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1 Introduction

In the dissertation we examine two problems related to differential equations
with step function coefficients. First, we consider second order linear dif-
ferential equations, where both elasticity coefficient and damping coefficient
are step functions. For such equations, we give sufficient condition on the
existence of a small solution, i.e. the existence of such a solution which tends
to 0 with respect to x. For the proof of the theorem, as a tool, we need
conditions guaranteeing the existence of a small solution of two dimensional
systems of linear difference equations. Although, we prove more: we give
necessary and sufficient conditions on the existence of a small solution of
difference equations of arbitrarily finite dimension.

In the second part of the thesis, we consider the Armellini-Tonelli-Sansone
theorem for second order linear differential equations with varying elasticity
coefficient. This theorem gives a sufficient condition on that all solutions
of such equations are small. We extend this theorem to the so-called half-
linear differential equations in the case when the coefficient is a step function.
Half-linear differential equations have many important applications (see eg.
[3], [4]). For the extension of the Armellini-Tonelli-Sansone theorem to the
half-linear case, we need to prove a new theorem on the asymptotic stability
of two dimensional systems of linear difference equations. The proof is based
on a geometric method which applies also for the nonlinear case.

The dissertation is based on the following papers of the author:

• L. Hatvani, L. Székely, On the existence of small solutions of linear
difference equations with varying coefficients, J. Difference Equ. Appl.,
12 (2006), No. 8, 837–845.

• L. Hatvani, L. Székely, Asymptotic stability of two dimensional systems
of linear difference equations and of second order half-linear differential
equations with step function coefficients, E. J. Qualitative Theory of
Diff. Equ., 38 (2011), 1–17.

In this outline we use the same notations and numberings (apart from
the labels of the formulas) as in the thesis.
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Preliminaries

Consider the second order differential equation

x′′ + a(t)x = 0 (LO)

describing the motion of a linear oscillator with varying elasticity coefficient.
The Pólya-Sonin theorem (see eg. [19]) says, that if a : [0,∞) → [0,∞) is a
monotone non-decreasing function, then all nontrivial solutions of equation
(LO) are oscillatory, the maxima of |x|, i.e. the size of the amplitudes is non-
increasing, and the neighboring maxima of |x|, that is the distances between
neighboring extrema of x are non-decreasing.

Definition 1.1 A nontrivial solution x0 of equation (LO) is called small if

lim
t→∞

x0(t) = 0.

Milloux [16], Prodi [18] and Trevisan [20] proved that if a : [0,∞) → [0,∞) is
differentiable and non-decreasing then equation (LO) has at least one small
solution if and only if limt→∞ a(t) = ∞ holds. Milloux also constructed an
example with a step function coefficient a, where not all solutions of equation
(LO) were small. Hartman [9] investigated the linear system of differential
equations

x′ = A(t)x, (LR)

where x is an m dimensional vector and A is an m ×m matrix having real
continuous entries with domain [0,∞). He proved the following:

Theorem 1.3 Suppose that for all solutions x of equation (LR) limt→∞ ∥x(t)∥
< ∞ holds. Then equation (LR) has at least one small solution if and only
if ∫ t

trA(s)ds → −∞ (t → ∞).

Based on this result, Hartman [9] extended the theorem of Milloux, Prodi
and Trevisan to systems of equations, furthermore, he proved that instead of
differentiability, it is sufficient to assume the continuity of a.

The Armellini-Tonelli-Sansone [15] theorem was the first to give a suffi-
cient condition on that all solutions of equation (LO) are small with the
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following concept. A nondecreasing function f : [0,∞) → (0,∞) with
limt→∞ f(t) = ∞ is called to grow intermittently if for every ε > 0 there
is a sequence {(ai, bi)}∞i=0 of disjoint intervals such that ai → ∞ as i → ∞,
and

lim sup
i→∞

i∑
k=1

bk − ak
bi

≤ ε,
∞∑
i=1

(f(ai+1)− f(bi)) < ∞

are satisfied. Roughly speaking, this condition means that the growth of f
cannot be located to a set with small measure. If such a sequence does not
exist, then f is called to grow regularly.

Theorem 1.4 If a is continuously differentiable and it grows to infinity reg-
ularly as t → ∞, then all non-trivial solutions of equation (LO) are small.

It is important to note that this stability property is weaker than the asymp-
totic stability of the trivial solution of equation (LO).

The simplest case of intermittent growth is is a monotonously increasing
step function. Such equations have an important role for example in the
field of control theory thanks to the so-called Bang-Bang principle. Differ-
ential equations with step function coefficients can be rewritten as systems
of difference equations, thus the proof of theorems on such equations can be
deduced to the proof of statements on difference equations.

2 On small solutions of second order linear dif-
ferential equations with step function coeffi-
cients

In Chapter 2 we consider the equation

x′′ + c(t)x′ + a2(t)x = 0 (LOS)

describing the motion of an oscillator where both elasticity coefficient a and
damping coefficient c are step functions. Namely, {tn}∞n=1, {an}∞n=1 and
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{cn}∞n=1 are real sequences with the following properties:

0 = t0 < t1 < . . . < tn−1 < tn < . . . ; lim
n→∞

tn = ∞,

an > 0, cn ≥ 0 (n = 1, 2, . . .),

furthermore, a(t) = an and c(t) = cn on the interval [tn, tn−1). In the case
when limn→∞ an = ∞ and damping doesn’t act, i.e. cn = 0 (n = 1, 2, . . .),
Hatvani [10] proved that there exists at least one small solution of equation
(LOS) if

∑∞
n=1 max {an/an+1 − 1; 0} < ∞ holds. It is natural to guess that

damping helps weaken this condition and even the condition limn→∞ an = ∞.
In fact, in the main theorem of this chapter we could prove the following.

Theorem 2.2 Assume that the above conditions on sequences {an}∞n=1,
{cn}∞n=1 and {tn}∞n=1 are satisfied, and let us introduce the notation

γn :=
cn

2an + cn
[(2an − cn)(tn − tn−1)− 2].

Suppose, in addition, that

(i) an > cn/2 (n = 1, 2, . . .),

(ii)
∞∑
k=1

(
−γk + ln

ak
ak+1

)
= −∞,

(iii) there is a number K such that for arbitrary n (n = 1, 2, . . .)

n∑
k=1

(
−γk

2
+ lnmax

{
ak
ak+1

; 1

})
< K

holds.

Then equation (LOS) has at least one small solution.

Remark 2.3 Theorem 2.2 is an improvement of Theorem 3.2 in [11], on
which paper the dissertation is based.

Equation (LOS) is equivalent with a two dimensional system of difference
equations, therefore for the proof of our theorem we need a sufficient condi-
tion guaranteeing the existence of a small solution of such system. We discuss
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the problem of finding a sufficient condition guaranteeing the existence of a
small solution of two dimensional system of difference equations in a more
general manner, namely, we give necessary and sufficient conditions for the
existence of such solutions of arbitrarily finite dimensional systems.

On small solutions of difference equations

We consider the following nonautonomous system of difference equations:

xn+1 = Mnxn, n = 0, 1, 2, . . . , (DE)

where xn ∈ Rm is a column vector, m ∈ N and Mn ∈ Rm×m is an m × m

matrix having real entries. A nontrivial {xn}∞n=0 solution of this equation is
called small if limn→∞ xn = 0. Our aim is to extend Hartman’s theorem on
linear system of differential equations to linear systems of difference equa-
tions. As the first result of this section, we could prove the following:

Theorem 2.8 ([11]) Suppose that the finite limit

∞∏
n=0

∥Mn∥ < ∞

exists. Then,

(a) for every solution {xn}∞n=0 of (DE) the sequence {∥xn∥}∞n=0 has a finite
limit as n → ∞ ;

(b) the infinite product
∏∞

n=0 |detMn| is convergent; moreover,

(c) there exists at least one small solution of (DE) if and only if

∞∏
n=0

|detMn| = 0.

With this result we weaken the sufficient conditions on the existence of the
limit of the solutions’ norm given by Peil and Patterson [17] and Elbert
[7]. In addition, we extend Elbert’s method of proof from two dimension to
arbitrary dimension m and we give a new proof to the theorem of Peil and
Patterson.
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One can easily see, that
∏∞

n=0 ∥Mn∥ < ∞ is not necessary for the exis-
tence of the limit of the norm of all solutions of (DE). A simple example can
be constructed to show that this property is not essential from the point of
view of the existence of a small solutions. In the main theorem of this sec-
tion, by using a geometric method of proof we show that

∏∞
n=0 |detMn| = 0

is necessary and sufficient to have at least one small solution if we require
only the boundedness of the sequence ∥

∏q
n=pMn∥ (0 ≤ p ≤ q).

Theorem 2.9 ([11]) Suppose that there is a K ∈ R such that for every
p, q ∈ N, (0 ≤ p ≤ q) we have ∥∥∥∥∥

q∏
n=p

Mn

∥∥∥∥∥ ≤ K.

Then there exists at least one small solution of (DE) if and only if
∞∏
n=0

|detMn| = 0.

With an example we show that condition
∥∥∥∏q

n=p Mn

∥∥∥ ≤ K in Theorem 2.9

cannot be replaced by
∥∥∥∏k

n=0 Mn

∥∥∥ ≤ K (k = 0, 1, 2, . . . ). The question

that this can condition be replaced by
∏k

n=0 ∥Mn∥ ≤ K (k = 0, 1, 2, . . .) has
remained open here.

In Section 2.2, with the aid of theorem 2.9 we prove Theorem 2.2, i.e. we
show that under the given conditions differential equation (LOS) with step
function coefficients has at least one small solution.

On small solutions of nonlinear difference equations

In the final section of Chapter 2 we examine the possible extensions of The-
orem 2.9 to nonlinear systems of difference equations. We consider the dif-
ference equation

xn+1 = f(n,xn) n = 0, 1, 2, . . . , (ND)

where m ∈ N, xn ∈ Rm is a column vector, and functions f(n, ·) have the
following properties for all n ∈ N0:

f(n, ·) : Dn ⊂ Rm → Rm, ran f(n, ·) ⊂ Dn+1,
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f(n, 0) = 0, f(n, ·) ∈ C1(Dn),

where Dn is a convex domain (n = 0, 1, . . .). Define

F(q, p ; ·) := f(q, ·) ◦ . . . ◦ f(p, ·) (0 ≤ p ≤ q, p, q ∈ N0),

furtehrmore let F j(q, p ; ·) : Dp → R (j = 1, . . . ,m) be the jth component of
function F(q, p ; ·), i.e.

F(q, p ;x) =

F 1(q, p ;x)
...

Fm(q, p ;x)

 .

With the aid of a Lyapunov function, Karsai, Graef and Li [14] gave a suffi-
cient condition for such equations to have at least one small solution. Cur-
rently, with the application of our topological method of proof, we could
only conclude such result which is a consequence of their theorem. Since the
conditions in our theorem are based only on the right hand side of equation
(ND), furthermore its proof is analogous to the one of Theorem 2.9, therefore
we present this result as well.

Theorem 2.12 Suppose that there exists a closed ball H0 around the origin
and a number K > 0, such that for all p, q ∈ N0 (0 ≤ p ≤ q), j = 1, . . . ,m

and x ∈ H0 ∥∥gradF j(q, p ;x)
∥∥ ≤ K

holds, furthermore

lim
n→∞

∫
H0

|detF ′(n, 0;x)| dx = 0.

Then equation (ND) has at least one small solution.

3 On stability of second order half-linear dif-
ferential equations with step function coeffi-
cients

In Chapter 3 we consider the half-linear second order differential equation

x′′|x′|n−1 + q(t)|x|n−1x = 0, n ∈ R+, (FD)
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which is an important generalization of the second order differential equation
(LO) and was introduced by Imre Bihari [1] and Árpád Elbert [5]. They
called it half-linear because its solution set is homogeneous, but it is not
additive. To this equation Bihari [2] proved an Armellini-Tonelli-Sanone-type
theorem, namely, he proved that the trivial solution of (LO) is asymptotically
stable with respect to x if coefficient q is continuously differentiable and
tends "regularly" to infinity as t → ∞. Such result for this equation with
irregularly (or intermittently) growing coefficients was unknown until the
appearance of our paper [12]. In Chapter 3 we give a sufficient condition on
the asymptotic stability of the trivial solution with respect to x in the case
when coefficient q is the most typically intermittently growing, that is when
q is a step function. In the proof of our theorem we could successfully replace
the method used for the linear case (n = 1 in (FD)) to a geometric technique
which does not require linearity. What is more, this new method of proof
allows us to sharpen the known results for the linear case. Therefore, our
results not just include, but even sharpen the Armellini-Tonelli-Sanone-type
theorems of Elbert [6, 8] for linear differential equations with step function
coefficients, thus we first introduce this method to linear systems of difference
equations.

On asymptotic stability of difference equations

First, we investigate the asymptotic stability of the trivial solution of the
linear system of difference equations (DE) in the case when it is two di-
mensional. It is well-known that if

∏∞
n=0 ∥Mn∥ = 0, then all solutions of

equation (DE) tend to zero as n → ∞. Elbert [7] gave a sufficient condition
for the asymptotic stability under the assumptions: (i)

∏∞
n=0 max {∥Mn∥, 1}

< ∞, (ii) 0 <
∏∞

n=0 ∥Mn∥, (iii)
∏∞

n=0 max {det |Mn|, 1} < ∞. His proof
was based on estimation of the norm of some special matrices and a “tricky”
decomposition of matrices Mn.

To investigate equation (DE), we define a difference equation (DE’) on
the plane which has the same stability properties as equation (DE). The
construction of this equation is based on the polar factorization theorem (see
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eg. [13, p. 188]). Let

xn+1 = ∥Mn∥

(
1 0

0 dn

)(
cosωn − sinωn

sinωn cosωn

)
xn,

0 ≤ dn ≤ 1, n = 0, 1, 2, . . . ,

(DE’)

where dn and ωn (n = 0, 1, 2, . . . ) can be calculated from matrices M0, . . . ,Mn.
In the main theorem of this section we show that conditions (i)− (iii) of El-
bert’s theorem can be weakened.

Theorem 3.3 ([12]) Suppose that lim supn→∞
∏n

k=0 ∥Mk∥ < ∞. If
∞∑
n=0

min{1− dn, 1− dn+1} sin2 ωn+1 = ∞,

then the zero solution of difference equation (DE’) is asymptotically stable.

The extension of the Armellini-Tonelli-Sansone theorem to second
order half-linear differential equations with step function
coefficients

The main result of this chapter is the following:

Theorem 3.5 ([12]) Let n > 1 and

0 = t0 < t1 < . . . < tk < tk+1 < . . . , lim
k→∞

tk = ∞,

0 < q0 ≤ q1 ≤ . . . ≤ qk ≤ qk+1 ≤ . . . , lim
k→∞

qk = ∞.

Then all non-trivial solutions of equation

x′′|x′|n−1 + qk|x|n−1x = 0 (tk ≤ t < tk+1, k = 0, 1, . . .)

are small, if

∞∑
k=0

min

{
1− qk

qk+1

, 1− qk+1

qk+2

} ∣∣∣∣∣S
(
q

1
n+1
k+1 (tk+2 − tk+1)

)∣∣∣∣∣
n+1

= ∞.

The function S appearing in the theorem is the so-called generalized sine
function, that is, the solution of the initial value problem{

S ′′|S ′|n−1 + S|S|n−1 = 0,

S(0) = 0, S ′(0) = 1.
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Note, that S satisfies the identity |S(Φ)|n+1 + |S ′(Φ)|n+1 ≡ 1. The proof is
similar to the one of Theorem 3.3, but due to the appearance of the gener-
alized trigonometric functions we have to modify our estimations. The main
difficulty is that exact addition formulae for these functions are unknown.
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