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Preface

In a projective-metric space (M, d) we define

(D1) a conical curve as the set
CεF,H :={X ∈ Rn : εd(X,H) = d(F,X)},

where H is a hyperplane, the leading hyperplane or directrix, F /∈ H is a point, the focus,
and ε > 0 is a number, the numeric eccentricity. A conical curve is said to be elliptic,
parabolic and hyperbolic, if ε < 1, ε = 1 and ε > 1, respectively.

For given fixed points F1, F2, the focuses, and number a 6= d(F1, F2)/2, the radius, we
define

(D2) the ellipsoid (ellipse in dimension 2) as the set
Ead;F1,F2

:={E : 2a = d(F1, E) + d(E,F2)}, and

(D3) the hyperboloid (hyperbola in dimension 2) as the set
Had;F1,F2

:={X : 2a = |d(F1, X)− d(X,F2)|},

according to a > d(F1, F2)/2 or a < d(F1, F2)/2, respectively. Value 2f := d(F1, F2)

is the eccentricity, and if the eccentricity vanishes, then the ellipsoid (ellipse) is called
sphere (circle). Further, an ellipsoid (ellipse) or hyperboloid (hyperbola) is called conical
if it is a conical curve.

According to [9], A. Moór raised the request for determining those Finsler manifolds in
which the class of elliptic conical curves coincides with the class of ellipses, or the class
of hyperbolic conical curves coincides with the class of hyperbolas. Tamássy and Bélteky
found in [10, Theorem 2], that the only Finsler space where the class of elliptic conical
curves coincides with the class of ellipses is the Euclidean space.

A similar problem was solved by Kurusa in [5, Theorem 6.1], where he proved that the
only Minkowski geometry in which either a conical ellipsoid or a conical hyperboloid
exists is the Euclidean one. At the end of his paper [5] Kurusa formulated the problem
of determining projective-metric spaces in which

(a) some or all ellipses are conical, or
(b) some or all hyperbolas are conical.
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Kurusa’s main result [5, Theorem 6.1] was based on that, by [5, Theorem 4.2 and 4.3],
the only Minkowski geometry in which a symmetric conical curve exists is the Euclidean
one. Additionally, it is also proved in [5, Theorem 5.1] that the only Minkowski plane in
which a quadratic conical curve exists is the Euclidean one. So Kurusa also raised the
request to determine the projective-metric spaces in which

(c) some or all elliptic conical curves are symmetric, or
(d) some or all hyperbolic conical curves are symmetric, or
(e) some or all elliptic conical curves are quadratic, or
(f) some or all hyperbolic conical curves are quadratic.

All these problems are open for curved projective-metric spaces, so it was natural to set
the goal of the research to answer Kurusa’s request for curved constant curvature spaces.
We reached this goal and published the results in [6–8].

Our results are as follow:

Theorem A. If a conical curve C in a curved constant curvature plane P is symmetric,
then P is the sphere and the focus of C is the pole of the directrix of C.

Theorem B. If a conical curve C in a curved constant curvature plane P is quadratic,
then P is the sphere and either the focus of C is the pole of the directrix of C or C is
parabolic.

Theorem C. If C is a conical ellipse or a conical hyperbola in a curved constant curvature
plane P, then P is the sphere and the focus of C is the pole of the directrix of C.

The presentation is based on my papers [6,7] and [8], but for the sake of a broader view
the dissertation gives precise definitions from the ground up, provides basic theorems for
curves and surfaces, and describes thoroughly from both the projective and the differen-
tial geometric point of views the spaces used in the text to show the dual nature of the
constant curvature spaces.

Acknowledgment. First and foremost, my dissertation could have been never written
without the help of my great supervisor Dr. Árpád Kurusa. I would also like to
extend my thanks to the Bolyai Institute of the Faculty of Sciences and Informatics
and to the Stipendium Hungaricum Foundation for providing me the opportunity
to join Ph.D. studies, and giving access to all research facilities. I would like to thank
Dr. Béla Nagy for everything he has done for me. I cannot imagine ever coming this
far without my extended family.
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1. Preliminaries and preparations
In this chapter we collect definitions, theorems and some proofs which will be used as
auxiliary facts for the next chapters.

Points of Rn are denoted as A,B, . . . , vectors are
−−→
AB or a,b, . . . , but we use these latter

notations also for points if the origin is fixed. The open segment with endpoints A and
B is denoted by AB = (A,B), AB is the open ray starting from A passing through B,
and AB denotes the line through A and B.

We denote the affine ratio of the collinear points A,B and C by (A,B;C) that sat-
isfies (A,B;C)

−−→
BC =

−→
AC. The cross ratio of the collinear points A,B and C,D is

(A,B;C,D) = (A,B;C)/(A,B;D) [2, page 243].

Notations uϕ = (cosϕ, sinϕ) and u⊥ϕ := (cos(ϕ+π/2), sin(ϕ+π/2)) are frequently used.

1.1 Basic differential geometry

In this section we provide the basic definitions and theorems of differential geometry that
are necessary to understand our results in the next chapter.

1.1.1 Curves

Definition 1.1. A parameterized differentiable curve is a differentiable map p : I → R3

of an open interval I = (a, b) of the real line R into R3.

I

p

t

Figure 1.1: Curve and its parameterization

The differentiability means that p maps each t ∈ I into point p(t) = (x(t), y(t), z(t)) ∈
R3 in such a manner that the functions x(t), y(t), y(t) are differentiable. The variable t
is called the parameter of the curve.

The vector p′(t) = (x′(t), y′(t), z′(t)) ∈ R3 is the tangent vector of the curve p at t, and
the image set p ⊂ R3 is called the trace of p.
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Definition 1.2. A parameterized differentiable curve p : I → R3 is said to be regular if
p′(t) 6= 0 for all t ∈ I. Then the vector p′(t) is called the tangent vector of p at p(t) or
at t.

Definition 1.3. The arc length of a regular parameterized curve p from the point p(t0)

to p(t1) is

s(t) =

∫ t1

t0

∣∣p′(t)∣∣ dt, where ∣∣p′(t)∣∣ =
√

(x′(t))2 + (y′(t))2 + (z′(t))2.

A regular parameterized curve p is said to be arc length parameterized if |p′(s)| = 1.

1.1.2 Surfaces

Definition 1.4. A subset S ⊂ R3 is a regular surface if for each point S ∈ S there exists
a neighborhood V ⊆ R3 and a map r : U → V ∩S of an open set U ⊆ R2 onto V ∩S ⊆ R3

such that

(1) the coordinate functions x, y, z of r(u, v) = (x(u, v), y(u, v), z(u, v)) ((u, v) ∈ U),
have continuous partial derivatives of all orders;

(2) the inverse r : V ∩ S → U is well defined and is continuous;

(3) (The regularity condition.) the derivative ṙ is one to one.

r(·, v)

r(u, ·)

r(u, v)
r

(u, v)

x = u

y = v

Figure 1.2: Surface and its parameterization

Proposition 1.5. If f : U → R is a differentiable function on an open set U ⊆ R2, then
the graph of f , that is, the subset of R3 given by (x, y, f(x, y)) for (x, y) ∈ U , is a regular
surface.

Proposition 1.6. If f : U ⊆ R3 → R is a differentiable function and a ∈ f(U) is a
regular value of f , then f−1(U) is a regular surface in R3

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 4
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Proposition 1.7. Let S ⊆ R3 be a regular surface and P ∈ S. Then there exists a
neighborhood V ⊆ S of P such that V is the graph of a differentiable function which has
one of the following three forms z = f(x, y), y = g(x, z), x = h(y, z).

Definition 1.8. The set TS of the tangent vectors of the curves on the surface S is
called the tangent bundle. The set TPS of tangent vectors p′(t) ∈ TS, where p(t) = P ,
is called the tangent plane of S at P ∈ S.

Every tangent plane TPS is a 2-dimensional vector space. For every tangent vector
v ∈ TPS there are great many curves p on the surface S that satisfies p(0) = P and
v = p′(0).

Definition 1.9. A differentiable map f : S → R is called differentiable scalar field on S.
The differential ∂vf of the scalar field f evaluated against the tangent vector v ∈ TPS is
the derivative (f ◦ p)′(0), where p is a curve on the surface S satisfying p(0) = P and
v = p′(0).

We notice that the differential of a scalar field evaluated against a tangent vector does
not depend on the choice of the curve chosen in the definition.

Definition 1.10. A differentiable map X : S → TS is called differentiable vector field
on S, if X(P ) ∈ TPS for every P ∈ S. The vector space of the differentiable vector fields
on S is denoted by T∗S.

Definition 1.11. The Lie-bracket [X,Y ] of two vector fields X,Y ∈ T∗S is a linear
mapping of scalar fields defined by f 7→ [X,Y ]f = ∂X(∂Y f)− ∂Y (∂Xf).

1.1.3 Riemann manifolds

We consider only Riemannian manifolds given on surfaces of the 3-dimensional space.

Definition 1.12. The pair (S, g) is called a Riemannian manifold of dimension 2, if S is
a regular surface and g : S 3 P 7→ gP provides a Euclidean product gP : TPS ×TPS → R
at every point P ∈ S on the corresponding tangent plane TPS such that if X and Y

are differentiable vector fields on S, then the function S 3 P 7→ gP (X(P ), Y (P )) is a
smooth function of P . The function g is called a Riemannian metric (or Riemannian
metric tensor).

Every surface with its tangent planes equipped with the Euclidean product gP (u,v) :=

〈u,v〉 given by the restriction of the Euclidean product 〈·, ·〉 of the space R3 is such a
Riemannian manifold of dimension 2. The Riemannian metric given in this way called
inherited Riemannian metric.

Definition 1.13. The length of a differentiable curve p : (a, b)→ S ⊂ R3 in a Rieman-
nian manifold (S, g) is `(p) :=

∫ b
a

√
gp(t)(ṗ(t), ṗ(t))dt.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 5
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Definition 1.14. The Riemannian distance function dg : S × S 3 (P,Q) 7→ dg(P,Q) ∈
R on a Riemannian manifold (S, g) is infp∈CP,Q

`(p), where CP,Q is the set of all the
differentiable curve p in the Riemannian manifold (S, g) connecting P and Q.

A Riemannian manifold with the Riemannian distance function is a metric space.

Definition 1.15. A bilinear mapping ∇ : T∗S × T∗S 3 (X,Y ) → ∇XY ∈ T∗S is called
affine connection if for all differentiable functions f : S → R and for all vector fields
X,Y ∈ T∗S if ∇fXY = f∇XY (functional linearity in the first variable) and ∇X(fY ) =

∂XfY + f∇XY (Leibniz rule in the second variable) hold.

An affine connection is called torsion-free if [X,Y ] := ∇XY −∇YX for everyX,Y ∈ T∗S.

Definition 1.16. An affine connection is a Levi-Civita connection if it is torsion-free, and
compatible with the Riemannian metric g, i.e. ∇X

(
g(Y, Z)

)
= g(∇XY, Z) + g(Y,∇XZ).

There is always a unique Levi-Civita connection that is easy to prove through the Koszul
formula 2g(∇XY, Z) = ∂X

(
g(Y,Z)

)
+ ∂Y

(
g(Z,X)

)
− ∂Z

(
g(X,Y )

)
.

Definition 1.17. The Riemannian curvature is the trilinear mapping R of vector fields
to vector fields defined by R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The Riemannian curvature is a tensor, because R(fX, Y )Z = R(X, fY )Z = R(X,Y )(fZ) =

fR(X,Y )Z for every scalar field f and vector fields X,Y, Z, hence R(X,Y )Z(P ) de-
pends in fact only on the vectors X(P ), Y (P ), Z(P ) ∈ TPS. Further, the expression
κ(u,v) = gP (R(u,v)v,u)

gP (u,u)gP (v,v)−g2P (u,v)
does not depend on the independent vectors u,v ∈ TPS.

Definition 1.18. The value κP = κ(u,v) is called the (sectional) curvature of (S, g) at
the point P ∈ S.

1.1.4 Two-dimensional manifolds of constant curvature

It is easy to see that the plane and the sphere with their respective inherited Riemannian
metric are surfaces of constant curvature, but there is a third example worth noting.

O

Let the surface K2
κ ⊂ R3 of points p = (p1, p2, p3) satisfying

κ(p21 + p22) + p23 = 1, (1.1)

where κ ∈ {1, 0,−1}. Equip the surface K2
κ with the Rie-

mannian metric gκ such that

gκ;p : TpK2
κ×TpK2

κ 3 (x,y) 7→ x1y1 +x2y2 +κx3y3 (1.2)

for every point p ∈ K2
κ. Then the pairs (K2

κ, gκ) have
constant curvature κ.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 6
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If κ ≥ 0, then the Riemannian metric in (1.2) is the inherited metric, and we have the
sphere K2

1 and two planes K2
0. The Riemannian manifold (K2

−1, g−1) is a different case:
both sheets of the hyperboloid K2

−1 equipped with the Riemannian metric g−1 model the
hyperbolic plane, but g−1 is not the inherited metric.

Then one gets the so-called projective model K̄2
κ of the constant curvature space K2

κ of
curvature κ ∈ {1, 0,−1} [3], and also the canonical correspondence identifying the points
of K2

κ ⊂ R3 that are symmetric in the origin.

1.2 Projective-metric spaces

Real projective plane P2 arises in several different ways.

Considering the real affine plane R2, we call the equivalence sets of the straight lines by
parallelism ideal points, and add these points to the set of the usual (real) points of R2

so that each ideal point becomes a common point of every straight line belonging to that
particular ideal point. This extended geometry is the real projective plane.

Another method to construct real projective plane P2 is to think of the straight lines
passing through the origin (0, 0, 0) in R3 as projective points, and think of the planes
passing through the origin (0, 0, 0) in R3 as projective straight lines.

A more algebraic way is to consider the equivalence classes of the non-vanishing direc-
tional vectors by the equivalency relation ∼ that relates two non-vanishing directional
vectors equivalent ∼ if one of them is a scalar multiple of the other one. This leads to
the homogeneous coordinates which is a coordinatization of the real projective plane P2.

Finally, an intuitive way of considering the real projective plane is to identify diametrical
points of the sphere, i.e. these pairs constitute the points of the real projective plane.

A metric space is an ordered pair (M, d) such that M is a set, the set of points, and
d : M×M → R is a metric, i.e. for any three points x, y, z ∈ M it satisfies d(x, y) =

0⇔ x = y, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z), the triangle inequality.

If the metric space (M, d) is thatM is a projective plane P2, or an affine plane R2 ⊂ P2,
or a (not necessarily bounded) proper open convex subset of an affine plane R2 ⊂ P2, and
the metric d is complete, continuous with respect to the usual topology of Pn, additive
on the segments, and the geodesic lines of d are exactly the non-empty intersection ofM
with the straight lines, then the pair (M, d) is called projective-metric space1 [2, p. 115].

Such projective-metric planes are called elliptic, parabolic, or hyperbolic, respectively,
according to whether M is P2, R2, or a proper convex subset of R2. The projective-
metric planes of the latter two types are called straight [1, p. 1].

1Determining the projective-metric spaces and studying the individual ones is known as Hilbert’s
fourth problem.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 7
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The geodesics of a projective-metric space of elliptic type have equal lengths, so we
can set their length to π by simply multiplying the metric with an appropriate positive
constant. Therefore we assume from now on that projective-metric spaces of elliptic type
have geodesics of length π.

Every isometry of (M, d) is a restriction of a projectivity of the projective space Pn [1].

A set S ⊂M is called symmetric about a point C, if X ∈ S if and only if Y ∈ S, where
C is in the metric midpoints of the segment XY , i.e. 2d(X,C) = 2d(C, Y ) = d(X,Y ).

1.2.1 Elliptic projective-metric planes

Every elliptic plane can be constructed in the following way. Take a Euclidean metric
on R2 and let 〈·, ·〉 be its Euclidean product. Define the function δ̂ : S2 × S2 → R by
δ̂(x,y) = arccos〈x,y〉. This is a metric on S2, and it satisfies the strict triangle inequality,
i.e. δ̂(A,B) + δ̂(B,C) = δ̂(A,C) if the points A,B and C are in a hemisphere. Equality
happens if and only if B is on the great circle determined by A and C. If the diametrical
points are identified and the metric is inherited, then we get an elliptic plane.

To show that the constructed geometry is an elliptic projective-metric space, we use the
gnomonic projection [11] ΓO : S2 → TOS2 of the sphere, where O ∈ S2 and TOS2 is the
tangent hyperplane of S2 at point O with the projective extension.

O = (0, 0, 1)

(0, 0, 0)

P = (p1, p2, 1)

Q = (q1, q2, 1)
δ(P,Q

)

ΓO projects the spherical metric δ̂ to the metric

δ : Rn−1 × Rn−1 → [0, π) (P,Q) 7→ δ̂(P,Q) = arccos
( 〈P,Q〉
|P | |Q|

)
. (1.3)

1.2.2 Parabolic projective-metric planes

The most important parabolic projective-metric planes are the Minkowski planes2. They
are constructed in the following way.

Let I be an open, strictly convex, bounded domain in R2, (centrally) symmetric to the
origin. Then the function d : R2 × R2 → R defined by

d(x,y) = inf{λ > 0 : (y − x)/λ ∈ I}
2They are also known as normed planes.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 8
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is a metric on R2 [2, IV.24], and is called Minkowski metric on R2. It satisfies the strict
triangle inequality, i.e. d(A,B) + d(B,C) = d(A,C) is valid if and only if B ∈ AC.

∂IX
IX

X
IY

Y

The pair (R2, d) is the Minkowski plane, and I is called the indicatrix of it.

1.2.3 Hyperbolic projective-metric planes

The most important hyperbolic projective-metric planes are the Hilbert planes. They are
constructed in the following way.

IfM is an open, strictly convex, proper subset of R2, then the function d : M×M→ R
defined by

d(A,B) =

0, if A = B,

1
2

∣∣ ln(A,B;C,D)
∣∣, if A 6= B, where CD =M∩AB,

(1.4)

is a metric onM [2, page 297] which satisfies the strict triangle inequality, i.e. d(A,B)+

d(B,C) = d(A,C) if and only if B ∈ AC.

∂M

D

C

A

B

The pair (M, d) is the Hilbert plane,M is its domain, and the function d is called the
Hilbert metric onM.

1.2.4 Constant curvature planes

There are special elliptic, parabolic and hyperbolic projective-metric planes that make
Riemannian manifolds.

It is clear that a Minkowski plane is Euclidean if and only if its indicatrix is an ellipse.

It is known [2, (29.3)] that a Hilbert plane is a model of the hyperbolic plane of Bolyai,
Lobachevskii and Gauss, if and only if its domain is the interior of an ellipse. Such
Hilbert planes are called Cayley–Klein models of the hyperbolic plane.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 9
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It happens that these have constant curvature, and can also be constructed by the
gnomonic projection of the 2-dimensional manifolds (K2

κ, gκ) [4], where κ ∈ {0,±1}.

The isometry groups of all these three constant curvature planes are generated by reflec-
tions in straight lines. Moreover specifically, we have

Theorem 1.19 ([2]). Every isometry of each of these three constant curvature planes
can be given as a product of at most three reflections in straight lines.

1.3 Classes of curves in the Euclidean plane

In the Euclidean plane there are four differently defined classes of curves which however
coincide in most of the cases. Here we briefly describe only three of these classes to shade
light over the problem considered in the main part of the dissertation.

1.3.1 Quadratic curves

The curves presented in this subsection are independent from the metric. A curve in the
plane is called quadratical, if it is part of a quadric

Qσs :=

(x, y) :

1=x2 + σy2, if σ ∈ {−1, 1},

x=y2, if σ = 0,


 , (Dq)

where s is an affine coordinate system. A quadric is called ellipse (affine circle), parabola
and hyperbola, if σ = 1, σ = 0 and σ = −1, respectively.

Q1
s Q0

s Q−1s

Q−1s

The ellipse is the only bounded conical curve. The parabola is a connected conical
curve that has exactly one complete set of parallel lines such that its every member
line intersects the parabola in exactly one point. The hyperbola is two connected curves
(called branches) and it is such that exactly two complete sets of parallel lines are such
that their every member line, except the one called asymptote, intersects the hyperbola
in exactly one point.

1.3.2 Curves defined by sum or difference of distances

The curves presented in this subsection are bound to the metric. For now, we stay in
Euclidean geometry.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 10
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A closed segment F1F2 of the different points F1, F2 is the locus of points P in the plane
such that the sum of the distances from P to the two fixed points F1 and F2 is the
constant d(F1, F2).

Definition 1.20. An ellipse EaF1,F2
is the locus of points P in the plane such that the

sum of the distances from P to the two fixed points F1 and F2, the foci, is a constant
a > d(F1, F2). An ellipse ErC,C is called circle of radius r with center C.

The closed rays F1F2 \ F1F2 of the different points F1, F2 are the locus of points P in
the plane such that the absolute value of the difference of the distances from P to the
two fixed points F1 and F2 is the constant d(F1, F2).

Definition 1.21. A hyperbola HaF1,F2
is the locus of points P in the plane such that the

absolute value of the difference of the distances from P to the two fixed points F1 and
F2, the foci, is a constant a < d(F1, F2).

EaF1,F2

F1 F2

HaF1,F2

HaF1,F2

F1 F2

Every ellipse is an affine ellipse Q1
s , and every affine ellipse Q1

s is the circle E1(0,0),(0,0) in
the Euclidean metric d defined by the inner product 〈(x, y), (z, t)〉 = xz + yt.

Every hyperbola HaF1,F2
is an affine hyperbola Q−1s , and every affine hyperbola Q−1s is

the hyperbola H2
(2,0),(−2,0) in the Euclidean metric d.

1.3.3 Curves defined by ratio of distances

In this section we consider curves which are bound to the metric, for now, it is the
Euclidean metric.

Definition 1.22. Given a positive number ε, the numerical eccentricity, a straight line
`, the directrix, and a point F /∈ `, the foci, in the plane, the conical curve CεF,` is the
locus of points P in the plane such that d(F, P ) = εd(P, `).

`
CεF,`

CεF,`
P⊥

F⊥

P

F

Figure 1.3: Conical curve in Euclidean plane

A conical curve is called elliptic, parabolic, and hyperbolic, if ε < 1, ε = 1, and ε > 1,
respectively.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 11
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Every elliptic conical curve is a bounded closed curve contained in one side of the di-
rectrix. The elliptic conical curves are affine ellipses Q1

s , metric ellipses EaF1,F2
. Further,

except the circles, every metric ellipse EaF1,F2
is an elliptic conical curve.

Every parabolic conical curve is an unbounded curve contained in one side of the directrix.
The parabolic conical curves are affine parabolas Q0

s , and conic sections. Further, every
affine parabola Q0

s is a parabolic conical curve.

Every hyperbolic conical curve has two separate unbounded connected curves, the branches,
one-one on both sides of the directrix. The hyperbolic conical curves are affine hyperbo-
las Q−1s , metric hyperbolas HaF1,F2

, and conic sections. Further, every affine hyperbola
Q−1s is a hyperbolic conical curve.

2. Conical curves with given properties
In this chapter we consider conical curves in constant curvature planes. It turns out
that some of their usual properties, like symmetry and quadraticity, remains valid only
in very special configurations. We prove that

(1) no conical curve in the hyperbolic plane can be quadratic;

(2) no conical curve in the hyperbolic plane can be symmetric;

(3) if the focus of a conic curve on the sphere is not the pole of the directrix, then the
conic can only be quadratic if it is a parabolic, and it can not be symmetric.

2.1 Quadratic conical curves in the hyperbolic plane

As for any pair (F, `) of a point F in D and an h-line ` there exists an isometry ı such
that ı(`) goes through the center O of D, and O is the foot of ı(F ) on ı(`), we can restrict
without loss of generality the investigation of conical curves to those conical curves CεF,`
in (D, δ) for which the directrix ` is the y-axis, and the focus F is (f, 0), where f ∈ (0, 1).

`

CεF,`

(0, q)

G

p

E

P (√
1− q2, q

)(
−
√

1− q2, q
)

f

F

D

Figure 2.1: Directrix ` is through the center of the Cayley–Klein model,
the focus F is at (f, 0), where f ∈ (0, 1).
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Conical curves with given properties Quadratic conical curves in the hyperbolic plane

To calculate the points P = (p, q) on CεF,`, we have to calculate δ(P, `) and δ(F, P ), where
P = (p, q) ∈ CεF,`.

It is easy to get that

δ(P, `) =
1

2

∣∣∣ log
{p+

√
1− q2

p−
√

1− q2
:

0 +
√

1− q2

0−
√

1− q2
}∣∣∣. (2.1)

To obtain δ(F, P ), we firstly determine the points {E,G} = {(x±, y±)}, where line FP
intersects the unit circle, the border of D. So we get

δ(F, P ) =
1

2

∣∣∣ log
{(fp− 1−

√
(p− f)2 + (1− f2)q2)2

(1− f2)(1− p2 − q2)

}∣∣∣. (2.2)

According to (D1) equations (2.1) and (2.2) give

(1− q2 − p2)
(

1 +
2p√

1− q2 − p

)ε
=

(
fp− 1−

√
q2(1− f2) + (p− f)2

)2
1− f2

, (2.3)

where ε = ±ε. Figure 2.4 shows how these conical curves look like based on (2.3).

Figure 2.2: An elliptic (ε = 0.9), parabolic (ε = 1), and hyperbolic (ε = 1.1) conical
curve in the Cayley–Klein model of the hyperbolic geometry.

For the sake of later contradiction, we assume from now on that

conical curve CεF,` is quadratic (Dq),

hence it satisfies an equation of the form āx2 + b̄xy + c̄y2 + d̄x+ ēy + f̄ = 0, where the
coefficients are real and ā ≥ 0.

As the conical curves CεF,` are symmetric in the x-axis, the quadratic equation should be
invariant under changing y to −y, so b̄ = ē = 0 follows. So the equation is of the form
āx2 + c̄y2 + d̄x + ḡ = 0, hence c̄ 6= 0, because otherwise the curve will degenerate into
straight lines. So the quadratic equation simplifies to

ax2 + y2 + bx+ c = 0, a ≥ 0. (2.4)

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 13
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Conical curves with given properties Symmetric conical curves in the hyperbolic plane

As conical curve CεF,` is quadratical, we have q2 = −ap2 − bp − c, a ≥ 0. Putting this
into (2.3) gives an identity for p. Differentiating this with respect to p simplifies to the
identity of two polynomials:

ε4(2(1 + c) + pb)4+

+
((

(fb+ 2a− 2)p+ 2f(c+ 1) + b
)2(

(p− f)2 − (ap2 + bp+ c)(1− f2)
)
+

+
(
f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b

)2)2×
× (1 + ap2 + bp+ c)2+

+ 2ε2(2(1 + c) + pb)2×

×
((

(fb+ 2a− 2)p+ 2f(c+ 1) + b
)2(

(p− f)2 − (ap2 + bp+ c)(1− f2)
)
+

+
(
f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b

)2)×
× (1 + ap2 + bp+ c)

= 4
(
(fb+ 2a− 2)p+ 2f(c+ 1) + b

)2
(1 + ap2 + bp+ c)2×

× (f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b)2×

×
(
(p− f)2 − (ap2 + bp+ c)(1− f2)

)
.

Two polynomials can only be equal on a segment if their corresponding coefficients are
pairwise equal.

Carefully comparing the corresponding coeffictients leads to the outcome that the conical
curve CεF,` is of the form x2 + y2 = 1, a clear contradiction that proves the following:

Theorem 2.1 ([6]). No conical curve of the hyperbolic plane can be quadratic in Cayley–
Klein models.

2.2 Symmetric conical curves in the hyperbolic plane

Consider a conical curve CεF,`. Let F⊥ be the foot of F on the h-line `, and let C be a
point on the h-line FF⊥ different from F⊥.

It is well known that there are h-isometries that maps C into the center O of D. Thus we
can restrict without loss of generality the investigation of conical curves CεF,` in (D, δ) to

those ones for which (m,−
√

1−m2)(m,
√

1−m2) is the directrix ` for somem ∈ (−1, 0),
the center is O = (0, 0), and the focus F is (f, 0), where f ∈ (−1, 1) \ {m}.

To calculate the points P = (p, q) on CεF,`, we have to calculate δ(P, `) and δ(F, P ),
where P = (p, q) ∈ CεF,`. Observe that the line through P orthogonal to ` is the one that
connects P to L, the intersection of the tangents of D at the limit points of `. We clearly
have L = (−1/m, 0).

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 14
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Conical curves with given properties Symmetric conical curves in the hyperbolic plane

Figure 2.3: Directrix ` is (m,−
√

1−m2)(m,
√

1−m2), CεF,` is symmetric in O, the
center of the Cayley–Klein model, and the focus F is at (f, 0), where f ∈ (−1, 1)\{m}.

To obtain δ(P, `), we firstly determine the points where line LP intersects the unit circle.
Further, we need the coordinates of point J , where PL intersects `. Thus

δ(P, `) =
1

2

∣∣∣∣∣ log

{(√(
p− 1

m

)2
+q2

(
1− 1

m2

)
+
(
1− 1

mp
))2

(1−p2−q2)
(

1
m2−1

) }∣∣∣∣∣. (2.5)

To obtain δ(F, P ), we firstly determine the points E = (x1, y1) and G = (x2, y2), where
line FP intersects the unit circle, the border of D. Thus, we get

δ(F, P ) =
1

2

∣∣∣ log
{(fp− 1−

√
(p− f)2 + (1− f2)q2)2

(1− f2)(1− p2 − q2)

}∣∣∣. (2.6)

According to (D1) equations (2.5) and (2.6) give

((√(
p− 1

m

)2
+q2

(
1− 1

m2

)
+
(
1− 1

mp
))2

(1−p2−q2)
(

1
m2−1

) )ε
=

(
fp−1−

√
q2(1−f2)+(p−f)2

)2
(1−f2)(1−q2−p2)

, (2.7)

where ε ∈ {ε,−ε}. Figure 2.4 shows how these conical curves look like based on (2.7)
with ε = ε.

Figure 2.4: An elliptic (ε = 0.9), parabolic (ε = 1), and hyperbolic (ε = 1.1) conical
curve in the Cayley–Klein model of the hyperbolic geometry.
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Conical curves with given properties Quadratic conical curves on the sphere

For the sake of later contradiction, we assume from now on that

conical curve CεF,` is symmetric in a point C.

Such a point of symmetry C clearly is on the h-line FF⊥, where F⊥ is the foot of F on the
h-line `. So we can restrict without loss of generality the investigation of symmetric coni-
cal curves CεF,` in (D, δ) to those ones for which directrix ` is (m,−

√
1−m2)(m,

√
1−m2)

for somem ∈ (−1, 1), the center is O = (0, 0), and the focus F is (f, 0), where f ∈ (m, 1).
Thus we can use the formulas given in the previous section.

As the conical curve is symmetric in the x-axis, and it is symmetric in point O, it is
symmetric about the y-axis too, so, substituting −p into p, dividing the two equations
and taking the square root than restricting to q = 0, after some rearrangement we get

1±f
1∓f

(1−m
1+m

)ε
=
(1+p

1−p

)−ε±1
, where ± 1 =

p− f
|p− f |

. (2.8)

If p is a solution of these equations, then the symmetry in O implies, that −p is also a
solution of (2.8). Thus we have either ε ∈ (0, 1) or ε ∈ (1,∞). If ε ∈ (0, 1), then p→ 0

causes contradiction. If ε > 1, then p2 + q2 → 1 causes contradiction.

Theorem 2.2 ([7]). No conical curve of the hyperbolic plane can be symmetric.

2.3 Quadratic conical curves on the sphere

Let Ô be the polar of the great circle ˆ̀ on the S2. Let F̂ be in the half sphere S2
Ô

of ˆ̀

that contains Ô. Let P̂ be on the half circle G2
Ô

of the great circle of Ô and F̂ that is
contained by S2

Ô
.

It is not hard to prove that there is exactly one $ ∈ (−π/2, ϕ) for which P̂ ∈ Ĉε
δ̂;F̂ ,ˆ̀

.

Let CεF,` := ΓÔ(Ĉε
δ̂;F̂ ,ˆ̀

), O := ΓÔ(Ô), F := ΓÔ(F̂ ), and ` := ΓÔ(ˆ̀). Choose the coordinate
system so that O = (0, 0, 1) and F = (f, 0, 1), where f > 0. Figure 2.5 shows what we
have on the plane P := TÔS

2 = {(x, y, z) : z = 1}.

CεF,`

y = xq/p

p
O

P

(p, q, 1)

f

F

Figure 2.5: Projected conical curve CεF,`, if the directrix ` is in the infinity and the
focus F is at (f, 0), where f > 0.

To calculate the points (p, q, 1) = P = ΓÔ(P̂ ) of CεF,` we have to calculate δ(P, `) and
δ(F, P ), where P ∈ CεF,`.
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Conical curves with given properties Quadratic conical curves on the sphere

Thus,

δ(P, `) =
π

2
− δ(P,O) =

π

2
− arccos

1√
p2 + q2 + 1

(2.9)

δ(P, F ) = δ(P, (f, 0, 1)) = arccos
pf + 1√

f2 + 1
√
p2 + q2 + 1

. (2.10)

According to (D1) equations (2.9) and (2.10) give that

ε
(π

2
− arccos

1√
p2 + q2 + 1

)
= arccos

pf + 1√
f2 + 1

√
p2 + q2 + 1

(2.11)

is the equation of CεF,`. Figure 2.6 shows how CεF,` looks like for different values of ε.

Figure 2.6: An elliptic (ε = 0.90), parabolic (ε = 1), and hyperbolic (ε = 1.1) conical
curve in the projected model of the sphere.

The parabolic conical curves (i.e. ε = 1) are quadratic because taking the cosine of (2.11)
results in √

1− 1

p2 + q2 + 1
=
∣∣∣ pf + 1√

f2 + 1
√
p2 + q2 + 1

∣∣∣,
the square of which is the clearly quadratic equation (p2 + q2)(f2 + 1) = pf + 1.

To find all the quadratic conical curves,

from now on we assume that CεF,` is quadratic,

hence satisfies an equation of the form āx2 + b̄xy + c̄y2 + d̄x + ēy + f̄ = 0, where the
coefficients are real and ā ≥ 0. As every conical curve CεF,` is symmetric in the x-axis,
the quadratic equation should be invariant under changing y to −y, so b̄ = ē = 0 follows.
So the quadratic equation simplifies to q2 = −ap2− bp− c. Putting this into (2.11) then
differentiating with respect to p gives

ε2(2(1− a)p− b)2((1− a(1 + f2))p2 − (2f + b(1 + f2))p+ (f2 − c(1 + f2)))

= ((fb+ 2(1− a))p− (b+ 2f(1− c)))2((1− a)p2 − bp− c).
(2.12)

This equation is valid on an interval of p, so the coefficients of the polynomials on the
sides are equal, hence

4ε2(1− a)2(1− a(1 + f2)) = (1− a)(fb+ 2(1− a))2(p4)

4ε2
(
(1− a)2(2f + b(1 + f2)) + b(1− a)(1− a(1 + f2))

)
(p3)

= b(fb+ 2(1− a))2 + 2(1− a)(b+ 2f(1− c))(fb+ 2(1− a))

ε2
(
b2(1− a(1 + f2)) + 4b(1− a)(2f + b(1 + f2)) + 4(1− a)2(f2 − c(1 + f2))

)
(p2)

= −c(fb+ 2(1− a))2 + 2b(b+ 2f(1− c))(fb+ 2(1− a))+

+ (1− a)(b+ 2f(1− c))2

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 17
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Conical curves with given properties Symmetric conical curves on the sphere

4ε2
(
b(1− a)(f2 − c(1 + f2)) + b2(2f + b(1 + f2))

)
(p1)

= b(b+ 2f(1− c))2 − 2c(b+ 2f(1− c))(fb+ 2(1− a))

ε2b2(f2 − c(1 + f2)) = −c(b+ 2f(1− c))2,(p0)

where ε, f > 0 are fixed, and a > 0, b2 > 4ac.

A long and very careful investigation of this system of equation reveals that the system
of equations (p0)–(p4) does not have a solution, so the polynomials of the sides in (2.12)
are different, hence the conical curves in this case are not quadratic.

Theorem 2.3 ([8]). A conical curve on the sphere is quadratic if and only if either the
focus is the pole of the directrix, or the focus is not the pole of the directrix, but the
conical curve is parabolic, i.e. ε = 1.

2.4 Symmetric conical curves on the sphere

Firstly we notice that the conical curve on the sphere is a hypersphere, hence symmetric
if the focus is the pole of the directrix, so we assume for the sake of a later contradiction
that

F̂ is not the pole of ˆ̀, and Ĉε
δ̂;F̂ ,ˆ̀

is symmetric in a point Ĉ.

Such a point of symmetry Ĉ clearly is on the great circle of F̂ F̂⊥, where F̂⊥ is the unique
foot of F̂ on the great circle ˆ̀.

Take the gnomonic projection ΓĈ . Let CεF,` := ΓĈ(Ĉε
δ̂;F̂ ,ˆ̀

), P := ΓĈ(P̂ ) and P⊥ :=

ΓĈ(P̂⊥) for any point P , and ` := ΓĈ(ˆ̀). Choose the coordinate system so that C =

(0, 0, 1), F = (f, 0, 1), and ` = {(x, y, z) : x = m ∧ z = 1}. Figure 2.7 shows what we
have on the plane P := TĈS

2 = {(x, y, z) : z = 1}.

`
CεF,`

q
P⊥ = (m, r, 1)

p
F⊥ = (m, 0, 1)

P

(p, q, 1)

C (0, 0, 1)f

F

Figure 2.7: Projected conical curve CεF,`, if the directrix ` is parallel to the y-axis and
the focus F is at (f, 0), where f < 0.

The advantage of taking the gnomonic projection ΓĈ is that Ĉε
δ̂;F̂ ,ˆ̀

is symmetric about

Ĉ in the spherical meaning if and only if CεF,` is symmetric about C in the Euclidean
meaning.
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Conical curves with given properties Conical ellipses and conical hyperbolas

By (1.3), we have

δ(P, `)=arccos

√
(mp+ 1)2 + q2(m2 + 1)
√
m2 + 1

√
p2 + q2 + 1

. (2.13)

According to (D1) equations (2.13) and (2.10) give

ε arccos

√
(mp+ 1)2 + q2(m2 + 1)
√
m2 + 1

√
p2 + q2 + 1

= arccos
pf + 1√

f2 + 1
√
p2 + q2 + 1

. (2.14)

Figure 2.8 shows how these conical curves look like by (2.11).

Figure 2.8: An elliptic (ε = 0.90), parabolic (ε = 1), and hyperbolic (ε = 1.1) conical
curve in projected model of the sphere.

We now that there exist exactly two solutions of (2.14) for q = 0, and by the symmetry
these are ±p0. Substituting these values leads to a contradiction.

Theorem 2.4 ([8]). A conical curve on the sphere is symmetric if and only if the focus
is the pole of the directrix.

2.5 Conical ellipses and conical hyperbolas

As every ellipse and every hyperbola in the hyperbolic plane is symmetric, every conical
ellipse and every conical hyperbola is a symmetric conical curve, hence Theorem 2.2
implies the following.

Theorem 2.5. There is no conical ellipse or conical hyperbola in the hyperbolic plane.

As every ellipse and every hyperbola on the sphere is symmetric, every conical ellipse
and every conical hyperbola is a symmetric conical curve, hence Theorem 2.4 implies the
following.

Theorem 2.6. Every conical ellipse and every conical hyperbola on the sphere is a circle.
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