on
average in mobile mode, while those in the second row spend r−1

P = 0.01 time moving
on the lattice before attempting to proliferate. This suggests that the upper rows
represent the dynamics of cells that spend most of their life in a mobile state, while
the simulations in the lower rows correspond to cells that are primarily proliferating.

The graphs in the center of each row show the temporal dynamics from t = 0

until time t for which N(t) = 0.98K. The snapshots on the left were taken when the
total number of cells reached 2500, and the snapshots on the right corresponds to the
instance when the number of cells reached 7500.

The graphs in the top row show the usual logistic-like population growth, on the
one in the bottom rows we may observe the synchronization of cells, that we saw in
the previous chapter.

Model 1 In this model, cells switch to the proliferating phenotype and reserve a site
in a contact-inhibited reaction. Thus, most of the proliferating cells appear on the
boundary of the patches (c.f. bottom row of Fig. 6.1) and the number of proliferat-
ing cells matches the number of of reserved sites at every instance. In case of large
proliferation rate, we may observe a proliferating front on the contour of the patches.

As the transition to the proliferating mode is contact inhibited, the experiments
suggest that all cells would be of the motile type after sufficiently long time. In fact,
this observation will be proved in the next chapter. This is the only model of the
four where the large proliferation rate coupled with a long cell cycle does not lead to
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longer time for the cells to populate the lattice, and this is due to the contact-inhibited
phenotype switching.

Reserved sitesProliferating cellsMotile cellsTotal number of cells

Figure 6.1: M1

Model 2 In this model, cells change to the proliferating phenotype in a spontaneous
reaction without any constrains about their neighborhood. In case the proliferation rate
is large (bottom row of Fig. 6.2), we find most of the cells in proliferating state. Thus,
almost all cells are blue in the bottom row and this corresponds with the dynamics in
the middle of the bottom row. On the contrary, in case of small proliferation rate we
may find almost all cells in mobile mode (see the dynamics in the first row).

Remarkably, this does not necessarily correlate positively with the growth speed of
the population as the length of the cell cycle is also limiting. In Model 2, in case of
large proliferation rate and short cell cycle, the population needs more time to reach
98% of the capacity of the lattice, compared to small proliferation rate and long cell
cycle. We may observe the same in case of Models 3 and 4 as well. The graph in the
bottom row of Fig. 6.2) clearly shows the step-like growth of the population and also
shows that the “length of the stairs” coincides with the length of the cell cycle.

Model 3 In case of this model, the cells also switch to the proliferating type in a
spontaneous way, but unlike in M2, the reversion is contact inhibited. If it is successful
(the mother cell finds a site to place the daughter cell into) the mother cell reverts.
However, in case it fails, the mother cell turns to a waiting type cell (red dots on Fig.
6.3), that also attempts to revert in a contact inhibited way. Because of this, we may
observe red patches bordered by blue contours. Inside the patches there are cells frozen
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Proliferating cellsMotile cellsTotal number of cells

Figure 6.2: Model 2

in the waiting state because they have no place to divide into. The graphs of both
experiments suggest that at the end all the cells will be of waiting type. The graph in
the second row of Fig. 6.3 clearly shows that the horizontal part of the growth curve
N(t) coincides with the length of the cell cycle.

Model 4 In this approach, the phenotype switching is still spontaneous, but unlike
in the previous cases, the cell only begins proliferation if there is place for the daughter
cell. Otherwise, the cell turns waiting type and attempts to reserve a site in contact
inhibited reaction.

The dynamics (Fig. 6.4) are very similar to the dynamics of M3, we may expect
that all the cells turn waiting type after a sufficiently long time. In case of the bottom
row we may observe that the red patches are surrounded by blue and gray cells, where
the gray ones represent the reserved sites.

6.5 The role of the model hypotheses

In this section, we attempt to find measurable quantities that may help us distinguish
the models. First, we investigate which domain of parameters (ϑ, r−1

P ) is suitable for
the synchronization of the population. As it will turn out, this measure is unfortunately
not informative. However, the average growth velocity of the population may be useful
to this purpose.
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Figure 6.3: M3

6.5.1 Synchronicity landscape

Synchronization may be a hidden behavior of real cell populations and classical pop-
ulation models cannot predict it [46]. From Figures 6.1-6.4, it is clear that our four
lattice-based models predict that cells may remain synchronous.

In this section, we discuss the parameter configuration for which synchronicity may
be preserved. A large number of simulations were run on a biologically feasible part of
the parameter space with an initial number of N(0) = M(0) = 500 randomly seeded
motile cells on a 100× 100 lattice, with capacity K = 104.

The motility rate and the activation rate are fixed in every simulation: rM =

1 and rW = 400. We sampled the (ϑ, r−1
P ) parameter space as follows. Including

the endpoints, 64 points are chosen from the interval [0.01, 0.5] so that the distances
between consecutive points are the same, let J denote the set of these points. Then we
ran and averaged out 5 simulations for all pairs (ϑ, r−1

P ) from

{
(ϑ, r−1

P ) : ϑ ∈ {0.05, 0.1, ..., 2}, r−1
P ∈ J

}
.

The separation of logistic and step-like growth is a rather challenging task, since the
change of the parameters results a continuous shift from one type of growth to the
other. Nevertheless, the increase of the total number of cells (‘the size of the steps’)
between [ϑ, ϑ+ ϑ

10
] seems to be an effective indicator. We measured these increases from

t = 0 to the time the population reaches K/2. Above a 30% increase in the number
of cells between [ϑ, ϑ + ϑ

10
], 150 cells in our experiments, we consider the cells to be

synchronized. Below 15% (75 cells) we consider the population asynchronous. Between
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Figure 6.4: M4

these two values we consider the growth mixed: after a short transient synchronization
with steep ascents, the growth curves become logistic-like. It is worth noting that we
experimented with several other characterizations, but the output was always roughly
the same.

On Figure 6.5 we plotted the output of the classification. One rectangle with
coordinates (ϑ, r−1

P ) represents the averaged output of 5 simulations. The domain of
the parameter space which leads asynchronous population is colored burgundy, the
domain where synchronicity is preserved is gray, the middle white domain represents
transient synchronicity. The characterization of Model 1 can be seen in the top row of
Figure 6.5 and the characterization of Model 2, 3 and 4 is shown in the bottom row.
The plots look quite similar, making it impossible to tell the models apart based on
these outputs.

6.5.2 Average growth velocity

The average speed of the population growth may be measured by the time the pop-
ulation needs to reach a certain number of cells. We choose this number 98% of the
capacity (9800 cells). From the results of the simulations described in section 6.5.1 we
plotted these time values as heatmaps on Fig. 6.6 for our four models. Some contour
lines are shown on every heatmap for orientation. In general, we may note the not so
surprising fact that increasing the length of the cell cycle and decreasing the prolifera-
tion rate slows down the growth of the population in each model. Models 3 and 4 both
show a similar behavior: for a given pair of parameters (ϑ, r−1

P ) we expect our virtual
populations to reach N = 0.98K in more or less the same amount of time. However,
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Figure 6.5: Synchronicity landscape. The top left figure shows the domain of the parameter space (ϑ, r−1
P ) for which

the cell cultures synchronize in case of Model 1. The bottom row shows the same in case of Model 2, 3, and 4 in order
on the same parameter space. See the legend on the middle for color code. The right column in the top row shows
the averaged dynamics of 5 stochastic realizations for parameters (τ, p) ∈ {(1.25, 15), (0.5, 5.5), (0.2, 2.5)}, from top to
bottom. The colors on the time series plots are: orange - M(t), blue - P (t), gray - N(t). The legend applies to all
figures.

in the case of Model 2, we can observe a broader time scale as the corresponding time
values can reach up to 34.

The heatmap of Model 2 suggests non-monotonic behavior of the average growth
velocity as some contour lines seem to fold back (see contour lines 20, 22 and 24 on
the top right heatmap of Fig. 6.6).

On Fig. 6.7 we fixed ϑ = 1.65 (see the vertical gray line on the heatmap) and
plotted the average velocity values as the function of r−1

P . The curve has a minima at
around r−1

P ≈ 6.25 · 10−2 suggesting that the optimal proliferation rate to reach the
maximal velocity in the population growth is rP ≈ 16 in for the fixed ϑ = 1.65.

In other words, in the case of a fixed cell cycle length, there may be an optimal
proliferation rate when the growth of the population is maximal. A plausible interpre-
tation of this is that cells form dense local clusters reaching the local carrying capacity
quickly. Thus, they are not able to reach out from these plaques to invade other parts
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P

Figure 6.6: In case of every (cell cycle length, proliferation rate) parameter pair we measured the time it takes to reach
98% of the carrying capacity. These time values can be seen on the heatmaps of this figure for our four models: M1
and M2 in the top row, M3 and M4 in the bottom row.
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Figure 6.7: Figure shows the non-monotonic behavior of Model 2. Decrease in the proliferation rate at a fixed cell cycle
length increases the time it takes to reach 98% of the carrying capacity.

of the lattice. Thus, unlike in the Markovian approaches [6, 35], in these delay models
higher motility rate rate does not necessarily imply a reduction in local correlations.

This may imply surprising therapeutic consequences. In certain parameter config-
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urations one possible intervention is to increase proliferation rate of the cells (equiva-
lently decrease r−1

P ) to slow down the growth of the cell culture. Conversely, chemother-
apeutic drugs that aim to suppress proliferation of cancer cells may have a harmful
effect in case of unfortunate parameter combinations.

6.6 Discussion

In this section we showed that the time delay, caused by the duration of the cell cycle,
raises new modeling questions in lattice-based models. This delay breaks the Markovian
property: it is not always guaranteed that cells would be able to complete the initiated
cell division, as their adjacent sites may turn occupied by the end of the cycle.

We proposed four new models to tackle this problem. Although all of them are
based on very different assumptions, they show similar dynamics. Remarkably, the
parameter domain for which synchronicity is preserved, is almost the same in all of
them (see Fig. 6.5), suggesting that this family of models is robust for this preserving
property. Thus, when only synchronicity is concerned, a wrong model selection due to
our possibly insufficient knowledge about the system does not seem to elicit problematic
behavior.

This may have serious therapeutic implications. Most of antitumor chemothera-
peutics work by impairing a single cellular function that occurs during a well defined
and possibly short time interval in the cell cycle.

For example, cell division can be restricted by inhibiting the mitotic spindle. While
in the G1 phase, topoisomerase enzyme inhibitors and alkylating agents restrict the
preparations to create copy DNA. In phase S, the formation of functional DNA can
be inhibited by administering antimetabolites, by inhibiting the formation of intrinsic
nucleotides, or by inhibiting the DNA polymerase.

Instinctively, when planning antitumor chemotherapy, the main goal is to adminis-
ter these drugs in the lowest possible effective dose, in order to avoid off-target effects
on other affected cell types in the body. The synchronicity landscape showed in Sec.
6.5.1 (Fig 6.8) may help in planning such therapeutic regimes.

A possible therapeutic approach would be the synchronization of the cell cycle in the
cell population. Assume that the system with parameters (r−1

P1
, ϑ1) does not preserve

synchronicity. A possible application of certain compounds may change the parameters
to a new pair (r−1

P2
, ϑ2), which may enable the system to sustain the synchronicity of

the population.
It must be noted that the synchronicity suggested here would not happen in a spon-

taneous manner, e. g., due to the self-synchronization of the population. Instead, a
set of favorable circumstances is needed, since the model does not account for any cou-
pling between the cells. Furthermore, cells may not be synchronous at the beginning.
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Figure 6.8: The synchronicity landscape may help us to plan tumor therapies which involves manipulation of the cell
cycle length or proliferation rate of cells.

Thus, the population must be synchronized first in order to maximally exploit the cell
cylce-dependent drug effects.

Therefore, an essential issue arises: a viable and safe procedure is needed to reach
the domain in the parameter plane where the system can preserve synchronicity. Fig
6.8 illustrates three possibilities.

In the case of the type 1 hypothetical tumor cell, characterized by a fast proliferation
rate and a short cell cycle, prolonging the cell cycle may be a viable approach. On
the figure, this would mean a rightward shift. The type 2 hypothetical tumor cell
is characterized by moderate proliferation rate and moderate cell cycle length. This
leads to a difficult problem to solve, since either the cell cycle or the proliferation rate
needs to be increased in order to achieve synchronization. On one hand, the increased
proliferation rate may likely pose an extensive risk in the case of anti-tumor therapy.
On the other hand, even though the prolonged cell cycle would not pose such a high
risk, the target length of the cell cycle is rather far away from the baseline value,
suggesting that achieving this target may not be feasible. The type 3 hypothetical
tumor cell population would be the least favorable example, as the parameter domain
that would enable synchronization of its population is too far away from the baseline
parameters that characterize this cell line, therefore the transition would be very costly
and possibly even risky to achieve.

Therefore, if an actual cell line can be modeled using its corresponding, experimen-
tally verified parameters, our model could provide valuable information regarding the
optimization of possible therapeutic approaches in antitumor chemotherapy.
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7

A mean field model

7.1 Convergence of solutions in a mean-field model of go-or-

grow type with reservation of sites for proliferation and

cell cycle delay

Cell proliferation and motility are key processes that govern cancer invasion or wound
healing. The go-or-grow hypothesis postulates that proliferation and migration spa-
tiotemporally exclude each other. This has been acknowledged, for example, for
glioblastoma [26]. In general, two phenotypes that can be of particular importance
to progression of aggressive cancers are ‘high proliferation-low migration’ and ‘low
proliferation-high migration’, and the mechanisms governing this switching are of great
interest in current medical research [39]. Here we consider a strong simplification of
this phenomenon by assuming that (differently from [24]) motile cells stop for a fixed
period of time to complete cell division, upon which they immediately switch back
into the migratory phenotype. We study the mathematical properties of a mean-field
approximation of an individual based model describing this process, and this note com-
plements our other ongoing works [4] where we investigate in detail a range of biological
hypotheses with the corresponding individual-based as well as mean-field, analytically
tractable, models.

7.2 The model

Assume that agents (representing biological cells) move and proliferate on an n - di-
mensional square lattice with length ℓ (in each direction), so that K = ℓn is an integer
describing the number of lattice sites. We divide our agent population into two sub-
populations, motile and proliferative, with the condition that a proliferative agent has
to be attached to an adjacent site which is reserved until the end of proliferation. As
a result, sites can either contain a motile agent, a proliferating agent, be reserved for
the daughter agent of an attached proliferative agent, or be empty. At each time step,
each motile agent can attempt to move into an adjacent lattice site or proliferate at
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its current site. However, if a motile agent attempts to move into a site that is al-
ready occupied or reserved, the movement event is aborted. Similarly, if a motile agent
attempts to begin proliferation by reserving a site that is already occupied, then the
proliferation event is aborted. Agents attempt to convert from being motile to prolif-
erative at constant rate r, and the proliferative phase has length ϑ, upon which two
motile daughter agents appear, one on the proliferating site, and one on the reserved
site.

Based on the above, tracking the rate of change of the number of motile agents,
m(t), proliferative agents, p(t), and reserved sites, q(t), in time, and following the
arguments and derivation in [6], we obtain the following mean-field approximation:

m′(t) = −rm(t)
K−m(t)−p(t)−q(t)

K
+ 2rm(t−ϑ)K−m(t−ϑ)−p(t− ϑ)− q(t− ϑ)

K
,

p′(t) = rm(t)
K −m(t)− p(t)− q(t)

K
− rm(t− ϑ)

K −m(t− ϑ)− p(t− ϑ)− q(t− ϑ)

K
,

q′(t) = rm(t)
K −m(t)− p(t)− q(t)

K
− rm(t− ϑ)

K −m(t− ϑ)− p(t− ϑ)− q(t− ϑ)

K
.

Here, the first term in the m equation expresses that m-cells attempt to proliferate
with rate r, but proliferation starts only if the randomly selected target site is empty
at time t, which has probability (K −m(t) − p(t) − q(t))/K, if we assume that there
is no spatial correlation. The other terms can be interpreted in a similar way. Using
the variable u = K −m− p− q that accounts for empty sites, we can write

m′(t) = −rK−1m(t)u(t) + 2rK−1m(t− ϑ)u(t− ϑ), (7.1)

p′(t) = rK−1m(t)u(t)− rK−1m(t− ϑ)u(t− ϑ), (7.2)

q′(t) = rK−1m(t)u(t)− rK−1m(t− ϑ)u(t− ϑ), (7.3)

u′(t) = −rK−1m(t)u(t). (7.4)

7.3 Long-term behaviour

The usual phase space for Eqs. (7.1)-(7.4) is C = C([−ϑ, 0], R4), the Banach space of
continuous function from the interval [−ϑ, 0] to R4 equipped with the supremum norm.
With the notation x(t) = (m(t), p(t), q(t), u(t)), our system is of the form x′(t) = f(xt)

where xt ∈ C is defined by the relation xt(θ) = x(t+ θ) for θ ∈ [−ϑ, 0] and f : C → R4

is defined by the right-hand side of Eqs. (7.1)-(7.4). The standard results for delay
differential equations provide existence and uniqueness of solutions from initial data
x0 = ϕ ∈ C (see, for example [33]).

Given the biological motivation, we are interested only in non-negative solutions,
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for which p(t) = q(t) = rK−1
∫ t

t−ϑ
m(s)u(s)ds holds, meaning that proliferative cells

at a given time t are exactly those who started the proliferation process in the time
interval [t − ϑ, t], and the reserved sites correspond to them. With this compatibility
condition and the balance law K = m(t) + p(t) + q(t) + u(t), we define the feasible
phase space

Ω :=

{
ϕ ∈ C : ϕj(θ) ≥ 0 for all θ ∈ [−ϑ, 0], j = 1, 2, 3, 4;

4∑
j=1

ϕj(0) = K; ϕ2(0) = ϕ3(0) = rK−1

∫ 0

−ϑ

ϕ1(s)ϕ4(s)ds

}
. (7.5)

Lemma 7.1. The set Ω is forward invariant, that is for any solution x(t) with x0 ∈ Ω,
xt ∈ Ω for all t ≥ 0.

Proof. Integrate Eq. (7.2) from 0 to t to obtain (similarly for q(t))

p(t)− p(0) = rK−1

∫ t

t−ϑ

m(s)u(s)ds− rK−1

∫ 0

−ϑ

m(s)u(s)ds.

From x0 ∈ Ω we have p(0) = q(0) = rK−1
∫ 0

−ϑ
m(s)u(s)ds, hence

p(t) = q(t) = rK−1

∫ t

t−ϑ

m(s)u(s)ds, (7.6)

thus the third condition in the definiton of Ω is preserved. The second trivially fol-
lows from summing up the equations to see (m(t) + p(t) + q(t) + u(t))′ = 0, so
K = m(t) + p(t) + q(t) + u(t) is preserved. To confirm nonnegativity, note that
u(t) = u(0) exp(−rK−1

∫ t

0
m(s)ds) ≥ 0. Assuming that m(t) ≥ 0 for t ≤ t0, we have

m(t−ϑ)u(t−ϑ) ≥ 0 for t ≤ t0+ϑ, and consequently m(t) ≥ m(t0) exp(−rK−1
∫ t

t0
u(s)ds)

holds on [t0, t0 + ϑ]. Hence, by the method of steps we obtain non-negativity of m(t)

for all t. Then the non-negativity of p(t) and q(t) follow from Eq. (7.6). ■

Note that since solutions starting from Ω stay in this bounded set, they exist
globally. Following [33], we say that a continuous functional V : C → R is a Lya-
punov functional on the set Ω in C for Eqs. (7.1)-(7.4), if it is continuous on the
closure of Ω, and V̇ ≤ 0 on Ω. Here, V̇ denotes the derivative of V along solu-
tions. In our case Ω is itself closed. We also define E := {ϕ ∈ Ω : V̇ = 0} and
M := the largest set in E which is invariant with respect to Eqs. (7.1)-(7.4)).

Theorem 7.2. If m(0) > 0, then limt→∞(m(t), p(t), q(t), u(t)) = (K, 0, 0, 0).

Proof. Consider the functional V (ϕ) = ϕ4(0). Then V̇ = −rK−1m(t)u(t) ≤ 0 for
solutions in Ω, and by LaSalle’s invariance principle (cf. Thm. 2.5.3 in [33]), the
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limit set of any solution is in M , thus on the limit set of any solution, mu ≡ 0 holds.
Since for any solution u is always zero or always positive, we have either m ≡ 0

or u ≡ 0. In both cases, p = q ≡ 0 follows. Hence, the limit set can only be
composed of the two equilibria (K, 0, 0, 0) or (0, 0, 0, K). Finally, we show that if
m(0) > 0, then m(t) can not converge to 0. Since u(t) is monotone decreasing, for
such a solution m(t) + p(t) + q(t) = K − u(t) ≥ K − u(0) > 0 should hold. If
m(t) → 0 as t → ∞, then from Eq. (7.6), also p(t) = q(t) → 0. This contradicts
m(t)+ p(t)+ q(t) ≥ K−u(0) > 0 and so we can exclude (0, 0, 0, K) from the limit set.
Therefore limt→∞(m(t), p(t), q(t), u(t)) = (K, 0, 0, 0). ■

Remark: if m(0) = 0, then also p(0) = q(0) = 0, so u(0) = K and we are on the
empty lattice having the trivial solution (0, 0, 0, K).
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Figure 7.1: Four numerical simulations, where in each realization, the initial function ϕ1 on [−ϑ, 0] is given by aH(θ),
where a > 0 is the initial number of cells, ϕ2 = ϕ3 = 0 and ϕ4 = K − aH(θ). This choice of the initial function models
an in vitro experiment where motile cells are added to the plate at t = 0. The parameters are the following: Top Left
– r = 0.5, a = 100, ϑ = 0.5; Top Right – r = 3, a = 200, ϑ = 0.8; Bottom Left – r = 10.5, a = 10, ϑ = 3; Bottom Right –
r = 2, a = 1000, ϑ = 4; and K = 5000 in each case. The mean-field equations are compared to the output of averaged
stochastic simulations of a corresponding agent-based model (ABM) on a 50× 100 square lattice with cell motility rate
2. The legend in the bottom right figure applies to each.

7.4 Simulations and conclusion

According to the choice of the initial functions, different in vitro experiments can be
modelled with Eqs. (7.1)-(7.4). One approach is to add a number of motile cells all at
once at t = 0 to the empty cell space (e.g. a Petri dish). In this experiment the initial
function ϕ1 is given by ϕ1(θ) = aH(θ) for θ ∈ [−ϑ, 0], where a stands for the number
of introduced cells at t = 0, and H(θ) is the right-continuous Heaviside-function, i.e.
H(θ) = 0 for θ < 0 and H(θ) = 1 for θ ≥ 0. In this setting, we take ϕ2(θ) = ϕ3(θ) = 0

and ϕ4(θ) = K − aH(θ). While such initial data is not from C, they satisfy Eq. (7.5)
and generate a continuous solution for t > 0. Some of such simulations are shown in
Figure 7.1.
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Figure 7.2: Four simulations, where in each realization motile cells are added with rate a in the initial interval. The
parameters are the following: Top Left – r = 0.5, a = 200, ϑ = 0.5; Top Right – r = 3, a = 250, ϑ = 0.8; Bottom Left –
r = 10.5, a = 3.3, ϑ = 3; Bottom Right – r = 2, a = 250, ϑ = 4 and K = 5000 in each case. The ABM is the same as in
Figure 1, but the initial cell distribution has also been simulated here. The legend in the bottom right figure applies to
each.

A more elaborate in vitro experiment is the following. Instead of adding motile cells
all at once, we add them in to the assay with a constant rate a for a time interval of
length ϑ. After this, we leave the cell population intact. The initial data corresponding
to this experiment can be obtained by solving a modification of Eqs. (7.1)-(7.4) with an
additive forcing term +a to the m-equation (and −a to the u-equation), representing
the gradual addition of m-cells, on an interval of length ϑ, starting from the state
(0, 0, 0, K). Then we start solutions of Eqs. (7.1)-(7.4) with such initial functions,
which satisfy Eq. (7.5). Four realizations of this experimental setting are shown in
Figure 7.2.

The point of considering these two setups is that in the first we have only motile cells
at t = 0, while in the second at t = 0 we have a distribution of cells in different phases of
the cell cycle. This has a profound impact on the behaviour of solutions. For the sake of
easier comparison, in both experimental settings the number of cells at t = 0 is exactly
the same in the corresponding simulations whenever the parameter r and ϑ are the
same. For both experimental settings, we can observe that the smaller the proliferation
rate, the better the agreement between the mean-field model and the output of the
agent based model (ABM). This is intuitively clear, as for smaller proliferation rate
the cells in the ABM has more time to move around between proliferation events,
hence the cell population becomes more well-mixed. While in Section 3 we proved
that all solutions settle eventually at the state (K, 0, 0, 0), there are distinctive features
of solutions in different scenarios. Figure 1 shows that when the cell cycle delay is
small, the solutions resemble logistic growth. In contrast, when the delay is large
relative to the average time between individual cells attempting enter the proliferative
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state, the initially motile cells enter the proliferative state more or less together, and
hence complete cell division more or less together too, resulting in a step-function-
style growth curve in the total cell count. The sudden switching between phenotypes
causes non-monotonic behaviours in m(t) and p(t) also. When we add motile cells
continuously rather than adding them all at once, the solutions are much more similar
to the expected logistic growth curve, and a different characteristic can be observed
only for high proliferation rates or large numbers of initially added cells. In conclusion,
an intermittent growth of a cell population can be an indication that the cell cycle
length is relatively large (relative to inter-proliferation times), while its variance is
small.
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8

Summary

The advantage of stochastic simulations is that they can be used to obtain information
not only on the time course of processes, but also on the time evolution of the distribu-
tion of state variables. These methods can even be used when standard mathematical
tools become intractable due to the high complexity of the system. In this thesis, we
have introduced several algorithms that allow exact stochastic simulation of cell pop-
ulations.

In Chapter 3, Preliminaries, we introduced a novel approach to incorporate possible
cellular reactions into stochastic models of cells. To the best of our knowledge, these
reaction types have not been taken into account in lattice-based stochastic simulations
of cell cultures. These new types of reactions may be easily applied to complicated
systems, enabling the generation of biologically feasible stochastic cell culture simula-
tions.

• We treat the reactions systematically and categorized them according to how
they depend on the local environment of the cells.

• We introduced contact-inhibited, contact-promoted, and spontaneous reactions.

In Chapter 4 we introduced one of the main results of the thesis.
• We significantly extended the lattice based cellular simulation algorithm by Baker

and Simpson [6] with the reactions we defined in Chapter 3. We call this algorithm
the Prompt Decision Method (PDM).

• Then we proposed and derived from first principles our exact method, the Re-
duced Rate Method (RRM).

• We proposed the equivalent but simplified version of the RRM algorithm, the
marginal Reduced Rate Method.

• We showed that the PDM algorithm and our RRM algorithm are mathematically
equivalent.

• We showed that it is substantially quicker than the PDM for large number of
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cells.

In Chapter 5 we incorporated realistic cell cycle length to our models.
• We presented a new model and a new algorithm that is able to model the evolution

of cell populations with realistic cell cycle length of any distribution.
• We also fit our model to in vitro experimental data measured by Vitadello et

al. [46].

In Chapter 6, we put together the tools we have developed to propose the Go or Grow
algorithms.

• We proposed four new models and algorithms to overcome the difficulties that
cell cycle causes in a spatial population model.

• We showed the surprising effects the cell cycle takes on the dynamics and high-
lighted the possible therapeutic implications.

Finally, in Chapter 7, we introduced the mean field delay differential equation that is
obtained from the stochastic cell cycle model we introduced in Chapter 5.

• We investigated the model with analytical methods and compared the model
predictions with the predictions of the stochastic model.

The dissertation is based on the following two published papers
• R. E. Baker, P. Boldog, and G. Röst,

Convergence of solutions in a mean- field model of go-or-grow type with reserva-
tion of sites for proliferation and cell cycle delay;
Progress in Industrial Mathematics at ECMI 2018 (Cham, 2019), I. Faragó, F.
Izsák, and P. L. Simon, Eds., Springer International Publishing, pp. 381–387.

• P. Boldog, N. Bogya, and Z. Vizi,
Propensity matrix method for age dependent stochastic infectious disease models
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