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Introduction

A lattice is an abstract structure in mathematics. According to Roman [44],
the beginnings of lattice theory can be dated to the early 1890s, when the
concept was developed by Richard Dedekind, during investigating subgroups
of abelian groups. By Grätzer [33], he carried out related research on ideals
of algebraic numbers and he introduced the concept of modularity as well.
According to Grätzer [33], George Boole’s propositional logic independently
led to the concept of Boolean algebras in the first half of the nineteenth
century. This was followed at the end of the nineteenth century by Charles
S. Pierce and Ernst Schröder’s investigation on the axiomatics of Boolean
algebras, when they introduced the lattice concept.

The concept was developed further by Garrett Birkhoff in the mid-thirties
of the last century in a brilliant series of papers, in which by Grätzer [33]
he demonstrated the importance of lattice theory. Birkhoff monograph [8]
turned lattice theory into a major branch of abstract algebra. With the
papers mentioned above and work done by Valère Glivenko, Karl Menger,
John von Neumann and Oystein Ore, lattice theory has become a standard
branch of modern algebra. For more details, see Grätzer [33], Roman [44]
and Rota [45].

The role of von Neumann deserves a separate mention. From https:
//en.wikipedia.org/wiki/John_von_Neumann we see that John von Neu-
mann (1903-1957) was a Hungarian-American mathematician, physicist, com-
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1. INTRODUCTION 2

puter scientist, engineer and polymath. Von Neumann is generally regarded
as the foremost mathematician of his time and is said to be the last represen-
tative of the great mathematicians (see [39]). He integrated pure and applied
sciences. Notions like von Neumann algebra, prizes and https://njszt.hu/hu
are named after him. His excellence also manifested itself in lattice theory,
and his work substantially contributed to the fact that lattice theory eventu-
ally became a separate branch of mathematics. The founder of lattice theory
and Universal Algebra, Garrett Birkhoff himself wrote in [9] that

"‘John von Neumann’s brilliant mind blazed over lattice theory like a
meteor, during a brief period centering around 1935-1937."’

and
"‘One wonders what would have been the effect on lattice theory, if von

Neumann’s intense two-year preoccupation with lattice theory had continued
for twenty years!"’

Another milestone in the history of lattice theory was the year 1971, when
the first journal devoted to lattices was founded. This journal called Algebra
Universalis is still going strong. Well, it is also devoted to universal algebra
not just lattice theory, but these two branches have a lot in common at the
topical level and personal level. The founder, George Grätzer, is famous for
producing results, papers and monographs on lattice theory; his 61-times
coauthor, Elégius Tamás Schmidt (1936-2016) also deserves a mention.

Within a Ph.D. thesis, we cannot hope to give a reasonable survey of
what transpired in lattice theory after the progress made by Birkhoff and
John von Neumann. Instead of doing so, the reader is referred to the paper
Rota [45], and to introductory sections of the monographs Grätzer [33] and
Roman [44].

In addition to the above-mentioned lattice theorist Grätzer (Hungarian-
Canadian) and Schmidt (Hungarian), it is worth mentioning that Hungarian
lattice theorists Gábor Szász, András Huhn, Gábor Czédli and Sándor Rad-
eleczki have made substantial contributions and have had a huge impact on
this branch of mathematics with their researches.

In the rest of our introduction, we restrict our attention to those results
that directly motivated our work and are closely connected to it.

In recent years, intensive research has been carried out on finite lattices.
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Freese [31] was able to prove that an n-element lattice has at most 2n−1 con-
gruences. Inspired by this result, Czédli [19] showed that if L has fewer than
2n−1 congruences, then it has at most 2n−2 congruences. He also described
the n-element lattices with exactly 2n−2 congruences. Continuing the work
of Freese and Czédli, Kulin and Mureşan [36] studied the smallest and the
largest numbers of congruences of n-element lattices. They proved that the
third, fourth and fifth largest numbers of congruences of an n–element lattice
are 5 · 2n−5 when n ≥ 5, 2n−3 and 7 · 2n−6 when n ≥ 6, respectively. They
also determined the structures of n–element lattices having these numbers.
The above papers, as well as the paper of Czédli and Horváth [25], in which
the authors found the first three largest numbers of subuniverses of finite
lattices, motivated us to investigate the large numbers of subuniverses of lat-
tices further and find the fourth and fifth largest numbers of subuniverses
of n-element lattices. The results were published in one of our joint papers
with Horváth and Chapter 2 is based on this paper, [3].

Chapter 3 is based on other joint paper with Horváth, [4], the aim of which
was to determine the first three largest numbers of subuniverses of n-element
semilattices. The first largest number is 2n, the second largest number is
28 · 2n−5 and the third largest number is 26 · 2n−5. We also described the
n-element semilattices with exactly 2n, 28 ·2n−5 or 26 ·2n−5 subuniverses. We
were inspired in writing the above paper by similar or analogous papers by
various lattice theorists, for instance Adaricheva [1], Czédli [21] and [23].

Chapter 4 is based on joint manuscript with Horváth and Németh, [5],
and the main aim here was to determine the number of subuniverses, congru-
ences and weak congruences of semilattices defined by rooted binary trees.
The concept of weak congruences is a tool for studying congruences and sub-
algebras of the same algebra together. The first researcher who studied the
compatible symmetric and transitive relations on an algebra was F. Šik, to-
gether with his Ph.D. student T.D. Mai (see [55]). Šešelja and Tepavčević
wrote a book [55] on weak congruences. The purpose of their book was to
present the basic properties of weak congruences, in particular, their lattices,
and to show how they can be applied in universal algebra. The book was
published after several years of systematic studies by the authors, and it
contains the bibliography on these and related topics up to 2001. Some later
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results on weak congruences can be found in, for example, Czédli et al. [28]
and Šešelja and Tepavčević [56].

Chapter 5 is based on a joint paper with Czédli, [2], whose main goal was
to prove that the 209 527-element lattice Quo(6) is (1+1+2)-generated. The
idea that large lattices can have small generating sets goes back to 1976 when
Poguntke and Rival [41] proved that each lattice can be embedded into a four-
generated finite simple lattice. It turned out much later that three generators
are sufficient if we drop the simplicity assumption; see Czédli [17]. Partition
lattices, which are the same as equivalence lattices up to an isomorphism,
are known to be simple. Hence, Pudlák and Tůma’s result that every finite
lattice is embeddable into a finite partition lattice (see [42]), superseded
Poguntke and Rival’s result in 1980. However, Poguntke and Rival’s result
still served as the motivation for Strietz [50] and [51] to prove that equivalence
lattice Equ(n) over n-element set is four-generated for 3 ≤ n ∈ N+ and it is
(1 + 1 + 2)-generated for 10 ≤ n ∈ N+. In 1983, Zádori [57] furnished an
entirely new method for finding four-element generating sets of Equ(n) and
extended Strietz’s result by proving that Equ(n) is (1+1+2)-generated even
for 7 ≤ n ∈ N+. He left open the problem of whether Equ(n) for n ∈ {5, 6} is
(1+1+2)-generated. Then 37 years later, Czédli and Oluoch [27] published a
solution to Zádori’s problem on Equ(5) and Equ(6). The existence of a four-
element generating set is basically about sublattices. Indeed, the meaning of
"{a, b, c, d} generates L" is that no proper sublattice of L includes {a, b, c, d}
as a subset. Their method for Equ(6) encouraged us to focus on the analogous
problem for Quo(6). Now we can see more clearly the relationship between
these ideas and the general aim of the dissertation.
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Some large numbers of

subuniverses of finite lattices

This chapter is based on a joint paper with Horváth [3]. By a subuniverse,
we mean a sublattice or the emptyset. We prove that the fourth largest
number of subuniverses of an n-element lattice is 21.5 · 2n−5 for n ≥ 6, and
the fifth largest number of subuniverses of an n-element lattice is 21.25 ·2n−5

for n ≥ 7. Also, we describe the n-element lattices with exactly 21.5 · 2n−5

(for n ≥ 6) and 21.25 · 2n−5 (for n ≥ 7) subuniverses.

2.1 Notations used in the chapter
All the lattices in this chapter will be assumed to be finite. For a lattice L,
let Sub(L) denote its sublattice lattice; it consists of all the subuniverses of
L. A subset X of L is in Sub(L) if and only if X is closed with respect to
join and meet. In particular ∅ ∈ Sub(L). Note that, for X ∈ Sub(L), X is a
sublattice of L if and only if X is nonempty.

For a natural number n ∈ N+ := {1, 2, 3, . . . }, let

NS(n) := {| Sub(L)| : L is a lattice of size |L| = n}.

That is, k ∈ NS(n) if and only if some n-element lattice has exactly k sub-
universes. The acronym NS means Number of Sublattices, and L has only
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| Sub(L)| − 1 sublattices.
Let P and Q be posets with disjoint underlying sets. Then the ordinal

sum P +ord Q is the poset on P ∪Q with s ≤ t iff either s, t ∈ P and s ≤ t;
or s, t ∈ Q and s ≤ t; or s ∈ P and t ∈ Q. In other words, every element of
P is less than every element of Q, and the relations in P and Q remain the
same. To draw the Hasse diagram of P +ord Q, we place the Hasse diagram
of Q above that of P and then connect every minimal element of Q with
all maximal elements of P (see Figure 2.1). If K with 1 and L with 0 are
finite posets, then their glued sum K +glu L is the ordinal sum of the posets
K \ {1K}, the singleton poset, and L \ {0L}, in this order (see Figure 2.2).
Note that +glu is an associative but not a commutative operation.

P Q

P +ordQ

Figure 2.1: The ordinal sum P +ord Q of P and Q

K +glu L

L

K 0L
1K

Figure 2.2: The glued sum K +glu L of K and L

For elements u, v ∈ L, the interval [u, v] := {x ∈ L : u ≤ x ≤ v} is
defined only if u ≤ v. For u in L, the principal ideal generated by u is
↓u := {x ∈ L : x ≤ u}, while the principal filter is ↑u := {x ∈ L : u ≤ x}.
We can also write ↓Lu and ↑Lu to specify the lattice L. For u, v in L, we
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say that u and v are incomparable if u � v and v � u, we write u ‖ v to
denote that u and v are incomparable. We say that u is join-irreducible if
u has at most one lower cover; and meet-irreducible is defined dually. If an
element is both join-irreducible and meet-irreducible, then it is called doubly
irreducible. An u in L is isolated if u is doubly irreducible and L = ↓u ∪ ↑u.
That is, u is doubly irreducible and x ‖ u holds for no x in L. By an isolated
edge we mean a prime interval [u, v] such that u ≺ v (i.e. v covers u, if and
only if u < v and there is no x such that u < x < v ) and L = ↓u ∪ ↑v.

Let F be a set of binary operation symbols. By a binary partial algebra
A of type F we mean a structure A = (A;FA) such that A is a nonempty
set, FA = {fA : f ∈ F}, and for each f ∈ F, fA is a map from a subset
Dom(fA) of A2 to A. If Dom(fA) = A2 for all f ∈ F , then A is a binary
algebra (without the adjective “partial”). In particular, every lattice is a
binary algebra; note that we write ∨ and ∧ instead of ∨A and ∧A when the
meaning is clear from the context. A subuniverse of A is a subset X of A
such that X is closed with respect to all partial operations; that is, whenever
x, y ∈ X, f ∈ F and (x, y) ∈ Dom(fA), then fA(x, y) ∈ X. The set of
subuniverses of A will be denoted by Sub(A). For example: for a lattice
(L,∨,∧), assume that S ⊆ L; for a, b, c ∈ S, if a ∨ b = c, then we say that
a ∨S b is defined in S and equal to c. While if a ∨ b is not in S, then we say
that a ∨S b is not defined in S; a ∧S b should be considered dually.

Example 2.1.1. As an example of a partial algebra, we define the partial
lattice H1 as follows: for x ‖ y, (x, y) ∈ Dom(∧) if and only if {x, y} ⊆
{o, i, a, b, c} and (x, y) ∈ Dom(∨) if and only if {x, y} ⊆ {o, i, a, b, c} or
{x, y} = {d, i}; whenever x ∧ y or x ∨ y are defined, they are inf{x, y} and
sup{x, y}, respectively. For the Hasse diagram of H1; see Figure 2.8.

We use the term partial lattice here to mean that S is a partial algebra
with two binary operations denoted by ∨ and ∧. A subuniverse of S is a
subset Y of S such that if a, b ∈ Y and a∨S b is defined in S, then a∨S b ∈ Y ;
and the same is true for ∧S. We say that the partial lattice S is a partial
sublattice of the lattice L = (L;∨L,∧L) if S is a subposet of L and for all
a, b ∈ S, such that a ‖ b and (a, b) ∈ Dom(∨S) we have that a ∨S b = a ∨L b.
Mostly we denoted lattices by L and partial lattices by S.
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2.2 Preliminaries
Czédli and Horváth [25] proved that the first three largest numbers in NS(n)
are 32 · 2n−5, 26 · 2n−5, and 23 · 2n−5, where 5 ≤ n ∈ N+. Moreover, an
n-element lattice L has exactly 2n subuniverses if and only if L is a chain.
Also, they described the n-element lattices with exactly 26·2n−5, and 23·2n−5

subuniverses, as in the following theorem:

Theorem 2.2.1 (Czédli and Horváth [25]). If 5 ≤ n ∈ N+, then the following
two assertions hold.

(i) The second largest number in NS(n) is 26 · 2n−5. Furthermore, an
n-element lattice L has exactly 26 · 2n−5 subuniverses if and only if
L ∼= C0 +glu B4 +glu C1, where C0 and C1 are chains while B4 denotes
the four-element Boolean lattice.

(ii) The third largest number in NS(n) is 23 · 2n−5. Furthermore, an n-
element lattice L has exactly 23 · 2n−5 subuniverses if and only if L ∼=
C0 +glu N5 +glu C1, where C0 and C1 are chains while N5 is the five-
element nonmodular lattice.

Next, we recall two lemmas, they will be used when proving Theorem
2.4.1.

Lemma 2.2.2 (Czédli and Horváth [25]). If K is a sublattice and H is a
subset of a finite lattice L, then the following three assertions hold.

(i) With the notation t := |{H∩G : G ∈ Sub(L)}|, we have that | Sub(L)| ≤
t · 2|L|−|H|.

(ii) | Sub(L)| ≤ | Sub(K)| · 2|L|−|K|.

(iii) Assume, in addition, that K has neither an isolated element, nor an
isolated edge. Then | Sub(L)| = | Sub(K)| · 2|L|−|K| if and only if L is
(isomorphic to) C0 +glu K +glu C1 for some chains C0 and C1.

The n-element chain and n-element Boolean lattice are denoted by C(n)

and Bn, respectively.
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Lemma 2.2.3 (Czédli and Horváth [25]). For the lattices given in Figures
2.3 to 2.5, the following seven assertions hold.

(i) | Sub(B4)| = 13 = 26 · 24−5,

(ii) | Sub(N5)| = 23 = 23 · 25−5,

(iii) | Sub(B4 +glu B4)| = 85 = 21.25 · 27−5,

(iv) | Sub(B4 +glu C
(2) +glu B4)| = 169 = 21.125 · 28−5,

(v) | Sub(C(2) × C(3))| = 38 = 19 · 26−5,

(vi) | Sub(M3)| = 20 = 20 · 25−5,

(vii) | Sub(B8)| = 74 = 9.25 · 28−5.

N5 B4 B8

Figure 2.3: Lattices N5, B4 and B8

C(2) × C(3) M3

Figure 2.4: Lattices C(2) × C(3) and M3

To shorten the proof of the Theorem 2.2.1, the authors of [25] proved
Lemma 2.2.4. Note that a k-element antichain will be called a k-antichain.
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B4 +glu C
(2) +glu B4 B4 +glu B4

Figure 2.5: Lattices B4 +glu C
(2) +glu B4 and B4 +glu B4

Lemma 2.2.4 (Czédli and Horváth [25]). If an n-element lattice L has a
3-antichain, then we have that | Sub(L)| ≤ 20 · 2n−5.

In order to prove the Lemma 2.2.4, the authors of [25] used two well-
known facts, Lemmas 2.2.5 and 2.2.6. Implicitly, they often used the well-
known Homomorphism Theorem 2.2.7.

Lemma 2.2.5 (Rival and Wille [43]). For every lattice K generated by
{a, b, c} such that a < c, there is a unique surjective homomorphism ϕ from
the (so-called finitely presented) lattice Flat(ã, b̃, c̃), given in Figure 2.6, onto
K such that ϕ(ã) = a, ϕ(b̃) = b, and ϕ(c̃) = c.

Lemma 2.2.6 (Folklore). For every join-semilattice S generated by {a, b, c},
there is a unique surjective homomorphism ϕ from the free join-semilattice
Fjsl(ã, b̃, c̃), given in Figure 2.6, onto S such that ϕ(ã) = a, ϕ(b̃) = b, and
ϕ(c̃) = c.

Before recalling the well-known theorem, note that we compose homo-
morphism from right to left, that is (f ◦ g)(x) = f(g(x)).

Theorem 2.2.7 (Sankappanavar and Burris [46]). Suppose α : A → B is
homomorphism onto B. Then there is an isomorphism β from A/ker(α) to
B defined by α = β ◦ ν, where ν is the natural homomorphism from A to
A/ker(α).
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Fjsl(ã, b̃, c̃)

b̃ã c̃

Flat(ã, b̃, c̃) b̃

c̃

ã

e11 e7

e6 e10

e1

e3

e2
e9e4

e8
e5

Figure 2.6: Fjsl(ã, b̃, c̃) and Flat(ã, b̃, c̃)

2.3 Auxiliary results
Below, we recall and prove only a special case of Lemma 2.3 from Czédli [20].

Lemma 2.3.1. If |L| = n for the lattice L, and S is a partial sublattice of
L with |S| = k and with | Sub(S)| = m, then | Sub(L)| ≤ m · 2n−k.

Proof. First, we show that any subuniverse of L is an extension of a subuni-
verse of S. Let X ∈ Sub(L), and let the restriction of X to S be Y := X ∩S.
If a, b ∈ Y and a ∨ b is defined in S, then a ∨S b = a ∨L b ∈ X be-
cause a, b ∈ Y ⊆ X and X is closed under ∨L. However a ∨S b ∈ S, so
a ∨S b ∈ S ∩ X = Y. We obtained that Y is closed under ∨S. Similarly, Y
is closed under ∧S. So, Y is a subuniverse of S, and X is an extension of
Y. Clearly, any Y ∈ Sub(S) has 2n−k extensions for a subset of L, and the
number of subuniverses cannot be more than this. Since we have m choices
for Y, we see that | Sub(L)| ≤ m · 2n−k.

The following lemma can be proved with a computer program (see Ap-
pendix A). The program for counting subuniverses is available on the webpage
of G. Czédli: http://www.math.u-szeged.hu/~czedli/, (subsize, a program for
counting subuniverses 2019). Note that several of our computational results
have also been verified by another program called sublatts, available at the
same webpage.
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N5B4
i

c

a

b

od

0

N6 i

c

d

a

b

o

Figure 2.7: Lattices N5B4 and N6

N ′
6

1
c

a d

b

0

H1
i

a

c
b

o

v

d

Figure 2.8: The latticeN ′6 and the partial latticeH1 defined in Example 2.1.1

Lemma 2.3.2. For the lattices and a partial lattice given by Figures 2.7–2.9
and, in case of H1, by Example 2.1.1, the following five assertions hold.

(i) | Sub(N6)| = 43 = 21.5 · 26−5,

(ii) | Sub(N5B4)| = 69 = 17.25 · 27−5,

(iii) | Sub(N ′6)| = 37 = 18.5 · 26−5,

(iv) | Sub(H1)| = 79 = 19.75 · 27−5,

(v) | Sub(N7)| = 83 = 20.75 · 27−5,

Proof. The notation given by Figure 2.7 to 2.9, will be used.
And for later reference, note that

if L is a chain, then | Sub(L)| = 2|L|. (2.1)
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Figure 2.9: Lattice N7

For (i), observe that

|{S ∈ Sub(N6) : b 6∈ S}| = 32, by 2.1,

|{S ∈ Sub(N6) : b ∈ S, {a, d, c} ∩ S = ∅}| = 4, and

|{S ∈ Sub(N6) : b ∈ S, {a, d, c} ∩ S 6= ∅}| = 7,

whereby | Sub(N6)| = 32 + 4 + 7 = 43, and this proves (i).
The proof using the above mentioned computer program is:
Input:

\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
N_6
\size
6
\elements
oabcid
\P edges
\P oa ad dc ci ob bi
\constraints
a+b=i b+d=i c+b=i , a*b=o c*b=o b*d=o
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\endofjob
\enddata

Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 14:16:45) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2019 ]
|A|=6, A(without commas)={oabcid}. Constraints:
edges
oa ad dc ci ob bi
a+b=i b+d=i c+b=i a*b=o c*b=o b*d=o
Result for A=N_6: |Sub(A)| = 43, whence
sigma(A) = |Sub(A)|*2 ˆ (5-|A|) = 21.5000000000000000 .

For (ii), observe that

|{S ∈ Sub(N5B4) : d 6∈ S}| = 46, by Lemma 2.2.2(iii) and Lemma 2.2.3 (ii),

|{S ∈ Sub(N5B4) : d ∈ S, b 6∈ S}| = 20, and

|{S ∈ Sub(N5B4) : d ∈ S, b ∈ S}| = 3,

whereby | Sub(N5B4)| = 46 + 20 + 3 = 69, and this proves (ii). For the
program calculation, see Appendix A.1.

For (iii), observe that

|{S ∈ Sub(N ′6) : b 6∈ S}| = 23, by Lemma 2.2.2(iii) and Lemma 2.2.3(ii)

|{S ∈ Sub(N ′6) : d ∈ S, {a, c} ∩ S 6= ∅}| = 6, and

|{S ∈ Sub(N ′6) : {a, c} ∩ S = ∅}| = 8,

whereby | Sub(N ′6)| = 23 + 6 + 8 = 37, and this proves (iii). For the program
calculation, see Appendix A.2.

For (iv), notice that H1 is a partial lattice (see 2.1.1), but not a lattice,
so subuniverses are those subsets that are closed with respect to all partial
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operations (see [20]). Observe that

|{S ∈ Sub(H1) : d 6∈ S}| = 46, by Lemma 2.2.2(iii) and Lemma 2.2.3 (ii) ,

|{S ∈ Sub(H1) : {d, v} ⊆ S}| = 23, and

the remaining subuniverses are the following: {b, d}, {o, b, d}, and all

the elements of P ({o, a, c}) with d,

whereby | Sub(H1)| = 46 + 23 + 2 + 8 = 79, and this proves (iv). For the
program calculation, see Appendix A.3.

For (v), observe that

|{S ∈ Sub(N7) : b 6∈ S}| = 64, by 2.1,

|{S ∈ Sub(N7) : b ∈ S, {a, e, d, c} ∩ S = ∅}| = 4, and

|{S ∈ Sub(N7) : b ∈ S, {a, e, d, c} ∩ S 6= ∅}| = 15,

whereby | Sub(N7)| = 64 + 4 + 15 = 83, and this proves (v). For the program
calculation, see Appendix A.4.

2.4 The fourth and fifth largest numbers of

subuniverses of finite lattices
Theorem 2.4.1. The following two assertions hold.

(i) The fourth largest number in NS(n) is 21.5 · 2n−5 for n ≥ 6. Fur-
thermore, for n ≥ 6, an n-element lattice L has exactly 21.5 · 2n−5

subuniverses if and only if L ∼= C0 +glu N6 +glu C1, where C0 and C1

are chains.

(ii) The fifth largest number in NS(n) is 21.25·2n−5 for n ≥ 7. Furthermore,
for n ≥ 7, an n-element lattice L has exactly 21.25 ·2n−5 subuniverses if
and only if L ∼= C0 +glu B4 +glu B4 +glu C1, where C0 and C1 are chains.
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Proof. We shall prove part (i).
Let L be an n-element lattice. We obtain from Lemma 2.2.2 (iii) and

from 2.3.2(i) that if

L ∼= C0 +glu N6 +glu C1 for finite chains C0 and C1, (2.2)

then | Sub(L)| = 21.5 · 2n−5.
We know from Theorem 2.2.1(ii) that the third largest number in NS(n)

is 23 · 2n−5. Hence, in order to complete the proof of Theorem 2.4.1 (i), it
suffices to exclude the existence of a lattice L such that

|L| = n, 21.5 · 2n−5 ≤ | Sub(L)| < 23 · 2n−5,

but L is not of the form given in (2.2).
(2.3)

Suppose, for a contradiction, that L is a lattice satisfying (2.3). If L had a
3-antichain, then we would have by Lemma 2.2.4 that | Sub(L)| < 20 · 2n−5,
contradicting the first inequality in (2.3). If L had at most one 2-antichain,
then we would have that | Sub(L)| ≥ 26·2n−5 by Theorem 2.2.1, contradicting
the second inequality in (2.3). Hence

L has at least two 2-antichains but it has no 3-antichain. (2.4)

We will prove that

L cannot have two non-disjoint 2-antichains. (2.5)

Suppose on the contrary that {a, b} and {c, b} are two distinct 2-antichains
in L. Since there is no 3-antichain in L, we can assume that a < c. With
K := [{a, b, c}], let ϕ : Flat(ã, b̃, c̃)→ K be the unique lattice homomorphism
from Lemma 2.2.5, and let Θ be the kernel of ϕ. We follow the notations of
Figure 2.6. There are three cases.

Case 1: Θ does not collapse e1 and it does not collapse at least one of e4

and e6. By duality, we can assume that e4 is not collapsed. Since e1 generates
the monolith congruence, i.e. the smallest nontrivial congruence of the N5

sublattice of Flat(ã, b̃, c̃), no other edge of the N5 sublattice is collapsed. Now,
e4 is perspective to e5, e9 is perspective to e8. Hence, N5B4 is a sublattice of
L and we conclude that | Sub(L)| ≤ 17.25 · 2n−5 by Lemma 2.2.2 (ii) and by
Lemma 2.3.2(ii). Therefore, Case 1 is excluded by (2.3).
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Case 2: Θ does not collapse e1 but it collapses both e4 and e6. Since
e1 generates the monolith congruence of the N5 sublattice of Flat(ã, b̃, c̃), no
other edge of this N5 sublattice is collapsed. Hence, as N5 is a sublattice of L,
clearly, {a, b, c} generates a pentagonN5.We know from Lemma 2.2.3(ii) that
| Sub(N5)| = 23, and we also have assumed in 2.3 that | Sub(L)| < 23 · 2n−5.
Applying Lemma 2.2.2 (iii) for K := N5, we see that

L cannot be of the form L ∼= C0 +glu N5 +glu C1 for

finite chains C0 and C1.

}
(2.6)

Let o and i stand for the least and the largest elements of the above-
mentioned N5 sublattice, respectively. By rewording (2.6),

we exclude the possibility that ↓o is a chain, ↑i is a chain, and [o, i] = N5.

(2.7)
Thus, at least one of the three parts of (2.7) fails. If ↓o is not a chain, then
we have a sublattice of the form either B4 +glu B4 or B4 +glu C

(2) +glu B4; but
then the number of sublattices could be at most 21.25 · 2n−5 by Lemma 2.2.3
(iii) and (iv) and by Lemma 2.2.2 (ii). Hence, ↓o is a chain. By duality, ↑i
is a chain, too.

Next, we show that x ∦ o and x ∦ i for every x ∈ L. To do so, it is
sufficient to deal with the relation between x and i. Observe that if x was
incomparable with i then we would have a copy of H1 and | Sub(L)| would
be at most 19.75 · 2n−5 by Lemma 2.3.2(iv) and Lemma 2.3.1. Hence, x ∦ i
and x ∦ o, as required. For later reference, let us summarize:

↓o and ↑i are chains,

and for all x ∈ L \ (↓o ∪ ↑i ∪N5), we have that

x ∈ [o, i]; in particular, L = ↓o ∪ ↑i ∪ [o, i].

 (2.8)

Let us remind that N5 above denotes the sublattice {o, i, a, b, c}.
Next, (2.6) and (2.8) yield an element d ∈ [o, i] \ N5. The absence of

3-antichains, see (2.4), together with (2.8) imply that either d is compara-
ble with b or it is comparable with both a and c. According to these two
possibilities, the argument for Case 2 splits into two subcases.

Case 2a: d is comparable with b. By duality, we can assume that d < b.
If a∨d = i, then {o, i, a, b, c, d} ∼= N ′6 would easily lead to | SubL| ≤ 18.5·26−5,
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by Lemma 2.2.2(ii) and Lemma 2.3.2(iii). Hence, a ∨ d = i is excluded, that
is, a∨d 6= i. So v := a∨d < i. Observe that v � b since otherwise a ≤ b would
be a contradiction. We also have that v 6> b since otherwise v ≥ a and v ≥ b

would lead to v ≥ a ∨ b = i, contradicting that v < i. So v ‖ b. But {c, v, b}
is not an antichain, so v ‖ b and c ‖ b implies that v > c or v ≤ c. However, if
v ≤ c, then d ≤ v ≤ c and d ≤ b would lead to d ≤ c∧ b = o, a contradiction.
Hence, v > c. Note that c ∨ d = (c ∨ a) ∨ d = c ∨ (a ∨ d) = c ∨ v = v. So we
have that

a ∨ b = i, a ∧ b = o, c ∨ b = i, c ∧ b = o, a ∨ d = v, and v ∨ b = i. (2.9)

Let G7 denote the seven-element partial lattice {o, i, a, b, c, d, v} defined by
the equalities listed in (2.9) (see Figure 2.10). We have that it has ex-
actly 19.5 ·27−5 subuniverses (for the calculation, see Appendix A.5), whence
| Sub(L)| ≤ 19.5 · 2n−5 by Lemma 2.3.1. Since this estimate violates (2.3)
Case 2a cannot occur.

G7
i

c

a

b

o

v

d

Figure 2.10: Partial lattice G7

For the sake of possible future applications, note that the equalities

a ∧ d = o, c ∧ d = o, c ∨ d = v (2.10)

also hold. If G−7 denotes the partial lattice on the base set {o, i, a, b, c, d, v}
defined jointly by (2.9) and (2.10), then we have that | Sub(G−7 )| = 16.75·27−5

(see Appendix A .6), and this would lead to | Sub(L)| ≤ 16.75 · 2n−5.
For later reference, note that since d ∈ [o, i] \N5 was arbitrary,

for all x ∈ [o, i] \N5 = [o, i] \ {o, i, a, b, c}, we have that x ‖ b. (2.11)
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Case 2b: d is comparable with a and c. Now {a, c, d} is a chain. Since
b, d ∈ [o, i], o ≤ b ∧ d and b ∨ d ≤ i. But d ‖ b by (2.11), so b ∧ d < b and
b < b ∨ d, and we have that o ≤ b ∧ d < b < b ∨ d ≤ i. If o < b ∧ d, then
o < b∧d < b shows that b∧d ∈ [o, i]\N5, so the comparability b∧d < b would
violate (2.11). Hence b ∧ d = o. Similarly, b ∨ d = i. So {a, c, d} is a chain
and for all x ∈ {a, c, d} we have that b ∧ x = o and b ∨ x = i. This allows us
to assume that a < d < c since otherwise we can relabel the elements of the
chain {a, c, d}. Also, since b is a complement of every element of this chain
in the interval [o, i], the elements o, i, a, b, c, d form a sublattice isomorphic
to N6. Since we know from (2.3) that L is not of the form (2.2), the third
line of (2.8) implies that there is an element e ∈ [o, i] \N6. By (2.11), e ‖ b.
Since there is no 3-antichain, {a, c, d, e} is a chain. Related to {o, i, a, b, c},
e plays the same role as d. Hence b ∧ e = o and b ∨ e = i, and we have that
{o, i, a, b, c, d, e} ∼= N7. Armed with this N7, Lemmas 2.2.2(ii) and 2.3.2 (v)
give that | Sub(L)| ≤ 20.75 · 2n−5, which contradicts (2.3). Therefore, Case
2b is excluded, too. Consequently, Case 2 cannot occur.

Case 3: Θ collapses e1. Since a ‖ b and c ‖ b, none of the thick edges
e8, . . . , e11 is collapsed by Θ. Observe that at least one of e4 and e6 is not
collapsed by Θ, since otherwise 〈ã, c̃〉 would belong to Θ = ker(ϕ) by transi-
tivity and so we would have that a = c, which would be a contradiction. By
duality, we can assume that e4 is not collapsed by Θ. Since e2, e3, and e5

are perspective to e10, e9, and e4, respectively, these edges are not collapsed
either. So, with the exception of e1, no edge among the elements of ↓(ã ∨ b̃)
in Figure 2.6 is collapsed. Thus, the ϕ(↓(ã ∨ b̃)) is a sublattice (isomorphic
to) C(2) × C(3) in L. Hence, | Sub(L)| ≤ 19 · 2n−5 by Lemma 2.2.2 (ii) and
Lemma 2.2.3(v), which contradicts our assumption that L satisfies (2.3) and
shows that Case 3 cannot occur.

Now that all the three cases are excluded, we have proved (2.5).

To provide a convenient tool to exploit (2.4) and (2.5), we claim that

if x, y, z ∈ L such that |{x, y, z}| = 3 and x ‖ y,

then either {x, y} ⊆ ↓z, or {x, y} ⊆ ↑z.
(2.12)

To see this, assume the premise. Since L has no 3-antichain, z is comparable
to one of x and y. By duality and symmetry, we can assume that x < z.
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Since z ≤ y would imply x ≤ y, we have that z � y. Also, we have that
z ∦ y since otherwise the presence of the 2-antichains {x, y} and {z, y} would
contradict (2.5). Hence, y < z, and we have proved (2.12).

Resuming our considerations based on the indirect assumption that L
violates (2.3), observe that (2.4) and (2.5) give us a four-element subset
{a, b, c, d} of L such that a ‖ b and c ‖ d. By duality and (2.12), we can
assume that {a, b} ⊆ ↓c. Applying (2.12) to {a, b, d} as well, we obtain that
{a, b} is included either in ↑d, or in ↓d. Since the first alternative would lead
to d ≤ a ≤ c and this would contradict c ‖ d, we have that {a, b} ⊆ ↓d.
Thus, {a, b} ⊆ ↓c∩↓d = ↓(c∧ d), and we obtain that u := a∨ b ≤ c∧ d =: v.
Let S := {a ∧ b, a, b, u, v, c, d, c ∨ d}. Depending on u = v or u < v, S is
a sublattice isomorphic to B4 +glu B4 or B4 +glu C

(2) +glu B4. Using Lemma
2.2.2(ii) together with (iii) and (iv) of Lemma 2.2.3, we find that
| Sub(L)| ≤ 21.25 · 2n−5. This inequality contradicts (2.3) and completes the
proof of part (i) of Theorem 2.4.1.

We will now prove part (ii). Let L be an n-element lattice. We obtain
from Lemma 2.2.2 (iii) and Lemma 2.2.3 (iii) that if

L ∼= C0 +glu B4 +glu B4 +glu C1 for finite chains C0 and C1, (2.13)

then | Sub(L)| = 21.25 · 2n−5. In order to complete the proof of part (ii) of
Theorem 2.4.1, it suffices to exclude the existence of a lattice L such that

|L| = n, 21.25 ·2n−5 ≤ | Sub(L)| < 21.5 ·2n−5,

but L is not of the form given in (2.13).
(2.14)

Suppose for a contradiction that L is a lattice satisfying (2.14).
We claim that

L cannot have two non-disjoint 2-antichains. (2.15)

Suppose on the contrary that {a, b} and {c, b} are two distinct 2-antichains
in L. By Lemma 2.2.4, there is no 3-antichain in L. Hence we can assume
that a < c.

With K := [{a, b, c}], let ϕ : Flat(ã, b̃, c̃)→ K be the unique lattice homo-
morphism from Lemma 2.2.5, and let Θ be the kernel of ϕ. We will use the
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notation of Figure 2.6, and we will borrow a lot from the proof of part (i) of
Theorem 2.4.1. Again, there are three cases.

Case A: Θ does not collapse e1 and it does not collapse at least one of e4

and e6. By duality, we can assume that e4 is not collapsed. Since e1 generates
the smallest nontrivial congruence of the N5 sublattice of Flat(ã, b̃, c̃), no
other edge of the N5 sublattice is collapsed. Now, e4 is perspective to e5, e9

is perspective to e8. Hence, N5B4 is a sublattice of L and we conclude that
| Sub(L)| ≤ 17.25 · 2n−5 by Lemma 2.2.2 (ii) and by Lemma 2.3.2(ii). Thus,
Case A is excluded by (2.14).

Case B: Θ does not collapse e1 but it collapses both e4 and e6. Since
e1 generates the monolith congruence of the N5 sublattice of Flat(ã, b̃, c̃), no
other edge of this N5 is collapsed. Hence, N5 is a sublattice of L and, clearly,
it is generated by {a, b, c}. If L was of the form C0 +glu N5 +glu C1 with
chains C0 and C1, then Lemma 2.2.2(iii) and Lemma 2.2.3 (ii) would give
that | Sub(L)| = 23 · 2n−5, violating (2.14). Hence,

L is not of the form C0 +glu N5 +glu C1 with chains C0 and C1. (2.16)

Let o and i stand for the least and the largest elements of the above-mentioned
N5 sublattice, respectively.

In order to prove by contradiction that ↓o is chain, suppose the contrary.
Then B4 +glu B4 or B4 +glu C

(2) +glu B4 is a sublattice of L.
If B4 +glu C

(2) +glu B4 is a sublattice, then Lemma 2.2.2 (ii) and Lemma 2.2.3
(iv) give that | Sub(L)| ≤ 21.125 · 2n−5, contradicting (2.14). However, if
B4 +glu B4 is a sublattice, then we have to argue a bit more that in the proof
of part (i) of Theorem 2.4.1. Indeed, then Lemma 2.2.2 (ii) and Lemma 2.2.3
(iii) only give that | Sub(L)| ≤ 21.25 · 2n−5, which together with (2.14) yield
that | Sub(L)| = 21.25 · 2n−5. However, then Lemma 2.2.2 (iii) and Lemma
2.2.3 (iii) give that L is of the form C0 +glu B4 +glu B4 +glu C1 with chains C0

and C1, which contradicts the presence of N5 in L. This proves that ↓o is a
chain. Since the dual argument also works, we obtain that

↓o and ↑i are chains. (2.17)

As in the proof of the first part of Theorem 2.4.1, x ‖ i would make Lemma
2.3.2(iv) and Lemma 2.3.1 applicable to a copy of H1 and
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| Sub(L)| ≤ 19.75 · 2n−5 would contradict (2.14). Hence, taking the Duality
Principle into account,

every element of L is comparable to o and i. (2.18)

It follows from (2.17) and (2.18) that

L = ↓o ∪ ↑i ∪ [o, i], and both ↓o and ↑i are chains. (2.19)

By Lemma 2.2.4,

for every x ∈ [o, i] \ {o, i, a, b, c} = [o, i] \

N5, neither {a, b, x} nor {c, b, x} is a 3-

antichain.

(2.20)

We assert that
if x ∈ [o, i] \N5, then x ‖ b. (2.21)

When proving (2.21) below, we write d instead of x; so d ∈ [o, i]\N5. For the
sake of contradiction, suppose that d ∦ b. By duality, we can assume that d <
b. Consider the element v := a∨d. If we had v = i, then {o, i, a, b, c, d} ∼= N ′6
would easily lead to | Sub(L)| ≤ 18.5 ·2n−5 via lemmas 2.2.2(ii) and 2.3.2(iii).
Hence v < i. We have that v 6≤ b, because otherwise we would obtain that
a ≤ b. Since v ≥ b would lead to v = v ∨ b ≥ a ∨ b = i, it follows that v ‖ b.
Hence, since none of {a, v, b} and {c, v, b} is a 3-antichain by Lemma 2.2.4,
it follows that v ∦ a and v ∦ c. So the three-element set {a, c, v} is a chain in
L. Since v ≤ c would give that d ≤ (a∨ d)∧ b = v ∧ b ≤ c∧ b = o, we obtain
from v ∦ c that c < v. Note that c∨ d = (c∨ a)∨ d = c∨ (a∨ d) = c∨ v = v.
Now {o, i, a, b, c, d, v} becomes a partial G7-sublattice (see Figure 2.10) of L;
see (2.9). Since | Sub(G7)| = 19.5 ·27−5 by Appendix A.5 and so Lemma 2.3.1
yields that | Sub(L)| ≤ 19.5 · 2n−5, contradicting (2.14). This proves (2.21).

Next, observe that if [o, i] = N5 held, then (2.19) and Theorem 2.2.1(ii)
would give that | Sub(L)| = 23 · 2n−5, contradicting (2.14). Hence [o, i] 6= N5

and we can pick an element

d ∈ [o, i] \N5.

By (2.21), d ‖ b. Since a ‖ b but {a, b, d} is not a 3-antichain by (2.20), we
conclude that d ∦ a. Similarly, by (2.21), d ‖ b. Since c ‖ b but {c, b, d} is
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not a 3-antichain by (2.20), we have that d ∦ c. We have seen that

{a, c, d} is a chain. (2.22)

There are two subcases depending on d ∈ [a, c] or d /∈ [a, c].
Case B1: d ∈ [a, c], Then a < d < c. Clearly, {o, i, a, b, c, d} forms a

sublattice isomorphic toN6. For simplicity, we will writeN6 = {o, i, a, b, c, d}.
Using (2.14), the equality | Sub(N6)| = 21.5 · 26−5 from Lemma 2.3.2(i), and
Lemma 2.2.2 (iii), we obtained that L is not of the form C0 +glu N6 +glu C1

with C0 and C1 being chains. Hence, using (2.19), we can pick an element

e ∈ [o, i] \N6. (2.23)

Combining (2.21) and (2.23), we obtain that e ‖ b. We already know that
y ‖ b for all y ∈ {a, d, c}. Since there is no 3-antichain by Lemma 2.2.4, e ‖ b
and y ‖ b give that e ∦ y for all y ∈ {a, d, c}. Hence,

{a, d, c, e} is a chain, whence so is {o, i, a, d, c, e}. (2.24)

Now if e belonged to [a, c], then {o, i, a, b, c, d, e} would be a sublattice
isomorphic to N7 and so Lemma 2.2.2(ii) and Lemma 2.3.2(v) together would
contradict (2.14). Hence, e /∈ [a, c]. By (2.24), this means that either o <
e < a, or c < e < i. By duality, we can assume the second alternative, that
is, c < e < i. Since e ∧ b = o would clearly imply that {o, i, a, b, c, d, e} is a
sublattice isomorphic to N7, which has just been excluded, we can assume
that f := e ∧ b > o. We turn the 8-element set {o, i, a, b, c, d, e, f} into a
partial lattice Q8 as follows. To do so, we use the notation S = Q8 \ {e, f};
note that S is a sublattice of L and S is isomorphic to N6. For x, y ∈ Q8,
such that x ‖ y, we let

x ∧ y :=



x ∧S y, if x, y ∈ S,

f, if {x, y} = {e, b},

o, if x ∈ {a, d, c} and y = f,

o, if y ∈ {a, d, c} and x = f
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and

x ∨ y :=



x ∨S y, if x, y ∈ S,

i, if {x, y} = {e, b},

undefined, otherwise.

Q8

e

i

c

d

a

b

f

o

Figure 2.11: Partial sublattice Q8

It is straightforward to compute that | Sub(Q8)| = 16.375 · 28−5 (see Fig-
ure 2.11, for the calculation see Appendix A.7). Hence, by Lemma 2.3.1,
| Sub(L)| ≤ 16.375 · 2n−5, contradicting (2.14). We conclude that Case B1
cannot occur.

Case B2: d /∈ [a, c]. Based on (2.22), duality allows us to assume that
c < d. Then o < a < c < d < i. If we had that d∧ b = o, then {o, i, a, b, c, d}
would form a sublattice isomorphic to N6 and, apart from interchanging
the role of c and that of d, we would have Case B1. But this would be a
contradiction since we have already seen that Case B1 cannot occur. Hence,
x := d ∧ b 6= o. Using that d ‖ b by (2.21) (applied to d), we obtain that
o < x < b. Since b covers o, understood in N5, it follows that x /∈ N5.
However, then x ∈ [o, i] \ N5 and x < b contradicts (2.21). This shows that
Case B2 cannot occur.

Now, after that both Case B1 and Case B2 have been excluded, it follows
that Case B cannot occur.

Case C: Θ collapses e1. Then, exactly in the same way as in Case 1
(used in the proof of part (i) of Theorem 2.4.1), duality allows us to assume
that Θ does not collapse e4 and ϕ(↓(ã ∨ b̃)) is a sublattice (isomorphic to)
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C(2)×C(3) in L. Hence, | Sub(L)| ≤ 19 ·2n−5 by Lemma 2.2.2 (ii) and Lemma
2.2.3(v), contradicting (2.14). This shows that Case C cannot occur.

After excluding each of Cases A, B, and C, we have shown the validity of
(2.15).

Next, observe that | Sub(L)| < 20 · 2n−5 and | Sub(L)| ≥ 26 · 2n−5 would
contradict the first inequality and the second inequality of (2.14), respec-
tively. Hence, the argument between (2.3) and (2.4) remains valid for the
current situation, and L still satisfies (2.4). Since (2.5) is the same as (2.15),
we know that L satisfies (2.5). Hence the sentence preceding (2.12) applies,
and we obtain that L satisfies (2.12).

Based on (2.4), we can pick two 2-antichains, {a, b} and {c, d}, in L.
They are disjoint by (2.15), so |{a, b, c, d}| = 4. Since a ‖ b, (2.12) applies to
{a, b, c}, and we obtain that {a, b} ⊆ ↓c or {a, b} ⊆ ↑c. By duality, we can
assume that {a, b} ⊆ ↓c. Similarly, (2.12) to applies to the set {a, b, d} as
well, and we get that {a, b} is included either in ↑d, or in ↓d. Since the first
alternative would lead to d < a < c and so it would contradict that c ‖ d, we
have that {a, b} ⊆ ↓d. Thus, {a, b} ⊆ ↓c∩ ↓d = ↓(c∧ d), and we obtain that
u := a∨b ≤ c∧d =: v. Let S := {a∧b, a, b, u, v, c, d, c∨d}. Depending on u =
v or u < v, S is a sublattice isomorphic to B4 +glu B4 or B4 +glu C

(2) +glu B4.
However, if S was isomorphic to B4 +glu C

(2) +glu B4, then Lemma 2.2.2(ii)
together with Lemma 2.2.3(iv) would give that | Sub(L)| ≤ 21.125 · 2n−5,
contradicting (2.14).

Hence S is isomorphic to B4 +glu B4. Lemma 2.2.2(ii) together with
Lemma 2.2.3(iii) imply that | Sub(L)| ≤ 21.25 · 2n−5. On the other hand,
| Sub(L)| ≥ 21.25 · 2n−5 holds by (2.14). So we have that | Sub(L)| =
21.25 · 2n−5. Hence, Lemma 2.2.2(iii) together with Lemma 2.2.3(iii) give
that L is of the form (2.13). This indicates that L violates (2.14), contra-
dicting the initial assumption that L satisfies (2.14). This completes the
proof of part (ii) of Theorem 2.4.1 and that of the whole Theorem 2.4.1.
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2.5 Some related results
Freese [31] was able to prove that an n-element lattice L has at most 2n−1

congruences. Motivated with this result, Czédli [19] proved that if L has
fewer than 2n−1 congruences, then it has at most 2n−2 congruences. Also, he
described the n-element lattices with exactly 2n−2 congruences, as it is in the
following theorem:

Theorem 2.5.1 (Czédli [19]). If L is a finite lattice of size n = |L| and
|Con(L)| is size of the congruence lattice L, then the following hold.

(i) L has at most 2n−1 congruences. Furthermore, |Con(L)| = 2n−1 if and
only if L is a chain.

(ii) If L has less than 2n−1 congruences, then it has at most 2n−1/2 = 2n−2

congruences.

(iii) |Con(L)| = 2n−2 if and only if L is of the form C1 +glu B4 +glu C2 such
that C1 and C2 are chains and B4 is the four-element Boolean lattice,
see figure 2.3.

Continuing the work of Freese and Czédli, Kulin and Mureşan studied in
[36] the smallest and the largest numbers of congruences of finite lattices of
n elements. They proved that the third, fourth, and fifth largest numbers of
congruences of an n–element lattice are 5 · 2n−5 if n ≥ 5, 2n−3 and 7 · 2n−6

if n ≥ 6, respectively. They also determine the structures of the n–element
lattices having those numbers.

A finite lattice is said to be planar if it has a Hasse diagram that can be
drawn in the plane with nonintersecting lines. In [20], Czédli proved that if an
n-element finite lattice L has at least 83 · 2n−8 sublattices, then it is a planar
lattice. Czédli in [22] showed that if L has more than 2n−5 congruences, then
L is planar. In both cases, the result is sharp for large n; see Remark 1.3 in
Czédli [20] and Remark 1.2 in Czédli [22].



3

Several large numbers of

subuniverses of finite

semilattices

This chapter is based on a joint paper with Horváth [4]. Let (L,∨) be a finite
n-element semilattice. We prove that the first largest number of subuniverses
of an n-element semilattice is 2n = 32 · 2n−5, the second largest number is
28 · 2n−5 and the third one is 26 · 2n−5, where n ≥ 5. Also, we describe
the n-element semilattices having exactly 32 · 2n−5, 28 · 2n−5, or 26 · 2n−5

subuniverses.

3.1 Notations used in this chapter
All the semilattices in this chapter will be assumed to be finite. Our notation
and terminology is standard, see, for example, Chajda et al. [12]. However,
we recall some notions and introduce some auxiliary concepts.

On a semilattice (L,∨), we have a natural partial ordering defined by

x ≤ y ⇐⇒ x ∨ y = y.

Conversely, if (L,≤) is a partial order in which any two elements x, y have

27
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a least upper bound x ∨ y, then (L,∨) is a semilattice. For any x, y in a
join-semilattice, x ∧ y is defined by their infimum provided it exists; and if
this infimum does not exist, then x ∧ y is undefined. For the definition of
ordinal sum and glued sum of posets, we direct the reader to Section 2.1.

Now let us define the semilattices H3 and H4, which will be used later
(see Figure 3.1). The three-element semilattice {a, b, 1} defined by

a‖b and a ∨ b = 1,

is called H3, while H4 is a four-element semilattice {a, b, c, 1} with a < b,
defined as follows:

a‖c, b‖c and a ∨ c = b ∨ c = 1.

For general results on semillatices we direct the reader to the book of Chajda
et al. [12]. An element u of a semilattice L is called a narrow element, or
narrows for short, if u 6= 1L and L = ↑u ∪ ↓u. That is, if u 6= 1L and x‖u
holds for no x ∈ L.

The concept of a partial algebra was defined earlier in Section 2.1. Let us
agree that whenever we say that S = ({a1, . . . , an},∨) is a partial semilattice
with

x1 ∨ y1 = z1, . . . , xm ∨ ym = zm, (3.1)

then the Dom(∨)={(xi, yi) : 1 ≤ i ≤ m} ∪ {(yi, xi) : 1 ≤ i ≤ m} and for
(u, v) ∈ Dom(∨), u ∨ v is defined by 3.1 together with commutativity.

Now we have a structure (A,∨) such that A is a non-empty set with a
partial operation ∨, which is a map from Dom(∨) ⊆ A2 to A. A subuniverse
of A is a subset X of A such that X is closed with respect to this partial
operation; i.e, if x, y ∈ X and (x, y) ∈ Dom(∨), then x ∨ y ∈ X. The set
of subuniverses of A will be denoted by Sub(A). In particular ∅ ∈ Sub(A).
Following Czédli [20] and [23], we define the relative number of subuniverses
of A as follows:

σk(A) := | Sub(A)| · 2k−n.

Similarly, if B = (B,FB), then

σk(B) := | Sub(B)| · 2k−n.
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In his papers Czédli set k = 8, while here we will set k = 5. This notion
could have been introduced in the previous chapter as well, but we did not
want to deviate from the published paper.

3.2 Preliminaries
We were inspired by similar or analogous results concerning lattices and
semilattices. Recall that Czédli and Horváth [25] proved that the first three
largest numbers of subuniverses of an n-element lattices are 32·2n−5, 26·2n−5,
and 23 · 2n−5, where 5 ≤ n ∈ N+. In the joint paper with Horváth [3], we
showed that the fourth and fifth largest numbers are 21.5 · 2n−5 (for n ≥ 6)
and 21.25 · 2n−5 (for n ≥ 7), respectively. Also we described the n-element
lattices producing these numbers in Theorem 2.4.1.

The following lemma is from Czédli [20], and it demonstrates the impor-
tance of the concept of relative number of subuniverses. Also, it will be used
later in the proof of Lemma 3.3.1 and Theorem 3.4.1.

Lemma 3.2.1 ( Czédli [20], Lemma 2.3). If B = (B,FB) is a weak partial
subalgebra of a finite partial algebra A = (A,FA), then σk(A) ≤ σk(B), for
any k.

3.3 Auxiliary results
Lemma 3.3.1. If (K,∨) is a subsemilattice and H is a subset of a finite
semilattice (L,∨), then the following three assertions hold.

(i) With the notation t := |H ∩ S : S ∈ Sub(L,∨)|, we have that

σk(L,∨) ≤ t · 2k−|H|.

(ii) σk(L,∨) ≤ σk(K,∨).

(iii) Assume, in addition for the previous assumptions, that (K,∨) has no
narrows. Then σk(L,∨) = σk(K,∨) if and only if (L,∨) is (isomorphic
to) C0 +ord(K,∨) +glu C1, where C1 is a chain, and C0 is a chain or the
empty set.



3. SUBUNIVERSES OF FINITE SEMILATTICES 30

Proof. It is a routine to derive part (i) and (ii) from the proof of Lemma
3.2.1. The argument actually provides a bit more than stated in (i) and (ii);
namely, for later reference, note the following:

If σk(L,∨) = σk(K,∨), then for every S ∈ Sub(K,∨)

and every subset X of L \K we have that

S ∪X ∈ Sub(L,∨).

(3.2)

Next, to prove part (iii), let n := |(L,∨)| and m := |(K,∨)|. Let k = 5, the
case of any other k being analogous. Now assume that (K,∨) has no narrows.
First, let (L,∨) = C0 +ord(K,∨) +glu C1. It is obvious that whenever X ⊆
L\K and S ∈ Sub(K,∨), S∪X ∈ Sub(L,∨). Since L\K has 2|L|−|K| subsets,
| Sub(L,∨)| ≥ | Sub(K,∨)| · 2|L|−|K|. Dividing this inequality by 2n−5 =
2m−5 · 2|L|−|K|, we get the required equality, which is the converse inequality
stated in part (ii).

Conversely, assume the equality stated in (iii). We claim that

for all y ∈ K and for all x ∈ L \K, y ∦ x. (3.3)

Suppose we have the contrary. If y ∈ K, then {y} ∈ Sub(K). If x ∈ L \K
and y||x, then {y, x} is not a subuniverse of L, which contradicts (3.2). Next,
we claim that

for all x ∈ L \ K, x 6> 1K implies that for all y ∈ K,

x < y.
(3.4)

Suppose the contrary is valid and let us pick an x in L\K and a y ∈ K such
that x 6> 1K and x 6< y. Using (3.3) and x 6= y, we have that y < x < 1K .

Let p := ∨{s ∈ K : s < x}, which exists by finiteness and y ≤ p ≤ x. In
fact, p ∈ K as K is a subsemilattice of L but x 6∈ K, so y ≤ p < x. Now
assume that u ∈ K such that u 6≤ p. We know from (3.3) that u ∦ x. If
we had u ≤ x (actually, u < x since x 6∈ K), then u would be one of the
joinands defining p and so u ≤ p would be a contradiction. Hence x < u,

and so p < x < u implies p < u. We have seen that, for any u ∈ K, u 6≤ p

implies p < u. In other words, K = ↑Kp ∪ ↓Kp, which means p is a narrows,
contradicting our assumption about K. Thus, (3.4) holds. Lastly, we show
that L \K is a chain. Indeed, if L \K is not a chain, say a||b, a ∈ L \K and
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b ∈ L \K, then ∅ ∈ Sub(K) extended by {a, b} 6∈ Sub(L) would contradict
(3.2). Define C1 = {x ∈ L \ K : x ≥ 1K}, which is a chain (a subchain of
L \ K). Let C0 = (L \ K) \ C1, which is either a chain or empty. If C0 is
empty, then L is K+gluC1, as required. If C0 is nonempty, then its elements
are less than any element of K by (3.4), and so L = C0 +ord K +glu C1, as
required.

The following lemma can be proved using a computer program (see Ap-
pendix B). The program for counting subuniverses is available on the webpage
of G. Czédli: http://www.math.u-szeged.hu/ czedli/ (subsize, a program for
counting subuniverses 2019).

H3
1

a b

H4
1

b c

a

Figure 3.1: Partial lattices H3 and H4

K3
1

c ba

K
1

a c

d b

N
1

d ec

a b

Figure 3.2: Partial lattices K3, K and N

Lemma 3.3.2. For the join-semilattices given in figures 3.1 to 3.3, the fol-
lowing seven assertions hold.

(i) σ5(H3) = 28,

(ii) σ5(H4) = 26,

(iii) σ5(H5) = 25,
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H5
1

c d

b

a

K0
1

x yz

ba c

Figure 3.3: Partial lattices H5 and K0

(iv) σ5(K3) = 24,

(v) σ5(K) = 23,

(vi) σ5(N) = 19.5,

(vii) σ5(K0) = 15.25.

Proof. The same notations used in figures 3.1 to 3.3 will be applied. For
later reference, note that if (L,∨) is a chain, then |Sub(L,∨)| = 2|(L,∨)|.

For (i), notice that

|{S ∈ Sub(H3,∨) : a 6∈ S}| = 4, (S is chain),

|{S ∈ Sub(H3,∨) : a ∈ S, {b} ∩ S = ∅}| = 2, and

|{S ∈ Sub(H3,∨) : a ∈ S, {b} ∩ S 6= ∅}| = 1,

whereby | Sub(H3,∨)| = 4+2+1 = 7 = 28 ·23−5, which means that σ5(H3) =
28; and this proves case (i).

The proof using the above mentioned computer program is:
Input:

\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*
\beginjob
\name
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H_3
\size
3
\elements
ab1
\P edges
\P a1 b1
\constraints
a+b=1 ,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 18:56:26) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=3, A(without commas)={ab1}. Constraints:
edges
a1 b1
a+b=1
Result for A=H_3: |Sub(A)| = 7, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 28.0000000000000000 .

The computation took 8/1000 seconds.

For (ii), let us compute

|{S ∈ Sub(H4,∨) : a 6∈ S}| = 7, by (i) ,

|{S ∈ Sub(H4,∨) : a ∈ S, {b, c} ∩ S = ∅}| = 2, and

|{S ∈ Sub(H4,∨) : a ∈ S, {b, c} ∩ S 6= ∅}| = 4.

Hence, | Sub(H4,∨)| = 7+2+4 = 13 = 26 ·24−5, which means that σ5(H4) =
26; and this proves case (ii). For the program calculation, see Appendix B.8.
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For (iii), let us compute

|{S ∈ Sub(H5,∨) : d 6∈ S}| = 16, (S is chain),

|{S ∈ Sub(H5,∨) : d ∈ S, {a, b, c} ∩ S = ∅}| = 2, and

|{S ∈ Sub(H5,∨) : d ∈ S, {a, b, c} ∩ S 6= ∅}| = 7.

Hence, | Sub(H5,∨)| = 16 + 2 + 7 = 25 = 25 · 25−5, which means that
σ5(H5) = 25; and this proves case (iii). For the program calculation, see
Appendix B.9.

For (iv), let us compute

|{S ∈ Sub(K3,∨) : a 6∈ S}| = 7, (by (i)),

|{S ∈ Sub(K3,∨) : a ∈ S, {b, c} ∩ S = ∅}| = 2, and

|{S ∈ Sub(K3,∨) : a ∈ S, {b, c} ∩ S 6= ∅}| = 3.

Hence, | Sub(K3,∨)| = 7+2+3 = 12 = 24 ·24−5, which means that σ5(K3) =
24; and this proves case (iv). For the program calculation, see Appendix B.10.

In order to prove (v), note that (B4,∨) has | Sub(B4)|+ 1, see Appendix
B.11. Now, let us compute

|{S ∈ Sub(K,∨) : b 6∈ S}| = 14, (S is B4),

|{S ∈ Sub(K,∨) : b ∈ S, {a, c, d, } ∩ S = ∅}| = 2, and

|{S ∈ Sub(K,∨) : b ∈ S, {a, c, d, } ∩ S 6= ∅}| = 7,

whereby | Sub(K,∨)| = 14 + 2 + 7 = 23 = 23 · 25−5, which means that
σ5(K,∨) = 23; and this proves case (v). For the program calculation, see
Appendix B.12.

For (vi), let us compute

|{S ∈ Sub(N,∨) : d 6∈ S}| = 23, (by (v)),

|{S ∈ Sub(N,∨) : d ∈ S, {a, b, c, e} ∩ S = ∅}| = 2, and

|{S ∈ Sub(N,∨) : d ∈ S, {a, b, c, e} ∩ S 6= ∅}| = 14.
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Hence, | Sub(N,∨)| = 23 + 2 + 14 = 39 = 19.5 · 26−5, which means that
σ5(N,∨) = 19.5; and this proves case (vi). For the program calculation, see
Appendix B.13.

For (vii), let us compute

|{S ∈ Sub(K0,∨) : b 6∈ S}| = 39, (by (vi)),

|{S ∈ Sub(K0,∨) : b ∈ S, {a, x, c, y, z} ∩ S = ∅}| = 2, and

|{S ∈ Sub(K0,∨) : b ∈ S, {a, x, c, y, z} ∩ S 6= ∅}| = 20.

Hence, | Sub(K0,∨)| = 39 + 2 + 20 = 61 = 15.25 · 27−5, which means that
σ5(K0,∨) = 15.25; and this proves case (vii). For the program calculation,
see Appendix B.14.

3.4 The first three largest numbers of the

subuniverses of finite semilattices
For a natural number n ∈ N+ := {1, 2, 3, . . . }, let

NS(n) := {| Sub(L)| : L is a semilattice of size |L| = n}.

Theorem 3.4.1. If 5 ≤ n ∈ N+, then the following three assertions hold.

(i) The first largest number in NS(n) is 2n = 32 · 2n−5. Furthermore, an
n-element semilattice (L,∨) has exactly 2n subuniverses if and only if
(L,∨) is a chain.

(ii) The second largest number in NS(n) is 28 · 2n−5. Furthermore, an n-
element semilattice (L,∨) has exactly 28 ·2n−5 subuniverses if and only
if (L,∨) ∼= H3 +glu C1 or (L,∨) ∼= C0 +ord H3 +glu C1, where C0 and C1

are finite chains.

(iii) The third largest number in NS(n) is 26 · 2n−5. Furthermore, an n-
element semilattice (L,∨) has exactly 26 ·2n−5 subuniverses if and only
if (L,∨) ∼= H4 +glu C1 or (L,∨) ∼= C0 +ord H4 +glu C1, where C0 and C1

are finite chains.
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Proof. Part (i) is trivial. For part (ii), let (L,∨) be an n-element semilattice.
We know from Lemma 3.3.1(iii) and 3.3.2(i) that if

(L,∨) ∼= H3 +glu C1 or (L,∨) ∼= C0 +ord H3 +glu C1,

where C0 and C1 are chains,
(3.5)

then σ5(L,∨) = σ5(H3) = 28, indeed. Conversely, assume that σ5(L,∨) = 28.
Then it follows from part (i) that (L,∨) is not a chain. So (L,∨) has two
incomparable elements, a and b. Clearly, {a, b, a∨ b} is a join-subsemilattice
isomorphic to H3. But σ5(H3) is also 28 by Lemma 3.3.2(i). Thus, Lemma
3.3.1(iii) immediately tell us that (L,∨) is of the desired form. With this,
we have completed the proof of part (ii) of Theorem 3.4.1.

We will now prove part (iii).
Assume that (L,∨) is of the given form. Then σ5(L,∨) = 26 follows from

Lemma 3.3.1(iii) and Lemma 3.3.2(ii). In order to prove the converse, namely
the nontrivial implication, assume that σ5(L,∨) = 26. By Theorem 3.4.1(i),
(L,∨) has two incomparable elements, a and b. By Theorem 3.4.1(ii), {a, b}
is not the only 2-element antichain in (L,∨) since otherwise σ5(L,∨) would
be 28. To complete the proof, consider the following cases.

Case 1: There is an antichain {c, d} disjoint from {a, b}, where the
elements a, b, c, d are distinct. Now let x := a ∨ b and y := c ∨ d. Let
t := |{a, b, c, d, x, y}|. Depending on t ∈ {4, 5, 6}, there are three cases.
The number of possible cases can be reduced by symmetry: a and b play a
symmetric role, so do c and d, and so do {a, b} and {c, d} and hence x and
y. We have to consider only three sub-cases. These are:

Sub-case 1a: Here t = 6. Take the partial algebra U1 = {a, b, c, d, x, y}
with a ∨ b = x and c ∨ d = y (see Figure 3.4). This six-element partial
algebra has σ5(U1) = 24.5, which can be verified by the above-mentioned
computer program (see Appendix B.15). By Lemma 3.2.1, we find that
σ5(L,∨) ≤ σ5(U1) ≤ 24.5, contradicting σ5(L,∨) = 26. Thus, this case is
ruled out.

Sub-case 1b: Here t = 5. By symmetry, y = c∨ d is not a new element,
so y = c ∨ d is either x or a. The case y = b need not be considered because
a and b are symmetric. Therefore, this sub-case 1b is split into two cases as
follows:
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First, when y = x, this case is captured by taking the partial algebra U2 =
{a, b, c, d, x} with a∨b = x, c∨d = x (see Figure 3.4). It has σ5(U2) = 25 using
the computer program (see Appendix B.16). Like the above, this implies that
σ5(L,∨) ≤ σ5(U2) ≤ 25, which contradicts the assertion σ5(L,∨) = 26.

Second, when y = a, this case is covered by taking the partial algebra
U3 = {a, b, c, d, x} with a∨b = x, c∨d = a (see Figure 3.4). This five-element
partial algebra has σ5(U3) = 24 < 26 (for the calculation, see Appendix
B.17), and we get a contradiction as before.

From the above we can see that Sub-case 1b is excluded since so are both
of its subcases.

U1 x

a b

y

c d

U2 x

a b c d

U3 x

a b

dc

Figure 3.4: Partial lattices U1, U2 and U3

Sub-case 1c: Here t = 4. Then x = a∨ b is either c or d. By symmetry,
we can assume that a ∨ b = c. However, then a < c < c ∨ d, b < c <

c ∨ d, whereby y = c ∨ d is bigger than any of the elements a, b, c, d, which
contradicts t = 4. So this case is excluded.

After having ruled out all of the sub-cases, we find that Case 1 is excluded.
That is, no two-element antichain is disjoint from {a, b}. But recall that there
is another two-element antichain, whereby, by a-b symmetry, we consider

Case 2: there is an element c such that a and c are incomparable. Now,
there are two sub-cases according to the position of b and c.

Sub-case 2a: Here b and c are also incomparable. Now, we need to
investigate how many of the elements a ∨ b, a ∨ c, and b ∨ c are equal to
a∨ b∨ c. The answer could be 0, 1, 2 or 3. Hence using symmetry, it suffices
to consider just the following four join-semilattices. The first join-semilattice
is K0 = {a, b, c, z, x, y, 1} with edges ax, bx, by, cy, az, cz, x1, y1, z1 and
equalities a ∨ b = x, b ∨ c = y, a ∨ c = z, x ∨ z = 1, x ∨ y = 1, z ∨ y = 1,
a ∨ y = 1, c ∨ x = 1, b ∨ z = 1 (see Figure 3.3); this gives σ5(K0) = 15.25 by
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Lemma 3.3.2(vii). The second join-semilattice is K1 = {a, b, c, x, y, 1} with
edges ax, bx, by, cy, x1, y1 and equalities a ∨ b = x, b ∨ c = y, a ∨ c = 1,
x∨ y = 1, x∨ c = 1, y ∨ a = 1 (see Figure 3.5); this gives σ5(K1) = 18.5 (for
the calculation, see Appendix B.18).

K1
1

x y

b
a c

K2
1

x c

ba

Figure 3.5: Partial lattices K1 and K2

The third is K2 = {a, b, c, x, 1} with edges ax, bx, x1, c1 and equalities
a∨b = x, a∨c = 1, b∨c = 1, x∨c = 1 (see Figure 3.5); this gives σ5(K2) = 22
(for the calculation, see Appendix B.19). The fourth is K3 = {a, b, c, 1} with
edges a1, b1, c1, and equalities a ∨ b = 1, a ∨ c = 1, b ∨ c = 1 (see Figure
3.2); this gives σ5(K3) = 24 by Lemma 3.3.2(iv). Since one of K0, K1,
K2, and K3 is a subsemilattice of (L,∨) and all the four σ5 values of these
join-semilattices are smaller than 26, sub-case 2a is excluded.

Sub-case 2b: Here b ∦ c while a‖c and a‖b. Now, b and c have a
symmetric role. So we can assume that b < c. Suppose, for the sake of
contradiction, that x := a ∨ b < a ∨ c := 1. Assuming these comparabilities
and incomparabilities, |{a, b, c, x, 1}| = 5; for example if x = a ∨ b = c is
impossible since it would mean a < c. Apart from the notation used, the join-
subsemilattice {a, b, c, x, 1} here is the same as K in Figure 3.2. By Lemma
3.3.2 (v), σ5(K) = 23 < 26, which leads to a contradiction. So a ∨ b < a ∨ c
fails but a∨b ≤ a∨c since b < c. Therefore, with 1 = a∨b = a∨c, {a, b, c, 1}
is a subsemilattice (isomorphic to) H4.

Now that all other possibilities have been ruled out, we know that H4 is
a join-subsemilattice of (L,∨). Note that H4 has no narrows. Therefore, by
Lemma 3.3.1(iii), (L,∨) is of the desired form. Then, the proof of Theorem
3.4.1 is complete.
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3.5 Some related results
In [21], Czédli found the four largest numbers of congruences of n-element
semilattices. He, also described the n-element semilattices producing these
numbers, as in the following theorem.

Theorem 3.5.1 (Czédli [21]). If 〈S;∧〉 is a finite meet-semilattice of size
n = |S| > 1, then the following hold.

(i) 〈S;∧〉 has at most 2n−1 = 32 · 2n−6 congruences. Furthermore, we have
that |Con(S;∧)| = 2n−1 if and only if 〈S;∧〉 is a tree semilattice.

(ii) If 〈S;∧〉 has fewer than 2n−1 = 32·2n−6 congruences, then it has at most
28 ·2n−6 congruences. Furthermore, |Con(S;∧)| = 28 ·2n−6 if and only
if 〈S;∧〉 is a quasi-tree semilattice and its nucleus is the four-element
Boolean lattice; see Figure 2 (Appendix C) for n = 6.

(iii) If 〈S;∧〉 has fewer than 28 · 2n−6 congruences, then it has at most
26 ·2n−6 congruences. Furthermore, |Con(S;∧)| = 26 ·2n−6 if and only
if 〈S;∧〉 is a quasi-tree semilattice such that its nucleus is the pentagon
N5; see Figure 5 (Appendix C) and S1, ..., S3 in Figure 3 (Appendix C).

(iv) If 〈S;∧〉 has fewer than 26 · 2n−6 congruences, then it has at most
25 ·2n−6 congruences. Furthermore, |Con(S;∧)| = 25 ·2n−6 if and only
if 〈S;∧〉 is a quasi-tree semilattice such that its nucleus is either F, or
N6; see Figure 5 (Appendix C) and S4, ..., S7 in Figure 4.

Czédli in [23] was able to prove that an n-element finite semilattice with
at least 127 · 2n−8 subsemilattices is planar. More precisely:

Theorem 3.5.2 (Czédli [23]). Let L be a finite semilattice, and let n := |L|
denote the number of its elements. If L has at least 127 ·2n−8 subsemilattices,
then it is a planar semilattice.

The theorem above is sharp; see Remark 1.2 in Czédli [23]. Chajda [10]
studied join-semilattices and lattices with the greatest element 1 where every
interval [p, 1] is a lattice with an antitone involution. He characterized these
semilattices by means of an induced binary operation, called sectionally an-
titone involution. This characterization is performed by means of identities,
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so the classes of these semilattices or lattices form varieties. He also inves-
tigated the congruence properties of these varieties. Libkin and Muchnik in
[38] proved that if S is an arbitrary semilattice and S1, S2 are its disjoint
subsemilattices, then S1 and S2 can be separated via a separatory subsemi-
lattice. That is, there exists a separatory subsemilattice D ⊆ S such that
S1 ⊆ D,S2 ⊆ S − D. This result immediately implies that any semilattice
with two or more elements has a proper separatory subsemilattice. They also
proved that a lattice L satisfies the separation condition iff it is distributive
and series-parallel. A lattice L is called series-parallel, if it does not contain
a subposet whose diagram looks like the letter N .



4

The number of subuniverses,

congruences, weak congruences

of semilattices defined by trees

This chapter is based on joint manuscript with Horváth and Németh [5]. Here
we determine the number of subuniverses of semilattices defined by arbitrary
and special kinds of trees using combinatorial considerations. Using a result
of Freese and Nation [32], we provide a formula for the number of congruences
of semilattices defined by arbitrary and special kinds of trees. Using both
results, we prove a formula for the number of weak congruences of semilattices
defined by a binary tree and we discuss some special cases. We solve two
related nontrivial recurrences by applying the method of Aho and Sloane.

4.1 Notations used in this chapter
A rooted tree defines a semilattice in a natural way, where the root is the
greatest element. Recall that on a semilattice (L,∨), we have a natural
partial order defined by

x ≤ y ⇐⇒ x ∨ y = y.

41
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Conversely, if (L,≤) is partial order in which any two elements x, y have
a least upper bound x ∨ y, then (L,∨) is a semilattice. For any x, y in a
join-semilattice, x ∧ y is defined by their infimum provided it exists; if this
infimum does not exist, then x ∧ y is undefined.

Figure 4.1: Binary tree

A binary tree is a rooted tree in which every node has at most two children
(see, e.g., Figure 4.1). A binary tree is called a full binary tree if each of its
nodes except the root is either a leaf node or an internal node having one
parent and two children; for example, see B9 in Figure 4.2. The binary tree’s
height is the number of edges of the longest path from the root node to a
leaf node in the tree, i.e., the length of the longest path from the root node
to any leaf node in the tree. The perfect binary tree is a binary tree in which
all interior nodes have two children, and all the leaves have the same path
length to the root; for example, see B7 in Figure 4.2.

B7 1

c f

a b d e

B9 1

e k

c d f g

a b

Figure 4.2: Perfect binary tree and full binary tree

If B is a binary tree, then (B,∨) denotes the semilattice defined naturally
on B.We will denote the left maximal and right maximal subtrees by B1 and
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B2, respectively, whose roots are the left and right coatoms of B, respectively
(see, e.g., Figure 4.3).

B

B1 B2

Figure 4.3: The Left and right maximal subtrees

Now we will introduce a new terminology. We are going to call a full
binary tree a prickly-snake, if in all but the last level, there is exactly one
parent (see, e.g., Figure 4.4), because of the shape of the graph. It is not
hard to see that the trees in Figure 4.4 are isomorphic. In this chapter we
consider the most “left-sided" structure, which is located on the right-hand
side of Figure 4.4.

Figure 4.4: Prickly-snake graphs

4.2 The cardinality of the subuniverse lattice

of a semilattice defined by a tree
Lemma 4.2.1. If (T,∨) is a semilattice defined by a tree T , then

|Sub(T,∨)| =
n∏

i=1
(|Sub(Ti,∨)|) +

n∑
i=1

(|Sub(Ti,∨)|)− (n− 1),



4. SEMILATTICES DEFINED BY TREES 44

where T1, . . . , Tn is a repetition free list of maximal subtrees of the tree T.

Proof. Let T ∗i be subuniverses of Ti where i ∈ {1, 2, ..., n}. Then all T ∗i are
subuniverses of T, as well. In this way we get

|Sub(T1,∨)|+ |Sub(T2,∨)|+ ...+ |Sub(Tn,∨)| − (n− 1)

subuniverses because |Sub(T1,∨)| , |Sub(T2,∨)| , ..., |Sub(Tn,∨)| are all count
∅. Also, {1}∪⋃n

i=1 T
∗
i is a subuniverse, and the number of such subuniverses

is ∏n
i=1(|Sub(Ti,∨)|). Hence we counted all the subuniverses.

Corollary 4.2.1.1. If (B,∨) is a semilattice defined by a binary tree B, then

|Sub(B,∨)| = |Sub(B1,∨)| · |Sub(B2,∨)|+ (|Sub(B1,∨)|+ |Sub(B2,∨)|)− 1,

where B1, B2 are the left and right maximal subtrees of the tree, respectively.

Corollary 4.2.1.2. If (B,∨) is a semilattice defined by a prickly-snake B of
height h, then

|Sub(B,∨)| = 3 |Sub(B1,∨)|+ 1 = 5 · 3h − 1
2 ,

where B1 is the left maximal subtree of the tree.

Proof. Apply Corollary 4.2.1.1 and webpage https://oeis.org/ with integer
sequence A060816.

Remark 4.2.2. See also https://erich-friedman.github.io/mathmagic/1000.html

Theorem 4.2.3. If (B,∨) is a semilattice defined by a perfect binary tree
B of height h, then

|Sub(B,∨)| = |Sub(B1,∨)|2 + 2 |Sub(B1,∨)| − 1,

where B1 is the left maximal subtree of the tree.
Moreover,

|Sub(B,∨)| =
⌈
C2h+1⌉− 1, C = 1.6784589651254 . . .

where dxe denotes the least integer greater than or equal to x.
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Proof. To get the recurrence formula, use Corollary 4.2.1.1. Now we solve
the recurrence.

For the sake of convenience, let an := |Sub(B,∨)|+1, where B is a perfect
binary tree of height (n− 1). With this notation, our recurrence reads as

an = a2
n−1 − 1, a0 = 2.

In the rest of the proof we will apply the method of Aho and Sloane
[6, Section 3].

It is obvious that (i) the sequence (an) is monotone increasing, and (ii)
an ≥ 2 for all n.

Denoting
xn := log an , yn := log

(
1− 1

a2
n

)
, (4.1)

the recurrence
an+1 = a2

n − 1 = a2
n

(
1− 1

a2
n

)
can be rewritten as

xn+1 = 2xn + yn.

It is clear that

x1 = 2x0 + y0,

x2 = 4x0 + 2y0 + y1,

x3 = 8x0 + 4y0 + 2y1 + y2,

...

xn = 2nx0 +
n−1∑
k=0

2n−1−kyk.

Now, let
An := 2nx0 +

∞∑
k=0

2n−1−kyk , Bn :=
∞∑

k=n

2n−1−kyk .

These series are (absolutely) convergent since, from (i) and (ii), yn < 0 and
|yn| ≥ |yn+1|, hence

|2n−1−kyk| ≤
2n−1|y0|

2k
.
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Clearly Bn < 0 for all n and

|Bn| =
1
2 |yn|+

1
4 |yn+1|+

1
8 |yn+2|+ · · · < |yn| . (4.2)

With this notation

an = exn = eAn−Bn = eAne−Bn . (4.3)

We will now rewrite the first term as follows:

eAn = exp
(

2nx0 +
∞∑

k=0
2n−1−kyk

)

= exp
(

2n

(
x0 +

∞∑
k=0

2−1−kyk

))
= C2n

,

where

C := exp
(
x0 +

∞∑
k=0

2−1−kyk

)
= exp

(
x0 + y0

2 + y1

4 + y2

8 + · · ·
)

is a constant (independent of n). Using Mathematica (see Appendix D.20),
we find that

C = 1.6784589651254 . . . .

Now, consider the second term in (4.3). By (4.2), we have

0 < e−Bn = e|Bn| < e|yn| = exp
∣∣∣∣log

(
1− 1

a2
n

)∣∣∣∣ = exp
(

log
(

1
1− 1

a2
n

))
.

Using the elementary inequality 1
1−u
≤ 1 + 2u for 0 ≤ u ≤ 1

2 gives that
1 < 1

1− 1
a2

n

< 1 + 2
a2

n
, and, therefore,

e−Bn < 1 + 2
a2

n

.

Substituting this to (4.3) and using (ii), we have

eAn ≤ an ≤ eAn

(
1 + 2

a2
n

)
≤ eAn

(
1 + 2

(eAn)2

)
≤ eAn + 2

eAn
< eAn + 1.

Since an is an integer, the formula in Theorem 4.2.3 follows.



4. SEMILATTICES DEFINED BY TREES 47

4.3 The cardinality of the congruence lattice

of a semilattice defined by a binary tree
For a finite join-semilattice S = 〈S;∨〉, we will use the notation S+ :=
S \ {1}. Then 〈S+;∧〉 is a partial algebra, which we shall call the partial
meet-semilattice associated with S. Recall that by a partial subalgebra of
〈S+;∧〉 we mean a subset X of S+ such that whenever x, y ∈ X and x∧ y is
defined in 〈S+;∧〉, x∧y ∈ X. As for the set inclusion relation ⊆, the set of all
partial subalgebras of 〈S+;∧〉 turns out to be a lattice, which we will denote
by Sub(〈S+;∧〉). For convenience, our convention is that ∅ ∈ Sub(〈S+;∧〉).
The dual of the following Lemma 4.3.1 is due to Freese and Nation [32], but
we formulate a dual version of Lemma 3.1 stated in Czédli’s paper [21].

Lemma 4.3.1 (Czédli [21]). For every finite join-semilattice 〈S;∨〉, the lat-
tice Con(S;∨) is dually isomorphic to Sub(S+;∧). In particular, we have
that |Con(S;∨))| = |Sub(S+;∧)|. See Figure 4.5 for an illustration.

B 1 B \ {1}

Figure 4.5: Illustration of Lemma 4.3.1.

Lemma 4.3.2. If (T,∨) is a semilattice defined by a tree T , then

|Con(T,∨)| = 2|T |−1 = 2
∑n

i=1 |Ti| = 2n ·
n∏

i=1
|Con(Ti,∨)| ,

where T1, . . . , Tn is a repetition free list of maximal subtrees of the tree T.

Proof. By Lemma 4.3.1, |Con(T,∨)| = |Sub(〈T+;∧〉)| . Since (T,∨) is a semi-
lattice defined by a tree T , then x ∧ y is defined in T+ only if x and y form
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a comparable pair in T+ i.e. x and y form a comparable pair in (Ti,∧),
i ∈ {1, 2, ..., n}. Whence (x ∧ y) ∈ {x, y}. Hence every subset of T+ belongs
to Sub(〈T+;∧〉). Now T+ has 2|T |−1 subsets, and |T | − 1 = ∑n

i=1 |Ti|, so∣∣∣Sub(〈T+;∧〉)
∣∣∣ = 2|T |−1 = 2

∑n

i=1 |Ti|.

Now in the same way |Con(Ti,∨)| =
∣∣∣Sub(〈T+

i ;∧〉)
∣∣∣ = 2|Ti|−1, so

2
∑n

i=1 |Ti| = 2n ·
n∏

i=1
(|Con(Ti,∨)| .

Corollary 4.3.2.1. If (B,∨) is a semilattice defined by a binary tree B, then

|Con(B,∨)| = 2|B1|+|B2| = 4 · |Con(B1,∨)| · |Con(B2,∨)| ,

where B1, B2 are the left and right maximal subtrees of the tree, respectively.

Corollary 4.3.2.2. If (B,∨) is a semilattice defined by a prickly-snake B of
height h, then

|Con(B,∨)| = 4 · |Con(B1,∨)| = 4h,

where B1 is the left maximal subtree of the tree.

Proof. Just apply Corollary 4.3.2.1, and the fact that it is a geometric se-
quence.

Remark 4.3.3. We mention here the famous combinatorial identity ∑i+j=n(
2i
i

)(
2j
j

)
= 4n; Paul Erdős found it interesting as well, see Sved [52] and

Duarte and Oliveira [30]. Also, the number of congruences in the prickly-
snake is equal to the total number of cells in the first 2n rows of the Pascal
rhombus (mod 2), as shown in the manuscript of Stockmeyer [49] (end of
Chapter 3). Another relevant and interesting identity is in Janjić’s paper
[34], called Identity 21, and from by Example 22/3, it describes the number
of ternary words of length 2n − 2 containing one subword 22. This number
also appears in the paper by Merca and Cuza [40] in connection with the
power sums of cosine functions. We also mention here the paper of Barry
[7](Chapter 11), concerning generalized Ballot transform pairs.
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Corollary 4.3.3.1. If (B,∨) is a semilattice defined by a perfect binary tree
B of height h, then

|Con(B,∨)| = 4 · |Con(B1,∨)|2 = 22h+1−2,

where B1 is the left maximal subtree of the tree.

Proof. The first part follows from Corollary 4.3.2.1. By Lemma 4.3.2,
|Con(B1,∨)| = 2|B1|−1. Now, using the fact that the number of nodes of the
perfect binary tree of height s is 2s+1 − 1, the height of B1 is h − 1, and
the last part of the statement follows. See also https://oeis.org/ with integer
sequence A051191.

4.4 The number of weak congruences of semi-

lattices defined by full binary tree
A weak congruence on an algebra A is a compatible weak equivalence on A,
i.e., a symmetric and transitive subuniverse of A2. The collection Cw(A) of
weak congruences on an algebra A is an algebraic lattice under inclusion (see
[55]). Note that Con(A), Sub(A) and, for any subalgebra B of A, Sub(B)
are sublattices of Cw(A) (see Figure 4.6).

Figure 4.6: Cw(A)

Recall that the subset K of a semilattice (L,∨) is called convex if and
only if x, y ∈ K, z ∈ (L,∨) and x ≤ z ≤ y imply z ∈ K.
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Lemma 4.4.1. If (B,∨) is a semilattice defined by a binary tree B and
1′ 6∈ B, then ∣∣∣∣Cw

(
(B,∨) +ord{1′}

)∣∣∣∣ = 3 · |Cw(B,∨)| − 1.

Proof. By the support of a weak congruence θ we mean the subsemilattice
{x : (x, x) ∈ θ}. Denote (B,∨) +ord{1′} by (B′,∨). We count the weak
congruences of (B′,∨) by classifying them according to their restrictions to
(B,∨). Let θ be a nonempty week congruence of (B,∨). Then, as we are
going to show below, there are exactly three weak congruences of (B′,∨) that
restrict to θ. The first is θ itself. The second is θ ∪ {(1′, 1′)}; it is a weak
congruence of (B′,∨) since 1′ is ∨-irreducible. We are left with the third case
when at least one pair (x, 1′) is added to θ such that x 6= 1′. Denote such an
extension by θ′; we need to show that θ′ exists and it is uniquely determined.
Let S be the support of θ; then, clearly, S ′ := S ∪ {1′} is the support of θ′.
Note that θ′ belongs to Con(S ′). Observe that

the θ′-classes are convex subsets of (S ′,∨). (4.4)

Indeed, if a, b, c ∈ S ′, a ≤ c ≤ b, and (a, b) ∈ θ′, then (c, b) = (a∨c, b∨c) ∈ θ′,
so c ∈ a/θ′, proving (4.4).

Next, let i denote the greatest element of S; it exists since S is finite and
i = ∨

S. It follows easily from (4.4) that, for any y, (y, 1′) ∈ θ′ implies that
y ∈ i/θ. Since there is at least one such y (namely, y := x), transitivity
yields that

θ′ = θ ∪ (i/θ × {1′}) ∪ ({1′} × i/θ) ∪ {(1′, 1′)}. (4.5)

Hence, we obtain that θ′ is uniquely determined by θ. Since 1′ is ∨-irreducible,
it is easy to see that (4.5) defines a weak congruence of B′ the restriction of
which is θ.

The argument above shows that the any nonempty weak congruence of
(B,∨), there corresponds exactly three weak congruences of (B′,∨); this
justifies the coefficient 3 in the lemma. The subtrahend −1 is explained by
the trivial fact that i and θ′ in (4.5) do not exists when θ = ∅.
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Theorem 4.4.2. If (B,∨) is a semilattice defined by a binary tree B, then

|Cw(B,∨)| = 4(|Cw(B1,∨)| · |Cw(B2,∨)|)− (|Cw(B1,∨)|+ |Cw(B2,∨)|),

where B1, B2 are the left and right maximal subtrees of the tree, respectively.

Proof. Both Cw(B1 +ord{1′},∨) and Cw(B2 +ord{1′},∨) contain the ∅ and
the only congruence on the singleton {1′}, is

|Cw(B,∨)| = 1 +
∑

B∗∈Sub B
B∗ 6=∅

|Con(B∗,∨)|

= 1 +
∑

B∗i ∈Sub Bi,
B∗i 6=∅

4 |Con(B∗1 ,∨) Con(B∗2 ,∨)|+ |Cw(B1 +ord{1′},∨)|

+ |Cw(B2 +ord{1′},∨)|)− 1− 2,

using Lemma 4.4.1,

=
∑

B∗i ∈Sub Bi,
B∗i 6=∅

4 |Con(B∗1 ,∨)| · |Con(B∗2 ,∨)|+ (3 |Cw(B1,∨)| − 1)

+ (3 |Cw(B2,∨)| − 1)− 2

=
∑

B∗i ∈Sub Bi,
B∗i 6=∅

4 |Con(B∗1 ,∨)| · |Con(B∗2 ,∨)|+ 4 |Cw(B1,∨)|+ 4 |Cw(B2,∨)|

− |Cw(B1,∨)| − |Cw(B2,∨)| − 4.

Now for Bi,

|Cw(Bi,∨)| = 1 +
∑

B∗i ∈Sub Bi

B∗i 6=∅

|Con(B∗i ,∨)| ,

and let us use
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|Cw(B1,∨)| · |Cw(B2,∨)| = (1 +
∑

B∗1∈Sub B1
B∗1 6=∅

|Con(B∗1 ,∨)|)

(1 +
∑

B∗2∈Sub B2
B∗i 6=∅

|Con(B∗2 ,∨)|)

=
∑

B∗i ∈Sub Bi

B∗i 6=∅

|Con(B∗1 ,∨)| · |Con(B∗2 ,∨)|+ |Cw(B1,∨)|+ |Cw(B2,∨)| − 1.

Then we arrive at

|Cw(B,∨)| = 4 |Cw(B1,∨)| · |Cw(B2,∨)| − |Cw(B1,∨)| − |Cw(B2,∨)| .

Corollary 4.4.2.1. If (B,∨) is a semilattice defined by a prickly-snake B of
height h, then

|Cw(B,∨)| = 7 · |Cw(B1,∨)| − 2 = 5 · 7h + 1
3 ,

where B1 is the left maximal subtree of the tree.

Proof. Apply Theorem 4.4.2 and webpage https://oeis.org/ with integer se-
quence A199420, to prove this.

Theorem 4.4.3. If (B,∨) is a semilattice defined by a perfect binary tree
B of height h, then

|Cw(B,∨)| = 4 · |Cw(B1,∨)|2 − 2 · |Cw(B1,∨)| ,

where B1 is the left maximal subtree of the tree.
Moreover,

|Cw(B,∨)| =
⌈

1
4 C

2h+1⌉
, C = 2.61803398874989 . . .

where dxe denotes the least integer greater than or equal to x.
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Proof. To get the recurrence formula, use Theorem 4.4.2. Now we solve the
recurrence.

For the sake of convenience, let now an := |Cw(B,∨)|, where B is a
perfect binary tree of height (n− 1). With this notation, our recurrence is

an+1 = 4a2
n − 2an, a0 = 1.

In what follows, we again apply the method of Aho and Sloane [6, Sec-
tion 3].

It is clear that (i) the sequence (an) is monotone increasing; (ii) an ≥ 2
for all n; moreover, (iii) an ≥ 22n−1.

Using the notation

xn := log an , yn := log
(

1− 1
2an

)
, (4.1′)

our recurrence reads as follows:

xn+1 = log 4 + 2xn + yn.

It is clear that

xn = (2n − 1) log 4 + 2nx0 +
n−1∑
k=0

2n−1−kyk.

Now let

An := (2n − 1) log 4 + 2nx0 +
∞∑

k=0
2n−1−kyk , Bn :=

∞∑
k=n

2n−1−kyk .

These series are convergent again, like that in the proof of Theorem 4.2.3.
Moreover, it is clear that Bn < 0 for all n and

|Bn| =
1
2 |yn|+

1
4 |yn+1|+

1
8 |yn+2|+ · · · < |yn| (4.2′)

and
an = exn = eAn−Bn = eAne−Bn . (4.3′)

The first term is the leading one. We find that

eAn = exp
(

(2n − 1) log 4 + 2nx0 +
∞∑

k=0
2n−1−kyk

)

= exp
(
− log 4 + 2n

(
log 4 + x0 +

∞∑
k=0

2−1−kyk

))
= 1

4 · C
2n

,
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where

C := exp
(

log 4 + x0 +
∞∑

k=0
2−1−kyk

)
= 4 exp

(
x0 + y0

2 + y1

4 + y2

8 + · · ·
)

is a constant (independent of n). Using Mathematica (see Appendix D.21),
we found that

C = 2.61803398874989 . . . .

Now, consider the second term in (4.3′). By (4.2′) we have

0 < e−Bn = e|Bn| < e|yn| = exp
∣∣∣∣log

(
1− 1

2an

)∣∣∣∣ = exp
(

log 1
1− 1

2an

)
.

With the elementary inequality 1
1−u
≤ 1 + 2u for 0 ≤ u ≤ 1

2 means that
1 < 1

1− 1
2an

< 1 + 1
an
, and, therefore, we see that

e−Bn < 1 + 1
an

.

Substituting this to (4.3′), using (ii) and (iii), we have

eAn ≤ an ≤ eAn

(
1 + 1

an

)
≤ eAn

(
1 + 1

eAn

)
< eAn + 1.

Since an is an integer, the assertion follows.

4.5 Some related results
Libkin and Gurvich [37] studied those semilattices whose diagrams are trees.
They characterized them as semilattices whose convex subsemilattices form
a convex geometry. Moreover, they characterized atomistic semilattices with
tree-diagram by lattice theoretic and graph theoretic means.

The concept of weak congruences is a tool for studying congruences and
subalgebras of the same algebra together. The first researcher who studied
the compatible symmetric and transitive relations on algebra was Šik, to-
gether with his Ph.D. student Mai (see [55]). Šešelja and Tepavčević wrote
the book [55] on weak congruences. The purpose of their book was to present
the basic properties of weak congruences, especially, their lattices, and to
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show how the results can be applied in universal algebra. The book was
published after several years of systematic studies by the authors and it con-
tains a bibliography on these and related topics up to 2001. Some later
results on weak congruences can be found, for example in Chajda et al. [13],
Czédli et al. [28], Šešelja and Tepavčević [47], Vojvodić and Šešelja [54] and
Šešelja et al. [56].



5

(1+1+2)-generated lattices of

quasiorders

This chapter is based on a joint paper with Czédli [2]. A lattice is (1+1+2)-
generated if it has a four-element generating set such that exactly two of
the four generators are comparable. We prove that the lattice Quo(n) of
all quasiorders (also known as preorders) of an n-element set is (1 + 1 + 2)-
generated for n = 3 (trivially), n = 6 (when Quo(6) consists of 209 527
elements).

5.1 Notations used in this chapter
Given a set A, a relation ρ ⊆ A2 is a quasiorder (also known as a preorder)
if ρ is reflexive and transitive. With respect to set inclusion, the set of all
quasiorders of A form a lattice Quo(A) = 〈Quo(A),⊆〉, called the quasiorder
lattice of A. The meet of ρ, τ ∈ Quo(A) is their intersection, and so we can
say that ρ∧τ = ρ∩τ . The join ρ∨τ of ρ and τ is the transitive closure of ρ∪τ .
That is, for x, y ∈ A, we have 〈x, y〉 ∈ ρ∨ τ if and only if there exists an n ∈
N+ := {1, 2, 3, 4, . . . } and there are elements z0 = x, z1, z2, . . . , zn−1, zn = y

in A such that 〈zi−1, zi〉 ∈ ρ∪ τ for all i ∈ {1, . . . , n}. Symmetric quasiorders
are equivalences (also known as equivalence relations). The equivalences of

56
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A also form a lattice, called the equivalence lattice Equ(A) of A, which is a
sublattice of Quo(A).

Since we are only interested in these lattices up to isomorphism, we will
often write Equ(|A|) and Quo(|A|) instead of Equ(A) and Quo(A), respec-
tively. In particular, Quo(6), which plays a distinguished role in this chapter,
is the quasiorder lattice with a six-element underlying set. Note that Equ(A)
and Quo(A) are complete lattices but the concept of complete lattices occurs
only in the introductory section alongside a survey of the literature. Below,
we only deal with finite lattices, which are complete, of course.

A four-element subsetX of a poset (partially ordered set) Y is a (1+1+2)-
subset of Y if exactly two elements of X are comparable. A subset X of a
lattice L is a (1 + 1 + 2)-generating set of L if X is a (1 + 1 + 2)-subset of L
that generates L. If a lattice L has a (1 + 1 + 2)-generating set, then we say
that L is (1 + 1 + 2)-generated.

5.2 Preliminaries
In 1976, Poguntke and Rival [41] proved that each lattice can be embed-
ded into a four-generated finite simple lattice. (It turned out much later
that three generators are sufficient if we drop the simplicity assumption; see
Czédli [17].) Partition lattices, which are the same as equivalence lattices up
to isomorphism, are well known to be simple. Thus, Pudlák and Tůma’s re-
sult that every finite lattice is embeddable into a finite partition lattice (see
[42]) superseded Poguntke and Rival’s result in 1980. However, Poguntke
and Rival’s result still served well as the motivation for Strietz [50] and [51]
to prove that Equ(n) is four-generated for 3 ≤ n ∈ N+ and it is (1 + 1 + 2)-
generated for 10 ≤ n ∈ N+.

In 1983, Zádori [57] gave an entirely new method to find four-element gen-
erating sets of Equ(n) and extended Strietz’s result by proving that Equ(n)
is (1 + 1 + 2)-generated even for 7 ≤ n ∈ N+. His method was the basis of
all the more involved methods that were used to find small generating sets
of Equ(A) and Quo(A) over the past three and a half decades. During this
period, four-element generating sets and even (1 + 1 + 2)-generating sets (in
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n 1 2 3 4 5 6 7

|Equ(n)| 1 2 5 15 52 203 877

|Quo(n)| 1 4 29 355 6 942 209 527 9 535 241

Table 5.1: |Equ(n)| and |Quo(n)| for n ∈ {1, 2, . . . , 7}

the sense of complete generation) of Equ(A) were given for all infinite sets
A with “accessible” cardinalities (see Czédli [15], [14], and [16]). Even the
lion’s share of Czédli and Oluoch [27] is based on Zádori’s method. Also,
this period witnessed that extensions of his method were used to find small
generating sets of Quo(A) by Chajda and Czédli [11], Czédli [18], Czédli and
Kulin [26], and Takách [53]. Even the methods used by Dolgos [29] and
Kulin [35] show lots of similarity with Zádori’s method. Theorem 5.2.1 of
this section will summarize the strongest results on (1 + 1 + 2)-generating
sets of quasiorder lattices that were proved earlier.

Note that sometimes the structure 〈Quo(A),∨,∧, −1〉 with ρ−1 := {〈x, y〉 :
〈y, x〉 ∈ ρ} rather than the complete lattice 〈Quo(A),∨,∧〉 was considered.
So the title of Takách [53] should not mislead the reader since, after removing
the operation ρ 7→ ρ−1, Takách [53] yields a six-element generating set of
〈Quo(A),∨,∧〉.

In 1983, Zádori [57] left the problem whether Equ(n) is (1 + 1 + 2)-
generated for n ∈ {5, 6} open. The difficulty of these small values lies in
the fact that his method does not work for small n. This explains why it
took 37 years to solve Zádori’s problem on Equ(5) and Equ(6); see Czédli
and Oluoch [27] for the solution. While [27] contains a traditional proof
that Equ(6) is (1 + 1 + 2)-generated, computer programs were used to show
that Equ(5) is not. This shows that “small” equivalence lattices create more
difficulties than larger ones. The quotient marks indicate that Equ(5) and
Equ(6) are not so small (see Table 5.1). This table has been taken from
Sloane [48]. Note that the |Equ(n)| row and the first five numbers of the
|Quo(n)| row of Table 5.1 also occur in Chajda and Czédli [11] and were
obtained by a straightforward computer program twenty-five years ago.

Our knowledge on small generating sets of quasiorder lattices evolved in
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parallel to and in interactions with the analogous question about equivalence
lattices. Small generating sets of infinite (complete) quasiorder lattices were
given in Chajda and Czédli [11] even before dealing with infinite equivalence
lattices. Surprisingly, it was quasiorders that showed the way how to pass
from finite equivalence lattices to infinite ones. Prior to paper [2], our knowl-
edge on small generating sets of Quo(A) was summarized in the last sentence
of Theorem 1.1 in Czédli [18] and in Theorem 3.5 and Lemma 3.3 of Czédli
and Kulin [26] as follows.

Theorem 5.2.1 (Czédli [18] and Czédli and Kulin [26]). If A is a non-
singleton set with accessible cardinality, then the following assertions hold.

(i) If |A| 6= 4, then Quo(A) is four-generated as a complete lattice.

(ii) If 13 ≤ |A| is a finite odd number, then Quo(A) is (1+1+2)-generated.

(iii) If 56 ≤ |A| is a finite even number, then Quo(A) is (1+1+2)-generated.

(iv) If A is infinite, then Quo(A) is (1 + 1 + 2)-generated as a complete
lattice.

(v) If A is finite and |A| ≥ 3, then Quo(A) is not a three-generated lattice.

Note that ZFC has a model in which all infinite sets are of accessible
cardinalities. We do not know whether Quo(A) has a four-element generat-
ing set if |A| = 4. (Based on our experience with computer programs for
equivalence lattices, see Czédli and Oluoch [27], we guess that this question
could be solved by a computer program that would require days of computer
time if the same personal computer was used as in case of [27]. Developing
such a computer program was not pursued at the time of writing.)

Although the paper [2] which this chapter is based on, presents (1+1+2)-
generating sets for several new values of n, the existence of (1 + 1 + 2)-
generating sets remains an unsolved problem for a few values. The only
value of n ≥ 2 for which we know that Quo(n) is not (1 + 1 + 2)-generated is
n = 2. This follows trivially from |Quo(2)| = 4 since a four-element lattice
cannot have a three-element antichain.

Lastly, we note the following about quasiorder lattices. Armed with our
tools based on Zádori’s method, the large values of n create less difficulty
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than the small values (apart from very small values where the problem is
trivial or easy). In view of the history of equivalence lattices, it is not a
surprise that paper [2] extends the scope of (ii) and (iii) of Theorem 5.2.1 by
adding some slightly smaller numbers n. The surprise is that now we also
add a significantly smaller number, n = 6, where Quo(6) is a huge lattice
but Zádori’s method cannot be used.

5.3 A (1 + 1 + 2)-generating set of Quo(6)
The least quasiorder {〈x, x〉 : x ∈ A} of A will be denoted by ∆ = ∆A. For
elements x and y of A, the following two members of Quo(A) will play a
particularly important role in our proofs:

q(x, y) = {〈x, y〉} ∪∆ and e(x, y) = e(y, x) = {〈x, y〉, 〈y, x〉} ∪∆. (5.1)

We allow that x = y; however, q(x, x) = ∆ and e(x, x) = ∆ will not play
any significant role in our proofs. The atoms of Quo(A) and those of Equ(A)
are exactly the q(x, y) and the e(x, y) with x 6= y ∈ A. The importance of
q(x, y) and e(x, y) lies in the following well-known and trivial fact: for any
non-singleton set A and for every ρ ∈ Quo(A) and θ ∈ Equ(A),

ρ =
∨
{q(x, y) : 〈x, y〉 ∈ ρ} and θ =

∨
{e(x, y) : 〈x, y〉 ∈ θ}. (5.2)

In other words, Quo(A) and Equ(A) are atomistic.

Figure 5.1: α, β, γ, and δ

Next, let A = {a, b, c, d, f, g}. We define the following quasiorders of A:

α := e(d, f) ∨ e(f, g), β := α ∨ e(b, c) ∨ q(b, a)

γ := e(a, b) ∨ e(a, d) ∨ e(c, f), δ := e(b, c) ∨ e(c, g) ∨ e(a, f).
(5.3)
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These quasiorders are shown in Figure 5.1 using the corresponding directed
graphs. (The edges without arrows are directed in both ways.) Namely, for
ρ ∈ {α, β, γ, δ} and x, y ∈ A, we have that 〈x, y〉 ∈ ρ if and only if there
is a directed path (possibly of length 0) in the graph corresponding to ρ in
Figure 5.1.

For the sake of the following remark, let 〈u1, u2, u3, u4, u5, u6〉 := 〈b, a, c, d, f, g〉
and β? := β ∨ q(a, b) = β ∨ q(u2, u1).

Remark 5.3.1. Each of α, β?, γ, and δ is an equivalence, α < β?, and it was
proved in Czédli and Oluoch [27] that {α, β?, γ, δ} is a (1 + 1 + 2)-generating
set of Equ(6) = Equ({u1, u2, u3, u4, u5, u6}).

We are going to prove the following statement.

Theorem 5.3.2. With the quasiorders defined in (5.3), {α, β, γ, δ} is a (1 +
1+2)-generating set of the quasiorder lattice Quo(6) = Quo({a, b, c, d, f, g}).
Hence, Quo(6) is (1 + 1 + 2)-generated.

As Remark 5.3.1 indicates, our generating set is only slightly different
from the one used in Czédli and Oluoch [27]. However, this little difference
results in a substantial change in the complexity of the proofs. Indeed, while
only six equations were necessary in [27] to prove that {α, β?, γ, δ} generates
Equ(6), we are going to use twenty-five equations, (5.8)–(5.32), to prove
Theorem 5.3.2.

Proof of Theorem 5.3.2. First, we fix our notation and describe the corre-
sponding technique. For ρ ∈ Quo(A), let Θ(ρ) := ρ ∩ ρ−1 = {〈x, y〉 : 〈x, y〉 ∈
ρ and 〈y, x〉 ∈ ρ}, which is the largest equivalence relation of A included in
ρ. On the quotient set A/Θ(ρ), we can define a relation ρ/Θ(ρ) as follows:
for Θ(ρ)-blocks x/Θ(ρ) and y/Θ(ρ) in A/Θ(ρ), we let

〈x/Θ(ρ), y/Θ(ρ)〉 ∈ ρ/Θ(ρ) def⇐⇒ 〈x, y〉 ∈ ρ.

We know from the folklore of algebra that ρ/Θ(ρ) is well defined and it
is a partial order, the so-called order induced by ρ. Hence, A/Θ(ρ) =
〈A/Θ(ρ), ρ/Θ(ρ)〉 is a poset. For several choices of ρ, we will frequently
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draw the Hasse diagram of this poset in order to provide a visual descrip-
tion of ρ. In such a diagram, the Θ(ρ)-blocks are indicated by rectangles.
However, we will adopt the following convention:

if {x} is a singleton block of Θ(ρ) such that

for every {x} 6= Y ∈ A/Θ(ρ) we have that

〈{x}, Y 〉 /∈ ρ/Θ(ρ) and 〈Y, {x}〉 /∈ ρ/Θ(ρ),

then {x} is not indicated in the Hasse diagram

of A/Θ(ρ).

(5.4)

In other words, if x ∈ A has the property that

(∀y ∈ A)
(
{〈x, y〉, 〈y, x〉} ∩ ρ 6= ∅ =⇒ x = y

)
,

then (the necessary singleton) block x/Θ(ρ) is not indicated in the Hasse
diagram. For example, the quasiorders defined in (5.3) are visualized by
diagrams as follows.

α : d, f, g , β :
a d, f, g

|

b, c

, γ : a, b, d c, f , δ : b, c, g a, f . (5.5)

Since we are going to perform a lot of computations with quasiorders, con-
vention (5.4) and the above-mentioned visual approach will be helpful for
the reader in the rest of the proof. Note that if a diagram according to our
convention is given and x 6= y ∈ A, then we have 〈x, y〉 ∈ ρ if and only if
both the block x/Θ(ρ) of x and that of y are drawn in the (Hasse) diagram
and x/Θ(ρ) ≤ y/Θ(ρ) according to the diagram. In particular, if x and y

are in the same block, then 〈x, y〉 ∈ ρ. Note also that our computations in
the proof never require dealing with pairs of the form 〈x, x〉. Although the
following observation is quite easy to prove, it will substantially ease our task
later on.

Observation 5.3.3 (Disjoint Paths Principle). For k, s ∈ N+ and a set B,
let x, y, u0 = x, u1, . . . , uk−1, uk = y, v0 = x, v1, . . . , vs−1, vs = y be elements
of B such that {u1, . . . , uk−1} ∩ {v1, . . . , vs−1} = ∅, |{u1, . . . , uk−1}| = k − 1,
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and |{v1, . . . , vs−1}| = s − 1. For i ∈ {1, . . . , k} and j ∈ {1, . . . , s}, let
pi ∈ {e, q} and rj ∈ {e, q}; see (5.1) for the meaning of q and e. Assume
that there is an i′ ∈ {1, . . . , k} such that pi′ = q or there is a j′ ∈ {1, . . . , s}
such that rj′ = q. Then

q(x, y) =
( k∨

i=1
p(ui−1, ui)

)
∧
( s∨

j=1
r(vj−1, vj)

)
. (5.6)

Similar observations (sometimes under the name “Circle Principle”) were
previously formulated in Czédli [15], [18, Lemma 2.1], Czédli and Kulin [16,
Lemma 2.5], Kulin [35, Lemma 2.2], and were used implicitly in Chajda and
Czédli [11], Czédli [14] and [16], and Takách [53]. However, Observation 5.3.3
is slightly stronger than its precursors.

Our argument proving Observation 5.3.3 runs as follows. We can assume
that x 6= y. Let ρ denote the quasiorder given on the right of the equality
symbol in (5.6). Since the pair 〈x, y〉 belongs to both meetands in (5.6)
by transitivity, the inequality q(x, y) ≤ ρ is clear. Since {u1, . . . , uk−1} ∩
{v1, . . . , vs−1} = ∅, we obtain that

ρ ≤
( k∨

i=1
e(ui−1, ui)

)
∧
( s∨

j=1
e(vj−1, vj)

)
= e(x, y). (5.7)

Using the fact that the existence of i′ or j′ together with |{u1, . . . , uk−1}| =
k−1, and |{v1, . . . , vs−1}| = s−1 easily exclude that 〈y, x〉 ∈ ρ, (5.7) implies
that ρ ≤ q(x, y). Combining this with the previously established converse
inequality, we conclude (5.6) and the validity of Observation 5.3.3. Here, for
the sake of brevity, we will often refer to (5.6) rather than Observation 5.3.3.

Now, resuming the proof of Theorem 5.3.2, let S denote the sublattice
generated by {α, β, γ, δ} in Quo(6) = Quo({a, b, c, d, f, g}). Since S is closed
with respect to ∧ and ∨, it will be clear that the quasiorders given on the
left of the equality signs below in (5.8)–(5.32) all belong to S, provided we
use quasiorders already in S on the right of our equality signs. (To see
that the quasiorders on the right are in S, we will cite the relevant earlier
equations except, possibly (5.5).) We also need to check that the equalities
we claim below hold in Quo(6). We are going to check this either with the
help of the diagrams given on the right of the equalities in question, or this
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will prompt follows from (5.6). After these instructions on how to read the
equations shown below, we are ready to compute; the details are easy to
follow provided (5.5) is in the reader’s visual field.

e(b, c) = β ∧ δ by (5.5);
a d, f, g

|

b, c

∧ b, c, g a, f . (5.8)

q(b, a) = β ∧ γ by (5.5);
a d, f, g

|

b, c

∧ a, b, d c, f . (5.9)

e(d, f) = α ∧ (γ ∨ e(b, c))

by (5.5) and (5.8);
d, f, g ∧ a, b, d, c, f . (5.10)

q(g, f) = α ∧ (δ ∨ q(b, a))

by (5.5) and (5.9);
d, f, g ∧

a, f

|

b, c, g

. (5.11)

e(a, d) = γ ∧ (e(d, f)∨ δ)

by (5.5) and (5.10);
a, b, d c, f ∧ b, c, g a, f, d . (5.12)

q(g, c) = δ ∧ (q(g, f) ∨ γ)

by (5.5) and (5.11);
b, c, g a, f ∧

a, b, d c, f

|

g

. (5.13)

e(a, f) = δ ∧ (e(a, d) ∨

e(d, f)) by (5.5), (5.12),

and (5.10);
b, c, g a, f ∧ a, d, f . (5.14)

q(g, a) = (q(g, f) ∨

e(f, a))∧(q(g, c)∨e(c, b)∨

q(b, a))

by (5.6), (5.11), (5.14),

(5.13), (5.8), and (5.9).
(5.15)
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q(g, d) = (q(g, f) ∨

e(f, d))∧(q(g, a)∨e(a, d))

by (5.6), (5.11), (5.10),

(5.15), and (5.12).
(5.16)

q(b, d) = (q(b, a) ∨

e(a, d)) ∧ (δ ∨ q(g, d)) by

(5.9), (5.12), and (5.16);

a, d

|

b

∧
d

|

b, c, g a, f

. (5.17)

q(g, b) = (q(g, c) ∨

e(c, b)) ∧ (q(g, d) ∨ γ) by

(5.13), (5.8), and (5.16);

c, b

|

g

∧
a, b, d c, f

|

g

. (5.18)

q(b, f) = (q(b, a) ∨

e(a, f))∧(q(b, d)∨e(d, f))

by (5.6), (5.9), (5.14),

(5.17), and (5.10).
(5.19)

q(c, f) = (e(c, b) ∨

q(b, f)) ∧ γ by (5.8) and

(5.19);

f

|

c, b

∧ a, b, d c, f . (5.20)

q(b, c) = e(b, c) ∧

(q(b, f) ∨ γ) by (5.8) and

(5.19);

b, c ∧
c, f

|

a, b, d

. (5.21)

q(d, f) = e(d, f) ∧

(q(b, f) ∨ γ) by (5.10)

and (5.19);

d, f ∧
c, f

|

a, b, d

. (5.22)

q(a, f) = e(a, f) ∧

(q(b, f) ∨ γ) by (5.14)

and (5.19);

a, f ∧
c, f

|

a, b, d

. (5.23)

q(d, a) = e(d, a) ∧

(q(d, f) ∨ e(f, a))

by (5.6), (5.12), (5.22),

and (5.14).
(5.24)
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q(f, a) = e(f, a) ∧

(e(f, d) ∨ q(d, a))

by (5.6), (5.14), (5.10),

and (5.24).
(5.25)

q(b, g) = (q(b, f) ∨ α) ∧ δ

by (5.19);

d, f, g

|

b

∧ b, c, g a, f . (5.26)

q(a, d) = e(a, d) ∧

(q(a, f) ∨ e(f, d))

by (5.6), (5.12), (5.23),

and (5.10).
(5.27)

q(f, d) = e(f, d) ∧

(q(f, a) ∨ q(a, d))

by (5.6), (5.10), (5.25),

and (5.27).
(5.28)

q(c, g) = (e(c, b) ∨

q(b, g)) ∧ (q(c, f) ∨ α) by

(5.8), (5.26), and (5.20);

g

|

c, b

∧
d, f, g

|

c

. (5.29)

q(c, b) = (q(c, g) ∨

q(g, b)) ∧ e(c, b)

by (5.6), (5.29), (5.18),

and (5.8).
(5.30)

q(f, g) = α∧ (γ ∨ q(c, g))

by (5.29);
d, f, g ∧

g

|

a, b, d c, f

. (5.31)

q(a, b) = (q(a, f) ∨

q(f, g) ∨ q(g, b)) ∧ γ by

(5.23), (5.31), and (5.18);

b

|

g

|

f

|

a

∧ a, b, d c, f . (5.32)

In the rest of the proof, we only need the twelve atoms of Quo(6) =
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Quo(A) that are shown in Figure 5.2. Using that these twelve atoms be-
longing to S, we conclude using (5.6) that, for all x, y ∈ A, the quasiorder
q(x, y) belongs to S as well. Hence, it follows from (5.2) that ρ ∈ S for all
ρ ∈ Quo(A). Consequently, S = Quo(A) and {α, β, γ, δ} is a generating set
of Quo(A). Since {α, β, γ, δ} is a (1 + 1 + 2)-subset of Quo(A), the proof of
Theorem 5.3.2 is complete.

Figure 5.2: Twelve atoms of Quo(A)

In addition to the fact that the Disjoint Paths Principle (see Observa-
tion 5.3.3) played an important role in the proof above, this principle is also
useful for simplifying the proof of the following lemma. This lemma is im-
plicit in Kulin [35]. The reader can see the proof of Part (i) of Theorem 2.1
there.

Lemma 5.3.4 (Kulin [35]). If A is a set consisting of at least three elements
and ρ belongs to Quo(A) \ Equ(A), then Equ(A) ∪ {ρ} generates the lattice
Quo(A).

Since Equ({a, b}) ∪ {q(a, b)}, which is a three-element chain, is a proper
sublattice of Quo({a, b}), the stipulation that A has at least three elements
cannot be omitted from Lemma 5.3.4. For the reader’s convenience and also
to demonstrate the power of the Disjoint Paths Principle, we are going to
present a new proof of this lemma.

Proof of Lemma 5.3.4. We can assume that A consists of the vertices a0, a1,

. . . , an−1, listed counterclockwise, of a regular n-gon such that 〈a0, a1〉 ∈ ρ
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but 〈a1, a0〉 /∈ ρ. This n-gon is non-degenerate since n = |A| ≥ 3. If i, j ∈
{0, . . . , n− 1} and j ≡ i + 1 (mod n), then {ai, aj}, 〈ai, aj〉, and 〈aj, ai〉 are
called an undirected edge, a counterclockwise edge, and a clockwise edge of
the n-gon, respectively.

Let S denote the sublattice of Quo(A) generated by Equ(A)∪{ρ}. Then
all the undirected edges are in S, which means that e(ai, aj) ∈ S for all i, j ∈
{0, . . . , n−1} with j ≡ i+1. We say that the counterclockwise version and the
clockwise version of an edge {ai, aj} are in S if q(ai, aj) ∈ S and q(aj, ai) ∈ S,
respectively. It follows from (5.6) that if all the counterclockwise edges and
all the clockwise edges of the n-gon are in S, then all the atoms of Quo(A)
are in S and so S = Quo(A) by (5.2). It also follows from (5.6) that if
the counterclockwise version of an (undirected) edge belongs to S, then the
clockwise versions of all other edges are in S. Combining this fact with
its counterpart in which the two directions are interchanged, we see that
if at least one directed edge is in S, then all directed edges are in S and
S = Quo(A). Therefore, using the fact that 〈a0, a1〉 ∈ ρ but 〈a1, a0〉 /∈ ρ leads
to q(a0, a1) = e(a0, a1) ∧ ρ ∈ S, we obtain the statement of the lemma.

Corollary 5.3.4.1. Quo(3) is (1 + 1 + 2)-generated.

Proof. Since Equ(3) = Equ({a, b, c}) is generated by the set {e(a, b), e(b, c),
e(c, a)} of its atoms, {q(a, b), e(a, b), e(b, c), e(c, a)} is a (1+1+2)-generating
set of the lattice Quo(3) = Quo({a, b, c}) by Lemma 5.3.4.

5.4 Some related results
Czédli in the second part of paper [2], proved that the lattice Quo(n) of all
quasiorders of an n-element set is (1 + 1 + 2)-generated for n = 11 and for
all n ≥ 13. Below, we provide an illustration of this result.

Definition 1 (Zádori configuration). For 2 ≤ k ∈ N+, let a0, a1, . . . , ak,
b0, b1, . . . , bk−1 be pairwise distinct elements of a finite set B. Let

α =
k∨

i=1
e(ai−1, ai) ∨

k−1∨
i=1

e(bi−1, bi), β =
k−1∨
i=0

e(ai, bi)

γ =
k∨

i=1
e(ai, bi−1), ε0 = e(a0, b0), and η = e(ak, bk−1);

(5.33)
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they are members of Equ(B). The system of these 2k + 1 elements and five
equivalences of B is called a Zádori configuration of (odd) size 2k + 1 in B.
The set

A := {a0, . . . , ak, b0, . . . , bk−1} (5.34)

is the support of this configuration.

A Zádori configuration is easy to visualize; following Zádori’s original
drawing, we do this with the help of a graph in the following way. We say
that a path in a graph is horizontal, is of slope 1, and is of slope −1 if all of
the edges constituting the path are such. For vertices x and y in the graph,

〈x, y〉 ∈ α def⇐⇒ there is a horizontal path from x to y;

〈x, y〉 ∈ β def⇐⇒ there is a path of slope −1 from x to y;

〈x, y〉 ∈ γ def⇐⇒ there is a path of slope 1 from x to y.

(5.35)

Note that a path of length 0 is simultaneously of slope 1 and of slope −1,
and it is also horizontal. Also, note that (5.35) complies with (5.33).

For example, a Zádori configuration of size 11 is given in Figure 5.3;
disregard the dashed curved edges for a while. Some of the horizontal edges
are labeled by α but, to avoid crowdedness, not all. The same convention
applies for edges of slope −1 and β, and edges of slope 1 and γ.

Zádori configurations played a decisive role in all papers that applied
extensions of Zádori’s method; see Section 5.2 for the list of these papers.
Given a Zádori configuration in B with support set A (see (5.33)–(5.34)), we
define

Equ(BeA) := {θ ∈ Equ(B) : if 〈x, y〉 ∈ θ and {x, y} 6⊆ A, then x = y}.
(5.36)

In Zádori [57], this configuration and the following lemma assumed that
B = A. However, this assumption is not a real restriction since the map

Equ(BeA)→ Equ(A) defined by θ 7→ θ ∩ (A× A) (5.37)

is clearly an isomorphism, whereby the validity of the following lemma follows
from its original particular case B = A.
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Lemma 5.4.1 (Zádori [57]). Assume that a Zádori configuration of size
2k+1 with support A is given in B; see (1) and (5.34). Then {α, β, γ, ε0, ηk}
generates Equ(BeA).

Note that this lemma is explicitly stated in Czédli [24] and Czédli and
Kulin [26], and implicitly proved (hidden in long proofs) in Czédli [15], [14],
[16], and [18], and Czédli and Oluoch [27]. Now we are in the position to
state the following result.

Theorem 5.4.2 (Czédli [2]). Let n ∈ N+ be a natural number.

(i) If n ≥ 11 and n is odd, then Quo(n) is (1 + 1 + 2)-generated.

(ii) If n ≥ 13, then Quo(n) is (1 + 1 + 2)-generated.

For illustration, we borrow the constructions for n = 11 and n = 14 from
Czédli [2] (see Figures 5.3 and 5.4). In these figures, α, β, and γ are given
by convention (5.3); note that they happen to be equivalences. The dotted
(oriented or non-oriented) arcs define δ.

Figure 5.3: {α, β, γ, δ} is a (1 + 1 + 2)-generating set of Quo(11)

Figure 5.4: {α, β, γ, δ} is a (1 + 1 + 2)-generating set of Quo(14)



6

Summary

The topic of this dissertation is restricted to finite lattices and semilattices.
The dissertation consists of five chapters, followed by a summary, a bibli-
ography and appendices. In the first chapter, we give an overview of works
related to the topic of the dissertation.

In the forthcoming paragraphs, we briefly summarise the main results
upon which this dissertation is built on.

Chapter 2. Concerning the numbers of subuniverses of finite lattices,
we proved that the fourth largest number of subuniverses of an n-element
lattice is 21.5 · 2n−5 for n ≥ 6, and the fifth largest number of subuniverses
of an n-element lattice is 21.25 · 2n−5 for n ≥ 7. Also, we described the
n-element lattices with exactly 21.5 · 2n−5 (for n ≥ 6) and 21.25 · 2n−5 (for
n ≥ 7) subuniverses, as in the following theorem:

Theorem 6.0.1. The following two assertions hold.

(i) The fourth largest number in NS(n) is 21.5 · 2n−5 for n ≥ 6. Fur-
thermore, for n ≥ 6, an n-element lattice L has exactly 21.5 · 2n−5

subuniverses if and only if L ∼= C0 +glu N6 +glu C1, where C0 and C1

are chains.

(ii) The fifth largest number in NS(n) is 21.25·2n−5 for n ≥ 7. Furthermore,
for n ≥ 7, an n-element lattice L has exactly 21.25 ·2n−5 subuniverses if
and only if L ∼= C0 +glu B4 +glu B4 +glu C1, where C0 and C1 are chains.

71
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Chapter 3. Concerning the numbers of subuniverses of finite semilat-
tices, motivated by the results in the second chapter, we proved that the first
largest number of subuniverses of an n-element semilattice is 2n = 32 · 2n−5,
the second largest number is 28 · 2n−5 and the third one is 26 · 2n−5, where
n ≥ 5. Also, we described the n-element semilattices with exactly 32 · 2n−5,
28 · 2n−5, or 26 · 2n−5 subuniverses, as in the following theorem:

Theorem 6.0.2. If 5 ≤ n ∈ N+, then the following three assertions hold.

(i) The first largest number in NS(n) is 2n = 32 · 2n−5. Furthermore, an
n-element semilattice (L,∨) has exactly 2n subuniverses if and only if
(L,∨) is a chain.

(ii) The second largest number in NS(n) is 28 · 2n−5. Furthermore, an n-
element semilattice (L,∨) has exactly 28 ·2n−5 subuniverses if and only
if (L,∨) ∼= H3 +glu C1 or (L,∨) ∼= C0 +ord H3 +glu C1, where C0 and C1

are finite chains.

(iii) The third largest number in NS(n) is 26 · 2n−5. Furthermore, an n-
element semilattice (L,∨) has exactly 26 ·2n−5 subuniverses if and only
if (L,∨) ∼= H4 +glu C1 or (L,∨) ∼= C0 +ord H4 +glu C1, where C0 and C1

are finite chains.

Chapter 4. It concerns the number of subuniverses, congruences, weak
congruences of semilattices defined by trees. We determined the number of
subuniverses of semilattices defined by arbitrary and special kinds of trees
via combinatorial considerations, as follows:

Lemma 6.0.3. If (T,∨) is a semilattice defined by a tree T , then

|Sub(T,∨)| =
n∏

i=1
(|Sub(Ti,∨)|) +

n∑
i=1

(|Sub(Ti,∨)|)− (n− 1),

where T1, . . . , Tn is a repetition free list of maximal subtrees of the tree T.

Corollary 6.0.3.1. If (B,∨) is a semilattice defined by a binary tree B, then

|Sub(B,∨)| = |Sub(B1,∨)| · |Sub(B2,∨)|+ (|Sub(B1,∨)|+ |Sub(B1,∨)|)− 1,

where B1, B2 are the left and right maximal subtrees of the tree, respectively.
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Corollary 6.0.3.2. If (B,∨) is a semilattice defined by a prickly-snake B of
height h, then

|Sub(B,∨)| = 3 |Sub(B1,∨)|+ 1 = 5 · 3h − 1
2 ,

where B1 is the left maximal subtree of the tree.

Using a result of Freese and Nation [32], we gave a formula for the number
of congruences of semilattices defined by arbitrary and special kinds of trees,
as follows:

Lemma 6.0.4. If (T,∨) is a semilattice defined by a tree T, then

|Con(T,∨)| = 2|T |−1 = 2
∑n

i=1 |Ti| = 2n ·
n∏

i=1
|Con(Ti,∨)| ,

where T1, . . . , Tn is a repetition free list of maximal subtrees of the tree T.

Corollary 6.0.4.1. If (B,∨) is a semilattice defined by a binary tree B, then

|Con(B,∨)| = 2|B1|+|B2| = 4 · |Con(B1,∨)| · |Con(B2,∨)| ,

where B1, B2 are the left and right maximal subtrees of the tree, respectively.

Corollary 6.0.4.2. If (B,∨) is a semilattice defined by a prickly-snake B of
height h, then

|Con(B,∨)| = 4 · |Con(B1,∨)| = 4h,

where B1 is the left maximal subtree of the tree.

Corollary 6.0.4.3. If (B,∨) is a semilattice defined by a perfect binary tree
B of height h, then

|Con(B,∨)| = 4 · |Con(B1,∨)|2 = 22h+1−2,

where B1 is the left maximal subtree of the tree.

Using both results, we proved a formula for the number of weak congru-
ences of semilattices defined by a binary tree. These are contained in the
following:
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Lemma 6.0.5. If (B,∨) is a semilattice defined by a binary tree B and
1′ 6∈ B, then

|Cw(B,∨) +ord{1′}| = 3 · |Cw(B,∨)| − 1.

Theorem 6.0.6. If (B,∨) is a semilattice defined by a binary tree B, then

|Cw(B,∨)| = 4(|Cw(B1,∨)| · |Cw(B2,∨)|)− (|Cw(B1,∨)|+ |Cw(B2,∨)|),

where B1, B2 are the left and right maximal subtrees of the tree, respectively.

Corollary 6.0.6.1. If (B,∨) is a semilattice defined by a prickly-snake B of
height h, then

|Cw(B,∨)| = 7 · |Cw(B1,∨)| − 2 = 5 · 7h + 1
3 ,

where B1 is the left maximal subtree of the tree.

We solved two related nontrivial recurrences by applying the method of
Aho and Sloane, as stated in the following theorems:

Theorem 6.0.7. If (B,∨) is a semilattice defined by a perfect binary tree
B of height h, then

|Sub(B,∨)| = |Sub(B1,∨)|2 + 2 |Sub(B1,∨)| − 1,

where B1 is the left maximal subtree of the tree.
Moreover,

|Sub(B,∨)| =
⌈
C2h+1⌉− 1, C = 1.6784589651254 . . .

where dxe denotes the least integer greater than or equal to x.

Theorem 6.0.8. If (B,∨) is a semilattice defined by a perfect binary tree
B of height h, then

|Cw(B,∨)| = 4 · |Cw(B1,∨)|2 − 2 · |Cw(B1,∨)| ,

where B1 is the left maximal subtree of the tree.
Moreover,

|Cw(B,∨)| =
⌈

1
4 C

2h+1⌉
, C = 2.61803398874989 . . .

where dxe denotes the least integer greater than or equal to x.
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Chapter 5. Concerning (1+1+2)-generated lattices of quasiorders, we
proved that the lattice Quo(n) of all quasiorders (also known as preorders)
of an n-element set is (1 + 1 + 2)-generated for n = 3, n = 6 (when Quo(6)
consists of 209 527 elements), in the following way:

Let A = {a, b, c, d, f, g}. We define the following quasiorders of A:

α := e(d, f) ∨ e(f, g), β := α ∨ e(b, c) ∨ q(b, a)

γ := e(a, b) ∨ e(a, d) ∨ e(c, f), δ := e(b, c) ∨ e(c, g) ∨ e(a, f).
(6.1)

Figure 6.1: α, β, γ, and δ

Theorem 6.0.9. With the quasiorders defined in (6.1), {α, β, γ, δ} is a (1 +
1+2)-generating set of the quasiorder lattice Quo(6) = Quo({a, b, c, d, f, g}).
Hence, Quo(6) is (1 + 1 + 2)-generated.

Corollary 6.0.9.1. Quo(3) is (1 + 1 + 2)-generated.
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Appendix A

.1 N5B4

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*
\beginjob
\name
N_5B_4
\size
7
\elements
0docabi
\P edges
\P 0d da ac ci 0o oa ob bi
\constraints
a+b=i b+c=i b+d=i o+d=a , a*b=o c*b=o o*d=0 d*b=0
\endofjob
\enddata

Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 15:19:5) reports:
[ Supported by the Hungarian Research Grant KH 126581,

A.1



A.2

(C) Gabor Czedli, 2018 ]

|A|=7, A(without commas)={0docabi}. Constraints:
edges
0d da ac ci 0o oa ob bi
a+b=i b+c=i b+d=i o+d=a a*b=o c*b=o o*d=0 d*b=0
Result for A=N_5B_4: |Sub(A)| = 69, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 17.2500000000000000 .

.2 N ′6

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*
\beginjob
\name
N ′_6
\size
6
\elements
0abcd1
\P edges
\P 0a ac c1 0d db b1
\constraints
a+b=1 b+c=1 a+d=1 c+d=1 , a*b=0 c*b=0 a*d=0 d*c=0
\endofjob
\enddata

Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 15:30:39) reports:



A.3

[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=6, A(without commas)={0abcd1}. Constraints:
edges
0a ac c1 0d db b1
a+b=1 b+c=1 a+d=1 c+d=1 a*b=0 c*b=0 a*d=0 d*c=0
Result for A=N ′_6: |Sub(A)| = 37, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 18.5000000000000000.

.3 H1

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*
\beginjob
\name
H_1
\size
7
\elements
ocaivbd
\P edges
\P oc ca ai iv ob bi dv
\constraints
c+b=i a+b=i i+d=v , a*b=o c*b=o
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021



A.4

SUBSIZE version June 30, 2019 (started at 15:41:45) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=7, A(without commas)={ocaivbd}. Constraints:
edges
oc ca ai iv ob bi dv
c+b=i a+b=i i+d=v a*b=o c*b=o
Result for A=H_1: |Sub(A)| = 79, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 19.7500000000000000 .

.4 N7

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*
\beginjob
\name
N_7
\size
7
\elements
oaedcib
\P edges
\P oa ae ed dc ci ob bi
\constraints
a+b=i e+b=i d+b=i c+b=i , a*b=o c*b=o e*b=o d*b=o
\endofjob
\enddata
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Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 15:50:37) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=7, A(without commas)={oaedcib}. Constraints:
edges
oa ae ed dc ci ob bi
a+b=i e+b=i d+b=i c+b=i a*b=o c*b=o e*b=o d*b=o
Result for A=N_7: |Sub(A)| = 83, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 20.7500000000000000 .

.5 G7

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
G_7
\size
7
\elements
oacvibd
\P edges
\P oa ac cv vi od db bi dv
\constraints
a+b=i c+b=i a+d=v v+b=i , a*b=o c*b=o
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\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 17:48:46) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=7, A(without commas)={oacvibd}. Constraints:
edges
oa ac cv vi od db bi dv
a+b=i c+b=i a+d=v v+b=i a*b=o c*b=o
Result for A=G_7: |Sub(A)| = 78, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 19.5000000000000000 .

.6 G−7

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
G−7
\size
7
\elements
oacvibd
\P edges
\P oa ac cv vi od db bi dv
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\constraints
a+b=i c+b=i a+d=v v+b=i c+d=v , a*b=o c*b=o a*d=0 c*d=0
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 17:48:46) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=7, A(without commas)={oacvibd}. Constraints:
edges
oa ac cv vi ob db bi dv
a+b=i c+b=i a+d=v v+b=i c+d=v a*b=o c*b=o a*d=0 c*d=0
Result for A=G−7 : |Sub(A)| = 67, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 16.75000000000000000 .

.7 Q8

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
Q_8
\size
8
\elements
oadceifb
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\P edges
\P oa ad dc ce ei of fb fe bi
\constraints
a+b=i d+b=i c+b=i e+b=i , c*b=o d*b=o a*b=o a*f=o c*f=o d*f=o e*b=f
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 18:39:9) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=8, A(without commas)={oadceifb}. Constraints:
edges
oa ad dc ce ei of fb fe bi
a+b=i d+b=i c+b=i e+b=i c*b=o d*b=o a*b=o a*f=o c*f=o d*f=o e*b=f
Result for A=Q_8: |Sub(A)| = 131, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 16.3750000000000000 .
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.8 H4

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
H_4
\size
4
\elements
abc1
\P edges
\P ab b1 c1
\constraints
a+c=1 b+c=1 ,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 19:7:59) reports:
[ Supported by the Hungarian Research Grant KH 126581,

B.1



B.2

(C) Gabor Czedli, 2018 ]

|A|=4, A(without commas)={abc1}. Constraints:
edges
ab b1 c1
a+c=1 b+c=1
Result for A=H_4: |Sub(A)| = 13, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 26.0000000000000000 .

.9 H5

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
H_5
\size
5
\elements
abc1d
\P edges
\P ab bc c1 d1
\constraints
a+d=1 b+d=1 c+d=1 ,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021



B.3

SUBSIZE version June 30, 2019 (started at 19:31:17) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=5, A(without commas)={abc1d}. Constraints:
edges
ab bc c1 d1
a+d=1 b+d=1 c+d=1
Result for A=H_5: |Sub(A)| = 25, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 25.0000000000000000 .

.10 K3

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
K_3
\size
4
\elements
abc1
\P edges
\P a1 b1 c1
\constraints
a+b=1 b+c=1 c+a=1 ,
\endofjob
\enddata
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Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 19:35:43) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=4, A(without commas)={abc1}. Constraints:
edges
a1 b1 c1
a+b=1 b+c=1 c+a=1
Result for A=K_3: |Sub(A)| = 12, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 24.0000000000000000 .

.11 B4

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
B_4 \size
4
\elements
0ab1
\P edges
\P 0a a1 0b b1
\constraints
a+b=1 ,
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\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 19:40:26) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=4, A(without commas)={0ab1}. Constraints:
edges
0a a1 0b b1
a+b=1
Result for A=B_4: |Sub(A)| = 14, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 28.0000000000000000 .

.12 K

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
K
\size
5
\elements
ad1cb
\P edges
\P da a1 dc bc c1
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\constraints
a+c=1 d+b=c a+b=1,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 19:46:16) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=5, A(without commas)={ad1cb}. Constraints:
edges
da a1 dc bc c1
a+c=1 d+b=c a+b=1,
Result for A=K: |Sub(A)| = 23, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 23.0000000000000000 .

.13 N

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
N
\size
6
\elements
abcde1
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\P edges
\P ad ac bc be e1 d1 c1
\constraints
a+b=c c+d=1 d+e=1 c+e=1 b+d=1 a+e=1 ,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 21:0:39) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=6, A(without commas)={abcde1}. Constraints:
edges
ad ac bc be e1 d1 c1
a+b=c c+d=1 d+e=1 c+e=1 b+d=1 a+e=1
Result for A=N: |Sub(A)| = 39, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 19.5

.14 K0

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
K_0
\size
7
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\elements
abcxyz1
\P edges
\P ax az bx by cy cz x1 z1 y1
\constraints
a+b=x a+c=z b+c=y x+z=1 x+y=1 z+y=1 a+y=1 c+x=1 b+z=1 ,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 21:11:18) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=7, A(without commas)=abcxyz1. Constraints:
edges
ax az bx by cy cz x1 z1 y1
a+b=x a+c=z b+c=y x+z=1 x+y=1 z+y=1 a+y=1 c+x=1 b+z=1
Result for A=K_0: |Sub(A)| = 61, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 15.2500000000000000 .

.15 U1

\textbfInput:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
U_1
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\size
6
\elements
abxcdy
\P edges
\P ax bx cy dy
\constraints
a+b=x c+d=y ,
\endofjob
\endd
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 21:19:19) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=6, A(without commas)={abxcdy}. Constraints:
edges
ax bx cy dy
a+b=x c+d=y
Result for A=U_1: |Sub(A)| = 49, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 24.5000000000000000 .

.16 U2

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
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\name
U_2
\size
5
\elements
abxcd
\P edges
\P ax bx cx dx
\constraints
a+b=x c+d=x ,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 21:25:19) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=5, A(without commas)={abxcd}. Constraints:
edges
ax bx cx dx
a+b=x c+d=x
Result for A=U_2: |Sub(A)| = 25, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 25.0000000000000000 .

.17 U3

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*



B.11

\beginjob
\name
U_3
\size
5
\elements
abxcd
\P edges
\P ax bx ca da
\constraints
a+b=x c+d=a ,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 21:29:26) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=5, A(without commas)=abxcd. Constraints:
edges
ax bx ca da
a+b=x c+d=a
Result for A=U_3: |Sub(A)| = 24, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 24.0000000000000000 .

.18 K1

Observe that

|{S ∈ Sub(K1,∨) : a 6∈ S}| = 23, (by Lemma 3.3.2(v)),

|{S ∈ Sub(K1,∨) : a ∈ S, {b, c, x, y} ∩ S = ∅}| = 2, and
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|{S ∈ Sub(K1,∨) : a ∈ S, {b, c, x, y} ∩ S 6= ∅}| = 12,

whereby | Sub(K1,∨)| = 23 + 2 + 12 = 37 = 18.5 · 26−5, which means that
σ5(K1,∨) = 18.5.

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
K_1
\size
6
\elements
abcxy1
\P edges
\P ax bx by cy x1 y1
\constraints
a+b=x b+c=y a+c=1 x+y=1 x+c=1 a+y=1,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 20:22:59) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=6, A(without commas)={abcxy1}. Constraints:
edges
ax bx by cy x1 y1
a+b=x b+c=y a+c=1 x+y=1 x+c=1 a+y=1,
Result for A=K_1: |Sub(A)| = 37, whence



B.13

sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 18.5000000000000000 .

.19 K2

Input:
\PVersion of the input file: Nov 29, 2021
\verbose=false
\subtrahend-in-exponent=5
\operationsymbols=+*

\beginjob
\name
K_2
\size
5
\elements
abxc1
\P edges
\P ax bx x1 c1
\constraints
a+b=x a+c=1 b+c=1 x+c=1 ,
\endofjob
\enddata
Output:
Version of the input file: Nov 29, 2021
SUBSIZE version June 30, 2019 (started at 21:29:26) reports:
[ Supported by the Hungarian Research Grant KH 126581,
(C) Gabor Czedli, 2018 ]

|A|=5, A(without commas)=abxc1. Constraints:
edges
ax bx x1 c1
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a+b=x a+c=1 b+c=1 x+c=1
Result for A=K_2: |Sub(A)| = 22, whence
sigma(A) = |Sub(A)|*2ˆ(5-|A|) = 22.0000000000000000 .
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Figure 2: The full list of 6-element meet-semilattices with exactly 28 = 28 ·

26−6 many congruences

Figure 3: Three twelve-element meet-semilattices with the same skeleton T

and the same number, 26 · 212−6 = 1664 , of congruences

C.1



C.2

Figure 4: Four thirteen-element meet-semilattices with the same skeleton T

and the same number, 25 · 213−6 = 3200, of congruences

Figure 5: F,M3, N6, and the pentagon, N5
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.20 TH4.2.3
A = 2 ;
S = N[Log[A]] ;
For[n = 0, n < 10, n++, Print[n];
S = S + Log [1 - 1/(Aˆ2)]/(2ˆ(n + 1)); A = Aˆ2 - 1; Print[A];
Print[S]];
Exp[S]
1.6784589651254 . . .

.21 TH4.4.3
B = 1 ;
SB = N[Log[B]] + Log[4];
For[n = 0, n < 10, n++, Print[n];
SB = SB + Log [1 - 1/(2 B)]/(2ˆ(n + 1)); B = 4 Bˆ2 - 2 B; Print[B];
Print[SB]];
Exp[SB]
2.61803398874989 . . .

D.1
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