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Introduction

The normal distribution is important because of its application in many sciences, in-
cluding the natural and social sciences, especially because of its shape, which fits many
experimental data. Moreover, the central limit theorem states that if we have a suffi-
ciently large number of independent and identically (i.i.d.) random variables with finite
variance, the centred and normed sum approximates the normal distribution. However,
there are many phenomena that do not follow a normal distribution, and the central limit
theorem cannot be applied because of the behaviour of the data, which is dominated by
large values. For example, damages caused by hurricanes, financial assets, the intensities
of earthquakes, file sizes stored on a server, losses caused by floods and fire insurance
losses etc.

A common phenomena followed by all the above events is the heavy-tailed distribu-
tion, since the experimental data cannot be described by its mean. Heavy-tailed distri-
butions are probability distributions do not have an exponential moment. Heavy-tailed
distributions have a number of applications in computer science, finance, insurance, and
economics, for more details see [Res07]. In addition, they are common in physics, as-
tronomy, biology, economics, and the social sciences, see [New05,Sor06]. Frequently it is
difficult to choose an appropriate theoretical distribution for a given application. Accord-
ingly, a nonparametric (semiparametric) method is used, see e.g. [Nov12]. The problem
of estimating the tail index of probability distributions has received enormous attention
in the statistical literature. In 1975, Hill [Hil75] provided a robust estimator based on the
asymptotic behavior of extreme values that has been widely used. Alternatively, another
estimator was proposed by Pickands [Pic75].

Various modifications have been recommended for both estimators: Gomes and Martin
[GMO1], Drees [Dre95], Csorgd, Deheuvels and Mason [CDMS85] established estimates
that are considered special cases of the estimator proposed by Hill [Hil75] and de Haan
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[dH81]. While A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan [DEdH89, DAH93] ex-
tended Hill’s estimator to an estimator for the index of an extreme value distribution. In
addition, de Haan and Resnick provided [dHR80] estimators based on order statistics.

In 1979, Parzen [Par79] proposed a complementary approach using the density-quantile
function as a measure of tail ordering. Later, Schuster [Sch84] developed Parzen’s classi-
fication system associated with the extreme distance probability limit, and Rojo [Roj96]
developed an approach that relaxed the smoothness constraints required in Schuster
[Sch84]. Holan and McElroy [HM10] developed an approach based on a Fourier series
estimator that provides separate estimates of the left and right tail exponents, and evalu-
ated practical performance through simulation studies. Viharos [Vih99] proposes a whole
class of weighted least-squares estimators for the tail index of a regularly varying upper
tail of a distribution, proving universal asymptotic normality of the estimators over the

entire model.

This dissertation summarises results of research papers [ANV20], [ANSV], [[AND20]
and [TAN20]. that have been carried out during my PhD studies, which are presented in
chapters 5, 6 and 7. We propose a class of weighted least squares estimators for the tail
index of a distribution function with a regularly varying. Our approach is based on the
method for the Parzen tail index developed by Holan and McElroy [HM10] with some
applications.

Chapter 2, contains some background about estimation techniques, such as weighted
least square estimation with some basic definitions.

Chapter 3, this chapter concerns with classical extreme value theory, and its impor-
tance and application to many rare phenomena.

Chapter 4, it contains briefly explanation of some estimators that have been proposed
for tail index estimation.

Chapter 5, we focused on comparing our suggested a class of weighted least squares
(WLS) estimators for the Parzen tail index to the Hill, Pickands, DEdH (Dekkers, Ein-
mahl and de Haan) and ordinary least squares (OLS) estimators using the mean square
error.

Chapter 6, by means of simulation, our class of (WLS) estimators for the tail index
of a distribution function with a regularly varying upper tail and prior estimators are
compared in the Pareto and Hall models using the mean squared error as a criterion.

Chapter 7, we explore the spread of Corona Virus Disease-2019 (COVID19) in Iraq
and Egypt. The logistic and Gaussian models were applied to forecast and predict the

number of confirmed cases from both countries. An expand generalized SEIR model
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for the spread of COVID19 was used, taking into account mildly and symptomatically
infected individuals. The extreme value theory approach was also employed to discover

and modelling Covid-19 peaks, and the return level.
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Preliminaries

Let F(z) = P{X < x} denote the distribution function of the random variable X. The
probability that the random variable X exceeds a given value of x is the survival function
used in reliability, P{X > x} =1 — F(z). The empirical distribution function estimates

the cumulative distribution function (cdf) F'(z).

Definition 1 (Empirical distribution function). Let X, X, ... be independent identically
distributed random wvariables (i.i.d. rv) with distribution function F(z). Denote Xy, <
Xop < --- < X, the order statistics of the random sample Xy, ..., X, for each n > 1.
The empirical distribution function F,(x),x € R, is defined by.

0, if X13n>l’
F.z)=q K/n if Xgpn<o<Xgpn (K=1,2,....,n—1)
1 if Xpn<w

Definition 2 (Quantile function). Let X be a random variable with distribution function
F. Define the quantile function Q(u), 0 <u <1 by

Q(u) = F ' (u) = inf {z: F(x) > u},

is the left continuous inverse of the right continuous F(.). If F(.) is continuous, Q(.)

satisfies
Q(u) = F '(u) =inf{z: F(x) = u}, F(Q(u)) =u € [0,1].

As with the distribution function, we have to estimate the quantile by the empirical

quantile function.

Definition 3 (Empirical quantile function). Let X, Xs, ... a sequence of i.i.d. rv with

continuous distribution function F' and order statistics X1, < Xo, < ... < X, , of the
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random sample Xy, ..., X,. Let u uniform (0,1) random variables, define the empirical

quantile function Q,(u) for a sample by
Qn(u) = F7Hu) =inf {z : F,(z) > u}

K -1 K
:XK,n Zf <u< —, K:L"'ana

n

Qn(.) = F7Y(.) is the left continuous inverse of the right continuous F(.).

2.1 Estimation Technique

2.1.1 Weighted least square estimation

Ordinary least squares (OLS) regression-based estimation is a simpler method that has
attracted much attention. Assuming X is a random variable denoting observable values
from a population, the probability model for X is estimated using a sample from the pop-
ulation. The statistical analysis depends on the properties of this estimated probability
model that correspond to the population characteristics of interest. Regression analysis
is a statistical method that examines the relationships between two or more quantitative
variables. The model can be stated as follows:

Let Xi,...,X,_1 represent predictor variables and let Y; be the value of the response

variable, the multiple regression model is represented by the following equation,
Yi = fo+ 51X + BoXio + - + Bpo1 Xip—1) + €is (2.1)

where X1, Xjo, ..., Xjp-1) are the values of p — 1 predictor variables in the it/ trial
(known constants), €; is the normal error term with mean zero and constant variance
02, i=1,2,...and f,... 3,1 are regression coefficients (unknown parameters) that we
have to estimate based on information from random samples. Assuming that E(e;) =0

implies that the Y; are independent and N (0, 0?), then the regression model (2.1) is
E(Y) = B0+ X1+ o Xo+ -+ Bp1 X1

One of the classical estimation methods to find the best estimators of the regression pa-
rameters is the least squares method. The least squares method is a statistical technique
introduced by Gauss (1777-1855) to find the best fit for a set of data points by minimizing
the sum of the residuals of the points from the plotted curve and offering the least sum
of the squares of the errors. Considering the equation (2.1) and the method of regression

coefficients, an estimate of the coefficients is obtained as

f=X"X)"XY,
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where X that shows in the above regression model, is defined as a matrix, which consisted
of a column of ones as well as columns of the X; , ; variables.
The usual way to measure the accuracy of an estimator is via its mean square error
(MSE):
mse(0) = E(6 — 6)?,

where @ is the estimator value for the true value 6.

One of the assumptions of the ordinary least squares estimation method is the assumption
of constant variance, but in situations where the underlying distribution is continuous
but skewed, constant variance cannot be assumed. This situation can best be solved by
modifying ordinary least squares using a weighted least square, which allows the variance
of the error term to be almost constant.

Let W be a diagonal matrix with weights W = diag(w; ..., w,), then the minimization

of the weighted sum of squares is denoted by

n

sz‘(Yi — Bo— b1 Xi — BoXig — -+ — Bp_1Xz~p_1)2.

i=1

The weighted least squares estimator is
B=(XWX)'X'WY.

2.1.2 Types of convergences

We start as usual with a sequence of random variables X, X5, ..., X,, with cdf F. The
limiting behavior of the sequence of random variables associate with the concept of con-
vergence. Among the most common concepts of convergence are convergence in distri-
bution, convergence in probability and almost sure convergence. Let X, is the sample
mean, these concepts are associated with the classical central limit theorem, the weak

law of large numbers, and the strong law of large numbers, respectively.

Definition 4. Let X1, X5, ... be a sequence of random wvariables, denoted by X,,n > 1
with distribution functions F,,. The sequence X1, X, ... converges in distribution to the
random variable X if

F.(x) = F(z), as n — oo,

. . . D
for all x where F is continuous, we denote this as X, — X.
In some literature, weak convergence is called convergence in the distribution. Con-

vergence in probability implies convergence in the distribution.
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Definition 5. Let X, X1, X5, ... random variables defined on the same sample space.

The sequence X1, Xo, ... converges in probability to X as n — oo if for all ¢ > 0,
TL11_>H010P(|Xn —X|>¢e)=0.

Notation: X, Ly X asn— oo

Definition 6. Let w be the set of sample points, X, X1, X, ... random variables. X,

converges almost surely or with probability 1 to X asn — oo if
Pw: X,(w) = X(w)}) = 1.
We denote this as X,, —> X as n — 00.

Convergence with probability 1 implies convergence in probability and convergence

in distribution.

2.1.3 Criterion for estimator

Consistency and asymptotic normality are important criteria for estimation.

Definition 7 (Consistency). Let 6 be the true unknown parameter of the distribution
of the sample. A sequence of estimators 0, weakly consistent if it converges to 6 in
probability, that is, if for all e > 0

lim P {|f, — 6] >} =0.
It can be expressed as G, L5 0.

Definition 8 (Asymptotic Normality). Suppose that 0 is an estimator for true unknown
parameter 6, we say that 0 is asymptotically normal if it converges to Standard Normal
when n — o0,

V(0 = 0) = N(0,09),

where o3 is the asymptotic variance of the estimate 0. At a rate 1/y/n the estimator

converges fast enough to the unknown parameter 6.
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Fundamentals of Extreme Value
Theory

This chapter deals with classical extreme value theory, its importance and application to
many rare phenomena. It concerned with the study and properties of the limit distribu-

tion of the maximum.

3.1 Extreme Value Theory

We often focus on the behavior of the average, this average would then be described
through the expected value of the distribution, this is called the classical theory approach.
But extremes can be more important in some situations. Extreme events are rare by
definition, but often their consequences have significant impacts on finance, hydrology,
meteorology, geology and public health. The mean or variance of extreme events is not
finite. The classical theory and technique based on the empirical distribution function
does not provide useful information. Therefore, these events must be treated by other
statistical methods, and one of these methods is the extreme value theory (EVT).

EVT is an important branch of statistics, founded by Leonard Tippett (1902-1985).
With the help of Fisher, Tippet 1928 [FT28] obtained three asymptotic limits describing
the distributions of extremes under the assumption of independent variables. Gumbel
[Gum04] collected this theory in his 1958 book Statistics of Extremes, including the
Gumbel distributions that bear his name.

The basic goal of EVT is to determine from sequences of observations the probability
of events that are more extreme than those previously recorded. Extreme value analysis
is widely used in many disciplines and has shown hopeful results in predicting rare events,
such as income distribution, flood protection, extreme winds, mining area identification,

and mortality.
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Extreme value theory (EVT) is the theory of modeling and measuring events that
occur with very small probability. Let X, X5, ..., be a sequence of independent identi-
cally distributed (i.i.d.) random variables with common distribution function F, the
theory of sample extremes is concerned with the limit behavior of sample extremes
Xpm = M, = max(Xy,...,X,),n > 2, the maximum value theorem is concerned
with the distribution of M, and its properties when n — oo. The results for min-
ima X, = m, = min(Xy,...,X,) can be obtained from converting the results about
maxima, since the sample minimum has the same distribution as the negative of the

sample maximum, by applying the rule
min(Xy,..., X,) = —max(—Xy,...,—X,).

Let X1, < X5, <--- <X, , denote the order statistics of the random sample X;,..., X,
the random variable X}, is called the kth upper order statistic.

There is clearly some resemblance between central limit theory and extreme value
theory, but central limit theory is concerned with the limit normal distribution for the
sums i.i.d. random variables, X; 4+ ... + X,, as n — oo, independent of the original
distribution function. The analogous situation in extreme value theory with the asymp-
totic distribution of sample extremes M, or m,, is one of three possible families known
as extreme value distributions as n — co. Finding possible limit distributions for sample
maxima of independent and identically distributed random variables is most important

Thus, from the concept of an extreme, it hence intuitively that M,, refers to the right
upper endpoint. Let z* its right endpoint, i.e., z* := sup {x € R: F(z) < 1}, which may
be infinite. The asymmetric behaviour of M,, must be associated with the underlying
distribution function F' in its right tail near the right endpoint, then

max (X1, Xo, ..., X,) == 2%, n — o0, z* < 0.

The distribution function of max(Xi, Xs, ..., X,) is ", under the assumed independence

of X;, the distribution function of M, is obtained as
PM,<z)=P(X; <z, Xo<z,....,X, <1
=P(X; <z)xP(Xy<z)x---xP(X, <x) (3.1)
= Fn(x)a
where F'is an unknown distribution function, so we investigate the behaviour of F™(x)

such that: for all x < z*,
P(M, <xz)=F"(x)—0
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and for x > z* that
P(M, <z)=F"(z) = 1.

Since M, is a nondecreasing sequence in n, implies that
a.s.
M, — x*, n — oo.

[lustrate the previous relation that the nondegenerate limit distribution does not exist
if we do not normalize M,,.

Let a, > 0 represent a location shift, where the choice of norming constants a,, is not
unique such that

< x| = F'anz + by) -5 G(x), (3.2)

Qn

M. —

converges weakly as n — oo for any continuity point x of G. We can say that F
belongs to the maximum domain of attraction of a non-degenerate distribution function
G where G are all distribution functions that can occur as the limit of F™(a,x + b,,) for
n — 00, these distributions are called extreme value distributions that are continuous on
R, we will write ' € M DA(G). The following result identifies the class of extreme value
distributions. Fisher and Tippett (1928) identified the all limit distribution of (3.2), the
result is summarized in the following theorem, a detailed proof of this theorem can be
found in Leadbetter et al. (1983) [LLR83].

Theorem 3.1.1. Let (X,,) be a sequence of (iid ) random veriables. If there are norm-
ing constants a, > 0,d, € R such that 3.2 holds as n — oo and some nondegenerate

distribution function G. Then G is of type of one of the following three classes:

By (x) 0, <0
al‘ =
exp{—27“}, >0

for some o > 0, this class is called the Fréchet class of distributions (Fréchet (1927)).

1, x>0

W, () = {exp{—(—x)a}, <0

for some o < 0, this class is sometimes called the reverse-Weibull class of distributions.
A(z) = exp {—e‘x} , T€R

this class is called the double-exponential or Gumbel distribution. All ®.,V, and A

represent the extreme value distributions.



3. FUNDAMENTALS OF EXTREME VALUE THEORY 11

=« > 0, Frrechet
0.4 -« = 0, Gumbel
- < 0, Weibul

Figure 3.1: Density function for Frechet, Gumbel and weibull

The first two class are related to regular variation tail behavior. The distributions
function F' in M DA(®,) have infinite endpoint, while z* < 0 in the second and the
third class it could be the endpoint is finite or infinite. Figure 3.1 shows the shape of
the probability density functions for three types of G. Fisher and Tippett (1928) noted
that only these three families of distributions are the possible limiting distributions for
linear normalization (3.2), regardless of the population and its unknown distribution F.
In general, any time extreme value theory is used to analyse a data set, in most cases
a prior decision is made as to which of the three families to apply. This is a necessary
procedure to follow when deciding which distribution to choose when estimating the
distribution of a parameter. This method has drawbacks because the choice of an ideal
family may not be the right one. Also, the results may be biased and the model may
misrepresent the data.

Jenkinson-von Mises [Jen69], [{HF06] represented that all previous types of distribu-
tions are significantly shortened by combining the three models into a single family with

the following distribution function:
G (z) = exp(—(1 +~2) Y7"), 14~z >0, —o0 <7y < o0,

G, (z) is known as the family of generalised extreme value (GEV) distributions. This
distribution is obtained by setting v = a~! and v = —a~! for Fréchet and Weibull,
respectively. The parameter « is called the extreme value index and different values of
v lead to the different extreme value distributions and whether the upper endpoint z* is
finite (v < 0) or infinite (y > 0).



3. FUNDAMENTALS OF EXTREME VALUE THEORY 12

3.2 Regularly varying functions

Regular variation is important for a proper understanding of the extreme value theory
founded by Jovan Karamata in a famous paper of 1930 [Kar33]. In his studies, he
developed a whole new theory of slowly and regularly varying functions and important
properties of these functions, while Eugene Seneta 1976 [Sen76] in his monograph gave
a treatment of the basic theory of the subject. Regularly varying functions were later
applied in various branches of analysis: Abelian theorems, analytic number theory, etc.
The detailed discussion in this section is found in Bingham et al.[ BGT89] and Resnick
[Res07].

Definition 9 (Slowly varying functions). Let ¢ be a positive measurable function ¢ :
Rt — R*, and satisfying

lim ((ux)/l(z) =1, Yu > 0,

T—r00

then € is called slowly varying at infinity for all u > 0.

Note that a function that has a finite non zero limit is slowly varying. An example of
a slowly varying function f such that f(x) — 0o as x — oo is f(x) = log™(x) for some
a e R.

Theorem 3.2.1. Let f be a nonnegative measurable function. For all u > 0,

f(uzx)
()

where x — 0o, u € S for some set S, then

— g(u) € (0,00),

1. g(u) = u® for some a € R,
2. f(z) = x¥(x) with € slowly varying.

Definition 10 (Regularly varying). A positive measurable function f : RT — RT s
called regularly varying (at infinity) with index o € R, written f € R, provided that

- fluz)
Jim, fla) "

Let f be a measurable function, then the above definition can be expressed in various

Yu > 0.

ways, [ is regularly varying if and only if lim, ., f(zu)/f(u) is finite and positive.

Moreover, f belongs to regular variation at the origin with index « if f is positive,

o Sur) o
lim @)

x ] 0, Yu>0.
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In the analysis of phenomena with heavy tails, «, the tail index is always positive. It
is also a parameter often used to characterize the type of the tail of distribution: The
smaller the value of a, the slower P(X > z) decays with  — oo to 0 and the more likely
extreme values are to emerge.

We give a brief description of the class Fréchet. The aim is to provide some basics
and necessary and sufficient conditions for F' in domain of attraction of G where G = ®,,
(F € MDA(®,)) and also to characterize a,, and b,

3.3 Frechet Distribution &,

The domain of attraction of the Fréchet distribution includes the distribution F' whose
right tail is regularly varying function with index —«. Gnedenko, 1943 [BGT89, Theorem
8.13.2] showed that for some o > 0, F € MDA(®,) <= F € R_,, moreover d,, can be
chosen to be zero which mean that we have

PIM,/a, < x] = F"(a,x) — ®u(x), (3.3)

_ 1

and we can choose a,, = inf {x cF(z) < } In what follows, we show that (3.3) implies
_ n

that ' € R_,. Applying value for x > 0,®,(x) = exp{—2~*} in (3.3) and take

@ use the relation —log(l — 2) ~ z as

logarithms to get lim n(—log F(an,z)) = x~
z — 0, we obtain lim n(l — F(a,z)) = 2%z > 0, and according to de Haan, 1970
[Res08, Proposition 0.4] we obtain 1 — F(x) ~ z=%¢(x), x — oo for some a > 0.

This class of distribution functions contains very heavy-tailed distributions. Examples
of distributions that belong to this class are Pareto, Cauchy, Burr, and Stable with index
a < 2.

The following theorem gives a sufficient condition for belonging to a maximum domain

of attraction of (®,). The condition is called the von Mises condition.

Theorem 3.3.1. Let {X,,} sequence of independent and identically random variables

have absolutely continuous with density function f > 0 if

lim $_f (z)

=a>0
T—00 F(ZE) «

then F' is belong to the domain of attraction of ().

We will deal only with the distributions that belong to the maximum domain of attrac-
tion of ®,(z) = exp{—2~*},z > 0. One of the most important classes of distributions
belonging to MDA(®,,) is the Pareto type.
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Definition 11. If X is a random variable that has a Pareto distribution (type 1) (PD)
with o € R, then the probability that X is greater than a number x is given by

Fx)=1—-F(z)=cx™®, z>1, a>0.

Note that the PD (type 1) can also be called a power function, so it is considered a special
case of a reqularly varying distribution.

By inverting the distribution function, the quantile function is.

1—u

Q(U) = (7)_1/067

C

and it follows that the density function is
f(z) = acx™> L.

Definition 12. The Generalized Pareto Distribution (GPD) with parameters v € R is
defined by the cdf

1—(14+y2)" Y7, ~v#£0

1 —exp™®, v=0

GPy(x) = {

where x > 0 for v >0, and 0 <z < —1/v for vy <O0.
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Tail Index Estimators

In general, there are two methods for estimating the extreme value index: parametric
estimators, meaning that the data follow an exact GEV distribution, and semiparametric
estimators, where the parameter has both a finite-dimensional and an infinite-dimensional
and are therefore based on partial properties of the underlying distribution, such as the
Pickands, Hill, and DEdH (moment) estimators. In the following, we briefly review the

estimators that have been proposed for tail index estimation.

4.1 Hill estimator

Hill’s estimator, is one of the most common estimators for the tail index of heavy tailed
distributions, which is a type of the maximum likelihood estimator. Numerous applica-
tions can be found, for example, in insurance reliability theory, econometrics, geology,
and climatology. His approach to extraction inference about tail behaviour was sim-
ple and general, for details see De Haan and Ferreira (2007) [dHF06]. Pickands (1975)
[Pic75], proposed alternative methods to Hill’s, and also one of the modifications of Hill’s
estimator is the so-called moment estimator proposed by Dekkers et al. (1989) [DEdHS89].
A more detailed description is given in the next subsections.

Let X;, < ... < X,, be the order statistics based on the sample X; ..., X,, with
distribution F and X, is the k™ upper order statistic. The intermediate order statistics

Xn—kn — 00 a.s and k = k,, be a sequence of positive numbers satisfying the conditions

Ky,
1<k, <n,k,— 00 and — —= 0 as n — oo, (4.1)
n
Suppose for simplicity that X has a distribution of Pareto type

1—F(z)=cx™®, z>1, a>0,

15
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Recall that
F(z) e MDA(®,) <= 1— F(z) = 2 “(x),

where £ is a slowly varying function, then the Pareto distribution is a special case of the
semiparametric approach (regularly varying distribution). To estimate «, Hill proposed

an estimator based on upper order statistic £ and the sample size as follows

n j=1

—1
JR
o= (k’ Z IOg Xn—j+1,n - IOg Xn—knv") ’

The Hill estimator is a function of the number of upper order statistics that depend on the
threshold k, choosing the appropriate value of tail observations k is not straightforward
and it is not obvious how it should be chosen, the estimate is often very sensitive to the
choice k.

In the literature, various methods have been used to select k. Danielsson, Jon, et al. 2016
[DEdHAV16] provided a methodology based on fitting the tail of heavy tailed distribution
by minimizing the maximum deviation in the quantile dimension. Clauset and et al. 2009
[CSN09] use the Kolmogorov-Smirnov metric to find the optimal k. Hill plots consider
the simplest procedure for choosing the optimal % is, i.e., plots of & against k, and choose
the ’optimal’ £ from a region of the graph at which the relationship seems to have settled
down Bol, Georg, et al. 2012 [BNR*12]. Beirlant et al. (1996) [HKKPO1] proposed
a methodology that selects an optimal k. They proposed a weighted average to derive
information about the tail from more than a single Hill estimate, where their procedure
uses a number of conventional Hill estimates for different k£ as input. This is a simple
method to obtain unbiased estimates of the tail- index in small samples. Several new
estimates of the tail index of the Hill’s estimator have been proposed that avoid the k
selection problem, for more details see [BNR*12].

The main properties of Hill’s estimator are consistency and asymptotic normality.
Mason [Mas82] proved that if k,, satisfies (4.1), then the estimator & is weakly consistent
as an estimator of «

lim P(la—a| <€) =1,Ve > 0.

n—oo
Deheuvels, Haeusler and Mason 1988 [DHMS88] provided the almost sure consistency
behaviour of & such that if F € R, and k, satisfies (4.1), & — «a almost surely if and
only if k,/loglogn — oo for all sequences k,.
The asymptotic normality of & was first proved by Hall in 1982 [Hal82], assuming that
I satisfies the Hall condition:

1— F(z) = Cx=[1 + Dz ™% + o(z™)),
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for some constants C, a, 5 > 0, D # 0 as © — oo. This amounts to allowing only a special
type of slowly varying function ¢. The quantile function according to the Hall model is
defined as

Qi(1—s)=CsY[1 + Ds™P/* 4 o(s7P/%)]

Hall [Hal82] showed that for k,/n — 0 as k,,n — oo the vk,[& — ] is asymptoti-
cally normal distributed N (0,0?). The asymptotic normality of Hill,s estimator has led
researchers to develop an alternative method of Hill estimator values that is more infor-
mative than the standard method, and these modifications work well in the Pareto case
see Drees, de Haan, and Resnick 2000 [DAHRO00] and Resnick and Starica 1997 [RS97].

Although it works very well for Pareto-distributed data, the Hill estimator becomes less
effective for other regularly varying distribution functions. To illustrate this we have
drawn two different samples from two different distributions, Pareto and Burr, with pa-
rameters such that the tail index is equal to one. Figure 4.1 (a), (b) shows the Hill
estimator for the two data sets. Note that the Hill estimate is plotted against the various
values of k. As can be seen in Figure 4.1 (a), the Hill estimator provides a good estimate
of the tail index, but it is clear from Figure 4.1 (b) that the tail index is greater than
one. The Hill estimator is widely used, however, in practice it is not easy due to the
estimation parameter k£ for which the optimal value is unknown. Therefore, researchers

have been attracted to alternative methods to the Hill estimator, one of these methods
is based on OLS, see. Gabaix, 1999 [Gab99] and Gabaix and Ibragimov2012 [GI11].

4.2 Dekkers-Einmahl-de Haan’s estimator (DEdH)

Hill’s estimator is essentially designed for F' with regularly varying function, a > 0. In
Dekkers, Einmahl and de Haan 1989 [DEdHS89], the Hill’s estimator was developed into an
estimator for the index of extreme value distribution, i.e., « € R. Let X1, Xs,...,X,, be
finite sample with distribution function F' such that F € R_, where Xin < Xop,..., <
X,.n are order statistics of X, Xo, ..., X, and for k = k(n) — oo, k(n)/n — 0asn — oo

the moment estimator for the Dekkers, Einmahl and de Haan is defined as

o= (a0 +1- 50 - B )

where for j = 1,2
' 1 _ )
ng]) = ? Zfﬁo ! (108; Xn+1—i,n - 10g Xn—kn,n)j )

when j = 1 this lead to Hill’s estimator.
Dekkers et. al. [DEdH89] proved the following asymptotic properties. of this estimator,
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& is weak consistent for a,

The asymptotic normality of &, is
k(n)(an —a) = N(0,V),

where

1+ a?, a>0

V = (1—a)(1—2q) {4 — 81 : ;Z + <<51__1310(jz))((11__420(54)) } , a<0

4.3 Pickands estimator

The simplest estimator for « is the estimator of Pickands (1975) [Pic75]. Denote by
Xip < Xop,...,< X, the order statistics of X, X5, ..., X,, from F' such that FeR_,,
for « € R and 1 < k < [n/4], Pickands [Pic75] proposed his estimator as

1 Xk — X,
~—1 n—kn+1,mn n—2kn+1,n
Oy, = log Jfor k,=1,...,|n/4],
b 108;2 <Xn2kn+1,n - n4kn+1,n> L / J

where |z| denotes the integer part of x. As with the Hill estimator, the choice of k is
unclear.

Dekkers and de Haan 1989 [DAH89] gave a fairly natural and general condition to study
the properties as follows:

If £k — oo, k/n — 0 for n — oo, then &,;11 is weakly consistent, i.e.

1 p1
— = —
Ofon «

If k/n — 0,k/loglogn — oo for n — oo, and X, is sequence of i.i.d., then

1 .1
s

Ofon (6]

The asymptotic normality of @,;il, if kK — oo, k/n — 0 for n — oo and X, is sequence of
i.i.d., then

Vk( L l) — N(0,V),

@km «
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where
()42(22a+1 + 1)

(2(2¢ —1)In2)?
Figure 4.1(a) and (b) show that the Pickands estimator performs well with both the

Pareto and Burr distributions. As we have noted, these estimates depend on a relatively

V:

1.08 — 1.12 —
— Hill estimator — Hill estimator
1.06 |~ DEdh estimator 1.1 |~ DEdh estimator
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(a) Pareto distributed data (b) Burr distributed data

o

Figure 4.1: Hill estimator for samples of a Pareto and Burr distributions with tail index 1

small proportion of upper order statistics, so that an estimate is limited to certain values
even if the sample size is large. Consequently, an alternative approach to estimate the
tail index has been used, see, Politis (2002) [Pol02] where using diverging statistics,
Meerschaert and Scheffler (1998) [MS98] using the sample variance and sample size, and
McElroy and Politis (2007) using over subsets of the whole data set [MPO07].
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Weighted least squares estimators
for the Parzen tail index

Estimation of the tail index of heavy-tailed distributions and its applications are essential
in many research areas. We propose a class of weighted least squares (WLS) estimators
for the Parzen tail index. Our approach is based on the method developed by Holan
and McElroy [HM10]. We investigate consistency and asymptotic normality of the WLS
estimators. Through a simulation study, we make a comparison with the Hill, Pickands,
DEdH (Dekkers, Einmahl and de Haan) and ordinary least squares (OLS) estimators
using the mean square error as criterion. The results show that in a restricted model
some members of the WLS estimators are competitive with the Pickands, DEdH and
OLS estimators. The results presented in this chapter are based on [ANV20].

5.1 The tail index estimation

The problem of estimating the index of heavy-tailed distributions has received enormous
attention in the last decades. Several estimators have been proposed for the tail index
among which Hill’s [Hil75] estimator is the most classical. A considerable part of the
large literature is centered around the asymptotic properties of Hill’s estimator. Several
generalizations of the Hill estimator have been suggested. A recent generalization was
proposed by Ciuperca and Mercadier [CM10] based on weighted power sums of extreme
values. More recently, McElroy and Nagaraja [MN16] studied tail index estimators when
the sample fraction parameter is fixed. Other estimators were proposed by Pickands
[Pic75] and Dekkers et al. [DEdH89], to name a few.

In classical tail index estimation it is assumed that the tail of the distribution function
is regularly varying at infinity with some positive index. Parzen [Par79,Par04] studied an

alternative model for the tail of the distribution. Let F' be an absolutely continuous prob-

20
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ability distribution function with density function f and let ) denote the corresponding

quantile function defined as
Q(s) :=inf{x: F(z) > s}, 0<s<1, Q(0):=Q(0+).

Parzen [Par79] used the density-quantile function fQ(-) = f(Q(-)) to classify probability

distributions. Parzen [Par79] assumed that the limit

(- w)Jw)
=1 1

=) 51)

exists, where J is the score function defined as J(u) = —(fQ)'(u). Assumption (5.1)

yields the following approximation for u values near 1:

fQu) = C(1 —u)™,

for some positive constant C'. Based on the parameter v;, Parzen [Par79] classified the
probability distributions. Heavy tailed distributions correspond to vy > 1.
Parzen [Par04] assumed that fQ(-) is regularly varying at 0 and 1:

fO(u) = u"Lo(u), wel0,1/2), (5.2)
fQu) =1 —-u)"Li(1 —u), ue(1/2,1], (5.3)

where 1,y > 0 are finite constants and Ly and L; are slowly varying at zero. The
parameters vy and vy are called the left and right tail exponents of the density-quantile
function.

Using Karamata’s representation theorem for slowly varying functions ([BGT89, The-
orem 1.3.1]), Holan and McElroy [HM10] proved the following result ([HM10, Lemma 1]):
If K is a slowly varying function at infinity and L(z) = K(1/x) for € (0,1), then log L

is square integrable. It follows that L; can be expressed as
L;(u) = exp {Qi,o +2> 6 cos(27rku)}, i=0,1. (5.4)
k=1

In order to estimate the tail exponents, Holan and McElroy [HM10] assumed that L;

satisfies the representation
Di
Li(u) = L% (u) = exp {GLO +2> 0 cos(27rk’u)}, i=0,1, (5.5)
k=1

where p; is fixed and unknown. In the representation (5.2) and (5.3) they considered
fQ(u) for u € (0,w] and u € [u,, 1), where v; < 1/2 and u, > 1/2 are chosen by the
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statistician, and they assumed that p; < p;, where p; is a prespecified integer. Using

representation (5.5), we obtain the equations

Po
log fQ(u) = vologu + Oy + 2 Z o i cos(2mku), u € (0,uy],
k=1

P1
log fQ(u) = 11log(1 —w) + 010+ 2 b1, cos(2mk(l —w)), u € [u,,1).
k=1
Based on some estimator f@(u) of the density-quantile fQ(u), this leads to the regression

equations

. Po
log fQ(u;) = vologu; + 6o+ 2 Z 6o 1 cos(2mku;) + £(u;),
k=1
. P1
log fQ(1 —u;) = vy logu; + 619+ 2 Z 61 i cos(2mku;) + (1 — uy),
k=1
where e(u) = log (]@(u)/f@(u)) is the residual process, u; = j/n,j = Uals - - - U np|
and 0 < a < b < 1, so the percentiles u; are chosen from a subset [a,b] of the inter-
val (0,1). Holan and McElroy [HM10] obtained some estimators 7y and 7 for the tail
exponents 1y and 14 using ordinary least squares regression.
We propose a more general class of estimators using weighted least squares regression.

We choose some nonnegative weights of the form w;,, = R(j/n) with some weight function
R. Set y; :=log fQ(u;),

Y= (yfntﬂ? s 7y|_an>/7
W .= diag(w[mﬂ,n, . ,wLan,n),

and let X := [G*, G, 2Gy, ..., 2G5 ], where

!/
G* = (10g(upna), - - -, log(um) )
Gp = (cos(27rk:u[mﬂ), . ,COS(Q?T/{ZU\_an))/, k=0,...,p.
Set Po (o, 00,0, 00,1, - - - ,90750)/, where 0y ; = 0 if j > py. By minimizing the weighted
sum of squares
Lnb] po )
> Win (yj —wlogu; — oo —2) b cos(27rkuj)) ,
Jj=[na] k=1

we obtain the following estimator of 35

Bs, = (X'WX) ' X'Wy.
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Then the weighted least squares estimator of vy can be written in the form
Dy = €435, = L (X'WX) X' Wy,

where e; is the py + 2 dimensional vector defined as e; = (1,0,0,...,0)". The right tail
exponent vy can be estimated similarly.

A crucial point of this method is to choose a good estimator for the density-quantile
fQ(u). Letting g(u) := @' (u) denote the quantile density function, and using the identity

fR)Q'(v) =1, (5.6)

one wish to estimate ¢(u) instead of fQ(u). Given a sample X7, ..., X,, with distribution
function F', let F,, denote its empirical distribution function and define @,, := F,' to
be the empirical quantile function. Holan and McElroy [HM10] used the kernel quantile
estimator of ¢(u):

0n(0) = 2 [ Qu) Kl Odpa(t), € (0,1), .7

where the kernel function K, (u,t) and the measure pu, satisfy the following conditions
of Cheng [Che95]: (K) For every n, 0 < p,([0,1]) < oo, and p,,({0,1}) = 0.

—~

K,) For every n and each (u, t), K, (u,t) > 0, and for every u € [a, b], fy K, (u,t)dp,(t) =

K3) For every n, [y tK,(u,t)dp,(t) = u,u € [a,b].
Ky) There is a sequence d, | 0 such that sup,c(,y

e e N

fu+55n Kn(u7t>dun(t) - 1‘ \lf 0 as

U—0n

Q0.

S
—

Let S,, be the unique closed subset of (0,1) such that un((O, 1)\Sn) = 0 and ,un((O, 1)\5,’1) >
0 for any S/, C S,. For the sequence 6, in (Kj), let I,(u) = [u — 0p,u + 0,], IS(u) =
(0, D\ In(u), for u € [a,b]. Define A(u; K,) = [ () [K(u,t)|dpn(t), v € [a,b], and
for a well-defined function g on (0,1), let W(g; Ky) = SuPyefqp) Jre () [9(8) K5, (u, )| dpn (t).
It is also assumed that the derivative K] (u,t) = 0K, (u,t)/0u satisfies the conditions
(K5) — (K7) below:

(K5) For every n, sup,ep,y Jo 1K (u, )| dpan () < .

(Kg) For every n and each u € [a,b], K, (u,t) =0, t € IS(u); or S, C[e,1 —¢] C (0,1),
with [a,b] C [e,1 — ¢] for some 0 < & < 1/2.

(K7) For the sequence 4, in (Kj), 07 sup,efqy Alu; K,) = 0 and ¥(1; K,) — 0 as n 1 oo.
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Similarly as in [HM10], in some cases we assume that the kernel function has the form
K,(u,t) = K(hfl(t - u))hgl and satisfies the condition

n

(Kg) sup

u€|a,b]

— t—
h;lK(Sh “) - h;1K<hu>‘ <Clt—s® and |K"(x) <C/lal
for some constants C, 5 > 0 and |z| sufficiently large, and C,, are positive constants such

that sup,,~; C), < 0.

Moreover, Holan and McElroy [HM10] used the following assumptions of Cheng
[Che95] on g(u):

(®Q1) The quantile density function is twice differentiable on (0,1).

(Q2) There exists a positive constant v such that sup,e g1y u(1 — u)|J(u)|/fQ(u)

< 7, where J is the score function in (5.1).

(Qs3) Either ¢(0) < oo or ¢(u) is nonincreasing in some interval (0,u.), and either

q(1) < oo or g(u) is nondecreasing in some interval (u*,1).

We will show that the limit matrix M(a,b, R) := lim, ., n ' X’W X exists (see the
proof of Theorem 5.1.1). Let (v*,vp,...,v;) be the first row of M(a,b, R)™!, and set
Ggr(u) := R(u) (v* logu+vo+ 230, vk cos(27rku)), i=0,1.

Finally, we assume that the weight function R satisfies the following condition:

(R) R is nonnegative and Riemann integrable on [a, b].

Let —2 denote convergence in probability, -2, denote convergence in distribution,
and let N(yu, 0?) stand for the normal distribution with mean p and variance 0. Limiting
and order relations are always meant as n — oo if not specified otherwise. Our main

results are contained in the following two theorems:

Theorem 5.1.1. Suppose that the conditions (Q1) — (Q3) are satisfied for the quantile
density q(u), and q(u) is a kernel smoothed estimator with kernel function satisfying
(K1) — (K7), the weight function R satisfies the condition (R), and the matriz M (a, b, R)
is invertible. Moreover, assume that the percentiles u; are chosen from a set [a,b] C (0, 1)
such that u; = j/n, j = [nal,...,|nb|, and p; > p;, i =0,1. Then p; SN vi, 1=0,1.

Theorem 5.1.2. Assume that the conditions of Theorem 5.1.1 are satisfied, and sup-
pose that the kernel function is symmetric and differentiable on [—1,1], and satisfies the

condition (Kg). Suppose that the derivative gr(u) := G'y(u) exists, and gr and Gg are
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uniformly bounded on [a,b]. Let h, be a sequence such that nh? — oo, nhl — 0 and

h, — 0, and assume that p; > p;, 1 = 0,1. Then

\/ﬁ(’/}z_VZ) i>‘]\'7(07‘/)7 ZZO,]_,

where

V= /ab G%@)dwfﬁ%(@%@) (1 4 {(uAv) — ]

¢ (u)q (v)
q(u)q(v)

In the special case when the weight function R is identically 1, the two theorems
above reduces to Theorems 1 and 2 of [HM10].

>dudv. (5.8)

5.2 Proofs

The proof of Theorems 5.1.1 and 5.1.2 follows the general outline of the proof of Theorems
1 and 2 in [HM10]. We give a more detailed proof for Theorem 5.1.2.
Proof of Theorem 5.1.1. We deal only with the left tail exponent 1, the proof for 14

is similar. Set v = (Yfna], - - -

Then 7y — vy

[nb]
Do — | =

j=[na]

We have Z] [m 7] =y =¢€j(n

y V| nb| )/ =

Z Viv/Win ()

IXWX) e

VWX (X'WX) le;and g := (5(u[na1), iy E
= ~'v/We, and hence, using the Cauchy-Schwarz inequality,

[nb]

Lnb| 1/2 1/2
_( > %) ( > wj,n52<uj)> :
j=[nal

j=[na]

n~! with the matrix

[ [nb| [nb| [nb]
Z log? u; R(u;) Z logujR(u;) 2 Z log uj cos(2mu;) R(uj) . . .
j=[na] j=[na] j=[na]
XWX =| i) [nb)
2[: 1 log u; R(u;) Z ~(nal R(uj) 2 | zf: W cos(2muj)R(uj) . ..
j=Ina J=|na

Then by Riemann sum approximation

limn ' X'WX = M(a,b, R)
[P log? u R(u)du  [Plogu R(u)du 2 [?logucos(2ru)R(u)du. . ..

n—oo

— | [logu R(u)du

[P R(u)du

2 [ cos(2mu) R(u)du. . ..
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It follows that for all n large enough €} (n ' X'W X)~te; < C for some constant C', and

hence

|nb] 1/2
|ﬁo—1/0|§\/6< 1> R(uy)€? > :

j=[na]

Let C’ > 0 be a constant such that R(u) < C’, 0 <wu < 1. Then

[nb) 1/2
1D — vo| < \/CC’(?’L_l > 62(uj)) .

j=[na]

Now, by Theorem 2.1 in [Che95], n~* Z]L"anﬂ £%(uj) = op(1) (cf. the proof of Theorem 1
in [HM10]). O

Proof of Theorem 5.1.2. Write

1
V(g — ) = —=e;(n ' X'WX) P X' We

vn
1 _ 1 _ _ _
- %e’lM(a, b,R)"'X'We + \/ﬁell((n 'X'WX) = M(a,b, R)) X' We.
By straightforward calculation,
1 / 1 !/ 1 Lan
A, = —=eM(a,b,R) " X' We=— e(uj)Gr(uy). (5.10)
v v jzz(n:aw e

It follows from Theorem 5 in [HM10] that

b

An 25 GrB)W (B) = Gra)W(a) - [

a

W(u) <gR<u> - GR<u>q'(“)) u

where W (u) is a Brownian bridge process. The limiting variance is given by (5.8). Next

we show that

1
B, = \/ﬁe'1<(n1X’WX)1 — M{(a,b, R)™")X'We = op(1).
be the first row of (n'X'WX)™' — M(a,b,R)™'. By (5.9),
(v vomy -, v, ) — 0. Set

Let (vy,vons -5 05 ,)

Po
G (u) = R(u) (v; logu + von + 2 Ukn cos(27rk’u)).

k=1



5. WEIGHTED LEAST SQUARES ESTIMATORS FOR THE PARZEN TAIL INDEX27

Similarly as in (5.10),

1 [nb]

B, = \/ﬁj%ﬂ e (u;)G™ (u;)
[nb] Y [nb]
= u 0g U; + Vgn
n\/_Jzﬁ;cﬂ ] o § \/_Jzﬁ;ﬂ
[nd]
+2kan\/_ > e(uj)R(uy ) cos(2mkuy).

j=[na]

Each term in the last sum tends to zero, e.g., in the first term v; — 0 and using again

Theorem 5 in [HM10], the sequence ﬁ Z]Ln:me} e(u;)R(uj)logu; has a weak limit. [

5.3 Classical tail index estimation

A distribution function F' has right heavy tail with tail index oy > 0 if 1 — F(z) is

regularly varying at infinity with index —1/ay, i.e.,
1— F(z) =z Y (z), 0<xz<oo, (5.11)

where /7 is a function slowly varying at infinity. Similarly, F' has left heavy tail with tail

index o > 0 if F(—x) is regularly varying at infinity with index —1/ay:
F(—z) = a7 Y%0(z), —oo<z<0. (5.12)

Let X1, X5, ... be independent random variables with a common distribution function F
having right heavy tail with tail index a4, and for each n € N, let X;, < .- < X,
denote the order statistics pertaining to the sample Xi,...,X,. Hill [Hil75] proposed

the following estimator for the tail index a;:

RS Ly Xoojiim
G = 3108 Xy jrn —log Xog,n = 1= 3 log
kn j=1 7 n j=1 Xn kn,n

where the k, are some integers satisfying
1<k,<n, k,—oo and k,/n—0 asn— oo

The left tail analogue of the Hill estimator is the following:

Z log ——

n j=1 an+1n
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We discuss the relation between the Parzen tail model described in equations (5.2), (5.3)
and the classical tail model in (5.11) and (5.12). Holan and McElroy [HM10] pointed out
that the heavy tailed condition (5.11) imply

fQ( —1/n) = n~ UL, (1/n) (5.13)

for some function L; slowly varying at zero, if F' has a density function with ultimately
monotone right tail. Equation (5.13) is the Parzen model (5.3) with 14 = 1 + a4 at
discrete points u = 1/n. A similar relation exists between the left Parzen tail and the
classical left tail. Conversely, assume that the Parzen condition (5.3) is satisfied for some
vy > 1. Then, using the identity (5.6), we obtain Q'(1 —u) =u™"/Ly(u), 0 < u < 1/2.
Moreover, for 0 < u < ug < 1/2, we have

U

u /Li(u) asul0

QU —w) = Qo) = [ a7 /La(x)dr ~

u V1—1

using Karamata’s theorem in the last step (see [BGT89, Theorem 1.5.11]). It follows
that

Q(l —u) ~ u ™ /Li(u) asu 0.

This implies that (5.11) holds with ay = 14 — 1 and some function ¢; slowly varying at
infinity (see [BGT89, Theorem 1.5.12]).

On the other hand, the Parzen model (5.3) with v; < 1 does not imply that the
distribution has right heavy tail: the exponential distribution satisfies condition (5.3)
with v; = 1.

Based on the equality v; = 1 + «, the classical tail index estimators also can be used

1/1—1

to estimate the Parzen tail index.

5.4 Comparison of tail index estimators

5.4.1 Asymptotic variances

We evaluate the limiting variance (5.8) for py = 1, different weight functions and tail
indices to compare the WLS and the unweighted (ordinary least squares) estimators in
the following submodel of (5.4):

Lo(u) = exp {2 cos(27ru)}, u € [a,b].

The limiting variances are contained in Table 5.1. For the calculations we used numerical
integration performed by the Wolfram Mathematica software. We see that in some cases

the use of the weights makes the asymptotic variance smaller.
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5.4.2 Simulation results

In order to make a comparison with existing proposals, simulations were done performed
by the Matlab software. The samples were generated from the model (5.2) with Lo =1
using different tail indices 9. The Hill, Pickands, DEdH (Dekkers, Einmahl and de
Haan) and the least squares estimators were included in the simulation study. Similarly
as in [HM10], for the simulations we used the Bernstein polynomial estimator of g(u).
Let 0 < £ < 1/2 be a constant, and assume that [a,b] C [e,1 —¢]|. Set L. :== 1 — 2¢ and
ti:=ec+(j/k)Le, j =0,1,..., k. The Bernstein polynomial estimator is defined as

1k1

@n(t J+1 Qn(tj) k=1 J —1—j
I Lkz 1k ( ; )(u—s)(l—s—u)k .

8]0

This estimator belongs to the class (5.7) and satisfies the conditions (K7)— (K7). We used
the values £k = n = 700, ¢ = 0.001, a = 0.001 and b = 0.4 for the regression estimators,
and the weight function R(u) = u/300 for the WLS estimator. Tables 5.2 and 5.3 contain
the average simulated estimates (mean) and the calculated empirical mean square errors
(MSE). We used the sample fraction size k, = 100 for the Hill, Pickands and DEdH esti-
mators. All the simulations were repeated 200 times. We conclude that in the submodel
Lo = 1 for a values between 0.8 and 1.5 the WLS estimator has better performance than
the OLS estimator. Thus for thinner tails we propose the WLS estimator instead of the
OLS estimator. The Hill estimator is the best among the examined estimators. This
good performance is not surprising since the Hill estimator was obtained in the special
case of (5.11) when the slowly varying function ¢;(x) is constant for all z > x,,, for some
threshold z,,. The Pickands estimator has also good performance. On the other hand,
we emphasize that the WLS method can be applied not only for the estimation of the

tail index but for the estimation of the slowly varying functions L; in (2) and (3).
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Table 5.1: Limiting variances for different weight functions and tail indices.

R(w) unweighted

u

1 +cosu e~ —logu 1/u
a=0.1,b=04|821.232 816.812 823.778 851.364 | 822.13

a=0.1,0=0.3]1512.62 151346 1538.35 1600.46 | 1512.83
a=0.2,0=0.3| 269523 269655 270796 272081 | 269524

R(w) unweighted

—Uu

l+cosu e —logu 1/u
a=0.1,0=04 1821962 819.166 829.786 860.498 | 822.66

a=0.1,0=0.3]1521.58 1523.69 1551.68 1617.04 | 1521.66
a=0.2,0b=0.3| 267666 267807 268969 270267 | 267666

R(w) unweighted

1+cosu e™ —logu 1/u
a=0.1,0=04|819.423 816.278 826.109 856.14 | 820.164
a=0.1,b=0.3 | 1516.49 1518.31 1545.6 1610.22 | 1516.6

a=02,0=0.3| 268011 268151 269308 270604 | 268012

R(w) unweighted

1 +cosu e —logu 1/u

=0.1,06=0.4 | 840.595 838.929 825.157 885.102 | 841.151
a=0.1,0=0.3]1551.91 1555.02 1585.51 1653.45 | 1551.89
a=0.2,0=0.3| 266776 266924 268099 269406 | 266775
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Table 5.2: Average simulated tail index estimates (Mean) for sample size n = 700 and for

Lo =1.
Mean
WLS OLS . .
7@ 5o=1 Po=2 Jo=3 =1 pv=2 jo=3 Hill | Pickands | DEdH
2.25(1.25) | 2.3777 2.4751 2.5088 | 2.4271 2.4803 2.4825 | 2.2396 | 2.2703 | 2.7346
2(1) 2.0741 2.1231 2.2423 | 2.0902 2.1162 2.1177 | 2.0038 | 1.9998 | 2.4988
1.833(0.833) | 1.9119 1.9249 1.9405 | 1.9248 1.904 1.8959 | 1.8404 | 1.8471 | 2.3354
1.667(0.667) | 1.7163 1.6915 1.7274 | 1.7217 1.7019 1.7058 | 1.6743 | 1.6902 | 2.1692
1. 556(0 556) | 1.5949 1.6294 1.5951 | 1.6017 1.5822 1.5637 | 1.5534 | 1.5567 | 2.0483
1.5(0.5) 1.5239 1.5448 1.5518 | 1.5222 1.5613 1.5668 | 1.5005 | 1.4942 | 1.9955
1. 333(0 333) | 1.3639 1.389 1.3874 | 1.3598 1.3335 1.3136 | 1.3347 | 1.3294 | 1.8296
1. 25(0 25) | 1.2956 1.2471 1.242 | 1.2741 1.2585 1.2629 | 1.2476 | 1.2474 | 1.7426
1.2(0.2) 1.2281 1.2483 1.2189 | 1.1967 1.2204 1.2089 | 1.1993 | 1.2144 | 1.6942
1. 182(0 182) | 1.1742 1.1891 1.199 | 1.1776 1.1725 1.1677 | 1.1833 1.174 1.6783
1. 167(0 167) | 1.1628 1.1953 1.1826 | 1.162 1.158 1.1452 | 1.167 1.1624 1.662
1.1(0.1) 1.1116 1.0926 1.1538 | 1.0899 1.0755 1.0725 | 1.1006 | 1.0952 | 1.5955
1. 067(0 067) | 1.0761 1.106 1.0895 | 1.0456 1.0597 1.0431 | 1.0673 | 1.0562 | 1.5622
1.05(0.05) | 1.0674 1.0607 1.0866 | 1.0527 1.0476 1.0438 | 1.0496 1.048 1.5445

Table 5.3: Empirical mean square errors (MSE) of tail index estimates for sample size
n = 700 and for Lo = 1.

MSE
WLS OLS
(@) Po=1 Po=2 po=3|po=1 po=2 po=3
2.25(1.25) | 0.0953 0.1565 0.2224 | 0.1540 0.2701 0.3855 | 0.0177874 | 0.0592 0.2525
2(1 0.0794 0.1121 0.1865 | 0.1029 0.1244 0.1942 | 0.0112351 | 0.0491 0.2600
1.833(0.833) | 0.0599 0.1134 0.1550 | 0.0714 0.1257 0.1673 | 0.0075016 | 0.0427 0.2598
1.667(0.667) | 0.0594 0.0817 0.1164 | 0.0565 0.0832 0.1218 | 0.0062222 | 0.0412 0.2471
1556(0556) 0.0515 0.0935 0.0938 | 0.0404 0.0593 0.0845 | 0.0056131 | 0.0405 0.2482
1.5(0.5) 0.0465 0.1105 0.1352 | 0.0471 0.0640 0.0909 | 0.0036438 | 0.0395 0.2501
1333(0 333) | 0.0400 0.0679 0.1064 | 0.0292 0.0350 0.0627 | 0.0033354 | 0.0397 0.2432
(
1.2(0.
(
(
L.1(0.
(

Hill Pickands | DEdH

14

1. 25 0.25) | 0.0413 0.0754 0.0878 | 0.0229 0.0445 0.0580 | 0.0009903 | 0.0436 0.2447
2) 0.0388 0.0716 0.1090 | 0.0196 0.0301 0.0456 | 0.0007893 | 0.0358 0.2468
0.182) | 0.0335 0.0620 0.0894 | 0.0216 0.0284 0.0365 | 0.0007318 | 0.0335 0.2453
0.167) | 0.0304 0.0708 0.1008 | 0.0160 0.0341 0.0476 | 0.0005918 | 0.0372 0.2462
1) 0.0356 0.0788 0.1001 | 0.0191 0.0384 0.0489 | 0.00048686 | 0.0332 0.2454

1. 067 0.067) | 0.0358 0.0652 0.1013 | 0.0169 0.0318 0.0455 | 0.00024720 | 0.0313 0.2445
1.05(0.05) 0.0308 0.0625 0.0845 | 0.0149 0.0238 0.0315 | 0.00022473 | 0.0351 0.2443

1. 182
1. 167
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Regression estimators for the tail
index

We propose a class of weighted least squares estimators for the tail index of a distribution
function with a regularly varying upper tail. Our approach is based on the method
developed by Holan and McElroy (2010) for the Parzen tail index. We prove asymptotic
normality and consistency for the estimators under suitable assumptions. Through a
simulation study, these and earlier estimators are compared in the Pareto and Hall models
using the mean squared error as criterion. The results show that the weighted least
squares estimator is better than the other estimators investigated. The results presented
in this chapter are based on [ANSV].

6.1 Introduction and main result

Let X1, X5, ... be independent random variables with a common right-continuous distri-
bution function F', and for each n € N, let X;, <--- < X,,,, denote the order statistics
pertaining to the sample Xy, ..., X,,. Let R, be the class of all distribution functions F
such that 1 — F is regularly varying at infinity with index —1/c, that is,

1—F(x) =2 Y% ), 1<z<o0,

where /¢ is some positive function on the half line [1,00), slowly varying at infinity and
a > 0 is a fixed unknown parameter to be estimated. Introducing the quantile function

Q) of F defined as
Q(s):=inf{z: F(x) >s}, 0<s<1, Q(0):=Q(0+),
it is well known that F' € R, if and only for some function L slowly varying at zero,

Q(l—s)=s%L(s), 0<s<l. (6.1)

32
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Several estimators exist for the tail index v among which Hill’s estimator is the most
classical. Hill (1975) [Hil75] proposed the following estimator for the tail index a:

kn

1
G = . > log Xy ji1n —10g Xy,
n =1

where the k, are positive integers, which in theoretical asymptotic considerations will

satisfy the conditions
1<k,<n, k,—o0 and k,/n—0 asn— oc.

The asymptotic normality of a{/)) was first considered by Hall (1982) [Hal82] in the
following submodel of R,:

1— F(z) =2 Y201 + Cox™P/*{1 + 0(1)}], asz — oo,
for some constants C; > 0 and Cy # 0. This is equivalent to
Q1 —s) =s"Di[14 Dys’ {1 +0(1)}], s—0, (6.2)

where Dy = C¢ and D, = Cy/CY.

Another estimators were proposed by Pickands (1975) [Pic75], Dekkers et al. (1989)
[DEdHS9], to name a few.

Assuming that F' is absolutely continuous with density function f, Parzen (2004)
studied the following alternative model for the right tail of the distribution:

fQ(s) == f(Q(s)) =1 —=9)"Li(1 —s), se(1/2,1],
where v > 0 is a finite constant and L; is slowly varying at zero. The parameter v is
called the Parzen tail index of the density-quantile function fQ(-).

Based on an orthogonal series expansion for Ly, Holan and McElroy (2010) [HM10]
introduced a regression estimator for the Parzen tail index using ordinary least squares.
AL-Najafi and Viharos (2020) [ANV20] obtained a more general class of estimators for v
using weighted least squares. We adopt this method to estimate the classical tail index
a. Following the idea of Holan and McElroy (2010) [HM10], we assume that the slowly

varying function L in (6.1) admits the truncated orthogonal series expansion

L(s) = exp {00 +2 zp: 0 cos(27rks)} ,

k=1
where p > 0 is a fixed integer, and 6, ..., 0, are unknown parameters. We suppose that
p < p, where p is a prespecified integer. The knowledge of p is not assumed, condition

p < p gives only an upper bound for p. It follows that

p
logQ(1 — s) = —alogs + 6y + 2> 6 cos(2mks). (6.3)
k=1
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Let @, be the empirical quantile function defined as

k—1 k
<s<—, k=1,2,...,n.
n n

Qn<8) = Xk,n if

Based on the representation (6.3), we obtain the regression equations

p
log @, (1 — s;) = —alogs; + 6y + 2 6 cos(2mks;) + (s;),

k=1
where
£(s) = log(Qn(1 —5)/Q(1 = 5)) (6.4)
is the residual process, s; = j/n, j = [nal,...,|nb|, a < b are fixed constants

taken from the interval (0,1), and 0, = 0 for k& > p. The value p is chosen by the
statistician. We propose a class of estimators for a using weighted least squares. We

choose some nonnegative weights of the form w;,, = R(s;) with some weight function R.
Set y; :=log Q,(1 — s;),

Y= (yfna% s 7y\_nbj),7
W .= diag(w[mw,n, ce ,wtanm),
and let X := [G*, Gy, 2GY, . .., 2G5], where

!/

G = ( —log(Sfna1)s - -+ — 10g(8l”bJ)) ’

Gy = (cos(Zwks(mq), - ,cos(27rksmbj)>,, k=0,...,p.

Set B35 := (a, 0o, 01, .. .,05)". By minimizing the weighted sum of squares

»Up
[nb] 7 )
> Win (yj +alogs; —0—2) 0 COS(27rk3j)) ,
[na] k=1

we obtain the following estimator of s
By = (X'WX) ' X'Wy.
Then the weighted least squares estimator of o can be written in the form
a") = e\ f5 = e (X'WX) ' X' Wy, (6.5)

where e; is the p 4+ 2 dimensional vector defined as e; = (1,0,0,...,0)".

We assume the following conditions on the underlying distribution:
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(@Q1) The distribution function F'is continuous and twice differentiable on (a*, b*), where
a* = sup{x: F(zx) =0}, b* = inf{z: F(z) =1},—00 < a* < b* < o0 and f(z) :=
F'(x) # 0 on (a*,b*).

(Q2) sup,. <y F(2)(1 = F(2))|f'(2)/ f*(2)] < o0.

(@3) Supy_pcic1—q 1/|Q(8)] < 00, sUpy_ycic1_ 1/fQ(s) < 00 and

SUP;_p<s<1-a 1/[fQ(8)Q(s)| < .

We will show that the limit matrix M(a,b, R) := lim, ., n ' X’WX exists (see the
proof of Theorem 6.1.1 in Chapter 3). Let (v*, v, ..., v5) be the first row of M(a, b, R)™,

and set Gr(u) == R(u)( —v*logu + vy + 2 212:1 (i cos(27rk:u)) for u € (0,1).

Moreover, we suppose the following conditions:

(R) The weight function R is nonnegative and Riemann integrable on [a, b].
(M) The matrix M(a,b, R) is invertible.

Now we state our main result for the estimator a™). Throughout, L5 denotes
convergence in distribution, -5 denotes convergence in probability, and limiting and

order relations are always meant as n — oo if not specified otherwise.

Theorem 6.1.1. Assume that the conditions Q1 — Q)3 are satisfied for the underlying
distribution and suppose that the quantile function Q) admits the representation (6.3).
Moreover, assume the conditions (R) and (M), and assume also that the percentiles s;
are chosen from a closed set U = [a,b], 0 < a < b < 1, such that s; = j/n, j =
[nal,...,|nb], and p < p. Then

V(@) —a) = N(0, V), (6.6)
where

dsdt. (6.7)

o pGr(&)GRM)((1 =) A (1=t = (1—s)(1—1))
V- | —Ga-soa-vren-man-o

The proof is in Chapter 6.4.

6.2 Asymptotics for p — oo

The estimation method proposed in Section 6.1 is heavily based on the assumption p < p.

However, choosing p < p inflicts a bias. To overcome this difficulty, we adjust our method
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to study asymptotics when p — oo. In this section our investigation is based on the

following series expansion:

log L(s) ~ Z Orpr(s),
k=0

where
1
P R
s—a 1
¢r(s) = cos (ka — a) TEEYTOI k=1,2,...,

and 0, = [log L(x)pi(z)R(z)dx. The sequence ¢rVR, k = 0,1,..., is a complete
orthonormal system in L?[a,b]. For convenience, in this section we use the percentiles
sj=a+j=% j=0,...,n— 1. Similarly as in Section 6.1, with y; := log Q,(1 — s;) and
wj, = R(s;) define

!/
?

Y = (y07 cee Jyn—1>
W = diag(won, - - -, Wn-1n)s
and let X := [G*, Gy, G, ..., G5], where

G* = ( —logsg,...,—logs,_ ,,
( " /1) (6.8)
Gk = (@k(s(])w--y%pk(Snfl)) , ]{;:077ﬁ
Set
3
bs(s) :==1log L(s) — > Orpr(s). (6.9)
k=0

Recall (6.4). Then we have

p
lOg Qn(l — Sj) = — log Sj + Z Hkgok(sj) + b(Sj) + €(Sj).
k=1

By minimizing the weighted sum of squares

Lnb]

P 2
Z ijL(yj + alogs; — Z 91:901@(53’» )
(] k=0

we obtain the following estimator of a:

aW) = (X'WX) ' X'Wy.

n
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In order to formulate the result for &), we need the series expansion of the — log(-)

function:

—logs~ 3 cjip;i(s), (6.10)
=0

where ¢; = [*(—logz)p;(z) R(z)dx. We assume the following conditions on the sequences

D, 0, and ¢,:

Py) p— oo and p/n — 0.
P,) For each n, 3(p+1)/n < 1.
Py)ny2s c? — oo.

)

(
(
(
(Py) 0,,/c, — 0.

Theorem 6.2.1. Suppose the conditions (P1) — (Py) are satisfied. Then aM") -5 «.

6.3 Simulation results

In order to make a comparison with existing proposals, simulations were done performed
by the Matlab software. The samples were generated from the strict Pareto model L = 1
n (6.1) and from the Hall model (6.2). The Hill, Pickands, DEdH (Dekkers, Einmahl
and de Haan) and the weighted least squares (WLS) estimators were included in the
simulation study. We used the values n = 5000, a = 0.001, b = 0.4 and p = 1, 2,3, and
the weight function R(s) = s/500 for the WLS estimator. In case of R = 1, we refer to
as ordinary least squares (OLS) estimator. The tail indexes were chosen between 0.5 and
20. For the Hill, Pickands and DEdH estimators the simulations were done for sample
size n = 5000 and sample fraction size k, = 200. All the simulations were repeated 1000
times.

Tables 6.1 and 6.2 contains the empirical mean square errors (MSE) and the aver-
age simulated estimates (mean) for the strict Pareto model. We conclude that in the
submodel L = 1 for all a values, the WLS estimator performs better than the other
estimators investigated.

Tables 6.3 and 6.4 presents the simulation results for the Hall model. Specifically,
we used the parameters D; = 0.4, Dy = 1 and § = 0.01. We see from Table 6.3 that
the WLS estimator performs better than the other estimators, and the OLS estimator is
competitive with the Hill estimator especially for p = 3.

Given the values of [a,b], which determines the number of values taken from the

simulation data, we experimented with some expanding intervals to find an appropriate



6. REGRESSION ESTIMATORS FOR THE TAIL INDEX 38

range, and we stop when we obtain reasonable stability of the estimator of a. Figure
6.1 shows the tail index estimates for WLS approach for different values of (a) for the
Preto distribution with o = 1.8 (left panel) and the av = 5 (right panel), the values of
the remaining o with both Pareto distribution and Hall model give fairly similar results.
The results are almost stable when b=0.45 and (a) is very close to zero, otherwise, the

values start to scatter and move away from the true alpha value.

Table 6.1: Empirical mean square errors (MSE) of tail index estimates for the Pareto model
and for sample size n = 5000.

MSE

WLS OLS . .

. =1 =2 =3 =1 =2 =3 Hill Pickands | DEdh
0.5 | 0.00049 0.000668 0.000945 | 0.00065 0.00098  0.001357 | 0.001172 | 0.017866 | 0.006558
0.8 | 0.001183 0.001572 0.002261 | 0.00161  0.002368 0.00325 | 0.003325 | 0.02146 | 0.008336
1 10.001756 0.002394 0.003668 | 0.002425 0.003697 0.005203 | 0.005457 | 0.024083 | 0.010687
1.2 1 0.002821 0.003826 0.005298 | 0.003641 0.005365 0.007366 | 0.007532 | 0.025102 | 0.01219
1.5 0.00451 0.006126 0.008397 | 0.005867 0.008671 0.01188 | 0.01052 | 0.03013 | 0.016092
1.8 | 0.006049 0.007993 0.011399 | 0.007694 0.011178 0.015334 | 0.016801 | 0.035497 | 0.021695
2 1 0.007639 0.010499 0.014921 | 0.010842 0.016055 0.022093 | 0.020194 | 0.034981 | 0.025421
3 | 0.017668 0.024202 0.034858 | 0.023523 0.034985 0.047931 | 0.044665 | 0.063986 | 0.049712
4 10.029136 0.040729 0.05895 | 0.03926  0.058641 0.080589 | 0.0807 | 0.094346 | 0.089062
5 1 0.047688 0.063472 0.096547 | 0.064079 0.094958 0.13097 | 0.114725 | 0.13557 | 0.121162
5.5 0.055014 0.076889 0.106532 | 0.074036 0.110494 0.151476 | 0.142506 | 0.16283 | 0.144236
6 | 0.071694 0.103854 0.141469 | 0.089924 0.129628 0.171023 | 0.173129 | 0.188113 | 0.175776
10 | 0.191172 0.262768 0.375258 | 0.233466 0.339353 0.45505 | 0.525182 | 0.558138 | 0.527627
15 | 0.402501 0.535825 0.802723 | 0.582015 0.884501 1.226799 | 1.169978 | 1.167519 | 1.176961
20 | 0.792631 1.095608 1.579634 | 0.996911 1.434474 1.916717 | 2.100758 | 1.981171 | 2.101663

Table 6.2: Average simulated tail index estimates (Mean) for sample size n = 5000 and for
the Pareto model.

Mean
WLS OLS

«a p=1 p=2 p=3 |p=1 p=2 p=3
0.5 | 0.500964 0.501233 0.502571 | 0.503044 0.504023 0.505077 | 0.501476 | 0.495427 | 0.489674
0.8 | 0.801937 0.802524 0.803656 | 0.805577 0.807293 0.809021 | 0.800238 | 0.801774 | 0.783686
1 |1.001483 1.001634 1.00246 | 1.005316 1.00711  1.009101 | 1.001825 | 1.004785 | 0.98694
1.2 | 1.201603 1.201804 1.202563 | 1.206612 1.208947 1.211492 | 1.197918 | 1.195252 | 1.185589
1.5 | 1.502324 1.502346 1.502635 | 1.509168 1.512328 1.515847 | 1.501775 | 1.492907 | 1.485452
1.8 | 1.805614 1.807831 1.808328 | 1.812501 1.815819 1.818663 | 1.801355 | 1.80158 | 1.787262
2 1 2.006075 2.008649 2.012745 | 2.016946 2.022076 2.026978 | 2.004505 | 2.004395 | 1.988554
3 13.004755 3.002857 3.007692 | 3.013462 3.017458 3.022898 | 3.007171 | 3.002503 | 2.996076
4 | 4.00635 4.009942 4.017468 | 4.028563 4.039037 4.049668 | 3.985504 | 3.98685 | 3.966318
5 15.007934 5.007172 5.011766 | 5.020999 5.027234 5.034629 | 5.004943 | 5.012502 | 4.98503
5.5 | 5.521636 5.523414 5.535038 | 5.54912  5.562017 5.576119 | 5.498843 | 5.49632 | 5.48765
6 |6.010705 6.020936 6.035309 | 6.042542 6.057651 6.071267 | 6.00263 | 6.012857 | 5.987134
10 | 10.03551  10.0453 10.04212 | 10.06879 10.0851  10.099 9.997173 | 10.04161 | 9.981231
15 | 15.00041 15.02029 15.05347 | 15.07633 15.11221 15.14596 | 15.05984 | 15.02914 | 15.0449
20 | 20.0481 20.05749 20.09294 | 20.11033 20.14008 20.17114 | 20.01204 | 20.04928 | 19.99807

Hill Pickands | DEdh
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Table 6.3: Empirical mean square errors (MSE) of tail index estimates for the Hall model
and for sample size n = 5000.

MSE

WLS

OLS

]

p=1

p=2

p=3

p=1

p=2

p=3

Hill

Pickands

DEdh

N = === OO
[CBRVAN ) oo Ut

= Oy U O W
(S

o v o

[\~

0.000495
0.001174
0.001749
0.002806
0.004482
0.005985
0.007566
0.017587
0.029026
0.04754

0.054727
0.071496
0.190659
0.402258
0.791792

0.000667
0.001552
0.002379
0.003801
0.006087
0.007897
0.010387
0.024119
0.040556
0.063301
0.076546
0.103502
0.262089
0.5353

1.094529

0.00092558
0.00222172
0.00363231
0.00525345
0.00834029
0.01127938
0.01474723
0.03469301
0.0586581

0.09626703
0.10602299
0.14091586
0.37450066
0.80169824
1.57797168

0.000632
0.00156

0.002374
0.003571
0.005763
0.007554
0.010648
0.023338
0.038909
0.063773
0.073448
0.089385
0.232588
0.580913
0.995368

0.000946
0.002292
0.003616
0.005259
0.008519
0.010987
0.015785
0.034725
0.058141
0.094531
0.109716
0.128878
0.338214
0.882852
1.432428

0.001306
0.003147
0.005088
0.007218
0.011673
0.015093
0.021747
0.047576
0.079932
0.130401
0.150488
0.170073
0.453664
1.2246

1.914136

0.001159
0.003306
0.00541
0.007516
0.010459
0.016721
0.020076
0.044474
0.08067
0.114477
0.142289
0.172846
0.524723
1.168656
2.099641

0.017902
0.02142

0.024003
0.025114
0.030153
0.035417
0.034877
0.063841
0.094312
0.135233
0.162625
0.187722
0.557207
1.166491

1.979735

0.00665892
0.00847904
0.01078627
0.01229618
0.01618835
0.02175322
0.02545883
0.04963012
0.08921482
0.12110866
0.14413155
0.17564752
0.52732507
1.17578666

2.10068457

Table 6.4: Average simulated tail index estimates (Mean) for sample
the Hall model.

size n =

5000 and for

Mean

WLS

OLS

p=1

p=2

=3

p=1

p=2

p=3

Hill

Pickands

DEdh

0.5
0.8

1.2
1.5

0.49603
0.797
0.996551
1.196672
1.497391
1.800674
2.001136
2.999823
4.001418
5.003001
5.516692
6.005772
10.03057
14.99548
20.04316

0.496302
0.79759
0.996707
1.196878
1.49742
1.802891
2.003709
2.997934
4.005012
5.002247
5.518475
6.016001
10.04036
15.01536
20.05255

0.497636
0.798724
0.997539
1.197643
1.497717
1.803397
2.007804
3.00277

4.012537
5.006845
5.530098
6.03037

10.03719
15.04854
20.08801

0.498107
0.800636
1.000382
1.201678
1.50423

1.807559
2.011997
3.008533
4.023621
5.016071
5.544169
6.037599
10.06385
15.07139
20.1054

0.499084
0.802349
1.002176
1.204011
1.507388
1.810876
2.017123
3.01253

4.03409

5.022308
5.557062
6.052704
10.08015
15.10728
20.13515

0.500135
0.804074
1.004164
1.206553
1.510903
1.81372

2.02202

3.017969
4.044716
5.029703
5.57116

6.066316
10.09406
15.14102
20.16621

0.496567
0.795342
0.996921
1.193032
1.496874
1.796457
1.999599
3.002265
3.980627
5.000043
5.493949
5.997733
9.99228

15.05493
20.00714

0.490542
0.796859
0.999856
1.190336
1.487989
1.796655
1.999456
2.99757

3.981932
5.007562
5.491392
6.007918
10.03666
15.0242

20.04434

0.484814
0.77882
0.982061
1.180723
1.480568
1.782377
1.98366
2.991178
3.961447
4.980135
5.482761
5.982241
9.97634
15.03999
19.99317

6.4 Proofs

Let g,(s) be the quantile process defined as

tn(s) = Vn(Qn(s) — Q(5)),

0<s<l1.

The proof is based on the strong approximation of the quantile process.

39

Theorem 6.4.1. (Csorgd and Révész (1978) [CR78], Theorem 6.) Suppose that the
conditions Q1 and Qo are satisfied. Then on some probability space one can define a
sequence { B, (t) : 0 <t < 1}°°, of Brownian bridges such that

sup

0n<s<l—

on

£Q(5)gn(s) = Ba(s)

= O(n’l/2 logn),
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[ee] 24 ——WLS estimator of the Pareto distribution I ! ——WLS estimator of the Pareto distribution
w —a=18 [L
& 22F :
Busl %
K] S 4.
E 1.4 ug)
%1.2 § :
g E
10 0.62 0.64 0.‘06 0.68 O.‘l 0.‘12 O.‘14 0.‘16 O.‘18 0.2 30 0.62 0.64 0.(‘)6 0.68 O.‘l O.‘12 O.‘14 0.‘16 O.‘18 0.2
a a
Figure 6.1: Tail index estimates for WLS approach with Pareto distribution in (left panel)
from « = 1.8 and in (right panel) from a = 5.
where 6, = 25n" loglog n.
Proof of Theorem 6.1.1. We assume that the random variables X, X5, ... are defined
on the probability space given in Theorem 6.4.1. By a simple calculation,
[ Lnb] [nb] [nb] .
Z log? s;R(s;) — Z log s;R(s;) —2 Z log s; cos(2ms;)R(s;) ...
Jj= TEWJJ j=[nal Jj= thﬂJ
- Z log sjR(s;) Z]L:Hmﬂ R(sj) 2 Z cos(2ms;)R(sj) . ..
j=[nal j=[nal
By Riemann sum approximation, we get
lim ™' X'WX = M(a,b, R) (6.11)
[Plog®u R(u)du  — [*logu R(u)du —2 [*logu cos(2mu)R(u)du . . .
= 1P R(u)du 2 ¥ cos(2mu) R(u)du.. . .

— [Plogu R(u)du

Set € := (s(s(na]), e ,5(3Lan)), and

y* = (lOgQ<1 - 5[na]>7 s 7lOgQ(1 - SLan)))

Then we have y* = X 35, 6y = (X'WX) ' X'Wy* and hence o = ¢} 5 = €} (X'WX) 7' X' Wy*.
It follows that ¢ = y — y* and

Vn(a

)

—a)=

1
ﬁell (' X'WX) ' X' We =Y, + A,
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where Y, = n~/2e/ M (a,b, R) "' X'We and
Ay =n"e (' X'WX) ™ = M(a,b, R)™) X' We.

A straightforward calculation yields

1 [nb)

Yn = \/ﬁjz’.iﬂ 6(Sj)GR(Sj).

The main point of the proof is to show that
1 [nb]

— e(s;)Gr(s;) = N(0,V).
Va2 -

41

(6.12)

(6.13)

With 7,(s) := (Qn(l — s) — Q(1 — 5))/Q(1 — s), the residual process can be written as

e(s) = log(1 4+ ~vn(9)).

(6.14)

Set n(x) :=log(1+ ) — x, and let C' and & be some constants such that n(x) < Ca?,

if |#| <. Then we obtain Y, = Y,,; + A, 1, where

1 [nb) 1 [nb]

Yn,l = Z Vn(sj)GR(Sj)v Anl = = Z n(Vn(Sj))GR(Sj)'

VI sV

First we show that A, ;1 = op(1). On the event

E, = max w(si )] <oy,
{[na1<j<Lan (sl < }

we have
[nb]

1
Anl S CVA max  s) o S |Gals)]

[na]<j<|nb| j=[na]

With k1 := sup;_,<,<;_, 1/]Q(s)|, we obtain

2 2 9
ax Sj) S K su n\S) — S .
[na]<j<|nb] g J) - 11*b§8§plfa(Q (s) = Q(s))

Set e,(s) := fQ(s)g.(s) — Bn(s). With the Brownian bridges in Theorem 6.4.1 and

K2 = SUP|_p<s<i—qa 1/fQ(s) we get
1 |6n{3) + Bn(8)|

R A RN A TT

<2 sup (len(s)] + [Bu(s))).

VI 1—b<s<i-a
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It follows that

2,2 2
2 R1ka
n _ max s:) < su en(s)|+ su B, (s .
\/_[naKjSLan s5) < Vn (1—b§51§)1—a| () 1—b§s§1—a| ( )|>

Applying Theorem 6.4.1, we obtain v/n maxp,q <J<Lan v2(s;) = op(1). This, in com-
bination with P(E,) — 0 and * ZL" rma) [Gr(s5)| = J2|GRr(s)ds implies A, ; = op(1).

Now we decompose Y, ; as Y w1 =Yoo+ Ay o, where

1 B.(1-s,)Ga(s))
Y= X 00 s)Ql—s)

" j=Tna)
1 & en(1— s;)
f4n2 = 2 (;R(S')
0 2 Tl 0 sy R
To prove that A, 2 = op(1), we use the inequality
1 [nb)
Anp < ks sup  ea(s)| = D |Gr(s;)l,
1-b<s<l—a j=[na]

where

ks = sup  1/]fQ(s)Q(s)].

1-b6<s<l—a
By Theorem 6.4.1 we have A, » = op(1). We prove that the limit of Y}, is N(0, V') given
n (6.6). By the distributional equality

*

Ql & B(1-s;)Grls)) _
2= 5 ZJ@( SR —sy "ThEe

where B(-) is a Brownian bridge process, we obtain

1 — S C;R( )
le—s (1—2s)

The variance of the limit random variable is described in (6.7).

ds.

The last step is to prove that A, = op(1). Let (v}, von,---,v5,) be the first row of
(n ' X'WX)™' — M(a,b, R)~". Using statement (6.11), we have (v}, vo, . - . ) — 0.
Set

7pn

P
G (u) := R(u)( — v, logu + vg, + 2 Z Uk cos(27rk:u)), u € (0,1).

k=1
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Similarly as in (6.12),

1 [nb]
Ap=— > e(s))G"(s;)
Vi
et 5
R(s;)logs; + von
] [na] \/_ =[na]
[nb|
+2> vy, R(s;) cos(2mks;).
Z \/_ Zn(ﬂ J J

Each term in the last sum tends to zero, e.g., in the first term v} — 0 and applying (6.13),
in which Gg(s;) is replaced by R(s;)log s;, the sequence —= Z]Lnbfjnaw e(s;)R(s;j)log s; has

a weak limit.

[
To prove Theorem 6.2.1, we need three lemmas.
Lemma 6.4.2. With G}, given in (6.8) fori,j > 0 we have
b—a 20T, iy
hn(i,7) == WGE; =™ " ; ’ 6.15
(6.9) ! {1+21n—(7}>, if i = j, (6.15)

Proof. 1f 1 <4 < j then
CoN Sk —a Sp—a 2
hn(z,j)—Zcos(m a)COS(’/T]b_a>b_a
. kN 2
= Z oS (mn> oS (W]n) -
1” ! k k
:Z<cos( (i4+7)— )+COS (W(i—j)n>)

L gsin((n— D)\ 1 gsin((n— 2w

B 271( sin(m 4 * 1) 2n< sin(m %) * 1)
1 sin((1—g)m(i+5)) | sin((1 = 5)7(i — j))
n + nsm(’;j}b) " nsin(%%) .

Using the identity sin(mm — z) = (—=1)™*sin z, m € Z, we have

hay(i,5) = 711<<_1)i+j + (=1)"7 + 1) — i + z(_l)z’ﬂ"

The proof for the remaining cases is similar, therefore, is omitted. ]
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Lemma 6.4.3. Recall (6.10). If R(:) € C?[a,b] then

c;j=00"% asj— oo

Proof. With g(z) = log(a + z(b — a))\/R(a +b(z — a))\/Z(b —a),

—cj = /ab(log x)y\/ R(z) cos(jwzg : Z)\/;/:iadx

— /1 log(a + z(b — a))\/R(cH— b(z — a))\/2(b —a)cos(jmz)dz

—/ ) cos(jmz)dz.

Then, integrating by parts, we have

1

1 11
—cj:j—wsin(jﬁz)g(z) _0— ; j—ﬂsin(jwz)g'(z)dz

! 1s'n(' 2)g'(2)dz
=—— [ sin(jm

JjmJo T

1

= (eos(n)g ()| [ g cos(in)g’(2)d]
C gmgm I2))9 L, g2 i

1 -
— ol () = g'0)+ [ cosims)g’ ()]

It follows that
1 _

o < <am5llg D] + 190+ goa, 16"(0)) = 0.

[]

From Lemma 6.4.3 we obtain that the series .22, c;p;(s) converges uniformly on
la, b], and hence,
—logs => ¢jpi(s), z¢€la,b]. (6.16)
=0
Lemma 6.4.4. If0,,/c, — 0 then
Z;}in ‘Cjejl .

o) 2
7=n€j

Proof. Fix € > 0 and choose N such that |0, /c,| < ¢ is satisfied for all n > N. Then for
alln > N,
E(])in ’Cjej’ < Z;)in 56?’ _
00 2 — 00 2

i=nCj i=n €
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Proof of Theorem 6.2.1. The proof is inspired by the proof of Theorem 3 of [HM10].
Recall (6.4) and (6.9) and set

/ /
= (2(s0),-- 2(s0-1)) s by = (by(s0), .-, by(su-n)) - (6.17)
Similarly as in the proof of Theorem 6.1.1, we have

b
aW) — o= L MIIXW (e + b5), (6.18)
n

where

M, = —X'WX. (6.19)

My, 19
M [rn Hn] ’
where m,, = I’_T“G;WG*,
b—a ! ! /

and H, is a p+ 1 X p+ 1 matrix with elements h,(i,j) = =¢GiWG;, 0 < i,j < p. The

n
inverse of M, is given by

S —5 e H

M=
n —-H 'r,S7'" H '+ H 'r,S7 H|

where
S =m, —r H'r, (6.21)
(see e.g. Seber [Seb08, p. 293]). It follows that
MAX'W = (S-S HHYX'W =S HGW -7 H,'R,), (6.22)

where R, is the last p+ 1 rows of X'WW. Let f and g be real functions defined on the
interval [a,b] and set (f|g), = b’T“ ?:_& f(sj)g(sj). Then h,(i,7) = (@i|Rpj)n, and
using (6.16)

b—a

GWG; = (—log|Rejn = > _ ci(¢il Rpj)n = 3 ciln(i, ). (6.23)
' =0

=0

~

Thus r,, can be written as

ry = <Zcihn(i,0), . ,Zcihn(i,ﬁ)). (6.24)
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46
Define the vectors

c(p) = (coy...,c

)

[SH

(P) = (e s -+ )'

p+17...

and let H,, be the p+ 1 x 0o matrix with elements hn(i,7), 0 <i<p, p<j. Equations
(6.20) and (6.23) yield

v, = c(p) H, + d(p) H,. (6.25)
It follows that

G.W — T;Hgan =G W — g(ﬁ)’Rn —-T,.
where

T, =d(p)H H'R,. (6.26)
Again by (6.16), G.W = >72,¢;G W, and by a routine calculation c(p) R,
>7_0¢;G5W. Therefore, we obtain

GW —rH 'R, = Y ¢;GW —T,. (6.27)
j=p+1

Next we examine H,!. Let I be the p+1 X p+1 identity matrix and set O,, = Iz — H,,.
For an m x n matrix A with elements a;; define

1Alloo = max |ai|-
1<j<n
By Lemma 6.4.2, we have ||O,||oc < 3/n. This implies that if 3(p + 1)/n < 1, then
H,' = I;+ 72, 0. By induction, |Ofll < (5 + 1)*1(3/n)*. It follows that for
O = 21?;1 Ofw
~ 3 1
Ol £ ————.
101l < nl—(p+1)32
Recall (6.26). We show that ||T},||c = O(1/n). Using the decomposition H,* = I+ + 0,
we have

T, = d(p) H,, R, + d(p) H,OR,,. (6.28)
Let (d(p)'H.,)x denote the k-th component of the vector d(p)'H'.. k
Lemmas 6.4.2 and 6.4.3, for some K; > 0,

0,...,p. Applying

@E il = | 32 hal, e
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Furtheremore, letting Ky be an upper bound of ¢y (-)R(:), for some K3 > 0 and k =

0,...,n—1 we have
_ P,
@@ H R = |3 (2 hn<k,j>cj)%<sk>R<sk>
i=0 N j—pi1

~ (6.29)
p 0 p K

<K Y D [k f)e] < Ky Z
i=0 j—pt1 i=0 "

Thus we have ||d(p) H,Ry|lsc = O(1/n). A similar argument yields ||d(p)'H,ORy||oe =
O(1/n?). We then have

ITnllec = O(1/n). (6.30)
Next, we turn to examine S in (6.21). The order of the Riemann sum approximation
yields
b—a'™d b 9 1
My = > R(s;)log” s; —/ R(z)log xd:c—i—O(n). (6.31)
7=0 “

Applying (6.25),

v Hy = c(p) '+ d(p) Hy Hy = rD 47, (6.32)

For the first term, similarly an in (6.23), we have

P p o
i) = > ci{Rpj| —log), Z Z
=0 i=0 k=0
- - (6.33)
p P [e¢)
_ Z Z crhn(k, 7) + Zc] > crhn(k,j) =t + 2.
j=0 k=0 J=0  k=p+1
A similar argument as in (6.29) yields
) 1
L) =0—). (6.34)
np
Letting 6;; denote the Kronecker delta, we have
P PP P
t =3+ 3> cier(ha(G k) — 65) = > 5 + 2. (6.35)
j=0 =0 k=0 =0
By Lemmas 6.4.2 and 6.4.3, we have
P 1
(¥ < = (ch> ( ) (6.36)
n

[e=]

=
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To treat r(?) in (6.32) write
= d(p)' Hyro + d(p) H,Or.

Using again Lemmas 6.4.2 and 6.4.3, we obtain

5) H' 1 N7 A 1
ﬂmHJnZO&@)mﬂHﬂMHﬁmwzoaﬂ)

The sequence r,, is bounded, since

|(rn) |—

(i, k) ‘ < 32 |cil.
By (6.37) it follows that d(ﬁ)’ﬁ,’lérn = O(p/n?) and hence
7’9 = O(1~>
np
Equations (6.21)-(6.38) above imply
S = / ) log? :vd:);—Zc +O( )

By Parseval’s equality, S can be written as

S= Zc+0<>

p+1

Recall (6.17) and (6.26). By (6.18), (6.22) and (6.27),

R 1
J p+1
1 ad 1
- GNW |V We — —T,
nS(j:Zﬁ;rlcj J ) £ nsS .

1 e 1
, ns< 2 Cﬂ'G?'W)b% TR
j=p+1

=G0+ &P+ 60+ ¢

where T, satisfies ||T,]|cc = O(1/n).

Let (z|y) = 2’x be the inner product of the vectors z,y € R and let ||z||; =

48

(6.37)

(6.38)

(6.39)

(6.40)

{z]z)

denote the induced norm of z. Using the representation (6.14) and Theorem 6.4.1, one

can obtain sup,<,, [e(s)| = Op(1/y/n), from which it follows that H\/ W§H2 = Op(1).
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Next we determine the order of Z;?;; 1 ch;» vW . Then we have

| > e, =( 2

j=p+1 =p+

cJG'\/_’ Z ;G >
1

j=p+1

= Z Z cic; (GNWIG,VI)

—p+1j p+1
= Z Z CiCj Z @i($m) i (sm) R(sm)
i=p+1j p+1
Cihn
i= p+1J—p+1
n 9
.cj(h — 045) + = > .
i=p+1 j=p+1 az’:5+1
By Lemmas 6.4.2 and 6.4.3, for some K > 0,
> 11 n K
HZ%G’V H<KZ 2 oapt *Zc =+
=p+1 i=p+1 j=p+1 i=p+1 p i=p+1

Therefore, using the Cauchy-Schwarz inequality, for £V in (6.40) we have

1 o
9] < IS Y oG] Well
g v " _ (6.41)
S
nyE, 2 +0()\ P
Hence, by condition (Ps) it follows that
€] = op(1). (6.42)

For ¢@) by (6.30) and condition (Ps), we have

‘S|| Z e (sm)| < @O(i)n@(\}ﬁ) = nlls‘op(;ﬁ) (6.43)
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Next we turn to examine 57(13)

( ) ch;W)bgz S 6 gy Rlsmts(sn)

j=p+1 j=p+1 m=0

n—1
Z Gj Z ©j(8m)R(5m) Z 00k (Sm)
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By Lemmas 6.4.2 and 6.4.3, for some K > 0,

M 0| < K Z Z |9k|<* Z |0
j=p+1 k=p+1 j=p+1 k-p—l—l k=p+1
Thus . K - ) -
€9 < — Z |9k|+7 Z |c;0,]-
nlsl 7 =, T - als] =

Condition (P3) and Lemma 6.4.4 implies

&Y = 0. (6.44)
Finally, we examine £, We have
n—1 n—1 0
T, b; = Z (Tn)mbg(sm) = Z (T)m Z Orpr(Sm)
m=0 m=0 k=5+1

Applying (6.30) and condition (Ps), for some K > 0 we obtain

W) <

2 Z 16k = |S| S 16 = 0. (6.45)

2
IS -t

Equations (6.42)-(6.45) imply the statement of the theorem. O



7

Application

In this chapter, we investigate various different models to study the spread of Corona
Virus Disease-2019 (COVID19) in Iraq and Egypt. The logistic and Gaussian models
were utilized to forecast and predict the number of confirmed cases from both countries.
We estimate the parameters which give the best fit to the incidence data, the results
provide severe forecasts for Iraq from February 15 to October 8, 2020 and for Egypt
from February 22 to October 8, 2020. Using Gaussian and logistic regression models, a
reasonable concord with officially reported cases was shown by the forecasted cases. We
developed a generalized SEIR model for the spread of COVID-19 taking into account
mildly and symptomatically infected individuals. The extreme value theory approach for
finding and modeling Covid-19 peaks was studied, and one of the prime successes EVT is
the return level idea. Our sensitivity analyses of the basic reproduction number conclude
that the most effective way to prevent COVID-19 cases is decreasing the transmission
rate. The findings of this study could therefore assist Iraqi and Egyptian officials to
intervene with the appropriate safety measures to handle the increase of the COVID-19
cases. The results presented in this chapter are based on [TAN20,TAND20]

7.1 Methods

7.1.1 Logistics Growth Model

The logistic growth model in mathematical epidemiology is a regression model frequently
used to estimate the growth of a population as exponential, then followed by a reduc-
tion in growth, with a bound provided by a carrying capacity. The logistic population

growth happens if the population growth rate declines with an increase in the number of

51
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individuals. The logistic model introduced in [Bacll,Bat20] takes the form:

o' — rc(1 - [C;) (7.1)

where C' denotes the accumulated number of cases, » > 0 is the rate of infection and
K > 0 is the final epidemic size. The number of infected cases is define as the solution

of (7.1) and given by
K

T 14 bert

o(t)

and Cy is the initial population. The parameters r and K can be

(7.2)

where b = Kgco
0

estimated from the data of the epidemic. The maximum growth rate peaks can be
In(b)

estimated at the time ¢, = ==, and the number of cases at this time is C,, = % Thus,

the growth rate at the maximum peak is given by

, rkK

7.1.2 Gaussian model

To model the time-dependent daily change of infections, we employ a simple Gaussian
model. Let I(t) denotes the time-dependent Gaussian function [SSSK20,5520] and takes
the following form:

1) = e (%) (7.3)

where I denotes the maximum value at time g and o controls the width. Gaussian
model is important despite its simplicity, still have predictive power and use it to predict
the peak number of infected per day and peak date, in addition, a numerical study
explained that the Gaussian model is a special case of SIR model when imposing gradual
of social distancing through a linear drop in the infection rate [BT20]. Gaussian model
characterized by three independent parameters: a variance, a maximum height and a
time of the maximum height (peak date). Some may argue that with increasing time,
the rate of growth should decrease, the behavior of the logistic model and Gaussian
model are therefore very similar results: epidemics are initially exponential, and later
approaches zero when the population size approaches the carrying capacity thus give rise
to bell-shaped daily quantities. The main difference between them is the way that the
functions approaching zero. The Gaussian function converges to zero quickly, like the
function e~** while the logistic function is simply the exponential in that aspect e”, and
the logistic growth model is often used to provide the future total epidemic size of the

variable.
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7.1.3 Compartmental model for COVID-19 transmission

We spilt the human population into seven compartments: susceptible S(t), exposed E(t),
symptomatically infected I,(t), mildly infected 1,,(t), treated H(t), recovered individuals
R(t), and D(t) is the individuals who lose their lives due to the COVID-19. The total

size of the population at any time ¢ is given by
N(t)=S(t) + E(t) + Ln(t) + L,(t) + H(t) + R(t) + D(t).

We do not add separate compartments for the quarantined individuals to keep our model
simpler. Susceptible humans (S) are those who can be infected by COVID-19. Once
having contracted the disease, an individual progress to the exposed class (F), these
individuals do not have any symptoms yet. Following the incubation period, exposed
individuals move to one of the symptomatically infected class (/) and the mildly in-
fected class (1,,), based on whether that person shows symptoms or not. Mildly infected
progress to the recovered class (R) or the symptomatically compartment (I5). Symp-
tomatically infected move to the treated compartment (H) which includes those who
reported hospitalized. After the infectious period treated individuals move the recovered
class (R).

(=== mmm

(s

Figure 7.1: Follow diagram of the COVID-19 transmission. Blue arrows indicate transition
from one compartment to another. Light and dark coloured nodes depict noninfected and
infected compartments, respectively.

The transmission dynamics is shown in the flow diagram (see Figure 7.1) and our
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model takes the form

BeE(t) + B dm(t) + L(t) + BrH(1)

S(t) = - N D S(t)
, CE(t) + Bl () + L(t) + BrH(t

) = PO o) O L O g

II(t) = OvE(t) — oply(t) — ol,(t), (7.4)
L) = (1= OWE) + o L(t) = 0. L(t) — &L (1),

H'(t) = 0,1,(t) — on H(t) — 6, H (1),

R(6) = onln(t) + o1 H (1),

D'(t) = GL,(t) + 6, H (1),

The description of the model parameters are summarized in Table 7.1. Particularly, g
stands for transmission rate from symptomatically infected to susceptible, while for trans-
mission rates from exposed, mildly infected, and treated to susceptible are obtained by
multiplying 8 by Be, 8, and [, respectively. The parameter 6 is the fraction of asymp-
tomatically infected among all infected people. The length of latent period for humans is
1/v and 1/0,,,1/0, denote the length of infected period for mildly and symptomatically
infected people, respectively, while 1/ is the length of the mildly infected period until

one gets severely infected.

Table 7.1: Description of the model (7.4) parameters.

Parameters Description

I5; Transmission rate from infectious classes to susceptible
Be, B, Bh The relative transmissibility of F, I,,, and H, respectively
0 Proportion of asymptomatic infections
o Progression rate from I,;, to I
O Progression rate from I; to H
Om,Oh Recovery rates
ds, On Disease-induced death rates
v Incubation rate

7.1.4 Parameters estimation and Sensitivity

To estimate the parameters of the logistic growth model (7.1) and the Gaussian model (7.3),
which give the best fit to the epidemic data, we employ the nonlinear least-square curve
fitting to the incidence curve given by equation C’(¢) and I(t), respectively. As per the
first observation, the initial number of Cj cases was set. The parameters of the model (7.4)

giving the best fit to data can be estimated by applied Latin Hypercube Sampling. This
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is a sampling method which is used to measure the variation of several parameter values
at the same time (see [MBC79] for details). The key idea of the method is to produce a
representative sample from the ranges for all parameters shown in Table 7.6. To every
element of this sample set, the solutions of the model (7.4) are (numerically) calculated.
Finally, we apply the least-squares method to find the parameters providing the best fit.
To identify the parameters w.r.t their effect on the basic reproduction number, we will
apply Partial Rank Correlation Coefficients analysis (PRCC, see, e.g. [BD94]), to per-
form sensitivity analysis. The PRCC-based sensitivity analysis measures the effect of the
parameters on the basic reproduction number, while we change the parameters in the

given ranges.

7.1.5 Return level estimation

The application of EVT offers different techniques to study the behavior of a sample with
very high or very low levels. One of the important techniques of extreme value theory is
the idea of the return level. The return level is strongly related to the generalized Pareto
distribution (GPD). We will use it to investigate the upper tail distribution properties
of the infection of the COVID-19 epidemic. In this section, we assume that the daily
recorded new confirmed cases are independent and identically distributed. This assump-
tion is needed for our statistical analysis, and it is also assumed in [AKIT20]. In this
subsection, we follow the methods and definitions given in [CBTDO01, TR19].

Let X be a random variable with unknown cumulative distribution function F', the dis-
tribution function of the excesses over the threshold w of this random variable is called
excess distribution function over the threshold u denoted by F;,, defined as

Flu+z)— F(u)

Fuz)=PX—u<z|X>u) = = F ) ,

0<z<z"—u, (7.5)

where 1 — F'(u) is the exceedance probability, and z* right endpoint it could be finite or

infinite. The mean excess function of X denote the mean residual life function is
e(u) =E(X —u|X >u), 0<u<az" (7.6)

the plot threshold u against e(u) is linear in case F,, approximate to GPD [EKM13, section
6.2.2].

The method is based on exceedances of a certain threshold, this method is preferred
by practitioners because it uses the data more efficiently. Provided that the appropriate
distribution is chosen and then the parameters are estimated, it is reasonable to calculate
the return level. Pickands (1975) [Pic75] provided a very helpful result which is stated

in the following theorem:
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Theorem 7.1.1. Let X;, Xo, ... be a sequence of independent random variables with dis-
tribution function F, and suppose that F' € M DA(G,(x)). For sufficiently large u, the
conditional excess distribution function F,(x) is approzimately by GPD,

lim sup |F,(x)— GP(x)| =0.

uT* < p<at—u

Let N, the number of observations over the threshold « and m is the total number of
observations, the empirical estimator for F(u) define by ¢, where (, = N,,/m. Replacing

x by y — u, we can write (7.5) as

F(y) = Fw)F.(y—u), y>u
By Theorem 7.1.1, we approximate F,, by GPD and replacing F'(u) by empirical estima-

tor, we obtain
A ~ Ay — U 14
Fly) =1-GA+5=—=)""  y>u (7.7)

let {X,} denote a time series of the maximum of n observations of our quantity of
interest. The return level estimate is the level expected to be exceeded by the maximum
of n observations with probability 1 — « is estimated by ¢, of I3 (y)™. If v # 0 and from
(7.7), we obtain g, as

U :é —(1—a'm™)™ = U .
Ja ,Ay[(A(l ) =1+ (7.8)

7.1.6 Reproduction numbers

The basic reproduction number R is an important threshold parameter for estimating
the effort required to eliminate the contagious diseases, and it is perceived as the expected
number of secondary infections produced by one infected individual in a population where
all individuals are susceptible to infection.

By using the next generation method introduced in [DHR10], we derive a formula for
the basic reproduction number of (7.4).

Then by considering the infectious states E, I,,, I; and H in (7.4) and substituting
the values in the disease-free equilibrium (N, 0,0,0,0,0,0) and as per [DHR10], the basic

reproduction number is given by

Be  _085m plo+ (1A —b)om) N BPhos(0 + (1 — O)om)

R o hom) TGt t0,) (@t om)os+ 0 (ot o)

(7.9)

Besides calculating the basic reproduction number Ry of the model (7.4), the time de-
pendent reproduction number can be calculated from incidence data (see e.g. [OHB12]
for details).
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7.2 Results

7.2.1 COVID-19 data from Iraq and Egypt

The data are collected from Worldometer website which is available online [data,datb],
we focus on the Iraq data from 22 February until the 08 October 2020 and from 15
February until the 08 October 2020 in Egypt.
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Figure 7.2: The daily number of confirmed cases in (a) Iraq from 22 February 2020 to 08
October 2020 and in (b) Egypt from 15 February 2020 to 08 October 2020.

Figure 7.2 shows the daily confirmed cases in Iraq and Egypt from the start of the
pandemic in Iraq and Egypt until 08 October 2020, respectively. The statistics of the

data are given in Table 7.2.

Table 7.2: Statistics for the COVID-19 data from Iraq and Egypt.

Iraq Egypt

Descriptive statistics Total sample size = 231 Total sample size = 238
22 February 2020 15 February 2020
Cumulative cases Cumulative cases

Min 1 1

Max 394, 566 104, 156

Median 22,008 41, 303

Mean 92,023 48,004

Standard error 119, 256.6 42 988.4

7.2.2 Forecast of the COVID—-19 spread in Iraq and Egypt

To fit the confirmed cumulative cases from both country Iraq and Egypt starting from
the beginning of the outbreak on 22 February and 15 February 2020 until 08 October
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2020, respectively, we applied the logistic model (7.1), which used to predict the short-
term forecast. Figure 7.3 shows the logistics growth model (7.1) fitted to in (left panel)
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Figure 7.3: The logistic model (7.1) fitted to the cumulative number of infected cases in
Iraq (Left panel) and in Egypt (right panel).

the cumulative number of infected cases from Iraq and in (right panel) the cumulative
number of infected cases from Egypt with parameters given in Table 7.3.

We note that the logistic model fitted the incidence data with a root mean square
error (RMSE) of 5,229.7, R? of 0.9981 for Iraq data and with (RMSE) of 1,924.4, R?
of 0.9980 for Egypt data, as shown in Tables 7.3. The logistic model gives a reasonable
good fit for both countries.

Table 7.3: Estimated parameter results of the logistics model (7.1) to Iraq and Egypt.

Iraq Egypt
Parameters R = 1.0659 Cloos R = 1.0318 Cloos
Estimated epidemic size K (cumulative cases) 490,900 (478300, 503500) 105,000 (104500, 105900)
Growth Rate r 0.03787 (0.03685, 0.03889) 0.05634 (0.05546,0.05721)
Estimated start of ending phase date 05/05/2021 04,/11/2020
Goodness of fit (R?) 0.9981 0.9980
Root Mean Square Error (RMSE) 5,229.7 1,924.4

The Gaussian model was fitted to data from Iraq and Egypt with reproduction num-
bers 1.0659 and 1.0318, respectively. Figure 7.4 shows the Gaussian model fitted to in
(left panel) the daily number of confirmed cases from Iraq, and in (right panel) the daily
number of confirmed cases from Egypt with parameters given in Table 7.4. The model
fits the actual data well with a root mean square error (RMSE) of 335.607, R? of 0.9614
for Traq data and with (RMSE) of 110.33, R? of 0.9528 for Egypt data, as listed in Tables
7.4.

The peak of the COVID-19 in Egypt occurs on 16 June 2020 with 1,534 day cases.

Afterword, the daily confirmed cases gradually decreased and the estimated epidemic
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Figure 7.4: The Gaussian model fitted to the daily confirmed cases in Iraq (Left panel) and
in Egypt (right panel).

Table 7.4: Estimated parameter results of the Gaussian model to Iraq and Egypt.

Iraq Egypt
Parameters R=10659  Cloes  R=10318  Clyos
Estimated peak day cases I 4,254 (4161, 4347) 1,534 (1493,1574)
o 80.16  (74.62,85.69)  34.99  (33.94,36.04)
Estimated peak date 14/09/2020 16,/06,/2020
Goodness of fit (R?) 0.9614 0.9528
Root Mean Square Error (RMSE)  335.607 110.33

size was 105,000 on 04 November 2020. In the coming days in Iraq, the forecast curve
shows a significant increase in the estimated epidemic size can be noted 490, 900. It also
indicates that the epidemic size is rapidly increasing, which shows that the number of
infections continues to rise steadily.

The daily confirmed cases are expected to have a significant increase due to ziarat
the holy shrines in Iraq from various countries.

To predict the spread of COVID-19 in Iraq, we apply the Gaussian model (7.3) to
estimate the value and time of the expected peak. The Logistic model was employed to
estimate the growth rate at each time of the expected peak.

A short-term forecasting of the confirmed cases and cumulative predicted from Iraq

is presented in Table 7.5.

7.2.3 Parameters estimation for Iraq and Egypt

Using the method described in Subsection 7.1.4, we fitted our model to symptomatically
infected cases in Iraq and Egypt. Figure 7.5 shows the model (7.4) fitted to the daily
number of confirmed cases in (left panel) from Iraq, 22 February 2020 until 08 October
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Table 7.5: Prediction and confirmed cases in Iraq.

Date Daily cases Cumulative cases
Predicted Confirmed Error (%) Predicted Confirmed Error (%)
5-Oct-20 4,011.94 3,808 5.36 376,351.09 382,949 1.72
6-Oct-20 3,987.28 4,172 4.43 379,430.15 387,121 1.99
7-Oct-20 3,961.56 3,923 0.98 382,450.32 391,044 2.20
8-Oct-20 3,934.80 3,522 11.72 385,411.44 394,566 2.32
9-Oct-20 3,907.02 - - 388, 313.42 - -
10-Oct-20  3,878.25 - - 391, 156.25 - -
11-Oct-20  3,848.52 - - 393, 940.00 - -
12-Oct-20  3,817.84 - - 396, 664.80 - -
13-Oct-20  3,786.24 - - 399, 330.85 - -
14-Oct-20  3,753.76 - - 401, 938.42 - -
15-Oct-20  3,720.42 - - 404, 487.83 - -
16-Oct-20  3,686.24 - - 406,979.47 - -
17-Oct-20  3,651.26 - - 409,413.76 - -
18-Oct-20  3,615.50 - - 411,791.19 - -
19-Oct-20  3,579.00 - - 414,112.30 - -
20-Oct-20  3,541.77 - - 416, 377.66 - -
21-Oct-20  3,503.87 - - 418, 587.89 - -
22-Oct-20  3,465.30 - - 420,743.64 - -
23-Oct-20  3,426.12 - - 422,845.60 - -
22102/2020 15/06/2020 15/10/2020 _15/02/2020 _15/06/2020 01/04/2020 01/.07/2020 01/10/2020
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Figure 7.5: The model (7.4) fitted to the daily confirmed cases in (left panel) from Iraq and
in (right panel) from Egypt with parameters given in Table 7.6.

2020, and in (right panel) from Egypt, 05 March 2020 until 08 October 2020. Our model
gives a reasonable good fit for both countries, predicting the peak in Iraq and showing

the peak in Egypt. The fitting parameter results are listed in Table 7.6.
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Table 7.6: Parameters and fitted values of model (7.4) in the case of Iraq and Egypt.

Value for Iraq Value for Egypt

Parameters Ro = 1.323 Ro = 1.11 Source
I5; 0.753 0.56 Fitted
Be 0.082 0.053 Fitted
Bm 0.475 0.587 Fitted
Bn 0.2057 0.443 Fitted
0 0.778 0.875 Fitted
o 0.307 0.104 Fitted
Os 0.3247 0.213 Fitted
Om 0.239 0.661 Fitted
op 0.446 0.508 Fitted
Os 0.127 0.131 Fitted
On 0.298 0.268 Fitted
v 0.54 0.266 Fitted

7.2.4 Prediction of the second wave of the COVID-19 epidemic

In this section, the analyses were performed for COVD-19 daily cases from 22r February
2020 to 5to February 2021 for Iraq and from 15 February 2020 to 5 February 2021for
Egypt.

The application of the return level required choosing an optimal threshold assuming
that data exceeding a specified threshold follows a GP distribution to determine an
accurate return level estimate. It is very important to choose a plausible threshold value,
because choosing a threshold value that is too small leads to an imprecise estimate and
choosing a threshold value that is too high leads to a biased estimate. The mean excess
plot graphical tool is very helpful for the selection of the threshold u defined by the points

(u,éx(u)), where éx(u) is empirical mean excess function of (7.6),

~ . ?il(Xi_u>+
ex(u) = S x|

The generalized Pareto distribution (GPD) of two-parameter was used to model ex-
ceedances over a threshold, the Maximum likelihood estimators was preferred, the esti-
mated parameters are gamma, sigma of the GPD, where v = —0.616 and ¢ = 686.19
for Iraq and v = —0.648 and ¢ = 316.796 for Egypt. Figure 7.6 shows pick the suit-
able threshold u for infections, which are 4000 and 1300 for COVID-19 data in Iraq
and Egypt, respectively, which gave two corresponding observations: 35 and 37 over the
threshold. Hence the estimate of the exceedance probability fu = 0.1003 for Iraq and
fu = 0.1039 for Egypt. Moreover, the mean excess plot with a downwards sloping line
indicated thin tailed behaviour with v < 0.
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Mean residual life function in Iraq Mean residual life function in Egypt
Number of Excesses Number of Excesses
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Figure 7.6: Mean excess plot with threshold in Iraq and Egypt,2020.

We focus on estimate the return level during the following year and the following 2
years with two value of probability 0.1 and 0.01. These estimates were computed using
Equation (7.8). The results indicate that there is a possibility 0.1 that the infection
cases will exceed 5083 once during the next year and 5107 within two years for Iraq,
while in Egypt the epidemic will exceed 1788 during the two years with probability 0.01,
all results are presented in table 7.7.

Table 7.7: Estimated levels that the maximum of COVED-19 epidemic will exceed with
probability 0.1 and 0.01 for the one year and two years for Iraq and Egypt.

Probability One year Two year

(1-a) 0.1 0.01 0.1 0.01
Iraq 5083 5107 5094 5109
Egypt 1778 1787 1782 1788

We have listed our results acquired in Subsections 7.2.2—7.2.3 in Table 7.9 to summa-
rize our findings for Iraq and Egypt obtained by using a compartmental mathematical
model (7.4), logistic growth model (7.1) and Gaussian model (7.3). Table 7.9 shows a
comparison between the estimated parameters obtained by three different models.

7.2.5 Sensitivity analysis and possible control measure

To estimate how easily the virus is spreading, the reproduction number R, is estimated
from COVID-19 cumulative number of cases using Exponential Growth (EG) method
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and Maximum Likelihood method (ML) (see e.g., [OHB12] for details), the results are
presented in Table 7.8. The reproduction number in both countries is greater than one

and the disease persist

Table 7.8: The reproduction number R is calculated using cumulative cases

Iraq Egypt
Methods — Cloos R Closs
EG 1.1017  (1.10166,1.101768)  1.0604 (1.060386,1.060481)
ML 1.0659 (1.065207,1.066639) 1.0318 (1.030841,1.032637)

Besides calculating the reproduction number from the incidence data, we derive a for-
mula for the reproduction number from our compartmental model (7.4). Formula (7.9)
provides us the basic reproduction number in any time point by substituting the param-

eter values into it.

Table 7.9: Summery results obtained for Iraq and Egypt in Subsections 7.2.3-7.2.4.

Iraq Egypt
Models/Parameters Value(C.T) Value(C.T)
Compartmental model
Ro 1.323 1.11
8 0.753 0.56
Be 0.082 0.053
B 0.475 0.587
Bh 0.2057 0.443
0 0.778 0.875
o 0.307 0.104
Os 0.3247 0.213
Om 0.239 0.661
op 0.446 0.508
s 0.127 0.131
On 0.298 0.268
v 0.54 0.266
Logistics Growth Model
Ro 1.0659 1.0318
Estimated epidemic size 490, 900(478300, 503500) 105, 000(104500, 105900)
Estimated start of ending phase date 05/05/2021 04/11/2020
R? 0.9981 0.9980
RMSE 5,229.7 1,924.4
Gaussian model
Ro 1.0659 1.0318
Estimated peak day cases 4,254(4161, 4347) 1,534(1493, 1574)
Estimated peak date 14/09/2020 16,/06,/2020
R? 0.9614 0.9528
RMSE 335.607 110.33

To assess the dependence of the basic reproduction number on the parameters which
can be subject to control the spread of the virus, the contour plot of the basic reproduc-
tion number in term of the transmission rate (3), progression rate from mildly infected

to symptomatically infected (o) and progression rate from symptomatically infected to
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hospitalized individuals for Iraq and Egypt are shown in Figure 7.7(a) and Figure 7.7(b),
respectively. Reducing the transmission rate () can decrease the number of severely
infected, and consequently the number of infected individuals who need treatment and
intensive care at hospitals.
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Figure 7.7: The contour plot of the basic reproduction number for Iraq and Egypt as a
function of (5) and in a) progression rate from I,,, to Is (o) and in b) progression rate from
I to H (o), respectively.

Figure 7.8 shows a comparison of the PRCC values obtained for the parameters in
the basic reproduction number R, for Iraq and Egypt. The results of the sensitivity
analysis show that any positive change in the parameters (5, B¢, Bm, Bn, 0, v, 0, 03) gives a
corresponding ratio in the riskiness of the disease, while R can be decreased by increasing
the values of the parameters (0,,,0,) in both countries. The parameters (ds, ;) can not
be used as a control measure because they are death rates.

We noticed from the PRCC that the most influential parameter is 5, which can be
used to control the spread of the COVID-19. Decreasing the transmission rate can
decrease the number of infected and even turn the disease to a complete extinction.

In addition to decreasing the transmission rate from severely infected to susceptible
(B), decreasing the parameters S, 5, S would also decrease the basic reproduction
number but this control is not enough to drive Ry below one. These parameters can

be decreased by putting any person has tested positive for COVID-19, and not have
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any symptoms yet or have just mild symptoms in quarantine for a sufficient time period
(10-14 days). Our model also has its limitation, where we can not estimate the effect of

quarantine on the spread of the virus.

infected o also decreases the number of serve infected, but just this measure is unable to

drive the disease to extinction.

It was also observed that by decreasing the progression rate from mildly to severely
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Figure 7.8: The PRCC plot of the parameters of Rq for Iraq (left panel) and for Egypt

(right panel).
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Summary

In this thesis, we aim to use a class of weighted least squares estimators for the tail
index of a distribution function with a regularly varying. Our approach is based on the
method for the Parzen tail index developed by Holan and McElroy [HM10]. Analysis of a
simulation used to study the performance of weighted least squares estimators. Finally,
an approach extreme value theory was applied along with the weighted least squares
estimators on real data. This thesis is based on papers [ANV20], [ANSV], [TAND20] and
[TAN20].

In chapter 5, we suggest a class of weighted least squares (WLS) estimators for the
Parzen tail index. Our approach is built on the method developed by Holan and McElroy.
We investigate consistency and asymptotic normality of the WLS estimators and assess
the limiting variance 5.8 for pg = 1, different weight functions and tail indices to compare
the WLS and the unweighted (ordinary least squares) estimators in the sub-model of
(5.4). Our results show that in some cases the use of the weights makes the asymptotic
variance smaller. Simulations are performed and the samples were generated from the
model (5.2) with Ly = 1 using different tail indices. We conclude that in the submodel
Lo = 1 for a values between 0.8 and 1.5 the WLS estimator has better performance than
the OLS estimator. Thus, for thinner tails we propose the WLS estimator instead of the
OLS estimator. The Hill estimator is the best among the examined estimators, and the
Pickands estimator has also good performance.

In chapter 6, we propose a class of weighted least squares estimators for the classical
tail index of a distribution function with a regularly varying upper tail. Asymptotic
normality of the estimators is proved. A simulation is performed to compare selected
well-known tail index techniques with existing proposals using MSE The samples were
generated from the strict Pareto model . = 1 and from the Hall model. The Hill,
Pickands, DEdH and the weighted least squares (WLS) estimators were included in the
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simulation study. We conclude that in the sub-model L = 1 for all a values, the WLS
estimator performs better than the other estimators investigated. Specifically, we used
the parameters D; = 0.4,Dy = 1 and f = 0.01. We notice that the WLS estimator
performs better than the other estimators, and the OLS estimator are competitive with
the Hill estimator especially for value p = 3.

In chapter 7, we have studied the spread of COVID-19 pandemic in Iraq and Egypt
using Gaussian model, logistics growth model and compartmental (generalized SEIR)
model. The parameters were estimated by using our compartmental model, which used
to understand the spread of COVID-19 in both countries. Our model provides a rea-
sonable good fit to the incidences data. We fitted the logistic model to the COVID-19
cumulative number of confirmed cases in Iraq and Egypt. The simulation results can be
utilized to decline the at-risk susceptible population by control interventions such as so-
cial distancing and lock-down, and /or changing the population behaviour. The Gaussian
model was used to obtain statistical predictions for COVID-19 pandemic in Iraq and
Egypt, we fitted the Gaussian model to the COVID-19 daily confirmed cases in both
countries. A large rise in the predicted epidemic size in Iraq is seen by the forecast curve,
and for Egypt data, the model gives a reasonable good fit.

The Gaussian model indicates that the peak value is 4, 254 in Iraq and 1, 534 in Egypt,
While the logistic model shows the peak value is 490, 900 and 105, 000 in Iraq and Egypt,
respectively. It is vital to emphasize that the lock-down was imposed on 30 July 2020 by
the Iraqi government. The basic reproduction number over a period is greater than one,
suggesting an exponential growth in the number of cumulative confirmed cases in Iraq,
which may indicate that the lock-down regulations are not properly implemented, that
might contribute to a rise in the size and spread of the epidemic. Therefore, in order to
lift the restriction, the goal of Iraq’s health authority is to keep the reproduction number
below one.

The return level for the peaks indicates that infection cases are expected to be ex-
ceeded 5083 and 5109 once in the following year and following two years with probability
0.1 and 0.01 respectively in Iraq, while in Egypt, will exceed 1778 at least once during
the next year with probability 0.1 and 1788 for following two years with probability 0.01.

The reproduction number was estimated based on the confirmed cumulative cases by
using Exponential Growth (EG) method and Maximum Likelihood method (ML) and
is found 1.0659-1.1017 and 1.0318-1.0604 for Iraq and Egypt, respectively. Using our
compartmental model a formula for the basic reproduction number was obtained, which
allow us to calculate the value of Ry. With the estimated parameters set obtained from

fitting our model to the incidence data in both countries, we found that Ry = 1.323 and
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Ry = 1.11 for Iraq and Egypt, respectively. The basic reproduction number is greater
than one which indicates the virus still persist in both countries.

The sensitivity analysis and the contour plots of the basic reproduction number
(see Figure 7.7 and Figure 7.8) suggest that to control the spread of COVID-19 out-
break, both countries should work to decrease the transmission rate enough by educate
the population on how to keep away from contracting the disease, raising the population
awareness to fight the virus, wearing face mask is necessary in the public places and mak-
ing more restriction on the traveling between cities which have large number of infected

people.
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