LEPCSOSFUGGVENY-EGYUTTHATOS
MASODRENDU
DIFFERENCIALEGYENLETEK
STABILITASAROL

Doktori értekezés

SZEKELY LASZLO

TEMAVEZETO:

DR. HATVANI LASZLO

MATEMATIKA ES SZAMITASTUDOMANYOK DOKTORI ISKOLA
SZEGEDI TUDOMANYEGYETEM
TERMESZETTUDOMANYI ES INFORMATIKAI KAR
BOLYAI INTEZET

SZEGED
2011



Tartalomjegyzék

1. Bevezetés 1
2. Lépcsésfiiggvény-egyiitthatés masodrendii linearis differen-
cidlegyenletek kis megoldasairol 6
2.1. Differenciaegyenletek kis megoldasairél . . . . . . . . . . . .. 9
2.1.1. El6zmények . . . . ... ... oo 9
2.1.2. Eredmények . . . . ... ..o 12
2.2. A 2.2. tétel bizonyitasa . . . . . .. ... 17
2.3. Nemlinearis differenciaegyenletek kis megoldéasairol . . . . . . 21
3. Lépcsésfiiggvény-egyiitthatos masodrendi féllinearis differen-
cidlegyenletek stabilitasarol 25
3.1. Differenciaegyenletek aszimptotikus stabilitasarol . . . . . . . 26
3.1.1. El6zmények . . . . . ... ... 26
3.1.2. Eredmények . . . . . ... ... oo 27
3.2. Az Armellini-Tonelli-Sansone tétel kiterjesztése 1épcesdstiiggvény-

egylitthatos mésodrendi féllinearis differencidlegyenletekre . . 34

3.2.1. A masodrendd féllinearis differencidlegyenletekrsl al-
talaban . . . ..o 34

3.2.2. El6zmények és eredmények . . . . .. ..o 36



Osszefoglalas
Summary
Koszonetnyilvanitas

Irodalomjegyzék

i

48

57

65

66



1. fejezet

Bevezetés

Tekintsiik az
" +a(t)x =0 (1.1)
mésodrendd linearis differencialegyenletet, mely egy valtozoé rugalmassagi
egylitthatoju linearis oszcillator mozgasat irja le. A Polya-Sonin-tétel (lasd
pl. [48]) szerint, ha az a : [0,00) — [0, 00) egyiitthaté monoton nemesokkend
fiiggvény, akkor az (1.1) egyenlet minden nemtrivialis megoldasara teljesiil,

hogy
(i) a megoldas oszcillal,
(i) |z| maximuma, azaz az amplitadok nagysaga nem né,

(iii) |z| szomszédos maximumbhelyei, azaz az x szomszédos szélsGértékhelyei

kozotti tavolsdag nem csokken.
P. Hartman [26, p. 500| nyoman bevezetjiik a kovetkezs definiciot.

1.1. Definicio. Az (1.1) egyenlet egy xo nemtrividlis megolddsdt kis megol-
dasnak nevezziik, ha

lim zo(t) =0 (1.2)

t—o00



teljestil.
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1.1. abra. Az 2" + e’z = 0 egyenlet z(0) = 0, 2/(0) = 1 kezdeti feltételhez

tartozo megoldasa

Biernacki [7] 1933-ban vetette fel azt a problémat, hogy az (1.1) egyenletnek
milyen feltételek mellett létezik kis megoldasa. H. Milloux [43] egy évre ra,
illetve késébb tdle és egymaéstol is fluggetleniil Prodi [45] és Trevisan [51]

bizonyitotta be a kdvetkezst:

1.2. Tétel. Tegyiik fel, hogy az a : [0,00) — [0, 00) fiiggvény differencidlhato
és nemcsiokkend. Az (1.1) egyenletnek akkor és csakis akkor létezik legaldbb
egy kis megolddsa, ha

lim a(t) = oo. (1.3)

t—o00

Milloux egy olyan példan keresztiil, amelyben az a egyiitthato lépcsésfiigg-
vény, azt is megmutatta, hogy az (1.1) egyenletnek nem feltétleniil minden
megoldasa kis megoldas.
Hartman [25] az
x = A(t)x (1.4)



linearis differencialegyenlet-rendszer kis megoldasainak létezését vizsgalta,
ahol x m-dimenzios valos vektor, A pedig olyan m x m-es matrix, melynek
minden eleme a [0, 00) intervallumon értelmezett folytonos valos-valos flige-

vény. Az alabbi eredményre jutott:

1.3. Tétel. Tegyiik fel, hogy az (1.4) egyenlet minden x megolddsdra
limy o [|x(2)|| < 00 teljesiil. Ekkor az (1.4) egyenletnek akkor és csakis akkor

létezik kis megolddsa, ha
t
/ tr A(s)ds = —o0 (t — o), (1.5)

ahol tr A(s) az A méatrix nyomat jeloli az s idépillanatban. Az (1.5) feltétel
geometriai szempontbodl a jol ismert Liouville-formula alapjan azt jelenti,
hogy a rendszer fazistérfogata 0-hoz tart, ha t — oo. A tétel felhasznalasaval
Hartman [25] Milloux, Trevisan és Prodi tételét rendszerekre is kiterjesztette,
emellett belatta, hogy az a egyiitthatofiiggvény differencidlhatosaga helyett
elegendd feltenni annak folytonossagat.

Szintén Biernackitol [7| szérmazik az a kérdés, hogy milyen feltételek
biztositjak azt, hogy az (1.1) egyenlet minden nemtrividlis megoldéasa kis
megoldés legyen. Fontos megjegyezni, hogy ez a stabilitasi tulajdonsag gyen-
gébb a trividlis megoldas aszimptotikus stabilitasanal: x’-t6l, vagyis a rezgés
sebességétsl nem koveteljiik meg, hogy a végtelenben tartson 0-hoz; ezt Polya
és Sonin tétele alapjan nem is tehetjiik meg. A kérdésre elséként az Armellini-
Tonelli-Sansone [42] tétel adta meg a vélaszt az alabbi fogalmak segitségével.
Az f :[0,00) — (0,00) nemesokkend fiiggvényt irrequldrisan névekvének
nevezzik, ha tetszéleges ¢ > 0 esetén megadhato diszjunkt intervallumok

olyan {(an,, b,)}22, sorozata, hogy lim,,_, a, = 00, és emellett a

tmsup D < S (flan) — FB) < o0
k=1 " n=1

n—oo
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egyenlGtlenségek is teljesiilnek. Ez leegyszertsitve azt jelenti, hogy f nove-
kedése nem koncentralodhat egy kis mértékt halmazra. Ennek a feltételnek

nem-teljesiilése esetén azt mondjuk, hogy f reguldrisan névekva.

1.4. Tétel. Az (1.1) egyenlet minden nemtrividlis megolddsa kis megoldds,
ha az a egyitthato folytonosan differencidlhato és requldris modon novekedve

tart végtelenbe t — oo esetén.

Az egyiitthatofiiggvény regularitasanak feltevése mellett a kis megoldasok
létezésére, illetve az origonak x-re vonatkozo aszimptotikus stabilitasanak
probléméjara vonatkozo tételeket tobben élesitették és azokat més egyenletek
esetén is vizsgaltak ([6], [9], [10], |24], [30], [35], [36], [46], [50]).

Az irreguléris novekedésre a legegyszertibb példa egy monoton névekvs
lépcsdstiiggvény. Az alkalmazasok terén az ilyen egyiitthatos egyenleteknek az
un. bang-bang elv alapjan fontos szerep jut példaul az iranyitaselmélet egyes
teriiletein beliil (1asd pl. [5]). Abban az esetben, amikor a lépcsésfiiggvény, a
Milloux és az Armellini-Tonelli-Sansone tételek az (1.1) egyenletre is kiter-
jeszthetdek (|21], [23], [27]), illetve altalanosithatoak tn. véletlen egyiitthatos
egyenletekre ([16], [29], [31]) és impulziv rendszerekre is ([24]).

Ha a lépcsésfiiggvény, akkor, mint azt a kés6bbiekben be is mutatjuk,
az (1.1) egyenlet atirhaté differenciaegyenlet-rendszerré, emiatt a lépcsss-
fiiggvény-egyiitthatos egyenletekre vonatkozo bizonyitasok visszavezethetGek
differenciaegyenletekre vonatkozo tételek bizonyitésara. Ezért is, de mar 6n-
magaban is érdekes megvizsgalni a problémakort differenciaegyenletek ese-
tében is. A dolgozat méasodik fejezetében elegendd feltételt adunk kis meg-
oldas létezésére olyan masodrendii linearis differencialegyenletek esetében,
amelyekben a rugalmassagi és a sarlodési egyiitthato is lépesésfiiggvény. A
tétel bizonyitasahoz sziikségilink van kétdimenzios differenciaegyenlet-rend-

szerek kis megoldéasainak létezését garantalo feltételekre. A fejezetben ezt a
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feladatot vizsgélva tobbet is bizonyitunk: sziikséges és elegendd feltételeket
adunk meg tetszdleges véges dimenzios differenciaegyenlet-rendszerek kis meg-
oldésanak létezésére. A fejezet utolsd szakaszaban az itt alkalmazott bi-
zonyitasi technika nemlinearis differenciaegyenlet-rendszerekre térténd alta-
lanosithatosagat is megvizsgaljuk.

A harmadik fejezetben az Armellini-Tonelli-Sansone tételt terjesztjiik ki
az alkalmazasokban is fontos szerephez juto un. féllinearis differencialegyen-
letekre abban az esetben, amikor az egyiitthato lépesésfiiggvény. A féllinearis
egyenletre vonatkozo tétel bizonyitasanak eszkozeként kétdimenzios differen-
ciaegyenlet-rendszerek trividlis megoldasanak aszimptotikus stabilitasara vo-
natkozdan bizonyitunk egy 1j tételt, majd az ott alkalmazott geometriai mod-
szert altalanositjuk a nemlineéris esetre.

Az értekezés a szerz6 kovetkezd publikacioin alapul:

e L. Hatvani, L. Székely, On the existence of small solutions of linear
difference equations with varying coefficients, J. Difference Equ. Appl.,
12 (2006), No. 8, 837-845.

e L. Hatvani, L. Székely, Asymptotic stability of two dimensional systems
of linear difference equations and of second order half-linear differential
equations with step function coefficients, E. J. Qualitative Theory of

Diff. Equ., 38 (2011), 1-17.



2. fejezet

Lépcsosfugegvény-egyutthatos
masodrendi linearis
differencialegyenletek kis

megoldasairol

Tekintsiik a valtozé rugalmassagi egyiitthatos oszcillator mozgasat leird

(1.1) egyenletet abban az esetben, amikor a lépcsésfiiggvény:
2" +alr =0 (thy <t <tp, n=12,...),
ahol {t,,}>°, és {a,}>°, valos sorozatok az alabbi tulajdonsagokkal:
O=th<ti<...<tp1<t,<..,; Jlrgotn:m,
a, >0 (n=1,2...).

Egy z : [0,00) — R fiiggvény megoldasa a (2.1) egyenletnek, ha

(2.1)

(2.2)

a) = kétszer differencialhato és megoldasa a (2.1) egyenletnek a [t,,_1,1,)

intervallumokon (n =1,2,...),



b) x folytonosan differencialhato6 a [0, 00) intervallumon.

A folytonos egyiitthatos (1.1) egyenlet megoldasainak létezését és unicitésat
garantalo tételekbol kovetkezik a (2.1) egyenlet megoldasainak egzisztenciaja
és unicitasa is, mivel a (2.1) egyenlet adott (2(0), 2(0)) kezdeti értékekhez
tartoz6 megoldasa az egyes [t,_1,t,) intervallumokhoz tartozé konstans e-
gylitthatos masodrendi egyenletek megoldasaval és az adott kezdeti értékbdl
kiindulva azok Osszeillesztésével adhatoak meg.

Abban az esetben, amikor lim,, . a, = oo, Hatvani [27] a (2.1) egyenlet

kis megoldasénak létezésére a kovetkezd elegendd feltételt adta meg.

2.1. Tétel (Hatvani [27]). Tegyiik fel, hogy lim,,_, a,, = 0o. Ekkor, ha

Zmax{ I _ 1;0} < 00, (2.3)

akkor a (2.1) egyenletnek létezik legalabb egy kis megolddsa.

A (2.3) feltétel azt jelenti, hogy az {a,}2, sorozat ,majdnem” névekvs a
kévetkez6 értelemben. Ha a, > a,y1 > ... > ag > agq1 valamely p < ¢

esetén, akkor érvényes a

q
anp — Q ap, — Q,
R

a a
n=p n=p n+1 p+1

q

nep Max {ay/an11 — 1;0} Osszeg

becslés. Ekkor azt mondhatjuk, hogy a
az {an )5, sorozat ,relativ csokkenésének” mértékét adja meg az {a,}it,
,csokkend fazis” alatt. Mivel a (2.3) feltételben szerepls Osszeg véges, igy az
{a,}52, sorozat csokkenésének mértéke is véges, azaz a sorozat ,majdnem”

novekva.

Legyen a {c,}5°, sorozat az alabbi tulajdonsagu:
¢, >0 (n=1,2,...). (2.4)
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Tekintsiik most azt az esetet, amikor a —a(t)z rugalmasségi erén kiviil —c(t)z’

surlédasi erd is hat a rendszerre:
2"+ +alr =0  (t, <t<t, n=12...). (2.5)

Természetes gondolat, hogy a surlodas figyelembe vételével a (2.3) feltétel,
s6t a lim,,_,. a,, = oo feltétel is tovabb gyengithets. Ezt mutatja fejezetiink

{6 tétele.

2.2. Tétel. Tegyiik fel, hogy teljesiilnek a (2.2) és a (2.4) feltételek, és ve-
zesstik be a
Cn

= a2 = )t~ tat) = 2], (2.6)

jelolést. Tovdbba, tegyiik fel, hogy
(i) an >c,/2 (n=1,2,...),

(i)

i (—% T P ) — 0, (2.7)

a
k=1 k+1

(ili) létezik K szdm gy, hogy tetszdleges n (n=1,2,...) esetén

Z<_ﬁ+lnmax{ i ;1}) < K. (2.8)
2 Ak41

k=1

Ekkor a (2.5) egyenletnek létezik legalabb egy kis megolddsa.

2.3. Megjegyzés. A 2.2. tétel a disszertdcio alapjdat képezd [32] dolgozat
3.2. tételének egy tovabbfejlesztése.

Mivel, mint azt latni fogjuk, a (2.5) egyenlet atirhato egy vele ekvivalens két-
dimenziés differenciaegyenlet-rendszerré, ezért tételiink bizonyitasahoz sziik-
ségiink lesz olyan elegendé feltételre, amely ezen rendszerek kis megoldé-

sainak létezését biztositja. A kovetkezd szakaszban ezt a problémat egy még
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altalanosabb kontextusban targyaljuk, mégpedig sziikséges és elegendd felté-
teleket adunk meg tetszéleges véges dimenzios differenciaegyenlet-rendszerek

kis megoldasanak létezésére.

2.1. Differenciaegyenletek kis megoldasairol

2.1.1. El6zmények

Tekintsik az
Xpi1 = MpX,, n=0,1,2,... (2.9)

nem-autoném differenciaegyenlet-rendszert, ahol x,, € R™ oszlopvektor, m €
N és M,, € R™™ m x m-es valos matrix. A szakasz keretein belill Hart-
man (1.4) linearis differencialegyenlet-rendszerre vonatkozo 1.3. tételének az
el6bbi rendszerre valo kiterjeszthet6ségét vizsgaljuk.

1

Jelolje (x,y), illetve ||x|| az x = (z!,...,2™)7T, y = (v},...,y™)T € R™

vektorok skalarszorzatét, illetve az x vektor normajat, vagyis
m
i 5
oy = Doatt = )
i=1

Legyen tovabbéa [[M|| az M matrix spektralnorméaja, azaz az M™M szim-
metrikus pozitiv szemidefinit matrix legnagyobb sajatértékének a négyzet-
gyoke. Azt mondjuk, hogy a (2.9) egyenlet trivialis megoldésa aszimptotiku-
san stabil, ha az egyenlet minden {x,}3%, megoldasa az origohoz tart (lasd

pl. [19]). Kozismert (lasd pl. [3, p. 232]), hogy az
M =[] IM,[[ =0 (2.10)
n=0

feltételbdl kovetkezik az origd aszimptotikus stabilitdsa. Hartman differen-

c stz

fogalma differenciaegyenletekre is.



2.4. Definicié. A (2.9) egyenlet egy nemtrividlis {x,}>2, megolddsdt kis
megoldasnak nevezzik, ha arra

lim x, =0 (2.11)

n—o0

teljestil.

Fontos megjegyezniink, hogy differenciaegyenletek esetében az origd aszimp-
totikus stabilitasa ekvivalens azzal, hogy minden nemtrivialis megoldas kis
megoldés. A kérdés az, hogy milyen feltételek biztositjak (2.9) egy kis megol-

dasanak a létezését. Peil és Patterson [44| bizonyitotta a kovetkezdt.

2.5. Tétel (Peil-Peterson [44]). Tegyik fel, hogy lim,_, ||x,| < oo tel-
jesil a (2.9) egyenlet minden {x,}32, megolddsdra. Ekkor a (2.9) egyenletnek

akkor és csakis akkor létezik legaldabb eqy kis megolddsa, ha

[e.o]

] 1detM,,| = 0. (2.12)

n=0
Bizonyitasuk o6tlete hasonlé ahhoz, amit Hartman [25] alkalmazott az (1.4)
differencidlegyenletre vonatkozo eredeti bizonyitasanél. Peil és Petterson ele-
gendd feltételt is adott arra, hogy lim, . [|X,|| < oo minden megoldasra
teljesiiljon. Legyen A és B két m x m-es valos matrix, ekkor A < B akkor és
csakis akkor, ha A — B negativ szemidefinit. Jelolje tovabba E az m x m-es

egységmatrixot.
2.6. Tétel (Peil-Peterson [44]). Ha

MM, <E (2.13)
minden n € Ny esetén, akkor a (2.9) egyenlet minden {x,}°, megolddsdra

lim,, o ||Xn|] < 00 teljestil.
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A spektralnorma definicioja alapjan konnyen lathato, hogy a (2.13) felté-
tel ekvivalens azzal, hogy |M,| < 1 minden n-re (n = 0,1,...). Elbert
[22| kétdimenzios rendszerek kis megoldéasainak létezését vizsgalva egy ennél
gyengébb elegendd feltételt adott arra, hogy lim, . ||x,|| < oo teljesiiljon

minden megoldasra.

2.7. Tétel (Elbert [22]). Legyen m = 2 és tegyiik fel, hogy

Mg = HmaX{HMnH; 1} < o0 (2.14)

n=0
teljesiil. Ekkor a (2.9) egyenletnek akkor és csakis akkor létezik legaldbb egy
kis megolddsa, ha

I 1detM,,| = 0. (2.15)
n=0

Tekintsiik a kévetkezs példat:

Moy, = 20 . My = | 7 . k=0,1,2,....
0 2 0 5o
Ennek alapjan konnyen lathato, hogy a (2.10) feltételbdl, mely garantalja
hogy a (2.9) egyenlet minden megoldasa kis megoldas, nem kovetkezik a (2.14)
feltétel, mely legalabb egy kis megoldas létezését biztositja. Igy felmeriil a
kérdés, hogy az Elbert tételében szereplé Mp hatéarérték helyettesitheté-e
a (2.10) osszefiiggés altal definialt M-mel. Mint azt a kévetkezo tételiinkben
megmutatjuk, a valasz igen, s6t, Elbert bizonyitasi technikajat altalanositva
a tételét tetszGleges véges dimenzidra is kiterjesztjiik. Ezzel egyuttal Peil
és Petterson tételére egy 1j bizonyitast, tovabba a megoldasok normabeli

hatarértékének létezésére az eddigieknél gyengébb elegendd feltételt adunk.
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2.1.2. Eredmények

2.8. Tétel ([32]). Tegyiik fel, hogy az

M =[] IM,|| < o0 (2.16)

n=0

hatdrérték létezik és véges. Ekkor,

(a) a (2.9) egyenlet tetszdleges {x,}22, megolddsa esetén az {||xn|}o,

sorozatnak létezik véges hatdrértéke;
(b) a [[,2,|det M,,| végtelen szorzat konvergens; tovdbbd,

(¢) a (2.9) egyenletnek akkor és csakis akkor létezik kis megolddsa, ha

D := ] Idet M,| = 0. (2.17)

n=0

Bizonyitas. (a) Indirekt modon bizonyitunk. Tegyiik fel, hogy
0 </ :=liminf||x,| < limsup ||x,| = L < oo,
n—00 Nn—00

és legyenek [,, L, szamok adottak gy, hogy | < I, < L, < L. Az M =0
esetben x = 0 aszimptotikusan stabil, ez viszont [ < L miatt lehetetlen,
tehat 0 < M < oco. Ebbdl kovetkezik, hogy talalhato olyan v, hogy p,q € N,
p > v esetén HZIZA IM,,|| < L./l.. Ekkor [ és I, definicitja alapjan létezik

ko > v gy, hogy ||xx, || < [« teljesiiljon. Ekkor

( II M) x| < ( II ||Mn|r) ol < 20 =L, < 1

n=ko n=ko

[Xko-+qll <

c st

(b) Vezessiik be a kovetkezd jeloléseket:

F,:=M,-...-MM,, A,:=FF, = (a(@)>m (n=0,1,2,...).

Y =1

12



(n)

Megmutatjuk, hogy az ai? sorozat konvergal ha n — oco. Vegyiik észre, hogy

eall* = Mot - Moxo||* = [[Fraxo]” =

- <Fn—1X07 Fn—1X0> - <An—1X07 XO> (TL = 17 27 37 cee )

mely az (a) pont értelmében tetszdleges xg € R™ kezdeti érték esetén kon-
vergens. Rogzitett i (1 < i < m) mellett az x¢ kezdeti vektor komponen-
seit valasszuk meg gy, hogy xo, = &;; (j = 1,2,...,m), ahol 05 = 1 és

dij = 0 j # i esetén. Ekkor taldlhato olyan a; € R, hogy ha n — oo,

(n—1) (n—1)

akkor [|x,||*> = a; — aj;;. Hasonl6 médon kapjuk, hogy a;; — a;
(n — o0) valamely a;;-re tetszdleges i,5 € {1,...,m}, i # j esetén. Legyen
A = (a;)7=; € R™™ mely a fentiek miatt pozitiv szemidefinit. Ezt fel-
hasznélva kapjuk, hogy
[T Idet M| = |det [T M| = |det F,,| = (det A,)> — (det A)2  (n — co);
i=0 i=0
azaz a [ [, |det M| végtelen szorzat konvergens és

D = ] Idet M,,| = (det A)?. (2.18)

n=0
(c) Elegenddség. Tegyiik fel, hogy fennall (2.17). Ekkor, (2.18) alapjan
létezik legalabb egy olyan x, € R™ vektor, hogy Axy = 0 teljesiil. Arra az

{xn}22, megoldasra, melynek kezdeti vektora xq, igaz a kovetkezs:
lim [|%,[|* = lim (A, %o, %o) = (AXg,%o) = 0,
n—oo n—oo

igy tehat {x,}5°, egy kis megoldas.
Sziikségesség. Tegylik fel, hogy létezik kis megoldas, de D > 0. Ekkor
(2.18) alapjan det A > 0, vagyis A pozitiv definit. Emiatt tetszéleges xo # 0

kezdeti vektor esetén
lim ||x,|* = (Axq,x0) > 0,
n—o0
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ami ellentmond annak, hogy van legalabb egy kis megoldas. ]

Erdemes megjegyezni, hogy a (2.16) feltétel nem sziikséges a megoldasok
normabeli hatarértékének létezéséhez. Példaul, ha M, és M; két egymasra
merdleges projekcio, akkor a 2.8 tétel (a) pontja az My, Mg, ... matrixoktol
fliggetlentil teljesiil. Mint ahogy azt az alabbi egyszerd példa is mutatja, a
megoldasok normabeli hatarértékének létezése nem sziikséges kis megoldas

létezéséhez. Legyen

2 0 5 0
Mgl = 5 M2l+1 = > l:0,1,2,....
01 0 3
Nyilvanval6an
i 2, ha k péros,
[T, =
n=0 1, ha k paratlan,

az (1,0)T pontbol indulé megoldasnak nincs hatarértéke, ha n — oo, mig a
(0,1)" kezdeti vektorbol inditott megoldés kis megoldas.

Egy geometriai modszer segitségével megmutatjuk, hogy a D = 0 felté-
tel akkor is sziikséges és elegend§ kis megoldas létezéséhez, ha mindossze a

[ TT5—, M|l (0 < p < q) sorozat korlatossagét koveteljiik meg.

2.9. Tétel ([32]). Tegyiik fel, hogy taldlhato olyan K € R, hogy tetszdleges
p,g €N, (0 <p<q) esetén

<K (2.19)

q
[[M.
n=p
teljesiil. Ekkor, a (2.9) egyenletnek akkor és csakis akkor létezik kis megoldd-
sa, ha fenndll a (2.17) feltétel.

Bizonyitas. Szikségesség. Jelolje B, illetve S az R™-beli, origd kdzéppontu
egységgombot, illetve egységgombfeliiletet. Legyen s; az F.S ellipszoid origo-
hoz legkozelebbi pontjainak valamelyike. A sziikségesség belatasahoz tegyiik
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fel, hogy {X,}>2, kis megoldas Xy, € S kezdeti vektorral. Ekkor |s,| <
IX,|l = 0 ha n — oo, vagyis F;S legrovidebb tengelyének a hossza 0-hoz
konvergal. Mivel (F;B) térfogata ardnyos a tengelyei hosszanak szorzataval,
és ezen hosszak sorozata feliilrsl korlatozhatéo K-val , ezért maga a térfogat

is 0-hoz tart. Tudjuk hogy,

vol(FyB) = (ﬁ |det Mn\> vol(B) (n=0,1,2,...);

n=0
igy D = 0 is teljesiil, amit bizonyitanunk kellett.

Elegenddség. Feltehetjiik, hogy det M,, # 0 minden n € N esetén, mivel
ennek nem teljesiilése esetén biztosan létezik kis megoldas. Vegyiik észre,
hogy ekkor |[s,|| — 0 is teljesiil, ha n — oo. Tekintsiik az r, := F,'s, €
S (n =0,1,2,...) sorozatot. Mivel S kompakt, igy kivalaszthaté {r,, }7°,
részsorozat oly moédon, hogy lim; ,r, =: r € S. Megmutatjuk, hogy az
xo = r vektorbdl kiindulé {x,}2%, megoldas kis megoldéas. Az el6bbiekbdl

kovetkezik, hogy
[Er]l < [Fn, (r = 1) || + [[Frrn || =0 (1 = 00),

ezért tetszGleges € > 0 esetén talalhato [ pozitiv egész, hogy [Fx]| <e/K

teljesiiljon. Legyen n > n;, ekkor

B = || (MuM,, g - M, ) x| <
g

< MM My [[Fr ]| < K

:g’

amely ekvivalens azzal, hogy lim,, . ||F,r| = 0. u

Megjegyezziik, hogy a tételben szerepls (2.19) feltétel nem helyettesithetd a

k

[

n=0

<K (k=0,1,2,...)
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feltétellel, amint azt az alabbi példa is mutatja (lasd [27]). Definialjuk a B
és C matrixokat
0 0

2

B:: s C::

O Wi

2
0

W=

és legyen M, := vagy B vagy C a kévetkezs, az x\) = (1,0)T és x\2) = (0,1)T

kezdeti vektorokbol kiindulo {XSS) % 4 és {Xg) % , fundamentéalis megoldés-

rendszerre épiils szabély alapjan. Legyen
MOZMllzB, 1\/_[2:1\/_[3:...:1\/_[”1::(3,

ahol n; a legkisebb olyan egész amelyre mar HX%QI)H > 4 teljesiil. Ezutén

legyen
M, 1=...=M,, =B, M,,11=...=M,, =C,

ahol ny és ng a legkisebb egészek, amelyekre ||X$LIQ)H > 4, illetve HX%)” >
4 fennallnak. Tegyiik fel, hogy ezen szabdly alapjan ni, no, ..., nox mar

meghatarozasra keriilt. Ekkor,

Myyi1 = =My =B, My, 11 =...=M,,,, =C,

N2k41 n2k42

ahol noy 11, Nokyo a legkisebb egészek, melyekre ||x1(@12)k || > 4illetve ||xq(122),€ Ll >
4 teljestilnek. Nyilvanvalo, hogy a determinansok szorzata 0-hoz tart és a
{ll H]:L:o M, || }72, sorozat is korlatos, ennek ellenére a (2.9) egyenletnek nem
létezik kis megoldasa.

A maétrixnorma tulajdonsagai miatt a
q
ITIM. < K (0<p<q) (2.20)
n=p

feltételbsl kovetkezik a (2.19) feltétel. Az el6z6 példa alapjan felmeril a
kérdés, hogy a (2.19) feltétel helyettesithets-e az aldbbival:

k
[[IMJ <K (k=0.1,2,...).
n=0
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Tudomésunk szerint ez jelenleg még megoldatlan probléma.

2.2. A 2.2. tétel bizonyitasa

Az el6z6 szakaszbeli el6készités utan mar minden eszkoz adott a 2.2. tétel
bizonyitasahoz.
Bizonyitas. Bevezetve az y = 2'/a, (n = 1,2,...) valtozot, a (2.5) egyenlet

atirhato az
' = any, Yy = —a,x —cpy (thoy <t <t,, n=1,2,...) (2.21)

elsérendi rendszerré. Mivel a (2.5) egyenlet megoldasai folytonosan differen-
cialhatoak a [0,00) intervallumon, ezért ugyanott az a'(t) = a,y(t) fige-
vénynek is folytonosnak kell lennie. Igy, ha t +— (x(t),y(t)) a (2.21) egyen-
let egy megoldasa a [0,00) intervallumon, akkor a t +— y(t) fliggvénynek
jobbrol folytonosnak kell lennie minden ¢ > 0 esetén és ki kell elégitenie az
any(t, —0) = an41y(t,) egyenletet minden n-re (n = 1,2,...), ahol y(t, —0)
az y bal oldali hatarértékét jeloli a ¢, id6pillanatban. Ez azt jelenti, hogy
az z-re vonatkozo (2.5) egyenlet ekvivalens a kovetkezd impulziv elsérendi

rendszerrel:

a = any, y/ = —apT — CpYy (tnfl <t< tn)
o (2.22)

y(tn) = y(t, —0), n=12....
An+1

Az (r, @) polarkoordinatakat a szokdsos © = 1 cos ¢, y = rsin ¢ egyenletekkel

bevezetve a (2.21) rendszert

= —c,rsin® o,
. (2.23)
go’:—an—?stp, (th1 <t<t,, n=12..)

alakra hozhatjuk. Vegyiik észre, hogy az (i) feltétel alapjan ¢'(t) < 0 tel-
jesiil minden ¢ € [t,_1,t,) esetén (n = 1,2,...). A sin® ¢ = (1 — cos2y)/2
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azonossag és a Newton-Leibniz-formula segitségével az alabbi becsléshez ju-

tunk:

_ tn tn qin2 /
In M = _Cn/ sin? p(t) dt = _Cn/ MM dt
T(tn—l) tn—1 tn—1 90 (t)

tn 2 t /t
o [ e,
th—1

—a, — sin2p

@(tnfl) Sin2 U
= _Cn/ —du
©

"
(ta—0) @n + FFsIn2u

cn e(tn-1)
< - / sin? u du (2.24)
#(tn—0)

Cn {1 sin 2u} #ltn-1)
= — o —Uu —
Qp, + D) 2 4 o(tn—0)

‘ [«o(tn S 0) = b))

- 2a, + ¢,

- %(sin 2¢(t, — 0) — sin 290(15711))} :

A (2.23) rendszer méasodik egyenletébdl ¢'-re a

Cn . Cn
go':—an—gstgog—an—i—E, (thoy <t <tn,, n=12,...)

becslés adodik. Ebbdl integraléssal a

oltas) —elta —0) = [ TPz (0= D) =t (225)

egyenlStlenséget kapjuk. Ennek felhasznalasaval a (2.24) becslést tovabb foly-

tathatjuk:
min=0 e o g g y—o = -2 (2.96)
r(te1) = 2(2an 4y Al 2 '

Legyen ij}l a (2.23) rendszer alapmaétrixa, azaz



A (2.22) rendszer alapjan az (x(t,), y(t,))" vektor definicioja a kovetkezd:

z(t, 1 0 x(t, — x(t,—
t) \ _ =0\ [ et )
y(tn) 0 aZil y(tn _'0) y(tnfl)

ahol
1 0
hdn_l — “ 291
ant1

Nyilvanvaloan a (2.22) rendszer stabilitési tulajdonsagai ekvivalensek az
=M, (n=1,2,...) (2.27)

rendszer stabilitasi tulajdonsagaival. A (2.26) becslést felhasznalva becslést
tudunk adni az Mf}ll matrixok normaira:

1
M || = sup

— < —, 2.28
0<r(tn_1) T(tn—l) ( )

ahol a szuprémumot minden olyan megoldas esetében vessziik, amelyre tel-

jesiil, hogy a t,_; id6pillanatban r értéke pozitiv. Igy kapjuk, hogy

M, < ||M£3>1||max{ an ;1}
Qn1

< exp [—%] maX{ n ;1} (2.29)

an+1
_n

+1nmax{ @ ;1H.
2 An+1

Ennek alapjan kénnyen lathato, hogy tetszéleges n (n = 1,2,...) esetén a

:exp{

(iii) feltétel miatt

n n " an
[Tl < [ e -2 a1}

Qa
k=1 n+1

= exp Z(—%—Hnmax{ @k ;1}) < K.
1 2 k41
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Ebbdl kovetkezik, hogy tetszSleges p, ¢ (1 < p < q) esetén [[;_, My <
K is teljesiil. A 2.9. tétel allitasa alapjan elegendé megmutatnunk, hogy
I[2, |det M,,| = 0 is fennall a (2.27) rendszerre. Ehhez sziikségiink lesz a

|det M| < [|M][™

egyenlStlenségre, mely tetszéleges m x m-es (m € N) valés matrix esetén
fennall. A (2.28) becslés és az el6z6 egyenldtlenség alapjan érvényes az alabbi:

n

H \det Mk,1| = ﬁ &

a
k=1 k=1 kL

2
ag r(ty — 0)
sup v e—
a’k‘+1 0<T(tk,1) r(tk_]-)

det M,gljl

IA

- T

Qg
< exp [—fyk +In }
iy Qp+1
= exp Z(—’yk—i—ln ) .
—1 Ag41

A (ii) feltétel alapjan kapjuk, hogy [[ 2, |det M,,| = 0, igy a 2.9. tétel alkal-

mazéasaval az allitast bebizonyitottuk. [

2.10. Megjegyzés. A 2.2. tételben szerepld (ii) és (1ii) feltételek fiiggetlenek

eqymdstol.

Ac,=0,t, =nésa, =a >0 (n=12,...) valasztassal adodik, hogy
(iii)-bol nem koévetkezik (ii), hisz ekkor mindkét kifejezésben a tagok értéke
0. A masik irany megmutatasahoz legyen ¢, =0, t, =n (n =1,2,...), az a,

sorozat elemeit pedig definialjuk a kdvetkezsképp:

ay ‘= 2, agg = 2]{3, Agk+1 ‘= 2(2]{3 + 1), k= 1, 2, c.
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Mivel lim,, o a,, = 00, igy (ii) teljesiil, azonban az alabbiak miatt (iii) nem

all fenn:

= a | 2(2k + 1)
kz:;lnmax{ ,1}— 2:; In 20k +1)

Ak+1

4 4 -1
ZZln—zln—Ln2 J—>oo (n — o0).

2.11. Megjegyzés. Azx—1 > Inx egyenldtienség felhaszndldsdval kénnyen
ldthatd, hogy a ¢, =0 (n =1,2,...) esetben Hatvani 2.1. tételébdl kovetkezik
a 2.2. tétel.

2.3. Nemlinearis differenciaegyenletek kis meg-
oldasairol

A szakaszban a 2.9. tétel és az annak bizonyitasara alkalmazott geometriai
modszer nemlinearis differenciaegyenlet-rendszerekre térténd altalanositha-
tosadgat vizsgaljuk.

Tekintsiik az alabbi nemlinearis differenciaegyenlet-rendszert

X1 = f(n,x,)  n=01,2..., (2.31)

ahol m € N, x,, € R™ oszlopvektor, és az f(n,-) fliggvények olyanok, hogy

minden n € Ny esetén rendelkeznek a kovetkezd tulajdonsagokkal:
f(n,-): D, CR™ - R™, ranf(n,-) C Dy,
f(n,0) =0, f(n,-) € CY(D,),

ahol D,, egy konvex tartomany (n = 0,1,...). Legyen ¢ > p (p,q € Ny). Az

f(p,-),...,f(q,-) fiiggvények kompozicidjara vezessiik be az

F(q,p;-) :=1f(q,")o...of(p,-)
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jelolést, tovabba legyen Fi(q,p;-) : D, = R (j = 1,...,m) az F(q,p;")

fliggvény j-edik komponensfiiggvénye, azaz

F'(q,p;x)
F(q,p;x) = :
F™(q,p;x)

Mivel F(n,0;-) a (2.31) egyenlet folyama, igy az egyenlet minden {x,}5°,

megoldasara teljesiil az F(n,0;xy) = x, egyenldség. Egy g : R™ — R fiigg-
T
dg(x) w@)

Oxr1 7" Oxm

vény esetén grad g(x) jeldlje g gradiensét, azaz grad g(z) = (
Legyen Hy C Dy egy korlatos, 6sszefliggd nyitott halmaz lezartja. Ekkor Hy-
nak a (2.31) egyenlet folyama melletti n-edik képe H, = F(n,0; Hy), H,
fazistérfogata pedig

w(H,) :/ |det F'(n, 0;x)| dx, (2.32)
Hyp

ahol 1 a Lebesque-mérték. Egy H C R™ halmaz esetén annak lezartjara,
hatarara, illetve belsejére pedig vezessiik be a H, 0H és int H = H \ O0H
jeloléseket. Megjegyezziik, hogy a (2.9) lineéris differenciaegyenlet esetén egy

korlatos, zart és Osszefiiggé Hy halmaz fazistérfogata

p(H,) = (H |det Mk|) (1(Hop). (2.33)

A (2.31) egyenletre vonatkozoan Karsai, Graef és Li [37] a fent véazolt
feltételeknél valamivel altalanosabbak mellett, Ljapunov-fiiggvény segitségé-
vel mar megadott elegendd feltételt kis megoldas 1étezésére. Ennek a feltétel-
nek az alkalmazhatosag szempontjabol kritikus része egy, a Ljapunov-fligg-
vényre vonatkozo folytonossagi feltétel. A linearis esetre alkalmazott topolo-
gial modszert hasznalva a legéltalanosabb esetben eddig csak olyan részered-

ményt sikeriilt elérniink, amely Karsaiék modszerével is megkaphato. Mivel
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ez a tétel, a 2.9. tételhez hasonloan csak a (2.31) egyenlet jobb oldalan talél-
hato fiiggvényeket hasznélja fel, tovabbé a bizonyitasa a 2.9. tételével analog,

ezért ezt az alabbiakban bemutatjuk.

2.12. Tétel. Tegyiik fel, hogy taldlhato olyan origo korili Hy zdrt gomb és
K >0, hogy
|grad F7(q,p;x)|| < K (2.34)

tetszdleges p,q € Ng (0 < p <gq), 7 =1,...,m ésx € Hy esetén teljesiil,

tovdbbd

lim / |det F'(n,0;x)| dx = 0. (2.35)
Ho

n—oo

Ekkor a (2.31) egyenletnek létezik legaldbb egy kis megolddsa.
2.13. Megjegyzés. A

lim det F'(n,0;x) =0 (x € Hy) (2.35)

n—oo

feltétel teljesiilése esetén (2.35) is teljesiil.

Bizonyitas. Jelolje s,, a 0H, halmaz origbhoz legkozelebb es§ pontjainak
egyikét. Konnyen lathato, hogy a (2.35) feltétel miatt lim,, . s, = 0. Legyen
r, valamely pont azon x € 0H, pontok koziil, amelyekre F(n,0;x) = s, tel-
jestl. Mivel 0H, kompakt, ezért az {r,},°, sorozatnak létezik {r,, }7°, kon-
vergens részsorozata. Legyen lim;_, r,,, =: r € Hj. Meg fogjuk mutatni, hogy
az r pontbol inditott megoldas kis megoldas, vagyis lim,, ., F7(n,0;1) = 0
(7 = 1,...,m). Valasszunk egy tetszéleges j (1 < j < m) indexet. Mivel
F(n;,0;r,,) — 0 és |r —r,,|| — 0, ha [ — oo, ezért minden ¢ > 0 esetén
megadhat6 olyan | € N kiiszobindex, hogy ha [ > [, akkor az ||F(n;, 0;1,,,)|| <
e/(2K) és az ||[r — ry,| < ¢/(2K) egyenlétlenségek egyszerre teljesiilnek.
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Legyen [ > I. Ekkor, mivel az origo fixpont, n > n; esetén érvényes az alabbi

becslés
i, 00| < [F(0,0) = FI(n,0:m)| + [P0, 0:3,,)
= |F/(n,0;r) — FV(n,0;r,,)|
+ ]Fj(n,nl +1; F(ng,0;rp,)) — Fj(n, n; + 1;0)].

A becslésben szereplé mindkét tagra a vektor-skalar fliggvényekre vonatkozo

Lagrange kozépérték-tételt alkalmazva kapjuk, hogy

|F7(n,0;r)| < [(grad F?(n,0;¢;), (r — )]

+|(grad F/ (n,n; + 1;m;), F(ny, 0;1p,)) |

< lgrad £ (n, 0; &)l (x — rp,) ||
+|lgrad F (n,n; 4+ 1;7,) ||| F' (e, 05 1y, |
g g
K 1Kk S =
< Ao Thog =9

ahol &; = \jr+ (1 — \j)ry,, m; = v;F (0, 0;1y,,) és Ay, v € [0, 1]. Ezzel, mivel

€ és J tetszbleges, a tételt belattuk. [

2.14. Megjegyzés. A bizonyitds alapjin konnyen ldthato, hogy a (2.34)

feltételbdl kovetkezik a (2.31) nemlinedris egyenlet megolddsainak korldtossdga.

2.15. Megjegyzés. A (2.9) linedris egyenlet esetén F(q,p;x) =

( Z:p Mn> x, gy a 2.9. tétel elegenddsége kovetkezik a 2.12. tételbdl.
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3. fejezet

Lépcsosfugegvény-egyutthatos
masodrendi féllinearis
differencidlegyenletek

stabilitasarol

Ebben a fejezetben az
2|2+ q() |z e = 0, 1<neR,

un. féllinearis differencidlegyenlet trividlis megoldésanak x-re vonatkozd a-
szimptotikus stabilitasara adunk meg elegendé feltételt abban az esetben,
amikor n > 1 és a ¢ egyiitthatofiiggvény lépesés. A bizonyitasanal alkal-
mazott geometriai modszer szintén alkalmazhato kétdimenzidés nemautonom
linearis differenciaegyenlet-rendszerek esetén is. Az elsé szakaszban ennek a
modszernek a segitségével Elbert ilyen differenciaegyenletek trivialis megol-
dasanak aszimptotikus stabilitasarol szolo tételét élesitjiik és egy egyszertibb

bizonyitast is adunk ra. A mésodik szakaszban rovid bevezetét adunk a
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féllinearis differencidlegyenletek elméletének idevago részébdl, majd belatjuk
a fejezet {6 tételét, mellyel Bihari és Elbert ezen egyenletekre vonatkozo

Armellini-Tonelli-Sansone-tipusi tételeit altalanositjuk.

3.1. Differenciaegyenletek aszimptotikus stabi-
litasarol
3.1.1. El6zmények

Ebben a szakaszban az
X1 = MpX,, n=0,1,2,... (3.1)

kétvaltozos differenciaegyenlet-rendszert tekintjiik, azaz x, € R? és M,, €
R?*2. Ahogy azt méar korabban is emlitettiik, jol ismert [3, p. 232|, hogy
a [[02[IM,|| = 0 feltétel teljesiilése esetén a (3.1) minden megoldésa az
origbhoz tart, ha n — oo, vagyis az egyenlet triviadlis megoldasa aszimp-
totikusan stabil. Fontos kérdés, hogy ha ez a feltétel nem teljesiil, akkor is
lehetséges-e garantalni az aszimptotikus stabilitast. Elbert [22] dolgozataban
az alabbi feltevések mellett adott elegendd feltételt a trivialis megoldas a-

szimptotikus stabilitasara:
(1) TThzomax{[[My, 1} < oo,
(i) 0 < T MLl
(iii) [ 2, max{|det M,|,1} < oco.

Magat a tételt csak késGbb, bizonyos technikai elGkésziiletek utdn mondjuk
ki. Az allitdas bizonyitdsa az M, matrixok egy ,triikkds” dekompoziciojan

és az ebbdl szarmaztatott specidlis matrixok normainak a becslésén alapul.
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A szakasz célja megmutatni, hogy a tételben szerepls (i) — (iii) feltételek
tovabb gyengithetSek. Nevezetesen, belatjuk, hogy (i) — (iii) helyett elegendd
megkovetelni a limsup,, ., [Ti_o [[Mi]] < oo feltételt. Ezen ttlmenden, a
bizonyitasnal Elbert modszere helyett egy egyszertibb, geometriai technikat
alkalmazunk. Ez a modszer mar, mint azt kés6bb megmutatjuk, a nemlinearis

esetben is alkalmazhato.

3.1.2. Eredmények

A (3.1) egyenlethez egy stabilitasi szempontbol vele ekvivalens rend-
szert definialunk. Mivel a késGbbiekben eredményeinket alkalmazni akarjuk
a féllinearis egyenletre , ezért olyan sikbeli koordindtarendszert tekintiink
melyben az x-tengely a fiiggsleges, az y-tengely pedig a vizszintes tengely,
a szogeket pedig az y-tengelyhez képest mérjiik az ora jarasaval ellentétes
irdnyban.
nek és az origd koriili, ¢ szoggel torténd forgatasnak matrixaira vezessiik be

a kovetkezd jeloléseket:

1 0 cos —sing
R = ) E(p) = . (3.2)
0 -1 sing  cosp
Nyilvanvalo, hogy
E(p1)E(g2) = E(p1 +¢2),  E(p)R = RE(—yp). (3-3)

Sziikségiink lesz a kovetkezd tételre (lasd példaul [34, p. 188)):

3.1. Tétel (Polar faktorizacid). Minden R"™-beli M linedris transzformd-
cio felirhato M = SQ szorzatalakban, ahol S szemidefinit és Q ortogondlis.
S egyértelmien meghatdrozott, mig Q akkor és csakis akkor egyértelmi, ha

M nemelfajulo.

27



A tételben szerepls S az MTM szimmetrikus matrix négyzetgycke. Ha M
nemelfajulo, akkor az MTM szorzat pozitiv definit, azaz diagonalizélhato:
M™ = PD?P!, ahol D? az MTM sajatértékeit tartalmazo diagonalis
matrix, P pedig az az ortogonalis métrix, melynek oszlopaiban a sajatérté-
keknek megfelels sajatvektorok helyezkednek el. Ekkor S = PDP ! alakban
irhato, tovabba

M = PDP'Q. (3.4)

Legyenek A és A\ az MTM maétrix sajatértékei. A nemelfajulé esetben tudjuk,
hogy mindkettd pozitiv, ezen kiviil tegytiik fel, hogy A > X. Megjegyezziik,
hogy ||M|| = VA, tovabba tegyiik fel, hogy a D matrixban a diagonalis
elemek csokkend sorrendben szerepelnek. Abban az esetben, amikor det M =
0, feltehetjiik, hogy S pozitiv szemidefinit és legyen S = [|M]||S. Mivel S

szimmetrikus, igy S = PDP~!, ahol P ortogonalis matrix és

D=
0 0

A fentieket a (3.1) egyenlet egyiitthato-méatrixaira alkalmazva kapjuk, hogy

M, = ||M,|P.D,P;'Q,, (3.5)
ahol
. 1 0 A2 ha det M, # 0;
D, := L dy = An 4 (3.6)
0 d, 0, ha det M,, = 0.

Tekintsitk most a (3.1) egyenlet folyaméat, legyen F,, := [[,_, M. Kihasz-

nélva, hogy ortogonalis matrixok szorzata is ortogonalis, a folyam

F, = [[P:DiP;'Q; = (H ||Mk||> P, (H ﬁk0k> (3.7)
k=0 k=0 k=0
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alakra hozhato, ahol az Oy (k = 0,...,n+1) ortogonalis matrixok a kovetke-
z0k:

Oy :=P;'Qp, O,=P.'QiP,1, k=1,...,n (3.8)

Elemi geometriabol ismert, hogy a sikon minden ortogonalis transzformacio
vagy forgatés, vagy egy forgatas és az x-tengelyre torténd tiikrozés szorzata.
Ekkor, ha Oy se nem forgatés, se nem az identitas, se nem R, akkor O, =
E(9)R alaka valamely 9 szoggel. Kihasznalva a (3.3) tulajdonsagokat, és
hogy R a diagonalis matrixokkal felcserélhets, kapjuk, hogy

<H ||Mk|!) R"E(a) (H D,E(w; ) (3.9)

valamely m € Ny (m < n + 1)-re és valamely wy, értékekre, ahol ay. és wy az
My, ..., M} matrixok segitségével szamithatoak ki.

Tekintsiik most az

cosw, —sinw,
Xni1 = [[M]] X,
dy, sinw, coswy, (3.10)

0<d, <1, n=012,...

differenciaegyenletet. A fenti gondolatmenet alapjan lathato, hogy a (3.1)
egyenlet (0,0)T egyensilyi helyzete akkor és csakis akkor stabil, illetve a-
szimptotikusan stabil, ha a (3.10) egyenlet (0,0)" egyenstlyi helyzete is sta-
bil, illetve aszimptotikusan stabil.

Az el6késziiletek utan most méar kimondhatjuk Elbert tételét.
3.2. Tétel (Elbert, [22]). Tegyiik fel, hogy teljesiinek az alabbiak:
(i) TTnzomax {|IM,][], 1} < oo,
(i) 0 <TIZo M|,
(iii) T 2, max{det|M,]|,1} < co.
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> min{l — dy, 1 — dyy1} sin® weey = 00, (3.11)
n=0
akkor a (3.10) differenciaegyenlet trividlis megolddsa aszimptotikusan stabil.

A szakasz {6 tételében belatjuk, hogy az el6z6 tételben szerepls (i) — (iii)

feltételek gyengithetsek.

3.3. Tétel ([33]). Tegyiik fel, hogy limsup,, . [1;_, M|l < co. Ha
Z min{1l — d,, 1 — dy41}sin® w1 = 00, (3.12)
n=0

akkor a (3.10) differenciaegyenlet trividlis megolddsa aszimptotikusan stabil.

x|

——

e
-

Ty
-
y

ANE

_—

0

3.1. abra. A (3.10) egyenlet dinamikaja

A bizonyitas sorén elég azt az esetet vizsgalnunk, amikor ||[Mg| = 1 (k =

0,1,...). Geometriai szempontbol nézve a (3.10) egyenlet dinamikaja nem



mas, mint egyméast kovet§ forgatésok és az y-tengellyel parhuzamos kon-
trakciok sorozata (lasd a 3.1. abrat). A kontrakci6 miatt a forgatds utan
az x tengelyen 1év6 pontok kivételével mindegyik pont origotol vald tavol-
saga csokken, mégpedig annal kisebb mértékben, minél kozelebb van az x-
tengelyhez. Mint azt latni fogjuk, a (3.12) feltétel azt garantélja, hogy ne
legyen olyan pont, ami valahonnét kezdve a forgatasok utéan mindig az z-
tengely kozelében marad, vagyis azt az esetet zarja ki, hogy a forgatasok
szoge valahonnét kezdve kozel legyenek a 7 egész szami tobbszoroseihez,
emellett pedig, hogy a kontrakciok tilsagosan kicsik se lehessenek.

Bizonyitas. Ahogy mar emlitettiik, elegends az |[My|| =1 (k = 0,1,...)
122, DLE(w,)||=0. Vezessiik

be az r és ¢ polarkoordinatakat a kovetkezGképp:

esetet tekinteniink, és elég belatnunk, hogy

T
X = , T =rsinp, Y = 1Cos .

Y

Ekkor a (3.10) rendszer fazistere azon (r,¢) pontparok halmaza, amelyekre

r >0, —0o < p < oo teljesiil. Definialjuk az aldbbiakat:

Xn = E(wn)Xn,  Kn =@y — (Ont+wn), Aryp:=rpp—r,, n=01,...

Konnyen lathato, hogy teljesiilnek a kovetkezdk:

\/ZE% + yw% = \/fi% + g?w Tpt1 = Tn, Ynt1 = dnlp

90n+1=900+2(wi+'iz‘), 7’n+1=To+ZAT¢,
i=0 =0

tovabba, hogy a kontrakcié miatt Ar; < 0. Ebb6l kévetkezik, hogy az {r,}52
sorozat monoton csokkend, igy 1étezik hatarértéke is.

Tegyiik fel, hogy nem igaz a tétel allitésa, azaz 7 := lim,, ,o 7, > 0. Az
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3.2. abra. A (3.10) egyenlet dinamikaja polarkoordinatakban

el6z6 Osszefiiggések alapjan az aldbbi becslés adodik —Ar;-re:

—AT‘z:?“i—Tm:\/$?+yi2—\/f’3?+1+%2+1
- @)
=R R =
v Vargvarag O

1 — d?)r? cos?®(y; i r
> ( z)Tz ;OS (‘P +W> > g(l _ di) cosz(cpi +wi)-
r;

A célunk megmutatni, hogy az 7 > 0 feltevés mellett az als6 becslések 6sszege
divergens, ami ellentmondéshoz vezet, hiszen Z?:o Ar; =19 —Tper < 1o —
7 < 00. A problémét az adja, hogy a (3.13) becslésben szerepld tagokban a
megoldasoktol fiigegd, ismeretlen ; szogek is megjelennek, melyeket ki kell

kiiszobolntink. Nyilvanvalo, hogy

| cos(; + w;)| = | cos p; cosw; — sin g; sin w;|

(3.14)
> | sin ;]| sinw;| — | cos | cos wy|.

Legyen 0 < v <e < 1és pu(e,v) :=+/1 =2 —evy. Mivel lim._,0 50 pt(e,7) =
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1, ezért v és € megvalaszthatoak tgy, hogy p(e,v) > 1/2 teljesiiljon. Harom

alesetet fogunk megkiilonboztetni.
a) vy|sinw;| > |cosp;| és |cosw;| > e. Ekkor |sing;| > |cosw;,

a (3.14) felhasznalasaval pedig adodik, hogy
| cos(p; +w;)| > |sinw;|| cosw;|(1 —7) > |sinw;|(1 —y)e.  (3.15)

Ebben az esetben a (3.13) becslés a kovetkezSképp folytathato:

?e%(1 — d;) sin® w;.  (3.16)

(1—9)%¢

DN | 3

—Ar; > g(l — d;) cos® (i + w;) >

> | cos ¢;| and | cosw;| < . Mivel
(3.17)

b) ~|sin w;|
|sin ] > 1/1 —2sin?w; > /1 — 12,

igy kapjuk, hogy

[cos(ps +wi)| = (VI =9 =&yl sinwi| = (e, )] sinwi| > S|sinwl.
(3.18)

Ekkor a (3.13) becslés folytatasaként
(3.19)

(1 — d;) sin® w;

ool 3

—Ar; > t(1 — d;) cos?(p; + w;) >

[\]

adodik.
c) v|sinw;| < | cos p;|. Ebben az esetben —Ar; helyett —Ar;_; becsiil-

hetd alulrol | sin w;| segitségével. Vegyiik észre, hogy a kontrakcié miatt

|COS(,0'| _ |y’L’ _ di*l’@i*l’
' 22 + 12 2+ d 2
\/ z|~. yz’ \/ i—1 7 lyz 1 (320)
Yol = | cos(pi—1 + wi—1)|

S
Vi1 T Y
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teljesiil. Ennek felhasznélasaval —Ar;_i-re a

—Ar;_ > g(l —d;_1) cos®(pi_1 + wi_1) > g(l —d;_1) cos® p;
Z g’}/2(1 — difl) sin2 Wi Z 372 min{l — difl, 1-— dl} sin2 Wi
(3.21)
becslést kapjuk.
Legyen
r 1
¢:= Cmin{(1—7)%% 139°} > 0,
2 4
ekkor minden 7 index esetén
cmin{l — di—l; 1-— dz} SiIl2 Ww; S _ATi—l — AT’Z' =Ti—1 — Ti+1
teljesiil. Ezen egyenlGtlenségek Osszegére
chin{l —di_1;1— di}sin2wi <rg—7r < o0,
i=1
adodik, amely ellentmond a (3.12) feltevésnek. |

3.2. Az Armellini-Tonelli-Sansone tétel kiter-
jesztése lépcsosfiiggvény-egyiitthatdés ma-
sodrendii féllinearis differencidlegyenletek-

re

3.2.1. A masodrendii féllinearis differenciadlegyenletekrdsl

dltaldban

A fejezet hatralévs részébenben a Bihari Imre [8] és Elbert Arpad [20]

altal bevezetett
2|2 "+ q(t) |z e = 0, neRT, (3.22)
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an. féllinearis differencialegyenletet tekintjiik, mely a linearis oszcillator moz-
gasat leiro (1.1) egyenlet altalanositasa, ahol ¢ : [0,00) — R. Az egyenlet
elnevezése arra utal, hogy megoldasainak tere homogén, de nem additiv.
Abban az esetben, amikor ¢ folytonos fiiggvény, Elbert [20] belatta, hogy
adott kezdeti értékhez a (3.22) egyenletnek létezik egyértelmii megoldasa,
mely a [0, 00) intervallumra kiterjeszthets. A (3.22) egyenlet az egyiitthatok
megfelel6 megvalasztasaval és bizonyos transzformaciok végrehajtasaval a

szintén jol ismert
(r()®(x")) + c(t)®(x) = 0, () := |z|P 'sgn z, p>1 (3.23)
alakra hozhato (n = p — 1), mely ebben a forméban az
(r(t)z") + c(t)x =0 (3.24)

Sturm-Liouville differencidlegyenlet altalanositasanak tekinthets. A félline-
aris egyenletek kvalitativ vizsgalatdnak egyik motivacidja az, hogy példaul
tobb fizikai jelenség olyan parcialis differencialegyenlettel irhato le, amelyben
az un. p-Laplace operator szerepel. Ezen egyenletek az egydimenzids eset-
ben bizonyos feltételek mellett a (3.22), vagy a vele ekvivalens (3.23) alakra

hozhatoéak. A p-Laplace operétor a kovetkezo:
Ayu(x) = div(]| Vu(x)||P*Vu(x)),

ahol x = (21,...,2,,) € R™, p > 1, V a gradiens-, tovabba div := " % a
divergenciaoperator. Az alkalmazasra példaként szolgal bizonyos nem-newtoni
folyadékok, az un. hatvanykozegek mechanikija. Egy folyadékot newtoninak
neveziink, ha a nyiréfesziiltség, vagyis a folyadék felszinével parhuzamos eré
nagysaga egyenesen aranyos a hatasara létrejovs sebességvaltozassal. Azokat
a folyadékokat, amelyekre ez nem teljesiil, nem-newtoniaknak nevezziik. New-

toni folyadék példaul a viz, nem-newtoniak példaul kiilonféle sooldatok, a

35



vér, stb. Egy folyadékot hatvanykozegnek neveziink, ha a nyiréfesziiltség és a
hatasara létrejovs sebességvaltozas kozotti kapcesolatot hatvanyfiiggvény irja
le. Ilyen kozegekre példa a tej, a festékek, bizonyos polimerek olvadékai, vagy
az asvanyi anyagokat tartalmazo zagy (lasd pl. [39]).

Az alkalmazasok fontossaga miatt (pl. [13], [14]), de magaban is érdekes
kérdés, hogy a masodrendi linearis egyenletekre kidolgozott elméletek meny-
nyiben vihetéek at a féllinearis esetre. A téma széleskord irodalommal ren-
delkezik, ehhez kapcsoloddan mar t6bb monografia is sziiletett (lasd példaul

[4], [17], [18] és a benniik szerepls hivatkozéasokat).

3.2.2. El6zmények és eredmények

Hasonloan az (1.1) egyenlethez, a (3.22) egyenlet esetében is egy nem-
trivialis xy megoldast kis megolddsnak neveziink, ha arra lim; ,., zo(t) = 0
teljestil. Milloux tételének (1.2. tétel) elegendGségét kis megoldés létezésére
Atkinson és Elbert [6] terjesztette ki a féllinearis egyenletre. Az Armellini-
Tonelli-Sansone tételt, mely azt garantdlja, hogy minden megoldas kis meg-
oldés lesz, Bihari [9] altalanositotta abban az esetben, amikor ¢ folytonosan
differencialhato és regularisan névekedd modon tart végtelenbe, ha t — oo (a
pontos definicioért lasd a Bevezetést). Ahogy azt mar korabban emlitettiik,
az irreguléaris novekedésre a legegyszertibb példa egy monoton novekedd 1ép-
csosfiiggvény. Tekintsiik a (3.22) egyenletet abban az esetben, amikor a ¢

egyiitthato az utébb emlitett tulajdonsagi:

27| gz e =0 (e <t <tp, k=0,1,...), (3.25)
ahol
O=to<ti <...<tp <tp1<..., lim ¢, = oo,
koo (3.26)
O<@p<a<.. <@g =<..., Jim g, = oo.
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Egy z : [0,00) — R fiiggvény megoldasa a (3.25) egyenletnek, ha

a) x kétszer differencialhato és megoldasa a (3.25) egyenletnek a [t,—1,t,,)

intervallumokon (n =1,2,...),
b) z folytonosan differencialhaté a [0, 00) intervallumon.

Elbertnek [20] a folytonos egyiitthatos (3.22) egyenlet megoldasainak l1étezé-
sét és unicitasat garantalo tételébdl kovetkezik a (3.25) egyenlet megolda-
sainak egzisztenciaja és unicitasa is, mivel a (3.25) egyenlet adott (x(0), 2'(0))
kezdeti értékekhez tartozo megoldasa az egyes [t,,_1, t,,) intervallumokhoz tar-
tozo konstans egyiitthatos egyenletek megoldéaséval és az adott kezdeti érték-
b6l kiindulva azok Osszeillesztésével adhatoak meg.

Hatvani [28] bizonyitotta be, hogy a (3.26) feltételek mellett a (3.25)
egyenletnek is létezik kis megoldésa. Az n = 1 esetre, amikor a féllinearis
egyenlet megegyezik az (1.1) linearis egyenlettel, Elbert [21, 23] a 3.2. tétel

felhasznalasaval altalanositotta az Armellini-Tonelli-Sansone tételt.

3.4. Tétel (Elbert, [21, 23]). Legyen n =1. Ha

Z min {1 - —1- %} sin?(\/Qer1(tess — thi1)) = 00, (3.27)
Qs Qk+2
"+ qx =0 (ty <t <tpi1, k=0,1,...) (3.28)
linedris eqyenlet minden nemtrividlis megolddsa kis megoldds.

A fejezet célja, hogy kiterjessziik a 3.4. tételt a (3.25) egyenlet n > 1 esetére.
Ehhez sziikségiink lesz a Lundberg [41] és Elbert [20] altal bevezetett tn.

altalanositott szinusz és koszinusz fiiggvényekre. Legyen S = S, () az
S//’S,|n_1 + Sls‘n—l =0
(3.29)
S(0)=0, S(0)=1
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kezdetiérték-probléma megoldéasa. Az egyenletet S’-vel megszorozva, majd a

[0, @] intervallumon kiintegralva az
1S(®)"T + S (@) =1 (—00 < ® < 00), (3.30)

Osszefiiggést kapjuk, mely az n = 1 esethez tartozé sin®¢p + cos?p = 1
pitagoraszi azonossag altalanositasa. Abban az esetben, amikor S és S’ is

nemnegativ, S inverze a kovetkezd formulaval adhato meg:

o dt
@:/0 e 0ss<n

1— tn—i—l)%ﬂ

1
dt
7%:2/ o
0 (1—¢rtl)nst

melybdl kapjuk (lasd [20]), hogy

Legyen

s
2n+1

. T )
SIL n+1

T =

ami az n = 1 kozonséges esetben megegyezik m-vel. Az el6z6ek alapjan S
egyértelmiien definilt a [0, 7/2] intervallumon. S a kovetkezd definicio szerint

kiterjeszthetd a teljes szamegyenesre 27 periodikus fiiggvényként:

S(m— @), ha o

b | =
IA
IA

T,

=N
IA

)

IA

2%,

S(®) =9 —S(®—#), ha

S(® — 2k7), aholk=41,42, ...
A definiciobol kovetkezik, hogy S’ is 27 periodikus fiiggvény, tovabba, ha-
sonloan a kozonséges esethez, S péaratlan, illetve S’ péaros. Sziikségiink lesz

az altalanositott tangens fiiggvényre is, mely a kozonséges esethez hasonléan

definialhato:




Az altalanositott trigonometrikus fiiggvények vizsgéalatanak kozponti szerep
jut a féllinearis egyenletek elméletében, a téménak jelentds irodalma van
(lasd pl. [11], [12], [15], [49], illetve pl. a [40] monografiat és a benne szerepld
hivatkozasokat).

Az elkésziiletek utan most méar kimondhatjuk a fejezet f6 tételét.

3.5. Tétel. Legyen n > 1. Ekkor, ha

1 n+1
Zmln {1 -—1- M} S (qgjll (thyo — tk+1)> =00, (3.31)
Q1 Qk+2
a (8.25) egyenlet minden nemtrividlis megolddsa kis megoldds.
Bizonyitas. ElGszor is, vezessiink be egy 4j 7 id6valtozot:
t 1
T=(t) = / q(s)»+1 ds, Tk = @(tg). (3.32)
0

Legyen z(t) = z(o (7)) =: y(7), ahol ¢! a ¢ inverz fiiggvénye. Ekkor
P(0) = §(0)gm(), D) =Frel) (A k=0,12..)
teljestil, ahol ()" = d/dr. Ezt felhasznalva a (3.25) egyenlet az alabbi alakot

olti:

GO+ |y (D) "y (1) = 0 (Th <7 < 7Tpy1, K=0,1,...). (3.33)

Mivel a (3.25) egyenlet tetszéleges x megoldasanak folytonosan differencial-
hatonak kell lennie a (0,00) intervallumon, ezért minden k£ € N esetén a
@' (tpy1 — 0) = 2/ (tgs1 + 0) egyenlGségnek teljesiilnie kell, vagyis

1

. . Q. \ "t .
Y(Ths1) = Y(Th1 +0) = | —— Y(The1 — 0),
qk+1

ahol f(t —0) és f(t + 0) az f fliggvény t pontbeli bal, illetve jobb oldali

hatarértékét jeloli. Emiatt a (3.25) egyenlet ekvivalens a kovetkezd impulziv
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differenciélegyenlettel:

GO+ ly(m)ty(n) =0, T#m

y(Tk-‘rl) - ( - >n+1 Q(Tk+1 _O)? k=0,1,2,....

qr+1

(3.34)

Vezessiik be az § = pS (), y = pS(P) altalanositott polarkoordinatakat,
ahol
p=(g" " + "), T(@) =2, —00< P < oo

Ez az an. altalanositott Priifer-transzformacié. Ezen valtozok segitségével
a (3.33) egyenletet a

o =1, p=0 (e <T<Tp, k=0,1,...) (3.35)

rendszerré alakithatjuk. Ennek alapjan a (3.34) egyenlet dinamikaja az (¢, y)
Minkowski-sikon (lasd [47]) a kovetkezd. Tetszoleges (9o, yo) pont a [19,71)
idéintervallumon az origd kériili po := (|go|™+ +|yo|" 1) sugarti Minkowski-
kérén mozog egységnyi szogsebességgel, majd a 7 id6pillanatban a (y(r —

0),y(m1 — 0)) pont a

@ﬁﬂwﬁﬂ%=<(@)$1Mﬁ—0%Mﬁ—00

q1

pontba ugrik at, majd ez a folyamat ismétlédik az egymast kovets |1, ),

[T2,73), ... id6intervallumokon. Definialjuk az alabbiakat:

_1
pri= ([FE 4 @)L 8= B, Q= g — T

Apy = Pri1 — Pr; g = Pppr — (Pr + ), k=0,1,...

Az el6z6ek alapjan nyilvanvalo, hogy

k k
‘ka:@o—i‘Z(QH—Ri), Pk+1=p0+ZAPi7 kE=0,1...
=0 =0
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Mivel Ap; <0, a {pg}32, sorozat monoton csokkend igy létezik hatéarértéke.
Legyen p := limy_, pr. Tegylik fel, hogy nem igaz a tétel allitasa, azaz létezik
legalabb egy (p, ) megoldas, amelyre p > 0 teljesiil. Tekintsiink egy ilyen

megoldast. —Ap;-re érvényes az alabbi becslés:

—Ap; = pi — pit1
= ([9(r) ™" + [y(m) ") T = (1§(r0) "+ [y(riga) )
= ([9(7ix1 = )" + [y(7is1 — O)" 1)t
— ()™ + [y(riga) 7)o

. n 1y L
= (|9(7ig1 — O)|" ! + [y (g2 — O)|"F1)7e

1

qi . n n ntl
- ( 971 — O + Jy(ries 0] )
qdi+1

1 n_
= (P?jll + i (P?H - P:ﬁl)) e

+

( ) FrE—
QZ+1

1

n L q; n ! n
(R (1 - q_) prS! (@i 4 Q)M

i+1

n+1 Qi+1

| \%

n+1

(3.36)

ahol 7; € (0,1) minden i € Ny esetén. Hasonloan a 3.3. tétel bizonyitasahoz,
most is [S'(®; + §2;)|-t kell alulrol becsiilntink [S(2;)| vagy [S(£2i41)] segit-
ségével. Abban a bizonyitasban a koszinusz fliggvény addiciés formulajat
hasznaltuk fel ehhez. Mivel tudomasunk szerint az altaldnos esetben egzakt
addicios formulat S-re és S’-re még nem sikeriilt talalni, igy jelen esetben
egy mas modszert alkalmazunk. (Az addicios formulakra vonatkozo részered-
ményeket lasd pl. az [1] és a [2] dolgozatokban.)

Az |S"(®+ Q)| &s |S(Q)| fuggvények 7 periddustiak mind a @, mind pedig

az () véaltozora nézve, igy a (P, ) sikon torténd vizsgalatukhoz elegendd a
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[—7/2,7/2] x [-7/2,7/2] téglalapot tekintentink. S6t, kszonhetden S és S

szimmetria-tulajdonsagainak |S'(® + )| also becslését elég a @ = [0, 7/2] x
[0, 7/2] téglalapon megadnunk.

Definialjuk a

Qe :={(2,Q) € Q: [5'(®) <&}

halmazt, ahol € > 0 elegend&en kicsi. Legyen

Q" :={(2,Q) € Q: |F(D) <HISD} (0<y<D),

és tekintsiik el6szor a QY := Q. N Q" halmazt (lasd a 3.3. abrat). A

Q ~
Q=-2(P-T1/2)
4 \
2 QY QZ;
r
(©,Q)
QS
(SY'e) T (o)
2
O+Q=T1/2

3.3. dbra. A Q., Q" és Q) halmazok

Lo [S'(@)] = ~15()]

egyenlGség altal definialt gorbe egy darabja része az utobbi halmaz hataré-

nak. Megmutatjuk, hogy ha n > 1, akkor a I' gorbe érint6je a (7/2,0) pont-
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ban a & = 7/2 egyenletii egyenes, azaz

lim f(®) = —co, ahol F(®) = S GS’(@)). (3.37)

®—7%-0

Konnyen ellenérizhets, hogy

A (3.29) differencidlegyenlet alapjan
S"(@) = —[5"(2)| 7" |S(2)["'S(@), (3.38)

melyet felhasznalva kapjuk, hogy

—L(5/(®)) LS (@
&gy = pay = IO
(1= (@)

tehat a (3.37) hatarérték v értékétdl fiiggetleniil —oo. Ebbdl kévetkezik, hogy

talalhato olyan § > 0, hogy

teljesiiljon, igy
@z -2(e-7).

amely azt jelenti, hogy a (7/2,0) pont kozelében a I' gbrbe az 2 = —2(P —
7/2) egyenestdl jobbra helyezkedik el (lasd a 3.3. abrat). |S"(®; + ;)|-nek
|S(€2;)]-vel torténd also becsléséhez a |S'(P + Q)| /|S(2)| hanyadost fogjuk
vizsgalni. A (®,Q) € Q7 pont helyett a vele ugyanazon a vizszintes egyenesen
levs (/2 — Q/2,8) pontot véve, mely egyuttal a & = 7/2 — Q2/2 egyenesre
is illeszkedik, a hanyados értéke csokken (lasd ismét a 3.3. abrat). Ennek
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alapjan a L’Hospital szabaly és a (3.38) Osszefiiggés alkalmazéasaval a

v S ((5-39)+9)

hmq>—>§—0, 25040, (2D G(Q)] T~ 9010 S(Q)
-5 (+te) —sr(B+10)d
- QEIOI-IFO S(Q) - QEIOI-li-O S'(§2)
)Tl s ()
B QEIOI}FO 25'(Q) -

becsléshez jutunk. Ebbdl kovetkezik, hogy talalhato olyan k > 0, hogy
1@+ Q)| = kIS ((2,Q) €QD) (3.39)

teljesiiljon.
Most mar minden eszkéz a rendelkezésiinkre all, hogy a (3.36) becslést

folytatni tudjuk. Harom alesetet fogunk megkiilonboztetni.

A) (®;,Q;) € Q7. Ekkor (3.36) és (3.39) alapjan kapjuk, hogy

P q; 1 1
—Ap; > 1-— S Q)M 3.40
pz (1= ) i) (3.40)

A masik két esetben —Ap; -t fogjuk becsiilni. A (3.20) egyenl6tlenséghez

hasonléan megmutathato, hogy
[S(®io1 + Qimr)| = [5(D5)]

is mindig teljesiil, igy

—Api1 > P <1 - £) 15" (@1 4 Q)"

n+1 Qi
P qi—1 / nt1
_n+1( q; )| ()]

B) (®;, Q) € Q\Q7Y. Ekkor |S'(®;)| > v|S(%)|, ezért

Apiy =P (1= B gt 41
porz i (1 22 () (341

44



C) (®;,Q;) € Q\Q-. Ebben az esetben |S"(®;)| > €[S()], igy

| > 1S (Q) " (3.42)

(2

Definialjuk a C' szamot a kovetkezSképp:

C:= - j_ 0 min{x" ;4" "} > 0.

A (3.40), (3.41) és (3.42) becslések alapjan tetszoleges ¢ index esetén

C' min {1 Aty 4 } 1S(Q)" < Apim1 — Api = pic1 — pina
qi qi+1

teljesiil. Ezen egyenlGtlenségeket 0sszegezve kapjuk, hogy

CZmin{l e S R } 1S(:)|"! < po — 7 < oo,
i—1 4 di+1

ami ellentmondas. ]

A 3.5. tétel szerint az n > 1 esetben a (3.31) feltétel elegendd a (3.25)
egyenlet trividlis megoldasanak z-re vonatkozé aszimptotikus stabilitasahoz.
A kovetkezd példa mutatja, hogy ennek nem teljestilése esetén talalhato olyan

megoldas, amely nem kis megoldéas. Legyen
n=:11, t, = kn, Qe = k" (k=1,2,...), (3.43)

ekkor a (3.31) feltételben szerepls sor osszege 0, az (2/(0),x(0)) = (1,0)
kezdeti értékbdl inditott megoldéas viszont nem kis megoldas (lasd a 3.4.
abrat is).

Erdekes lenne kiterjeszteni a 3.5. tételt a 0 < n < 1 esetre is. Numerikus
szimulaciok alapjan tgy gondoljuk, hogy a tétel ebben az esetben is igaz.

Emellett a (3.43) feltételekben n megfelels valasztasaval a példa valtozatlanul

mukodik.
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3.4. abra. A (3.25) egyenlet (2/(0),z(0)) = (1,0) kezdeti értékbdl inditott
megoldasa a (3.43) feltételek mellett

Szintén érdekes probléma a kis megoldésokhoz tartozd kezdeti értékek
eloszlasa. Jeldlje C a Minkowski-egységkort, ) pedig C azon pontjait, ahon-
nan inditott megoldésok kis megoldasok lesznek, X pedig legyen Y-nak C-re
vonatkoztatott komplementere. Az n = 1, vagyis a linearis esetben vagy min-
den megoldas kis megoldas, vagy csak egy linearisan fiiggetlen megoldas lesz
kis megoldas. Ez topoldgiai szempontbol azt jelenti, hogy ha létezik legalabb
egy olyan megoldas, amelyik nem kis megoldas, akkor ) két Gsszefliggs hal-
mazbol all. Atkinson és Elbert [6] ezt az allitast terjesztette ki a (3.22)

féllinearis egyenletre abban az esetben, amikor ¢ folytonosan differencialhato.

3.6. Tétel (Atkinson-Elbert [6]). Tegyiik fel, hogy X # 0. Ekkor léteznek
olyan « és 8 valds szdmok gy, hogy o < B < v + 7, tovdbbd

o0

Y = | la+k# B+ kA, (3.44)
k=—0oc0

X = |J @B+kra+(k+1)7), (3.45)
k=—o00

ahol k befutja az egész szamok halmazdt.
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A tétel kiterjesztése a lépcsGsfiiggvény-egyiitthatos esetre még megoldatlan

probléma.
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Osszefoglalas

A disszertacioban lépcsésfiiggvény-egyiitthatos differencidlegyenletekhez
kapcsolodo két stabilitasi problémat vizsgalunk. ElsSként elegendd feltételt
adunk meg kis megoldas, azaz nemtrivialis, z-re vonatkozoéan 0-hoz tarto
megoldas létezésére olyan masodrendd lineéris differencidlegyenletek eseté-
ben, amelyekben a rugalmasségi és a strlodasi egytitthato is lépcesdstiiggvény.
A tétel bizonyitasahoz sziikségiink van kétdimenzios differenciaegyenlet-rend-
szerek kis megoldasainak létezését garantalo feltételekre. Ezt a feladatot vizs-
galva tObbet is bizonyitunk: sziikséges és elegendd feltételeket adunk meg
tetszGleges véges dimenzios differenciaegyenlet-rendszerek kis megoldasanak
létezésére.

A maésodik részben az Armellini-Tonelli-Sansone tételt, mely azt garan-
talja, hogy a valtozo rugalmassagi egyiitthatdés masodrendi linearis differ-
encidlegyenlet minden megoldésa kis megoldés legyen, terjesztjiik ki az al-
kalmazasokban is fontos szerephez jutd un. féllineéris differencidlegyenletek-
re a lépeststiiggvény-egytitthatos esetben. A féllinearis egyenletre vonatkozo
tétel bizonyitasanak eszkozeként kétdimenzios differenciaegyenlet-rendszerek
trivialis megoldasanak aszimptotikus stabilitasara vonatkozéan bizonyitunk
egy 1j tételt, majd az ott alkalmazott geometriai modszert altalanositjuk a
nemlinedris esetre.

Az értekezés a szerz6 kovetkezs publikicidin alapul:
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e L. Hatvani, L. Székely, On the existence of small solutions of linear
difference equations with varying coefficients, J. Difference Equ. Appl.,
12 (2006), No. 8, 837-845.

e L. Hatvani, L. Székely, Asymptotic stability of two dimensional systems
of linear difference equations and of second order half-linear differential
equations with step function coefficients, E. J. Qualitative Theory of

Diff. Equ., 38 (2011), 1-17.

Tekintsiik az
" +a(t)r =0 (LO)

méasodrendd linearis differencidlegyenletet, mely egy valtoz6é rugalmassagi
egylitthatoju lineéris oszcillator mozgasat irja le. Ha a : [0,00) — [0, 00)
monoton nemcsokkend fliggvény, akkor az (LO) egyenlet minden nemtrivialis
megoldasa oszcillal, |z| maximuma, azaz az amplitudok nagysaga nem ndg, |x|
szomszédos maximumbhelyei, azaz az x szomszédos szélsdértékhelyei kozotti
tavolsdg nem csokken. Az (LO) egyenlet egy xy nemtrivialis megoldésat kis
megolddsnak nevezziik, ha arra limy_,. zo(t) = 0 teljesiil. Milloux [43], Prodi
[45] és Trevisan [51] bizonyitotta be, hogy ha a : [0,00) — [0, 00) differen-
cialhato és nemcsokkend, akkor az (LO) egyenletnek akkor és csakis akkor
létezik legalabb egy kis megoldasa, ha lim, ., a(t) = co. Milloux egy olyan
példan keresztiil, amelyben az egytitthatofiiggvény lépcststiiggvény volt, azt
is megmutatta, hogy az (LO) egyenletnek nem feltétleniil minden megoldasa

kis megoldas. Hartman [25] az
x = A(t)x (LR)

linearis differencialegyenlet-rendszert vizsgéalva, ahol x m-dimenziés vektor,

A pedig a [0, 00) intervallumon értelmezett folytonos valos-valos fiiggvények
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m X m-es matrixa, az alabbi eredményre jutott:
1.3. Tétel. Tegyiik fel, hogy az (LR) egyenlet minden x megolddsa esetén
lim o0 [|%(2)|| < 0o teljesil. Ekkor az (LR) egyenletnek akkor és csakis akkor

létezik kis megolddsa, ha
t
/ tr A(s)ds — —oo (t — 00).

Ennek felhasznalasaval Hartman [25] Milloux, Prodi és Trevisan tételét rend-
szerekre is kiterjesztette, emellett belatta, hogy az a egyiitthatofiiggvény
differencialhatosdga helyett elegends feltenni annak folytonossagat.

Arra a kérdésre, milyen feltétel garantalja azt, hogy az (LO) egyenlet min-
den megoldasa kis megoldés legyen, els6ként az Armellini-Tonelli-Sansone
[42] tétel adta meg a valaszt: elegendd, ha a folytonosan differencialhato
és ,regularis” modon tart végtelenbe. Ez leegyszertisitve azt jelenti, hogy a
novekedése nem koncentralodhat egy kis mértékid halmazra. Fontos megje-
gyezni, hogy ez a stabilitasi tulajdonsidg gyengébb a trivialis megoldés a-
szimptotikus stabilitdsanal. Az irregularis novekedésre a legegyszertibb példa
egy monoton névekvs 1épcesdsfiiggvény. Az alkalmazasok terén az ilyen egytitt-
hatos egyenleteknek az un. bang-bang elv alapjan fontos szerep jut példaul
az irdnyitaselmélet egyes teriiletein beliil. A 1épcstsfiiggvény-egytitthatos dif-
ferencidlegyenletek atirhatoak differenciaegyenlet-rendszerré, emiatt az ilyen
tipusi egyenletekre vonatkozd tételek bizonyitésai visszavezethetGek diffe-

renciaegyenletekre vonatkozo allitasok bizonyitasara.

A masodik fejezetben az
" +c(t)r +a*(t)r =0 (LOS)

valtozo rugalmassagi egytitthatos oszcillator mozgasét leird egyenletet tekint-

jik abban az esetben, amikor a rugalmassagi erén kivil —c(t)z’ (¢(t) > 0)
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surlodasi erd is hat a rendszerre, ahol a és ¢ lépcsGsfiiggvény, azaz adottak a

{tn}52 1, {an}5, és {c,}5°, valos sorozatok az alabbi tulajdonsagokkal:

O=ti<ti <...<tp1<t,<...; lim ¢, = oo,

n—oo

a, >0, ¢, >0 (n=12,...),

tovabba a(t) = a, és c¢(t) = ¢, a [t,_1,t,) intervallumon. Abban az esetben,
amikor lim,, ,o, a, = 00 és ¢, =0 (n=1,2,...), azaz nincs surlodas, Hatvani

[27] belatta, hogy az
2" +alr =0 (thoy <t <tn,, n=1,2...)

egyenletnek létezik kis megoldéasa, ha >~ max{a,/a,4+1 — 1;0} < co. Ter-
mészetes gondolat, hogy a surlodas figyelembe vételével ez a feltétel, s6t, a
lim, . a, = oo feltétel is tovabb gyengithets. Ezt mutatja fejezetiink f6
tétele.

2.2. Tétel. Tegyiik fel, hogy teljesiilnek az {a,}>2q, {ca}oe, és {t,}22,
sorozatokra a fenti feltételek, és vezessiik be a

Cn

- m[@an — ) (tn — th1) — 2]

Tn
jelolést. Tovdbba, tegyiik fel, hogy
(i) an>cn/2 (n=1,2,...),

(i)

i <—7k+ln ak ) = —00,

—1 Ak+1
(iil) létezik K szdm gy, hogy tetszéleges n (n = 1,2,...) esetén

Z(—%—Hnmax{ i ;1}) < K.
2 Ak+1

k=1
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Ekkor az (LOS) egyenletnek létezik legaldbb egy kis megolddsa.

Az (LOS) egyenlet atirhato egy vele ekvivalens kétdimenzios differen-
ciaegyenlet-rendszerré, ezért tételliink bizonyitasahoz sziikségiink van olyan
elegendd feltételre, amely ezen rendszerek kis megoldasainak létezését biz-
tositja.

A kovetkezd szakaszban a kétdimenzios rendszerekre vonatkozo elegendd
feltétel probléméjat egy még altalanosabb kontextusban targyaljuk, még-
pedig sziikséges és elegendd feltételeket adunk meg tetszéleges véges dimen-
zi6s differenciaegyenlet-rendszerek kis megoldasanak létezésére. Az alabbi

nem-autoném rendszert tekintjiik:
X1 = MpX,, n=20,1,2,..., (DE)

ahol x,, € R™ oszlopvektor, m € N és M,, € R™*™ m x m-es val6s métrix.
Ennek az egyenletnek egy nemtrivialis {x, }°°, megoldasat kis megolddsnak
nevezziik, ha arra lim, _,, X, = 0 teljesiil. Célunk Hartman linearis dif-
ferencialegyenlet-rendszerre vonatkozo tételének a fenti differenciaegyenlet-
rendszerre valo kiterjesztése. A szakasz elsG tételében (2.8. tétel) belattuk,
hogy ha [[)7, [[M,|| < oo, akkor a differenciaegyenlet minden megoldésa-
ra lim, . ||X,|| < 0o teljesiil, tovabba az egyenletnek akkor és csakis akkor
letezik legalabb egy kis megoldésa, ha [ |det M,,| = 0. Ezzel Peilnek és
Pattersonnak [44], illetve Elbertnek [22] a megoldasok normabeli hatéarérté-
kének létezésére vonatkozo elegend§ feltételeit tovabb gyengitettiik, tovabbé
az Elberttdl szarmazo, a kétdimenziés esetre vonatkozod bizonyitasi technika
tetszbleges véges dimenzids esetre torténd kiterjesztésével Peil és Petterson
tételére egy 1j bizonyitast adunk.

Konnyen konstrualhato példa arra, hogy a [[—, [[M,]|| < oo feltétel nem
sziikséges a megoldasok normabeli hatarértékének létezéséhez. Szintén egy-

szert példaval kimutathato az is, hogy a megoldasok normabeli hatarértéké-
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nek létezése nem szitkséges kis megoldés 1étezéséhez. A szakasz f6 tételében
egy geometriai modszer segitségével megmutatjuk, hogy kis megoldésok 1é-
tezésére a [ [, |[det M| = O feltétel sziikséges és elegends abban az esetben
is, ha minddssze a || []}_, M, || (0 < p < g) sorozat korlatossagat koveteljiik
meg.

2.9. Tétel. Tegyiik fel, hogy taldlhato olyan K € R, hogy tetszdleges p,q € N,
(0 < p<q) esetén

<K

q
[[M.
n=p
teljesiil. Ekkor a (DE) egyenletnek akkor és csakis akkor létezik kis megolddsa,
ha

ﬁ |det M,,| = 0.
n=0

Egy példan keresztiil megmutatjuk, hogy a tételben szerepls HHZL:p M,
<K (k=0,1,2,...) feltétel-
lel. Hogy helyettesithets-e a Hizo IM,|| < K (k= 0,1,2,...) feltétellel,

< K feltétel nem helyettesithets a HHZ:O M,

tudomésunk szerint jelenleg még megoldatlan probléma.

A masodik fejezet utolso6 szakaszaban a 2.9. tétel nemlinearis differencial-
egyenlet-rendszerekre torténd kiterjesztésének lehetGségeit vizsgaljuk. Ilyen
egyenletek esetén kis megoldasok 1étezésére vonatkozoan Karsai, Graef és Li
[37] Ljapunov-fiiggvények segitségével mar adott elegendd feltételt. Ennek a
feltételnek az alkalmazhatosig szempontjabol kritikus része egy, a Ljapunov-
fliggvényre vonatkozo folytonosségi feltétel. A linearis esetre alkalmazott
topologiai modszert hasznélva a legaltalanosabb esetben eddig csak olyan
részeredményt sikeriilt elérni, amely Karsaiék modszerével is megkaphato,

ezt a szakasz keretein beliil bemutatjuk.

A harmadik fejezetben a linearis oszcillator mozgasat leirdé (LO) egyen-
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let egy fontos altalanositasat, a Bihari Imre [8] és Elbert Arpad [20] éltal
bevezetett

2|2 " q(t)|x|" e = 0, neRT, (FD)

un. féllinearis differencidlegyenletet tekintjik. Az egyenlet elnevezése arra
utal, hogy a megoldasok tere homogén de nem additiv. Erre az egyenletre
Bihari [9] bizonyitott egy Armellini-Tonelli-Sansone tipusu tételt, vagyis be-
bizonyitotta, hogy a trivialis megoldas x-re vonatkozban aszimptotikusan sta-
bilis, ha a ¢ egyiitthato-fliggvény sima és ,regulérisan" tart végtelenbe, ha t —
0. Ilyen tipust eredmény [33] dolgozatunkig nem volt ismert nem-regularisan
novekedd egyiitthato-fiiggvényre. A 3. fejezetben ennek a dolgozatnak az
eredmeényeit ismertetve elegendd feltételt adunk a féllinearis (FD) egyenlet
trivialis megoldasanak x-re vonatkozoé aszimptotikus stabilitasara abban a
legtipikusabban nem-regularis esetben, amikor ¢ lépcsésfiiggvény. Az ered-
mény annak koszonhetd, hogy a 1épcsésfiiggvényt tartalmazo linearis egyen-
letekre (n = 1 (FD)-ben) ismert linearis technikakat sikeriilt helyettesiteni
egy geometriai modszerrel, amely nem igényli a linearitéast, s6t, még a lineéris
esetre vonatkozo eredmények javitasat is lehetévé teszi. Ennek koszonhetGen
eredményiink tartalmazza, s6t, élesiti Elbert [21, 23] linearis 1épcsdsfiiggvény-
egylitthatos egyenletre vonatkozé Armellini-Tonelli-Sansone tételeit, ezért
ezt a modszert a fejezet elején elGszor linearis differenciaegyenlet-rendszerekre
mutatjuk be.

A fejezet elsé szakaszaban a (DE) linearis differenciaegyenlet-rendszer tri-
vialis megoldasanak aszimptotikus stabilitasat vizsgaljuk a kétvaltozos eset-
ben. Jol ismert, hogy a [[~, [[M,|| = 0 feltétel teljesiilése esetén (DE) min-
den megoldasa az origohoz tart, ha n — oo. Elbert [22] dolgozataban ezen
feltétel nem teljestilése esetén adott elegendd feltételt a trivialis megoldas a-

szimptotikus stabilitasara. Bizonyitasa az M,, matrixok egy ,triikkés” dekom-
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pozicidjan és az ebbdl szarmaztatott specialis matrixok normainak a becslé-
sén alapul.

A (DE) egyenlet vizsgalatahoz egy stabilitasi szempontbdl vele ekvivalens
(DE’) rendszert definidlunk, melynek megkonstrualasa a polar faktorizacio

tételén (lasd peldaul [34, p. 188]) alapul:

cosw, —Ssinw,
Xo i1 = [|ML| _ X,
d, sinw,  Cosw, (DE’)
0<d,<1, n=012...,

ahol d,, és w, (n =0,1,2,...) az My, ..., M,, matrixegytitthatokbol megha-
tarozhatoak. A szakasz f6 tétele a kovetkezd:

3.3. Tétel. Tegyiik fel, hogy limsup,, . [, |IMk|| < co. Ha
Zmin{l —dp, 1 —dpi1}sin? w1 = o0
n=0

teljesiil, akkor a (DE’) differenciaegyenlet trividlis megolddsa aszimptotikusan
stabil.

A fejezet mésodik szakaszaban az (FD) féllinearis differencialegyenletet
tekintjiik.
3.5. Tétel. Legyen n > 1 és

O=to<ti <...<tp <tpp1<..., klimtk:oo,
—00
O<p<a<..<gG<qg=<..., ]}Ln;lOQk:OO-

Ekkor az
2|7 4 gz e =0 (tr <t <tpyr, k=0,1,...)

egyenlet minden nemtrividlis megolddsa kis megoldds, ha

e’ 1

. 3 qk ey
me {1 - —, 1= —+1} S <Qk—:_11 (tht2 — tk+1)>
k=0

qk+1 k42
55

n+1

= OQ.




A tételben szerepld S fiiggvény az un. altalanositott szinusz fliggvény, azaz
az

SIS SIS =0,

S(0)=0, S(0)=1
kezdetiérték-problémanak a megoldéasa, amely mellékesen eleget tesz az
|S(®)|" 1 + 15" (®)|"! = 1 azonosségnak. A bizonyitas menete hasonlo a 3.3.
tételéhez, azonban becsléseink modszerét az altalanositott trigonometrikus
fliggvények miatt modositanunk kell. A nehézséget az okozza, hogy ezekre a

fiiggvényekre egzakt addicids formulak nem ismeretesek.
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Summary

In the dissertation we examine two stability problems related to differen-
tial equations with step function coefficients. First, we consider second order
linear differential equations, where both elasticity coefficient and damping
coefficient are step functions. For such equations, we give sufficient condi-
tion on the existence of a small solution, i.e. the existence of such a solution
which tends to 0 with respect to x. For the proof of the theorem, as a tool, we
need conditions guaranteeing the existence of a small solution of two dimen-
sional systems of linear difference equations. Although, we prove more: we
give necessary and sufficient conditions on the existence of a small solution
of difference equations of arbitrarily finite dimension.

In the second part of the thesis, we consider the Armellini-Tonelli-Sansone
theorem for second order linear differential equations with varying elasticity
coefficient. This theorem gives a sufficient condition on that all solutions
of such equations are small. We extend this theorem to the so-called half-
linear differential equations in the case when the coefficient is a step function.
Half-linear differential equations have many important applications. For the
extension of the Armellini-Tonelli-Sansone theorem to the half-linear case, we
need to prove a new theorem on the asymptotic stability of two dimensional
systems of linear difference equations. The proof is based on a geometric

method which applies also for the nonlinear case.
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The dissertation is based on the following papers of the author:

e L. Hatvani, L. Székely, On the existence of small solutions of linear
difference equations with varying coefficients, J. Difference Equ. Appl.,
12 (2006), No. 8, 837-845.

e L. Hatvani, L. Székely, Asymptotic stability of two dimensional systems
of linear difference equations and of second order half-linear differential
equations with step function coefficients, E. J. Qualitative Theory of

Diff. Equ., 38 (2011), 1-17.
Consider the second order differential equation
" +a(t)x =0 (LO)

describing the motion of a linear oscillator with varying elasticity coefficient.
If a:[0,00) — [0,00) is a monotone non-decreasing function, then all non-
trivial solutions of equation (LO) are oscillatory, the maxima of |z|, i.e. the
size of the amplitudes is non-increasing, and the neighboring maxima of |x|,
that is the distances between neighboring extrema of x are non-decreasing.
A nontrivial solution z of equation (LO) is called small if lim; . x¢(t) = 0.
Milloux [43], Prodi [45] and Trevisan [51] proved that if a : [0, 00) — [0, 00) is
differentiable and non-decreasing then equation (LO) has at least one small
solution if and only if lim;_,, a(t) = oo holds. Milloux also constructed an
example with a step function coefficient a, where not all solutions of equation
(LO) were small. Hartman [25] investigated the linear system of differential
equations

x' = A(t)x, (LR)

where x is an m dimensional vector and A is an m X m matrix having real

continuous entries with domain [0, 00). He proved the following:
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Theorem 1.3 Suppose that for all solutions x of equation (LR) lim,_,.. ||x(t)]]
< 00 holds. Then equation (LR) has at least one small solution if and only
if
¢
/ tr A(s)ds — —oo (t — 0).

Based on this result, Hartman [25| extended the theorem of Milloux, Prodi
and Trevisan to systems of equations, furthermore, he proved that instead of
differentiability, it is sufficient to assume the continuity of a.

The Armellini-Tonelli-Sansone [42]| theorem was the first to give a suffi-
cient condition on that all solutions of equation (LO) are small. The theorem
says that if a is continuously differentiable and tends "regularly" to infinity
as t — oo then lim; o x(t) = 0 holds for all solutions x of equation (LO).
Roughly speaking, this condition means that the growth of a cannot be lo-
cated to a set with small measure. It is important to note that this stabil-
ity property is weaker than the asymptotic stability of the trivial solution
of equation (LO). The simplest case of intermittent growth is when ¢ is a
monotonously increasing step function. Such equations have an important
role for example in the field of control theory thanks to the so-called Bang-
Bang principle. Differential equations with step function coefficients can be
rewritten as systems of difference equations, thus the proof of theorems on
such equations can be deduced to the proof of statements on difference equa-

tions.

In Chapter 2 we consider the equation
" +c(t)r +a*(t)r =0 (LOS)

describing the motion of an oscillator where both elasticity coefficient a

and damping coefficient ¢ are step functions. Namely, {¢,}>2,, {a,}>2, and
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{c,}32, are real sequences with the following properties:

O=to<ti <...<tp1<tp,<...; lim ¢, = oo,

n—o0
a, >0, ¢, >0 (n=12,...),
furthermore, a(t) = a, and c(t) = ¢, on the interval [t,,t,_1). In the case
when lim,, ,, a, = 0o and damping doesn’t act, i.e. ¢, =0 (n = 1,2,...),
Hatvani [27] proved that there exists at least one small solution of equation
(LOS) if > max{a,/an4+1 — 1;0} < oo holds. It is natural to guess that
damping helps weaken this condition and even the condition lim,, ., a,, = co.
In fact, in the main theorem of this chapter we could prove the following.
Theorem 2.2 Assume that the above conditions on sequences {a,}5°,,
{ca}2, and {t,}22, are satisfied, and let us introduce the notation

Cn

= g o (G =)t —tur) =2,

In
Suppose, in addition, that
i) an>c/2 (n=1,2,...),

(i)

Z ("YIH—IH L ) = —00,
1 k41

(iii) there is a number K such that for arbitrary n (n =1,2,...)

Z(—%—Hnmax{ ak ;1}) <K
2 Ak+1

k=1
Then equation (LOS) has at least one small solution.

holds.

Equation (LOS) is equivalent with a two dimensional system of difference
equations, therefore for the proof of our theorem we need a sufficient condition

guaranteeing the existence of a small solution of such system.
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In the next section we discuss the problem of finding a sufficient condition
guaranteeing the existence of a small solution of two dimensional system of
difference equations in a more general manner, namely, we give necessary and
sufficient conditions for the existence of such solutions of arbitrarily finite
dimensional systems. We consider the following nonautonomous system of

difference equations
X1 = MpX,, n=20,1,2,..., (DE)

where x,, € R™ is a column vector, m € N and M,, € R™*™ is an m X m
matrix having real entries. A nontrivial {x,}°, solution of this equation is
called small if lim,,_,. X,, = 0. The aim of this section is to extend Hartman’s
theorem on linear system of differential equations to linear systems of differ-
ence equations. In Theorem 2.8 we prove that if []>2, |[M,|| < oo holds, then
lim,, o ||X5 || < oo is satisfied for all solutions of equation (DE), furthermore,
the equation has at least one small solution if and only if [[)~  |det M,,| = 0.
With this result we weaken the sufficient conditions on the existence of the
limit of the solutions’ norm given by Peil and Patterson [44| and Elbert [22].
In addition, we extend Elbert’s method of proof from two dimension to ar-
bitrary dimension m and we give a new proof to the theorem of Peil and
Patterson.

One can easily see, that [[°7, [|M,|| < oo is not necessary for the ex-
istence of the limit of the norm of all solutions of (DE). A simple example
can be constructed to show that this property is not essential from the point
of view of the existence of a small solutions. Using a geometric method of
proof we show that [’ |det M| = 0 is necessary and sufficient to have at
least one small solution if we require only the boundedness of the sequence
I TT—, Mall (0 <p <q).

Theorem 2.9 Suppose that there is a K € R such that for every p,q € N,
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(0 < p < q) we have

< K.

1™,
n=p

Then there ezists at least one small solution of (DE) if and only if

ﬁ |det M,,| = 0.
n=0

With an example we show that condition HHZZP M, || € K in Theorem 2.9
HZ:O M,||< K (k=0,1,2,...). The question that

this can condition be replaced by [[*_, [M,| < K (k = 0,1,2,...) has

cannot be replaced by

remained open here.

In the final section of this chapter we examine the possible extensions of
Theorem 2.9 to nonlinear systems of difference equations. With the aid of
a Lyapunov function, Karsai, Graef and Li [37] gave a sufficient condition
for such equations to have at least one small solution. Currently, with the
application of our topological method of proof, we could only conclude such
result which is a consequence of their theorem. In this section we discuss this

result as well.

In Chapter 3 we consider the half-linear second order differential equation
2|7 q(t) x| = 0, n € R, (FD)

which is an important generalization of the second order differential equation
(LO) and was introduced by Imre Bihari [8] and Arpad Elbert [20]. They
called it half-linear because its solution set is homogeneous, but it is not
additive. To this equation Bihari [9] proved an Armellini-Tonelli-Sanone-type
theorem, namely, he proved that the trivial solution of (LO) is asymptotically

stable with respect to x if coefficient ¢ is continuously differentiable and
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tends "regularly" to infinity as ¢ — oco. Such result for this equation with
irregularly (or intermittently) growing coefficients was unknown until the
appearance of our paper [33]. In Chapter 3 we give a sufficient condition on
the asymptotic stability of the trivial solution with respect to x in the case
when coefficient ¢ is the most typically intermittently growing, that is when
q is a step function. In the proof of our theorem we could successfully replace
the method used for the linear case (n = 1 in (FD)) to a geometric technique
which does not require linearity. What is more, this new method of proof
allows us to sharpen the known results for the linear case. Therefore, our
results not just include, but even sharpen the Armellini-Tonelli-Sanone-type
theorems of Elbert |21, 23] for linear differential equations with step function
coefficients, thus we first introduce this method to linear systems of difference
equations.

In the first section we investigate the asymptotic stability of the trivial
solution of the linear system of difference equations (DE) in the case when it is
two dimensional. It is well-known that if [, || M, || = 0, then all solutions of
equation (DE) tend to zero as n — oo. Elbert [22] gave a sufficient condition
for the asymptotic stability in the case when the previous assumption does
not hold. His proof was based on estimation of the norm of some special
matrices and a ,tricky” decomposition of matrices M,,.

To investigate equation (DE), we define a difference equation (DE’) on
the plane which has the same stability properties as equation (DE). The
construction of this equation is based on the polar factorization theorem (see

eg. [34, p. 188]). Let

cosw, — sinw,,
Xpt+1 = HMnH Xns
n sinw, coswy, (DE?)

0<d, <1, n=0,1,2,...,
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where d,, and w,, (n = 0,1,2,...) can be calculated from matrices My, ..., M,,.
The main theorem of this section is as follows:

Theorem 3.3 Suppose that limsup,, . []r_, [|My| < oco. If
Z min{1l — d,, 1 — dp41}sin® w1 = 00,
n=0

then the zero solution of difference equation (DE’) is asymptotically stable.
In the second section we consider the half-linear second order differential

equation (DE).

Theorem 3.5 Let n > 1 and

O=to<ti<...<tp<tp1<..., limtk:oo,
k—o00

0<@p<a<..<@<qgu<..., lim g = oo.
k—o00

Then all non-trivial solutions of equation
2| gl e =0 (e <t <t k=0,1,..))

are small, if

Zmin{l— qk - Qk+1}
k=0

qk+1 k42

n+1

= OQ.

i
S <ql?f11 (trs2 — tk+1)>

The function S appearing in the theorem is the so-called generalized sine

function, that is, the solution of the initial value problem

S"1S' " 4 8|S =0,

S(0)=0, S(0)=1.
Note, that S satisfies the identity |S(®)|"™! + |S'(®)|"™ = 1. The proof is
similar to the one of Theorem 3.3, but due to the appearance of the gener-

alized trigonometric functions we have to modify our estimations. The main

difficulty is that exact addition formulae for these functions are unknown.
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