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Preface

In a projective-metric space (M, d) we define

(D1) a conical curve as the set
CεF,H :={X ∈ Rn : εd(X,H) = d(F,X)},

where H is a hyperplane, the leading hyperplane or directrix, F /∈ H is a point, the focus,
and ε > 0 is a number, the numeric eccentricity. A conical curve is said to be elliptic,
parabolic and hyperbolic, if ε < 1, ε = 1 and ε > 1, respectively.

For given fixed points F1, F2, the focuses, and number a 6= d(F1, F2)/2, the radius, we
define

(D2) the ellipsoid (ellipse in dimension 2) as the set
Ead;F1,F2

:={E : 2a = d(F1, E) + d(E,F2)}, and

(D3) the hyperboloid (hyperbola in dimension 2) as the set
Had;F1,F2

:={X : 2a = |d(F1, X)− d(X,F2)|},

according to a > d(F1, F2)/2 or a < d(F1, F2)/2, respectively. Value 2f := d(F1, F2)

is the eccentricity, and if the eccentricity vanishes, then the ellipsoid (ellipse) is called
sphere (circle). Further, an ellipsoid (ellipse) or hyperboloid (hyperbola) is called conical
if it is a conical curve.

According to [15], A. Moór raised the request for determining those Finsler manifolds in
which the class of elliptic conical curves coincides with the class of ellipses, or the class
of hyperbolic conical curves coincides with the class of hyperbolas. Tamássy and Bélteky
found in [16, Theorem 2], that the only Finsler space where the class of elliptic conical
curves coincides with the class of ellipses is the Euclidean space.

A similar problem was solved by Kurusa in [10, Theorem 6.1], where he proved that
the only Minkowski geometry in which either a conical ellipsoid or a conical hyperboloid
exists is the Euclidean one. At the end of his paper [10] Kurusa formulated the problem
of determining projective-metric spaces in which

(a) some or all ellipses are conical, or
(b) some or all hyperbolas are conical.

1
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Kurusa’s main result [10, Theorem 6.1] was based on that, by [10, Theorem 4.2 and 4.3],
the only Minkowski geometry in which a symmetric conical curve exists is the Euclidean
one. Additionally, it is also proved in [10, Theorem 5.1] that the only Minkowski plane
in which a quadratic conical curve exists is the Euclidean one. So Kurusa also raised the
request to determine the projective-metric spaces in which

(c) some or all elliptic conical curves are symmetric, or
(d) some or all hyperbolic conical curves are symmetric, or
(e) some or all elliptic conical curves are quadratic, or
(f) some or all hyperbolic conical curves are quadratic.

All these problems are open for curved projective-metric spaces, so it was natural to set
the goal of the research to answer Kurusa’s request for curved constant curvature spaces.
We reached this goal and published the results in [11–13].

Our results are as follow:

Theorem A. If a conical curve C in a curved constant curvature plane P is symmetric,
then P is the sphere and the focus of C is the pole of the directrix of C.

Theorem B. If a conical curve C in a curved constant curvature plane P is quadratic,
then P is the sphere and either the focus of C is the pole of the directrix of C or C is
parabolic.

Theorem C. If C is a conical ellipse or a conical hyperbola in a curved constant curvature
plane P, then P is the sphere and the focus of C is the pole of the directrix of C.

The presentation is based on my papers [11, 12] and [13], but for the sake of a broader
view we give precise definitions from the ground up, provide basic theorems for curves and
surfaces, and describe thoroughly from both the projective and the differential geometric
point of views the spaces used in the text to show the dual nature of the constant
curvature spaces.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 2
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Chapter 1

Preliminaries and preparations

In this chapter we collect definitions, theorems and some proofs which will be used as
auxiliary facts for the next chapters.

Points of Rn are denoted as A,B, . . . , vectors are
−−→
AB or a,b, . . . , but we use these latter

notations also for points if the origin is fixed. The open segment with endpoints A and
B is denoted by AB = (A,B), AB is the open ray starting from A passing through B,
and AB denotes the line through A and B.

We denote the affine ratio of the collinear points A,B and C by (A,B;C) that sat-
isfies (A,B;C)

−−→
BC =

−→
AC. The cross ratio of the collinear points A,B and C,D is

(A,B;C,D) = (A,B;C)/(A,B;D) [4, page 243].

Notations uϕ = (cosϕ, sinϕ) and u⊥ϕ := (cos(ϕ+π/2), sin(ϕ+π/2)) are frequently used.

1.1 Basic differential geometry

In this section we provide the basic definitions and theorems of differential geometry that
are necessary to understand our results in the next chapter.

1.1.1 Curves

Definition 1.1. A parameterized differentiable curve is a differentiable map p : I → R3

of an open interval I = (a, b) of the real line R into R3.

3
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I

p

t

Figure 1.1: Curve and its parameterization

The differentiability means that p maps each t ∈ I into point p(t) = (x(t), y(t), z(t)) ∈
R3 in such a manner that the functions x(t), y(t), y(t) are differentiable. The variable t
is called the parameter of the curve.

The vector p′(t) = (x′(t), y′(t), z′(t)) ∈ R3 is the tangent vector of the curve p at t, and
the image set p ⊂ R3 is called the trace of p.

Definition 1.2. A parameterized differentiable curve p : I → R3 is said to be regular if
p′(t) 6= 0 for all t ∈ I. Then the vector p′(t) is called the tangent vector of p at p(t) or
at t.

Definition 1.3. The arc length of a regular parameterized curve p from the point p(t0)

to p(t1) is

s(t) =

∫ t1

t0

∣∣p′(t)∣∣ dt, where ∣∣p′(t)∣∣ =
√

(x′(t))2 + (y′(t))2 + (z′(t))2.

A regular parameterized curve p is said to be arc length parameterized if |p′(s)| = 1.

Definition 1.4. Let p : I → R3 be a curve parameterized by arc length. The number
|p′′(s)| = κ(s) is called the curvature of p at p(s) or simply at s.

1.1.2 Surfaces

Definition 1.5. A subset S ⊂ R3 is a regular surface if for each point S ∈ S there exists
a neighborhood V ⊆ R3 and a map r : U → V ∩S of an open set U ⊆ R2 onto V ∩S ⊆ R3

such that

(1) the coordinate functions x, y, z of r(u, v) = (x(u, v), y(u, v), z(u, v)) ((u, v) ∈ U),
have continuous partial derivatives of all orders;

(2) the inverse r : V ∩ S → U is well defined and is continuous;

(3) (The regularity condition.) the derivative ṙ is one to one.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 4
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r(·, v)

r(u, ·)

r(u, v)
r

(u, v)

x = u

y = v

Figure 1.2: Surface and its parameterization

Proposition 1.6. If f : U → R is a differentiable function on an open set U ⊆ R2, then
the graph of f , that is, the subset of R3 given by (x, y, f(x, y)) for (x, y) ∈ U , is a regular
surface.

Proposition 1.7. If f : U ⊆ R3 → R is a differentiable function and a ∈ f(U) is a
regular value of f , then f−1(U) is a regular surface in R3

Example 1.1. The ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1

is a regular surface by Proposition 1.7 because it is the set f−1(0) where

f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1

is a differentiable function, and 0 is a regular value of f .

Example 1.2. The hyperboloid of two sheets −x2 − y2 + z2 = 1 is a regular surface,
since it is given by f−1(0), where 0 is a regular value of f(x, y, z) = −x2 − y2 + z2 − 1.

Proposition 1.8. Let S ⊆ R3 be a regular surface and P ∈ S. Then there exists a
neighborhood V ⊆ S of P such that V is the graph of a differentiable function which has
one of the following three forms z = f(x, y), y = g(x, z), x = h(y, z).

Definition 1.9. The set TS of the tangent vectors of the curves on the surface S is
called the tangent bundle. The set TPS of tangent vectors p′(t) ∈ TS, where p(t) = P ,
is called the tangent plane of S at P ∈ S.

Every tangent plane TPS is a 2-dimensional vector space. For every tangent vector
v ∈ TPS there are a great many curves p on the surface S that satisfies p(0) = P and
v = p′(0).

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 5
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Definition 1.10. A differentiable map f : S → R is called differentiable scalar field on S.
The differential ∂vf of the scalar field f evaluated against the tangent vector v ∈ TPS is
the derivative (f ◦ p)′(0), where p is a curve on the surface S satisfying p(0) = P and
v = p′(0).

We notice that the differential of a scalar field evaluated against a tangent vector does
not depend on the choice of the curve chosen in the definition.

Definition 1.11. A differentiable map X : S → TS is called differentiable vector field
on S, if X(P ) ∈ TPS for every P ∈ S. The vector space of the differentiable vector fields
on S is denoted by T∗S.

Definition 1.12. The Lie-bracket [X,Y ] of two vector fields X,Y ∈ T∗S is a linear
mapping of scalar fields defined by f 7→ [X,Y ]f = ∂X(∂Y f)− ∂Y (∂Xf).

1.1.3 Riemann manifolds

We consider only Riemannian manifolds given on surfaces of the 3-dimensional space.

Definition 1.13. The pair (S, g) is called a Riemannian manifold of dimension 2, if S is
a regular surface and g : S 3 P 7→ gP provides a Euclidean product gP : TPS ×TPS → R
at every point P ∈ S on the corresponding tangent plane TPS such that if X and Y

are differentiable vector fields on S, then the function S 3 P 7→ gP (X(P ), Y (P )) is a
smooth function of P . The function g is called a Riemannian metric (or Riemannian
metric tensor).

Every surface with its tangent planes equipped with the Euclidean product gP (u,v) :=

〈u,v〉 given by the restriction of the Euclidean product 〈·, ·〉 of the space R3 is such a
Riemannian manifold of dimension 2. The Riemannian metric given in this way called
inherited Riemannian metric.

Definition 1.14. The length of a differentiable curve p : (a, b)→ S ⊂ R3 in a Rieman-
nian manifold (S, g) is `(p) :=

∫ b
a

√
gp(t)(ṗ(t), ṗ(t))dt.

Definition 1.15. The Riemannian distance function dg : S × S 3 (P,Q) 7→ dg(P,Q) ∈
R on a Riemannian manifold (S, g) is infp∈CP,Q

`(p), where CP,Q is the set of all the
differentiable curve p in the Riemannian manifold (S, g) connecting P and Q.

A Riemannian manifold with the Riemannian distance function is a metric space.

Definition 1.16. A bilinear mapping ∇ : T∗S × T∗S 3 (X,Y ) → ∇XY ∈ T∗S is called
affine connection if for all differentiable functions f : S → R and for all vector fields
X,Y ∈ T∗S if ∇fXY = f∇XY (functional linearity in the first variable) and ∇X(fY ) =

∂XfY + f∇XY (Leibniz rule in the second variable) hold.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 6
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An affine connection is called torsion-free if [X,Y ] = ∇XY −∇YX for every X,Y ∈ T∗S.

Definition 1.17. An affine connection is a Levi-Civita connection if it is torsion-free, and
compatible with the Riemannian metric g, i.e. ∇X

(
g(Y, Z)

)
= g(∇XY, Z) + g(Y,∇XZ).

There is always a unique Levi-Civita connection that is easy to prove through the Koszul
formula 2g(∇XY,Z) = ∂X

(
g(Y,Z)

)
+ ∂Y

(
g(Z,X)

)
− ∂Z

(
g(X,Y )

)
.

Definition 1.18. The Riemannian curvature is the trilinear mapping R of vector fields
to vector fields defined by R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The Riemannian curvature is a tensor, because R(fX, Y )Z = R(X, fY )Z = R(X,Y )(fZ) =

fR(X,Y )Z for every scalar field f and vector fields X,Y, Z, hence R(X,Y )Z(P ) de-
pends in fact only on the vectors X(P ), Y (P ), Z(P ) ∈ TPS. Further, the expression
κ(u,v) = gP (R(u,v)v,u)

gP (u,u)gP (v,v)−g2P (u,v)
does not depend on the independent vectors u,v ∈ TPS.

Definition 1.19. The value κP = κ(u,v) is called the (sectional) curvature of (S, g) at
the point P ∈ S.

1.1.4 Two-dimensional manifolds of constant curvature

It is easy to see that the plane and the sphere with their respective inherited Riemannian
metric are surfaces of constant curvature, but there is a third example worth noting.

O

Let the surface K2
κ ⊂ R3 of points p = (p1, p2, p3) satisfying

κ(p21 + p22) + p23 = 1, (1.1)

where κ ∈ {1, 0,−1}. Equip the surface K2
κ with the Rie-

mannian metric gκ such that

gκ;p : TpK2
κ×TpK2

κ 3 (x,y) 7→ x1y1 +x2y2 +κx3y3 (1.2)

for every point p ∈ K2
κ. Then the pairs (K2

κ, gκ) have
constant curvature κ.

If κ ≥ 0, then the Riemannian metric in (1.2) is the inherited metric, and we have the
sphere K2

1 and two planes K2
0. The Riemannian manifold (K2

−1, g−1) is a different case:
both sheets of the hyperboloid K2

−1 equipped with the Riemannian metric g−1 model the
hyperbolic plane, but g−1 is not the inherited metric.

Theorem 1.20 ([19, Hilbert’s theorem]). There exists no complete regular surface S of
constant negative curvature in R3.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 7
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Then one gets the so-called projective model K̄2
κ of the constant curvature space K2

κ of
curvature κ ∈ {1, 0,−1} [5], and also the canonical correspondence

χκ : K2
κ 3 E → {E,−E} ∈ K̄2

κ
∼= K2

κ (1.3)

by identifying the points of K2
κ ⊂ R3 that are symmetric in the origin.

1.2 Projective-metric spaces

Real projective plane P2 arises in several different ways.

Considering the real affine plane R2, we call the equivalence sets of the straight lines by
parallelism ideal points, and add these points to the set of the usual (real) points of R2

so that each ideal point becomes a common point of every straight line belonging to that
particular ideal point. This extended geometry is the real projective plane.

Another method to construct real projective plane P2 is to think of the straight lines
passing through the origin (0, 0, 0) in R3 as projective points, and think of the planes
passing through the origin (0, 0, 0) in R3 as projective straight lines.

A more algebraic way is to consider the equivalence classes of the non-vanishing direc-
tional vectors by the equivalency relation ∼ that relates two non-vanishing directional
vectors equivalent ∼ if one of them is a scalar multiple of the other one. This leads to
the homogeneous coordinates which is a coordinatization of the real projective plane P2.

Finally, an intuitive way of considering the real projective plane is to identify diametrical
points of the sphere, i.e. these pairs constitute the points of the real projective plane.

A metric space is an ordered pair (M, d) such that M is a set, the set of points, and
d : M×M → R is a metric, i.e. for any three points x, y, z ∈ M it satisfies d(x, y) =

0⇔ x = y, d(x, y) = d(y, x), and d(x, z) ≤ d(x, y) + d(y, z), the triangle inequality.

If the metric space (M, d) is thatM is a projective plane P2, or an affine plane R2 ⊂ P2,
or a (not necessarily bounded) proper open convex subset of an affine plane R2 ⊂ P2, and
the metric d is complete, continuous with respect to the usual topology of Pn, additive
on the segments, and the geodesic lines of d are exactly the non-empty intersection ofM
with the straight lines, then the pair (M, d) is called projective-metric space1 [4, p. 115].

Such projective-metric planes are called elliptic, parabolic, or hyperbolic, respectively,
according to whether M is P2, R2, or a proper convex subset of R2. The projective-
metric planes of the latter two types are called straight [3, p. 1].

1Determining the projective-metric spaces and studying the individual ones is known as Hilbert’s
fourth problem.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 8
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The geodesics of a projective-metric space of elliptic type have equal lengths, so we
can set their length to π by simply multiplying the metric with an appropriate positive
constant. Therefore we assume from now on that projective-metric spaces of elliptic type
have geodesics of length π.

Let ` be a line in (M, d) and let P ∈ M be a point outside of `. A point P⊥ ∈ ` is the
`-foot of P , if d(P,X) ≥ d(P, P⊥) for every X ∈ `. A line ` intersecting line `′ in a point
S is said to be perpendicular to ` if S is an `-foot of P for every P ∈ `′ \ {S}. We denote
this relation by `′ ⊥ `, and notice, that ⊥ is not necessarily a symmetric relation.

Every isometry of (M, d) is a restriction of a projectivity of the projective space Pn [3].
They leave perpendicularity invariant, because perpendicularity is determined by the
metric.

A set S ⊂M is called symmetric about a point C, if X ∈ S if and only if Y ∈ S, where
C is in the metric midpoints of the segment XY , i.e. 2d(X,C) = 2d(C, Y ) = d(X,Y ).

1.2.1 Elliptic projective-metric planes

Every elliptic plane can be constructed in the following way. Take a Euclidean metric
on R2 and let 〈·, ·〉 be its Euclidean product. Define the function δ̂ : S2 × S2 → R by

δ̂(x,y) = arccos〈x,y〉.

This is a metric on S2, and it satisfies the strict triangle inequality, i.e. δ̂(A,B) +

δ̂(B,C) = δ̂(A,C) if the points A,B and C are in a hemisphere. Equality happens
if and only if B is on the great circle determined by A and C. If the diametrical points
are identified and the metric is inherited, then we get an elliptic plane.

The isometries of (S2, δ̂) are the restrictions of those isometries of the Euclidean plane
(R2, 〈·, ·〉) that leave S2 invariant: the orthogonal transforms O(2). Any orthogonal
transform is a product of at most 3 reflections in planes, and any two non-degenerate
triangles with pair-wisely equal side-lengths determine one and only one δ̂-isometry that
maps the first of these triangles onto the second one.

Perpendicularity in the elliptic plane is a symmetric relation, because the great circles `′

and ` are perpendicular to each other if and only if the 2-dimensional planes they span
are orthogonal with respect to 〈·, ·〉.

To show that the constructed geometry is an elliptic projective-metric space, we use the
gnomonic projection [18] ΓO : S2 → TOS2 of the sphere, where O ∈ S2 and TOS2 is the
tangent hyperplane of S2 at point O with the projective extension.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 9
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O = (0, 0, 1)

(0, 0, 0)

P = (p1, p2, 1)

Q = (q1, q2, 1)
δ(P,Q

)

ΓO projects the spherical metric δ̂ to the metric

δ : Rn−1 × Rn−1 → [0, π) (P,Q) 7→ δ̂(P,Q) = arccos
( 〈P,Q〉
|P | |Q|

)
. (1.4)

1.2.2 Parabolic projective-metric planes

The most important parabolic projective-metric planes are the Minkowski planes2. They
are constructed in the following way.

Let I be an open, strictly convex, bounded domain in R2, (centrally) symmetric to the
origin. Then the function d : R2 × R2 → R defined by

d(x,y) = inf{λ > 0 : (y − x)/λ ∈ I}

is a metric on R2 [4, IV.24], and is called Minkowski metric on R2. It satisfies the strict
triangle inequality, i.e. d(A,B) + d(B,C) = d(A,C) is valid if and only if B ∈ AC.

∂IX
IX

X
IY

Y

The pair (R2, d) is the Minkowski plane, and I is called the indicatrix of it.

The isometries of a Minkowski plane (R2, d) are the restrictions of those affine transforms
of R2 that leave I invariant.

A line ` is perpendicular to a line `′ if and only if `′ is tangent at the point ` ∩ `′ to IX
for a point X ∈ `, where IX is a translated copy of I centered at point X.

∂IX

`
X

`′

Perpendicularity in a Minkowski plane is a symmetric relation if and only if the boundary
∂I of the indicatrix is a Radon curve [14].

2They are also known as normed planes.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 10
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1.2.3 Hyperbolic projective-metric planes

The most important hyperbolic projective-metric planes are the Hilbert planes. They are
constructed in the following way.

IfM is an open, strictly convex, proper subset of R2, then the function d : M×M→ R
defined by

d(A,B) =

0, if A = B,

1
2

∣∣ ln(A,B;C,D)
∣∣, if A 6= B, where CD =M∩AB,

(1.5)

is a metric onM [4, page 297] which satisfies the strict triangle inequality, i.e. d(A,B)+

d(B,C) = d(A,C) if and only if B ∈ AC.

∂M

D

C

A

B

The pair (M, d) is the Hilbert plane,M is its domain, and the function d is called the
Hilbert metric onM.

The isometries of a Hilbert plane (M, d) are the restrictions of those projective transforms
of P2 that leaveM invariant.

A line ` inM is perpendicular to a line `′ if and only if `′ connects the point `∩ `′ ofM
and the intersection of the tangents ofM that touchM at the points ∂M∩ ¯̀, where ¯̀

is the Euclidean line containing `.

∂M

`
`′

Perpendicularity in a Minkowski plane is a symmetric relation if and only if the boundary
∂M is an ellipse [8].

1.2.4 Constant curvature planes

There are special elliptic, parabolic and hyperbolic projective-metric planes that make
Riemannian manifolds.

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 11
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It is clear that a Minkowski plane is Euclidean if and only if its indicatrix is an ellipse.

It is known [4, (29.3)] that a Hilbert plane is a model of the hyperbolic plane of Bolyai,
Lobachevskii and Gauss, if and only if its domain is the interior of an ellipse. Such
Hilbert planes are called Cayley–Klein models of the hyperbolic plane.

It happens that these have constant curvature, and can also be constructed by the
gnomonic projection of the 2-dimensional manifolds (K2

κ, gκ) [9], where κ ∈ {0,±1}.

The isometry groups of all these three constant curvature planes are generated by reflec-
tions in straight lines. Moreover specifically, we have

Theorem 1.21 ([4]). Every isometry of each of these three constant curvature planes
can be given as a product of at most three reflections in straight lines.

This statement can be reversed in a sense:

(1) If the isometry group is generated by the reflections in a Minkowski plane, then the
Minkowski plane is Euclidean.

(2) If the isometry group is generated by the reflections in a Hilbert plane, then the
Hilbert plane is a hyperbolic plane.

1.3 Classes of curves in the Euclidean plane

In the Euclidean plane there are four differently defined classes of curves which however
coincide in most of the cases. Here we briefly describe these classes to shade light over
the problem considered in the main part of this thesis. We notice though that despite
of the usual treatment we present, most parts would give clearer picture if considered in
projective geometry.

1.3.1 Quadratic curves

The curves presented in this subsection are independent from the metric.

A curve in the plane is called quadratical, if it is part of a quadric

Qσs :=

(x, y) :

1=x2 + σy2, if σ ∈ {−1, 1},

x=y2, if σ = 0,


 , (Dq)

where s is an affine coordinate system. A quadric is called ellipse (affine circle), parabola
and hyperbola, if σ = 1, σ = 0 and σ = −1, respectively.
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Q1
s

Q0
s Q−1s

Q−1s

The ellipse is the only bounded conical curve, and it is such that any complete set of
parallel lines has a member line which intersect the ellipse in exactly two points.

The parabola is a connected conical curve and that has exactly one complete set of
parallel lines such that its every member line intersects the parabola in exactly one
point.

The hyperbola is two connected curves (called branches) and it is such that exactly two
complete sets of parallel lines are such that their every member line, except the one called
asymptote, intersects the hyperbola in exactly one point.

1.3.2 Conic sections

Although it could be discussed in affine, or even better in projective geometry, in this
section we present the subject in the Euclidean geometry. Notice however, that the
metric is only used to formulate what a circular cone is, i.e. it could be formulated as an
elliptic quadratic cone in affine space or as a quadratic cone in projective space.

Definition 1.22. Let a point, the apex, and two different lines,
the axis and a generating line, be given in the space. Turning the
generating line about the axis scours a surface called rotational
or circular (double) cone (with two nappes).

The lines obtained while turning the generating line are called
generating line too.

Definition 1.23. A curve obtained as the intersection of a plane,
the cutting plane, with a cone is called conic section. A conic
section is called elliptic, parabolic, and hyperbolic, if the cutting
plane is parallel with 0, 1, and 2 generating line, respectively.

Planes that pass through the apex of the cone intersect the cone in a point, in a generating
line or in a pair of generating lines. These are called degenerate conic sections.
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Every non-degenerate elliptic conic section is a bounded closed curve contained in one
halves of the cone. The non-degenerate elliptic conic section are affine ellipses Q1

s , and
also metric ellipses EaF1,F2

. Further, every affine ellipse Q1
s can be constructed as a non-

degenerate elliptic conic section.

Every non-degenerate parabolic conic section is an unbounded connected curve con-
tained in one halves of the cone. The non-degenerate parabolic conic sections are affine
parabolas Q0

s . Further, every affine parabola Q0
s can be constructed as a non-degenerate

parabolic conic section.

Every non-degenerate hyperbolic conic section has points in both halves of the cone, so
they have two separate unbounded connected curves, the branches. The non-degenerate
hyperbolic conic sections are affine hyperbolas Q−1s , and also metric hyperbolas HaF1,F2

.
Further, every affine hyperbola Q−1s can be constructed as a non-degenerate hyperbolic
conic section.

A very effective method to consider plane sections of a circular cone in Euclidean space
is to put Dandelin spheres [17] into the cone. Each Dandelin sphere touches the cone in
a circle whose plane intersects the cutting plane of the corresponding conic section in a
(maybe ideal) line, the directrix. A point of the cutting plane where the cutting plane
touches a Dandelin sphere is called foci.

Q
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1.3.3 Curves defined by sum or difference of distances

The curves presented in this section are bound to the metric. For now, we stay in
Euclidean geometry.

A closed segment F1F2 of the different points F1, F2 are the locus of points P in the
plane such that the sum of the distances from P to the two fixed points F1 and F2 is the
constant d(F1, F2).

Definition 1.24. An ellipse EaF1,F2
is the locus of points P in the plane such that the

sum of the distances from P to the two fixed points F1 and F2, the foci, is a constant
a > d(F1, F2). An ellipse ErC,C is called circle of radius r with center C.

The closed rays F1F2 \ F1F2 of the different points F1, F2 is the locus of points P in the
plane such that the absolute value of the difference of the distances from P to the two
fixed points F1 and F2 is the constant d(F1, F2).

Definition 1.25. A hyperbola HaF1,F2
is the locus of points P in the plane such that the

absolute value of the difference of the distances from P to the two fixed points F1 and
F2, the foci, is a constant a < d(F1, F2).

EaF1,F2

F1 F2

HaF1,F2

HaF1,F2

F1 F2

Every ellipse is an affine ellipse Q1
s , and every affine ellipse Q1

s is the circle E1(0,0),(0,0) in
the Euclidean metric d defined by the inner product 〈(x, y), (z, t)〉 = xz + yt.

Every hyperbola HaF1,F2
is an affine hyperbola Q−1s , and every affine hyperbola Q−1s is

the hyperbola H2
(2,0),(−2,0) in the Euclidean metric d.

1.3.4 Curves defined by ratio of distances

In this section we consider curves which are bound to the metric, for now, it is the
Euclidean metric.

Definition 1.26. Given a positive number ε, the numerical eccentricity, a straight line
`, the directrix, and a point F /∈ `, the foci, in the plane, the conical curve CεF,` is the
locus of points P in the plane such that d(F, P ) = εd(P, `).
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`
CεF,`

CεF,`
P⊥

F⊥

P

F

Figure 1.3: Conical curve in Euclidean plane

Definition 1.27. A conical curve is called elliptic, parabolic, and hyperbolic, if ε < 1,
ε = 1, and ε > 1, respectively.

`

F
C0.6F,`

`

F
C1.00F,`

`

F
C1.25F,`

Every elliptic conical curve is a bounded closed curve contained in one side of the direc-
trix. The elliptic conical curves are affine ellipses Q1

s , metric ellipses EaF1,F2
, and conic

sections. Further, except the circles, every metric ellipse EaF1,F2
is an elliptic conical

curve.

Every parabolic conical curve is an unbounded curve contained in one side of the directrix.
The parabolic conical curves are affine parabolas Q0

s , and conic sections. Further, every
affine parabola Q0

s is a parabolic conical curve.

Every hyperbolic conical curve has two separate unbounded connected curves, the branches,
one-one on both sides of the directrix. The hyperbolic conical curves are affine hyperbo-
las Q−1s , metric hyperbolas HaF1,F2

, and conic sections. Further, every affine hyperbola
Q−1s is a hyperbolic conical curve.
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Chapter 2

Conical curves with given properties

In this chapter we consider conical curves in constant curvature planes. It turns out that
some of their usual properties, like symmetry and quadraticity, remains valid only in
very special configurations. We prove some of Kurusa’s conjectures for curved constant
curvature planes:
(1) no conical curve in the hyperbolic plane can be quadratic;

(2) no conical curve in the hyperbolic plane can be symmetric;

(3) if the focus of a conic curve on the sphere is not the pole of the directrix, then the
conic can only be quadratic if it is a parabolic, and it can not be symmetric.

2.1 Quadratic conical curves in the hyperbolic plane

As for any pair (F, `) of a point F in D and an h-line ` there exists an isometry ı such
that ı(`) goes through the center O of D, and O is the foot of ı(F ) on ı(`), we can restrict
without loss of generality the investigation of conical curves to those conical curves CεF,`
in (D, δ) for which the directrix ` is the y-axis, and the focus F is (f, 0), where f ∈ (0, 1).

`

CεF,`

(0, q)

G

p

E

P (√
1− q2, q

)(
−
√

1− q2, q
)

f

F

D

Figure 2.1: Directrix ` is through the center of the Cayley–Klein model,
the focus F is at (f, 0), where f ∈ (0, 1).
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To calculate the points P = (p, q) on CεF,`, we have to calculate δ(P, `) and δ(F, P ), where
P = (p, q) ∈ CεF,`. It is easy to get that

δ(P, `) =
1

2

∣∣∣ log
{p+

√
1− q2

p−
√

1− q2
:

0 +
√

1− q2

0−
√

1− q2
}∣∣∣. (2.1)

To obtain δ(F, P ), we firstly determine the points {E,G} = {(x±, y±)}, where line FP
intersects the unit circle, the border of D. These points clearly satisfy the equations
x2 + y2 = 1 and (x − f)q = y(p − f). So (p − f)2(1 − x2) = (x − f)2q2, and we obtain
0 = x2((p− f)2 + q2)− 2fq2x+ (f2q2 − (p− f)2), hence

x±=
fq2±(p−f)

√
(p−f)2+(1−f2)q2

(p−f)2+q2
,

y±=
−qf(p−f)±q

√
(p−f)2+(1−f2)q2

(p−f)2+q2
.

Thus, we get

δ(F, P ) =
1

2

∣∣∣ log
{q2 + (p− f)2 + (f(p− f) +

√
(p− f)2 + (1− f2)q2)

q2 + (p− f)2 + (f(p− f)−
√

(p− f)2 + (1− f2)q2)

:
f(p− f) +

√
(p− f)2 + (1− f2)q2

f(p− f)−
√

(p− f)2 + (1− f2)q2
}∣∣∣

=
1

2

∣∣∣ log
{(fp− 1−

√
(p− f)2 + (1− f2)q2)2

(1− f2)(1− p2 − q2)

}∣∣∣, (2.2)

where we have used the identities

(f(p− f) +
√

(p− f)2 + (1− f2)q2)(f(p− f)−
√

(p− f)2 + (1− f2)q2)

= f2(p− f)2 − (p− f)2 − (1− f2)q2 = −(1− f2)(q2 + (p− f)2),

and

(fp− 1−
√

(p− f)2 + (1− f2)q2)(fp− 1 +
√

(p− f)2 + (1− f2)q2)

= (fp− 1)2 − (p− f)2 − (1− f2)q2 = (1− f2)(1− p2 − q2).

According to (D1) equations (2.1) and (2.2) give

(1− q2 − p2)
(

1 +
2p√

1− q2 − p

)ε
=

(
fp− 1−

√
q2(1− f2) + (p− f)2

)2
1− f2

,

(2.3)

where ε = ±ε. Figure 2.2 shows how these conical curves look like based on (2.3).
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Figure 2.2: An elliptic (ε = 0.9), parabolic (ε = 1), and hyperbolic (ε = 1.1) conical
curve in the Cayley–Klein model of the hyperbolic geometry.

For the sake of later contradiction, we assume from now on that

conical curve CεF,` is quadratic (Dq),

hence it satisfies an equation of the form āx2 + b̄xy + c̄y2 + d̄x+ ēy + f̄ = 0, where the
coefficients are real and ā ≥ 0.

As the conical curves CεF,` are symmetric in the x-axis, the quadratic equation should be
invariant under changing y to −y, so b̄ = ē = 0 follows. So the equation is of the form
āx2 + c̄y2 + d̄x + ḡ = 0, hence c̄ 6= 0, because otherwise the curve will degenerate into
straight lines. So the quadratic equation simplifies to

ax2 + y2 + bx+ c = 0, a ≥ 0. (2.4)

As conical curve CεF,` is quadratical, we have q2 = −ap2 − bp − c, a ≥ 0. Putting this
into (2.3) gives the identity

(1− p2 + ap2 + bp+ c)
(

1 +
2p√

1 + ap2 + bp+ c− p

)ε
=

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)2
1− f2

.

(2.5)
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Differentiating this with respect to p gives

(−2p+ 2ap+ b)
(

1 +
2p√

1 + ap2 + bp+ c− p

)ε
+

+ ε(1− p2 + ap2 + bp+ c)
(

1 +
2p√

1 + ap2 + bp+ c− p

)ε−1
×

×
( 2√

1 + ap2 + bp+ c− p
−

2p( 2ap+b

2
√

1+ap2+bp+c
− 1)

(
√

1 + ap2 + bp+ c− p)2
)

=

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)
1− f2

×

×
(

2f − −(2ap+ b)(1− f2) + 2(p− f)√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)
.

(2.6)

The exponential multiplier in (2.5) is(
1+

2p√
1 + ap2 + bp+ c− p

)ε
=

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)2
(1− f2)(1− p2 + ap2 + bp+ c)

.

Putting this into (2.6) leads to

(−2p+ 2ap+ b)

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)2
(1− f2)(1− p2 + ap2 + bp+ c)

+

+ ε

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)2
1− f2

×

×
(

1 +
2p√

1 + ap2 + bp+ c− p

)−1
×

×
( 2√

1 + ap2 + bp+ c− p
−

2p( 2ap+b

2
√

1+ap2+bp+c
− 1)

(
√

1 + ap2 + bp+ c− p)2
)

=

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)
1− f2

×

×
(

2f − −(2ap+ b)(1− f2) + 2(p− f)√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)
.

This simplifies to

(−2p+ 2ap+ b)

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)2
(1− f2)(1− p2 + ap2 + bp+ c)

+

+ ε

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)2
(1− f2)(

√
1 + ap2 + bp+ c+ p)

×

×
(

2−
2p( 2ap+b

2
√

1+ap2+bp+c
− 1)√

1 + ap2 + bp+ c− p

)
Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 20



(May 2020) c© all rights reserved

Conical curves with given properties Quadratic conical curves in the hyperbolic plane

=

(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)
1− f2

×

×
(

2f − −(2ap+ b)(1− f2) + 2(p− f)√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)
.

Dividing by
(
fp−1−

√
−(ap2+bp+c)(1−f2)+(p−f)2

)
(1−f2)(1−p2+ap2+bp+c) further simplifies the equation to

(
(−2p+ 2ap+ b) + ε(

√
1 + ap2 + bp+ c− p)

(
2−

2p( 2ap+b

2
√

1+ap2+bp+c
− 1)√

1 + ap2 + bp+ c− p

))
×

×
(
fp− 1−

√
−(ap2 + bp+ c)(1− f2) + (p− f)2

)
= (1− p2 + ap2 + bp+ c)

(
2f − −(2ap+ b)(1− f2) + 2(p− f)√

−(ap2 + bp+ c)(1− f2) + (p− f)2

)
,

i.e.

(
(−2p+ 2ap+ b) + ε(

√
1 + ap2 + bp+ c− p)

(
2−

2p( 2ap+b

2
√

1+ap2+bp+c
− 1)√

1 + ap2 + bp+ c− p

))
×

×
(
(fp− 1)

√
−(ap2 + bp+ c)(1− f2) + (p− f)2+

+ (ap2 + bp+ c)(1− f2)− (p− f)2
)

= (1− p2 + ap2 + bp+ c)×

×
(
2f
√
−(ap2 + bp+ c)(1− f2) + (p− f)2 + (2ap+ b)(1− f2)− 2(p− f)

)
.

With some rearrangement we obtain

2ε
(√

1 + ap2 + bp+ c− p(2ap+ b)

2
√

1 + ap2 + bp+ c

)
×

×
(
(fp− 1)

√
−(ap2 + bp+ c)(1− f2) + (p− f)2+

+ (ap2 + bp+ c)(1− f2)− (p− f)2
)

= (1− p2 + ap2 + bp+ c)×

×
(
2f
√
−(ap2 + bp+ c)(1− f2) + (p− f)2 + (2ap+ b)(1− f2)− 2(p− f)

)
−

− (−2p+ 2ap+ b)×

×
(
(fp− 1)

√
−(ap2 + bp+ c)(1− f2) + (p− f)2+

+ (ap2 + bp+ c)(1− f2)− (p− f)2
)
,
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and again some rearrangement gives

2ε
(√

1 + ap2 + bp+ c− p(2ap+ b)

2
√

1 + ap2 + bp+ c

)
×

×
(
(fp− 1)

√
−(ap2 + bp+ c)(1− f2) + (p− f)2+

+ (ap2 + bp+ c)(1− f2)− (p− f)2
)

=
(
2f(1− p2 + ap2 + bp+ c)− (−2p+ 2ap+ b)(fp− 1)

)
×

×
√
−(ap2 + bp+ c)(1− f2) + (p− f)2+

+
(
(1− p2 + ap2 + bp+ c)((2ap+ b)(1− f2)− 2(p− f))−

− (−2p+ 2ap+ b)((ap2 + bp+ c)(1− f2)− (p− f)2)
)
,

then

ε(2(1 + c) + pb)

=
√

1 + ap2 + bp+ c×

×
((

(fb+ 2a− 2)p+ 2f + 2fc+ b
)√
−(ap2 + bp+ c)(1− f2) + (p− f)2+

+ f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ b+ 2f(c+ 1)
)
,

so we arrive at

ε(2(1 + c) + pb)

=
(
(fb+ 2a− 2)p+ 2f(c+ 1) + b

)
×

×
√(

(p− f)2 − (ap2 + bp+ c)(1− f2)
)
(1 + ap2 + bp+ c)+

+ (f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b)×

×
√

1 + ap2 + bp+ c.

Squaring this gives

ε2(2(1 + c) + pb)2−

−
((

(fb+ 2a− 2)p+ 2f(c+ 1) + b
)2(

(p− f)2 − (ap2 + bp+ c)(1− f2)
)
+

+
(
f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b

)2)×
× (1 + ap2 + bp+ c)

= 2
(
(fb+ 2a− 2)p+ 2f(c+ 1) + b

)
(1 + ap2 + bp+ c)×

×
(
f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b

)
×

×
√

(p− f)2 − (ap2 + bp+ c)(1− f2).

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 22



(May 2020) c© all rights reserved

Conical curves with given properties Quadratic conical curves in the hyperbolic plane

Squaring again gives the identity of two polynomials

ε4(2(1 + c) + pb)4+

+
((

(fb+ 2a− 2)p+ 2f(c+ 1) + b
)2(

(p− f)2 − (ap2 + bp+ c)(1− f2)
)
+

+
(
f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b

)2)2×
× (1 + ap2 + bp+ c)2+

+ 2ε2(2(1 + c) + pb)2×

×
((

(fb+ 2a− 2)p+ 2f(c+ 1) + b
)2(

(p− f)2 − (ap2 + bp+ c)(1− f2)
)
+

+
(
f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b

)2)×
× (1 + ap2 + bp+ c)

= 4
(
(fb+ 2a− 2)p+ 2f(c+ 1) + b

)2
(1 + ap2 + bp+ c)2×

× (f(2− bf − 2a)p2 + 2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b)2×

×
(
(p− f)2 − (ap2 + bp+ c)(1− f2)

)
.

(2.7)

Two polynomials can only be equal on a segment, if their corresponding coefficients are
pairwise equal. The coefficients of p12 are equal, so(

(fb+ 2a− 2)2(1− a(1− f2)) + f2(2− bf − 2a)2
)2
a2

= 4(fb+ 2a− 2)2a2f2(2− bf − 2a)2(1− a(1− f2)),
(2.8)

that is equivalent to

a2(fb+ 2a− 2)4
((

(1− a(1− f2)) + f2
)2 − 4f2(1− a(1− f2))

)
= 0,

so either a = 0, which is disclosed by a > 0, or 1−a(1−f2) = f2, i.e. a = 1, that implies
b = 0 in (2.8), or fb+ 2a− 2 = 0.

Assuming fb+ 2a− 2 = 0 simplifies (2.7) into

ε4(2(1 + c) + pb)4+

+
((

2f(c+ 1) + b
)2(

(p− f)2 − (ap2 + bp+ c)(1− f2)
)
+

+
(
2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b

)2)2
(1 + ap2 + bp+ c)2+

+ 2ε2(2(1 + c) + pb)2×

×
((

2f(c+ 1) + b
)2(

(p− f)2 − (ap2 + bp+ c)(1− f2)
)
+

+
(
2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b

)2)
(1 + ap2 + bp+ c)

= 4
(
2f(c+ 1) + b

)2
(1 + ap2 + bp+ c)2×

× (2(a− 1 + f2(c+ 1))p+ 2f(c+ 1) + b)2×

×
(
(p− f)2 − (ap2 + bp+ c)(1− f2)

)
.

(2.9)
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Two polynomials can only be equal on a segment, if their corresponding coefficients are
pairwise equal. The coefficients of p8 are equal, so((

2f(c+ 1) + b
)2(

1− a(1− f2)
)

+ 4(a− 1 + f2(c+ 1))2
)2
a2

= 4
(
2f(c+ 1) + b

)2
a24(a− 1 + f2(c+ 1))2

(
1− a(1− f2)

)
,

(2.10)

that is equivalent to

a2
((

2f(c+ 1) + b
)2(

1− a(1− f2)
)
− 4(a− 1 + f2(c+ 1))2

)2
= 0,

so either a = 0, which is disclosed by a > 0, or
(
2f(c + 1) + b

)2(
1 − a(1 − f2)

)
=

4(a− 1 + f2(c+ 1))2. Thus,
(
2f2(c+ 1) + fb

)2(
1− a(1− f2)

)
= 4f2(a− 1 + f2(c+ 1))2,

hence
(
f2(c + 1) + 1 − a

)2(
1 − a(1 − f2)

)
= f2(a − 1 + f2(c + 1))2, and therefore

1− a(1− f2) ≥ 0, i.e., a < 1/(1− f2). Assuming f2(c+ 1) + (1− a) 6= 0, we can write
this equation in the form

(f2(c+ 1)− (1− a))2(
f2(c+ 1) + (1− a)

)2 =
af2 + 1− a

f2
,

which, if c+ 1 6= 0, leads to

1 >
(f2(c+ 1)− (1− a))2(
f2(c+ 1) + (1− a)

)2 =
af2 + 1− a

f2
> 1 if a ∈ (0, 1),

1 <
(f2(c+ 1)− (1− a))2(
f2(c+ 1) + (1− a)

)2 =
af2 + 1− a

f2
< 1 if a ∈ (1, 1/(1− f2)),

a clear contradiction. Thus, c = −1, and consequently a = 1. If f2(c+ 1) + (1− a) = 0,
then also f2(c+ 1)− (1− a) = 0, so a = 1.

Thus, in any case, we obtained a = 1. This simplifies (2.7) into

ε4(2(1 + c) + pb)4+

+
((
fbp+ 2f(c+ 1) + b

)2(
f2 − p(2f + b(1− f2))− c(1− f2)

)
+

+
(
− bf2p2 + 2f2(c+ 1)p+ 2f(c+ 1) + b

)2)2×
× (1 + p2 + bp+ c)2+

+ 2ε2(2(1 + c) + pb)2×

×
((
fbp+ 2f(c+ 1) + b

)2(
f2 − p(2f + b(1− f2))− c(1− f2)

)
+ (2.11)

+
(
− bf2p2 + 2f2(c+ 1)p+ 2f(c+ 1) + b

)2)×
× (1 + p2 + bp+ c)

= 4
(
fbp+ 2f(c+ 1) + b

)2
(1 + p2 + bp+ c)2×

× (−bf2p2 + 2f2(c+ 1)p+ 2f(c+ 1) + b)2×

×
(
f2 − p(2f + b(1− f2))− c(1− f2)

)
.
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Two polynomials can only be equal on a segment, if their corresponding coefficients are
pairwise equal. The coefficients of p12 are equal, so b4f8 = 0, hence b = 0.

Thus, in any case, we obtained a = 1 and b = 0. This simplifies (2.11) into

ε416(1 + c)4+

+
(
2f(c+ 1)

)4((
f2 − 2fp− c(1− f2)

)
+
(
fp+ 1

)2)2
(1 + p2 + c)2+

+ 2ε24(1 + c)2
(
2f(c+ 1)

)2×
×
((
f2 − 2fp− c(1− f2)

)
+
(
f(c+ 1)p+ 1

)2)
(1 + p2 + c)

= 4
(
2f(c+ 1)

)4
(1 + p2 + c)2(fp+ 1)2

(
f2 − 2fp− c(1− f2)

)
.

(2.12)

Two polynomials can only be equal on a segment, if their corresponding coefficients are
pairwise equal. The coefficients of p8 are equal, so

(
2f(c+1)

)4
(5f2)2 = 0, hence c = −1.

Thus, by (2.4), if the conical curve CεF,` is quadratic, then it is of the form x2 + y2 = 1,

a clear contradiction that proves the following:

Theorem 2.1 ([11]). No conical curve of the hyperbolic plane can be quadratic.

2.2 Symmetric conical curves in the hyperbolic plane

Consider a conical curve CεF,`. Let F⊥ be the foot of F on the h-line `, and let C be a
point on the h-line FF⊥ different from F⊥.

It is well known that there are h-isometries that maps C into the center O of D. Thus we
can restrict without loss of generality the investigation of conical curves CεF,` in (D, δ) to

those ones for which (m,−
√

1−m2)(m,
√

1−m2) is the directrix ` for somem ∈ (−1, 0),
the center is O = (0, 0), and the focus F is (f, 0), where f ∈ (−1, 1) \ {m}.

`

m
1
m

L

CεF,`

q

(
m,
√

1−m2
)

(
m,−

√
1−m2

)
p

G

E

I
J

H

P

f

F

D

C = O

Figure 2.3: Directrix ` is (m,−
√

1−m2)(m,
√

1−m2), CεF,` is symmetric in O, the
center of the Cayley–Klein model, and the focus F is at (f, 0), where f ∈ (−1, 1)\{m}.
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To calculate the points P = (p, q) on CεF,`, we have to calculate δ(P, `) and δ(F, P ),
where P = (p, q) ∈ CεF,`. Observe that the line through P orthogonal to ` is the one that
connects P to L, the intersection of the tangents of D at the limit points of `. We clearly
have L = (−1/m, 0).

To obtain δ(P, `), we firstly determine the points {I,H} = {(x±, y±)}, where line LP
intersects the unit circle, the border of D. These points clearly satisfy the equations
x2 + y2 = 1 and (x− 1/m)q = y(p− 1/m). So (p− 1/m)2(1− x2) = (x− 1/m)2q2, and
we obtain 0 = x2

((
p− 1

m

)2
+ q2

)
− 2 q

2

mx+
( q2
m2 −

(
p− 1

m

)2)
, hence

x±=

q2

m±
(
p− 1

m

)√(
p− 1

m

)2
+q2 1−m

2

m2(
p− 1

m

)2
+q2

, y±=
− q
m

(
p− 1

m

)
±q
√(

p− 1
m

)2
+q2 1−m

2

m2(
p− 1

m

)2
+q2

.

Further, we need the coordinates of point J , where PL intersects `. We clearly have
(m− 1/m)q = y(p− 1/m), hence y = q(m− 1

m)/(p− 1
m). Thus

δ(P, `) = δ(P, J)

=
1

2

∣∣∣∣∣ log

{((
p− 1

m

)2
+q2

)
+ 1

m

(
p− 1

m

)
+
√(

p− 1
m

)2
+q2 1−m

2

m2((
p− 1

m

)2
+q2

)
+ 1

m

(
p− 1

m

)
−
√(

p− 1
m

)2
+q2 1−m

2

m2

:

m− 1
m

p− 1
m

((
p− 1

m

)2
+q2

)
+ 1

m

(
p− 1

m

)
+
√(

p− 1
m

)2
+q2 1−m

2

m2

m− 1
m

p− 1
m

((
p− 1

m

)2
+q2

)
+ 1

m

(
p− 1

m

)
−
√(

p− 1
m

)2
+q2 1−m

2

m2

}∣∣∣∣∣.
So

δ(P, `)

=
1

2

∣∣∣∣∣ log

{((
p− 1

m

)2
+q2

)
+
(√(

p− 1
m

)2
+q2

(
1− 1

m2

)
+ 1
m

(
p− 1

m

))
((
p− 1

m

)2
+q2

)
−
(√(

p− 1
m

)2
+q2

(
1− 1

m2

)
− 1
m

(
p− 1

m

))
:
m
(
p− 1

m

)
+
m− 1

m

p− 1
m

q2+
√(

p− 1
m

)2
+q2

(
1− 1

m2

)
m
(
p− 1

m

)
+
m− 1

m

p− 1
m

q2−
√(

p− 1
m

)2
+q2

(
1− 1

m2

)
}∣∣∣∣∣

=
1

2

∣∣∣∣∣ log

{((
p− 1

m

)2
+q2

)
+
(√(

p− 1
m

)2
+q2

(
1− 1

m2

)
+ 1
m

(
p− 1

m

))
((
p− 1

m

)2
+q2

)
−
(√(

p− 1
m

)2
+q2

(
1− 1

m2

)
− 1
m

(
p− 1

m

))×
×

(
p− 1

m

)2
+
(
1− 1

m2

)
q2− 1

m

(
p− 1

m

)√(
p− 1

m

)2
+q2

(
1− 1

m2

)
(
p− 1

m

)2
+
(
1− 1

m2

)
q2+ 1

m

(
p− 1

m

)√(
p− 1

m

)2
+q2

(
1− 1

m2

)
}∣∣∣∣∣

=
1

2

∣∣∣∣∣ log

{((
p− 1

m

)2
+q2

)
+
(√(

p− 1
m

)2
+q2

(
1− 1

m2

)
+ 1
m

(
p− 1

m

))
((
p− 1

m

)2
+q2

)
−
(√(

p− 1
m

)2
+q2

(
1− 1

m2

)
− 1
m

(
p− 1

m

))×
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×

√(
p− 1

m

)2
+q2

(
1− 1

m2

)
− 1
m

(
p− 1

m

)√(
p− 1

m

)2
+q2

(
1− 1

m2

)
+ 1
m

(
p− 1

m

)
}∣∣∣∣∣

=
1

2

∣∣∣∣∣ log

{((
p− 1

m

)2
+q2

)√(
p− 1

m

)2
+q2

(
1− 1

m2

)
+
((
p− 1

m

)2
+q2

)(
1− 1

mp
)

((
p− 1

m

)2
+q2

)√(
p− 1

m

)2
+q2

(
1− 1

m2

)
−
((
p− 1

m

)2
+q2

)(
1− 1

mp
)
}

=
1

2

∣∣∣∣∣ log

{√(
p− 1

m

)2
+q2

(
1− 1

m2

)
+
(
1− 1

mp
)√(

p− 1
m

)2
+q2

(
1− 1

m2

)
−
(
1− 1

mp
)
}∣∣∣∣∣

=
1

2

∣∣∣∣∣ log

{(√(
p− 1

m

)2
+q2

(
1− 1

m2

)
+
(
1− 1

mp
))2

(1−p2−q2)
(

1
m2−1

) }∣∣∣∣∣. (2.13)

To obtain δ(F, P ), we firstly determine the points E = (x1, y1) and G = (x2, y2), where
line FP intersects the unit circle, the border of D. These points clearly satisfy the
equations x2 + y2 = 1 and (x − f)q = y(p − f). So (p − f)2(1 − x2) = (x − f)2q2, and
we obtain 0 = x2((p− f)2 + q2)− 2fq2x+ (f2q2 − (p− f)2), hence

x±=
fq2±(p−f)

√
(p−f)2+(1−f2)q2

(p−f)2+q2
, y±=

−qf(p−f)±q
√

(p−f)2+(1−f2)q2
(p−f)2+q2

.

Thus, we get

δ(F, P ) =
1

2

∣∣∣ log
{q2 + (p− f)2 + (f(p− f) +

√
(p− f)2 + (1− f2)q2)

q2 + (p− f)2 + (f(p− f)−
√

(p− f)2 + (1− f2)q2)

:
f(p− f) +

√
(p− f)2 + (1− f2)q2

f(p− f)−
√

(p− f)2 + (1− f2)q2
}∣∣∣

=
1

2

∣∣∣ log
{(fp− 1−

√
(p− f)2 + (1− f2)q2)2

(1− f2)(1− p2 − q2)

}∣∣∣,
(2.14)

where we have used the identities

(f(p− f) +
√

(p− f)2 + (1− f2)q2)(f(p− f)−
√

(p− f)2 + (1− f2)q2)

= f2(p− f)2 − (p− f)2 − (1− f2)q2 = −(1− f2)(q2 + (p− f)2),

(fp− 1−
√

(p− f)2 + (1− f2)q2)(fp− 1 +
√

(p− f)2 + (1− f2)q2)inthissection

= (fp− 1)2 − (p− f)2 − (1− f2)q2 = (1− f2)(1− p2 − q2).

According to (D1) equations (2.13) and (2.14) give

((√(
p− 1

m

)2
+q2

(
1− 1

m2

)
+
(
1− 1

mp
))2

(1−p2−q2)
(

1
m2−1

) )ε
=

(
fp−1−

√
q2(1−f2)+(p−f)2

)2
(1−f2)(1−q2−p2)

, (2.15)
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where ε ∈ {ε,−ε}. Figure 2.2 shows how these conical curves look like based on (2.15)
with ε = ε.

Figure 2.4: An elliptic (ε = 0.9), parabolic (ε = 1), and hyperbolic (ε = 1.1) conical
curve in the Cayley–Klein model of the hyperbolic geometry.

For the sake of later contradiction, we assume from now on that

conical curve CεF,` is symmetric in a point C.

Such a point of symmetry C clearly is on the h-line FF⊥, where F⊥ is the foot of F on the
h-line `. So we can restrict without loss of generality the investigation of symmetric coni-
cal curves CεF,` in (D, δ) to those ones for which directrix ` is (m,−

√
1−m2)(m,

√
1−m2)

for somem ∈ (−1, 1), the center is O = (0, 0), and the focus F is (f, 0), where f ∈ (m, 1).
Thus we can use the formulas given in the previous section.

As the conical curve is symmetric in the x-axis, and it is symmetric in point O, it is
symmetric about the y-axis too, so, substituting −p into p, equation (2.15) gives

((√(
p+ 1

m

)2
+q2

(
1− 1

m2

)
+
(
1+ 1

mp
))2

(1−p2−q2)
(

1
m2−1

) )ε
=

(
fp+1+

√
q2(1−f2)+(p+f)2

)2
(1−f2)(1−q2−p2)

, (2.16)

Dividing (2.15) with this equation and taking the square root result in

(√(
p− 1

m

)2
+q2

(
1− 1

m2

)
+
(
1− 1

mp
)√(

p+ 1
m

)2
+q2

(
1− 1

m2

)
+
(
1+ 1

mp
)
)ε

=
fp−1−

√
q2(1−f2)+(p−f)2

fp+1+
√
q2(1−f2)+(p+f)2

, (2.17)

If q = 0, then (2.15) gives

((
1
m−1

)
(1+p)(

1
m+1

)
(1−p)

)ε
=

(
fp−1−|p−f |

)2
(1−f2)(1−p2)

=


(1−f)(1+p)
(1+f)(1−p) , if p > f,

(1+f)(1−p)
(1−f)(1+p) , if p < f.

After some rearrangement this becomes

1±f
1∓f

(1−m
1+m

)ε
=
(1+p

1−p

)−ε±1
, where ± 1 =

p− f
|p− f |

. (2.18)
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If p is a solution of these equations, then the symmetry in O implies, that −p is also a
solution of (2.18).

Suppose the two solutions ±p belong to the equation with the same sign of ε. If ±p are
on the same side of f , then p = 0, a contradiction follows. If ±p are on different sides of
f , then

1+f

1−f

(1−m
1+m

)ε
=
(1+p

1−p

)−ε+1
, and

1−f
1+f

(1−m
1+m

)ε
=
(1−p

1+p

)−ε−1
=
(1+p

1−p

)ε+1
.

Division and multiplication of the first equation by the second one give

1+f

1−f
=
(1−p

1+p

)ε
and

(1−m
1+m

)ε
=

1−p
1+p

, (2.19)

respectively. Substituting the second equation into the first one results in

1+f

1−f
=
(1−m

1+m

)ε2
. (2.20)

Note that the sign of ε in (2.19) is irrelevant regarding the solutions. If ε = 1, the second
equation gives f = −m, hence O is the midpoint of the segment of F and its foot on `,
so p = 0, a contradiction.

Suppose the two solutions ±p belong to the equation with different signs of ε. If ±p are
on the same side of f , then

1±f
1∓f

(1−m
1+m

)ε
=
(1+p

1−p

)−ε±1
, and

1±f
1∓f

(1−m
1+m

)−ε
=
(1−p

1+p

)ε±1
follow, where ± 1 = p−f

|p−f | = −p−f
|p+f | . Division and multiplication of the first equation by

the second one give (1−m
1+m

)±ε
=

1+p

1−p
, and

1±f
1∓f

=
(1+p

1−p

)ε
(2.21)

respectively. Rearranging the first equation, then substituting it into the second one
results in (1∓m

1±m

)ε
=

1+p

1−p
, and

1±f
1∓f

=
(1∓m

1±m

)ε2
, (2.22)

respectively. If ε = 1, the second equation gives f = −m, hence O is the midpoint of the
segment of F and its foot on `, so p = 0, a contradiction.

If ±p are on different sides of f , we may suppose that p > f , and so −p < f . Then

1+f

1−f

(1−m
1+m

)ε
=
(1+p

1−p

)−ε+1
, and

1−f
1+f

(1−m
1+m

)−ε
=
(1−p

1+p

)ε−1

Ahmed Mohsin Mahdi: Conical Curves in Constant Curvature Planes 29



(May 2020) c© all rights reserved

Conical curves with given properties Quadratic conical curves on the sphere

follows, where p−f
|p−f | = p+f

|p+f | . Division and multiplication of the first equation by the
second one give

1+f

1−f

(1−m
1+m

)ε
= 1, and 1 =

(1+p

1−p

)1−ε
(2.23)

respectively. This is obviously a contradiction.

Thus we have either ε ∈ (0, 1) or ε ∈ (1,∞), the elliptic or the hyperbolic case, respec-
tively. Further, we have for the pair of points either (2.19) and (2.20), or (2.21) and
(2.22), respectively. Moreover, ±p falls in different sides of f , and in the same side of f ,
respectively.

Theorem 2.2 ([12]). No conical curve of the hyperbolic plane can be symmetric.

Proof. Assume first the elliptic case, so that ε ∈ (0, 1).

Rearrangement of (2.17) gives(
1 +

− 2
mp√(

p+ 1
m

)2
+q2

(
1− 1

m2

)
+
(
1+ 1

mp
)
)ε

=
2fp

fp+1+
√
q2(1−f2)+(p+f)2

− 1, (2.24)

This is contradictory, because p → 0 causes the left-hand side to tend to 1, and the
right-hand side to tend to −1.

Assume now the hyperbolic case, so that ε > 1.

Rearrangement of (2.17) gives for p2 + q2 → 1 that(
|1− 1

mp
∣∣+(1− 1

mp
)

|1+ 1
mp
∣∣+(1+ 1

mp
))ε= fp−1−|fp−1|

fp+1+|fp+1|
, (2.25)

Since |fp| < 1, the right-hand side vanishes, hence also the left-hand side vanishes, so
1
mp > 1. This is a contradiction because it can not be valid for both p and −p.

The contradictions prove the statement.

2.3 Quadratic conical curves on the sphere

Let Ô be the polar of the great circle ˆ̀ on the S2. Let F̂ be in the half sphere S2
Ô

of ˆ̀

that contains Ô. Let P̂ be on the half circle G2
Ô

of the great circle of Ô and F̂ that is
contained by S2

Ô
. Fix the coordinate system in the plane of G2

Ô
such that (0, 0) is the

center of G2
Ô
, Ô = (0, 1), F̂ = (cosϕ, sinϕ) and P̂ = (cos$, sin$) for some ϕ ∈ (0, π/2)
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and $ ∈ (−π/2, π/2). Then P̂ ∈ Ĉε
δ̂;F̂ ,ˆ̀

if and only if

ε =


$−ϕ
π/2−$ , if $ ∈ (ϕ, π/2),

ϕ−$
π/2−$ , if $ ∈ (0, ϕ),

ϕ−$
π/2+$ , if $ ∈ (−π/2, 0].

If $ ∈ (ϕ, π/2), then $−ϕ
π/2−$ = π/2−ϕ

π/2−$ − 1 is a strictly monotone increasing function of
$ that vanishes when $ = ϕ and tends to infinity when $ → π/2.

So there is exactly one $ ∈ (ϕ, π/2) for which P̂ ∈ Ĉε
δ̂;F̂ ,ˆ̀

.

If $ ∈ (0, ϕ), then ϕ−$
π/2−$ = 1 − π/2−ϕ

π/2−$ is a strictly monotone decreasing function of $
that tends to ϕ

π/2 when $ → 0 and vanishes when $ = ϕ.

If $ ∈ (−π/2, 0], then ϕ−$
π/2+$ = π/2+ϕ

π/2+$ − 1 is a strictly monotone decreasing function of
$ that tends to infinity when $ → π/2 and is ϕ

π/2 when $ → 0.

Thus there is exactly one $ ∈ (−π/2, ϕ) for which P̂ ∈ Ĉε
δ̂;F̂ ,ˆ̀

.

Let CεF,` := ΓÔ(Ĉε
δ̂;F̂ ,ˆ̀

), O := ΓÔ(Ô), F := ΓÔ(F̂ ), and ` := ΓÔ(ˆ̀). Choose the coordinate
system so that O = (0, 0, 1) and F = (f, 0, 1), where f > 0. Figure 2.5 shows what we
have on the plane P := TÔS

2 = {(x, y, z) : z = 1}.

CεF,`

y = xq/p

p
O

P

(p, q, 1)

f

F

Figure 2.5: Projected conical curve CεF,`, if the directrix ` is in the infinity and the
focus F is at (f, 0), where f > 0.

To calculate the points (p, q, 1) = P = ΓÔ(P̂ ) of CεF,` we have to calculate δ(P, `) and
δ(F, P ), where P ∈ CεF,`. Observe that the line through O and P is the gnomonic image
of the great circle that is perpendicular to ˆ̀ and going through Γ−1

Ô
(P ). Thus, by (1.4),

we have
δ(P, `) =

π

2
− δ(P,O) =

π

2
− arccos

1√
p2 + q2 + 1

. (2.26)

For the distance of P from the focus we obtain from (1.4) that

δ(P, F ) = δ(P, (f, 0, 1)) = arccos
pf + 1√

f2 + 1
√
p2 + q2 + 1

. (2.27)
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According to (D1) equations (2.26) and (2.27) give that

ε
(π

2
− arccos

1√
p2 + q2 + 1

)
= arccos

pf + 1√
f2 + 1

√
p2 + q2 + 1

(2.28)

is the equation of CεF,`. Figure 2.6 shows how CεF,` looks like for different values of ε.

Figure 2.6: An elliptic (ε = 0.90), parabolic (ε = 1), and hyperbolic (ε = 1.1) conical
curve in the projected model of the sphere.

The parabolic conical curves (i.e. ε = 1) are quadratic because taking the cosine of (2.28)
results in √

1− 1

p2 + q2 + 1
=
∣∣∣ pf + 1√

f2 + 1
√
p2 + q2 + 1

∣∣∣,
the square of which is the clearly quadratic equation (p2 + q2)(f2 + 1) = pf + 1.

To find all the quadratic conical curves,

from now on we assume that CεF,` is quadratic,

hence satisfies an equation of the form āx2 + b̄xy + c̄y2 + d̄x + ēy + f̄ = 0, where the
coefficients are real and ā ≥ 0.

As every conical curve CεF,` is symmetric in the x-axis, the quadratic equation should be
invariant under changing y to −y, so b̄ = ē = 0 follows. Then the equation is of the form
āx2 + c̄y2 + d̄x + ḡ = 0, hence c̄ 6= 0, because otherwise the curve will degenerate into
straight lines. So the quadratic equation simplifies to

ax2 + y2 + bx+ c = 0, a ≥ 0. (2.29)

As this is an ellipse, because it is bounded and intersect line OP in exactly two point,
we deduce that

a > 0 and b2 > 4ac. (2.30)

Thus, for a point P of CεF,` we have q2 = −ap2 − bp − c. Putting this into (2.28) gives
the identity

ε
(π

2
− arccos

1√
(1− a)p2 − bp+ 1− c

)
= arccos

(pf + 1)/
√
f2 + 1√

(1− a)p2 − bp+ 1− c
. (2.31)
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Differentiating this with respect to p gives

ε
− 2(1−a)p−b

2((1−a)p2−bp+1−c)3/2√
1− 1

(1−a)p2−bp+1−c

= −
− (2(1−a)p−b)(1+fp)

2
√

1+f2((1−a)p2−bp+1−c)3/2
+ f√

1+f2
√

(1−a)p2−bp+1−c√
1− (1+fp)2

(1+f2)((1−a)p2−bp+1−c)

.

(2.32)

Simplifying the ratios and multiplying both sides by 2(1 − c − bp + (1 − a)p2) give the
equivalent form

ε
2(1− a)p− b√

(1− a)p2 − bp− c

=
−(2(1− a)p− b)(1 + fp) + 2f((1− a)p2 − bp+ 1− c)√

((1− a)p2 − bp+ 1− c)(1 + f2)− (1 + fp)2
.

(2.33)

After the additions and multiplications are completed this becomes

ε
2(1− a)p− b√

(1− a)p2 − bp− c
=

−(fb+ 2(1− a))p+ 2f(1− c) + b√
((1− a)p2 − bp+ 1− c)(1 + f2)− (1 + fp)2

. (2.34)

Multiplying both sides of (2.34) by the product of the denominators and squaring gives

ε2(2(1− a)p− b)2((1− a(1 + f2))p2 − (2f + b(1 + f2))p+ (f2 − c(1 + f2)))

= ((fb+ 2(1− a))p− (b+ 2f(1− c)))2((1− a)p2 − bp− c).
(2.35)

This equation is valid on an interval of p, so the coefficients of the polynomials on the
sides are equal, hence

4ε2(1− a)2(1− a(1 + f2)) = (1− a)(fb+ 2(1− a))2(p4)

4ε2
(
(1− a)2(2f + b(1 + f2)) + b(1− a)(1− a(1 + f2))

)
(p3)

= b(fb+ 2(1− a))2 + 2(1− a)(b+ 2f(1− c))(fb+ 2(1− a))

ε2
(
b2(1− a(1 + f2)) + 4b(1− a)(2f + b(1 + f2))+(p2)

+ 4(1− a)2(f2 − c(1 + f2))
)

= −c(fb+ 2(1− a))2 + 2b(b+ 2f(1− c))(fb+ 2(1− a))+

+ (1− a)(b+ 2f(1− c))2

4ε2
(
b(1− a)(f2 − c(1 + f2)) + b2(2f + b(1 + f2))

)
(p1)

= b(b+ 2f(1− c))2 − 2c(b+ 2f(1− c))(fb+ 2(1− a))

ε2b2(f2 − c(1 + f2)) = −c(b+ 2f(1− c))2,(p0)

where ε, f > 0 are fixed, and a > 0, b2 > 4ac by (2.30).
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If b = 0, then (p4) implies a = 1, and (p0) implies c = 0 or c = 1. In both cases CεF,` is
empty by (2.29), and this contradiction proves b 6= 0.

If c = 0, then (p0) implies b = 0, a contradiction, so c 6= 0.

If a = 1, then (p3) gives b = 0, a contradiction, so a 6= 1.

Dividing (p4) with 1− a gives

4ε2(1− a)(1− a(1 + f2)) = (fb+ 2(1− a))2, (2.36)

Multiplying the sides of (2.36) with the opposite sides of (p0), respectively, we obtain

−4c(1− a)(b+ 2f(1− c))2(1− a(1 + f2))

= b2(f2 − c(1 + f2))(fb+ 2(1− a))2.
(2.37)

Multiplying (2.36) with b and subtracting the result from (p3) give, after a light simpli-
fication, that

2ε2(1− a)(2f + b(1 + f2)) = (b+ 2f(1− c))(fb+ 2(1− a)). (2.38)

The right-hand side of the square of (2.38) multiplied by −c is the product of the right-
hand sides of (p0) and (2.36), so we get

− 4c(1− a)(2f + b(1 + f2))2 = b2(f2 − c(1 + f2))(1− a(1 + f2)). (2.39)

Multiplying (2.38) by 2b and subtracting the product from (p2) give

ε2
(
b2(1− a(1 + f2)) + 4(1− a)2(f2 − c(1 + f2))

)
= (1− a)(b+ 2f(1− c))2 − c(fb+ 2(1− a))2.

(2.40)

Multiplying (2.36) by c and adding to this give

ε2
(
(b2 + 4c(1− a))(1− a(1 + f2)) + 4(1− a)2(f2 − c(1 + f2))

)
= (1− a)(b+ 2f(1− c))2.

(2.41)

Multiplying this with c and adding to the product of (p0) and (1− a) result in

c(b2 + 4c(1− a))(1− a(1 + f2)) + (1− a)(b2 + 4c(1− a))(f2 − c(1 + f2))) = 0,

hence
b2 + 4c(1− a) = 0 or 1 = a+ c. (2.42)
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Add (p1) times 1− a, (2.41) times −b and (2.38) times 2c(1− a). The result is

4(b2 + c(1− a))(1− a)(2f + b(1 + f2)) = b(b2 + 4c(1− a))(1− a(1 + f2)). (2.43)

• Assume that 1 = a+ c fulfills in (2.42).
Then b2 + 4a(1 − c) = b2 + 4a2 > 0, and it is also easy to show that f2 − c(1 + f2) =

−(1− a(1 + f2)). Further, (2.37) gives 4c2(b+ 2f(1− c))2 = b2(fb+ 2c)2, hence

0 = b2(fb+ 2c)2 − 4c2(b+ 2f(1− c))2

= (b(fb+ 2c)− 2c(b+ 2f(1− c)))(b(fb+ 2c) + 2c(b+ 2f(1− c)))

= f(b2 − 4c(1− c))(b(fb+ 2c) + 2c(b+ 2f(1− c))).

Since b2 > 4c(1− c) by (2.30), we obtain

− b(fb+ 2c) = 2c(b+ 2f(1− c)). (2.44)

From (p3) we obtain

4ε2c
(
c(2f + b(1 + f2))− b(f2 − c(1 + f2))

)
= b(fb+ 2c)2 + 2c(fb+ 2c)(b+ 2f(1− c))).

(2.45)

The right-hand side of this equation vanishes by (2.44), so we arrive at

c(2f + b(1 + f2)) = b(f2 − c(1 + f2)). (2.46)

Since 1− a = c, (2.38) reads

2ε2c(2f + b(1 + f2)) = (b+ 2f(1− c))(fb+ 2c). (2.47)

Multiplying this with 2c and using (2.44) results in

4ε2c2(2f + b(1 + f2)) = 2c(b+ 2f(1− c))(fb+ 2c) = −b(fb+ 2c)2. (2.48)

Using (2.46) and then (2.36) this gives

4ε2cb(f2 − c(1 + f2)) = −(fb+ 2c)2b = 4ε2c(1− (1− c)(1 + f2))b. (2.49)

Thus f2 − c(1 + f2) = 1− (1− c)(1 + f2), so, by (2.42) and (2.46), we have

c =
f2

1 + f2
, a =

1

1 + f2
, and b =

−2f

1 + f2
. (2.50)

This, however gives b2 = 4ac that contradicts (2.30).
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• Assume that 1 6= a+ c and b2 + 4c(1− a) = 0 fulfills in (2.42).
As a first consequence, we get from (2.43) that

b2 + c(1− a) = 0 or 2f + b(1 + f2) = 0. (2.51)

In the former case the assumption implies c(1− a) = 0, so either c = 0 or a = 1, which
was already closed out, so we deduce b = −2f

1+f2
. From this (2.39) implies immediately

that 0 = (f2 − c(1 + f2))(1− a(1 + f2)), so

c =
f2

1 + f2
or a =

1

1 + f2
. (2.52)

Then, by the assumption we respectively obtain that

a =
4c+ b2

4c
=

2 + f2

1 + f2
and c =

−b2

4(1− a)
=
−1

1 + f2
. (2.53)

In the first case we get

b2 − 4ac =
4f2

(1 + f2)2
− 4

2 + f2

1 + f2
f2

1 + f2
=

4f2

(1 + f2)2
(1− (2 + f2)) =

−4f2

1 + f2
< 0

that contradicts (2.30), so we deduce

c =
−1

1 + f2
, a =

1

1 + f2
, and b =

−2f

1 + f2
. (2.54)

With these values (p0) gives ε = 1. (p1) gives also ε = 1.

Thus the second case in (2.42) implies a contradiction, while it follows from the first case
of (2.42) that the conical curve is parabolic.

The contradiction means that the system of equations (p0)–(p4) does not have a solution,
so the polynomials of the sides in (2.35) are different, hence the conical curves in this
case are not quadratic.

Theorem 2.3 ([13]). A conical curve on the sphere is quadratic if and only if either
the focus is the pole of the directrix, or the focus is not the pole of the directrix, but the
conical curve is parabolic, i.e. ε = 1.

2.4 Symmetric conical curves on the sphere

Firstly we notice that the conical curve on the sphere is a hypersphere, hence symmetric
if the focus is the pole of the directrix, so we assume for the sake of a later contradiction
that

F̂ is not the pole of ˆ̀, and Ĉε
δ̂;F̂ ,ˆ̀

is symmetric in a point Ĉ.
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Such a point of symmetry Ĉ clearly is on the great circle of F̂ F̂⊥, where F̂⊥ is the unique
foot of F̂ on the great circle ˆ̀.

Take the gnomonic projection ΓĈ . Let CεF,` := ΓĈ(Ĉε
δ̂;F̂ ,ˆ̀

), P := ΓĈ(P̂ ) and P⊥ :=

ΓĈ(P̂⊥) for any point P , and ` := ΓĈ(ˆ̀). Choose the coordinate system so that C =

(0, 0, 1), F = (f, 0, 1), and ` = {(x, y, z) : x = m ∧ z = 1}. Figure 2.7 shows what we
have on the plane P := TĈS

2 = {(x, y, z) : z = 1}.

`
CεF,`

q
P⊥ = (m, r, 1)

p
F⊥ = (m, 0, 1)

P

(p, q, 1)

C (0, 0, 1)f

F

Figure 2.7: Projected conical curve CεF,`, if the directrix ` is parallel to the y-axis and
the focus F is at (f, 0), where f < 0.

The advantage of taking the gnomonic projection ΓĈ is that Ĉε
δ̂;F̂ ,ˆ̀

is symmetric about

Ĉ in the spherical meaning if and only if CεF,` is symmetric about C in the Euclidean
meaning.

Since F̂⊥P̂⊥P̂ is a right triangle on the sphere, the cosine rule for the spherical triangle
[21] gives cos δ̂(F̂⊥, P̂ ) = cos δ̂(F̂⊥, P̂⊥) cos δ̂(P̂⊥, P̂ ). Then (1.4) gives

cos(δ̂(F̂⊥, P̂ ))=
〈F̂⊥, P̂ 〉
|F̂⊥| |P̂ |

, cos(δ̂(F̂⊥, P̂⊥))=
〈F̂⊥, P̂⊥〉
|F̂⊥| |P̂⊥|

, cos(δ̂(P̂⊥, P̂ ))=
〈P̂⊥, P̂ 〉
|P̂⊥| |P̂ |

,

so we obtain 〈F̂⊥, P̂ 〉 |P̂⊥|2 = 〈F̂⊥, P̂⊥〉 〈P̂⊥, P̂ 〉, i.e.

(mp+ 1)(m2 + r2 + 1) = (m2 + 1) (mp+ rq + 1).

This equation is equivalent to equation r(r(mp+ 1)− q(m2 + 1)) = 0 that gives

r =
q(m2 + 1)

mp+ 1
. (2.55)

Thus, by (1.4), we have

δ(P, `)=δ(P, (m, r, 1))

=arccos
mp+ rq + 1

√
m2 + r2 + 1

√
p2 + q2 + 1

=arccos
(mp+ 1)

√
m2 + r2 + 1

(m2 + 1)
√
p2 + q2 + 1

=arccos

√
(mp+ 1)2 + q2(m2 + 1)
√
m2 + 1

√
p2 + q2 + 1

,

(2.56)
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where we used (2.55) and its predecessor. For the distance of P from the focus we have
(2.27).

According to (D1) equations (2.56) and (2.27) give

ε arccos

√
(mp+ 1)2 + q2(m2 + 1)
√
m2 + 1

√
p2 + q2 + 1

= arccos
pf + 1√

f2 + 1
√
p2 + q2 + 1

. (2.57)

Figure 2.8 shows how these conical curves look like by (2.28).

Figure 2.8: An elliptic (ε = 0.90), parabolic (ε = 1), and hyperbolic (ε = 1.1) conical
curve in projected model of the sphere.

We now that there exist exactly two solutions of (2.57) for q = 0, and by the symmetry
these are ±p0. Thus ±p0 satisfies

ε arccos
|mp+ 1|

√
m2 + 1

√
p2 + 1

= arccos
pf + 1√

f2 + 1
√
p2 + 1

. (2.58)

Let m = tanµ, f = tanϕ, and p0 = tan$. Substituting these values into (2.58) results
in

ε arccos
|1± tanµ tan$|√

1 + tan2 µ
√

1 + tan2$
= arccos

1± tanϕ tan$√
1 + tan2 ϕ

√
1 + tan2$

, (2.59)

i.e.

ε arccos | cosµ cos$ ± sinµ sin$| = arccos(cosϕ cos$ ± sinϕ sin$), (2.60)

hence by the angle sum and difference identities [20] we get

ε arccos | cos(µ∓$)| = arccos(cos(ϕ∓$)), (2.61)

Thus, εµ − ϕ = ±$(1 − ε), hence $(1 − ε) = 0. Since $ 6= 0, we get ε = 1, so µ = ϕ

that is a contradiction.

In sum, we have proved the following theorem.

Theorem 2.4 ([13]). A conical curve on the sphere is symmetric if and only if the focus
is the pole of the directrix.
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2.5 Conical ellipses and conical hyperbolas

As every ellipse and every hyperbola in the hyperbolic plane is symmetric, every conical
ellipse and every conical hyperbola is a symmetric conical curve, hence Theorem 2.2
implies the following.

Theorem 2.5. There is no conical ellipse or conical hyperbola in the hyperbolic plane.

As every ellipse and every hyperbola on the sphere is symmetric, every conical ellipse
and every conical hyperbola is a symmetric conical curve, hence Theorem 2.4 implies the
following.

Theorem 2.6. Every conical ellipse and every conical hyperbola on the sphere is a circle.
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Notations

R the set of real numbers

Rn the n-dimensional real space

Pn the n-dimensional projective space

points A,B, . . . or a if the origin is fixed,

vectors
−−→
AB or a,

AB open segment with endpoints A and B

AB open ray starting from A passing through B

AB the line through points A and B;

(A,B) open segment with endpoints A and B

(A,B;C) the affine ratio of the collinear points A,B and C

(A,B;C,D) the cross ratio of the collinear points A,B and C,D

Sn−1 the sphere in the n-dimensional Euclidean space
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Summary

According to [15], A. Moór raised the request for determining those Finsler manifolds in
which the class of elliptic conical curves coincides with the class of ellipses, or the class
of hyperbolic conical curves coincides with the class of hyperbolas. Tamássy and Bélteky
found in [16, Theorem 2], that the only Finsler space where the class of elliptic conical
curves coincides with the class of ellipses is the Euclidean space.

A similar problem was solved by Kurusa in [10, Theorem 6.1], where he proved that
the only Minkowski geometry in which either a conical ellipsoid or a conical hyperboloid
exists is the Euclidean one. At the end of his paper [10] Kurusa formulated the problem
of determining projective-metric spaces in which

(a) some or all ellipses are conical, or
(b) some or all hyperbolas are conical.

Kurusa’s main result [10, Theorem 6.1] was based on that, by [10, Theorem 4.2 and 4.3],
the only Minkowski geometry in which a symmetric conical curve exists is the Euclidean
one. Additionally, it is also proved in [10, Theorem 5.1] that the only Minkowski plane
in which a quadratic conical curve exists is the Euclidean one. So Kurusa also raised the
request to determine the projective-metric spaces in which

(c) some or all elliptic conical curves are symmetric, or
(d) some or all hyperbolic conical curves are symmetric, or
(e) some or all elliptic conical curves are quadratic, or
(f) some or all hyperbolic conical curves are quadratic.

All the requests remained unanswered for curved projective-metric spaces.

The purpose of my research was to answer Kurusa’s requests for the curved constant
curvature spaces. In the hyperbolic case there was no surprise, but it turned out in the
spherical case that there are some very special conical curves.

The results in this dissertation are the fruit of my research. They were published in my
papers [11], [12], and [13].

43

https://www.arcanum.hu/en/online-kiadvanyok/Lexikonok-magyar-eletrajzi-lexikon-7428D/m-76AF9/moor-artur-76F06/
https://g.co/kgs/ep7P78
http://www.math.u-szeged.hu/tagok/kurusa/


(May 2020) c© all rights reserved

Appendices Summary

In a projective-metric space (M, d) we define

(D1) a conical curve as the set
CεF,H :={X ∈ Rn : εd(X,H) = d(F,X)},

where H is a hyperplane, the leading hyperplane or directrix, F /∈ H is a point, the focus,
and ε > 0 is a number, the numeric eccentricity. A conical curve is said to be elliptic,
parabolic and hyperbolic, if ε < 1, ε = 1 and ε > 1, respectively.

For given fixed points F1, F2, the focuses, and number a 6= d(F1, F2)/2, the radius, we
define

(D2) the ellipsoid (ellipse in dimension 2) as the set
Ead;F1,F2

:={E : 2a = d(F1, E) + d(E,F2)}, and

(D3) the hyperboloid (hyperbola in dimension 2) as the set
Had;F1,F2

:={X : 2a = |d(F1, X)− d(X,F2)|}.

By the triangle inequality, a > d(F1, F2)/2 for the ellipsoid, and a < d(F1, F2)/2 for the
hyperboloid. Value 2f := d(F1, F2) is the eccentricity, and if the eccentricity vanishes,
then the ellipsoid (ellipse) is called sphere (circle). Further, an ellipsoid (ellipse) or
hyperboloid (hyperbola) is called conical if it is a conical curve.

Unlike the above definitions quadraticity is defined with no reference for the metric. We
define

(D4) a quadratical curve as the set of points satisfying the equation of the form

Qσs :=

(x, y) :

1=x2 + σy2, if σ ∈ {−1, 1},

x=y2, if σ = 0,


 , (Dq)

for some affine coordinate system s.

Quadratical curves are also called quadric, and a quadric is called elliptic, parabolic, and
hyperbola, if σ = 1, σ = 0 and σ = −1, respectively.

A set S ⊂ M in a projective-metric space (M, d) is called symmetric about a point
C ∈M, if X ∈ S if and only if Y ∈ S, where C is in the metric midpoint of the segment
XY , i.e. 2d(X,C) = 2d(C, Y ) = d(X,Y ).

Section 2.1, ”Quadratic conical curves in the hyperbolic plane”, is based on my paper
[11].

We say that a conical curve is quadratic if it fits on a quadric (Dq), i.e. satisfies an
equation of the form āx2 + b̄xy + c̄y2 + d̄x + ēy + f̄ = 0, where the coefficients are real
and ā ≥ 0.

Theorem S.1 ([11]). No conical curve of the hyperbolic plane can be quadratic.
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Appendices Summary

The proof is a long and tricky calculation that determines the coefficients of the quadratic
equation and leads to contradiction.

Section 2.2, ”Symmetric conical curves in the hyperbolic plane”, is based on my paper
[12].

We say that a conical curve is symmetric if it is symmetric in a point.

Theorem S.2 ([12]). No conical curve of the hyperbolic plane can be symmetric.

For the proof we first determine with some tiring calculations the exponential equation
of a conical curve in the Cayley–Klein model and then investigate the tangents of such
curve if the conical curve is symmetric in the center of the model. Then properly chosen
points on the conical curve show that the symmetry causes contradictions, hence proving
the theorem.

Section 2.3, ”Quadratic conical curves on the sphere”, and Section 2.4, ”Symmetric conical
curves on the sphere”, are based on the paper [13].

Theorem S.3 ([13]). A conical curve on the sphere is quadratic if and only if either
the focus is the pole of the directrix, or the focus is not the pole of the directrix, but the
conical curve is parabolic, i.e. ε = 1.

The proof is a long and tricky calculation that determines the coefficients of the quadratic
equation and leads to contradiction.

Theorem S.4 ([13]). A conical curve on the sphere is symmetric if and only if the focus
is the pole of the directrix.

Section 2.5, ”Conical ellipses and conical hyperbolas”, contains some direct consequences
of the above results.

As every ellipse and every hyperbola in the hyperbolic plane is symmetric, every conical
ellipse and every conical hyperbola is a symmetric conical curve, hence Theorem S.2
implies the following.

Theorem S.5. There is no conical ellipse or conical hyperbola in the hyperbolic plane.

As every ellipse and every hyperbola on the sphere is symmetric, every conical ellipse
and every conical hyperbola is a symmetric conical curve, hence Theorem S.4 implies the
following.

Theorem S.6. Every conical ellipse and every conical hyperbola on the sphere is a circle.
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Magyar nyelvű összefoglaló
(Summary in Hungarian)

Tamássy Lajos [15] cikke szerint Moór Artúr vetette fel azon Finsler sokaságok megha-
tározásának problémáját, amelyekben az elliptikus kúpszeletek osztálya megegyezik az
ellipszisek osztályával, vagy a hiperbolikus kúpszeletek osztálya megegyezik a hiperbolák
osztályával. Az első esetet Tamássy és Bélteky tisztázta [16, Theorem 2]: az egyetlen
Finsler tér, amelyben az elliptikus kúpszeletek osztálya megegyezik az ellipszisek osztá-
lyával az euklideszi tér.

Hasonló probléma megoldását adta Kurusa Árpád is, amikor igazolta [10, Theorem 6.1],
hogy az Euklidészi az egyetlen olyan Minkowski sík, amelyben egy kúpmetszet-görbe
ellipszis vagy egy kúpmetszet-görbe hyperbola. A [10] cikke végén Kurusa felvetette
azon projektív-metrikus terek meghatározásának problémáját, melyekben

(a) néhány vagy minden ellipszis kúpmetszet-görbe, vagy
(b) néhány vagy minden hyperbolas kúpmetszet-görbe.

Kurusa [10, Theorem 6.1] eredményének bizonyítása azon alapult, hogy a [10, Theorem
4.2 and 4.3] tételek szerint az Euklidészi az egyetlen olyan Minkowski sík, amelyben van
szimmetrikus kúpmetszet-görbe. Továbbá a [10, Theorem 5.1] eredményben Kurusa azt is
igazolta, hogy az Euklidészi az egyetlen olyan Minkowski sík, amelyben van kvadratikus
kúpmetszet-görbe. Ezekből kiindulva Kurusa felvetette azon projektív-metrikus terek
meghatározásának problémáját, melyekben

(c) néhány vagy minden elliptikus kúpmetszet-görbe szimmetrikus, vagy
(d) néhány vagy minden hiperbolikus kúpmetszet-görbe szimmetrikus, vagy
(e) néhány vagy minden elliptikus kúpmetszet-görbe kvadratikus, vagy
(f) néhány vagy minden hiperbolikus kúpmetszet-görbe kvadratikus.

Minden Kurusa által felvetett kérdés megválaszolatlanul maradt a görbült projektív-
metrikus terekre.

Kutatásaim célja az volt, hogy meghatározzam Kurusa kérdéseire a a megfelelő gör-
bült konstans görbületű tereket. A hiperbolikus tér esetén nem volt meglepetés, de a
gömbfelületen kiderült, hogy van néhány nagyon speciális kúpmetszet-görbe.

46

https://g.co/kgs/ep7P78
https://www.arcanum.hu/en/online-kiadvanyok/Lexikonok-magyar-eletrajzi-lexikon-7428D/m-76AF9/moor-artur-76F06/
http://www.math.u-szeged.hu/tagok/kurusa/


(May 2020) c© all rights reserved

Appendices Magyar nyelvű összefoglaló (Summary in Hungarian)

Ebben a disszertációban kutatásaimnak a [11], [12], és [13] cikkekben már publikált
eredményei kerülnek bemutatásra.

Egy (M, d) projektív-metrikus térben definíció szerint

(D1) egy kúpmetszet-görbe nem más mint a
CεF,H :={X ∈ Rn : εd(X,H) = d(F,X)} halmaz,

ahol H egy hipersík, ami a vezérhipersík vagy direktrix, F /∈ H egy pont, ami a fókusz és
ε > 0 egy szám, a numerikus excentricitás. Egy kúpmetszet-görbéről azt mondjuk, hogy
elliptikus, parabolikus vagy hiperbolikus, ha rendre ε < 1, ε = 1 and ε > 1.

Az F1, F2 pontok, a fókuszok, továbbá egy a 6= d(F1, F2)/2 szám, a sugár, esetén

(D2) ellipsziodnak (kettő dimenzióban ellipszisnek) hívjuk a
Ead;F1,F2

:={E : 2a = d(F1, E) + d(E,F2)},

(D3) hiperboloidnak (kettő dimenzióban hiperbolának) hívjuk a
Had;F1,F2

:={X : 2a = |d(F1, X)− d(X,F2)|},

halmazt annak megfelelően, hogy rendre a > d(F1, F2)/2 vagy a < d(F1, F2)/2. A
2f := d(F1, F2) érték az excentricitás, és ha az excentricitás eltűnik, akkor az ellipszoidot
(ellipszist) gömbfelületnek (körvonalnak) hívjuk. Továbbá, egy ellipszoid (ellipszis) vagy
hiperboloid (hiperbola) kúpmetszett, ha kúpmetszet-görbe.

Eltérően a fenti definícióktól a kvadratikusság definíciója nem hivatkozik a metrikára.

(D4) Egy kvadratikus görbe azon pontok halmaza, amelyek valamely s affin koordináta-
rendszerben teljesítenek egy

Qσs :=

(x, y) :

1=x2 + σy2, if σ ∈ {−1, 1},

x=y2, if σ = 0,


 , (Dq)

egyenletet.

A kvadratikus görbéket kvadrikáknak is nevezik, és egy kvadrikát elliptikusnak, parabo-
likusnak vagy hiperbolikusnak hívunk, ha rendre σ = 1, σ = 0 and σ = −1.

Egy projektív-metrikus (M, d) tér S ⊂ M részhalmazát egy C ∈ M pontra nézve
szimmetrikusnak mondunk, ha X ∈ S akkor és csak akkor, ha Y ∈ S, ahol C az XY
szakasz metrikus középpontja, vagyis 2d(X,C) = 2d(C, Y ) = d(X,Y ).

Az 2.1 szakasz, „Kvadratikus, kúpmetszet-görbék a hiperbolikus síkon”, a [11] cikkemen
alapul.

Egy kúpmetszet-görbét kvadratikusnak mondunk ha egy (Dq) kvadrikára illeszkedik,
vagyis teljesít egy āx2 + b̄xy + c̄y2 + d̄x + ēy + f̄ = 0 egyenletet, ahol az együtthatók
valós számok és ā ≥ 0.
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Theorem O.1 ([11]). A hiperbolikus síkon kúpmetszet-görbe nem lehet kvadratikus.

A bizonyítás egy hosszú és trükkös számítás, amely meghatározza a másodlagos egyenlet
együtthatóit és ellentmondáshoz vezet.

A 2.2 szakasz, „Szimmetrikus kúpmetszet-görbék a hiperbolikus síkon”, a [12] cikkemen
alapul.

Egy kúpmetszet-görbét szimmetrikusnak nevezünk, ha szimmetrikus egy pontra nézve.

Theorem O.2 ([12]). Hiperbolikus síkon kúpmetszet-görbe nem lehet szimmetrikus.

Ennek igazolására először fárasztó számítással meghatározzuk a kúpmetszet-görbe ex-
ponenciális egyenletét a Cayley–Klein modellben, majd megvizsgáljuk az ilyen görbe
érintőit, feltételezve, hogy a kúpmetszet-görbe szimmetrikus a modell centrumára nézve.
Ezután a kúpmetszet-görbe megfelelően megválasztott pontjai azt mutatják, hogy a sz-
immetria ellentmondásokat idéz elő, ezáltal bizonyítva a tételt.

Az 2.3 szakasz, „Kvadratikus kúpmetszet-görbék a gömbfelületen”, és az 2.4 szakasz, „Sz-
immetrikus kúpmetszet-görbék a gömbfelületen”, alfejezetek a [13] cikkemen alapulnak.

Theorem O.3 ([13]). A gömbfelületen egy kúpmetszet-görbe pontosan akkor kvadratikus,
ha a fókuszpontja a direktrix pólusa vagy nem a direktrix pólusa, de a kúpmetszet-görbe
parabolikus, vagyis ε = 1.

Theorem O.4 ([13]). A gömbfelületen egy kúpmetszet-görbe pontosan akkor szimmetrikus,
ha a fókuszpontja a direktrix pólusa.

A 2.5 szakasz, „Kúpmetszet-ellipszisek és kúpmetszet-hiperbolák”, a fenti eredmények
egyenes következményeit tartalmazza.

Mivel minden ellipszis és minden hiperbola szimmetrikus a hiperbolikus síkon, ezért
minden kúpmetszet-ellipszis és kúpmetszet-hiperbola szimmetrikus kúpmetszet-görbe,
tehát a O.4. Tételből következik a következő.

Theorem O.5. Hiperbolikus síkon egyetlen ellipszis vagy hiperbola se kúpmetszet-görbe.

Mivel a gömbfelszínen minden ellipszis és minden hiperbola szimmetrikus, így minden
kúpmetszet-ellipszis és kúpmetszet-hiperbola szimmetrikus kúpmetszet-görbe, és így a
O.4. Tételből következik a.

Theorem O.6. A gömbfelületen minden kúpmetszet-ellipszis és kúpmetszet-hiperbola
körvonal.
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