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1 Introduction

In the dissertation we study delay di�erential equations of the form

ẋ(t) = −µx(t) + f(x(t− τ)), t > 0, (1.1)

where µ ≥ 0, τ > 0 and the feedback function f : R → R is continuous. If
xf(x) ≥ 0 for all x ∈ R, then the feedback is said to be positive, and if
xf(x) ≤ 0 for all x ∈ R, then the feedback is said to be negative.

The phase space for delay di�erential equations is usually C = C([−τ, 0],
R), which is the Banach space of continuous functions ϕ : [−τ, 0]→ R with
the supremum norm ‖ϕ‖ = sups∈[−τ,0] |ϕ(s)|. If for some t ∈ R, the inter-
val [t− τ, t] is in the domain of a continuous function x, then the segment
xt ∈ C is de�ned by xt (s) = x (t+ s) for −τ ≤ s ≤ 0.

All ϕ ∈ C de�ne a unique continuous function xϕ : [−τ,∞)→ R, that
is di�erentiable on (0,∞) and satis�es (1.1) for all t > 0 and xϕ0 = ϕ. That
xϕ is the solution of (1.1) correspond to initial function ϕ. A di�erentiable
function x : R→ R is a solution if it satis�es (1.1) for all t ∈ R.

In the doctoral dissertation, we study problems related to periodic
solutions in case of positive and negative feedback. The dissertation is
based on the following two publications:

� Sz. Beretka, G. Vas, Saddle-node bifurcation of periodic orbits for a
delay di�erential equation, J. Di�erential Equations 269 (2020), no.
5, 4215-4252.

� Sz. Beretka, G. Vas, Stable periodic solutions for Nazarenko's equa-
tion, Communications on Pure & Applied Analysis 19 (2020), no. 6,
3257-3281.

2 Bifurcation of periodic orbits in case

of positive feedback

Numerous scienti�c works have studied the Hopf-bifurcation of periodic
orbits for delay di�erential equations. In the Chapter 2 of the dissertation
we study an uncommon phenomenon, the saddle-node bifurcation of peri-
odic orbits.

Consider the delay di�erential equation

ẋ(t) = −x(t) + fK(x(t− 1)), t > 0, (2.2)

where the feedback function fK is a nondecreasing continuous function
depending on parameter K.
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If χ is a �xed point of fK (i.e., fK(χ) = χ), then

χ̂ : [−1, 0] 3 t→ χ ∈ R

is an equilibrium. This equilibrium is asymptotically stable if f ′K(χ) < 1,
and unstable if f ′K(χ) > 1.

If fK has more �xed points at which its derivative is greater than 1
(and hence the dynamical system has more unstable equilibria), then we
say that a periodic solution has large amplitude if it oscillates about at least
two such �xed points. Krisztin and Vas introduced the de�nition of large-
amplitude periodic solution and showed the existence of a pair of large-
amplitude periodic orbits for special fK in [2]. The paper [3] of Krisztin
and Vas described the complicated geometric structure of the unstable set
of a large-amplitude periodic orbit in detail. In [11] Vas proved that all
con�gurations of large-amplitude periodic orbits indeed exist that Mallet-
Paret and Sell allowed in [5].

In Chapter 2. we prove that the large-amplitude periodic orbits of (2.2)
arise via a saddle-node bifurcation if

fK(x) =


K, x ≥ 1 + ε,
K
ε (x− 1), 1 ≤ x < 1 + ε,

0, −1 ≤ x < 1,
K
ε (x+ 1), −1− ε ≤ x < −1,
−K, x < −1− ε,

where ε > 0 is a small �xed number, and K ∈ (6, 7) is the bifurcation
parameter.

K
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Figure 2.1: The plot of fK

The following theorem has already appeared in [2] as a conjecture.

Theorem 2.3. (Saddle-node bifurcation of periodic orbits) For all su�-
ciently small positive ε, one can give a threshold parameter K∗ = K∗ (ε) ∈
(6.5, 7), a large-amplitude periodic solution p = p (ε) : R → R of (2.2)
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for the parameter K = K∗, an open neighborhood B = B(ε) of its initial
segment p0 in C and a constant δ = δ(ε) > 0 such that

(i) if K ∈ (K∗ − δ,K∗), then no periodic orbit for (2.2) has segments
in B;

(ii) if K = K∗, then O = {pt : t ∈ R} is the only periodic orbit with
segments in B;

(iii) if K ∈ (K∗,K∗ + δ), then there are exactly two periodic orbits
with segments in B, and both of them are of large-amplitude.

To our knowledge, only López Nieto has a similar result for delay dif-
ferential equations: he proved saddle-node bifurcation of periodic orbits for
another class of delay equations. His result is awaiting publication [4].

The proof is organized as follows. We introduce a one-dimensional
map F which depends also on parameters K and ε. We show that there
is a bijection locally between the �xed points of F (·,K, ε) and the large
amplitude periodic solutions of (2.2). Then we show that F undergoes a
saddle-node bifurcation as K varies if ε is a �xed and su�ciently small
positive number.

In the saddle-node bifurcation of F , a neutral �xed point splits into two
�xed points, one attracting and one repelling. This does not imply that we
have one stable and one unstable periodic orbit for K > K∗. We know that
if fK is a C1-function with nonnegative derivative, then all periodic orbits
for equation (2.2) are unstable, see e.g., Proposition 7.1 in [11]. Hence
we presume that the periodic orbits given by the above theorem are also
unstable.

The steps for proof are described in detail below.

The map F

In Section 2.3 of the dissertation we consider a special periodic function
p as the concatenation of certain auxiliary functions y1, y2, ..., y10 in such
way, that if p is a solution of the delay equation (2.2), then y1, y2, ..., y10
satisfy a system of ordinary di�erential equations with boundary conditions.
Then we reduce this ODE system to a single �xed point equation of the
form F (L2,K, ε) = L2, where L2 is a parameter corresponding to p. The
details of the construction are as follows.

Let ε ∈ (0, 1) and K ∈ (6.5, 7). Assume that

(H1) Li > 0 for i ∈ {1, 2, ..., 5},

(H2) 2L1 + 5L2 + 5L3 + 3L4 + 3L5 = 1,

(H3) θi > 1 + ε for i ∈ {1, 2, 3, 4}, and θi ∈ (1, 1 + ε) for i ∈ {5, 6}.
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Consider the subsequent continuous functions (their horizontal translations
are shown in Fig. 2.2):

(H4) y1 ∈ C([0, L1],R) with y1(0) = 1 + ε and y1(L1) = θ1,
y2 ∈ C([0, L2],R) with y2(0) = θ1 and y2(L2) = θ2,
y3 ∈ C([0, L3],R) with y3(0) = θ2 and y3(L3) = θ3,
y4 ∈ C([0, L4],R) with y4(0) = θ3 and y4(L4) = θ4,
y5 ∈ C([0, L5],R) with y5(0) = θ4 and y5(L5) = 1 + ε,
y6 ∈ C([0, L2],R) with y6(0) = 1 + ε and y6(L2) = θ5,
y7 ∈ C([0, L3],R) with y7(0) = θ5 and y7(L3) = θ6,
y8 ∈ C([0, L4],R) with y8(0) = θ6 and y8(L4) = 1,
y9 ∈ C([0, L2 + L5],R) with y9(0) = 1 and y9(L2 + L5) = −1,
y10 ∈ C([0, L3],R) with y10(0) = −1 and y10(L3) = −1− ε,

(H5) if i ∈ {1, 2, ..., 5}, then yi(s) > 1 + ε for all s in the interior of the
domain of yi,
if i ∈ {6, 7, 8}, then yi(s) ∈ (1, 1 + ε) for all s in the interior of the
domain of yi,
y9(s) ∈ (−1, 1) for all s ∈ (0, L2 + L5),
y10(s) ∈ (−1− ε,−1) for all s ∈ (0, L3).

Set 0 < τ1 < τ2 < τ3 < ω < 1 as

τ1 =

5∑
i=1

Li,

τ2 = τ1 + L2 + L3 + L4,

τ3 = τ2 + L2 + L5,

ω = τ3 + L3.

Introduce a 2ω-periodic function p : R→ R as follows. Set p on [−1,−1+ω]
such that

p(t− 1) = y1(t) for t ∈ [0, L1],

p(t− 1 + L1) = y2(t) for t ∈ [0, L2],

p(t− 1 + L1 + L2) = y3(t) for t ∈ [0, L3],

p(t− 1 + L1 + L2 + L3) = y4(t) for t ∈ [0, L4],

p(t− 1 + L1 + L2 + L3 + L4) = y5(t) for t ∈ [0, L5],

p(t− 1 + τ1) = y6(t) for t ∈ [0, L2],

p(t− 1 + τ1 + L2) = y7(t) for t ∈ [0, L3],

p(t− 1 + τ1 + L2 + L3) = y8(t) for t ∈ [0, L4],

p(t− 1 + τ2) = y9(t) for t ∈ [0, L2 + L5],

p(t− 1 + τ3) = y10(t) for t ∈ [0, L3],

(P.1)
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see Fig. 2.2.
Let

p(t) = −p(t− ω) for all t ∈ [−1 + ω,−1 + 2ω]. (P.2)

Then extend p to the real line 2ω-periodically.
In Section 2.3 we investigate what is the relationship between parame-

ters L1, ..., L5, θ1, ..., θ6 and functions y1, ..., y10, if p satis�es the equation
(2.2) for all t ∈ R. First we apply hypothesis (H2), (H5) and the fact that
p is a solution of (2.2). Then we get a system of ten ordinary di�erential
equations:

ẏ1(t) =− y1(t) +K for t ∈ [0, L1],

ẏ2(t) =− y2(t) +
K

ε
(y6(t)− 1) for t ∈ [0, L2],

ẏ3(t) =− y3(t) +
K

ε
(y7(t)− 1) for t ∈ [0, L3],

ẏ4(t) =− y4(t) +
K

ε
(y8(t)− 1) for t ∈ [0, L4].

ẏ5(t) =− y5(t) for t ∈ [0, L5],

ẏ6(t) =− y6(t) for t ∈ [0, L2],

ẏ8(t) =− y8(t)−K for t ∈ [0, L4],

ẏ9(t) =− y9(t)−K for t ∈ [0, L2 + L5],

ẏ10(t) =− y10(t)−K for t ∈ [0, L3].

(S.1)

If we use the boundary conditions from (H4) for the solutions of the sys-
tem, then we get a system of 10 algebraic equations for eleven unknowns
L1, ..., L5, θ1, ..., θ6. The eleventh equation comes from (H2). We reduce
this system to an equation of the form F (L2,K, ε) = L2, where

F : U 3 (L2,K, ε) 7→
K

ε
(K + 1)

(
1− (1− L4)eL4

)
+ θ3 − (1 + ε)

K + θ6
K − 1

e−L2 + L2 ∈ R.

The domain of F is

U =
{

(L2,K, ε) ∈ R3 : ε ∈ (0, 1), K ∈ (6.5, 7), L2 ∈ (−ε, ε)
}
.

It is easy to verify that F is well-de�ned and continuous on U . The
above reasoning gives the following proposition.
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Figure 2.2: The plot of p on [-1,0]
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Proposition 2.4. Let ε ∈ (0, 1) and K ∈ (6.5, 7). Suppose that a 2ω-
periodic function p : R→ R is a solution of (2.2), p is the concatenation of
functions y1, y2, ..., y10 as in (P.1)-(P.2), and the functions y1, y2, . . . , y10
satisfy (H1)-(H5) for some parameters Li > 0, i ∈ {1, 2, ..., 5}, and θi,
i ∈ {1, . . . , 6}. Then L2 ∈ (0, ε) and F (L2,K, ε) = L2.

Based on the above reasoning, we express parameters L1, L3, L4, L5

and θ1, θ2, ..., θ6 as functions of L2,K and ε. We use this in the following
section.

The �xed points of F yield periodic solutions

By Section 2.3, if (H1)-(H5) hold, and p : R → R is a 2ω-periodic
solution of (2.2) given by (P.1)-(P.2), then L2 7→ F (L2,K, ε) has a �xed
point. We devote Section 2.4 to verify the converse statement: if ε > 0
is small enough and K ∈ (6.5, 7), then all su�ciently small positive �xed
points of L2 7→ F (L2,K, ε) yield periodic solutions of (2.2).

We need to consider L1, L3, L4, L5 and θi, 1 ≤ i ≤ 6, as functions of
L2,K and ε (and not as parameters given by hypotheses (H1)-(H5)). So
assume that

(H6) Li, i ∈ {1, 3, 4, 5}, and θi, 1 ≤ i ≤ 6, are functions of L2, K, ε on U
as given in Section 2.3 (see (C.1)-(C.10) in the dissertation).

One can easily check that Li, i ∈ {1, 3, 4, 5}, and θi, 1 ≤ i ≤ 6, are
continuous functions of (L2,K, ε) on U .

In this section we also need the assumption that

(H7) the functions y1, ..., y10 are that solutions of the system of (S.1),
which are given by (Y.1)-(Y.10) in the dissertation.

Let L̂2 be that value of L2 for which L4 = 0, i.e., for which θ6 = 1.
Consider the following subset of U :

V =
{

(L2,K, ε) : ε ∈ (0, 1), K ∈ (6.5, 7) and L2 ∈
(

0, L̂2(K, ε)
)}
⊂ U.

The most important result of Section 2.4:

Corollary 2.11. Assume that (H6) and (H7) hold, (L2,K, ε) ∈ V , F (L2,K,
ε) = L2 and ε > 0 is small enough. Then the 2ω-periodic function p given
by (P.1)-(P.2) satis�es the delay di�erential equation (2.2) for all t ∈ R.
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The saddle-node bifurcation of F

In Section 2.5 we show that F undergoes a saddle-node bifurcation.
For ε ∈ (0, 1), let

Uε = (−ε, ε)× (6.5, 7)

and de�ne
Fε : Uε 3 (L2,K) 7→ F (L2,K, ε) ∈ R.

Proposition 2.14. For all su�ciently small positive ε, one can give K∗ =
K∗(ε) ∈ (6.5, 7) and L∗2 = L∗2(ε) ∈ (0, L̂2(K, ε)) such that Fε undergoes a
saddle-node bifurcation at (L∗2,K

∗): there exist a neighborhood U of L∗2 in

(0, L̂2(K∗, ε)) and a constant δ1 > 0 such that

� the map Fε(·,K) has no �xed point in U for K ∈ (K∗ − δ1,K∗),

� L∗2 is the unique �xed point of Fε (·,K∗) in U ,

� Fε(·,K) has exactly two �xed points in U for K ∈ (K∗,K∗ + δ1).

The delay equation has no other types of peri-

odic solutions locally

To prove the main theorem, we still need to show that all periodic solu-
tions of the delay di�erential equation (2.2) come from �xed points F -
at least locally, in an neighborhood of p0, where p0 now denotes the initial
segment of the periodic solution p constructed for parameter K∗. This step
is detailed in Section 2.6.

The main result of Chapter 2, Theorem 2.3 easily follows from these
partial results, see Section 2.7.

3 Periodic orbits for an equation with

negative feedback

In Chapter 3 of the dissertation we study the delay di�erential equation

ẏ(t) + py(t)− qy(t)

r + yn(t− τ)
= 0, t > 0, (3.6)

under the assumption that

p, q, r, τ ∈ (0,∞) , n ∈ N = {1, 2, . . .} and
q

p
> r. (3.7)
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This equation was proposed by Nazarenko in 1976 to study the control
of a single population of cells [6]. The quantity y(t) is the size of the
population at time t. The rate of change y′(t) can be given as the di�erence
of the production rate qy(t)/(r+ yn(t− τ)) and the destruction rate py(t).
We see that the destruction rate at time t depends only on the present state
y(t) of the system, while the production rate also depends on the past of
y. This is a typical concept in population dynamics; delay appears due to
the fact that organisms need time to mature before reproduction. In the
most widely studied Mackey-Glass equation the production rate is similar
to the production rate in Nazarenko's equation:

ẏ(t) = −py(t) +
qy(t− 1)

r + yn(t− τ)
, t > 0.

In this model the production rate is very similar to the one considered by
Nazarenko.

In accordance with the previous chapters, the phase space is the Ba-
nach space C = C ([−τ, 0] ,R) with the supremum norm. The solutions of
the equation (3.6) and the segments of the solutions are de�ned as in the
Introduction. Under condition (3.7), the functions R 3 t 7→ 0 ∈ R and
R 3 t 7→ K = (q/p− r) 1/n ∈ R are the only constant solutions, i.e., there
exists a unique positive equilibrium besides the trivial one.

In this chapter we focus on those positive periodic solutions of (3.6)
that oscillate slowly about K. A solution y is called slowly oscillatory
about K if all zeros of y−K are spaced at distances greater than the delay
τ .

If we restrict our examinations only to positive solutions, then we can
apply the transformation x = log y−logK. Thereby we obtain the equation

x′(t) = −f(x(t− τ)), (3.1)

where the feedback function f ∈ C1(R,R) is de�ned as

f(x) = p− q

r +
(
q
p − r

)
enx

for all x ∈ R, (3.8)

see Fig. 3.1. Then we focus on those periodic solutions which oscillate
slowly about 0 (SOP solutions), i.e. on those periodic solutions which has
zeros spaced at distances greater than τ .

Nussbaum veri�ed the global existence of SOP solutions for equations
of the form (3.1) and for a wide class of feedback functions containing (3.8),
see [7] and also [8]. By [7, 8], equation (3.1) has at least one SOP solution
for

τ > τ0 =
π

2f ′(0)
=

qπ

2np(q − pr)
.
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Figure 3.1: The plot of f if p = 1, q = 4, r = 1, 5 and n = 10

Song, Wei and Han studied the equation in the form (3.6) in [10]. They
showed that a series of Hopf bifurcations takes place at the positive equi-
librium as τ passes through the critical values

τk =
1

f ′(0)

(π
2

+ 2kπ
)

=
q

np(q − pr)

(π
2

+ 2kπ
)
, k ≥ 0.

Song and his coauthors could not determine the stability of the periodic
orbits for τ far away from the local Hopf bifurcation values. Uniqueness
of the slowly oscillatory periodic solution has not been studied either. In
the dissertation we focus on these questions and verify the following two
theorems.

Theorem 3.8. Set p, q, r and n as in (3.7).
(i) If τ > 0 is large enough, then equation (3.6) has a unique positive
periodic solution ȳ : R→ R oscillating slowly about K. The corresponding
periodic orbit is asymptotically stable, and it attracts the set{
φ : yφ(t) > 0 for t ≥ −τ, yφt −K has at most one sign change for large t

}
.

(ii) If ω̄ denotes the minimal period of ȳ, and

ω =

(
2 +

q − pr
pr

+
pr

q − pr

)
τ, (3.9)

then limτ→∞ ω̄/ω = 1.

Uniqueness of the periodic solution is always meant up to time trans-
lation.

If we �x p, q, r and τ , then we can determine the asymptotic shape of
the periodic solution as n→∞.
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Theorem 3.9. Set p, q, r and τ such that (3.7) and τ min{p, q/r− p} > 8
hold.
(i) Theorem 3.8.(i) is true for all su�ciently large n.
(ii) De�ne v : R → R as the ω-periodic extension of the piecewise linear
function

[0, ω] 3 t 7→


−pt, 0 ≤ t < τ,(
q
r − p

)
t− q

r τ, τ ≤ t <
(

2 + pr
q−pr

)
τ,

−pt+
(
q
r + p+ p2r

q−pr

)
τ,

(
2 + pr

q−pr

)
τ ≤ t < ω

∈ R,

where ω is given by (3.9). Let η1 > 0 and η2 > 0 be arbitrary. If n is large
enough, then there exists T ∈ R for the ω̄-periodic solution ȳ, such that
|ω̄ − ω| < η1, and∣∣∣∣log

ȳ(t+ T )

K
− v(t)

∣∣∣∣ < η2 for all t ∈ [0, ω̄].

The proofs of these theorems are similar, and they are organized as
follows. We examine equation (3.6) in the form of (3.1) with feedback
function (3.8). First we calculate an SOP solution v for the "limit equation"

v′(t) = −g(v(t− τ)),

where g : R → R is a piecewise constant function chosen so that (3.8)
is close to g outside a neighborhood of 0. Then we consider (3.8) as a
perturbation of g and follow the technique used by Walther in [12] (for
a slightly di�erent class of equations) to obtain information about those
solutions of equation (3.1) which has initial segments in

A(β) = {φ ∈ C : φ(t) ≥ β for all − τ ≤ t ≤ 0, φ(0) = β} ⊆ C.

We show that these solutions return to A(β) (for appropriately chosen β).
Thereby a Poincaré-map P : A(β)→ A(β) can be introduced. Next we ex-
plicitly evaluate a Lipschitz constant L(P ) for P . If τ or n is large enough,
then L(P ) < 1, i.e., P is a contraction. The unique �xed point of P is
the initial segment of an SOP solution. Besides this, we need the results
of paper [9] of Nussbaum to show that all SOP solutions have segments in
A(β), and hence the SOP solution is unique up to time translation. Sta-
bility comes from work [1] of Kaplan and Yorke. The rest of the theorems
will follow easily.

The details of the proof are described below.
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Figure 3.2: The plot of gA,B

The limit equation

Consider equation (3.1) with feedback function (3.8). Let A = q/r−p >
0 and B = p > 0.

Note that if p, q, r are �xed according to (3.7), then

f(x)→ p− q

r
= −A if nx→ −∞,

and
f(x)→ p = B if nx→∞.

Therefore in Section 3.3 we examine the "limit equation"

v′(t) = −gA,B(v(t− τ)), (3.11)

where gA,B : R→ R is de�ned as

gA,B(v) =

 −A, v < 0,
0, v = 0,
B, v > 0.

Proposition 3.10. Equation (3.11) admits a periodic solution v : R → R
de�ned as follows:

v(t) =


−Bt, t ∈ [0, τ ],
At− (A+B)τ, t ∈ [τ, σ + τ ],

−Bt+
(
A+ 2B + B2

A

)
τ, t ∈ [σ + τ, ω],

where σ = (1+B/A)τ is the �rst positive zero, and ω = (2+A/B+B/A)τ
is the second positive zero and the minimal period of v.
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Preliminary estimates

For A > 0, B > 0, β > 0, 0 < ε < min{A,B}/2, let N (A,B, β, ε)
denote the set of all continuous functions f : R→ R with

−A ≤ f(x) ≤ −A+ ε for x < −β,

−A ≤ f(x) ≤ B for − β ≤ x ≤ β,
and

B − ε ≤ f(x) ≤ B for x > β.

Fig. 3.3 shows an element of N (A,B, β, ε). Function (3.8) is an element of
N (A,B, β, ε) if A = q/r − p, B = p, 0 < ε < min{A,B}/2 and

β ≥ max
{
f−1(B − ε),−f−1(−A+ ε)

}
.

-A

-A+

B-

B

-

Figure 3.3: An element of N (A,B, β, ε)

In Section 3.4 of the dissertation we examine the solutions x = xφ of
the equation (3.1) if f ∈ N (A,B, β, ε) and

φ ∈ A(β) = {φ ∈ C : φ(t) ≥ β for all − τ ≤ t ≤ 0, φ(0) = β} ⊆ C.

We prove that if β and ε are chosen correctly, then there are q = q(φ) > 0
and q̃ = q̃(φ) such that

xq ∈ −A(β) = {φ ∈ C : φ(t) ≤ −β if − τ ≤ t ≤ 0, φ(0) = −β},

and xq+q̃ ∈ A(β).
We can prove that xq ∈ −A(β) and xq+q̃ ∈ A(β) for some q, q̃ > 0

by giving estimates for the
∣∣xφ − v∣∣, where v is special periodic function

constructed in the previous section. This technique is based on Walther's
paper [12].
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Lipschitz continuous return maps

Based on the results of the previous section, we can introduce the Poincaré-
map P : A(β)→ A(β). The next step is to determine a Lipschitz constant
for P , see Section 3.5 of the dissertation.

Suppose in addition that f ∈ N (A,B, β, ε) is Lipschitz-continuous,
and L(f) is a Lipschitz constant for f . Let Lβ = Lβ(f) and L−β =
L−β(f) be the Lipschitz constants for the restrictions f |[β,∞) and f |(−∞,−β],
respectively.

In this section Φ denotes the semi�ow corresponding to (3.1):

Φ: [0,∞)× C 3 (t, φ) 7→ xφt ∈ C.

Consider the map

R : A(β) 3 φ 7→ Φ(q(φ), φ) = xφq(φ) ∈ −A(β).

Chose ε and β as in the previous section. Then the following is true.

Corollary 3.20. The constant

L(R) = 3τLβ (1 + δL(f))
(
1 + (N − 1)τL−β(1 + τL−β)N−2

)
is a Lipschitz constant for R, where N = d1 +B/Ae and δ = 2β/(B − ε).

Now consider the map

Q : −A(β) 3 φ 7→ Φ(q̃(φ), φ) ∈ A(β).

It is clear that P = Q ◦R.
Proposition 3.21. The constant

L(Q) = 3τL−β

(
1 + δ̃L(f)

)(
1 + (Ñ − 1)τLβ(1 + τLβ)Ñ−2

)
is a Lipschitz constant for Q, where Ñ = d1 +A/Be and δ̃ = 2β/(A− ε).

As a consequence, the following can be stated.

Proposition 3.22. The Poincaré map P : A(β) 3 φ 7→ Q (R(φ)) ∈ A(β)
is Lipschitz continuous, and

L(P ) =L(R)L(Q)

=3τLβ(1 + δL(f))
(
1 + (N − 1)τL−β(1 + τL−β)N−2

)
× 3τL−β

(
1 + δ̃L(f)

)(
1 + (Ñ − 1)τLβ(1 + τLβ)Ñ−2

)
.

is a Lipschitz constant for P .

If L(P ) < 1, then P is a contraction and P has only one �xed point,
which is the initial segment of a slowly oscillatory periodic solution.
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On the ranges of the SOP solutions

In Section 3.6 we show that if τ is large enough and β is small enough,
then any SOP solution x : R→ R of (3.1) has segments in A(β).

As we are going to apply paper [9] of Nussbaum, we consider equation
(3.1) in form

x̃′(t) = −τf(x̃(t− 1)), (3.33)

where x̃(t) = x(τt) and f is given in (3.8). Set

d =
1

2
min{−f(−1), f(1), f ′(0)}.

In [9] Nussbaum gives speci�c estimates for the ranges of the slowly
oscillatory periodic solutions on di�erent subintervals of a real line. The
immediate consequence of these estimates is the following proposition.

Proposition 3.26. If τd > 4 and B is an upper bound for f , then for each
SOP solution x̃ : R → R of (3.33), one can give an interval I of length 1
such that

x̃(t) ≥ τ(
√
B2 + d2 −B)

2
for t ∈ I.

Corollary 3.27. If τd > 4 and β ≤ τ(
√
B2 + d2 − B)/2, where B is an

upper bound for f , then any SOP solution of (2.2) has a segment in A(β).

Proofs of the main theorems in this chapter

The proof of Theorem 3.8 is the following. We show that ε and β
can be chosen such that the propositions described in the previous sections
of the dissertation are satis�ed: let ε be a �xed, small positive number,
and let β = ατ , where α > 0 is also a �xed small number. Then for all
su�ciently large τ , L(P ) < 1, i.e., P is a contraction, and the assumptions
of Consequence 3.27 are also satis�ed. From this we obtain the existence
and uniqueness of the slowly oscillatory periodic solution. Stability follows
from Theorem 2.1 and Remark 2.5 of Kaplan and Yorke's paper [1]. The
statement for the minimal period of a slowly oscillatory periodic solution
is obtained from Theorem 1 of [9].

Theorem 3.9 can be proved in a similar way. The statement describing
the asymptotic form of the periodic solution comes immediately from the
estimates given for

∣∣xφ − v∣∣ in Section 3.4.
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