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1 Introduction

Networks are amazing. If you think about it, some of them can be found in almost every single
aspect of our life from sociological, financial and biological processes to the human body. Even
considering entities that are not necessarily connected to each other in a natural sense, can be
connected based on real life properties, creating a whole new aspect to express knowledge. A
network as a structure implies not only interesting and complex mathematical questions, but
the possibility to extract hidden and additional information from real life data. The data that
is one of the most valuable resources of this century. The different activities of the society and
the underlying processes produces a huge amount of data, which can be available for us due
to the technological knowledge and tools we have nowadays. Nevertheless, the data without
the contained knowledge does not represent value, thus the main focus in the last decade is
to generate or extract information and knowledge from the data. Consequently, data analytics
and science, as well as data-driven methodologies have become leading research fields both in
scientific and industrial areas.

In this dissertation, the author introduces efficient algorithms to solve application oriented
optimization and data analysis tasks built on network science based models. The main idea is
to connect these problems along graph based approaches, from virus modelling on an existing
system through understanding the spreading mechanism of an infection/influence and maximize
or minimize the effect, to financial applications, such as fraud detection or cost optimization in
a case of employee rostering.

2 Basic Definitions and Notations

Most of the algorithms and methods in the dissertation are based on undirected or directed
networks (graphs). To define an undirected (directed) network, let G(V, E) be an ordered pair
where V' is the set of nodes or vertices, and E is the set of edges that are unordered (ordered)
pairs of nodes. The vertices or nodes in a graph, so the elements of set V' can be connected by
edges. If u,v € V and e is an edge that connects u and v nodes, e can be denoted by e = (u, v),
euw or e(u,v), and u and v are neighbours or adjacents. Let d, or deg(v) called degree be the
number of the edges that are connected to the node v. In the case of directed networks, the order
of u and v with the edge e(u,v) reflects the direction of the edge. In this case, the edge e(u,v)
is outgoing or out edge of node u and incoming or in edge of the node v. Moreover, if G is a
directed graph, then we distinguish for each vertex v the outdegree d,,(v) and indegree d;,(v)
by a straightforward way. The neighbours of a node in a directed network can be divided into
two groups according to the direction of the corresponding directed edge. The out neighbours
are connected to node v by an edge that points from v, while the in neighbours are connected to
v by an edge pointing towards the v.

Furthermore, to understand the content of this thesis book it is important to define the idea
of complete graphs. For a simple network G (i.e. no loops and multiple edges are allowed) with
|V| = n, the minimal number of edges is 0 in an empty graph while the maximal size of the
E is n(n —1)/2 in a complete graph which is mostly denoted by K,. The clique in a graph G
is a subgraph that forms a complete graph. Consequently, k-clique is a clique that has exactly
k number of nodes. In a graph G, the maximum clique is the largest clique, which contains
the largest number of nodes, and the mazimal clique is the clique that cannot be extended or
enlarged. In directed network, let d,, be the restricted out-degree of a node v in clique ¢ which
means the out-degree of a given node inside the clique. Based on the definition the directed



clique contains all directed edges from vy to vy where d,;, > d,2, and no directed loops as well as
every node in a clique has a different restricted out-degree. Regarding to our definitions it is also
important to discuss the definition of the closed walk. A walk on a network is a finite or infinite
alternating sequence of edges that are connecting sequence of nodes, so ey, ., , Copvg++-Co;_y0; 18 &
walk that goes from v; to v;, however, it is called trail if the edges are distinct. The walk is
closed, if the v; equals to v;.

2.1 Community Structure in Networks

The complex or real networks often have a structural peculiarity, which implies that the nodes
can be grouped into sets such that the vertices inside the set have dense connection structure.
This property is called community structure. However, in the literature there are lot of differ-
ent definitions to describe the communities, they are mostly interpreted as a dense subgraph,
where the nodes are more connected to each other than in the other parts of the network. The
communities can have two different types, based on the number of the groups a node can belong
to. In a case when a vertex can be the part of only one community, it is called non-overlapping
community or cluster. On the other hand, if a node can belong to multiple communities, we are
talking about overlapping communities.

Figure 1: Example of overlapping community.

The extraction or creation of the previously defined groups or dense subgraphs from a network
is called community detection, and it can be a computationally difficult task. The history of
clustering and community detection goes back to the 70’s, thus several methods can be found in
the literature nowadays both for clustering [27, 25, 24, 26, 19, 10] and for overlapping community
detection [11, 22, 30, 28, 3, 21]. However, in real life networks, overlapping communities are more
useful due to the fact that an individual or entity can belong to multiple groups or communities.
Therefore, in the dissertation we deal with overlapping communities. A good overview on different
community detection methods can be found in [9].

2.2 Diffusion Models

Networks and their structure can support and effectively express the modelling of different real
life processes. The origin of diffusion modelling comes from epidemiological use cases, where
processes can express the spread of different viruses or diseases. However, the process can come
from many other areas, for example next to medical processes, we can model the spread of



information, bankcruptcy, churn, or as it is discussed in the dissertation, even the spread of
behavior or mood between different individuals.

Regarding diffusion models, the first point which is needed to be shortly discussed, is the topic
of compartmental models. These models discretize the mathematical representation of infectious
diseases in a way, that the population is grouped into different compartments based on their state.
However, it is important to note, that classical diffusion models were not used on a network, but
the spread was defined based on differential equations. If we consider the compartmental models,
the first important model that has to be discussed is the SIR model, which was proposed by
Kermack and McKendrick in 1927 [17]. In the SIR, the individuals from the population can be
in three different states. The state S represents the susceptible group, which means that if an
individual has infectious contact and it is susceptible, it will be transitioned into the infectious
compartment. The I denotes the group of infectious individuals that can infect people from the
susceptible compartment in a case of a contact. The R means removed, so they were in state
I, but are healed and immune or deceased. A simplified version of this concept, the ST model,
which is dealing only with the S and I compartments is applied for the results of Section 3.1 .
A good overview of general and network based epidemiological models can be found in [8, 18]

The another model that is important regarding the content of this dissertation is the Inde-
pendent Cascade (IC). The mathematical formulation of the Independent Cascade was defined
by Kempe, Kleinberg and Tardos [6]. In this model, the nodes can be in active or inactive state,
where active means that the node is infected, while inactive means the opposite. The nodes can
only go from passive to active state and the infection can be realized by the edge probabilities.
To define the Independent Cascade let G(V, E) be a network where for V(v,u) € E, there is
a probability p(v,wu) that represents the connection strength and 0 < p(v,u) < 1. The model
is iterative and starts with an initially infected node set Ay. To understand the process, let
us define the A; as set of the nodes that have become infected in the ¢ — 1-th iteration by the
set A;_1. The model terminates if the set of the newly infected nodes is empty. The expected
number of the infected nodes in a case of the given Ay set is denoted by o(Ap). Concerning the
Independent Cascade model, an optimization problem called infection mazimization [7] can be
defined, where the objective is to find the initial infected set Ay with a predefined size such that
the expected number of infected nodes o(Ay) is maximized. The computation of the o(A) is #P-
hard problem [5] but with simulation any precision can be reached.

3 Main Topics of the Dissertation
The main parts of the dissertation can be grouped into 5 different topics that are the following:

e Community Detection and Infection Modelling on Public Transportation Networks.

Infection and Communities.

Uplift Network Model for Targeted Interventions.

Temporal Network Analytics for Fraud Detection in the Banking Sector.

Network Based Crew Rostering.

The results of the research connected to these topics will be discussed briefly in this section
of the thesis book.



Figure 2: Contact network.

3.1 Community Detection and Infection Modelling on Public Trans-

portation Networks

We introduced a new methodology which aims to examine the nature of the community structure
on public transportation networks, as well as to analyze existing systems from epidemiological
point of view. The methodology creates two additional networks from the so called contact net-
work (Figure 2.) that describes the original connections between the passengers. The definition
of the different networks used in this chapter can be seen in Table 1.

Table 1: Network definitions used in this chapter

Contact network Transfer network Community network
Nodes Passengers Atomic passenger | Passengers traveling on
groups at least two vehicle trips
Edges Passengers are connected if | Atomic passenger | Passengers are con-
they are physically present | groups are connected if | nected if they are
on the same vehicle trip at | they share a passenger | traveling together on at
the same time (undirected) | (directed) least two vehicle trips
(undirected)
Attributes | Contact duration and start | Number of transfer pas- | Connection strength
time sengers between atomic | measuring the similar-
groups ity of the travel patterns
between passengers

Our methodology creates the transfer network in three steps. In the first step, we partitioned
our original G(V,E) contact network into subgraphs along vehicle trips. In the second and
third step of the creation, we detected maximal cliques using the Bron-Kerbosch algorithm
[1] and built the transfer network F' (see Table 1.). The resulting network provides a good
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representation of the system usage, so at the end of this stage we detected the frequent vehicle
trip combinations and the passenger group movements. These information can be very useful
for the public transportation company, in order to monitor the habits and the behaviour of the
individuals on the vehicle trips.

In the second part of the corresponding chapter, we proposed a novel weighted network
structure called community network denoted by H, which is using a novel link based metric
called connection strength. The connection strength defines the edge weights in the community
network and takes into account the number of transfers a pair of passengers makes together,
but also penalizes the usual travel patterns between them, since these patterns do not indicate
strong hidden connection. We also validated our method with real world scenarios from the
public transportation system of Twin Cities Minneapolis.

3.1.1 Epidemic Spreading Risk Application

One application of identifying the communities within the transit network is infrastructure se-
curity. Understanding passenger communities enables more efficient and accurate tracking of
infectious disease spread on a public transportation system, since one of the main challenges in
modeling epidemic spreading is accurately mapping the relationships between individuals trav-
eling on the same vehicle. In order to simulate an epidemic outbreak on the contact network,
we used the well-known discrete compartmental susceptible-infected (SI) model. Similarly to the
procedure in [2], we randomly selected 100 passengers from the network to be initially infected.
Due to the probabilistic nature of the simulation model, we ran the SI infection model & = 10000
times to quantify the likelihood of each node being in an infectious state at the end of the fifth
time step. The output of our method was the ranking of the vehicle trips, where infection is
most likely to appear.

3.2 Infection and Communities

We examined the connection between community detection and diffusion models. Our main
objective was to introduce a novel community-based infection maximization method, which also
can be used as a benchmarking system in order to rank different community detection methods.
In the first part of the chapter after we discussed the Independent Cascade Model and the Greedy
method to maximize the infection in a network, we defined a new community-based reduction
techniques. Let G(V*) C G(V') be a reduced node set, where the greedy algorithm chooses from
G(Vx) \ Ay in every iteration. Let f(v) : v — Z be a function that assigns an integer to every
node. The nodes are ordered based on their f(v) value, and the nodes with the highest f(v)
scores can be included in the set G(Vx).

As we discussed earlier, communities are dense, connected subgraphs, where the nodes have
stronger connection with each other than with the other parts of the network. If the subgraphs
are dense enough, infection or influence can spread among the nodes more easily. Nodes that
are connecting different communities in multiple dense subgraphs have a special position in the
network, which can be used for influence maximization. Let f.(v) : v — Z be a function for the
community value, that assigns to each node the number of communities it belongs to. The idea is
to reward nodes that are in central position between the dense subnetworks. T'wo reduction based
methods were introduced in the dissertation. The steps of the first method are the following:

1. Detection of overlapping communities in the network.

2. The method computes f.(v) : v — Z for each node .
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3. Creating the G(V*) reduced search space using the f.(v) values.

4. Infection maximization with the greedy method using G/(V*).

We also introduced a simplified heuristic, where we skip the fourth step of the previously

defined method.

3.2.1 Evaluation of the Method on Undirected Networks

First we tested our method on 1080 undirected networks generated by Andrea Lancichinetti and
Santo Fortunato [20]. To compute the community value and also benchmark existing methods,
we used eight different undirected community detection methods from the literature. The Table
2. shows how the different algorithms were working on the networks compared to the original
greedy heuristic.

Table 2: Number of times methods provided the best results. Three variants of the algorithm are
shown: the unmodified heuristic with the selection set reduced to 20%, to 10% and the simplified
heuristic.

20% selection set 10% selection set Simplified heuristic
Greedy(Kempe) 207 243 335
CPM 71 61 2
COPRA 10 1 0
GCE 0 0 0
Infomap 732 769 737
MOSES 2 0 0
OSLOM 2 2 6
SBM inference 27 0 0
SLPA 29 4 0

3.2.2 Further Analysis of the Concept: Directed Hub Percolation Method

After we tested the basic idea on different undirected community detection methods, our objective
was to examine the methodology on directed networks using two directed community detection
methods, where we can extract additional structural information about the nodes. We introduced
the Directed Hub Percolation Method (DHPM), which is an extension of an existing undirected
method [3]. The structure of the method is similar to the original one, except we added a
parameter to the end of the algorithm as well as changed the undirected elements to directed.
Using the DHPM, we defined a new value in directed networks called the hub value. Just as
in a case of the community value let f(v) f: v — Z be a function, which assigns a number to
each node. Let f;,(v) be a function that assigns the hub value h, to the nodes of the network
indicating how many directed cliques contain the node. We compared our DHPM method with
the Directed Clique Percolation [29] and the original Greedy method on artificially generated
and real networks.



3.3 Uplift Network Model for Targeted Interventions

We have developed a new Uplift Network Model, which is able to optimize targeted interventions
on a network, in order to reduce global negative effects. The model was discussed as a part of a
interdisciplinary research, where the objective was to improve the mental well-being of individuals
in organizations and companies with targeted psychological interventions. The model itself is
an extension of the Generalized Independent Cascade Model [4]. To define the Uplift Network
Model formally, let G = (V, E) be an undirected or directed network, where V(v,u) € E edge
has a p(v,u) probability where 0 < p(v,u) < 1 and Vv € V node has an a priori v and
an uplift P/t probability, where both of them are between 0 and 1, i.e. 0 < v®7%" < 1 and
0 < v®lift < 1. The v®T° probabilities are used, when the node did not get intervention,
while the v“P"/* means the probability of the node after intervention. The objective of the
optimization is to search for a set of nodes where the change of the probabilities from v®7" to
v"Plift maximizes the difference from a reference simulation, where there was no intervention, so
it minimizes the global effect.

3.3.1 Psyhological Use Case

The model was tested on a social network, which was created based on real world data from
14 Norwegian nursery homes. The mental level of the employees and the results during the use
case was measured using the WHO-5 questionnaire [31]. We also compared the effect of targeted
interventions compared to a random interventional strategy. The results of the psychological use
case can be seen in Table 3.

Table 3: Comparison of the WHO-5 percentage score mean increase per person

Number and | Mean increase in score ~ Mean increase in Difference
percent of after random score after targeted between targeted
interventions administrations administrations and random
10 (3.6%) 0.74 0.83 0.09
20 (7.2%) 1.43 1.61 0.18
50 (18.0%) 3.55 3.94 0.38
100 (36.0%) 6.85 7.64 0.79
200 (71.9%) 13.58 14.64 1.06

Despite the fact that the mood can spread only at a low level between the individuals, our
method was able to increase the total score of the questionnaire with only targeted strategy.

3.4 Temporal Network Analytics for Fraud Detection in the Banking
Sector

We have introduced a method, which is able to detect special patterns in temporal networks.
Since the inspiration has come from a bank and the defined pattern is highly connected to this
area, the algorithm was introduced through a financial use case, where the objective was to
detect suspicious patterns connected to money cycle transfers. Let a transfer cycle be a closed
walk where:

e The repetition of the nodes along a cycle is allowed, while for the edges it’s not allowed



o Let ¢2,¢1..4771 " be the sequence of the timestamps along a valid cycle, where every

e) e’

t! < ¢t i =0..n — 1 so the timestamps are in ascending order.

e Let a? be the amount of the first transaction and a’ be the amount of the further trans-
actions with ¢ = 1..n. Then a? - (1 — @) < a < a? - (1 + «), meaning that the difference
between the amount of the first transaction and other transactions is bounded by the pre-
viously given real value 0 < o < 1. The « value is a parameter of the method and is
defined by the specific user requirements.

The figure 3. shows the transactions of 5 different clients. Based on the cycle definition, along
the 1-2-3-1 closed walk the timestamps are in ascending order and it is a cycle if the @ > 0.1
nevertheless for example the 5-2-3-4-5 is not because of timestamps and amounts.
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Figure 3: An example of a graph which contains a transactions cycle.

First the algorithm orders the edges based on the timestamps to have the ordered list of the
starting transactions. In the second step of the algorithm, we used a modified Depth First Search
algorithm to collect the cycles. Each cycle is identified by its starting transaction, so after each
cycle is found from the given transaction, the algorithm set the state of the edge to visited, so
that the further cycles cannot use the given transaction.

3.4.1 Real-world Use Case on Bank Transaction Network

We tested the algorithm on the real anonymized data from 2016 that contains the transactions
of a Hungarian Bank. Our method is part of a fraud detection system which has been working
at the bank since 2018. Based on the feedback of the bank, the introduced algorithm detects 2-4
suspected fraud activities in every month, as well as it detected some fraud-related client base
in the last years.

3.5 Network Based Crew Rostering

We introduced a novel network based heuristic for the crew rostering problem. To define the
problem let C' be the set of workers or employees at a company and S be the set of shifts
that has to be carried out. The aim is to assign the crew members to the shifts with minimal
cost. Consequently, let f = S — (' be an assignment, where the shifts are covered by the
workers and exactly one worker is assigned to each shift. The basic employment cost is based
on workers’ expected worktime defined by their contract. So in the optimal case, every worker



will work according to their expected worktime. However, in case of working over the expected
worktime, employers have to provide extra salary for this overtime. Therefore, the cost =
a * overtime + B x employment cost, where o and [ are pre-defined weights. The objective
is to find a solution that minimizes the previously defined formula, and meets with different
regulations that are tipically defined in national laws.

Figure 4: Example of the conflict graph corresponding to two consecutive days.
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Our solution defines the optimization problem on a conflict graph where the nodes are the
shifts and they are connected by an edge if they can not be carried out by the same person. An
example network can be seen in Figure 4. The introduced method is a two step graph coloring
algorithm, so it colors the previously defined network using the set of employees as colors. The
steps of the method are the following:

1. Initial rostering.

a. Estimate the number of workers.
b. Generate days-off patterns.

c. Build a conflict graph.

d. Color the graph.

2. Tabu Search to improve the solution.

3.5.1 Evaluation of the Method and a Real-world Use Case

During the testing, we analyzed the behaviour of our method both on artificially generated and
real-life input data. The real data comes from the Public Transportation Company of Szeged.
The results of the method have been compared to the results of an integer programming model
on small input sizes. As a conclusion it can be said, that our method were able to outperform the
IP model regarding to the running time, as well as it reached the theoretical lower bound (best
possible solution) in many cases producing a fast and efficient solution for our original problem.

4 Summary of the Author’s Contribution

The following section summarizes the main results of the dissertation. Table 4. shows the
relation between the thesis points and main chapters of the thesis, as well as the corresponding
publications.



II.

I1I.

IV.

We introduced a method to analyze the vulnerability of a public transportation system,
using the passenger co-traveling network of the actual city. In the first part of the chapter,
we presented a new community definition for networks that expresses the passenger con-
nections on public transportation and examined the usage of the system giving frequent
trip changes, helping the public transportation company to improve their service. After the
passenger community detection and system analysis, we examined the different scenarios in
a case of an epidemic and detected the critical and risky vehicle trips in order to minimize
the spread on the public transportation network in the city. We introduced and tested our
method with the public transportation network of Minneapolis. Our publication connected
to this topic can be found in [14].

An interesting concept was introduced that is trying to connect the infection models and the
community detection. The main idea of this thesis point is based on a fact that an infection
on a network spreads easier inside a community, than in the other parts of the network.
We introduced a new methodology where on one hand, the results of different community
detection methods are able to improve the efficiency of the infection maximization problem,
on the other hand, the infection maximization can provide a reliable benchmark system in
order to rank the different community detection methods. After the concept was introduced,
we tested the methods from both sides on real and randomly generated networks, and gave

comparison on existing community detection algorithms. The methodology is studied in
(12, 13]

We introduced an infection maximization model for targeted intervention which is based
on the Generalized Independent Cascade [4], applying a use case from psychology. In the
first part of this chapter, we focused on the new infection maximization model and on a
method to minimize the network effect in a case of an existing influence or infection. The
second part of the chapter examined one of the possible use cases, where the objective is to
improve mental well-being in organizations with targeted psychological interventions. The
model was tested on a social network that was created based on employee data of Norwegian
nursing homes. Our research connected to this chapter can be seen in [23].

A new method was introduced to analyse temporal networks in order to detect fraud in
the banking environment. The motivation of this research comes from the financial sector,
where the detection of special network motifs can reveal fraud like activity in the system.
The main objective of this part was to give a general view on financial fraud detection and
introduce a new cycle detection method, that is able to detect special money transfer cycles
in a transaction network. The method was tested on real life transaction data from 2016
and it has been using in a Hungarian bank since 2018. The corresponding paper to this
research can be found in [15].

We solved the crew rostering problem with a heuristic using a network to represent the
search space of the optimization problem. The goal of our method is to minimize the cost
of the employment and to create a solution that meets with the given regulations. The two
step method was tested on real life problems from a public transportation company, as well
as on randomly generated inputs. In the end of the chapter, we compared the results of our
method with the results of a mathematical model. The results are studied in [16].
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Table 4: Correspondence between thesis points, publications and chapters.
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