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Preface

This doctoral dissertation is submitted to the Bolyai Institute of the University of

Szeged in partial ful�llment of the requirements for the award of the Degree of Doctor

of Philosophy. It contains the results of the following papers [26, 56, 63, 64], which

were written in collaboration with di�erent co-authors. The content is essentially

divided into �ve chapters addressing both theoretical statistics and applied statistics.

The theoretical statistics covers classes of estimators for the tail index and their

asymptotic properties. Meanwhile, the applied statistics comprises of application

of statistical methods to partition lattices in Algebra. This dissertation does not

contain all the scienti�c papers of the author, but only gives elaborate content related

to the two sections of theoretical and applied statistics. The problems that this

dissertation intends to address all have their individual histories, therefore separate

introductions to each part will be given. In the theoretical section, we address some

problems related to the occurrence of rare events.

It appears that we live in an age of disasters like earthquakes, hurricanes,

�oods, Tsunami, and more recently, the Covid-19 pandemic. The latter has caused

devastating global public health impact as well as the noticeable impact on the global

economic growth causing much concern to statisticians like the author. These are

surprising phenomena that may have no de�nite rule according to a layman but are

happening according to well-de�ned rules of science. A typical question may be: to

what extent can something go wrong? This question can be adequately addressed

by observations and estimations of rare occurrences that are considered as extreme

events. Extremes are rare or unusual events that occur in real life and are either very

small or very large. They are often labelled as outliers and even ignored in classical

data analysis due to lack of representativeness and the in�uence they may have on

the measures of central tendency and deviations. Extremes possess heavy tails in

real-life situations that no classical distributions predict, but a particular branch

of probability theory, the Extreme Value Theory (EVT), o�ers some in modelling

such events. This is a concept that has been established on sound statistical

methods that deal with modelling outcomes of extreme events by providing tools for

investigating asymptotics of maxima of a sequence of random variables. Estimation

of the probability of such events has experienced some di�culties due to the scarcity

of data from the rare events. The main objective of estimating this distribution

parameter is to enable forecasting the future periods by focusing directly on the

tails disregarding the centre of the distribution. This concept forms the theoretical

part of this dissertation which will be addressed in chapters 2, 3, and 4.
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The applied part of this dissertation involves the practical approach that required

a practical application of statistics to lattice theory. It links basic statistics to

Algebra. In the friendly atmosphere of Bolyai Institute, my interest in applying

mathematical statistics to various �elds, ranging from dentistry and epidemiology

to zoology, was widely known. This explains that soon I found myself in professor

László Zádori's realm, who called my attention to some ongoing research to enumerate

some mathematical objects. To �nd the exact (very large) number ν(n) of these

objects was hopeless both theoretically and in a computer-aided way, but professor

László Zádori pointed out that these objects belong to a larger set H with known

number of elements. Hence, �nding ν(n) is equivalent to �nding the probability that

a randomly selected member of H is one of the objects we are interested in. So it

was reasonable to take a large sample by computer programs and letting statistics

to draw appropriate conclusions. These conclusions are now drawn in Section 3

of Chapter 5. While it is not at all typical to state lattice theoretical statements

only with some probabilistic con�dence level, including probabilities in information

theory is quite standard where the reliability of error-correcting or cryptographic

methods are dealt with. But now that one of professor Czédli's recent papers has

pointed out that the lattice theoretical objects we deal with have connection with

information theory, our goal to take a statistical approach to them becomes less

strange.

Later, it was natural to go beyond the original target. Namely, the computer

programs we had developed proved to be useful in solving one half of professor László

Zádori's 38-year-old problem. These programs also helped in �nding the theoretical

approach to the other half; see Section 2 of Chapter 5 here. I was privileged to

publish my results jointly with professor Gábor Czédli. He put a deep purely lattice

theoretical theorem into our joint paper. Of course, this theorem is not in the

present dissertation, but Section 2 of my joint paper with Amenah Al-Naja� [63]

relies heavily on it; see Theorem 4.10 of Section 4 here.

The dissertation is organized as follows: Chapter 2 gives an overview of important

literature contributing to both EVT and tail index estimation. In Chapter 3,

attention is paid to limit theorems for weighted power sums of extreme values.

The results are applied to construct a new class of tail index estimators. Then in

Chapter 4, the asymptotic properties of norms of extremal samples are investigated.

Here the Gaussian and non-Gaussian limits are obtained. The results are applied to

tail index estimation. Finally, Chapter 5 covers application of statistics to partition

lattices and some lattice theoretical arguments that �grew out� from this application.

In particular, four-element generating sets are presented and a lower bound for
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the number of four-element generating sets of direct products of two neighbouring

partition lattices is established.



CHAPTER 1

Introduction

Normal distributions are usually used in probabilistic modelling phenomena

in the real world. One of the importance of this distribution is due to its bell

shape. It �ts well the empirical data that clusters around the mean value. Normal

distributions also possess some desirable mathematical properties.

However, there exist many other phenomena whose distributions deviate from

the normal distributions. Some of these include �nancial assets, �re insurance losses,

telecommunications, natural calamities like earthquakes, transmission rates of �les

and �le sizes stored on a server, and environmental science. All these phenomena

exhibit data with large values with a high probability, hence they are described as

heavy-tailed distributed. In other words, they follow a power-law distribution. The

tail index is the shape parameter of these heavy-tailed distributions. The larger

the tail index is, the heavier the distributional tail and the more the rare events.

Thus estimation of the tail index has attracted much attention in the literature.

Moreover, various parametric or semiparametric estimators have been developed

from the upper order statistics.

However, one of the drawbacks in the estimation of the tail index is that in most

cases, only the information on the maximum value occurring is available for analysis.

For example, only the information on a few highest quoted prices is reported to

the public for �nancial data. Whereas in meteorological data, only the highest

and lowest temperatures of each day are forecasted. A series of catastrophes have

hit the world in recent years. A very recent example is the Covid-19 pandemic

in the year 2020. These are indicators that it is crucial nowadays to take also

extreme occurrences into account. Although they rarely occur, their consequences

are dramatic when they hit unprepared societies. Unfortunately, there are no

classical distributions that can predict the tails of these extremes events. Hence,

EVT o�ers an amicable solution to such problems. EVT being a wonderfully

much-celebrated theory, it has already been adopted by a wide variety of disciplines.

Its �rst application was to o�er solutions to some environmental problems. Later,

it rapidly became popular in the �nance industry. In recent years, internet tra�c

and structural reliability are other prime targets for applications of EVT. There

exists a very long list of areas in that EVT has played decisive roles in statistical

9
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applications. These include but not limited to Structural engineering, Meteorology,

Highway tra�c as outlined in [14], Insurance, and stock markets outlined in [84, 49].

While the perfect knowledge of the incidence and occurrence of extreme events is

desirable, the application of EVT poses many challenges. The most pertinent of

them is the choice of the method of estimation of parameters. Therefore, one of the

purposes of this thesis is to focus on estimation of tail index.

Use of adequate and accurate statistical methods is of major importance in

all areas of application. The R software (R Development Core Team) has been

conveniently used in this dissertation in Chapter 3 and 4 in simulation and analysis

of simulated data. This being an open source environment, it incorporates a huge

amount of statistical packages and are freely available by the scienti�c community.

Literature review

It is believed that EVT is originated from an analysis in the �eld of astronomy.

Here, a decision had to be made on whether outliers in the data were essential or

not [57]. It is con�rmed that the oldest mathematical models of extreme value

date back to 1925, where Tippet and Fréchet [83, 39] investigated the asymptotic

behaviour of extreme order statistics. A further step involved dividing the limit

distribution into three families of generalized extreme value distribution. The �rst

one was the exponential type distributions wherein the max-domain of attraction

of Gumbel's distribution was obtained by [45]. The second type was based on

the work of Fréchet [39]. The last one was identi�ed by Fréchet and was later

described in detail by Waloddi Weibull [90]. Remarkable advancements in these

models have been witnessed. Subsequently, in 1958, Gumbel [46] presented the

ordered statistics and their exceedance, the distribution of extremes, and their

asymptotic distributions. Recently, so much research has covered many areas of

EVT encompassing the asymptotic distributions and limit law of extreme value

that are the main concerns in this dissertation. Extensive literature has shown that

various asymptotic models for extreme values have been developed, see [16]. A

model that emphasized the availability of several dependent extreme value models

was advanced by Galambos [41]. Moreover, an exponential model was introduced

by Beirlant et al. [5] and Feuerverger et al. [38] for the extreme order statistics

from a Pareto-type distribution. Additionally, a proposal was made by Leadbetter

[60] on asymptotic distributions of extreme order statistics with relation to Poisson

convergence theory. Furthermore, the relationship between the limit distribution

and the joint distribution of the sample extremes was established by Weissman [91].
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Several studies have been advanced to approaches to the estimation of extremal

properties and developments on the estimation parameters of extremes in [40, 52].

The estimation methods for the number of extreme order statistics that are in

the tail was proposed by Danielsson et al. [27], of which many applications of

stochastic models �nd vital. Consequently, the class of estimators for the extreme

value index has since been derived. These include well-known estimators for the

index of a distribution function such as the Hill [50], the moment estimator [32]

and the Pickands estimator [69], etc. Aspects, properties, and generalizations of the

Hill estimator have been studied and developed in recent researches whereby the

asymptotic properties, asymptotic normality, and the volatility of the index have

been discussed in [19, 30, 32, 44, 47]. It su�ces to show that one limitation of the

Hill estimator is that it is known to produce poor results in certain situations leading

to the Hill horror plots. Di�erent approaches have been advanced to solve this

problem by smoothing the Hill estimator [21, 74]. Some of the proposed methods

depend on a subjective choice of the threshold or the number of extreme value

statistics. Thorough consideration is needed since selecting a threshold too high

could result in a high variance of the estimator while setting a too low threshold

could cause biasedness of the estimator. On the other hand, the Pickands estimator

in [69], which estimates the distribution parameters by using a simple percentile

method, is known to be quite volatile as a function of several order statistics and

displays large asymptotic variance and poor e�ciency [93]. Detailed studies have

been performed towards the improvement of the Pickands estimator; see [13, 76].

Likewise, in 1989 Dekkers et al. [32], using the foundations of the Hill estimator

proposed a moment estimator of which required a problematic choice of a number

k = k(n) of upper order statistics whereas a few reliable guidelines on this exist [74].

Meanwhile, its asymptotic properties were investigated by Beirlant et al.[4]. The

consistency and asymptotic normality of these estimators have been proved [30].

The results indicated no superiority by any estimator as the outcome depended on

the distribution parameters in di�erent situations.

General classes of estimators for the tail index of a distribution with a regularly

varying upper tail have been developed in various studies. These include the class

of kernel estimators by Csörg® et al. [21]. The class of universally asymptotically

normal weighted doubly logarithmic least-squares estimators was investigated by

Viharos [88]. Moreover, another class of estimators as scale-invariant functions

was represented by Drees [34] who introduced applicable methods for constructing

estimators having prescribed asymptotic behaviour. More studies have emanated

which involves investigating consistency and asymptotic normality of the estimates;
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see [6, 33, 79]. Norms of extreme values are the targets of another interesting study

in EVT. Some in-depth research has also been conducted on the norms of extreme

values and their associated limit laws. Central limit theorems were combined with

limit theorems by Schlather [75] through parameterizing limit theorems. He

established the limit laws for the normalized Lp norms. Moreover, the limit

distribution of Lp norms of independently and identically distributed (iid) random

variables was looked into by Bogachev [11] as the sample size n approaches in�nity.

On the other hand, Biau and Mason [8] investigated some new asymptotic properties

of the maximum of norms. Limit behaviour of power sum and norms of iid positive

samples was suggested by Janÿen [54] that followed the combination of limit theorems

for sums and maxima. Investigation of the limiting distribution of exponential sums

was performed by Arous [2]. He also explored possible phase transitions due to the

growth rate of the parameter n.



CHAPTER 2

Preliminaries

In this chapter we provide the basic de�nitions and theorems which will be useful

as auxiliary facts for the subsequent two chapters. We review some of the statistical

background and terminology that will be prevalent in the study of the asymptotic

theory of extremal values. This chapter is essentially a reprint of [2, 29, 53, 72].

1. Mathematical overview

We introduce the terminologies, review extreme value theory, in particular, we

consider the basic concepts of the asymptotic theory of extremes which provides the

background for asymptotic statistics.

EVT characterizes the stochastic behaviour of extremes values and rare events.

It mainly focuses on the tail of the underlying distribution and therefore essential

to adequately test the shape of the tail as it has in�uence on the estimation of

parameters of extremals.

The asymptotic theory provides the necessary and su�cient conditions that

ensure the approximation of the probability distribution of the sample maxima.

Let X,X1, X2, . . . be independent identically distributed (iid) random variables

with common distribution function F (x) = P(X ≤ x), x ∈ R. EVT is concerned

with the asymptotic distribution of the suitably centered and normed maximaMn :=

max(X1, X2, . . . , Xn) as n→∞. The cumulative distribution function (CDF) ofMn

is

P (Mn ≤ x) = P (X1 ≤ x, . . . , Xn ≤ x) = P (X1 ≤ x) · · ·P (Xn ≤ x) = F n(x).

This distribution function depends on the distribution of X1, which is usually

unknown. Therefore, it is important to consider the asymptotic distribution of

Mn as n→∞.

Suppose there exist sequences of real numbers an > 0 and bn and a nondegenerate

distribution function G such that

P

(
Mn − bn
an

)
= F n(anx+ bn)→ G(x) (2.1)

as n→∞ at every point x of G. Theorem 1.1 below describes the possible limiting

distributions in (2.1). These distributions are called extreme value distributions.

13
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The set of distributions F satisfying (2.1) is called themaximum domain of attraction

of G. The next theorem and the discussion following it show that every extreme

value distribution is of one of the three possible types.

Theorem 1.1 (Fisher and Tippett (1928), Gnedenko (1943)). The class of

extreme value distributions is Gγ(ax+ b) with a > 0, b ∈ R, where

Gγ(x) = exp
{
−
(

1 + γx
)−1/γ}

, 1 + γx > 0, (2.2)

with γ real, where for γ = 0 the right-hand side is interpreted as exp(−e−x).

The parameter γ is called the extreme value index that controls the shape of the

extreme value distribution.

The parametrization in Theorem 1.1 is due to von Mises (1936) and Jenkinson

(1955). An alternative parametrization is the following:

1. For γ > 0 if we use Gγ((x− 1)/γ) with α = 1/γ, then we obtain

Φα(x) =

0, x ≤ 0

exp {−x−α} , x > 0.

This class is called the Fréchet class of distributions.

2. For γ < 0 if we use Gγ(−(1 + x)/γ) with α = −1/γ, then we obtain

Ψα(x) =

exp {−(−x)α} , x < 0

1, x ≥ 0.

This class is called the reverse-Weibull class of distributions.

3. The distribution function Gγ with γ = 0,

G0(x) = exp(−e−x), x ∈ R,

is the Gumbel distribution function.

2. Maximum domain of attraction

Definition 2.1. A measurable function f : R+ → R that is eventually positive

is regularly varying at in�nity if

lim
x→∞

f(ux)

f(x)
= tγ, t > 0, (2.3)

for some γ ∈ R.
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The number γ in (2.3) is called the index of regular variation. If γ = 0 in (2.3),

then f is said to be slowly varying.

The next theorem describes the maximum domain of attraction of the extreme

value distributions.

Theorem 2.2 (de Haan and Ferreira [29], Theorem 1.2.1). The distribution

function F is in the maximum domain of attraction of the extreme value distribution

Gγ if and only if

(1) for γ > 0 : x∗ = supx : F (x) < 1 is in�nite and

lim
t→∞

1− F (tx)

1− F (x)
= x−1/γ

for all x > 0, i.e. the function 1 − F is regularly varying at in�nity with

index −1/γ;

(2) for γ < 0 : x∗ is �nite and

lim
t↓ 0

1− F (x∗ − tx)

1− F (x∗ − t)
= x−1/γ

for all x > 0;

(3) for γ = 0 : x∗ can be �nite or in�nite and

lim
t↑ x∗

1− F (t+ xf(t))

1− F (t)
= e−x (2.4)

for all real x, where f is a suitable positive function. If (2.4) holds for some

f , then
∫ x∗
t

(1− F (s))ds <∞ for t < x∗ and (2.4) holds with

f(t) :=

∫ x∗
t

(1− F (s))ds

(1− F (t))
. (2.5)

In this thesis we are concerned with the case γ > 0. Our main goal is to make

inference on the tail of a distribution.

3. Heavy-tailed distribution

Heavy-tailed probability distributions are crucial components of stochastic

modelling. A distribution has heavy right tail, if the probability of a huge value

is relatively big. Heavy right tails are usually modelled by assuming that the

distribution function F has regularly varying upper tail:

P (X > x) = 1− F (x) = x−1/γL(x), (2.6)

where L is a slowly varying function at in�nity and γ > 0. In this thesis we assume

(2.6) to make inference on the tail of the distribution.
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Heavy-tail analysis deals with systems whose behaviour is controlled by large

values which periodically impact the system, unlike many other systems whose

stability is determined largely by an averaging e�ect. There has been extensive

application of the heavy-tailed distributions in modelling in many areas which

include actuarial sciences, economics, risk management and internet tra�c. Some

scenerios have been outlined by Resnick [72] where heavy-tailed analysis have been

used. These examples includes: data network study which was performed by the

Boston University, the Standard & Poors 500 stock market index and the Danish

�re insurance losses. Other examples include magnitudes of earthquakes and �oods

[59] and returns on �nancial markets [37].

4. Classical extreme value index estimators

The extreme value index γ (EVI), measures the heaviness of the tail. The higher

values of γ infers heavier right tails. Therefore, estimating γ is crucial in many

applications of stochastic models. A number of estimators have been designed for

this purpose. These includes but not limited to the Hill estimator, the moment

estimator, the generalized Hill estimator, the Pickands estimator and the mixed

moment estimator. The best known estimator is the Hill estimator, which was

introduced by Hill (1975). Among the aforementioned estimators, we consider the

Hill, the moment and the Pickands estimators in this dissertation. In Chapter 3 we

compare these estimators with a new class of estimators based on weighted power

sum of extreme values.

4.1. The Hill estimator. Let X1, X2, . . . be iid random variables and for each

integer n ≥ 1 let X1,n ≤ · · · ≤ Xn,n denote the order statistics pertaining to the

sample X1, . . . , Xn. The Hill estimator is based on k upper order statistics de�ned

as

M (1)
n :=

1

k

k−1∑
i=0

logXn−i,n − logXn−k,n, 1 ≤ k < n.

Consistency of the Hill estimator can be proved if the sequence k = kn satis�es

k →∞ and k/n→ 0 as n→∞.

4.2. The moment estimator. De�ne

M (2)
n :=

1

k

k−1∑
i=0

(
logXn−i,n − logXn−k,n

)2
.
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The moment estimator is the following combination of the Hill estimator and the

statistic M
(2)
n :

γ̂(M)
n := M (1)

n + 1− 1

2

{
1− (M

(1)
n )2

M
(2)
n

}−1
.

The moment estimator can be used to estimate the shape parameter of any of the

three extreme value distributions unlike the Hill estimator.

4.3. The Pickands estimator. The Pickands estimator is based using the

order statistics Xk,n, X2k,n, and X4k,n. The estimator is

γ̂(P )
n :=

1

log 2
log

Xk,n −X2k,n

X2k,n −X4k,n

, 1 ≤ k ≤ dn/4e,

where dxe denotes the integer part of x. The Pickands estimator also can be used

to estimate any γ ∈ R, though it su�ers from high volatility.

Asymptotic properties of the index estimators were established by several authors

under di�erent conditions on the underlying distribution and k = kn (see the

discussion in Chapter 4).



CHAPTER 3

Asymptotic distributions for weighted power sums of

extreme values

This chapter is based on a joint paper [64] by the author and L. Viharos. Here

we considered proving the asymptotic normality for the weighted power sums over

the whole heavy-tail model under some constraints on the weights di,n. The results

obtained are crucial in the construction of a new class of estimators for the parameter

γ.

1. Formulation of the weighted power sums

Let X,X1, X2, . . . be independent random variables with a common distribution

function F (x) = P{X ≤ x}, x ∈ R, and for each integer n ≥ 1 let X1,n ≤ · · · ≤ Xn,n

denote the order statistics pertaining to the sample X1, . . . , Xn. For a constant

γ > 0, let Rγ be the class of all probability distribution functions F such that

1− F (x) = x−1/γL(x), 0 < x <∞,

where L is a function slowly varying at in�nity. Without loss of generality we assume

that F (1−) = 0 for all F ∈ Rγ. If Q(·) denotes the quantile function of F de�ned

as

Q(s) = inf{x : F (x) ≥ s}, 0 < s ≤ 1, Q(0) = Q(0+),

then F ∈ Rγ if and only if

Q(1− s) = s−γ`(s), (3.1)

where ` is a slowly varying function at 0. Let kn be a sequence of integers such that

1 ≤ kn < n, kn →∞ and kn/n→ 0 as n→∞. (3.2)

For some constants di,n, 1 ≤ i ≤ n, consider the weighted power sums of the extreme

values Xn−kn+1,n, . . . , Xn,n:

Sn(p) :=
kn∑
i=1

dn+1−i,n logpXn+1−i,n,

where p > 0 is a �xed number. Our aim is to study the asymptotic behavior of

Sn(p) as n→∞ whenever F ∈ Rγ.

18
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Csörg® et al. [20] found necessary and su�cient conditions for the existence of

normalizing and centering constants An > 0 and Cn such that the sequence

1

An

{
kn∑
i=1

Xn+1−i,n − Cn

}
converges in distribution along subsequences of the integers {n} to non-degenerate

limits and completely described the possible subsequential limiting distributions.

Viharos [85] generalized this result for linear combinations
∑kn

i=k+1 dn+1−i,nf(Xn+1−i,n)

of extreme values, where f is a Borel-measurable function. Assuming F ∈ Rγ

and using the results in [85], we will prove asymptotic normality for the properly

normalized and centered sequence Sn(p). As an application, we derive a class of

asymptotically normal estimators for the parameter γ.

Linear combinations of order statistics are widely studied in the literature.

Recently, Barczyk et al. [3] obtained limit theorems for L-statistics

Ln =
kn∑
i=1

ci,nXi:kn ,

where kn → ∞ as n → ∞, ci,n are real scores and the order statistics Xi:kn

correspond to a possibly non i.i.d. triangular array (Xi,n)1≤i≤kn of in�nitesimal and

row-wise independent random variables with heavy tails. Their approach is related

to the extreme order statistics: they give su�cient conditions for the scores ci,n so

that only the extreme parts of the L-statistics contribute to the limit law.

We will assume as in [85] that the weights di,n are of the form

di,n = n

∫ i/n

(i−1)/n
L̄(t)dt, 1 ≤ i ≤ n,

for some non-negative continuous function L̄ de�ned on (0,1) which satis�es the

following condition:

Condition L̄:

a) There exists a constant −1/2 < ρ < ∞ such that L̄(1 − t) = tρ ¯̀(t) on (0, 1)

for some function ¯̀(·) slowly varying at 0 and ¯̀′(t) = t−1 ¯̀(t)ε(t) on some (0, δ) with

a continuous function ε(·) for which ε(t)→ 0 as t→ 0.

b) For all M ≥ 1,

sup
1/M<y<M

∣∣∣∣∣∣
y∫

0

(¯̀(u/n)− ¯̀(y/n))uρ

¯̀(y/n)yρ
du

∣∣∣∣∣∣→ 0, n→∞.
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Throughout the chapter we use the convention
∫ b
a

=
∫
[a,b)

when we integrate

with respect to a left continuous integrator. De�ne

J(s) = sρ ¯̀(s), 0 < s < 1,

and

g(t) = −(logQ(1− t−))p,

where Q(1−s−) denotes the left-continuous version of the right-continuous function

Q(1− s), 0 < s < 1,

K(t) =

∫ t

1/2

J(s)dg(s), 0 < t < 1,

and

σ2(s, t) =

∫ t

s

∫ t

s

(u ∧ v − uv)dK(u)dK(v), 0 ≤ s ≤ t ≤ 1,

where u ∧ v = min(u, v). We introduce the centering sequences

µn := −n
∫ kn/n

0

J(u)g(u)du,

and

µ̄n = −n
∫ kn/n

1/n

J(u)g(u)du− dn,ng
(

1

n

)
,

while the normalizing sequence will be given by

an :=

σ(1/n, kn/n) if σ(1/n, kn/n) > 0,

1 otherwise.

2. Main results

We state now the main limit theorem of this chapter. Throughout,
D−→ denotes

convergence in distribution,
P−→ denotes convergence in probability, and limiting

and order relations are always meant as n→∞ if not speci�ed otherwise.

Theorem 2.1. (i) Assume that F ∈ Rγ, (3.2) holds and suppose that condition

L̄ is satis�ed for the weighs di,n. Then

1√
nan

{
kn∑
i=1

dn+1−i,n logpXn+1−i,n − µ̄n

}
D−→ N(0, 1). (3.3)

(ii) If in addition to the conditions of (i) we have (log n)/kεn → 0 for some 0 < ε <

ρ+ 1/2, then (3.3) holds with µn replacing µ̄n.
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The special case p = 1 of Theorem 2.1(i) was stated in Theorem 1.2 of [86].

Several estimators exist for the tail index γ among which Hill's estimator is the

most classical (see Hill [50]). Dekkers et al. [32] proposed a moment estimator

based on the statistics

1

kn

kn∑
i=1

(
log

Xn+1−i,n

Xn−kn,n

)j
, j = 1, 2. (3.4)

The case j = 1 yields the Hill estimator. Segers [77] investigated more general

statistics of the form

1

kn

kn∑
i=1

f

(
Xn+1−i,n

Xn−kn,n

)
, (3.5)

for a nice class of functions f , called residual estimators. Segers proved weak

consistency and asymptotic normality under general conditions. More recently,

Ciuperca and Mercadier [15] obtained a class of tail index estimators based on the

weighted power sums of the statistics
(

log(Xn+1−i,n/Xn−kn,n)
)
1≤i≤kn

and proved

limit theorems for the estimators. We use the weighted power sums of the extreme

values (logXn+1−i,n)1≤i≤kn to construct a new class of estimators for γ.

The following proposition describes the asymptotic behavior of the centering and

normalizing sequences.

Proposition 2.2. Assume the conditions of Theorem 2.1(i). Then

σ(1/n, kn/n) ∼ pγp
(

2

(1 + ρ)(1 + 2ρ)

)1/2(
kn
n

)ρ+1/2(
log

n

kn

)p−1
¯̀
(
kn
n

)
(3.6)

and µn ∼ γpαn, where αn = kn
ρ+1

J
(
kn
n

) (
log n

kn

)p
(xn ∼ yn means that xn/yn → 1).

To prove Theorem 2.1 and Proposition 2.2, we need some preparatory results.

Recall (2.2). Let G be a distribution function on R. Whenewer G belongs to the

maximum domain of attraction of Gγ we write G ∈ ∆(γ). Set U(s) := −G←(1− s),
0 ≤ s < 1, where the arrow means the inverse function. From [20, equation (1.12)]

we know the following statement.

Proposition 2.3. G ∈ ∆(γ) if and only if

lim
s↓0

U(xs)− U(ys)

U(vs)− U(ws)
=
x−γ − y−γ

v−γ − w−γ
,

where for γ = 0 the limit is understood as (log x− log y)/(log v − logw).

Let RV ∞α (RV 0
α ) denote the class of regularly varying functions at in�nity (zero)

with index α.
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Lemma 2.4. Assume the conditions of Theorem 2.1. Then the distribution

function H(·) := (−K(1− ·))← satis�es H ∈ ∆(−ρ).

Proof. A simple calculation yields K(t) = −
∫ Q(1−t)
Q(1/2)

J1(u)du, where

J1(u) = pJ(1− F (u))(log u)p−1u−1 ∈ RV ∞−(ρ/γ)−1.

If ρ > 0 thenK(t) =
∫∞
Q(1−t) J1(u)du+c, where c is a constant, and by Karamata's

theorem (see e.g. [10, Theorem 1.5.11]) we obtain

K(t) =
γ

ρ
Q(1− t)J1(Q(1− t))(1 + o(1)) + c (t→ 0).

Similarly, if ρ < 0 then

K(t) =
γ

ρ
Q(1− t)J1(Q(1− t))(1 + o(1)) (t→ 0).

Theorem 1.5.12 of [10] implies that

1− F (Q(1− t)) ∼ t (t→ 0). (3.7)

Then using (3.7) and logQ(1− t) ∼ −γ log t (t→ 0), we have

Q(1− t)J1(Q(1− t)) ∼ p(−γ log t)p−1J(t) (t→ 0).

Hence, if ρ > 0 then

K(t) = tρL̂(t)(1 + o(1)) + c (t→ 0), (3.8)

and if ρ < 0 then

K(t) = −tρL̂(t)(1 + o(1)) (t→ 0), (3.9)

where

L̂(t) =
pγp

|ρ|
(− log t)p−1 ¯̀(t) ∈ RV 0

0 . (3.10)

Equations (3.8), (3.9) and (3.10) imply that for ρ 6= 0,

lim
s↓0

K(xs)−K(ys)

K(vs)−K(ws)
=
xρ − yρ

vρ − wρ
. (3.11)

If ρ = 0, then for distinct values 0 < x, y <∞,

K(xs)−K(ys) = ¯̀(ξ)(g(xs)− g(ys)) (3.12)

where ξ is between xs and ys. Since ¯̀ is slowly varying, we have

¯̀(ξ) ∼ ¯̀(s) (s ↓ 0). (3.13)

Moreover, by Lagrange's mean value theorem, with some η between logQ(1−(xs)−)

and logQ(1− (ys)−),

g(xs)− g(ys) = pηp−1(logQ(1− (ys)−)− logQ(1− (xs)−)). (3.14)
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Using (3.1) and the fact that logQ(1− s−) is slowly varying at zero, we have

η ∼ logQ(1− s−) ∼ −γ log s (s ↓ 0), (3.15)

and

logQ(1− (ys)−)− logQ(1− (xs)−)→ γ log(x/y) (s ↓ 0). (3.16)

By (3.12)-(3.16) it follows that

K(xs)−K(ys) ∼ pγp log(x/y)(− log s)p−1 ¯̀(s) (s ↓ 0). (3.17)

Therefore,

lim
s↓0

K(xs)−K(ys)

K(vs)−K(ws)
=

log x− log y

log v − logw
(3.18)

for all distinct 0 < x, y, v, w < ∞. Equations (3.11), (3.18) and Proposition 2.3

imply the statement of the lemma. �

Choose any sequence of positive constants δn such that nδn < n and nδn → 0 as

n → ∞. The following two sequences of functions govern the asymptotic behavior

of Sn(p):

ψn(x) = ψn,K(x) =


k
1/2
n

{
K

(
kn
n

+x
k
1/2
n
n

)
−K( knn )

}
n1/2an

if − k
1/2
n

2
≤ x ≤ k

1/2
n

2
,

ψn

(
−k

1/2
n

2

)
if −∞ < x < −k

1/2
n

2
,

ψn

(
k
1/2
n

2

)
if k

1/2
n

2
< x <∞,

and

ϕn(y) = ϕn,K(y) =


K(y/n)−K(1/n)

n1/2an
if 0 < y ≤ n− nδn,

K(1−δn)−K(1/n)

n1/2an
if n− nδn < y <∞.

Lemma 2.5. Assume the conditions of Theorem 2.1. Then ψn(x), ϕn(y) → 0,

x ∈ R, y > 0.

Proof. The statement is a consequence of Lemmas 2.11 and 2.12 of [20] and

Lemma 2.4 above. �

Proof of Proposition 2.2. If ρ > −1/2, ρ 6= 0 then by Lemma 2.9 of [20]

and by Lemma 2.4 above we have

σ(1/n, kn/n) ∼
(

2ρ2

(1 + ρ)(1 + 2ρ)

)1/2(
kn
n

)ρ+1/2

L̂(kn/n),

which is the same as (3.6). If ρ = 0, then by (2.29) of [20] and by Lemma 2.4 we

have σ(1/n, kn/n) ∼ σ(0, kn/n), and using Lemma 2.10 of [20], we obtain

lim
s↓0

√
s(K(λs)−K(s))/σ(0, s) = 2−1/2 log λ for all 0 < λ <∞.
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Then by (3.17),

σ(0, s) ∼ pγp
√

2s(− log s)p−1 ¯̀(s) (s ↓ 0),

which implies the statement for ρ = 0.

Statement µn ∼ γpαn follows from the facts −J(·)g(·) ∈ RV 0
ρ , logQ(1 − s−) ∼

−γ log s and from Karamata's theorem. �

Proof of Theorem 2.1. The Corollary of [85] and Lemma 2.5 imply statement

(i). To prove statement (ii) write

µ̄n = µn − n
∫ 1/n

0

J(u)(−g(u))du+ dn,n(−g(1/n)) =: µn − r(1)n + r(2)n . (3.19)

We have to prove that

r
(1)
n√
nan
→ 0 and

r
(2)
n√
nan
→ 0. (3.20)

By Karamata's theorem, (3.15) and Proposition 2.2, with some constant c we have

r
(1)
n√
nan
∼ c

n−ρ ¯̀(1/n)(log n)p√
n(kn/n)ρ+1/2(log(n/kn))p−1 ¯̀(kn/n)

= c
(log n)p ¯̀(1/n)

k
ρ+1/2
n (log(n/kn))p−1 ¯̀(kn/n)

.

By the Potter bounds ([10, Theorem 1.5.6]), for any A > 1 and δ > 0, there exist

N such that
¯̀(1/n)
¯̀(kn/n)

≤ Akδn and
log n

log(n/kn)
≤ Akδn for any n ≥ N.

We choose δ > 0 such that pδ < ρ− ε+ 1/2. It follows that with some constant c1,

r
(1)
n√
nan
≤ c1

log n

k
ρ−pδ+1/2
n

≤ c1
log n

kεn

if n ≥ N . A similar upper bound for r
(2)
n /(
√
nan) implies (3.20). �

The next corollary describes the asymptotic behavior of the weighted norms

Rn(p) := (Sn(p))1/p.
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Corollary 2.6. Assume the conditions of Theorem 2.1(ii). Then

1

γ
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn

{
1

α
1/p
n

Rn(p)−
(
µn
αn

)1/p
}

D−→ N(0, 1).

By Proposition 2.2 and Corollary 2.6,

γ̂n :=
1

α
1/p
n

Rn(p)

is an asymptotically normal estimator for γ. This is a generalization of the estimator

proposed in [87]. Asymptotic normality was proved for the Hill estimator and for the

estimators in [15] and [77] under general conditions but not for every distribution

in Rγ. However, γ̂n is asymptotically normal over the whole model Rγ.

To investigate the asymptotic bias of the estimator γ̂n, we assume the following

conditions:

(B1)
√
kn log

n

kn
sup

0≤u≤kn/n

∣∣∣∣ log `(u)

log u

∣∣∣∣→ 0.

(B2)
√
kn/ log n→ 0.

(B3) (log n)/k
ρ+ 1

2
n n→ 0.

(B4) J(s) = sρ, 0 < s < 1.

Conditions (B2) and (B3) imply that ρ > 0.

Proof of Corollary 2.6. Using Theorem 2.1 and Proposition 2.2, we obtain

βn

(
Sn(p)

αn
− µn
αn

)
D−→ N(0, 1), (3.21)

where

βn =
1

γpp
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn
. (3.22)

Since µn/αn → γp and βn →∞, we have Sn(p)/αn
P−→ γp.

By Lagrange's mean value theorem(
Sn(p)

αn

)1/p

−
(
µn
αn

)1/p

=
1

p
ξ(1/p)−1

(
Sn(p)

αn
− µn
αn

)
with some ξ between µn/αn and Sn(p)/αn. Therefore,

βn

((
Sn(p)

αn

)1/p

−
(
µn
αn

)1/p
)

D−→ 1

p
γ1−pN(0, 1).

�
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Corollary 2.7. Assume the conditions (B1)-(B4), and the conditions of Theorem

2.1(i), and set tn := (ρ+ 1) log(n/kn). Then we have

(i)

1

γpp
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn

{
Sn(p)

αn
− γp

(
1 + pt−1n

)} D−→ N(0, 1),

(ii)

1

γ
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn

{
γ̂n − γ

(
1 + t−1n

)} D−→ N(0, 1). (3.23)

We show that condition (B1) is satis�ed by the model `(s) = 1 + b(s), where

the function b is such that
√
kn sup0≤u≤kn/n |b(u)| → 0. To prove this, observe that

sup0≤u≤kn/n 1/| log u| = 1/ log(n/kn) and hence

√
kn log

n

kn
sup

0≤u≤kn/n

∣∣∣∣ log `(u)

log u

∣∣∣∣ ≤√kn sup
0≤u≤kn/n

| log(1 + b(u)|

=
√
kn sup

0≤u≤kn/n
|b(s) +O(b2(s))| → 0,

if
√
kn sup0≤u≤kn/n |b(u)| → 0.

In some submodels of (3.1) the Hill estimator can be centered at γ to have

normal asymptotic distribution. The strict Pareto model when ` ≡ 1 is the simplest

example of these models. This simple model satis�es the conditions of Corollary

2.7. From (3.23) we also see that under these conditions the estimator γ̂n can not

be centered at γ to have asymptotic distribution. However, Corollary 2.7 allows the

construction of asymptotic con�dence intervals for γ. The estimator γ̂n is not scale

invariant. Accordingly, the slowly varying function ` ≡ c, c 6= 1, does not satisfy

condition (B1).

Proof of Corollary 2.7. Proof of (i). To treat µ̄n, we use the decomposition

(3.19). For µn we obtain

µn = n

∫ kn/n

0

J(u)(log u−γ)p
(

1 +
log `(u)

log u−γ

)p
du

= n

∫ kn/n

0

J(u)(log u−γ)pdu

+ n

∫ kn/n

0

J(u)(log u−γ)p
[(

1 +
log `(u)

log u−γ

)p
− 1

]
du

=: µ(1)
n + µ(2)

n .

(3.24)
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By Karamata's theorem,∫ x

0

J(u)(log u−γ)pdu ∼ 1

ρ+ 1
xJ(x)(log x−γ)p as x→ 0.

Therefore, using Condition (B1), we have√
kn log

n

kn

|µ(2)
n |
αn

≤
n
√
kn log n

kn

αn

∫ kn/n

0

J(u)(log u−γ)pdu sup
0≤u≤kn/n

∣∣∣∣(1 +
log `(u)

log u−γ

)p
− 1

∣∣∣∣
∼ γp

√
kn log

n

kn
sup

0≤u≤kn/n

∣∣∣∣(1 +
log `(u)

log u−γ

)p
− 1

∣∣∣∣ .
By

(1 + x)p = 1 + px+O(x2) as x→ 0 (3.25)

and condition (B1) it follows that√
kn log

n

kn

|µ(2)
n |
αn
→ 0. (3.26)

For the �rst term we obtain

µ(1)
n =

nγp

(ρ+ 1)p+1

∫ ∞
(ρ+1) log(n/kn)

tpe−tdt =
nγp

(ρ+ 1)p+1
Γ(p+ 1, (ρ+ 1) log(n/kn)),

where

Γ(a, x) =

∫ ∞
x

ta−1e−tdt

is the incomplete gamma function. It is known that

Γ(a, x) = xa−1e−x

(
n−1∑
j=0

bjx
−j +Mn(x)

)
,

where bj = (a− 1)(a− 2) · · · (a− j) and

Mn(x) = O(x−n) as x→∞ (3.27)

(see equation (2.02) in [65]). Recall the notation tn = (ρ+ 1) log(n/kn). Then

µ
(1)
n

αn
= γp(1 + pt−1n +M2(tn)). (3.28)

For r
(2)
n in (3.19) we obtain

r(2)n =
1

nρ(ρ+ 1)
(logQ(1− (1/n)−))p ∼ 1

nρ(ρ+ 1)
(γ log n)p,
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implying that √
kn log

n

kn

|r(2)n |
αn
∼ γp

(log n)p

k
ρ+ 1

2
n (log(n/kn))p−1

. (3.29)

Condition (B2) implies log(n/kn) ∼ log n. Therefore, by Condition (B3) we have√
kn log

n

kn

|r(2)n |
αn
→ 0. (3.30)

A similar argument yields that√
kn log

n

kn

|r(1)n |
αn
→ 0 (3.31)

(cf. the proof of Theorem 2.1(ii)). Recall (3.22). Using the decompositions (3.19)

and (3.24), equations (3.26), (3.28), (3.30) and (3.31), we obtain

βn

(
Sn(p)

αn
− µ̄n
αn

)
= βn

(
Sn(p)

αn
− γp(1 + pt−1n +M2(tn))

)
+ o(1). (3.32)

Theorem 2.1(i), condition (B2), (3.27) and (3.32) imply

βn

(
Sn(p)

αn
− γp

(
1 + pt−1n

)) D−→ N(0, 1).

This completes the proof of part (i).

Proof of (ii). Using the same argument as in the proof of Corollary 2.6, we have

βn

((
Sn(p)

αn

)1/p

− γ
(
1 + pt−1n

)1/p) D−→ 1

p
γ1−pN(0, 1).

Applying (3.25) with 1/p replacing p, we obtain(
1 +

p

tn

)1/p

= 1 + t−1n +O(t−2n ).

Therefore, by condition (B2)

βn

((
Sn(p)

αn

)1/p

− γ
(
1 + t−1n

)) D−→ 1

p
γ1−pN(0, 1).

This completes the proof of part (ii). �
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3. Simulation results

In this section we evaluate the performance of the estimator γ̂n through simulations.

In the �rst simulation study we compare γ̂n to the Hill, Pickands [69] and Moment

estimators. Tail index estimators have good performance in the strict Pareto model.

However, in practical situations it is very rare when data �t to a simple distribution.

For the simulation we use the following model proposed by Hall [48]:

Q(1− s) = s−γD1[1 +D2s
β(1 + o(1))] as s→ 0, (3.33)

where D1 > 0, D2 6= 0 and β > 0 are constants. The Hall model satis�es condition

(B1) if D1 = 1 and k
β+ 1

2
n /nβ → 0.

We repeated the simulations 1000 times and we assumed n = 1000 for the sample

size and kn = 136 for the sample fraction size. We used ¯̀≡ 1 for the weights di,n.

We examined the following two cases of the Hall model:

Case 1: β = 2, D2 = 1 and D1 = 1/
√
e.

Case 2: β = 1, D2 = 4/3 and D1 = e−2/3.

In both cases we assume o(1) ≡ 0 in (3.33). Tables 1 and 2 contain the average

simulated estimates (mean) and the calculated empirical mean square errors (MSE)

for Case 1. Using the mean square error as criterion, we see that for ρ ≤ 1 the

performance of γ̂n generally increases as γ decreases from 2 to 0.5. For γ ≥ 1 the

weights improve the performance of γ̂n signi�cantly (ρ = 0.5, 1, 2). For the thin tail

pertaining to γ = 0.5 we also see a trend that the performance of γ̂n improves as

the value of p increases from 1 to 3. The same conclusion holds for γ = 1 when

ρ = 2. It can be also seen that γ̂n with p = 1, 2, 3 and appropriate ρ value performs

better than the Pickands and the moment estimator. The Pickands estimator has

poor performance for γ = 2. Nonetheless, the Hill and the moment estimator tend

to have good estimates.

Tables 3 and 4 contain the simulation results for Case 2. This case is farther

from the strict Pareto model than Case 1. In Case 2 for ρ ≤ 0.5 the estimator γ̂n
works slightly better than in the �rst case. The performance of the Hill estimator

is slightly worse in this case, while the other estimators have similar performance

compared to the �rst case.
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Table 1. Mean in the Hall model for Case 1.

mean

γ̂n
Hill Pickands Moment

ρ γ p = 1 p = 2 p = 3

0 0.5 0.502461 0.5598067 0.6278012 0.4874154 0.5388793 0.4832535

1 1.252406 1.347012 1.461455 0.9872326 1.021725 0.9745838

1.5 2.002351 2.136447 2.299039 1.48705 1.52004 1.471576

2 2.752296 2.926308 3.137432 1.986867 2.022467 1.969981

0.5 0.5 0.4207121 0.4523482 0.4918764 0.4874154 0.5388793 0.4832535

1 1.088022 1.138332 1.200928 0.9872326 1.021725 0.9745838

1.5 1.755332 1.826024 1.913608 1.48705 1.52004 1.471576

2 2.422641 2.514022 2.626971 1.986867 2.022467 1.969981

1 0.5 0.37965551 0.3994002 0.4240878 0.4874154 0.5388793 0.4832535

1 1.005246 1.03595 1.073641 0.9872326 1.021725 0.9745838

1.5 1.630837 1.673773 1.726098 1.48705 1.52004 1.471576

2 2.256427 2.311814 2.379069 1.986867 2.022467 1.969981

2 0.5 0.33886111 0.3486395 0.3606289 0.4874154 0.5388793 0.4832535

1 0.9227323 0.9375759 0.9552161 0.9872326 1.021725 0.9745838

1.5 1.506604 1.527265 1.551595 1.48705 1.52004 1.471576

2 2.090475 2.117078 2.148269 1.986867 2.022467 1.969981

Table 2. MSE in the Hall model for Case 1.

MSE

γ̂n
Hill Pickands Moment

ρ γ p = 1 p = 2 p = 3

0 0.5 0.008489717 0.004758226 0.01848487 0.001920372 0.1238975 0.008732585

1 0.06713682 0.124994 0.2205786 0.007254561 0.1510138 0.01456819

1.5 0.2601122 0.415274 0.6550551 0.01616043 0.191689 0.02365229

2 0.579775 0.8761246 1.322759 0.02863798 0.2457045 0.0362088

0.5 0.5 0.006915487 0.002963965 0.0009153005 0.001920372 0.1238975 0.008732585

1 0.01033168 0.02195434 0.04367552 0.007254561 0.1510138 0.01456819

1.5 0.07105951 0.1126648 0.1784538 0.01616043 0.191689 0.02365229

2 0.189099 0.2755773 0.4061787 0.02863798 0.2457045 0.0362088

1 0.5 0.01503467 0.01069469 0.006382895 0.001920372 0.1238975 0.008732585

1 0.002311005 0.003667682 0.007952766 0.007254561 0.15101382 0.01456819

1.5 0.02231372 0.03559411 0.05684494 0.01616043 0.191689 0.02365229

2 0.07504283 0.1068695 0.1538997 0.02863798 0.2457045 0.0362088

2 0.5 0.02645074 0.02340072 0.01992387 0.001920372 0.1238975 0.008732585

1 0.007996087 0.005951954 0.004100054 0.007254561 0.1510138 0.01456819

1.5 0.004666964 0.005432634 0.007437678 0.01616043 0.191689 0.02365229

2 0.01646337 0.02210106 0.03052874 0.02863798 0.2457045 0.0362088
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Table 3. Mean in the Hall model for Case 2.

mean

γ̂n
Hill Pickands Moment

ρ γ p = 1 p = 2 p = 3

0 0.5 0.4589447 0.5124346 0.5782619 0.4184847 0.609304 0.4811199

1 1.20889 1.299565 1.411133 0.9183019 1.011627 0.9377913

1.5 1.958834 2.089031 2.248614 1.418119 1.488072 1.423793

2 2.708779 2.878913 3.086975 1.917936 1.980745 1.916807

0.5 0.5 0.3846648 0.4124053 0.4486737 0.4184847 0.609304 0.4811199

1 1.051975 1.09872 1.157892 0.9183019 1.011627 0.9377913

1.5 1.719284 1.786526 1.870711 1.418119 1.488072 1.423793

2 2.386594 2.47458 2.58415 1.917936 1.980745 1.916807

1 0.5 0.3484573 0.36485 0.3861637 0.4184847 0.609304 0.4811199

1 0.9740478 1.001849 1.036418 0.9183019 1.011627 0.9377913

1.5 1.599638 1.639798 1.689107 1.418119 1.488072 1.423793

2 2.225229 2.277898 2.34219 1.917936 1.980745 1.916807

2 0.5 0.3135496 0.3210441 0.3304326 0.4184847 0.609304 0.4811199

1 0.8974208 0.9103876 0.9258765 0.9183019 1.011627 0.9377913

1.5 1.481292 1.500177 1.522475 1.418119 1.488072 1.423793

2 2.065163 2.090035 2.119249 1.917936 1.980745 1.916807

Table 4. MSE in the Hall model for Case 2.

MSE

γ̂n
Hill Pickands Moment

ρ γ p = 1 p = 2 p = 3

0 0.5 0.002356798 0.001205257 0.008251327 0.0081828 0.1375034 0.00768532

1 0.04670408 0.09401281 0.1764996 0.01327334 0.1501311 0.01701934

1.5 0.2177388 0.3566961 0.576717 0.02193555 0.1891187 0.0278058

2 0.5154611 0.7899285 1.210099 0.03416945 0.2417847 0.04120925

0.5 0.5 0.01375736 0.008212465 0.003358186 0.0081828 0.1375034 0.00768532

1 0.004917317 0.01222534 0.02793089 0.01327334 0.1501311 0.01701934

1.5 0.05338891 0.08794855 0.1443359 0.02193555 0.1891187 0.0278058

2 0.1591721 0.23588 0.3536742 0.03416945 0.2417847 0.04120925

1 0.5 0.02334328 0.0186799 0.01343518 0.0081828 0.1375034 0.00768532

1 0.002585846 0.00202712 0.003527147 0.01327334 0.1501311 0.01701934

1.5 0.0145548 0.02439929 0.04097613 0.02193555 0.1891187 0.0278058

2 0.05925014 0.08613785 0.1266097 0.03416945 0.2417847 0.04120925

2 0.5 0.03507632 0.03235116 0.02909741 0.0081828 0.1375034 0.00768532

1 0.01217588 0.00972373 0.007239784 0.01327334 0.1501311 0.01701934

1.5 0.004400968 0.004131617 0.00474087 0.02193555 0.1891187 0.0278058

2 0.01175158 0.01574687 0.02203485 0.03416945 0.2417847 0.04120925
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By Corollary 2.7(ii) we infer that

Zn :=
1

γ̂n
√

2

(
1 + 2ρ

1 + ρ

)1/2√
kn log

n

kn

{
γ̂n − γ

(
1 + t−1n

)} D−→ N(0, 1). (3.34)

Asymptotic con�dence intervals for γ can be constructed using either (3.23) or

(3.34). In the second simulation study we investigated how fast the distribution

result (3.34) kicks in. We simulated the quantity Zn 5000 times. According to

condition (B2), we used kn values less than log2 n. First, we investigated the

Fréchet distribution with shape parameter 1/γ that belongs to the Hall model with

parameters D1 = 1, D2 = −γ/2 and β = 1. The simulation was done for γ = 1,

ρ = 1, p = 1, n = 900 and kn = 10. We found empirically that n = 900 is the

threshold sample size to obtain a good normal approximation in (3.34). Figure

1 contains the histogram with the �tted normal curve and the Q�Q plot of the

simulated Zn quantities with estimated parameters. The mean of the simulated

Zn values is -0.06, the simulated standard deviation is 0.8974. The mean of the

simulated γ̂n values is 1.1116. The bias of the mean is in accordance with the bias

term γt−1n in (3.34). Due to the biased estimator in the leading factor 1/(γ̂n
√

2) of

Zn, the simulated standard deviation of Zn is smaller than the asymptotic value 1.

We performed the chi-square test for normality, and we obtained the p-value 0.2965.

Figure 1. Histogram (a) and Q-Q plot (b) for Fréchet Distribution, n =

900, kn = 10.

We investigated two more distributions from the Hall model: Case 1: γ = 1,

D1 = 1 and D2 = 1/2, β = 3/4; Case 2: γ = 2, D1 = 1 and D2 = 1, β = 1. We

used ρ = 3, p = 2, n = 500 and kn = 7 for Case 1, and ρ = 1, p = 1, n = 900 and

kn = 10 for Case 2. These n values are the threshold sample sizes to obtain a good

normal approximation in (3.34). We obtained the following numerical results. Case

1: mean of the simulated Zn values: 0.0013, standard deviation of the Zn values:
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0.9127, mean of the simulated γ̂n values: 1.0667; Case 2: mean of the simulated Zn
values: -0.0393, standard deviation of the Zn values: 0.8878, mean of the simulated

γ̂n values: 2.2267. The p-value of the chi-square test for normality is 0.323 for Case

1, and 0.6428 for Case 2. Figures 2 and 3 contain the histograms with the �tted

normal curves and the Q�Q plots of the simulated quantities for Case 2 and Case

3, respectively.

Figure 2. Histogram (a) and Q-Q plot (b) for Hall Model Case1, at

n = 500, kn = 7.

Figure 3. Histogram (a) and Q-Q plot (b) for Hall Model Case1, at

n = 900, kn = 10.



CHAPTER 4

Limit laws for the norms of extremal samples

This chapter is based on the paper [56] by P. Kevei, L. Viharos and the author.

We considered a class of estimator γ̂(n) which is an extension of the Hill estimator.

We investigated the asymptotic properties of γ̂(n) under conditions of regular varying

upper tail. Limit theorems are proved under appropriate assumptions. Gaussian

and non-Gaussian (stable) limit are obtained depending on the growth rate of the

power sequence pn. The result is applied to the real data (Danish Fire insurance

claim).

1. Introduction

Let X,X1, X2, . . . be independent identically distributed (iid) random variables

with common distribution function F (x) = P(X ≤ x), x ∈ R. For each n ≥ 1, let

X1,n ≤ . . . ≤ Xn,n denote the order statistics of the sample X1, . . . , Xn. Assume

that

1− F (x) = x−1/γL(x),

where L is a slowly varying function at in�nity and γ > 0. This is equivalent to the

condition

Q(1− s) = s−γ`(s), (4.1)

where Q(s) = inf{x : F (x) ≥ s}, s ∈ (0, 1), stands for the quantile function, and `

is a slowly varying function at 0. For p > 0 introduce the notation

Sn(p) =
1

kn

kn∑
i=1

(
log

Xn+1−i,n

Xn−kn,n

)p
. (4.2)

The main object of the present paper is the estimate

γ̂(n) =

(
Sn(p)

Γ(p+ 1)

) 1
p

(4.3)

of the tail index, where Γ is the usual gamma function. In what follows we always

assume that 1 ≤ kn ≤ n is a sequence of integers such that kn →∞ and kn/n→ 0.

As a special case for p = 1 we obtain the well-known Hill estimator of the tail

index γ > 0 introduced by Hill in 1975 [50]. For p = 2 the estimator was suggested

34
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by Dekkers et al. [32], where they proved that Sn(2) → 2γ2 a.s. or in probability,

depending on the assumptions on kn, and they proved asymptotic normality of the

estimator as well. For general p > 0 the properties of the estimator γ̂(n) in (4.3)

was investigated by Gomes and Martins [44]. Under second-order regular variation

assumption they proved weak consistency and asymptotic normality of the estimator

γ̂(n). Segers [77] considered more general estimators of the form

1

kn

kn∑
i=1

f

(
Xn+1−i,n

Xn−kn,n

)
, (4.4)

for a nice class of functions f , called residual estimators. Segers proved weak

consistency and asymptotic normality under general conditions. More recently,

Ciuperca and Mercadier [15] investigated weighted version of (4.2). The residual

estimator of Segers was further analyzed for special function classes. Paulauskas and

Vai£iulis [66] considered estimators of the form (4.4) with f(x) = xr(log x)p. The

classical Hill estimator can be considered as the logarithm of the geometric mean

of the variables Xn+1−i,n/Xn−k,n. Based on this interpretation, Brilhante et al. [12]

introduced the mean of order p tail index estimator, Beran et al. [7] introduced

the harmonic moment tail index estimator, while very recently Penalva et al. [67]

introduced the Lehmer mean-of-order-p extreme value index estimator. For a general

overview on the generalizations of the Hill estimator we refer to [67].

To the best of our knowledge the possibility p = pn → ∞ in (4.3) was not

considered before, which is the main focus of our paper. The estimate γ̂(n) can be

considered as pn →∞ as the limit law for the norm of the extremal sample. In this

direction Schlather [75], Bogachev [11], and Janÿen [54] proved limit theorems for

norms of iid samples.

In the present paper we investigate the asymptotic properties of Sn(pn) and γ̂(n)

both for p > 0 �xed and for p = pn → ∞. Although the focus of the paper is to

obtain asymptotics for large p, in the course we obtain new results for p �xed. In

Section 2 in Theorem 2.1 we prove strong consistency of the estimator for p �xed.

Strong consistency was only obtained by Dekkers et al. [32] for p = 1 and p = 2,

thus our result is new for general p. Asymptotic normality was obtained in several

papers for di�erent generalizations of the Hill estimator, see e.g. Gomes and Martins

[44], Segers [77], Paulauskas and Vai£iulis [66], and Penalva et al. [67] for more

general estimators. In all these results second-order regular variation is assumed. In

Theorem 2.4 our assumptions on the slowly varying function ` are weaker, therefore

the asymptotic normality in this generality is new. Our main results are contained

in Section 3, where we obtain weak consistency and asymptotic normality when
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p = pn → ∞. Under appropriate assumptions on the power sequence pn we prove

non-Gaussian stable limit theorems. Section 5 contains a small simulation study

and data analysis. Here we show that for larger values of p the estimator is not so

sensitive to the choice of kn, which is a critical property in applications. The use

of larger p values was already suggested in [44] for p > 0 �xed. We illustrate this

property on the well-known dataset of Danish �re insurance claims, see Resnick [71]

and Embrechts et al. [36, Example 6.2.9].

2. Results for �xed p

In what follows, U,U1, U2, . . . are iid uniform(0, 1) random variables, and U1,n ≤
U2,n ≤ . . . ≤ Un,n stand for the corresponding order statistics. To ease notation

we frequently suppress the dependence on n and simply write k = kn. De�ne

X = Q(1 − U), Xi = Q(1 − Ui) for i = 1, 2, . . .. According to the well-known

quantile representation, X,X1, X2, . . . is an iid sequence with common distribution

function F , which implies that Sn in (4.2) can be written as

Sn(p) =
1

k

k∑
i=1

(
log

Q(1− Ui,n)

Q(1− Uk+1,n)

)p
for each n ≥ 1, a.s. (4.5)

First we show strong consistency for Sn(p). Our assumption on the sequence kn
is the same as in Theorem 2.1 in [32]. This is not far from the optimal condition

kn/ log log n→∞, which was obtained by Deheuvels et al. [31] for p = 1. In what

follows any nonspeci�ed limit is meant as n→∞.

Theorem 2.1. Assume that (4.1) holds and kn/n → 0, (log n)δ/kn → 0 for

some δ > 0. Then Sn(p) → γpΓ(p + 1) a.s., that is for p > 0 �xed the estimator

γ̂(n) is strongly consistent.

Weak consistency holds under weaker assumption on kn. The following result is

a special case of Theorem 2.1 in [77], and it follows from representation (4.5) and

from the law of large numbers.

Theorem 2.2. Assume that (4.1) holds, and the sequence (kn) is such that

kn → ∞, kn/n → 0. Then Sn(p)
P−→ γpΓ(p + 1), that is for p > 0 �xed the

estimator γ̂(n) is weakly consistent.

To prove asymptotic normality we use representation (4.5) where the summands

are independent and identically distributed conditioned on Uk+1,n. Indeed, conditioned

on Uk+1,n

(U1,n, . . . , Uk,n)
D
=
(
Ũ1,kUk+1,n, . . . , Ũk,kUk+1,n

)
, (4.6)
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where Ũ1, Ũ2, . . . are iid uniform(0, 1) random variables, independent of Uk+1,n, and

Ũ1,k < . . . < Ũk,k stands for the order statistics of Ũ1, . . ., Ũk.

To state the result, we need some notation. Introduce the variable for v ∈ (0, 1)

Y (v) = log
Q(1− Uv)

Q(1− v)
, (4.7)

where U is uniform(0, 1), and Y (0) = −γ logU . Note that Y (v) is `continuous' in v

at 0, that is Y (0) = limv↓0 Y (v), since for the slowly varying function ` in (4.1) we

have limv↓0 `(vU)/`(v) = 1 a.s. De�ne

mp,γ(v) = mp(v) = E [Y (v)p] , σ2
p,γ(v) = σ2

p(v) = Var (Y (v)p) , (4.8)

and the corresponding limiting quantities

mp = mp,γ = E [(−γ logU)p] = γpΓ(p+ 1),

σ2
p = σ2

p,γ = Var((−γ logU)p) = γ2p
(
Γ(2p+ 1)− Γ2(p+ 1)

)
.

Note that these quantities depend on the parameter γ. However, since the value

γ > 0 is �xed, to ease notation we suppress γ.

Central limit theorem with random centering was obtained in Theorem 4.1 in

[77]. Next, we spell out this result in our case. In the special case p = 1 we

obtain Theorem 1.6 by Csörg® and Mason [17]. The key observation in the proof is

representation (4.6). Recall the de�nition of the centering sequence from (4.8).

Theorem 2.3. Assume that (4.1) holds, and kn →∞, kn/n→ 0. Then√
kn (Sn(pn)−mp(Uk+1,n))

D−→ N(0, σ2
p).

To obtain asymptotic normality for the estimator, that is, to change the random

centering mp(Uk+1,n) to mp, we have to show that√
kn(mp(Uk+1,n)−mp)

P−→ 0.

Since Uk+1,nn/k → 1 in probability, this is the same as the deterministic convergence√
kn(mp(k/n)−mp)→ 0;

see the proof of Theorem 2.4 for the precise version. In the case of the Hill estimator

(p = 1) Csörg® and Viharos [18] obtained optimal conditions under which the

random centering mp(Uk+1,n) in Theorem 2.3 can be replaced by the deterministic

one, mp(k/n). For general residual estimator this was obtained in Theorem 4.2 in

[77]. In Theorem 4.5 in [77] assuming that the slowly varying function ` belongs

to the de Haan class Π, conditions were obtained which ensure that the random

centering can be replaced by the limit mp. Our assumptions are weaker, but some

second-order conditions are necessary.
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Assume that there exist a regularly varying function a and a Borel set B ⊂ [0, 1]

of positive measure such that

lim
v↓0

a(v)

`(v)
= 0, lim sup

v↓0

|`(uv)− `(v)|
a(v)

<∞ for u ∈ B. (4.9)

By Theorem 3.1.4 in Bingham et al. [10] condition (4.9) implies that the limsup in

(4.9) is �nite uniformly on any compact set of (0, 1]. However, in general, uniformity

cannot be extended to [0, 1].

We emphasize that we do not need exact second-order asymptotics for `, only

bounds. In particular, if ` belongs to the de Haan class Π (de�ned at 0) then

condition (4.9) holds; see Appendix B in de Haan and Ferreira [29], or Chapter

3 in Bingham et al. [10]. Therefore, even in the special case p = 1, that is, for

the Hill estimator, our next result is a generalization of Theorem 3.1 in [32]. The

asymptotic normality of various generalizations of the Hill estimator are obtained

under second-order regular variation for `, see Theorem 4.5 in [77], formula (2.7) in

[44], or Theorem 2 in [66]. Our conditions in the next result are weaker.

Theorem 2.4. Assume that (4.9) holds for `, and kn is such that kn → ∞,

kn/n→ 0, and √
kn
a(kn/n)

`(kn/n)
→ 0. (4.10)

Then, with σ2
p = γ2p(Γ(2p+ 1)− Γ2(p+ 1)),

√
kn
σp

(Sn(pn)− γpΓ(p+ 1))
D−→ N(0, 1),

and

p
√
kn

γ1/p−1σp
(γ̂(n)− γ)

D−→ N(0, 1).

We point out that the growth condition (4.10) of the subsequence is the same as

in Theorem 4.5 in [78] and in the special case p = 1 in de Haan [28]. However, in

[44] under the second-order regular variation assumption the asymptotic normality

of the estimator was proved under the less restrictive condition√
kn
a(kn/n)

`(kn/n)
→ λ, λ ∈ R.

For more general estimators the asymptotic normality was proved under the condition

above, see Theorem 2 in [66], Theorem 2 in [7], Theorem 2 in [12].
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3. Asymptotics for large p

Conditioned on Uk+1,n the sum knSn(pn) in (4.5) is the sum of kn iid random

variables distributed as Y (Uk+1,n). This allows us to use appropriate uniform version

of the results in [11] for power sums. These results are spelled out and proved in

Section 4.3. As a consequence, we obtain limit theorems with random centering and

norming for Sn(pn). In order to change to deterministic centering a precise analysis

is needed.

First we need some notation. Let

fv(x) = xγ`(v/x), v ∈ (0, 1], f0(x) = xγ, x > 1.

Note that Y (v) is de�ned for v ∈ [0, 1), while fv is de�ned for v ∈ [0, 1]. Then fv
is a left-continuous, nondecreasing, regularly varying function at in�nity with index

γ. Its inverse

gv(y) = inf{x : fv(x) > y} = vg1(y/v
γ), v ∈ (0, 1], g0(y) = y1/γ,

is regularly varying with index 1/γ. Write f = f1 and g = g1. Then, g(x) = x1/γ ˜̀(x),

for a slowly varying function ˜̀ such that

`(1/x)1/γ ˜̀(xγ`(1/x)) ∼ 1 as x→∞. (4.11)

The latter follows from the fact f(g(x)) ∼ g(f(x)) ∼ x. In fact, ˜̀(x)γ is the de

Bruijn conjugate of `(1/x1/γ), see [10, Section 1.7].

Using that fv(x) > y if and only if x > gv(y), for v ∈ (0, 1] �xed the tail of Y (v)

is

P(Y (v) > x) = P
(

logU−γ
`(Uv)

`(v)
> x

)
= P(U−γ`(Uv) > `(v)ex)

= P(U−1 > gv(`(v)ex))

= e−x/γ
[
`(v)1/γ ˜̀(v−γ`(v)ex)

]−1
,

and for v = 0 we have P(Y (0) > x) = e−x/γ. Thus, we obtain that the log-tail

distribution function

hv(x) := − logP(Y (v) > x) =


x
γ

+ log
(
`(v)

1
γ ˜̀(v−γ`(v)ex)

)
, v ∈ (0, 1],

x
γ
, v = 0.

(4.12)

For any �xed v ∈ [0, 1] we have that hv(x) ∼ x/γ. In particular, it is regularly

varying. For ζ > 0 de�ne ηv as the unique solution to

hv(ηv(x)) = ζx. (4.13)
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3.1. Weak laws and Gaussian limit. It is pointed out in [11] that the proper

rate of the power sequence pn is log kn. Let us de�ne the parameter ζ as

ζ = lim inf
n→∞

log kn
pn

. (4.14)

For ζ ≤ 2 we need precise assumption on the power sequence, and we assume that

kn ∼ eζpn . (4.15)

Therefore, depending on the range of ζ we have di�erent de�nitions. In the results

below we always state which of the two conditions we assume.

For the truncated moments for v ∈ [0, 1) put

m1
p(v) = E[Y (v)pI(Y (v) ≤ ηv(p))]

σ1
p(v) =

(
E
[
Y (v)2pI(Y (v) ≤ ηv(p))

])1/2
.

Recall (4.8) and de�ne the centering and norming functions for v ∈ [0, 1),

m̃p(v) =


0, ζ ∈ (0, 1),

m1
p(v), ζ = 1,

mp(v), ζ ∈ (1, 2),

σ̃p(v) =

σp(v), ζ > 2,

σ1
p(v), ζ = 2.

(4.16)

To ease notation put m1
p = m1

p(0), σ1
p = σ1

p(0), m̃p = m̃p(0), and σ̃p = σ̃p(0).

Weak consistency holds for ζ ≥ 1, while asymptotic normality holds for ζ ≥ 2.

Note that in the borderline cases ζ = 1, 2 the norming is di�erent, and the condition

on the subsequence pn is stronger.

Theorem 3.1. Assume that kn → ∞, kn/n → 0, and pn → ∞. If ζ > 1 in

(4.14) or ζ = 1 in (4.15) then

(m̃pn(Ukn+1,n))−1 Sn(pn)
P−→ 1. (4.17)

In both cases γ̂(n) is weakly consistent. Furthermore, if ζ > 2 in (4.14) or ζ = 2 in

(4.15) then
√
kn

σ̃pn(Uk+1,n)
(Sn(pn)− m̃pn(Uk+1,n))

D−→ N(0, 1), (4.18)

and √
knm̃pn(Uk+1,n)

σ̃pn(Uk+1,n)
pn

[(
Sn(pn)

m̃pn(Uk+1,n)

)1/pn

− 1

]
D−→ N(0, 1). (4.19)

Note that both the centering and the norming are random. To change to

deterministic values m̃pn and σ̃pn further assumptions are needed. We always assume
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that for the slowly varying function (4.9) holds. For sequences, kn →∞, kn/n→ 0,

and pn →∞ introduce the notation

β2 = lim sup
n→∞

−p−1n log
a(kn/n)

`(kn/n)
≥ lim inf

n→∞
−p−1n log

a(kn/n)

`(kn/n)
= β1, (4.20)

allowing β1 =∞, and let

β =


β1, if β1 ≥ 1,

β2, if 0 < β1 ≤ β2 ≤ 1

1, otherwise.

(4.21)

Put a∨b = max{a, b}, a∧b = min{a, b}. Introduce the notationH(u) = u−1−log u,

u > 0, and for x ∈ (0,∞]

νx = x−1H(2 ∨ 2x), ν∞ = 2.

Then ν is decreasing on (0, 1], and increasing on [1,∞).

Theorem 3.2. Assume that for the slowly varying function ` (4.9) holds and

β1 > 0. If ζ > 1 in (4.14) or ζ = 1 in (4.15) then

(m̃pn)−1 Sn(pn)
P−→ 1. (4.22)

If ζ > 2 in (4.14) or ζ = 2 in (4.15) then assume additionally that for some ε > 0,

lim sup
n→∞

p−1n log

(√
kn

(
a(kn/n)

`(kn/n)

)(νβ−ε)∧1
)
< log 2.

Then √
kn
σ̃pn

(Sn(pn)− m̃pn)
D−→ N(0, 1), (4.23)

and √
knm̃pn

γσ̃pn
pn (γ̂(n)− γ)

D−→ N(0, 1). (4.24)

Note that mp/σp ∼ 2−p(pπ)1/4 as p→∞.

Under stronger assumptions on the slowly varying function ` it is possible to

weaken the conditions on kn and pn. A stronger condition on ` is that the limsup in

(4.9) is �nite uniformly in u ∈ (0, 1], that is there exists a regularly varying function

a such that

lim
v↓0

a(v)

`(v)
= 0, lim sup

v↓0
sup
u∈(0,1]

|`(uv)− `(v)|
a(v)

=: K1 <∞. (4.25)
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Theorem 3.3. Assume that for the slowly varying function ` (4.25) hold.

Furthermore, kn →∞, kn/n→ 0, and pn →∞ such that

pn
a(kn/n)

`(kn/n)
→ 0.

If ζ > 1 in (4.14) or ζ = 1 in (4.15) then (4.22) holds. If ζ > 2 in (4.14) or ζ = 2

in (4.15), and

lim sup
n→∞

p−1n log

(√
kn
a(kn/n)

`(kn/n)

)
< log 2

then (4.23) and (4.24) hold.

3.2. Non-Gaussian stable limits. Next, we explore the regime ζ < 2. Here

we need the precise asymptotic assumption (4.15) on the power sequence pn. We

obtain non-Gaussian limits, where the characteristic exponent of the stable law

equals ζ, coming from the growth rate of the power sequence pn. Therefore, in what

follows we use the notation ζ = α.

Let Zα denote a one-sided α-stable random variable with characteristic function

EeitZα =

exp
{
−Γ(1− α)|t|αe−iπα2 sgnu

}
,

exp
{
it(1− a)− π

2
|t|
(
1 + isgnu 2

π
log |t|

)}
,

where a = 0.577 . . . stands for the Euler�Mascheroni constant.

Theorem 3.4. Assume that kn →∞, kn/n→ 0, and pn →∞ such that (4.15)

holds for some ζ = α ∈ (0, 2). Then

kn
ηUkn+1,n

(pn)pn
(Sn(pn)− m̃pn(Uk+1,n))

D−→ Zα.

Moreover, for ζ = α ∈ (0, 1),

pn

(
[knSn(pn)]1/pn

ηUkn+1,n
(pn)

− 1

)
D−→ logZα, (4.26)

in particular,

γ̂(n)
P−→ γ αe1−α. (4.27)

While for α ∈ [1, 2),

pn
knm̃pn(Ukn+1,n)

ηUkn+1,n
(pn)pn

[(
Sn(pn)

m̃pn(Ukn+1,n)

)1/pn

− 1

]
D−→ Zα. (4.28)

In order to use deterministic norming and centering we need further assumptions

on the slowly varying function. Note that η0(x) = αγx. Recall (4.20) and (4.21).
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Theorem 3.5. Assume (4.15) and that (4.9) holds. Furthermore, kn → ∞,

kn/n→ 0, and ˜̀(nγ`(k/n)) ∼ ˜̀((n/k)γ`(k/n)) (4.29)

and for α ∈ [1, 2) assume that

νββ1 > α− 1− logα = H(α). (4.30)

Then for α ∈ (0, 2),

kn
(αγpn)pn

(Sn(pn)− m̃pn)
D−→ Zα. (4.31)

For the estimator γ̂(n) if α ∈ (0, 1),

eα−1

αγ
pn

[
γ̂(n)

(
1 +

log pn
2pn

)
− γαe1−α

]
D−→ logZα −

log 2π

2
. (4.32)

while for α ∈ (1, 2),

√
2π

γ
epn(α−1−logα)p3/2n [γ̂(n)− γ]

D−→ Zα, (4.33)

and for α = 1,
√

2π

2γ
p3/2n

[
γ̂(n)

(
1 +

log 2

pn

)
− γ
]
D−→ Z1. (4.34)

Condition (4.29) is rather implicit, since already ˜̀ is implicit. However, from the

proof it will be clear that this is exactly what is needed. In some natural special

cases it can be checked. For example, (4.25) implies (4.29). Under some general

growth conditions the de Bruijn conjugate, and so ˜̀ can be determined explicitly,

see [10, Corollary 2.3.4].

If β = β1 then νββ1 = H(2 ∨ 2β) ≥ H(2) > H(α), that is condition (4.30) is

automatic.

Under stronger assumptions on ` the result can be simpli�ed.

Theorem 3.6. Assume (4.15) and that (4.25) holds. Furthermore, kn → ∞,

kn/n → 0, and for α ∈ [1, 2) assume that β1 > H(α). Then (4.31), and depending

on the value α, (4.32), (4.33), or (4.34) hold.

3.3. Examples. We spell out our results in three special cases. First, we

consider the exact Pareto model, when ` ≡ 1. Next, we consider the Hall model,

when (4.25) holds. Finally, we consider the nonconstant slowly varying function

`(s) = − log s.
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Example 3.7. The simplest special case is the strict Pareto model, when in

(4.1) ` ≡ 1. Then mp(v) ≡ mp = γpΓ(p + 1), thus the centering and norming do

not depend on v. Furthermore, there is no other restriction on the sequence, only

kn → ∞. In fact, kn = n is possible. Assume that eζpn ∼ kn. Then, a direct

consequence of Proposition 10.4 in [11] is that depending on the value ζ, (4.24),

(4.32), (4.33), or (4.34) hold.

Example 3.8. Assume that the slowly varying function ` in (4.1) has the form

`(u) = c+O(uδ) with c > 0, δ > 0.

The asymptotic normality of the Hill estimator was proved for this subclass by Hall

[48]. Condition (4.25) is satis�ed with a(u) = uδ. By Proposition 4.5, for some

C > 0

|mpn(u)−mpn| ≤ CΓ(pn + 1)γpnuδ.

Let pn = ζ−1 log kn. For ζ ≥ 2 assume

lim sup
n→∞

1

pn
log

k
1/2+δ
n

nδ
< log 2, (4.35)

and for ζ ∈ [1, 2) assume

lim inf
n→∞

− 1

pn
log

kδn
nδ

> H(ζ). (4.36)

Then depending on the value ζ, (4.24), (4.32), (4.33), or (4.34) hold. It is easy to

see that both (4.35) and (4.36) are satis�ed if log kn = o(log n).

Example 3.9. Finally, let `(s) = − log s. Assume that kn = (log n)d for some

d > 0, and pn = ζ−1 log kn. Then simple calculation shows that β = β1 = β2 = ζ
d
.

Furthermore ˜̀(x) = (γ/ log x)1/γ, and condition (4.29) holds.

If ζ ≥ 2 assume ζ/2−H(2∨ (2ζ/d))/ζ < log 2. If ζ ∈ [1, 2) then condition (4.30)

always holds. Then depending on the value ζ, (4.24), (4.32), (4.33), or (4.34) hold.

4. Proofs

4.1. Strong consistency.

Lemma 4.1. Assume that kn/(log n)δ → ∞ for some δ > 0, and kn/n → 0.

Then

1

kn

kn∑
i=1

(
− log

Ui,n
Ukn+1,n

)p
−→ Γ(p+ 1) a.s.
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Proof. Let Fn denote the empirical distribution function of the sample U1, . . .,

Un. Then, integrating by parts, we have

1

k

k∑
i=1

(
− log

Ui,n
Uk+1,n

)p
=
n

k

∫
(0,Uk,n]

(
− log

u

Uk+1,n

)p
d̃Fn(u)

=
n

k

[
Fn(Uk,n)

(
− log

Uk,n
Uk+1,n

)p
+

∫ Uk,n

0

Fn(u)
p

u

(
− log

u

Uk+1,n

)p−1
d̃u

]

=

(
− log

Uk,n
Uk+1,n

)p
+ p

n

k

∫ Uk,n/Uk+1,n

0

Fn(Uk+1,ns)(− log s)p−1
1

s
d̃s.

(4.37)

Theorem 1 by Wellner [92] implies that

n

k
Uk,n → 1 a.s. whenever kn/ log log n→∞. (4.38)

Thus, the �rst term on the right-hand side of (4.37) tends to 0 a.s. For the second

term

n

k

∫ Uk,n/Uk+1,n

0

Fn(Uk+1,ns)(− log s)p−1s−1d̃s

=
n

k
Uk+1,n

∫ Uk,n/Uk+1,n

0

(− log s)p−1d̃s

+
n

k

∫ Uk,n/Uk+1,n

0

(Fn(Uk+1,ns)− Uk+1,ns)(− log s)p−1s−1d̃s

=: In + IIn.

Again by (4.38)

In →
∫ 1

0

(− log s)p−1d̃s = Γ(p) a.s. (4.39)

For the second term, choosing ν ∈ (0, 1/2), we have

IIn ∼
∫ 1

0

Fn(Uk+1,ns)− Uk+1,ns

Uk+1,ns
(− log s)p−1d̃s

=

∫ 1

0

Fn(Uk+1,ns)− Uk+1,ns

(Uk+1,ns)1/2−ν
(− log s)p−1(Uk+1,ns)

−1/2−ν d̃s

≤ sup
u≤Uk+1,n

|Fn(u)− u|
u1/2−ν

U
−1/2−ν
k+1,n

∫ 1

0

(− log s)p−1s−1/2−ν d̃s

≤ C

(
log log n

k

)1/2
[(n

k

)ν ( n

log log n

)1/2

sup
u≤2k/n

|Fn(u)− u|
u1/2−ν

]
,

(4.40)

where C > 0 is a �nite constant, not depending on n, kn. Using Theorem 1(ii)

by Einmahl and Mason [35] we see that the last term in (4.40) is a.s. bounded, if
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kn ≥ (log n)(1−2ν)/(2ν), which holds if ν is close enough to 1/2. The �rst term in

(4.40) tends to 0. From (4.39), (4.40), and (4.37) the statement follows. �

Proof of Theorem 2.1. By the Potter bounds ([10, Theorem 1.5.6]), for any

A > 1, ε > 0 there exist x0 = x0(A, ε) such that

A−1(y/x)−ε ≤ `(x)

`(y)
≤ A(y/x)ε for any 0 < x ≤ y ≤ x0. (4.41)

Since k/n→ 0, equation (4.38) implies Uk+1,n → 0 a.s. Therefore, for n large enough

a.s.

Sn(p) ≤ 1

k

k∑
i=1

(
−(γ + ε) log

Ui,n
Uk+1,n

+ logA

)p
. (4.42)

First let p ≤ 1. Using the subadditivity (a + b)p ≤ ap + bp, a, b > 0, by Lemma

4.1 we obtain a.s.

lim sup
n→∞

Sn(p) ≤ (γ + ε)p lim sup
n→∞

1

k

k∑
i=1

(
− log

Ui,n
Uk+1,n

)p
+ (logA)p

= (γ + ε)pΓ(p+ 1) + (logA)p.

Letting A ↓ 1 and ε ↓ 0 we have a.s. lim supn→∞ Sn(p) ≤ γpΓ(p+ 1).

Next, let p > 1. The convexity of the function xp implies that for any ε′ > 0, for

a, b > 0

(a+ b)p ≤ (1 + ε′)ap +
(
1− (1 + ε′)−1/(p−1)

)−(p−1)
bp

=: (1 + ε′)ap + Cε′b
p.

Therefore, using Lemma 4.1 and (4.42), we obtain a.s.

lim sup
n→∞

Sn(p) ≤ (γ + ε)p(1 + ε′) lim sup
n→∞

1

k

k∑
i=1

(
− log

Ui,n
Uk+1,n

)p
+ Cε′(logA)p

= (γ + ε)p(1 + ε′)Γ(p+ 1) + Cε′(logA)p.

As A ↓ 1, ε ↓ 0, ε′ ↓ 0, we have a.s. lim supn→∞ Sn(p) ≤ γpΓ(p+ 1).

With the analogous lower bound, the proof is complete. �

4.2. Moment bounds. First we need three simple auxiliary lemmas.

Lemma 4.2. For a ∈ (0, 1/2), b ∈ (−1/2, 1/2), and a+ b > 0 we have

|(a+ b)p − ap| ≤

p|b|, p ≥ 1,

2|b|ap−1, p ≤ 1.
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Proof. Simply (a + b)p − ap = bpξp−1, with ξ being between a and a + b. If

b > −a/2 then ξ ∈ [a/2, 1], thus

|(a+ b)p − ap| ≤ |b|p
(
(a/2)p−1 ∨ 1

)
.

If b < −a/2 then ξ ≤ a, thus ξp−1 ≤ ap−1 for p ≥ 1, and

|(a+ b)p − ap| ≤ |b|pap−1.

While if b < −a/2 and p < 1

|(a+ b)p − ap| = (a− |b|+ |b|)p − (a− |b|)p ≤ |b|p

= |b||b|p−1 ≤ |b|(a/2)p−1.

�

Lemma 4.3. For x ≥ p > 0 we have∫ ∞
x

e−yypd̃y ≤ xp+1e−x(x− p)−1.

Proof. Simple calculation gives that∫ ∞
x

e−yypd̃y = xp+1e−x
∫ ∞
1

e−x(u−1)+p log ud̃u

= xp+1e−x
∫ ∞
1

e−(x−p)(u−1)−p(u−1−log u)d̃u

≤ xp+1e−x
∫ ∞
1

e−(x−p)(u−1)d̃u

= xp+1e−x(x− p)−1.

�

Lemma 4.4. For ζ = 1 as p→∞ for the truncated moments we have

m1
p ∼

(γp
e

)p √pπ
√

2
, and σ1

p ∼
(

2γp

e

)p
(pπ)1/4.

Proof. Since η0(p) = ζγp, by de�nition

m1
p = γp

∫ p

0

ype−yd̃y and (σ1
p)

2 = γ2p
∫ 2p

0

y2pe−yd̃y.

We have ∫ p

0

ype−yd̃y = pp+1e−p
∫ 1

0

e−p(x−1−log x)d̃x.

The exponent is negative and x− 1− log x ∼ (x− 1)2/2 as x ↑ 1. Thus∫ 1

0

e−p(x−1−log x)d̃x ∼
√
π/(2p).

�
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Proposition 4.5. Assume (4.25) and that

lim
v↓0

pv
a(v)

`(v)
= 0. (4.43)

Then there exists v0 > 0 such that for all v ∈ (0, v0)

|mpv(v)−mpv | ≤ 2K1
a(v)

`(v)
γpv−1Γ(pv + 1).

Proof. To ease notation put

η(u, v) =

(
−γ log u+ log

`(uv)

`(v)

)p
− (−γ log u)p . (4.44)

We have by (4.1)

mp(v)−mp = E
[(

log
Q(1− Uv)

Q(1− v)

)p
− (−γ logU)p

]
= E

[(
−γ logU + log

`(Uv)

`(v)

)p
− (−γ logU)p

]
=

∫ 1

0

η(u, v)d̃u =: I1(δ) + I2(δ),

where I1, I2 are the integrals on (0, 1− δ), (1− δ, 1), with δ ∈ (0, 1/2).

First we deal with the integral on (0, 1 − δ). By (4.41), for any ε > 0, A > 1,

there is v0 > 0 such that for v ≤ v0, u ∈ (0, 1),

A−1uε ≤ `(uv)

`(v)
≤ Au−ε, (4.45)

implying that uniformly on u ∈ (0, 1− δ],

log `(uv)
`(v)

− log u
→ 0 as v ↓ 0. (4.46)

Writing
`(uv)− `(v)

`(v)
=
a(v)

`(v)

`(uv)− `(v)

a(v)
,

by (4.25) we see that the �rst factor tends to 0 and the second factor is bounded.

Therefore, uniformly in u ∈ [0, 1],

log
`(uv)

`(v)
∼ a(v)

`(v)

`(uv)− `(v)

a(v)
as v ↓ 0. (4.47)

By (4.46) and (4.47), if (4.43) holds then, uniformly on u ∈ [0, 1− δ],(
1 +

log `(uv)
`(v)

−γ log u

)p

− 1 ∼ p (−γ log u)−1
a(v)

`(v)

`(uv)− `(v)

a(v)
. (4.48)
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Thus,

I1(δ) ≤ p
a(v)

`(v)

3

2
K1γ

p−1
∫ 1−δ

0

(− log u)p−1 d̃u. (4.49)

Next, we turn to I2. Note that (4.47) holds, but (4.46) does not, because log u can

be small. Choosing δ > 0 small enough we can achieve that −γ log(1− δ) ∈ (0, 1/2)

and by (4.47) also that log `(uv)/`(v) ∈ (−1/2, 1/2) for v small and u ∈ [1 − δ, 1].

Therefore, we can apply Lemma 4.2 with a = −γ log u and b = log(`(uv)/`(v))

together with (4.47) and (4.25), and we obtain for p ≤ 1 that

|η(u, v)| ≤ 2

∣∣∣∣log
`(uv)

`(v)

∣∣∣∣ (−γ log u)p−1

≤ a(v)

`(v)
2K1(−γ log u)p−1.

While, for p ≥ 1

|η(u, v)| ≤ p

∣∣∣∣log
`(uv)

`(v)

∣∣∣∣ ≤ p
a(v)

`(v)
K1.

Summarizing,

I2(δ) ≤


a(v)
`(v)

2K1γ
p−1 ∫ 1

1−δ(− log u)p−1d̃u, p ≤ 1,

pa(v)
`(v)

K1δ, p ≥ 1.
(4.50)

The bounds (4.49) and (4.50) imply the statement. �

Proposition 4.6. Assume (4.9) and let

β2 := lim sup
v↓0

− log a(v)
`(v)

pv
≥ lim inf

v↓0

− log a(v)
`(v)

pv
:= β1, (4.51)

allowing β1 =∞. Assume either β1 ≥ 1 or β2 ≤ 1, and de�ne β as in (4.21). Then

for any ε > 0 there exists a K > 0 such that for v small enough

|mpv(v)−mpv | ≤ K

(
a(v)

`(v)

)(νβ−ε)∧1

(γ + ε)pv Γ(pv + 1).

Note that if p > 0 is �xed then β = ∞ and we obtain the same bound as in

Proposition 4.5.

Proof. The di�erence compared to the previous proof is that (4.25) does not

hold uniformly in [0, 1], which implies that the integral of η(u, v) in (4.44) on the

interval [0, δ] has to be treated di�erently.
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By Theorem 3.1.4 in [10] (translating the results from in�nity to zero, by de�ning

`(x) = `(x−1), a(x) = a(x−1))

lim sup
v↓0

sup
u∈[δ,1]

|`(uv)− `(v)|
a(v)

=: K1(δ) <∞.

This implies that the bound (4.50) on [1− δ, 1] remains true and on [δ, 1− δ] as in
(4.49) we have∫ 1−δ

δ

η(u, v)d̃u ≤ p
a(v)

`(v)

3

2
K1γ

p−1
∫ 1−δ

δ

(− log u)p−1 d̃u. (4.52)

Recall (4.44) and let

J1 =

∫ b(v)

0

η(u, v)d̃u, J2 =

∫ δ

b(v)

η(u, v)d̃u, (4.53)

where

b(v) =

(
a(v)

`(v)

)2

∧ e−2p. (4.54)

By Theorem 3.1.4 in [10] for any ε > 0 there is v0(ε) > 0 and K2(ε) > 0 such

that
|`(uv)− `(v)|

a(v)
≤ K2(ε)u

−ε for all u ≤ 1, v ≤ v0(ε). (4.55)

By (4.54) and (4.51) for ε1 > 0 small enough

p
a(v)

`(v)
b(v)−ε1 → 0. (4.56)

Using (4.55), for u ≥ b(v)

|`(uv)− `(v)|
`(v)

≤ K2(ε1)
a(v)

`(v)
u−ε1 ≤ K2(ε1)

a(v)

`(v)
b(v)−ε1 → 0,

therefore ∣∣∣∣log
`(uv)

`(v)

∣∣∣∣ ∼ |`(uv)− `(v)|
`(v)

≤ K2(ε1)
a(v)

`(v)
u−ε1 .

By (4.56) for u ∈ [b(v), δ] the asymptotic equality in (4.48) holds, thus for J2 in

(4.53)

J2 ∼
∫ δ

b(v)

(−γ log u)pp(−γ log u)−1
a(v)

`(v)

`(uv)− `(v)

a(v)
d̃u

≤ p
a(v)

`(v)
K2(ε1)

∫ δ

b(v)

(−γ log u)p−1u−ε1 d̃u

≤ p
a(v)

`(v)
K2(ε1)(1− ε1)−pγp−1Γ(p),

(4.57)
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where at the last inequality we used that∫ 1

0

(− log u)p−1u−ε1 d̃u =

∫ ∞
0

yp−1e−(1−ε1)yd̃y

= (1− ε1)−p Γ(p).

On (0, b(v)) using (4.45), b(v) → 0, Lemma 4.3, and that − log b(v) − p ≥
(− log b(v))/2 we obtain for v small enough

J1 ≤ 2

∫ b(v)

0

(−(γ + ε) log u+ logA)p d̃u

≤ 2(γ + 2ε)p
∫ b(v)

0

(− log u)p d̃u

= 2(γ + 2ε)p
∫ ∞
− log b(v)

ype−yd̃y

≤ 2(γ + 2ε)p(− log b(v))p+1elog b(v)(− log b(v)− p)−1

≤ 4(γ + 2ε)p (− log b(v))p b(v).

(4.58)

Note that for log x > p

(log x)p

x

ep

pp
= exp

{
−p
(

log x

p
− 1− log

log x

p

)}
= exp

{
−pH

(
log x

p

)}
.

Thus with x = b(v)−1(
e

p

)p
(− log b(v))p b(v) = exp

{
−pH

(
2 ∨ −2 log(a(v)/`(v))

p

)}

=

(
a(v)

`(v)

) p
− log(a(v)/`(v))

H(2∨−2 log(a(v)/`(v))
p )

.

The function νx = x−1H(2∨2x) is strictly decreasing on (0, 1], and strictly increasing

on [1,∞) attaining its unique minimum at 1. Continuing (4.58) for any ε2 > 0 for

v small enough

J1 ≤
4
√
pπ

(γ + 2ε)p Γ(p+ 1)

(
a(v)

`(v)

)νβ−ε2
.

Combining with (4.57), (4.52), and (4.50) the result follows. �

As an easy consequence of the moment bounds we show that the random centering

and norming can be substituted with the deterministic one.
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Proof of Theorem 2.4. The theorem is an immediate consequence of Theorem

2.3 and Proposition 4.6. Indeed, by Proposition 4.6

√
k |mp(Uk+1,n)−mp| ≤ c

√
k
a(Uk+1,n)

`(Uk+1,n)
=
√
k
a(k/n)

`(k/n)

a(Uk+1,n)

a(k/n)

`(k/n)

`(Uk+1,n)
.

By the assumption
√
ka(k/n)/`(k/n) → 0, while the last two factors tends to 1,

since a and ` are regularly varying and Uk+1,n ∼ k/n.

The central limit theorem for γ̂(n) follows from the previous result using the

delta method, see Agresti [1, Section 14.1]. �

4.3. Limit results for power sums. In this section we assume that p = pn
tends to in�nity at a certain rate. We prove the analogues of Bogachev's result [11,

Section 2] for the random variables Y (v) uniformly in v. As the log-tail distribution

function hv in (4.12) is regularly varying, for each v ∈ [0, 1) �xed all the following

results are consequences of Bogachev's results. However, the main di�culty in our

setup is the additional parameter v, in which we need some kind of uniformity. We

apply these results to prove limit theorems for the Sn(pn) and γ̂(n).

Recall (4.7). Let Y (v), Y1(v), Y2(v), . . . be iid random variables, and put

Zn(p, v) =
n∑
i=1

Yi(v)p.

First we determine the asymptotic behavior of the moments as p→∞.

Lemma 4.7. For any ε > 0 there is a p0 > 0 such that for v ∈ [0, 1), p > p0

(γ − ε)p Γ(p+ 1) ≤ mp(v) ≤ (γ + ε)p Γ(p+ 1). (4.59)

In particular, as p→∞ uniformly in v

logmp(v)

p
− log p→ log γ − 1.

Proof. First note that if X is a nonnegative random variable for which P(X >

x) > 0 for any x then for any K > 0

EXp ∼ EXpI(X > K) as p→∞.

This implies that for any ε > 0 and a > 0 there exist p0 = p0(ε, a) such that for

p > p0

(1− ε)p E(X + a)p ≤ EXp ≤ (1 + ε)p E(X − a)p. (4.60)
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Using the Potter bounds (see (4.45)) and (4.60), for any ε > 0 there exists A > 1

and p0 > 0 such that for v ∈ [0, 1], p > p0

mp(v) = E
(

log

(
U−γ

`(Uv)

`(v)

))p
≤ E

(
log
(
U−(γ+ε)A

))p
≤ (γ + ε)pE

(
logU−1 +

logA

γ + ε

)p
≤ ((1 + ε)(γ + ε))pΓ(p+ 1).

Together with an analogous lower bound, (4.59) follows. The second part simply

follows from Stirling's formula. �

If Vn(v) is a sequence of random variables indexed by v ∈ [0, 1), then Vn(v)

converges in distribution uniformly in v to a random variableW , if for each continuity

point x of the distribution function of W

lim
n→∞

sup
v∈[0,1)

|P(Vn(v) ≤ x)− P(W ≤ x)| = 0.

Similarly, Vn(v) converges in probability uniformly in v to a random variable W , if

for each ε > 0

lim
n→∞

sup
v∈[0,1)

P(|Vn(v)−W | > ε) = 0.

For the sequence p = pn let

lim inf
n→∞

log n

pn
= ζ ≥ 0; (4.61)

for ζ ≤ 2 we need the stronger assumption

n ∼ eζpn . (4.62)

To obtain a weak law of large numbers we need that ζ > 1.

Proposition 4.8. If ζ > 1 in (4.61) or ζ = 1 in (4.62) then uniformly for

v ∈ [0, 1) as pn →∞
Zn(pn, v)− nm̃pn(v)

nm̃pn(v)

P−→ 0.

Proof. Let ζ > 1. We follow the proof of Theorem 2.1 in [11]. Fix ε > 0, and

let r ∈ [1, 2]. Using the Markov inequality, the Marcinkiewicz�Zygmund inequality
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(see e.g. [68, 2.6.18]), and the subadditivity we have with some cr > 0

P
(
|Zn(p, v)− nmp(v)|

nmp(v)
> ε

)
≤ (εnmp(v))−rE|Zn(p, v)− nmp(v)|r

≤ cr(εnmp(v))−rE

(
n∑
i=1

(Yi(v)p −mp(v))2

)r/2

≤ cr(εnmp(v))−rnE|Y (v)p −mp(v)|r

≤ crε
−rn1−rmrp(v)

mp(v)r
.

(4.63)

By Lemma 4.7 for any ε1 > 0 we can choose p0 > 0 such that for v ∈ [0, 1) and

p > p0
mrp(v)

mp(v)r
≤ (γ + ε1)

rpΓ(rp+ 1)

(γ − ε1)rpΓ(p+ 1)r
≤ (1 + ε2)

rpΓ(rp+ 1)

Γ(p+ 1)r
,

with ε2 = 2ε2/(γ − ε2). Thus, by the Stirling formula

lim sup
p→∞

1

p
log

mrp(v)

nr−1mp(v)r
≤ r log(1 + ε2) + r log r − (r − 1) lim inf

p→∞

log n

p

≤ r log(1 + ε2) + r log r − (r − 1)ζ.

(4.64)

As ζ > 1 we can choose r ∈ [1, 2] such that r log r − (r − 1)ζ < 0. Then choosing

ε1 small enough we see that the right-hand side in (4.64) is negative, implying that

the right-hand side in (4.63) tends to 0.

For ζ = 1 the result is a consequence of Proposition 4.12. We only need that

nm̃p(v)/ηv(p)
p →∞, which follows from (4.70) in Lemma 4.11 with r = ζ = 1. �

For the central limit theorem we need further restriction on pn.

Proposition 4.9. If ζ > 2 in (4.61) or ζ = 2 in (4.62) then uniformly on [0, 1)

Zn(pn, v)− nm̃pn(v)√
nσ̃pn(v)

D−→ N(0, 1).

Proof. Let ζ > 2. By Lyapunov's theorem (see e.g. Theorem 27.3 in Billingsley

[9]) it is enough to show that for some δ > 0 uniformly in v

n

(
√
nσp(v))2+δ

E|Y (v)p −mp(v)|2+δ → 0

as n→∞. By Lemma 4.7 σp(v) ∼
√
m2p(v) as p→∞. Thus we have to show that

mp(2+δ)(v)

nδ/2m2p(v)1+δ/2
→ 0.
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As in the proof of Proposition 4.8

lim sup
p→∞

1

p
log

mp(2+δ)(v)

nδ/2m2p(v)1+δ/2
≤ −δ

2
ζ + log(1 + ε) + (2 + δ) log(1 + δ/2).

We have to choose δ > 0 such that

2

δ
(2 + δ) log

(
1 +

δ

2

)
< ζ.

This is possible for ζ > 2.

For ζ = 2 we defer the proof after Proposition 4.12. �

In the range ζ ∈ (0, 2) we need (4.62), the �ner assumption on the sequence pn.

For the error term in hv in (4.12)

hv(x)− h0(x) = log
(
`(v)1/γ ˜̀(v−γ`(v)ex)

)
= log `(v)1/γ ˜̀(v−γ`(v)) + log

˜̀(v−γ`(v)ex)˜̀(v−γ`(v))
.

(4.65)

By the inverse relation (4.11) the �rst term is small for v small, while the second

term can be bounded using the Potter bounds, thus for any ε > 0 there exist x0 > 0

such that for x > x0 ∣∣∣log
(
`(v)1/γ ˜̀(v−γ`(v)ex)

)∣∣∣ ≤ εx,

implying that for x > x0

|hv(x)− x/γ| ≤ εx.

Also, for ηv in (4.13) there exist x0 > 0 such that for x > x0

|ηv(x)− γζx| ≤ εx. (4.66)

Using these bounds, we can prove the uniform version of Lemma 5.4 in [11].

Lemma 4.10. For any K > 0

lim
p→∞

sup
v∈[0,1],x∈[K−1,K]

∣∣hv(ηv(p))− hv(ηv(p)x1/p) + ζ log x
∣∣ = 0.

Proof. We have by (4.12)

hv(ηv(p))− hv(ηv(p)x1/p) =
ηv(p)

γ
(1− x1/p) + log

˜̀(v−γ`(v)eηv(p))˜̀(v−γ`(v)eηv(p)x1/p)
.

Using (4.66) and that 1 − x1/p ∼ −p−1 log x + O(p−2), we see that the �rst term

tends to −ζ log x. This further implies, using also the uniform convergence theorem

that the second term above tends to 0, proving the statement.

We also note that the argument above shows that the uniform convergence

theorem for the regularly varying hv holds uniformly in v ∈ [0, 1]. �
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Once we have the uniform convergence in v, and the uniform moment bound

(4.59), the proofs of Lemma 6.1, 6.2, and 6.3 in [11] go through. We omit the proof.

Lemma 4.11. For any r > 0 and τ > 0 uniformly in v ∈ [0, 1)

lim
p→∞

eζp

ηv(p)pr
E
[
Y (v)rp

(
I(Y (v) ≤ ηv(p)τ

1/p)− I(Y (v) ≤ ηv(p))
)]

=

 ζ
r−ζ (τ r−ζ − 1), r 6= ζ,

ζ log τ, r = ζ.

(4.67)

For any τ > 0 and r > ζ

lim
p→∞

eζp

ηv(p)pr
E
[
Y (v)rpI(Y (v) ≤ ηv(p)τ

1/p)
]

=
ζ

r − ζ
τ r−ζ , (4.68)

while for τ > 0 and r < ζ

lim
p→∞

eζp

ηv(p)pr
E
[
Y (v)rpI(Y (v) > ηv(p)τ

1/p)
]

=
ζ

ζ − r
τ r−ζ . (4.69)

For r = ζ

lim
p→∞

eζp

ηv(p)ζp
E
[
Y (v)ζpI(Y (v) ≤ ηv(p))

]
=∞. (4.70)

Recall the notation (4.16). Again, if ζ ≤ 2 then ζ equals the characteristic

exponent of the limiting stable law. Therefore, we use the notation ζ = α.

Proposition 4.12. Assume that (4.62) holds with ζ = α ∈ (0, 2). Then as

n→∞, uniformly in v ∈ [0, 1)

1

ηv(pn)pn
[Zn(pn, v)− nm̃pn(v)]

D−→ Zα.

Proof. We use the classical criteria for convergence of sums of independent

random variables, see Theorem 25.1 in Gnedenko and Kolmogorov [42].

First, by (4.12), (4.13), and Lemma 4.10, uniformly in v ∈ [0, 1)

nP(Y (v)p > ηv(p)
px) = ne−hv(ηv(p))ehv(ηv(p))−hv(ηv(p)x

1/p) → x−α. (4.71)

Next, applying Lemma 4.11 with r = 2, uniformly in v ∈ [0, 1)

lim
τ↓0

lim sup
n→∞

n

ηv(p)2p
E
[
Y (v)2pI(Y (v) ≤ ηv(p)τ

1/p)
]

= 0.

Therefore, we already have that the normed sum converges with an appropriate

centering, and the limit is a one-sided α-stable law. To see that the centering is



4. PROOFS 57

correct note that

lim
p→∞

(
n

ηv(p)p
E
[
Y (v)pI

(
Y (v) ≤ ηv(p)τ

1/p
)]
− nm̃p(v)

ηv(p)p

)

=

 α
1−ατ

1−α, α 6= 1,

log τ, α = 1.

Indeed, this follows from (4.68) for α < 1, from (4.69) for α > 1, and from (4.67)

for α = 1. �

We end this section with the proof of the central limit theorem in the borderline

case α = 2.

Proof of Proposition 4.9 for α = 2. Here we use again the classical criteria

[42, Theorem 25.1], but speci�ed to the Gaussian law.

Using (4.70) with α = r = 2 we obtain that uniformly in v ∈ [0, 1)

σ1
p(v)ep/ηv(p)

p →∞. (4.72)

Thus, for any x > 0 �xed and τ > 0 large, for n large enough

nP(Y (v)p >
√
nσ1

p(v)x) ≤ nP(Y (v)p > ηv(p)
pτ),

which by (4.71) converges to τ−2. Thus, for any x > 0

nP(Y (v)p >
√
nσ1

p(v)x)→ 0. (4.73)

For the truncated variance
n

(σ1
p(v)
√
n)2

E
[
Y (v)2pI

(
Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)]
= 1 +

E
[
Y (v)2pI

(
ηv(p) ≤ Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)]
(σ1

p(v))2
.

(4.74)

For the second term for δ ∈ (0, 1) by (4.69) with α = 2, r = 2− δ

E
[
Y (v)2pI

(
ηv(p) ≤ Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)]
(σ1

p(v))2

≤
(σ1

p(v)
√
nτ)δ

(σ1
p(v))2

E
[
Y (v)(2−δ)pI(ηv(p) ≤ Y (v))

]
∼ 2

δ

(
σ1
p(v)ep

ηv(p)p

)−(2−δ)
nδ/2

epδ
,

which tends to 0 by (4.72). Furthermore, by (4.72)[
E
(
Y (v)pI(Y (v) ≤ (σ1

p(v)
√
nτ)1/p)

)]2
E
(
Y (v)2pI(Y (v) ≤ (σ1

p(v)
√
nτ)1/p)

) ≤ (mp(v))2

(σ1
p(v))2

.
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Using Lemma 4.7 and (4.66) it is simple to show that the latter quantity tends to 0

uniformly in v ∈ [0, 1). Thus, from (4.74) we obtain for any τ > 0

lim
n→∞

n(√
nσ1

p(v)
)2{E [Y (v)2pI

(
Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)]
−
(
E
[
Y (v)pI

(
Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)])2}
= 1.

(4.75)

Finally, by (4.69) with α = 2, r = 1

n

σ1
p(v)
√
n
E
(
Y (v)pI(Y (v) > (σ1

p(v)
√
nτ)1/p)

)
≤
√
n

σ1
p(v)

E
(
Y (v)pI(Y (v) > ηp(v)τ 1/p)

)
∼
√
n

σ1
p(v)

ηv(p)
p

e2p
τ−1

which tends to 0 by (4.72). Together with (4.73) and (4.75) this implies the

statement. �

4.4. Proofs for asymptotics for large p.

Proof of Theorem 3.1. The limiting relations (4.17) and (4.18) are immediate

consequences of Propositions 4.8 and 4.9. Indeed, for the law of large numbers by

representation (4.5)

P (|Sn(pn)/mpn(Uk+1,n)− 1| > ε)

=

∫ 1

0

P (|Zn(pn, v)/(nmpn(v))− 1| > ε) d̃P(Uk+1,n ≤ v),

which tends to 0, since the integrand tends to 0 uniformly. The proof of (4.18) is

similar.

The weak consistency follows from Lemma 4.7 and (4.17).

The CLT (4.19) follows from Lemma 9.1 in [11] and Theorem 3.1. To apply

Lemma 9.1 in [11] we only need to show that
√
knmpn(Uk+1,n)

σpn(Uk+1,n)
→∞.

This follows easily from Lemma 4.7 as for ε > 0 small enough

lim inf
n→∞

p−1n log

√
knmpn(Uk+1,n)

σpn(Uk+1,n)
≥ ζ

2
− log 2− log(1 + ε) > 0.

�

Proof of Theorem 3.2. First note that Uk+1,nn/k → 1 in probability, and

since a and ` are regularly varying functions Uk+1,n can be changed to k/n.
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For the �rst result we have to show that mp(k/n)/mp → 1. This follows from

Proposition 4.6. Indeed, for any ε > 0∣∣∣∣mp(k/n)

mp

− 1

∣∣∣∣ ≤ K(1 + ε)p
(
a(k/n)

`(k/n)

)νβ−ε
.

Taking logarithm and dividing by p we see that the right-hand side above is negative

for ε > 0 small enough.

For the central limit theorem, σp(k/n)/σp → 1 follows again from Proposition

4.6, thus σp(Ukn+1,n)/σp → 1 also follows as above. To change the centering, using

again Proposition 4.6
√
k

σpn
|mp(k/n)−mp| =

mp

√
k

σp

|mp(k/n)−mp|
mp

≤ c
√
k(1 + ε)p

Γ(p+ 1)√
Γ(2p+ 1)

(
a(k/n)

`(k/n)

)ν̃
,

(4.76)

with ν̃ = 1∧(νβ−ε). Taking logarithm, dividing by p, and using the Stirling formula

lim sup
p→∞

p−1 log

[
√
k(1 + ε)p

Γ(p+ 1)√
Γ(2p+ 1)

(
a(k/n)

`(k/n)

)ν̃]

≤ log(1 + ε)− log 2 + lim sup
p→∞

p−1 log

[
√
k

(
a(k/n)

`(k/n)

)ν̃]
.

Since ε > 0 in (4.76) is as small as we wish, the result follows.

Now (4.24) follows from (4.19) using Bogachev's transfer lemma, as above. �

Proof of Theorem 3.3. The proof goes as the previous proof, but we use

Proposition 4.5. �

Proof of Theorem 3.4. The �rst result follows from Proposition 4.12.

Combining with Bogachev's transfer lemma we obtain (4.26) and (4.28). To use the

transfer lemma for α ∈ [1, 2) we have to check that

knm̃pn(Uk+1,n)

ηUk+1,n
(pn)pn

→∞.

For α > 1 by Lemma 4.7 and (4.66) the left-hand side above is at least

eαpn(γ − ε)pnΓ(pn + 1)

((αγ − ε)pn)pn
≥
(
eα

α

)pn
(1− ε)pn ,

which tends to ∞ for ε > 0 small enough. For α = 1 the result follows from (4.70)

in Proposition 4.11 with r = α = 1.
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To see (4.27), note that as pn →∞,(
Sn(pn)

Γ(pn + 1)

)1/pn

(knΓ(pn + 1))1/pn
1

ηUk+1,n
(pn)

=
(knSn(pn))1/pn

ηUk+1,n
(pn)

→ 1.

Thus (4.27) follows from the asymptotics

(knΓ(pn + 1))1/pn

ηUk+1,n
(pn)

→ eα−1

αγ
.

�

Proof of Theorem 3.5. First we show that we can change to deterministic

normalization, i.e.

lim
n→∞

(
ηUk+1,n

(pn)

αγpn

)pn
= 1. (4.77)

We have |ηv(x)− αγx| = γ|hv(ηv(x)) − h0(ηv(x))| by the de�nition of ηv in (4.44).

Therefore, ∣∣∣∣ηv(pn)

αγpn
− 1

∣∣∣∣ ≤ 1

αpn
|hv(ηv(pn))− h0(ηv(pn))| ,

from which we see that (4.77) follows if we show the convergence

lim
n→∞

[
hUk+1,n

(ηUk+1,n
(pn))− h0(ηUk+1,n

(pn))
]

= 0.

This holds, since the �rst term on the right-hand side of (4.65) tends to 0 as v =

Uk+1,n → 0 by (4.11). Changing Uk+1,n to k/n, with v = k/n and x = ηv(pn) ∼
γ log k, we see that the second term tends to 0 by assumption (4.29). Thus (4.31)

holds for α < 1.

For α ∈ [1, 2) we need to handle the centering as well. For α > 1 by Proposition

4.6
kn|mpn −mpn(v)|

(αγpn)pn
≤ 2K1

γ
(1 + ε)p

eαpn

(αpn)pn
Γ(pn + 1)

(
a(v)

`(v)

)ν̃
,

with ν̃ = 1 ∧ (νβ − ε). As before we can substitute Uk+1,n to k/n. Thus

lim sup
n→∞

p−1n log
kn|mpn −mpn(k/n)|

(αγpn)pn

≤ log(1 + ε) + α− 1− logα + ν̃ lim sup
n→∞

p−1n log

(
a(k/n)

`(k/n)

)
= log(1 + ε) +H(α)− ν̃β1,

which is negative for ε > 0 small, under our assumptions. Thus (4.31) follows.

To prove (4.32), write

pn

(
[knSn(pn)]1/pn

αγpn
− 1

)
= pn

(
γ̂(n)

(knΓ(pn + 1))1/pn

αγpn
− 1

)
.
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Simple calculation shows that

k
1/pn
n

αγpn
Γ(pn + 1)1/pn =

eα−1

αγ

(
1 +

log(2πpn)

2pn
+ o(1/pn)

)
.

Thus (4.32) and (4.33) follows from Bogachev's transfer lemma. For (4.34) we use

the asymptotics of the truncated moments in Lemma 4.4. �

Proof of Theorem 3.6. The proof goes as the previous proof, but we use

Proposition 4.5. �

5. Simulation study

The purpose of this small simulation study is to show that understanding the

behavior of γ̂(n) for large values of p is not only a mathematical challenge. The use

of larger p values sometimes is bene�cial in practical situations, which was already

pointed out by Gomes and Martins [44]. However, we do not intend to provide

neither a theoretical nor a practical comparison of the various tail index estimators.

For a comprehensive simulation study, as well as for a practical criteria for the choice

of k and p, we refer to [44].

Note that for p = 1 we obtain the usual Hill estimator. In Theorem 5.1 Segers

[77] proved the optimality of the Hill estimator among residual estimators. We also

see from (4.24) that the asymptotic variance increases with p. However, in practical

situation higher p values turns out to be useful.

Figure 1. Mean (left) and MSE (right) in the strict Pareto model with γ = 1.

In the simulations below n = 1000 and we repeated the simulations 5000 times.

In all the �gures the mean and mean squared error (MSE) are calculated for di�erent

values of kn. We plotted the estimators as a function of k in the range [5, 200].
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For k ≥ 200 the estimators do not change much, and we have to estimate from a

negligible portion, that is kn/n→ 0.

Figure 2. Mean (left) and MSE (right) in the strict Pareto model with γ = 2.

In Figures 1 and 2 we see that the Hill estimator is the best in the strict Pareto

model. In this case Q(1 − s) = s−γ. For p = 10 we also see that the estimator

is not consistent, as ζ = (log k)/10 � 1. In fact we see the graph γ · ζe1−ζ =

γk−1/10 log k e/10. Note that e5 ≈ 150, so loosely speaking the estimator for p = 5

is weakly consistent only for k ≥ 150, while e10 ≈ 22, 000, so asymptotic normality

starts to hold for k ≥ 22, 000. Therefore, for k ≤ 200 smaller p values should be

used. We chose larger values to illustrate better the di�erence. We also note that

for large data sets we may use larger p values.

However, in practice it is very unusual to encounter data which �t to a nice

distribution everywhere. It is more common that the large values �t to a Pareto-type

Figure 3. Mean and MSE for a sample with quantile function (4.78) with

γ = 1.



5. SIMULATION STUDY 63

Figure 4. Mean and MSE for a sample with quantile function (4.78) with

γ = 2.

distribution, while the smaller values behave as a light-tailed distribution. Consider

the quantile function

Q(1− s) =

s−γ, if s ≤ 0.1,

10γ

log 10
log s−1, if s ≥ 0.1,

(4.78)

which is a mixture of an exponential quantile and a strict Pareto quantile. The

parameter of the exponential is chosen such that Q is continuous. Figures 3 and 4

contain the simulation results for γ = 1 and γ = 2. In this simple model we already

see the advantage of larger p values. Note that the Hill estimator is very sensitive to

the change of kn for those values where the quantile function changes. Indeed, for

kn ≤ 100 we basically have a sample from a strict Pareto distribution, and for those

values the Hill estimator is the best. For kn = 200 we already see the exponential

part of the sample, and the Hill estimator changes drastically (for γ = 1 from 0.98

to 0.76), while for p = 5 the change is not as large (from 0.92 to 0.88).

Next, we further add a nonconstant slowly varying function to the quantile. A

logarithmic factor in the tail of the random variable cannot be detected in practice,

but it makes signi�cantly more di�cult to determine the underlying index of regular

variation. We modify the construction in (4.78) and consider the quantile function

Q(1− s) =

s−γ(log s−1)3, if s ≤ 0.1,

10γ(log 10)2 log s−1, if s ≥ 0.1.
(4.79)

Note again that the function is continuous. We see from the simulation results in

Figures 5 and 6 that in this setup the estimators with larger p values work much

better than the Hill estimator. These estimators are not so sensitive for the change
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Figure 5. Mean and MSE for a sample with quantile function (4.79) with

γ = 1.

Figure 6. Mean and MSE for a sample with quantile function (4.79) with

γ = 2.

in the nature of the quantile function. We also see that heavier tails are in favor of

larger p values.

It was pointed out in [44] that in various models under second-order regular

variation for a wide range of p values (usually p ∈ (1, 5]) the estimator γ̂(n) with p

�xed is more e�cient than the Hill estimator. The variance of the estimator has a

unique minimum at p = 1 (the Hill estimator), but the bias decreases in p, which is

the decisive factor in some models, see Figures 3 and 4 in [44].

We also apply the estimator with di�erent p values to real data. We chose the

data set of Danish �re insurance losses, which consists of 2167 �re losses in millions

of Danish Kroner. The data set is included in the R package evir, and was analyzed

in [71] and in [36, Example 6.2.9]. In Figure 7 we plotted the estimate for 1/γ,
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Figure 7. Hill type plots of γ̂(n)−1 for the Danish �re insurance claim

with di�erent p values.

i.e. we plotted 1/γ̂(n) against kn, to obtain the Hill plot in [71] for p = 1. Resnick

[71] used various techniques to obtain smoother plot. In our setting larger p values

naturally produce smoother plots.



CHAPTER 5

A statistical approach to partition lattices with some

theoretical "by-products"

Outline and source. This chapter entails investigating four-element generating

sets of a partition lattice and establishing a lower bound for the number of four-element

generating sets of direct products of two neighbouring partition lattices. The chapter

is divided into four sections, which are taken from [26] and [63]. Section 1 is

introductory and combines the corresponding parts of [26] and [63]. Sections 2 and

3 are reprints from [26]. Section 4 is taken from [63] but more details are given here.

Namely, Remark 4.2 and, to prove it, Cases 4.3�4.8 have been added to the original

publication. In connection with this, Lemma 4.1 has become a separate statement.

Also, there is a notational change in Section 4: ν(n) from [63] has been changed to

ν2(n) in order to avoid confusion with Sections 2 and 3, which inherit the meaning

of ν(n) from [26].

1. Introduction to partition lattices and their generating sets

H. Strietz proved in 1975 that the minimum size of a generating set of the

partition lattice Part(n) on the n-element set (n ≥ 4) equals 4; see [81, 82]. This

classical result forms the foundation for this chapter. In [94], Strietz's results have

been echoed by L. Zádori (1983), who gave a new elegant proof con�rming the

outcome. Based on his approach, several studies have indeed emerged henceforth

concerning

four-element generating sets of partition lattices. In particular, the Strietz�Zádori

result was extended to in�nite partition lattices by Czédli [22, 23, 24].

The papers and results mentioned above were devoted to the existence of four-

element generating sets. The study of the number of small generating sets of

partition lattices have started recently with Czédli [25] and Czédli and Oluoch [26].

In particular, [26] gives a lower bound for the number ν(n) of four-element generating

sets of Part(n) as well as a statistical approach to ν(n) for small values of n. Also,

in [26], we have recently proved that certain direct products of partition lattices

are also 4-generated. In particular, some direct powers of Part(n) × Part(n+ 1)

66
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is four-generated for n ≥ 7; this fact will turn out to be important in the present

chapter.

When dealing with ν(n) in [26], it caused some di�culty that Part(n) has

very many elements and a complicated structure; for example, each �nite lattice

is embeddable in Part(n) for some n by a classical result of Pudlák and T·ma [70].

This explains that, instead of determining the exact or the asymptotic value of ν(n),

we could only give a lower bound for ν(n). Note that this lower bound is better

than what would trivially follow from Zádori [94] with n! automorphisms taken

into account, but we knew that this lower bound was far from being sharp. The

reason is that we proved the validity of the lower bound by presenting four-element

generating sets obtained by a special construction that goes back to the technique of

Zádori [94], but there is no hope to construct all four-element generating sets. Since

the lower bound for ν(n) in [26] is not sharp, we have developed some computer

programs for investigating ν(n) for some small values of n. The results obtained

in this way are analyzed using a computer-assisted statistical approach to ν(n) for

small values of n. This analyzis constitute Section 3 here.

Once the above-mentioned computer program was available, we could use it to

solve an old problem of Zádori [94]; this solution is presented here in Section 2. (To

harmonize with [26], this section precedes Section 3 in the dissertation.)

In Section 4, based on [63], we give a lower bound on the number ν2(n) of

4-element generating sets of the direct product Part(n)×Part(n+ 1) for n ≥ 7 using

the main theorem of [26]. Again, like in case of Part(n) and ν(n), the complicated

structure of Part(n) × Part(n+ 1) prevents us from determining the exact value

of ν2(n). Hence, we only present a lower bound for ν2(n) for large n. Note that

for n ∈ {1, 2, 3, 4, 5}, some computer programs have been developed and used for

the investigation of ν2(n) in [63] but these investigations are not included in the

dissertation.

2. A solution of Zádori's problem on (1 + 1 + 2)-generation of small

partition lattices

We know from Zádori [94] that, for n ≥ 7, the lattice Part(n) of all partitions

of the n-element set 1,...,n has a so-called (1 + 1 + 2)-generating set, that is, a

four-element generating set of which two elements (and only two elements) are

comparable. The question whether Part(5) and Part(6) have (1 + 1 + 2)-generating

sets was left open in Zádori [94]. The purpose of this section is to prove the following

two statements, which solve Zádori's problem.

Proposition 2.1. The partition lattice Part(6) has a (1 + 1 + 2)-generating set.
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Proposition 2.2. Every four-element generating set of Part(5) is an antichain.

Hence, Part(5) has no (1 + 1 + 2)-generating set.

Figure 1. With β := α+ ε, the set {α, β, γ, δ} is a (1+1+2)-generating

set of Equ(6).

As usual, associated with a partition U of A, we de�ne an equivalence relation

πU of A as the collection of all pairs (x, y) ∈ A2 such that x and y belong to the

same block of U . As it is well known, the equivalence relations and the partitions

of A mutually determine each other, and πU ≤ πV if and only if U ≤ V . (Here

πU ≤ πV means that πU ⊆ πV as sets of pairs of elements of A.) Hence, the lattice

Equ(A) of all equivalence relations of A (in short, the equivalence lattice of A) is

isomorphic to Part(A). In what follows, we do not make a sharp distinction between

a partition and the corresponding equivalence relation; no matter which of them is

given, we can use the other one without warning. Typically, we speak of partitions

lattices in the main statements but we prefer to speak of equivalence lattices in the

proofs.

Convention 2.3. We are going to de�ne our equivalence relations and the

corresponding partitions by (undirected edge-coloured) graphs; multiple edges are

allowed. On it's vertex set {u1, ..., u6}, the graph on the left of Figure 1 de�nes

α ∈ Equ(A) in the following way: deleting all edges but the α-colored ones, the

components of the remaining graph are the blocks of the partition associated with

α. In other words, 〈x, y〉 ∈ α if and only if there is an α-coloured path from vertex x

to vertex y in the graph, that is, a path (of possibly zero length) all of whose edges

are α-colored. The equivalences γ, δ, and ε are de�ned analogously.

Notation 2.4. Following Czédli [25], we adopt the following notation. Assume

that A is a base set and we are interested in its partitions or, equivalently, in its

equivalence relations. For elements u1, . . . , uk of A, the partition of A with block

{u1, . . . , uk} such that all the other blocks are singletons will be denoted by

[[u1, . . . uk ]]e.

Usually but not always, the elements u1, . . . , uk are assumed to be pairwise distinct.

Note that [[u1, u1 ]]e is ∆, the least equivalence relation of A, that is, the zero element

of Equ(A). For κ, λ ∈ Equ(A), the meet and the join of κ and λ, denoted by κλ (or
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κ · λ) and κ+ λ, are the intersection and the transitive hull of the union of κ and λ,

respectively. The usual precedence rules apply; for example, xy+xz stands for (x∧
y)∨ (x∧z). Lattice terms are composed from variables and join and meet operation

signs in the usual way; for example, f(x1, x2, x3, x4) = x1(x3 + x4) + (x1 + x3)x4
is a quaternary lattice term. Given a lattice L and u1, . . . , uk ∈ L, the sublattice

generated by {u1, . . . , uk} is denoted and de�ned by

[u1, . . . , uk]lat := {f(u1, . . . , uk) : u1, . . . , uk ∈ L, f is a lattice term}. (5.1)

Our arguments will often use the following technical lemma from Zádori [94],

which has been used also in Czédli [22, 23, 24] and in some other papers like

Kulin [58]. Note that the proof of this lemma is straightforward.

Lemma 2.5 (�Circle Principle�). Let d0, d1, . . . , dt−1 be pairwise distinct elements

of a set A. Then, for any 0 ≤ i < j ≤ t− 1 and in the lattice Equ(A),

[[di, dj ]]
e =

(
[[di, di+1 ]]e + [[di+1, di+2 ]]e · · ·+ [[dj−1, dj ]]

e
)
·
(
[[dj, dj+1 ]]e

+ · · ·+ [[dt−2, dt−1 ]]e + [[dt−1, d0 ]]e + [[d0, d1 ]]e + · · ·+ [[di−1, di ]]
e
)
.

(5.2)

Consequently, [[di, dj ]]
e ∈ [ [[d0, d1 ]]e, [[d1, d2 ]]e, . . . , [[dt−2, dt−1 ]]e, [[dt−1, d0 ]]e ]lat.

For later reference, note the following. If all the joinands (formally, the summands)

in (5.2) are substitution values of appropriate quaternary terms, then so is [[di, dj ]]
e

of a longer quaternary term, which is de�ned according to (5.2) and

which we denote by êdi,dj . (5.3)

Example 2.6. In A := {a0, a1, a2, a3, a4, a5}, we obtain [[a1, a3 ]]e after computing

the joins [[a1, a2 ]]e +[[a2, a3 ]]e and [[a3, a4 ]]e +[[a4, a5 ]]e +[[a5, a0 ]]e +[[a0, a1 ]]e and �nally,

taking their meet.

Armed with our conventions and notations, the proofs in this section runs as

follows.

Proof of Proposition 2.1. Let A := {u1, u2, . . . , u6}. Figure 1, according to
Convention 2.3, indicates that we consider the following equivalences of A

α = [[u4, u5, u6 ]]e, γ = [[u1, u2, u4 ]]e + [[u3, u5 ]]e

ε = [[u1, u2, u3 ]]e, δ = [[u1, u3, u6 ]]e + [[u2, u5 ]]e,
(5.4)

and let β := α+ ε. Since α < β, the set X := {α, β, γ, δ} is of order type 1 + 1 + 2.

Let S be the sublattice generated by X; we are going to show that X = Equ(A).
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Observe that

[[u2, u1 ]]e = βγ ∈ S, [[u1, u3 ]]e = βδ ∈ S,

[[u5, u4 ]]e = α(γ + [[u1, u3 ]]e) ∈ S, [[u6, u5 ]]e = α(δ + [[u2, u1 ]]e) ∈ S,

[[u4, u2 ]]e = γ(δ + [[u5, u4 ]]e) ∈ S, and [[u3, u6 ]]e = δ(γ + [[u6, u5 ]]e) ∈ S.

Hence, Lemma 2.5 applies to the circle 〈u1, u3, u6, u5, u4, u2〉, and we obtain that all

atoms of Part(A) are in S. But Part(A) is an atomistic lattice, that is, each of its

elements is the join of some atoms; this completes the proof of Proposition 2.1. �

Proof of Proposition 2.2. Unfortunately, we have no elegant proof. However,

we have computer programs on the websites 1 that list all four-element generating

sets of Part(5); there are exactly 5305 such sets. And we have another program that

checks if these 5305 sets are antichains. The application of this program completes

the proof. �

3. Computer-assisted results and statistical analysis of the number of

four-element generating sets of a partition lattice

3.1. Estimating con�dence intervals. In this section, we use some well-known

facts of statistics; see, for example, Hodges and Lehmann [51, page 255], Lefebvre [61,

Chapter 6.2], and mainly Mendenhall, Beaver and Beaver [62].

Following Zádori [94] and several papers developing his construction further,

the letter n denotes the size of the base set of a partition lattice. Hence, we denote

the size of a statistical sample by N ∈ N+ even if n would �t into the traditions

of statistics better. Also, the con�dence level is usually denoted by 1 − α, but

many earlier papers use α to denote one of the generators of Part(n). Hence, the

con�dence level will be denoted by 1− αconf.

Note that an event of a binomial model corresponds to an indicator variable,

which is a random variable with two possible values, 0 and 1; this allows us to

simplify what follows below. Note also that for a large N ,
√
N/(N − 1) is very

close to 1; for example, it is 1.000020000 (up to nine digits) for N = 25000. Hence,

replacing N − 1 by N in (3.1) as some sources of information do, the error would

be neglectable (and smaller than what rounding can cause).

Assume that an experiment has only two possible outcomes: �success� with

probability p and �failure� with probability q := 1− p but none of p and q is known.
In order to obtain some information on p, a random sample is taken, that is, the

1http://www.math.u-szeged.hu/~czedli/ and http://www.math.u-szeged.hu/~oluoch/
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experiment is repeated N times independently. Let s denote the number of those

experiments that ended up with �success�. Then, of course,

we estimate p by p̂ := s/N, (5.5)

but we would also like to know how much we can rely on this estimation. Therefore,

let q̂ := 1− p̂, pick a �con�dence level� 1− αconf ∈ (0, 1) ⊂ R, we let

σ̂ :=

√
p̂ · q̂
N − 1

, (5.6)

and determine the positive real number z(αconf) from the equation

1− αconf =

∫ z(αconf)

−z(αconf)

1√
2π
· e−x2/2dx. (5.7)

Note that the function to be integrated in (5.7) is the density function of the standard

normal distribution and the z(αconf) for many typical values of αconf are given in

practically all books on statistics. In this paper, to maintain �ve-digit accuracy, we

used the values given in Table 1. Finally, we de�ne the

con�dence interval I(αconf) to be [ p̂− z(αconf)σ̂, p̂+ z(αconf)σ̂ ]. (5.8)

Let us emphasize that while p is a concrete real number, the con�dence interval

is random, because it depends on a randomly chosen sample. Taking another

N -element sample with the same N (that is, repeating the experiments N times

again), (with very high probability in general) a di�erent con�dence interval is

obtained.

We cannot claim that the con�dence interval I(αconf) surely contains the unknown

probability p. Furthermore, as it has been pointed out by an anonymous referee,

it may even happen that I(αconf) contains p only with very little probability. For

example, if p = 10−100 and N = 2, then a random N -element sample yields that

p̂ = 0 and p /∈ I(αconf) = [0, 0] with probability q2 = 1 − 2 · 10−100 + 10−200 ≈ 1.

However, the Moivre-Laplace theorem, which is a particular case of the central limit

theorem, implies that whenever p /∈ {0, 1}, then

the probability of p ∈ I(αconf) tends to 1− αconf as N →∞. (5.9)
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αconf 0.100 0.050 0.010 0.001

1− αconf 0.900 0.950 0.990 0.999

z(αconf) 1.64485 1.95996 2.57583 3.29053

Table 1. z(αconf) for some con�dence levels 1 − αconf; taken from

https://mathworld.wolfram.com/ConfidenceInterval.html

Next, assume that G is a given subset of a large �nite set F such that ∅ 6= G 6= F .

(For example, and this is what is going to happen soon, F can be the set of all

four-element subsets of Part(n), for n ∈ {4, 5, . . . , 9}, and G can be {H ∈ F :

[H]lat = Part(n)}.) We know the size |F | of F but that of G is usually unknown

for us. We would like to obtain some information on |G|; this task is equivalent

to getting information on the proportion p := |G|/|F |. With respect to uniform

distribution, p is the probability that a randomly selected element of F belongs

G. Take an N -element sample, that is, select N members of F independently, and

declare �success� if a randomly chosen member belongs to G. With a �xed con�dence

level 1−αconf, compute the con�dence interval I(αconf) according to (5.7) and (5.8).

Then we conclude from (5.8) and (5.9) that

with approximate probability 1 − αconf, the N -element

sample has been chosen so that (p̂ − z(αconf)σ̂) · |F | ≤
|G| ≤ (p̂+ z(αconf)σ̂) · |F |.

 (5.10)

3.2. Computer programs. Two disjoint sets of computer programs were

developed and all data to be reported in (this) Section 3 were achieved by these

programs. Furthermore, a su�cient amount of these data, including ν(4) = 50 and

ν(5) = 5 305 from Table 3, were achieved independently by di�erent persons (namely,

by both authors of [26], with di�erent programs, di�erent attitudes to computer

programming, and di�erent computers. This fact gives us a lot of con�dence in our

programs and the results obtained by them even if some results that needed too

much performance from our computers and programs were achieved only by one of

the above-mentioned two settings.

The �rst setting includes some programs written in Bloodshed Dev-Pascal v1.9.2

(Freepascal) under Windows 10 and also in Maple V. Release 5 (1997); these

programs are available from professor G. Czédli's website2. The strategy is to

represent a partition by a lexicographically ordered list of its blocks separated by

2http://www.math.u-szeged.hu/~czedli/
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zeros. For example, for n = 8, the partition {{4, 6}, {1, 5, 3, 7}, {2, 8}} is represented
by the vector

〈1, 3, 5, 7, 0, 2, 8, 0, 4, 6, 0,−1,−1,−1,−1,−1,−1〉 (5.11)

where −1 means that there is no more block. This representation is unique, which

allows us to order any set of partitions lexicographically. The bene�t of this

lexicographic ordering is that it takes only O(t) step to decide if a given partition

belongs to a t-element set of partitions; this task occurs many times when computing

sublattices generated by four partitions. The collection of all partitions of {1, 2, . . . , n}
was computed recursively by a Maple program. This collection was saved into a txt

�le. After inputting this �le, the hard job of generating sublattices was done by

Pascal programs, which took care of e�ciency in some ways. Since all the partitions

were input by these Pascal programs into an array, a random partition was selected

by selecting its index as a random number of the given range. Note that Maple

was also used to do some computations, trivial for Maple, to obtain some numbers

occurring in this section; see, for example, the numbers in Table 2.

The second set consist of programs written in R (64 bit, version 3.6.3) and Python

3.8 which works well with any operating system. Implementing the urn model of

Stam [80] in R, random members of Part(n) were selected in a sophisticated way

as follows; note that this method does not require that Part(n) be stored in the

computer. The method consists of two steps. First, choose a positive integer u

according to the probability distribution

P (u = j) =
jn

e · j! · Bell(n)
, j ∈ N+, (5.12)

where e is the well-known constant limj→∞(1 + 1/j)j. It is pointed out in Stam [80]

that
∑∞

j=1 P (u = j) = 1, so (5.12) is indeed a probability distribution. Fortunately,

the series in (5.12) converges very fast and
∑2n

j=1 P (u = j) is very close to 1. Hence,

though the program chose u from {1, 2, . . . , 2n} rather than from N+, the error is

neglectable. In the next step, put the numbers 1, 2, . . . , n into u urns at random,

according to the uniform distribution on the set of urns and independently from each

other. Finally, the contents of the nonempty urns constitute a random partition that

we were looking for.

By the main result of Stam [80], the algorithm just described yields a uniform

distribution on the set Part(n) of all partitions (apart from the above-mentioned

neglectable error caused by using
∑2n

j=1 instead
∑∞

j=1).

The implementation of partitions involved importing sympy (external library

with functions for computing Partitions) into Python. Additionally, itertool which



3. COMPUTER-ASSISTED RESULTS AND STATISTICAL ANALYSIS 74

is a built-in function in Python was necessary for computing various combinations

for the four partitions of which meets and joins were evaluated. The combination

of these two functions was crucial for the computation of the sublattices generated

by the four partitions.

The lion's share of the computation was done on a desktop computer with AMD

Ryzen 7 2700X Eight-Core Processor 3.70 GHz. With the speed 3.70 GHz, the

total amount of �pure computation time� was a bit more than two and a half weeks;

see Tables 3 and 4. By �pure computation time� we mean that a single copy of

the program was running without being disturbed by other programs and without

letting the computer go to an idle state. The whole computation took more than a

month because of several breaks when the computer was idle or it was turned o� or

it was used for other purposes.

3.3. Data obtained by computer programs. The results obtained by

computers are given in Tables 3 and 4. In particular, Table 3 gives the number ν(n)

of four-element generating sets for n ∈ {4, 5, 6}. Clearly, ν(7) cannot be determined

by our programs and computers, although this task might be possible with thousands

or millions of similar computers working jointly for a few years or so. (But this is

just a �rst impression not supported by real analysis.)

Table 4 shows what we have obtained from random samples. For a given n, let

p = p(n) := ν(n) ·
(
Bell(n)

4

)−1
; (5.13)

this is the exact theoretical probability that a random four-element subset of Part(n)

generates Part(n). In accordance with (5.5), p̂ = p̂(n) is s/N ; the table contains

100p̂ up to �ve digits. The least and the largest endpoints of the con�dence interval

I(αconf) are denoted by (1− αconf)∗ and (1−αconf)
∗, respectively. For example, with

this notation, [0.999∗, 0.999∗] is the con�dence interval I(1−0.999), and this interval

contains p with approximate probability 0.999.

In order to enlighten the meaning of Table 4 even more, consider, say, the entries

of its last two rows in the column for n = 7. Taking (5.10) and Table 2 also into

account, we obtain that

p(7) ∈ [0.0157753, 0.0159877] with approximate probability 0.999 and (5.14)

ν(7) ∈ [3.86180 · 108, 3.91381 · 108] with approximate probability 0.999. (5.15)

However, let us note the following. From rigorous mathematical point of view, not

even ν(7) ≥ 2 is proved by Table 4. Indeed, it is theoretically possible (although

very unlikely) that all the 238 223 generating sets the program found after �fteen

million experiments are the same. The right interpretation of (5.14) and (5.15) is
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that if very many lattice theorists and statisticians pick random samples of the same

size (that is, they pick �fteen million four-elements subsets of Part(n) and count the

generating sets among them), then these samples give many di�erent intervals but

approximately 99.9 percent of these colleagues �nd intervals that happen to contain

p(7) and ν(7), respectively.

Based on experience with generating sets of Equ(n) and Table 4, we risk

formulating the following conjecture.

Conjecture 3.1. The set {p(n) : 4 ≤ n ∈ N+} has a positive lower bound.

It would be too early to formulate the rest of our feelings as a conjecture, so we

formulate them in an open problem as follows.

Problem 3.2. Is it true that

p(6) > p(7) ≤ p(8) ≤ p(9) ≤ p(10) ≤ p(11) ≤ . . .

and, for all 4 ≤ n ∈ N+, p(n) ≥ 3/200? Note that we already know from Table 3

that p(4) > p(5) > p(6) > 3/200.

Since 100 · p(6) = 1.613014768 is exactly known and it is su�ciently �far away�

from the con�dence interval I(0.001) = [1.57753, 1.59877] for the unknown 100·p(7),

our con�dence in p(6) > p(7) is even more than approximately 0.999. However, we

are not really con�dent in, say, p(8) ≤ p(9) even if this inequality is more likely to

hold than to fail.

n 7 8 9(
Bell(n)

4

)
24 480 029 875 12 222 513 708 615 8 330 299 023 110 190

Table 2. The number of four-element subsets of Part(n) for n ∈ {7, 8, 9}
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n 4 5 6(
Bell(n)

4

)
1 365 270 725 68 685 050

ν(n) 50 5 305 1 107 900

%, i.e., 100p(n) 3.663003663 1.959553052 1.613014768

computer time 0.11sec 68 sec 38 hours

Table 3. The (exact) number ν(n) of the four-element generating

sets of Equ(n) for n ∈ {4, 5, 6}

n 4 5 6 7 8 9

100p(n) 3.6630037 1.9595531 1.613014768

N 10 000 000 10 000 000 10 000 000 15 000 000 500 000 25 000

time 8 minutes 27 min 3h+33min 102 hours 95 h 166 h

s 367 221 196 243 161 768 238 223 8 244 438

100p̂(n) 3.67221 1.96243 1.61768 1.58815 1.64880 1.75200

0.900∗ 3.66243 1.95522 1.61112 1.58284 1.61918 1.61551

0.900∗ 3.68199 1.96964 1.62424 1.59346 1.67842 1.88849

0.950∗ 3.66055 1.95383 1.60986 1.58183 1.61350 1.58936

0.950∗ 3.68387 1.97103 1.62550 1.59448 1.68410 1.91464

0.990∗ 3.65689 1.95113 1.60740 1.57984 1.60241 1.53826

0.990∗ 3.68753 1.97373 1.62796 1.59647 1.69519 1.96574

0.999∗ 3.65264 1.94800 1.60455 1.57753 1.58954 1.47896

0.999∗ 3.69178 1.97686 1.63081 1.59877 1.70806 2.02504

Table 4. Statistics with N experiments that yielded s many

4-element generating sets of Part(n) for n ∈ {4, . . . , 9}

4. A lower bound for the number of 4-element generating sets of direct

products of two neighbouring partition lattices

Recall that ν2(n) is the number of the 4-element generating sets of Part(n) ×
Part(n+ 1). This section is taken from [63] but, like in [63], we follow closely the

approach presented in [26], where Theorem 4.4 states that certain direct products

of direct powers of partitions lattices are still 4-generated. In particular, for any
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integer 5 ≤ n, the direct product Part(n) × Part(n+ 1) is four-generated, i.e., 1 is

a lower bound for ν2(n); of course, a much larger lower bound is presented here for

large values of n. It is worth noting that Czédli [25] has shown that the study of

small generating sets of partitions lattices and their direct products have connection

with information theory.

For elements x1, . . . , x4 of a lattice L, we say that 〈x1, . . . , x4〉 is a generating

quadruple and {x1, . . . , x4} is a generating set of L if the smallest sublattice of L

containing each of x1, . . . , x4 is L itself or, equivalently, [[x1, x2, x3, x4]]lat de�ned in

(5.1) is L.

Lemma 4.1. With t∗ =
(

n−6
(n−5)/2

)
, if n ≥ 7 and n is odd, then the lattice

Part(n)t
∗ × Part(n+ 1)t

∗
is 4-generated.

The exponent t∗ given above is not the best (=largest) possible value; simply

because the exponent supplied by Theorem 4.4 of [26] is not the best either; the

reason has been mentioned in the Introduction part of this chapter. However,we

also prove the following.

Remark 4.2. The exponent t∗ in Lemma 4.1 is the best exponent that one can

extract from (4.7)�(4.9) and Theorem 4.4 of [26].

Proof of Lemma 4.1. The exponent for the direct product of two neighbouring

partition lattices provided by [26, Theorem 4.4] depends on the following parameters:

d, i, the parity on n, and the boolean parameter "ϕ or τ", to be de�ned below. The

upper and lower integer parts of a real number x will be denoted by dxe and bxc,
respectively; for example, d

√
2 e = 2 and b

√
2c = 1. For a convenient way to

reference [26], (4.7) , (4.8), and (4.9) of [26] motivate us to de�ne

ϕ(u, k) :=


(
k−1
u−1

)
, if u, k ∈ N+ and u− 1 ≤ d(k − 1)/2e,(

k−1
d(k−1)/2e

)
, if u, k ∈ N+ and u− 1 > d(k − 1)/2e

(5.16)

and

τ(u, k) :=

{〈(
k − 1

j − 1

)
,

(
k − 1

j

)〉
: j ∈ {1, 2, . . . ,min(u, k)− 1}

}
. (5.17)

The boolean parameter "ϕ or τ" can either return the �choose ϕ and use (5.16)

above and (4.7)�(4.8) from [26]�, or the �choose τ and use (5.17) above and (4.9)

from [26]� value. It can be observed that there are di�erent cases depending on �ϕ

or τ" and whether n is odd or even. In this way, we can establish di�erent cases

given some speci�c conditions. Note in advance, for all the forthcoming cases, that

(with the notation from (4.19) of [26]), we are going to have n′i = n and n′′i = n+ 1

for n odd while n′′i = n and n′i+1 = n+ 1 for n even.
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Case 4.3. Here we assume that n is odd, i = 1 (see Theorem 4.4 of [26] for the

meaning of i), and we go after the upper line of (4.15) of [26], that is, we use ϕ from

(5.16) rather than τ from (5.17). Note that the role of our ϕ is to combine (4.7)

and (4.8) of [26]. So we use ϕ as a lower estimate of sba(-,-) occurring in (4.15) of

[26]. De�ne

w = wi :=

(
(mi + 3)/2

2

)
=

(
(n− 1)/2

2

)
, (5.18)

where mi = m1 = n− 4 by (4.19) of [26]. Hence ϕ(d,m1− 1) = ϕ(d, n− 5) =
(
n−6
d−1

)
,

for small d or
(

n−6
d(n−6)/2e

)
, for big values of d. Looking for the largest number in

the (n − 6)th row of Pascal's triangle, d is selected such that d − 1 = d(n − 6)/2e.
Temporarily, let s :=

(
n−6

d(n−6)/2e

)
. Then q := s − p where p is a parameter. If p is

increased then it implies that w · q decreases, thus the minimum min(p, w · q) takes
its maximum when p = w · q. Hence after substituting s − q for p, the equality

s− q = w · q turns into q = s− w · q. Thus

q = s− w · q =⇒ (w + 1)q = s =⇒ q =
s

w + 1
=⇒ w · q =

w

w + 1
· s.

It should be noted that s
w+1

need not be an integer, however, either q = b s
w+1
c (the

lower integer part ) or q = d s
w+1
e (the upper integer part) is the best. This results

in two possibilities:

t∗ = w ·
⌊

s

w + 1

⌋
=

(
(n− 1)/2

2

)
·
⌊(

n− 6

dn−6
2
e

)
·

((
(n− 1)/2

2

)
+ 1

)−1⌋
(5.19)

and

t∗ = p = s− q =

(
n− 6

dn−6
2
e

)
−
⌈(

n− 6

dn−6
2
e

)
·

((
(n− 1)/2

2

)
+ 1

)−1⌉
. (5.20)

Case 4.4. Consider n is odd and i = 2, we follow (5.16). Then mi = m2 = n−4,

and w = wi :=
(
(mi+3)/2

2

)
. Hence, using the upper line of (4.16) of [26],

p+ q = ϕ(m2 − d,m2 − d− 1) = ϕ(m− 4− d, n− 5− d) =

(
n− 6− d

(n− 6− d)/2

)
=: s

so p+ q =: s is on the vertical axis of symmetry of Pascal's triangle and becomes

larger when d is reduced. But how small can d be? The stipulation in [26] is that

d is odd and 2 = i ≤ d+ 2. This allows us to let d = 1. If 2 = i ≤ d+ 1 and we let

d = 1, then s =
(

n−6−1
(n−6−1)/2

)
but this would be a smaller s compared to the previous

and would yield a smaller value of t∗ than those in (5.19) and (5.20). Hence, this

subcase is dropped since the target is the largest t∗.
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Case 4.5. Now we assume that n is odd and 2 < i ≤ d+ 1 and we follow (5.16),

then we still have that mi = n− 4 and w = wi :=
(
(n−1)/2

2

)
. By (4.17 of [26]),

p+q = ϕ(d+3−i,mi−d−1) = ϕ(d+3−i, n−5−d) ≤
(

n− 6− d
(n− 6− d)/2

)
=: s. (5.21)

Since d ≥ 1, n − 6 − d < n − 6, the s in (5.21) yields a smaller t∗ than (5.19) and

(5.20), hence this subcase can also be disregarded.

Case 4.6. In this Particular case, we consider when n is odd, i = 1, we use τ

from (5.17), w = wi =
(
(n−1)/2

2

)
and m = mi = n− 4. Then by (4.15) of [26],

〈p,q〉 ∈ τ(d,m− 1) = τ(d, n− 5)

=

{〈(
n− 6

j − 1

)
,

(
n− 6

j

)〉
: j ∈ {1, 2, . . . ,min(n− 5, d)− 1}

}
. (5.22)

If d increases, this set gets larger hence results in more pairs 〈p, q〉, of which among

them we get a pair that gives a larger t∗ = min(p, w · q) . So we let d be as large

as possible conditioned on d ≤ m1 = m = n − 4, so d = n − 4, then we have

that min(n − 5, d) − 1 = n − 6. Then, according to (5.22), (p, q) denotes a pair

of two consecutive numbers of the (n − 6)th row of Pascal's triangle. We aim at

maximizing min(p, w · q). Since p and q are the two neighbouring elements in the

middle of Pascal's triangle, then p = q =
(
n−6
dn−6

2
e

)
= min(p, q) which results in a

t∗ =

(
n− 6

dn−6
2
e

)
, (5.23)

which is larger that (5.19) and (5.20). (This is the largest t∗ found so far.)

Case 4.7. In this case we still let w =
(
(n−1)/2

2

)
and m = m2 = n− 4, when n is

odd and we follow τ in (5.17) while i = 2, then using (4.16)of [26] we get that

〈p, q〉 ∈ τ(m− d,m− d− 1) = τ(n− 4− d, n− 5− d)

=

{〈(
n− 6− d
j − 1

)
,

(
n− 6− d

j

)〉
: j ∈ {1, 2, . . . , n− 6− d}

}
.

Since d ≥ 1, the upper number of each of the binomial coe�cients above is smaller

thus result in a t∗ smaller than t∗ in (5.23), hence this case is disregarded.

Case 4.8. Meanwhile, we also consider 2 < i ≤ d+2, and n is odd, w =
(
(n−1)/2

2

)
and m = mi = n− 4, we follow τ in (5.17) and (4.18) of [26]. Then

〈p, q〉 ∈ τ(d+ 3− i,m− d− 1) = τ(d+ 3− i, n− 5− d)

=

{(
n− 6− d
j − 1

)(
n− 6− d

j

)
: j ∈ {1, 2, . . . ,min(d− 4− i, n− 6− d)}

}
.

This case also results in a t∗ smaller than t∗ in (5.23), hence it is also disregarded.
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These results indicate that the largest t∗ when n is odd, under various conditions

is the t∗ in (5.23). This completes the proof of Remark 4.2. �

Remark 4.9. Assume that n is even, n ≥ 7 and choose the parameters in

Theorem 4.4 of [26] as follows. For brevity in inline formulas, binc(x, y) will denote

the binomial coe�cient with upper and lower parameters x and y, respectively. Let

d = 1, i = 1, n = n′′1, m1 = n − 5, m2 = n − 3, n′2 = n + 1 = m2 + 4. Then

w1 = (m1 + 3)(m1 + 1)/8 = (n− 2)(n− 4)/8 by (4.14) of [26], q1 = sba(1,m1− 1) ≥
binc(m1 − 2, 0) = 1 by (4.7) and (4.15) of [26], and p2 ≥ sba(m2 − d,m2 − d− 1) =

sba(n − 4, n − 5) ≥ binc(n − 6, (n − 6)/2) by (4.8) and (4.16) of [26]. Since (4.20)

and Remark 4.3 of [26] allow min(w1q1, p2) and the computation above shows that

w1q1 ≥ (n − 2)(n − 4)/8 and p2 ≥ binc(n − 6, n/2 − 3), it follows that with t = tn
de�ned in (5.26), (5.27) also holds for n even. That is, in other words,

Part(n)× · · · × Part(n)︸ ︷︷ ︸
t times

×Part(n+ 1)× · · · × Part(n+ 1)︸ ︷︷ ︸
t times

(5.24)

is 4-generated for all n ≥ 7. Although Theorem 4.4 of [26] would allow a larger

tn = t for a large even n, we have no explicit formula for this larger tn and the tn
given in (5.25) and in the lower line of (5.26) is the only possibility that Theorem

4.4 of [26] yields for n = 8. Thus we use the following exponent when n is even:

t∗ = min

(
(n− 2)(n− 4)/8,

(
n− 6

n/2− 3

))
. (5.25)

Note that the magnitude of t∗ for n even is considerably less than that of t∗ for n

odd, because Theorem 4.4 of [26] performs worse for n even than for n odd; the

reason is hidden in the construction that proves Theorem 4.4 in [26].

Now we are in the position to state the main result of this section.

Theorem 4.10. Let n ≥ 7 be an integer number and de�ne

tn :=



(
n− 6

(n− 5)/2

)
, if n is odd, and

min

(
(n− 2)(n− 4)/8,

(
n− 6

n/2− 3

))
, if n is even.

(5.26)

Then Part(n)×Part(n+ 1) has at least t2n ·n! · (n+1)!/2 many 4-element generating

sets.



4. DIRECT PRODUCTS OF TWO NEIGHBOURING PARTITION LATTICES 81

Proof. To ease our forthcoming notation, we will write t instead of tn. By

Lemma 4.1 and Remark 4.9,

Part(n)t × Part(n+ 1)t is 4-generated. (5.27)

First, we are dealing with generating quadruples of a special kind. Let us �x

a quadruple 〈~α, ~β,~γ, ~δ 〉 such that {~α, ~β,~γ, ~δ} generates the direct product (5.24).

With more details, this quadruple consists of

~α = 〈α′1, α′2, ..., α′t, α′′t+1, α′′t+2, ..., α′′2t〉,
~β = 〈β′1, β′2, ..., β′t, β′′t+1, β′′t+2, ..., β′′2t〉,

~γ = 〈γ′1, γ′2, ..., γ′t, γ′′t+1, γ′′t+2, ..., γ′′2t〉,
~δ = 〈δ′1, δ′2, ..., δ′t, δ′′t+1, δ′′t+1, ..., δ′′2t〉.

(5.28)

We also need the �columns� of (5.28), which we write in row vectors as follows:

~g(1) = 〈α′1, β′1, γ′1, δ′1〉, . . . , ~g(t) = 〈α′t, β′t, γ′t, δ′t〉, (5.29)

~h(t+1) = 〈α′′t+1, β
′′
t+1, γ

′′
t+1, δ

′′
t+1〉, . . . , ~h(2t) = 〈α′′2t, β′′2t, γ′′2t, δ′′2t〉. (5.30)

It would not be too hard to observe that the quadruples in (5.29) are pairwise

di�erent and the same holds for (5.30), but actually we are going to prove even

more. But �rst, we need to �x some notation. The set of all permutations of

{1, 2, . . . , n} will be denoted by Sn; the meaning of Sn+1 is analogous. Each π ∈ Sn
induces an automorphism π̂ of Part(n) in the natural way. That is, for ε ∈ Part(n),

a pair 〈i, j〉 is collapsed by ε if and only if 〈π(i), π(j)〉 is collapsed by π̂(ε). Let

π̂∗ denote the componentwise action of π̂ on quadruples. In particular, π̂∗(g(i)) is

〈π̂(α′i), π̂(β′i), π̂(γ′i), π̂(δ′i)〉 by the de�nition of π̂∗. Note that π̂∗ is an automorphism

of the direct power Part(n)4. We claim that

for any i, i′ ∈ {1, . . . , t} and π1, π2 ∈ Sn, if
〈i, π1〉 6= 〈i′, π2〉, then π̂∗1(g(i)) 6= π̂∗2(g(i

′)),

and

 (5.31)

for any j, j′ ∈ {t + 1, . . . , 2t} and σ1, σ2 ∈
Sn+1, if 〈j, σ1〉 6= 〈j′, σ2〉, then σ̂∗1(h(j)) 6=
σ̂∗2(h(j

′)).

 (5.32)

It su�ces to deal with (5.31), because the argument for (5.32) is similar. Suppose

that (5.31) fails and pick i, i′ ∈ {1, . . . , t} and π1, π2 ∈ Sn such that

〈i, π1〉 6= 〈i′, π2〉 (5.33)

but π̂∗1(g(i)) = π̂∗2(g(i
′)). This equality means that

〈π̂1(α′i), π̂1(β′i), π̂1(γ′i), π̂1(δ′i)〉 = 〈π̂2(α′i′), π̂2(β′i′), π̂2(γ′i′), π̂2(δ′i′)〉. (5.34)
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We let π := π−12 ◦ π1; note that we compose permutations from right to left, that is,

(π−12 ◦ π1)(x) = π−12 (π1(x)). Note also that π̂ = π̂−12 ◦ π̂1. Hence, (5.34) yields that

π̂(α′i) = (π̂−12 ◦ π̂1)(α′i)) = π̂−12 (π̂1(α
′
i)) = π̂−12 (π̂2(α

′
i′)) = (π̂−12 ◦ π̂2)(α′i′) = α′i′ .

Similarly for the rest of components. So

π̂∗(~g(i)) = 〈π̂(α′i), π̂(β′i), π̂(γ′i), π̂(δ′i)〉 = 〈α′i′ , β′i′ , γ′i′ , δ′i′〉 = ~g(i
′). (5.35)

Now let f be a quaternary lattice term. Using that π̂ is a lattice automorphism and

thus it commutes with f , let us compute:

π̂(f(αi, βi, γi, δi)) = f(π̂(αi), π̂(βi), π̂(γi), π̂(δi)))
(5.35)
= f(α′i′ , β

′
i′ , γ

′
i′ , δ

′
i′). (5.36)

Since {~α, ~β,~γ, ~δ} generates the direct product (5.24), for each

~µ = (µ′1, µ
′
2, . . . , µ

′
i, . . . , µ

′
i′ , . . . , µ

′
t, µ
′′
t+1, . . . , µ

′′
j , . . . , µ

′′
2t) (5.37)

of the direct product (5.24), there is a quaternary lattice term f such that ~µ is of

the form

~µ = f
(
~α, ~β, ~γ, ~δ

)
=

〈. . . , f(α′i, β
′
i, γ
′
i, δ
′
i)︸ ︷︷ ︸

µ′i

, . . . , f(α′i′ , β
′
i′ , γ

′
i′ , δ

′
i′)︸ ︷︷ ︸

µ′i′

, . . . , f(α′′j , β
′′
j , γ

′′
j , δ
′′
j )︸ ︷︷ ︸

µ′′j

, . . .〉 (5.38)

where j ∈ {t+ 1, . . . , 2t}. (Note that j and µ′′j will only be needed later, not here.)

Combining (5.36), (5.37) and (5.38), it follows that

π̂(µ′i) = π̂(f(α′i, β
′
i, γ
′
i, δ
′
i)) = f(α′i′ , β

′
i′ , γ

′
i′ , δ

′
i′) = µ′i′ . (5.39)

Now if π1 = π2, then π and π̂ are the identity permutations and (5.39) turns into

µ′i = µ′i′ . But this is a contradiction since i 6= i′ by (5.33) and so the fact that ~µ in

(5.37) is an arbitrary (2t)-tuple of (5.24) allows us to choose µ′i and µ
′
i′ such that

µ′i 6= µ′i′ . Thus π1 6= π2 and the automorphism π̂ is not identity map of Part(n).

However, in the arbitrary (2t)-tuple (5.37), we can pick µ′i ∈ Part(n) arbitrarily, and

we can let µ′i′ := µ′i regardless if i
′ = i or i′ 6= i. With this choice of µ′i′ , we obtain

from (5.39) that π̂(µ′i) = µ′i for all µ
′
i ∈ Part(n), which contradicts the fact that now

π̂ is not the identity map. The argument proving (5.31) is complete. Then, as we

have already mentioned, (5.32) is also true.

Next, we claim that, for all i ∈ {1, . . . , t} and j ∈ {t+ 1, . . . , 2t},

{〈α′i, α′′j 〉, 〈β′i, β′′j 〉, 〈γ′i, γ′′j 〉, 〈δ′i, δ′′j 〉} generates Part(n)× Part(n+ 1). (5.40)

Let 〈µ′i, µ′′j 〉 be an arbitrary element of Part(n) × Part(n+ 1). We can extend the

pair 〈µ′i, µ′′j 〉 to a (2t)-component vector ~µ as in (5.37). As (5.38), shows, 〈µ′i, µ′′j 〉 is
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of the form

〈µ′i, µ′′j 〉 = 〈f(α′i, β
′
i, γ
′
i, δ
′
i), f(α′′j , β

′′
j , γ

′′
j , δ
′
j)〉

= f(〈α′i, α′′j 〉, 〈β′i, β′′j 〉, 〈γ′i, γ′′j 〉, 〈δ′i, δ′′j 〉).
(5.41)

with some quaternary lattice term f . Hence, 〈µ′i, µ′′j 〉 belongs to the sublattice

generated by {〈α′i, α′′j 〉, 〈β′i, β′′j 〉, 〈γ′i, γ′′j 〉, 〈δ′i, δ′′j 〉}, proving (5.40).

Next, based on (5.40), we state even more than (5.40). Namely, we state that

for every i ∈ {1, . . . , t}, for every j ∈ {t +

1, . . . , 2t}, and for arbitrary permutations π ∈ Sn
and σ ∈ Sn+1,

〈〈π̂(α′i), σ̂(α′′j )〉, 〈π̂(β′i), σ̂(β′′j )〉, 〈π̂(γ′i), σ̂(γ′′j 〉, 〈π̂(δ′i), σ(δ̂′′j 〉)〉
is a generating quadruple of Part(n)×Part(n+ 1).

(5.42)

Clearly, the map κ : Part(n) × Part(n+ 1) → Part(n) × Part(n+ 1), de�ned by

〈µ′i, µ′′j 〉 7→ 〈π̂(µ′i), σ̂(µ′′j )〉, is bijective. Since lattice operations are computed

component-wise and since both π̂ and σ̂ are automorphisms, it follows that κ

is an automorphism of the direct product Part(n) × Part(n+ 1). Therefore, the

element-wise κ-image of a generating set is again a generating set and (5.40) implies

(5.42).

Next, we count how many generating quadruples occur in (5.42). Each of the

parameters i and j can be chosen in t ways. Hence, the pair of subscripts 〈i, j〉
can be chosen in t2 ways. There are n! = |Sn| ways to chose the parameter π and,

similarly, (n+ 1)! ways to pick a permutation σ. Therefore,

there are t2 · n! · (n + 1)! ways to chose

a quadruple 〈i, j, π, σ〉 with components

occurring in (5.42).

(5.43)

We need to show that whenever a meaningful quadruple 〈i′, j′, π′, σ′〉 of parameters

is di�erent from the quadruple occurring in (5.43) then, for the corresponding

generating quadruple of Part(n)× Part(n+ 1),

〈〈π̂(α′i), σ̂(α′′j )〉, 〈π̂(β′i), σ̂(β′′j )〉, 〈π̂(γ′i), σ̂(γ′′j )〉, 〈π̂(δ′i), σ̂(δ′′j 〉)〉 6=

〈〈π̂′(α′i′), σ̂′(α′′j′)〉, 〈π̂′(β′i′), σ̂′(β′′j′)〉, 〈π̂′(γ′i′), σ̂′(γ′′j′)〉, 〈π̂′(δ′i′), σ̂′(δ′′j′〉)〉.
(5.44)

Here π̂′ denotes π̂′ and similarly for σ̂′, of course. So assume that 〈i, j, π, σ〉 6=
〈i′, j′, π′, σ′〉. Then 〈i, π〉 6= 〈i′, π′〉 or 〈j, σ〉 6= 〈j′, σ′〉. Since the �rst t components

of (5.24) and the last t components play a similar role, we can assume that 〈i, π〉 6=
〈i′, π′〉. Then, applying (5.31) with 〈π, π′〉 playing the role of 〈π1, π2〉 and taking
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(5.29) account, we obtain that

〈π̂(α′i), π̂(β′i), π̂(γ′i), π̂(δ′i)〉 = π̂∗(~g(i)) 6= π̂′∗(~g(i
′))

= 〈π̂′(α′i′), π̂′(β′i′), π̂′(γ′i′), π̂′(δ′i′)〉.
(5.45)

Thinking of the �rst components of the pairs occurring in (5.44), we obtain that

(5.45) implies (5.44). This shows the validity of (5.44). Now, (5.42), (5.43) and

(5.44) together imply that

the number of generating quadruples

we have considered is t2 · n! · (n+ 1)! .
(5.46)

Next, consider a generating quadruple

〈〈π̂(α′i), σ̂(α′′j )〉, 〈π̂(β′i), σ̂(β′′j )〉, 〈π̂(γ′i), σ̂(γ′′j 〉, 〈π̂(δ′i), σ(δ̂′′j 〉)〉 (5.47)

from (5.42). It determines a generating set

{〈π̂(α′i), σ̂(α′′j )〉, 〈π̂(β′i), σ̂(β′′j )〉, 〈π̂(γ′i), σ̂(γ′′j 〉, 〈π̂(δ′i), σ(δ̂′′j 〉)}. (5.48)

Using the same technique with quaternary lattice terms as in the neighbourhood of

(5.38), it is straightforward to see that the �rst components of the pairs in (5.48)

generate Part(n). We know from Zádori [94] that Part(n) cannot be generated with

fewer than four elements. Hence, there are four di�erent �rst components in (5.48),

implying that (5.48) is a 4-element set, so a 4-element generating set.

Assume that a generating quadruple

〈〈π̂′(α′i′), σ̂′(α′′j′)〉, 〈π̂′(β′i′), σ̂′(β′′j′)〉, 〈π̂′(γ′i′), σ̂′(γ′′j′)〉, 〈π̂′(δ′i′), σ̂′(δ′′j′〉)〉 (5.49)

di�erent from (5.47) gives the same generating set (5.48) as (5.47). In the worst case,

there could be 4! = 24 di�erent generating quadruples giving the same set (5.48); if

this was the case then the denominator in the theorem would be 24 rather than 2.

But in [26], αi and δi were constructed in a way that each of them has some speci�c

property that distinguish it from the rest of the four partitions. These speci�c

properties are explicitly described in page 422 and (the beginning of) page 423 in

[26]. We do not give the exact details of these properties here; we only mention

that for a large odd n, αi is the only partition out of αi, βi, γi and δi that has an

(n+1)/2-element block and has exactly two blocks. The speci�c properties described

in [26] are clearly preserved by automorphisms. This implies that π̂(α′i) = π̂′(α′i′)

and π̂(δ′i) = π̂′(δ′i′). Although we did not characterize βi and γi by individual

properties among the four partitions constructed in [26], we did characterize the

set {βi, γi} by such a property in pages 422�423 of [26]; this property again is

preserved by automorphisms. Hence, {π̂(β′i), π̂(γ′i)} is necessarily the same as the

set {π̂′(β′i′), π̂′(γ′i′)}. This implies that there are only at most two ways to choose
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the quadruple (5.49): either it is the same as (5.47), or we get it from (5.47) by

interchanging the middle two pairs of partitions. Now we are in the position to

conclude that the number of 4-element generating sets is at least half of the number

of generating quadruples given in (5.46). This completes the proof of Theorem 4.10.

�
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Summary

This dissertation contains research on both theoretical and applied statistics.

The aim of the theoretical part is to focus on the estimation of the tail index

by proposing a new class of estimators for γ with asymptotic properties. The

applied part addresses the practical approach that required a practical application

of statistics to lattice theory in Algebra. This approach tends to solve Prof. László

Zádori's 38-year-old problem on Lattice theory. This dissertation is based on the

papers [64],[56], [26] and [63].

In chapter 2, the basic de�nitions and theorems that are used as auxiliary facts

for the subsequent chapters 3 and 4 are given. Some statistical background and

terminology on extreme value theory are reviewed. Some important properties of

asymptotic normality (asymptotic theory of extremes) are also outlined. In this

section a description of Heavy-tailed probability distributions as crucial components

of stochastic modeling were given. We also describe some Classical extreme value

index estimators in particular the Hill, Pickand, and the Moments estimators.

In chapter 3, we pay much attention to the asymptotic normality for the power

sums, the consistency, and limit theorems under appropriate assumptions. This

chapter is based on a joint paper [64]. Weighted power sums were formulated by

considering the necessary and su�cient conditions for the existence of normalizing

and centering constants. The asymptotic normality for the power sums over the

whole heavy-tail model under some constraints on the weights di,n was proved.

Theorems based on Viharos [86] and Ciuperca and Mercadier [15] were crucial

in developing a statistic based on the weighted γ. Using a corollary that describes

the asymptotic behavior of the weighted norm Rn(p), an estimator γ̂n was obtained.

It's asymptotic normality and asymptotic bias were proved under certain conditions.

The results indicated that γ̂n is asymptotically normal over the whole model Rγ

while Hill estimator and other known estimators were asymptotically normal but

not for every distribution in Rγ.

The performance of the estimator was evaluated through simulation study where

the performance of γ̂n was compared to the Hill, the Pickand, and the Moment

estimators. The Tail index estimators showed good performance in the strict Pareto

model which is a simple distribution. For simulation of a more complex distribution
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, two cases from Hall model proposed by [48] were considered. Using the mean

square error as criterion, it was evident that for ρ ≤ 1 the performance of γ̂n
generally increases as γ decreases from 2 to 0.5. For γ ≥ 1 the weights improve

the performance of γ̂n signi�cantly (ρ = 0.5, 1, 2). It was also observed that γ̂n
with p = 1, 2, 3 and appropriate ρ value performs better than the Pickands and the

moment estimator. In case 2 for ρ ≤ 0.5 the estimator γ̂n works slightly better than

in case 1.

In another simulation study, the rate of convergence to a normal distribution

was established. Additionally, the empirical threshold sample sizes for Fréchet

distribution, Hall model case 1 and case 2 were determined as kn = 900, 500, 900

respectively. The graphical representation for these thresholds are visualized in

terms of histograms and Q-Q plots in which a good �t to a standard normal

distribution was observed.

In chapter 4, we relied on the research paper [56] in which we proposed another

class of estimators for estimating the tail index. The asymptotic properties of γ̂n
under conditions of the regular varying upper tail were investigated. The consistency

and limit theorem was also proved under appropriate assumptions. The possibility

of having a class of estimator γ̂n for p = pn →∞ was considered. Special cases for

this estimator had been considered by Hall for p = 1 and Dekker et al. for p = 2.

The main focus for this chapter was to consider the estimate γ̂n as pn →∞ as the

limit law for the norm of the extremal sample.

The asymptotic properties of the class of estimators both for p > 0 �xed and for

pn → ∞ were investigated and interestingly, in the course new results for p �xed

was also obtained. In this case, the random variables were assumed to be uniformly

distributed and hence the normalized and centered sequence was rewritten in another

form given in (4.5). In Theorem 2.1, strong consistency of the estimator for p �xed

was established conditioned on kn/n→ 0, (log n)δ/kn → 0 for some δ > 0.

Weak consistency holds under weaker assumption on kn (kn → ∞, kn/n → 0),

which follows from representation (4.5) and from the law of large numbers. In

Theorem 2.4 assumptions on the slowly varying function ` are weaker, hence giving

a new dimension to the asymptotic normality in this case. Therefore, Theorem

2.2 indicates weak consistency of the estimator for p �xed. Proving asymptotic

normality, the representation (4.5) was used, where the summands are independent

and identically distributed conditioned on Uk+1,n as shown in (4.6). The asymptotic

normality of various generalizations of the Hill estimator is obtained under second-

order regular variation for ` but we obtain the result from weaker conditions as given
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in Theorem (2.4). It is necessary to point out that the growth condition (4.10) of

the subsequence is the same as in Theorem 4.5 in [78].

The main results are contained in Section 3, of this chapter shows results of

weak consistency and asymptotic normality when pn → ∞. The limit theorems

with random centering and norming for Sn(pn) were obtained. The results of weak

laws and Gaussian limits that were obtained are summarized in Theorem 3.1 in

which conditions for weak consistency are outlined. Assuming that conditions

for the slowly varying function in (4.9) holds then, Theorem 3.2 summarizes the

weak consistency and asymptotic normality for Sn(p). It was evident that weak

consistency holds for ζ ≥ 1 while asymptotic normality holds for ζ ≥ 2. Under

appropriate and precise asymptotic assumptions on the power sequence pn, non-

Gaussian stable limit theorems were also proved for ζ ≥ 2. The characteristic

exponent of the stable law was found to equal ζ, coming from the growth rate of

the power sequence pn. The results for the non-Gaussian stable limits are given in

Theorem 3.5.

A simulation study was performed to investigate the behavior of γ̂(n) for large

values of p. The estimators were plotted as a function of k in the range [5, 200]. For

k ≥ 200, the estimators did not exhibit much change. The quantile function which

is a mixture of an exponential and a strict Pareto quantile was constructed such

that the parameter of the exponential Q was continuous. The results indicated that

for kn = 200, the exponential part of the sample and the Hill estimator changed

drastically (for γ = 1 from 0.98 to 0.76), while for p = 5 the change was not as

large (from 0.92 to 0.88). From the simulation results in Figures 5 and 6 the setup

of the estimators with larger p values worked much better than the Hill estimator.

These estimators were not so sensitive to the change in the nature of the quantile

function and it is also worth noting that the heavier tails favored larger p values. On

asymptotic bias, it was clear that the bias decreased in p which is a critical property

in application in some models. This property was illustrated on the well-known

dataset of Danish �re insurance claims for di�erent p. It was observed that larger p

values naturally produce smoother plots.

In chapter 5, we present the result of the two research papers [26] and [63] where

we investigated four-element generating sets of a partition lattice and established

a lower bound for the number of four-element generating sets of direct products of

two neighbouring partition lattices. The study of the number of small generating

sets of partition lattices �nds its base on the recent research papers by Czédli [25].

We proved two statements, which solve Zádori's problem on the whether Part(5)

and Part(6) have (1 + 1 + 2)-generating sets. We also proved that certain direct
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products of partition lattices are also 4-generated. In particular, some direct powers

of Part(n) × Part(n+ 1) is four-generated for n ≥ 7. We gave lower bound for

the number ν(n) of four-element generating sets of Part(n) as well as a statistical

approach to ν(n) for small values of n. The results obtained in this way are analyzed

using a computer-assisted statistical approach to ν(n) for small values of n. A

lower bound for the number of 4-element generating sets of direct products of two

neighbouring partition lattices was also investigated. The results indicates that the

largest t∗ when n is odd, under various conditions is the t∗ in (5.23) while when n is

even is obtained by t∗ in (5.25). Other results shows that for arbitrary permutations

π ∈ Sn and σ ∈ Sn+1, 〈〈π̂(α′i), σ̂(α′′j )〉, 〈π̂(β′i), σ̂(β′′j )〉, 〈π̂(γ′i), σ̂(γ′′j 〉, 〈π̂(δ′i), σ(δ̂′′j 〉)〉 is
a generating quadruple of Part(n)×Part(n+ 1), with t2 ·n! · (n+ 1)! ways to choose

a quadruple 〈i, j, π, σ〉 .
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