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associate professor

Doctoral School of Mathematics and Computer Science
University of Szeged

Faculty of Science and Informatics
Bolyai Institute

Szeged
2022

http://www.math.u-szeged.hu/~mibrahim/
https://www.math.u-szeged.hu/~denesa/indexe.html
http://www.math.u-szeged.hu/phd/indexe.html
https://u-szeged.hu/english
http://sci.u-szeged.hu/english
http://www.math.u-szeged.hu/mathweb/index.php/en/


Introduction

My thesis is concerned with periodic mathematical models for the spread of two dif-
ferent mosquito-borne diseases and a rodent-borne disease. In particular, it presents
compartmental population models for the transmission dynamics of malaria, Zika
virus and Lassa virus diseases in a seasonal environment.

The main aim of the thesis was to investigate the impact of the periodicity of
weather on the spread of the above mentioned diseases by applying non-autonomous
mathematical models with time-dependent parameters. The basic reproduction num-
ber R0 is defined as the spectral radius of a linear integral operator and the global
dynamics is determined by this threshold parameter: if R0 < 1, then the disease-free
periodic solution is globally asymptotically stable , while if R0 > 1, then the disease
remains endemic in the population and there exist at least a positive ω-periodic solu-
tion. Numerical simulations to illustrate and support the analytical results are given.
Additionally, we provide numerical studies and give examples to describe what kind
of parameter changes might lead to a periodic recurrence of the disease.

The thesis is based on the following publications of the author:

• M. A. Ibrahim and A. Dénes. A mathematical model for Lassa fever transmis-
sion dynamics in a seasonal environment with a view to the 2017–20 epidemic
in Nigeria. Nonlinear Analysis: Real World Applications, 60:103310, 2021.
https://doi.org/10.1016/j.nonrwa.2021.103310.

• M. A. Ibrahim and A. Dénes. Threshold and stability results in a periodic
model for malaria transmission with partial immunity in humans. Applied
Mathematics and Computation, 392:125711, 2021. https://doi.org/10.

1016/j.amc.2020.125711

• M. A. Ibrahim and A. Dénes. Threshold dynamics in a model for Zika virus dis-
ease with seasonality. Bulletin of Mathematical Biology, 83:27, 2021. https:
//doi.org/10.1007/s11538-020-00844-6

Threshold and stability results in a periodic model for
malaria spread with partial immunity in humans

Malaria

Malaria is an acute febrile illness caused by Plasmodium microorganisms spread to
humans by female Anopheles mosquitoes. The latest malaria report of WHO from
December 2019 estimated around 230 million malaria cases and more than 400,000
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deaths in both of the preceding two years [15]. In a person without immunity, symp-
toms usually appear ten to fifteen days after infection. The symptoms of the disease,
including fever, headache, and chills are often mild, making malaria difficult to rec-
ognize at early stages. P. falciparum malaria can develop to a serious, often lethal
illness if not treated within one day. Children suffering from severe malaria often
show severe anemia, respiratory distress or cerebral malaria [15], while multi-organ
failure is frequent in infected adults. In regions where the disease is endemic, sev-
eral years of exposure may contribute to a partial immunity, making asymptomatic
infections are possible. It is important to note that heterozygotes for the sickle gene
(AS) also have a partial protection against malaria [8].

Mathematical model

In our model, human population is divided into two types based on their immunity
level: the non-immune, i.e. those who have not developed any immunity against
malaria, and the semi-immune, that is those who have some partial immunity due
to their genetics or by contracting the disease earlier in their life. Semi-immune
human, non-immune human and mosquito compartments are denoted by the lower
indices m,n and v. Susceptible humans (Sm and Sn) can be infected by malaria.
Following the infectious mosquito bite, susceptibles proceed to the exposed compart-
ment (Em, En). Individuals in these compartments have no symptoms yet. After
the incubation time, exposed individuals proceed to the infectious class (Im, In). For
semi-immune, there is an additional immune compartment (Rm). Humans in the
class Rm are partially immune to the disease, but their blood stream still has a low
level of parasites and they are still able to infect susceptible mosquitoes [5]. We have
three compartments for the mosquitoes: susceptibles (Sv), exposed (Ev) and infected
(Iv).

We denote the total population of humans byNh(t) and total population of mosquitoes
by Nv(t), that is

Nh(t) = Sn(t) + En(t) + In(t) + Sm(t) + Em(t) + Im(t) +Rm(t),

Nv(t) = Sv(t) + Ev(t) + Iv(t).

With the above notations, our model equations can be written as

S
′

n(t) = θµh − α̃n(t)
Iv(t)

Nh(t)
Sn(t)− dhSn(t),

E
′

n(t) = α̃n(t)
Iv(t)

Nh(t)
Sn(t)− νnEn(t)− dhEn(t),

I
′

n(t) = νnEn(t)− γnIn(t)− (dh + δn)In(t),

S
′

m(t) = (1− θ)µh − α̃m(t)
Iv(t)

Nh(t)
Sm(t)− dhSm(t) + βRm(t),
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E
′

m(t) = α̃m(t)
Iv(t)

Nh(t)
Sm(t)− νmEm(t)− dhEm(t), (1)

I
′

m(t) = νmEm(t)− γmIm(t)− (dh + δm)Im(t),

R
′

m(t) = γnIn(t) + γmIm(t)− βRm(t)− dhRm(t),

S
′

v(t) = µ̃v(t)− α̃v(t)
ηnIn(t) + ηmIm(t) + ηrRm(t)

Nh(t)
Sv(t)− d̃v(t)Sv(t),

E
′

v(t) = α̃v(t)
ηnIn(t) + ηmIm(t) + ηrRm(t)

Nh(t)
Sv(t)− νvEv(t)− d̃v(t)Ev(t),

I
′

v(t) = νvEv(t)− d̃v(t)Iv(t),

where µ̃v(t), α̃n(t), α̃m(t), α̃v(t) and d̃v(t) are the mosquito birth rate, the rate of trans-
mission from an infected mosquito to a non-immune susceptible human, transmission
rate from an infectious mosquito to susceptible semi-immune humans, the transmis-
sion rate from infected humans to susceptible mosquitoes and mosquito death rate,
respectively. In our model we assumed µ̃v(t), α̃n(t), α̃m(t), α̃v(t) and d̃v(t) to be con-
tinuous, positive ω-periodic functions. In our present work, motivated by [3, 7] we
set up and study a compartmental population model for malaria transmission in a
periodically changing environment: we extend the model given in [7] by including
periodicity of the environment.

System (1) has a single disease-free periodic solution

E0 =
(
S∗n, 0, 0, S

∗
m, 0, 0, 0, S

∗
v(t), 0, 0

)
,

with S∗n = θµh
dh

, S∗m = (1− θ)µh
dh

and

S∗v(t) =

[∫ t
0
µ̃v(r)e

∫ r
0 d̃v(s)dsdr +

∫ ω
0 µ̃v(r)e

∫ r
0 d̃v(s)dsdr

e
∫ω
0 d̃v(s)ds−1

]
e−

∫ t
0 d̃v(s)ds > 0.

To introduce the following result, we set hL = supt∈[0,ω) h(t) and hM = inft∈[0,ω) h(t)

for a positive, continuous ω-periodic function h(t).

Lemma 3.1. There is N∗v = µLv
dMv

> 0 such that each solution in X of (1) eventually
enters

GN∗ :=

{
(Sn, En, In, Sm, Em, Im, Rm, Sv, Ev, Iv) ∈ R10

+ :
Nh 6 N∗h ,

Nv 6 N∗v

}
,

and for each Nv(t) > N∗v , GN is positively invariant for system (1). Also, we have that

lim
t→+∞

(Nv(t)− S∗v(t)) = 0.

Following the technique introduced by Wang and Zhao [13], we identify the basic
reproduction number R0 for system (1) and show the local stability of the disease-
free periodic solution E0. Based on the results so far, we can formulate the following
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theorem concerning the local stability properties of the disease-free periodic solution
E0 of (1).

Theorem 3.1. The disease-free periodic solution E0 is locally asymptotically stable if
R0 < 1, while it is unstable in the case R0 > 1.

Threshold dynamics

We show the global stability of the disease-free periodic solution E0 and the extinc-
tion of the disease if R0 is less than 1, as well as the persistence of malaria and the
existence of a positive periodic solution of (1) if R0 is larger than 1.

Theorem 3.2. If δn = 0, δm = 0 and R0 < 1, then the disease-free periodic solution E0

of (1) is globally asymptotically stable and if R0 > 1, then it is unstable.

Let us introduce the notations

X :=
{

(Sn, En, In, Sm, Em, Im, Rm, Sv, Ev, Iv) ∈ R10
+

}
,

X0 :=

(Sn, En, In, Sm, Em, Im, Rm, Sv, Ev, Iv) ∈ X :

En > 0, In > 0,

Em > 0, Im > 0,

Rm > 0, Ev > 0,

Iv > 0

 ,

and ∂X0 := X \X0.

Let P : R10
+ → R10

+ defined as the Poincaré map corresponding to (1), i.e. the map
P is defined as

P (x0) = u(ω, x0), x0 ∈ R10
+ ,

with u(t, x0) being the single solution of (1) started from initial condition x0 ∈ R10
+ .

Lemma 3.2. If the basic reproduction number R0 is larger than 1, then there exists a
σ > 0 such that for any (S0

n, E
0
n, I

0
n, S

0
m, E

0
m, I

0
m, R

0
m, S

0
v , E

0
v , I

0
v ) ∈ X0 with

‖ (S0
n, E

0
n, I

0
n, S

0
m, E

0
m, I

0
m, R

0
m, S

0
v , E

0
v , I

0
v )− E0‖ 6 σ,

we have lim sup
m→∞

d (Pm (S0
n, E

0
n, I

0
n, S

0
m, E

0
m, I

0
m, R

0
m, S

0
v , E

0
v , I

0
v ) , E0) > σ.

Lemma 3.1. X0 and ∂X0 are positively invariant w.r.t. the flow defined by (1).

Theorem 3.3. Assume R0 > 1. Then (1) admits at least one positive periodic solution
and there is an ε > 0 s.t.

lim inf
t→∞

En(t) > ε, lim inf
t→∞

In(t) > ε, lim inf
t→∞

Em(t) > ε, lim inf
t→∞

Im(t) > ε,

lim inf
t→∞

Rm(t) > ε, lim inf
t→∞

Ev(t) > ε, lim inf
t→∞

Iv(t) > ε,

for all (S0
n, E

0
n, I

0
n, S

0
m, E

0
m, I

0
m, R

0
m, S

0
v , E

0
v , I

0
v ) ∈ X0.
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Numerical simulations

Here we show numerical simulations regarding our model to illustrate and support
the theoretical results of the previous sections. We show some simulations to demon-
strate that our time-periodic model is in accordance with seasonally fluctuation. The
functions µ̃v(t), α̃n(t), α̃m(t), α̃v(t) and d̃v(t) are time-periodic with one year as a
period and, following e.g. [3], they are assumed to be of the form

α̃i(t) =αi ·
(

sin
(

2π
p
t+ b

)
+ a
)
, i = n,m, v,

µ̃v(t) = µv ·
(

sin
(

2π
p
t+ b

)
+ a
)
, d̃v(t) = dv ·

(
cos
(

2π
p
t+ b

)
+ a
)
,

where p is period length (given in months), a, b are free adjustment parameters and
µv, αn, αm, αv and dv are the (constant) baseline values of the corresponding time-
dependent parameters.

In order to show that the single disease-free periodic solution E0 is globally
asymptotically stable if the basic reproduction number is less than unity, we pro-
vide a couple of examples. Our first example, was created with R0 = 0.625 < 1. In
our second example, was created with another set of parameters andR0 = 0.913 < 1.
By Theorem 3.3, system (1) has a positive ω-periodic solution ifR0 > 1. Accordingly,
one can see that, the disease compartments are persistent and the epidemic becomes
endemic in the population recurring periodically every year.

The reproduction numbers were calculated as a function of the parameters αn,
αm, αv, µv and dv. Our simulations suggest that vector control is an important factor
in malaria transmission and that mosquito control, above all the control of mosquito
births, may prove to be sufficient in controlling the disease. At the same time, per-
sonal protection resulting in a decrease of transmission rates is also an important tool
to reduce the basic reproduction number.

Threshold dynamics in a model for Zika virus disease
with seasonality

Zika virus disease

Zika virus disease or Zika fever is a mosquito-borne disease caused by the Zika virus
(ZIKV). Zika virus is chiefly spread in tropical and subtropical regions by the bite
of infected female mosquitoes from the Aedes genus (by Aedes aegypti above all)
[see, e.g., 10], the same species that is responsible for dengue, chikungunya and
yellow fever transmission. Zika virus is also spread via sexual contacts, principally
from men to women. Studies suggest that ZIKV might remain in male genital se-
cretions for a longer period (up to six months) than in other bodily fluids, hence,
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in this way, a transmission of the disease is possible even several months after re-
covery. Mothers can transmit the disease to their fetus during pregnancy or during
delivery. This transmission might result in microcephaly and further congenital mal-
formations. These are collectively denominated as congenital Zika syndrome. The
incubation period of Zika virus disease is around 3–14 days. Most of the infected
people do not show any symptoms or only mild ones including fever, rash, muscle
and joint pain, conjunctivitis and headache, in general lasting for 2–7 days [14].

Mathematical model

We divide the total human population into six compartments: susceptible Sh(t), ex-
posed Eh(t), symptomatically infected Is(t), asymptomatically infected Ia(t), conva-
lescent Ir(t), and recovered R(t) at time t > 0, while the vector population is divided
into three classes: susceptible Sv(t), exposed Ev(t) and infectious Iv(t) individuals.

The total human population Nh(t) and the total mosquito population Nv(t) are
given by:

Nh(t) = Sh(t) + Eh(t) + Ia(t) + Is(t) + Ir(t) +R(t),

Nv(t) = Sv(t) + Ev(t) + Iv(t).

Our model takes the form

S ′h(t) = µh − β
τeEh(t) + τaIa(t) + Is(t) + τrIr(t)

Nh(t)
Sh(t)−

α̃h(t)

Nh(t)
Iv(t)Sh(t)

− dhSh(t),

E ′h(t) = β
τeEh(t) + τaIa(t) + Is(t) + τrIr(t)

Nh(t)
Sh(t) +

α̃h(t)

Nh(t)
Iv(t)Sh(t)

− νhEh(t)− dhEh(t),
I ′a(t) = qνhEh(t)− γaIa(t)− dhIa(t),
I ′s(t) = (1− q)νhEh(t)− γsIs(t)− dhIs(t),
I ′r(t) = γaIa(t) + γsIs(t)− γrIr(t)− dhIr(t),
R′(t) = γrIr(t)− dhR(t),

S ′v(t) = µ̃v(t)− α̃v(t)
ηeEh(t) + ηaIa(t) + Is(t)

Nh(t)
Sv(t)− d̃v(t)Sv(t),

E ′v(t) = α̃v(t)
ηeEh(t) + ηaIa(t) + Is(t)

Nh(t)
Sv(t)− νvEv(t)− d̃v(t)Ev(t),

I ′v(t) = νvEv(t)− d̃v(t)Iv(t),

(2)

where µ̃v(t), α̃h(t), α̃v(t) and d̃v(t) denote mosquito birth rate, transmission rate from
an infectious mosquito to a susceptible human, the transmission rate from infected
humans to susceptible mosquitoes and mosquito death rate, respectively. In our

6



model we assumed µ̃v(t), α̃h(t), α̃v(t) and d̃v(t) to be continuous, positive ω-periodic
functions. An individual may progress from susceptible (Sh) to exposed (Eh) upon
contracting the disease. An exposed individual moves either to the symptomatically
infected class Is or to the asymptomatically infected class Ia, depending on whether
that person shows symptoms or not. Infected people with or without symptoms move
to the convalescent compartment Ir including those who have already recovered, but
who can still transmit the disease via sexual contact. After the convalescent period,
one moves to the recovered compartment R. Mosquitoes may progress from suscep-
tible (Sv) to exposed (Ev) and then to infectious (Iv) class.

To determine the disease-free periodic solution of (2), we study equation

S ′v(t) = µ̃v(t)− d̃v(t)Sv(t) (3)

with initial value Sv(0) ∈ R+. Equation (3) has a single positive ω-periodic solution
S∗v(t), globally attractive in R+ and thus, system (2) has a single disease-free periodic
solution E0 =

(
N∗h , 0, 0, 0, 0, N

∗
h , S

∗
v(t), 0, 0

)
.

Lemma 4.1. There exists an N∗v = µ̃Lv
d̃Lv
> 0 such that every forward solution in

X :=

{
(Sh, Eh, Ia, Is, Ir, Nh, Sv, Ev, Iv) ∈ R9

+ :
Nh > Sh + Eh + Ia + Is + Ir,

Nv > Sv + Ev + Iv

}
,

of (2) eventually enters

GN∗ := {(Sh, Eh, Ia, Is, Ir, Nh, Sv, Ev, Iv) ∈ X : Nh 6 N∗h , Sv + Ev + Iv 6 N∗v <∞}

and for each Nv(t) > N∗v , GN is positively invariant for (2). Further, it holds that

lim
t→+∞

(Nv(t)− S∗v(t)) = 0.

Threshold dynamics

Here we study the global stability of the disease-free equilibrium of model (2) and the
persistence of the infectious compartments. We use the general theory for the extinc-
tion or persistence of infectious given by [11] to show that if the basic reproduction
ratio R0 is less than 1, then the unique disease-free equilibrium
X ∗(t) =

(
0, 0, 0, 0, 0, 0, N∗h , N

∗
h , S

∗
v(t)
)

is globally asymptotically stable (G.A.S.) and
the disease dies out, while if the basic reproduction ratio R0 is larger than 1, the dis-
ease persists. Moreover, we prove the existence of a positive periodic solution of (2)
if R0 > 1.
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Theorem 4.1. IfR0 < 1, then the disease-free periodic solution X ∗(t) is globally asymp-
totically stable and if R0 > 1, then it is unstable.

Theorem 4.2. If R0 > 1 then system (2) is persistent with respect to Eh, Ia, Is, Ir, Ev
and Iv.

Define

X :=
{

(Sh, Eh, Ia, Is, Ir, Nh, Sv, Ev, Iv) ∈ R9
+

}
,

X0 :=
{

(Sh, Eh, Ia, Is, Ir, Nh, Sv, Ev, Iv) ∈ R+ × Int(R4
+)× R2

+ × Int(R2
+)
}

and

∂X0 := X \X0 = {(Sh, Eh, Ia, Is, Ir, Nh, Sv, Ev, Iv) : EhIaIsIrEvIv = 0} .

Let P : R9
+ → R9

+ be the Poincaré map associated with (2), that is,

P (x0) = u(ω, x0), for x0 ∈ R9
+,

where u(t, x0) is the unique solution of (2) with u(0, x0) = x0. It is easy to see that

Pm(x0) = u(mω, x0), ∀m > 0.

Lemma 4.2. If R0 > 1, then there exists a σ∗ > 0 such that for any x0 ∈ X0, with
‖x0 − E0‖ 6 σ∗ we have

lim sup
m→∞

d
(
Pm(x0), E0

)
> σ∗.

Theorem 4.3. Assume that R0 > 1. Then system (2) has at least one positive periodic
solution and there exists an ε > 0 such that

lim inf
t→∞

Eh(t) > ε, lim inf
t→∞

Ia(t) > ε, lim inf
t→∞

Is(t) > ε, lim inf
t→∞

Ir(t) > ε,

lim inf
t→∞

Ev(t) > ε, lim inf
t→∞

Iv(t) > ε,

for all (Sh(0), Eh(0), Ia(0), Is(0), Ir(0), Nh(0), Sv(0), Ev(0), Iv(0)) ∈ X0.

Case study for Ecuador and Colombia: what changes in the
parameters might lead to a regular recurrence of Zika fever?

In this section, we apply our model to study the spread of Zika in Ecuador during the
2015–17 and in Colombia during the 2015–17 Zika virus epidemic. From Section ,
we see that R0 is a threshold parameter for the persistence of the disease in the
population (see Theorems 4.1 and 4.3). The functions µ̃v(t), α̃h(t), α̃v(t) and d̃v(t)

are assumed to be time-periodic with one year as a period and, following e.g. [3],
they are assumed to be of the form µv ·

(
sin
(

2π
p
t + b

)
+ a
)
, αh ·

(
sin
(

2π
p
t + b

)
+ a
)
,
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αv ·
(

sin
(

2π
p
t + b

)
+ a
)

and dv ·
(

cos
(

2π
p
t + b

)
+ a
)

where p is period length, a, b are
free adjustment parameters and µv, αh, αv, dv are the (constant) baseline values of
the corresponding time-dependent parameters.

Parameter estimation for Ecuador and Colombia

Figure 1 shows model (2) fitted to data from Ecuador and Colombia. Our model
gives a reasonably good fit for both countries, reproducing the single peak of Zika
fever in Colombia and the two peaks of Zika fever experienced in Ecuador in two
subsequent years. This shows that model (2) is able to reproduce the two types of
outcomes of the Zika epidemic observed in South America. Figure 1 is in accordance
with the analytic results stating that the unique disease-free equilibrium E0 is globally
asymptotically stable when R0 < 1. By Theorem 4.2, system (2) is persistent with
respect to the infective compartments if R0 > 1. We present how changes in some of
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(a) The model fitted to 2016–17 data from
Ecuador when R0 = 0.945 < 1.
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(b) The model fitted to 2015–17 data from
colombia when R0 = 0.989 < 1.

Figure 1: The model fitted to in (a) 2016–17 data from Ecuador and in (b) 2015–17
data from Colombia when R0 < 1.

the key parameters (human-to-human, human-to-mosquito and mosquito-to human
transmission rates as well as mosquito birth rates) might affect the course of Zika
epidemics. The simulations suggest that an increase of any of these four parameters–
either due to climate change or to genetic mutation of the virus–can lead to a periodic
annual reappearance of the epidemic.

For a better assessment of the effect of additional mosquito killing, we assume
a periodic recurrence of the disease. We show some seasonal measures to control
Zika virus disease both in Ecuador and Colombia. The result suggests that even a
mosquito control limited to the peak period of mosquito abundance might have a
significant impact to control the disease.
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Sensitivity analysis

The PRCC-based sensitivity analysis measures the effect of the parameters on the
response function (in our cases, the number of infected cases), while we vary the
parameters (relevant to the dynamics of the diseases in Ecuador and Colombia) in
the given ranges. Figure 2 shows the comparison of the PRCC values obtained for

Human-to-human transmission rate (β)

Human-to-mosquito transmission rate (αv)

Mosquito-to-human transmission rate (αh)

Mosquito birth rate (μv)

Mosquito death rate (dv)

Figure 2: Partial rank correlation coefficients of the five parameters subject to interven-
tion measures.

the parameters β, αh, αv, µv and dv, i.e. those parameters which can typically be af-
fected by control measures. The results suggest that the most relevant factors in Zika
transmission, and hence in the elevation of the number of infected cases are birth
and death rates of mosquitoes. Spread via sexual contacts is shown to have a smaller
effect, however, it is still an important factor. Based on the sensitivity analysis, we
can assess that the most effective measures to reduce transmission are control of
mosquito populations and protection against their bites.

Further, by numerical calculations we get the curves of the basic reproduction
ratio R0, the time-average basic reproduction number [R0] (using the notation pre-
sented by [9]) and the basic reproduction number RA

0 of the autonomous model
with respect to baseline value of mosquito birth rate (µv), human-to-human trans-
mission rate (β), baseline value of mosquito-to-human transmission rate (αh) and
baseline value of human-to-mosquito transmission rate (αv), respectively. The cal-
culations show that the time-average basic reproduction number [R0] is always less
than the basic reproduction ratio R0, suggesting that the time-average basic repro-
duction number underestimates the disease transmission risk. From this aspect, our
results are similar to those of [13]. We note that there are some other cases of un-
derestimation and overestimation for the average basic reproduction number can be
found in [1], where an approximate formula of the basic reproduction number was
obtained for a class of periodic vector-borne disease models with a small perturbation
parameter.
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A mathematical model for Lassa fever transmission
dynamics in a seasonal environment with a view to the
2017–20 epidemic in Nigeria

Lassa fever

Lassa haemorrhagic fever (LHF), or Lassa fever for short is a zoonotic, acute viral
hemorrhagic fever caused by the Lassa virus from the Arenaviridae family [16]. LHF
is usually transmitted to humans via direct or indirect exposure to food or other items
contaminated with urine or feces of infected multimammate rats (Mastomys natalen-
sis), through the respiratory or gastrointestinal tracts. Person-to-person transmission
has also been observed [12]. The virus remains in body fluids even after recovery: in
urine for 3–9 weeks from infection and for three months in male genital secretions
[12]. Lassa fever is endemic among rats in parts of West Africa, while it is endemic in
humans in several countries of the region. In these regions, the number of infections
per year is estimated between 100,000 and 300,000, with around 5,000 deaths.

About 80% of people infected with Lassa fever have only mild or no symptoms.
Symptom onset occurs usually 1–3 weeks after exposure, these include fever, tired-
ness, weakness, and headache. 20% of infected develop a severe multisystem disease
with symptoms including bleeding gums, respiratory distress, vomiting, chest, back
and abdomen pain, facial swelling, low blood pressure. Neurological problems can
also be observed, such as hear loss, tremors, encephalitis [16].

Seasonal model for Lassa fever transmission

We divide the human population into six compartments: susceptible Sh(t), exposed
Eh(t), symptomatically infected Is(t), mildly infected Im(t), treated I

T
(t), and re-

covered individuals with temporary immunity R(t). The total size of the human
population at any time t is denoted by

Nh(t) = Sh(t) + Eh(t) + Im(t) + Is(t) + I
T
(t) +R(t).

An individual may proceed from susceptible (Sh) to exposed (Eh) upon contract-
ing the disease. Individuals in the exposed compartment have no symptoms yet.
After the incubation time, an exposed individual moves either to the symptomati-
cally infected class (Is) or to the mildly infected class (Im), depending on whether
that person shows symptoms or not. Infected people from Is may move to the treated
compartment (I

T
), including those who need hospital treatment. After the infection

period, recovered persons move to the class R.
The vector population (Mastomys natalensis rat) at time t, denoted by Nr(t), is

divided into three compartments: susceptible Sr(t), exposed Er(t) and infectious
Ir(t), respectively. Thus Nr(t) = Sr(t) + Er(t) + Ir(t).
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Our model takes the form

dSh(t)

dt
= Πh −

βmIm(t) + βsIs(t) + β
T
I
T
(t)

Nh(t)
Sh(t)− βrh

Ir(t)

Nh(t)
Sh(t)− dSh(t)

+ ξR(t),

dEh(t)

dt
=
βmIm(t) + βsIs(t) + β

T
I
T
(t)

Nh(t)
Sh(t) + βrh

Ir(t)

Nh(t)
Sh(t)− νhEh(t)

− dEh(t),
dIm(t)

dt
= θνhEh(t)− γmIm(t)− dIm(t),

dIs(t)

dt
= (1− θ)νhEh(t)− γsIs(t)− (d+ δs)Is(t),

dI
T
(t)

dt
= γsIs(t)− γT IT (t)− (d+ δ

T
)I

T
(t),

dR(t)

dt
= γmIm(t) + γ

T
I
T
(t)− ξR(t)− dR(t),

dSr(t)

dt
= Π̃r(t)

(
1− Nr(t)

K(t)

)
Nr(t)− βhr

ηsIs(t) + η
T
I
T
(t)

Nh(t)
Sr(t)− µSr(t)

− βr
Ir(t)

Nr(t)
Sr(t),

dEr(t)

dt
= βhr

ηsIs(t) + η
T
I
T
(t)

Nh(t)
Sr(t) + βr

Ir(t)

Nr(t)
Sr(t)− νrEr(t)− µEr(t),

dIr(t)

dt
= νrEr(t)− µIr(t),

(4)

where Π̃r(t) and K(t) denote the time-dependent per capita birth rate and maximal
carrying capacity of the Mastomys natalensis rats. In our model we assumed Π̃r(t)

and K(t) are continuous, positive ω-periodic functions. We denote by Πh and d the
human birth and death rate, respectively. There is also an additional disease-induced
death rate, denoted by δs and δ

T
for those in the compartments Is and I

T
, respectively.

To identify the disease-free periodic solution of (4), consider

dSr(t)

dt
= Π̃r(t)

(
1− Sr(t)

K(t)

)
Sr(t)− µSr(t), (5)

with initial condition Sr(0) ∈ R+. Equation (5) has a unique positive ω-periodic
solution S∗r (t). Thus, system (4) has a unique disease-free periodic solution E0 =(
S∗h, 0, 0, 0, 0, 0, S

∗
r (t), 0, 0

)
, where S∗h = Πh

d
.

Lemma 5.1. There is N∗r = lim supt→∞
K(t)(Π̃r(t)−µ)

Π̃r(t)
> 0 such that any forward solution

in R9
+ of (4) enters eventually

ΩN∗r :=
{

(Sh, Eh, Im, Is, IT , R, Sr, Er, Ir) ∈ R9
+ : Nh 6 N∗h , Nr 6 N∗r

}
,
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and for each Nr(t) > N∗r , ΩN is a positively invariant set w.r.t. (4). Further, it holds
that

lim
t→+∞

(Nr(t)− S∗r (t)) = 0.

Based on the method established by Wang and Zhao [13], we demonstrate the
local stability of the disease-free periodic equilibrium E0 of (4) in terms of the basic
reproduction number R0.

Theorem 5.1. The disease-free periodic solution E0 of (4) is locally asymptotically
stable if R0 < 1, whereas it is unstable if R0 > 1.

Threshold dynamics

We show the dynamics of our model depending on the basic reproduction number.
We prove the existence of a positive periodic solution of model (4) if the basic re-
production number R0 > 1. In this case, the disease persists, whereas if the basic
reproduction number R0 < 1, then the unique disease-free equilibrium E0 is globally
asymptotically stable and the disease goes extinct.

Theorem 5.2. If R0 < 1, then the disease-free periodic solution E0 of (4) is globally
asymptotically stable and if R0 > 1, then it is unstable.

Define

X :=
{

(Sh, Eh, Im, Is, IT , R, Sr, Er, Ir) ∈ R9
+

}
,

X0 :=

{
(Sh, Eh, Im, Is, IT , R, Sr, Er, Ir) ∈ X :

Eh > 0, Im > 0, Is > 0,

I
T
> 0, Er > 0, Ir > 0

}
,

and

∂X0 := X \X0.

Let P : R9
+ → R9

+ denote the Poincaré map corresponding to (4), then P is given by

P (x0) = u(ω, x0), for x0 ∈ R9
+,

where u(t, x0) is the unique solution of (4) with initial condition x0 ∈ X. Clearly,

Pm(x0) = u(mω, x0), ∀m > 0.

Lemma 5.1. The sets X0 and ∂X0 are both positively invariant w.r.t. the flow defined
by (4).

Lemma 5.2. If R0 > 1, then there exists a σ > 0 such that for any φ ∈ X0 with
‖φ− E0‖ 6 σ, we have

lim sup
m→∞

d (Pm(φ), E0) > σ.
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Theorem 5.3. Assume that R0 > 1. Then system (4) has at least one positive periodic
solution and there exists an ε > 0 such that

lim inft→∞
(
Eh(t), Im(t), Is(t), IT (t), R(t), Er(t), Ir(t)

)T
>
(
ε, ε, ε, ε, ε, ε, ε

)T
,

for all φ ∈ X0.

A case study – Lassa fever in Nigeria 2017–2020

We use our model to study the spread of Lassa fever in Nigeria during the epidemic
in November 2017 to May 2020. Simulation results are provided to demonstrate that
our model with periodic parameters is well aligned with seasonal fluctuation data.

The functions Π̃r(t) and K(t) are assumed to be time-periodic with one year as a
period and, following e.g. [2, 6], they are supposed to be of the form

Π̃r(t) = Πr ·
(
a+ sin

(
2π(t+b)

p

))
and K(t) = Kr ·

(
1− Λ cos

(
2π(t+b)

p

))
,

where p is period length, a is free adjustment parameter, Λ is the amplitude of sea-
sonality, b is phase angle and (Πr, Kr) are the (constant) baseline values of the cor-
responding time-dependent parameters.
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Figure 3: Fitting the model to the data for the 2017-2020 Lassa outbreaks in Nigeria.

Figure 3 shows model (4) fitted to data from Nigeria [4]. Our model provides a
reasonably good fit, generating the three peaks of Lassa fever happened in the last
three seasons in Nigeria.

In this study, one of our core concerns was to see what changes in the parameters
might trigger a periodic reappearance of the epidemic. Since we have a large number
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of parameters, it is not easy to rigorously determine which of the parameters play the
most important role in the variation of the dynamics, so we are just attempting to
explain the possible changes through a few examples.

Numerically, with the same set of parameter values used in the extinction case ex-
cept human-to-human transmission (βs) and the rodent-related parameters
(βrh, βr,Πr, µ,Kr), we calculated the value of the basic reproduction number R0 =

3.2678 > 1, i.e. we increased human-to-human, rodent-to-human and rodent-to-
rodent transmission rates, rodent death rate and maximal carrying capacity of ro-
dents, while rodent birth rate was decreased. Accordingly, it can be seen that the
disease compartments are persistent with these parameters, and the epidemic be-
comes endemic in the population periodically recurring annually. We have computed
all constant and periodic parameters by using some published data and studied LHF
in Nigeria. The fitted curve based on our model reflects the seasonal fluctuation and
coincide in quite well with the reported data. The reproduction numbers were es-
timated as a function of the parameters Kr,Πr, βs, βhr, βrh and βr. The calculations
show that the basic reproduction number RA

0 underestimates the disease transmis-
sion risk.

Our model enables us to evaluate what kind of parameter changes might trigger
a periodic recurrence of LHF. Using numerical simulations, we observed that the
human-to-human transmission rate has a substantial impact on the prevalence of the
disease, but the most significant factors in Lassa’s periodic recurrence are the rodent
related parameters.
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