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Introduction 

Protoflavones represent a unique class of natural flavonoids with a non-aromatic B-ring and a 

hydroxyl group at C-1’. The first protoflavone was isolated from the Equisetum arvense and it is 

called protogenkwanin 4'-glucoside. Protoflavonoids have been mainly reported from plant species 

ferns but not only. Such compounds have also been isolated from Apium graveolens and Piper 

carniconnectivum. The best studied protoflavone derivative is protoapigenone that was first 

isolated from the fern Thelypteris torresiana in 2005. Protoflavones are biologically active 

compounds. Protoapigenone has strong antitumor activity in vitro and in vivo. Together with a 

synthetic analog, WYC0209, it was found that it can affect the ATR signaling pathway, and 

sensitize cancer cells to DNA damaging chemotherapeutics. Moreover, protoapigenone was also 

found to have antiviral activity against the Epsten-Barr virus. The first total synthetic procedure of 

protoflavones was reported by Lin et al. in 2007. Protoapigenone and several synthetic 

protoflavones were synthetized as potential antitumor agents.  Trihydroxyacetophenone 

(diprotected with Methoxymethyl) was used as starting material and 4-benzyloxybenzaldehyde 

was added to the reaction mixture, and, after removal of the benzyl protecting group by catalytic 

hydrogenation, oxidative de-aromatization was performed by PIFA. Finally, protoapigenone was 

successfully obtained by removing the methoxymethyl protecting group. The procedure was very 

long, resulting in a low final isolated yield. Protoapigenone can, however, also be synthetized 

directly from apigenin. That was reported by Attila Hunyadi in 2011. This method allowed a fast 

and economic synthesis of up to the gram scale, representing a breakthrough in studying the 

bioactivity of this interesting flavonoid. At the beginning of my PhD studies I had the chance to be 

partially involved in this work, which then served as the head-start for my studies. 

 

 

 

 



Objectives 

 

The following objectives were set up for this work. 

1. As a primary aim of the work, to prepare new A-ring modified synthetic protoflavones and their 

1′-O-alkoxy derivatives, 

2. to perform an in vitro and in silico study on the potential formation of protoapigenone upon 

ROS scavenging by apigenin, 

3. to test the cytotoxicity of the newly prepared compounds and to extend related structure-activity 

relationships, with a strong focus on multi-drug resistant cancer, and 

4. to search for other potential bioactivities of these compounds, not or not directly related to the 

cytotoxic effect. 

 

Materials and methods 

Starting materials  

Commercially available 4′-hydroxyflavones (4´-hydroxy-6-methylflavone, 4´-hydroxy-6-

methoxyflavone, 4´-hydroxy-β-naphthoflavone) were purchased from Indofine Chemical 

Company, Inc. (Hillsborough USA). Chemicals were obtained from Aldrich, Inc. (USA).  

 

Synthesis of protoflavone derivatives 

Semi-synthesis 

Protoflavone 1´-O-alkyl ethers were synthesized from apigenin, genkwanin, 4´-hydroxy-6-

methylflavone, 4´-hydroxy-6-methoxyflavone and 4´-hydroxy-β-naphthoflavone by using a one 

step synthesis method. The oxidative de-aromatization was performed by a common hypervalent 

iodine reagent, [bis(trifluoroacetoxy)iodo]benzene (PIFA) in acetonitrile in the presence of water 

or the alcohol to be coupled at position C-1´. 

 

 



Total-synthesis 

C-6 modified protoflavone derivatives were synthetized from hydroxyacetophenone and   4-ethyl- 

and 4-pentylphenol as starting materials. Total synthesis was achieved in 4-6 steps by using 

different synthetic methods. (Fries-rearrangement reaction, Claisen-Schmidt condensation, Suzuki 

coupling, debenzylation and oxidative de-aromatization.) 

 

Structure elucidation 

Structure elucidation was carried out by means of nuclear magnetic resonance (NMR) spectroscopy 

and mass spectroscopy (MS). NMR spectra were obtained on a Varian Gemini-2000 200 MHz or 

Bruker Avance DRX-500. Mass spectra were taken on an API 2000 triple-quadrupole (Ab Sciex, 

USA) or LCMS-IT-TOF (Shimadzu, Japan) with and ESI interface. 

 

In silico studies on the formation of protoapigenone from apigenin 

Calculations were achieved in the Gaussian09 software within the DFT (Density Functional 

Theory) formalism.  For the phenolic group O-H bond dissociation enthalpies (BDE), were 

calculated as the difference between Fl-OH (the flavonoid) and Fl-O˙+ H˙ (the corresponding 

radicals formed after H-atom abstraction (HAT) from Fl-OH to the free radical. The effect of 

solvent was taken into account by using the integral-equation-formalism polarizable continuum 

model (IEF-PCM). 

 

Experimental studies on the apigenin-protoapigenone transformation 

Apigenin was dissolved in aqueous MeOH, and the pH was adjusted to pH=4 by using H2SO4. 

Iron catalyst (FeSO4 · 7H2O) was added, followed by the slow addition of of 30% H2O2. The 

reaction mixture was purified by using SPE on C18 stationary phase, and investigated by HPLC. 

 

 

 

https://en.wikipedia.org/wiki/Stationary_phase_(chemistry)


Bioassays 

Cytotoxicity 

In the experiments on bioactivity, the compound  were tested  on four human cancer cell lines 

(HepG2, Hep3B, A549, MDA-MB-23) and on five non-MDR/MDR cell line  pairs (including 

A431, A431B1, A431G2, MES-SA, MES-SA/Dx5, KB-3-1, KB-V1, L5178,  L5178B1 , MCF-7, 

MCF-7dox cell lines) 

Xanthine Oxidase inhibition 

XO inhibition activity were obtained by using commercially available XO activity assay kit 

(Sigma-Aldrich Ltd., USA), following the provided protocol. The 3D structure of the compounds 

was optimized prior to docking, by the Gaussian09 (Gaussian Inc., Wallingford, USA) software. 

Docking study was performed by using iGEMDOCK 2.1 (BioXGEM, Hsinchu, Taiwan) at default 

settings. Docking was validated by re-docking the “Que” residue into the macromolecule in mol2 

format in order to allow flexible docking. Visualization of the ligand-residue interactions were 

achieved with Discovery Studio 3. 

 

 

 

 

 

 

 

 

 

 

 

 



Results and discussion 

Synthesis 

Thirty-seven protoflavones and protoflavone 1´-O-alkyl ethers were synthesized from 

commercially available 4′-hydroxyflavones (apigenin, genkwanin, 4´-hydroxy-6-methylflavone, 

4´-hydroxy-6-methoxyflavone and 4´-hydroxy-β-naphthoflavone) by utilizing PIFA-mediated 

oxidative de-aromatization. 

 

 

Fifteen protoflavones and protoflavone 1´-O-alkyl ethers were synthesized by using 4-6 step total 

synthetic method. In order to obtain starting materials (i.e. 5´-ethyl-2´-hydroxyacetophenone and 

5´-pentyl-2´-hydroxyacetophenone  for our 6-ethyl and 6-pentyl substituted target compounds, the 

appropriate p-substituted phenols were acetylated and subjected to Fries-rearrangement reaction 

under the condition of dry AlCl3 in dichloromethane. The resulting 2´-hydroxyacetophenones and 

those commercially available with a 5´-ethoxy or -bromo substituent were utilized in Claisen-

Schmidt condensation reactions with p-benzyloxybenzaldehyde to yield chalchones, which, after 

performing ring closure with iodine in DMSO, yielded the corresponding 6-substituted 4´-

benzyloxyflavones. The 6-bromo substituted compound was subjected to Suzuki coupling in order 

to obtain the corresponding 6-phenylflavone. Debenzylation of the flavonoids obtained this way 



and subsequent oxidative de-aromatization of the flavones with PIFA, as described above, allowed 

us to obtain the protoflavones with various substituents at positions C-6 and C-1´.  

 

Anticancer activity 

Cytotoxicity of the newly obtained compounds was tested on a panel of sensitive and multi-drug 

resistant cell lines. The ability of protoflavones to evade efflux-mediated MDR was confirmed both 

in ABCB1 and ABCG2 expressing cell lines, with the exception of protoapigenone, which was 

identified as an ABCG2 substrate. Moreover, MDR selective cytotoxicity was observed for most 

of the tested protoflavones in a breast cancer cell line adapted to doxorubicin (MCF-7Dox) and SAR 

revealed importance of the A-ring substitution, while in the uterine sarcoma MES-SA/Dx5, another 

doxorubicin-selected cell line, only the 1´-OH containing compounds showed relevant selectivity. 

Studies on the mechanism for the MDR selectivity suggested the involvement of changes in the 

antioxidant defense of the cancer cells during the evolution of resistance. 

 

 

 



Activity of selected compounds on xanthine 

We performed a screening of some of our compounds for xanthine oxidase inhibitory activity. The 

genkwanin derivatives were inactive, whilst a weak inhibition was found for some of the 

naphthoflavone derivatives) and weak to moderate activity was observed for most of the 

protoapigenone analogs. However, protoapigenone 1´-O-propargyl ether was found to inhibit the 

enzyme almost completely at the tested concentration. The dose–effect curve was determined for 

this compound and compared to those of allopurinol and apigenin. Enzyme kinetic studies were 

also performed in order to investigate the inhibition mechanism of the propargyl ether derivative. 

The kinetic curve was found to be characteristic for substrate inhibition, and the data indicated that 

the compound is a competitive inhibitor of the enzyme. The binding mode of the propargyl ether 

derivative into the enzyme was investigated by in silico docking. In silico docking studies revealed 

a flip-flop orientation of this compound as compared to that of quercetin, and provided a reasonable 

explanation for the role of the propargyl side chain, fitting perfectly into the hydrophobic pocket 

formed by the Leu648, Phe649, Asp872, Leu873 and His875 residues. 

The role of OH radical scavenging in the formation of protoapigenone from apigenin. 

The possible formation of protoapigenone from apigenin was first studied in silico, within the DFT 

(Density Functional Theory) formalism. Bond dissociation enthalpies (BDEs) for the 4′-OH group 

of apigenin were calculated in the gas phase or by taking into account the effect of solvent.  Electron 

spin density was calculated for the resulting phenoxyl radical in order to have an estimation on the 

position where an OH radical could possibly attack to this intermediate. Here we can see that 

position 1’ is prefered. Based on the above in silico results, it can be stated that, even though the 

initiating hydrogen atom transfer requires a relatively large energy, such a transformation is indeed 

possible. In order to obtain experimental verification or disproof to this hypothesis, Fenton’s 

reaction was performed on apigenin, and the resulting mixture was analyzed by RP-HPLC-DAD 

after pre-purification. Traces of protoapigenone were identified. By means of direct CE 

measurements on such mixtures, we could conclude that protoapigenone is likely a major bioactive 

metabolite of apigenin whenever such a scavenging event takes place. Furthermore, the possible 

reduction of protoapigenone to apigenin was studied by incubating it with reduced glutathione 

(GSH) for 24h. Protoapigenone could be reduced back to apigenin, which is evidence for the 

existence of an apigenin-protoapigenone-apigenin redox cycle. 



Summary 

 

• Fifty-two protoflavone derivatives including 50 new compounds were prepared 

• The ability of protoflavones to evade efflux-mediated MDR was confirmed both in ABCB1 

and ABCG2 expressing cell lines (except protoapigenone  in ABCG2).  

• MDR selective cytotoxicity was observed for most of the tested protoflavones in a breast 

cancer cell line (MCF-7Dox). 

• Protoapigenone 1ʹ-O-propargyl ether was identified as an efficient competitive inhibitor of 

xanthine oxidase. 

• In silico DFT calculations, and HPLC and CE analyses revealed the apigenin-

protoapigenone transformation upon OH radical scavenging.  
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