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1. fejezet

Bevezetés

Tekintsük az

x′′ + a(t)x = 0 (1.1)

másodrendű lineáris differenciálegyenletet, mely egy változó rugalmassági

együtthatójú lineáris oszcillátor mozgását írja le. A Pólya-Sonin-tétel (lásd

pl. [48]) szerint, ha az a : [0,∞) → [0,∞) együttható monoton nemcsökkenő

függvény, akkor az (1.1) egyenlet minden nemtriviális megoldására teljesül,

hogy

(i) a megoldás oszcillál,

(ii) |x| maximuma, azaz az amplitúdók nagysága nem nő,

(iii) |x| szomszédos maximumhelyei, azaz az x szomszédos szélsőértékhelyei

közötti távolság nem csökken.

P. Hartman [26, p. 500] nyomán bevezetjük a következő definíciót.

1.1. Definíció. Az (1.1) egyenlet egy x0 nemtriviális megoldását kis megol-

dásnak nevezzük, ha

lim
t→∞

x0(t) = 0 (1.2)
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teljesül.
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1.1. ábra. Az x′′ + etx = 0 egyenlet x(0) = 0, x′(0) = 1 kezdeti feltételhez

tartozó megoldása

Biernacki [7] 1933-ban vetette fel azt a problémát, hogy az (1.1) egyenletnek

milyen feltételek mellett létezik kis megoldása. H. Milloux [43] egy évre rá,

illetve később tőle és egymástól is függetlenül Prodi [45] és Trevisan [51]

bizonyította be a következőt:

1.2. Tétel. Tegyük fel, hogy az a : [0,∞) → [0,∞) függvény differenciálható

és nemcsökkenő. Az (1.1) egyenletnek akkor és csakis akkor létezik legalább

egy kis megoldása, ha

lim
t→∞

a(t) = ∞. (1.3)

Milloux egy olyan példán keresztül, amelyben az a együttható lépcsősfügg-

vény, azt is megmutatta, hogy az (1.1) egyenletnek nem feltétlenül minden

megoldása kis megoldás.

Hartman [25] az

x′ = A(t)x (1.4)
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lineáris differenciálegyenlet-rendszer kis megoldásainak létezését vizsgálta,

ahol x m-dimenziós valós vektor, A pedig olyan m ×m-es mátrix, melynek

minden eleme a [0,∞) intervallumon értelmezett folytonos valós-valós függ-

vény. Az alábbi eredményre jutott:

1.3. Tétel. Tegyük fel, hogy az (1.4) egyenlet minden x megoldására

limt→∞ ∥x(t)∥ < ∞ teljesül. Ekkor az (1.4) egyenletnek akkor és csakis akkor

létezik kis megoldása, ha∫ t

trA(s)ds → −∞ (t → ∞), (1.5)

ahol trA(s) az A mátrix nyomát jelöli az s időpillanatban. Az (1.5) feltétel

geometriai szempontból a jól ismert Liouville-formula alapján azt jelenti,

hogy a rendszer fázistérfogata 0-hoz tart, ha t → ∞. A tétel felhasználásával

Hartman [25] Milloux, Trevisan és Prodi tételét rendszerekre is kiterjesztette,

emellett belátta, hogy az a együtthatófüggvény differenciálhatósága helyett

elegendő feltenni annak folytonosságát.

Szintén Biernackitól [7] származik az a kérdés, hogy milyen feltételek

biztosítják azt, hogy az (1.1) egyenlet minden nemtriviális megoldása kis

megoldás legyen. Fontos megjegyezni, hogy ez a stabilitási tulajdonság gyen-

gébb a triviális megoldás aszimptotikus stabilitásánál: x′-től, vagyis a rezgés

sebességétől nem követeljük meg, hogy a végtelenben tartson 0-hoz; ezt Pólya

és Sonin tétele alapján nem is tehetjük meg. A kérdésre elsőként az Armellini-

Tonelli-Sansone [42] tétel adta meg a választ az alábbi fogalmak segítségével.

Az f : [0,∞) → (0,∞) nemcsökkenő függvényt irregulárisan növekvőnek

nevezzük, ha tetszőleges ε > 0 esetén megadható diszjunkt intervallumok

olyan {(an, bn)}∞n=0 sorozata, hogy limn→∞ an = ∞, és emellett a

lim sup
n→∞

n∑
k=1

bk − ak
bn

≤ ε,

∞∑
n=1

(f(an+1)− f(bn)) < ∞
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egyenlőtlenségek is teljesülnek. Ez leegyszerűsítve azt jelenti, hogy f növe-

kedése nem koncentrálódhat egy kis mértékű halmazra. Ennek a feltételnek

nem-teljesülése esetén azt mondjuk, hogy f regulárisan növekvő.

1.4. Tétel. Az (1.1) egyenlet minden nemtriviális megoldása kis megoldás,

ha az a együttható folytonosan differenciálható és reguláris módon növekedve

tart végtelenbe t → ∞ esetén.

Az együtthatófüggvény regularitásának feltevése mellett a kis megoldások

létezésére, illetve az origónak x-re vonatkozó aszimptotikus stabilitásának

problémájára vonatkozó tételeket többen élesítették és azokat más egyenletek

esetén is vizsgálták ([6], [9], [10], [24], [30], [35], [36], [46], [50]).

Az irreguláris növekedésre a legegyszerűbb példa egy monoton növekvő

lépcsősfüggvény. Az alkalmazások terén az ilyen együtthatós egyenleteknek az

ún. bang-bang elv alapján fontos szerep jut például az irányításelmélet egyes

területein belül (lásd pl. [5]). Abban az esetben, amikor a lépcsősfüggvény, a

Milloux és az Armellini-Tonelli-Sansone tételek az (1.1) egyenletre is kiter-

jeszthetőek ([21], [23], [27]), illetve általánosíthatóak ún. véletlen együtthatós

egyenletekre ([16], [29], [31]) és impulzív rendszerekre is ([24]).

Ha a lépcsősfüggvény, akkor, mint azt a későbbiekben be is mutatjuk,

az (1.1) egyenlet átírható differenciaegyenlet-rendszerré, emiatt a lépcsős-

függvény-együtthatós egyenletekre vonatkozó bizonyítások visszavezethetőek

differenciaegyenletekre vonatkozó tételek bizonyítására. Ezért is, de már ön-

magában is érdekes megvizsgálni a problémakört differenciaegyenletek ese-

tében is. A dolgozat második fejezetében elegendő feltételt adunk kis meg-

oldás létezésére olyan másodrendű lineáris differenciálegyenletek esetében,

amelyekben a rugalmassági és a súrlódási együttható is lépcsősfüggvény. A

tétel bizonyításához szükségünk van kétdimenziós differenciaegyenlet-rend-

szerek kis megoldásainak létezését garantáló feltételekre. A fejezetben ezt a
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feladatot vizsgálva többet is bizonyítunk: szükséges és elegendő feltételeket

adunk meg tetszőleges véges dimenziós differenciaegyenlet-rendszerek kis meg-

oldásának létezésére. A fejezet utolsó szakaszában az itt alkalmazott bi-

zonyítási technika nemlineáris differenciaegyenlet-rendszerekre történő álta-

lánosíthatóságát is megvizsgáljuk.

A harmadik fejezetben az Armellini-Tonelli-Sansone tételt terjesztjük ki

az alkalmazásokban is fontos szerephez jutó ún. féllineáris differenciálegyen-

letekre abban az esetben, amikor az együttható lépcsősfüggvény. A féllineáris

egyenletre vonatkozó tétel bizonyításának eszközeként kétdimenziós differen-

ciaegyenlet-rendszerek triviális megoldásának aszimptotikus stabilitására vo-

natkozóan bizonyítunk egy új tételt, majd az ott alkalmazott geometriai mód-

szert általánosítjuk a nemlineáris esetre.

Az értekezés a szerző következő publikációin alapul:

• L. Hatvani, L. Székely, On the existence of small solutions of linear

difference equations with varying coefficients, J. Difference Equ. Appl.,

12 (2006), No. 8, 837–845.

• L. Hatvani, L. Székely, Asymptotic stability of two dimensional systems

of linear difference equations and of second order half-linear differential

equations with step function coefficients, E. J. Qualitative Theory of

Diff. Equ., 38 (2011), 1–17.
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2. fejezet

Lépcsősfüggvény-együtthatós

másodrendű lineáris

differenciálegyenletek kis

megoldásairól

Tekintsük a változó rugalmassági együtthatós oszcillátor mozgását leíró

(1.1) egyenletet abban az esetben, amikor a lépcsősfüggvény:

x′′ + a2nx = 0 (tn−1 ≤ t < tn, n = 1, 2, . . .), (2.1)

ahol {tn}∞n=1 és {an}∞n=1 valós sorozatok az alábbi tulajdonságokkal:

0 = t0 < t1 < . . . < tn−1 < tn < . . .; lim
n→∞

tn = ∞,

an > 0 (n = 1, 2, . . .).

(2.2)

Egy x : [0,∞) → R függvény megoldása a (2.1) egyenletnek, ha

a) x kétszer differenciálható és megoldása a (2.1) egyenletnek a [tn−1, tn)

intervallumokon (n = 1, 2, . . .),
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b) x folytonosan differenciálható a [0,∞) intervallumon.

A folytonos együtthatós (1.1) egyenlet megoldásainak létezését és unicitását

garantáló tételekből következik a (2.1) egyenlet megoldásainak egzisztenciája

és unicitása is, mivel a (2.1) egyenlet adott (x(0), x′(0)) kezdeti értékekhez

tartozó megoldása az egyes [tn−1, tn) intervallumokhoz tartozó konstans e-

gyütthatós másodrendű egyenletek megoldásával és az adott kezdeti értékből

kiindulva azok összeillesztésével adhatóak meg.

Abban az esetben, amikor limn→∞ an = ∞, Hatvani [27] a (2.1) egyenlet

kis megoldásának létezésére a következő elegendő feltételt adta meg.

2.1. Tétel (Hatvani [27]). Tegyük fel, hogy limn→∞ an = ∞. Ekkor, ha

∞∑
n=1

max

{
an
an+1

− 1; 0

}
< ∞, (2.3)

akkor a (2.1) egyenletnek létezik legalább egy kis megoldása.

A (2.3) feltétel azt jelenti, hogy az {an}∞n=1 sorozat „majdnem” növekvő a

következő értelemben. Ha ap > ap+1 > . . . > aq > aq+1 valamely p ≤ q

esetén, akkor érvényes a

q∑
n=p

max

{
an
an+1

− 1; 0

}
=

q∑
n=p

an − an+1

an+1

≥ ap − aq+1

ap+1

becslés. Ekkor azt mondhatjuk, hogy a
∑q

n=pmax {an/an+1 − 1; 0} összeg

az {an}∞n=1 sorozat „relatív csökkenésének” mértékét adja meg az {an}q+1
n=p

„csökkenő fázis” alatt. Mivel a (2.3) feltételben szereplő összeg véges, így az

{an}∞n=1 sorozat csökkenésének mértéke is véges, azaz a sorozat „majdnem”

növekvő.

Legyen a {cn}∞n=1 sorozat az alábbi tulajdonságú:

cn ≥ 0 (n = 1, 2, . . .). (2.4)
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Tekintsük most azt az esetet, amikor a −a(t)x rugalmassági erőn kívül −c(t)x′

súrlódási erő is hat a rendszerre:

x′′ + cnx
′ + a2nx = 0 (tn−1 ≤ t < tn, n = 1, 2, . . .). (2.5)

Természetes gondolat, hogy a súrlódás figyelembe vételével a (2.3) feltétel,

sőt a limn→∞ an = ∞ feltétel is tovább gyengíthető. Ezt mutatja fejezetünk

fő tétele.

2.2. Tétel. Tegyük fel, hogy teljesülnek a (2.2) és a (2.4) feltételek, és ve-

zessük be a

γn :=
cn

(2an + cn)
[(2an − cn)(tn − tn−1)− 2]. (2.6)

jelölést. Továbbá, tegyük fel, hogy

(i) an > cn/2 (n = 1, 2, . . .),

(ii)
∞∑
k=1

(
−γk + ln

ak
ak+1

)
= −∞, (2.7)

(iii) létezik K szám úgy, hogy tetszőleges n (n = 1, 2, . . .) esetén

n∑
k=1

(
−γk

2
+ lnmax

{
ak
ak+1

; 1

})
< K. (2.8)

Ekkor a (2.5) egyenletnek létezik legalább egy kis megoldása.

2.3. Megjegyzés. A 2.2. tétel a disszertáció alapját képező [32] dolgozat

3.2. tételének egy továbbfejlesztése.

Mivel, mint azt látni fogjuk, a (2.5) egyenlet átírható egy vele ekvivalens két-

dimenziós differenciaegyenlet-rendszerré, ezért tételünk bizonyításához szük-

ségünk lesz olyan elegendő feltételre, amely ezen rendszerek kis megoldá-

sainak létezését biztosítja. A következő szakaszban ezt a problémát egy még
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általánosabb kontextusban tárgyaljuk, mégpedig szükséges és elegendő felté-

teleket adunk meg tetszőleges véges dimenziós differenciaegyenlet-rendszerek

kis megoldásának létezésére.

2.1. Differenciaegyenletek kis megoldásairól

2.1.1. Előzmények

Tekintsük az

xn+1 = Mnxn, n = 0, 1, 2, . . . (2.9)

nem-autonóm differenciaegyenlet-rendszert, ahol xn ∈ Rm oszlopvektor, m ∈

N és Mn ∈ Rm×m m × m-es valós mátrix. A szakasz keretein belül Hart-

man (1.4) lineáris differenciálegyenlet-rendszerre vonatkozó 1.3. tételének az

előbbi rendszerre való kiterjeszthetőségét vizsgáljuk.

Jelölje ⟨x,y⟩, illetve ∥x∥ az x = (x1, . . . , xm)T , y = (y1, . . . , ym)T ∈ Rm

vektorok skalárszorzatát, illetve az x vektor normáját, vagyis

⟨x,y⟩ :=
m∑
i=1

xiyi, ∥x∥ := ⟨x,x⟩
1
2 .

Legyen továbbá ∥M∥ az M mátrix spektrálnormája, azaz az MTM szim-

metrikus pozitív szemidefinit mátrix legnagyobb sajátértékének a négyzet-

gyöke. Azt mondjuk, hogy a (2.9) egyenlet triviális megoldása aszimptotiku-

san stabil, ha az egyenlet minden {xn}∞n=0 megoldása az origóhoz tart (lásd

pl. [19]). Közismert (lásd pl. [3, p. 232]), hogy az

M :=
∞∏
n=0

∥Mn∥ = 0 (2.10)

feltételből következik az origó aszimptotikus stabilitása. Hartman differen-

ciálegyenletekre vonatkozó definíciójának alapján bevezethető a kis megoldás

fogalma differenciaegyenletekre is.
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2.4. Definíció. A (2.9) egyenlet egy nemtriviális {xn}∞n=0 megoldását kis

megoldásnak nevezzük, ha arra

lim
n→∞

xn = 0 (2.11)

teljesül.

Fontos megjegyeznünk, hogy differenciaegyenletek esetében az origó aszimp-

totikus stabilitása ekvivalens azzal, hogy minden nemtriviális megoldás kis

megoldás. A kérdés az, hogy milyen feltételek biztosítják (2.9) egy kis megol-

dásának a létezését. Peil és Patterson [44] bizonyította a következőt.

2.5. Tétel (Peil-Peterson [44]). Tegyük fel, hogy limn→∞ ∥xn∥ < ∞ tel-

jesül a (2.9) egyenlet minden {xn}∞n=0 megoldására. Ekkor a (2.9) egyenletnek

akkor és csakis akkor létezik legalább egy kis megoldása, ha

∞∏
n=0

|detMn| = 0. (2.12)

Bizonyításuk ötlete hasonló ahhoz, amit Hartman [25] alkalmazott az (1.4)

differenciálegyenletre vonatkozó eredeti bizonyításánál. Peil és Petterson ele-

gendő feltételt is adott arra, hogy limn→∞ ∥xn∥ < ∞ minden megoldásra

teljesüljön. Legyen A és B két m×m-es valós mátrix, ekkor A ≤ B akkor és

csakis akkor, ha A−B negatív szemidefinit. Jelölje továbbá E az m×m-es

egységmátrixot.

2.6. Tétel (Peil-Peterson [44]). Ha

MT
nMn ≤ E (2.13)

minden n ∈ N0 esetén, akkor a (2.9) egyenlet minden {xn}∞n=0 megoldására

limn→∞ ∥xn∥ < ∞ teljesül.
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A spektrálnorma definíciója alapján könnyen látható, hogy a (2.13) felté-

tel ekvivalens azzal, hogy ∥Mn∥ ≤ 1 minden n-re (n = 0, 1, . . .). Elbert

[22] kétdimenziós rendszerek kis megoldásainak létezését vizsgálva egy ennél

gyengébb elegendő feltételt adott arra, hogy limn→∞ ∥xn∥ < ∞ teljesüljön

minden megoldásra.

2.7. Tétel (Elbert [22]). Legyen m = 2 és tegyük fel, hogy

ME :=
∞∏
n=0

max{∥Mn∥; 1} < ∞ (2.14)

teljesül. Ekkor a (2.9) egyenletnek akkor és csakis akkor létezik legalább egy

kis megoldása, ha
∞∏
n=0

|detMn| = 0. (2.15)

Tekintsük a következő példát:

M2k :=

 2 0

0 2

 , M2k+1 :=

 1
22k+1 0

0 1
22k+1

 , k = 0, 1, 2, . . . .

Ennek alapján könnyen látható, hogy a (2.10) feltételből, mely garantálja

hogy a (2.9) egyenlet minden megoldása kis megoldás, nem következik a (2.14)

feltétel, mely legalább egy kis megoldás létezését biztosítja. Így felmerül a

kérdés, hogy az Elbert tételében szereplő ME határérték helyettesíthető-e

a (2.10) összefüggés által definiált M -mel. Mint azt a következő tételünkben

megmutatjuk, a válasz igen, sőt, Elbert bizonyítási technikáját általánosítva

a tételét tetszőleges véges dimenzióra is kiterjesztjük. Ezzel egyúttal Peil

és Petterson tételére egy új bizonyítást, továbbá a megoldások normabeli

határértékének létezésére az eddigieknél gyengébb elegendő feltételt adunk.

11



2.1.2. Eredmények

2.8. Tétel ([32]). Tegyük fel, hogy az

M :=
∞∏
n=0

∥Mn∥ < ∞ (2.16)

határérték létezik és véges. Ekkor,

(a) a (2.9) egyenlet tetszőleges {xn}∞n=0 megoldása esetén az {∥xn∥}∞n=0

sorozatnak létezik véges határértéke;

(b) a
∏∞

n=0 |detMn| végtelen szorzat konvergens; továbbá,

(c) a (2.9) egyenletnek akkor és csakis akkor létezik kis megoldása, ha

D :=
∞∏
n=0

|detMn| = 0. (2.17)

Bizonyítás. (a) Indirekt módon bizonyítunk. Tegyük fel, hogy

0 ≤ l := lim inf
n→∞

∥xn∥ < lim sup
n→∞

∥xn∥ := L ≤ ∞,

és legyenek l∗, L∗ számok adottak úgy, hogy l < l∗ < L∗ < L. Az M = 0

esetben x = 0 aszimptotikusan stabil, ez viszont l < L miatt lehetetlen,

tehát 0 < M < ∞. Ebből következik, hogy található olyan ν, hogy p, q ∈ N,

p > ν esetén
∏n+q−1

n=p ∥Mn∥ ≤ L∗/l∗. Ekkor l és l∗ definíciója alapján létezik

k0 > ν úgy, hogy ∥xk0∥ < l∗ teljesüljön. Ekkor

∥xk0+q∥ ≤

∥∥∥∥∥
(

k0+q−1∏
n=k0

Mn

)
xk0

∥∥∥∥∥ ≤

(
k0+q−1∏
n=k0

∥Mn∥

)
∥xk0∥ <

L∗

l∗
l∗ = L∗ < L

tetszőleges q ∈ N esetén fennáll, ami ellentmond L definíciójának.

(b) Vezessük be a következő jelöléseket:

Fn := Mn · . . . ·M1M0, An := FT
nFn =

(
a
(n)
ij

)m
i,j=1

(n = 0, 1, 2, . . . ).
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Megmutatjuk, hogy az a
(n)
ij sorozat konvergál ha n → ∞. Vegyük észre, hogy

∥xn∥2 = ∥Mn−1 · . . . ·M0x0∥2 = ∥Fn−1x0∥2 =

= ⟨Fn−1x0,Fn−1x0⟩ = ⟨An−1x0,x0⟩ (n = 1, 2, 3, . . . )

mely az (a) pont értelmében tetszőleges x0 ∈ Rm kezdeti érték esetén kon-

vergens. Rögzített i (1 ≤ i ≤ m) mellett az x0 kezdeti vektor komponen-

seit válasszuk meg úgy, hogy x0j = δij (j = 1, 2, . . . ,m), ahol δii = 1 és

δij = 0 j ̸= i esetén. Ekkor található olyan aii ∈ R, hogy ha n → ∞,

akkor ∥xn∥2 = a
(n−1)
ii → aii. Hasonló módon kapjuk, hogy a

(n−1)
ij → aij

(n → ∞) valamely aij-re tetszőleges i, j ∈ {1, . . . ,m}, i ̸= j esetén. Legyen

A := (aij)
m
i,j=1 ∈ Rm×m, mely a fentiek miatt pozitív szemidefinit. Ezt fel-

használva kapjuk, hogy
n∏

i=0

|detMi| =

∣∣∣∣∣det
n∏

i=0

Mi

∣∣∣∣∣ = |detFn| = (detAn)
1
2 → (detA)

1
2 (n → ∞);

azaz a
∏∞

n=0 |detMn| végtelen szorzat konvergens és

D :=
∞∏
n=0

|detMn| = (detA)
1
2 . (2.18)

(c) Elegendőség. Tegyük fel, hogy fennáll (2.17). Ekkor, (2.18) alapján

létezik legalább egy olyan x̂0 ∈ Rm vektor, hogy Ax̂0 = 0 teljesül. Arra az

{x̂n}∞n=0 megoldásra, melynek kezdeti vektora x̂0, igaz a következő:

lim
n→∞

∥x̂n∥2 = lim
n→∞

⟨Anx̂0, x̂0⟩ = ⟨Ax̂0, x̂0⟩ = 0,

így tehát {x̂n}∞n=0 egy kis megoldás.

Szükségesség. Tegyük fel, hogy létezik kis megoldás, de D > 0. Ekkor

(2.18) alapján detA > 0, vagyis A pozitív definit. Emiatt tetszőleges x0 ̸= 0

kezdeti vektor esetén

lim
n→∞

∥xn∥2 = ⟨Ax0,x0⟩ > 0,

13



ami ellentmond annak, hogy van legalább egy kis megoldás.

Érdemes megjegyezni, hogy a (2.16) feltétel nem szükséges a megoldások

normabeli határértékének létezéséhez. Például, ha M0 és M1 két egymásra

merőleges projekció, akkor a 2.8 tétel (a) pontja az M2, M3, . . . mátrixoktól

függetlenül teljesül. Mint ahogy azt az alábbi egyszerű példa is mutatja, a

megoldások normabeli határértékének létezése nem szükséges kis megoldás

létezéséhez. Legyen

M2l :=

 2 0

0 1

 , M2l+1 :=

 1
2

0

0 1
3

 , l = 0, 1, 2, . . . .

Nyilvánvalóan
k∏

n=0

∥Mn∥ =

 2, ha k páros,

1, ha k páratlan,

az (1, 0)T pontból induló megoldásnak nincs határértéke, ha n → ∞, míg a

(0, 1)T kezdeti vektorból indított megoldás kis megoldás.

Egy geometriai módszer segítségével megmutatjuk, hogy a D = 0 felté-

tel akkor is szükséges és elegendő kis megoldás létezéséhez, ha mindössze a

∥
∏q

n=pMn∥ (0 ≤ p ≤ q) sorozat korlátosságát követeljük meg.

2.9. Tétel ([32]). Tegyük fel, hogy található olyan K ∈ R, hogy tetszőleges

p, q ∈ N, (0 ≤ p ≤ q) esetén ∥∥∥∥∥
q∏

n=p

Mn

∥∥∥∥∥ ≤ K (2.19)

teljesül. Ekkor, a (2.9) egyenletnek akkor és csakis akkor létezik kis megoldá-

sa, ha fennáll a (2.17) feltétel.

Bizonyítás. Szükségesség. Jelölje B, illetve S az Rm-beli, origó középpontú

egységgömböt, illetve egységgömbfelületet. Legyen sk az FkS ellipszoid origó-

hoz legközelebbi pontjainak valamelyike. A szükségesség belátásához tegyük
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fel, hogy {x̂n}∞n=0 kis megoldás x̂0 ∈ S kezdeti vektorral. Ekkor ∥sn∥ ≤

∥x̂n∥ → 0 ha n → ∞, vagyis FkS legrövidebb tengelyének a hossza 0-hoz

konvergál. Mivel (FkB) térfogata arányos a tengelyei hosszának szorzatával,

és ezen hosszak sorozata felülről korlátozható K-val , ezért maga a térfogat

is 0-hoz tart. Tudjuk hogy,

vol(FkB) =

(
k∏

n=0

|detMn|

)
vol(B) (n = 0, 1, 2, . . . );

így D = 0 is teljesül, amit bizonyítanunk kellett.

Elegendőség. Feltehetjük, hogy detMn ̸= 0 minden n ∈ N esetén, mivel

ennek nem teljesülése esetén biztosan létezik kis megoldás. Vegyük észre,

hogy ekkor ∥sn∥ → 0 is teljesül, ha n → ∞. Tekintsük az rn := F−1
n sn ∈

S (n = 0, 1, 2, . . . ) sorozatot. Mivel S kompakt, így kiválasztható {rnl
}∞l=0

részsorozat oly módon, hogy liml→∞ rnl
=: r ∈ S. Megmutatjuk, hogy az

x̂0 = r vektorból kiinduló {x̂n}∞n=0 megoldás kis megoldás. Az előbbiekből

következik, hogy

∥Fnl
r∥ ≤ ∥Fnl

(r− rnl
)∥+ ∥Fnl

rnl
∥ → 0 (l → ∞),

ezért tetszőleges ε > 0 esetén található l̃ pozitív egész, hogy ∥Fnl̃
r∥ < ε/K

teljesüljön. Legyen n > nl̃, ekkor

∥Fnr∥ = ∥
(
MnMn−1 · . . . ·Mnl̃+1

)
Fnl̃

r∥ ≤

≤ ∥MnMn−1 · . . . ·Mnl̃+1∥∥Fnl̃
r∥ < K

ε

K
= ε,

amely ekvivalens azzal, hogy limn→∞ ∥Fnr∥ = 0.

Megjegyezzük, hogy a tételben szereplő (2.19) feltétel nem helyettesíthető a∥∥∥∥∥
k∏

n=0

Mn

∥∥∥∥∥ ≤ K (k = 0, 1, 2, . . . )
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feltétellel, amint azt az alábbi példa is mutatja (lásd [27]). Definiáljuk a B

és C mátrixokat

B :=

 2 0

0 1
3

 , C :=

 1
3

0

0 2

 ,

és legyen Mn := vagy B vagy C a következő, az x(1)
0 = (1, 0)T és x(2)

0 = (0, 1)T

kezdeti vektorokból kiinduló {x(1)
n }∞n=0 és {x(2)

n }∞n=0 fundamentális megoldás-

rendszerre épülő szabály alapján. Legyen

M0 = M1 := B, M2 = M3 = . . . = Mn1 := C,

ahol n1 a legkisebb olyan egész amelyre már ∥x(2)
n1 ∥ ≥ 4 teljesül. Ezután

legyen

Mn1+1 = . . . = Mn2 := B, Mn2+1 = . . . = Mn3 := C,

ahol n2 és n3 a legkisebb egészek, amelyekre ∥x(1)
n2 ∥ ≥ 4, illetve ∥x(2)

n3 ∥ ≥

4 fennállnak. Tegyük fel, hogy ezen szabály alapján n1, n2, . . ., n2k már

meghatározásra került. Ekkor,

Mn2k+1 = . . . = Mn2k+1
:= B, Mn2k+1+1 = . . . = Mn2k+2

:= C,

ahol n2k+1, n2k+2 a legkisebb egészek, melyekre ∥x(1)
n2k+1∥ ≥ 4 illetve ∥x(2)

n2k+2∥ ≥

4 teljesülnek. Nyilvánvaló, hogy a determinánsok szorzata 0-hoz tart és a

{∥
∏k

n=0 Mn∥}∞k=0 sorozat is korlátos, ennek ellenére a (2.9) egyenletnek nem

létezik kis megoldása.

A mátrixnorma tulajdonságai miatt a
q∏

n=p

∥Mn∥ ≤ K (0 ≤ p ≤ q) (2.20)

feltételből következik a (2.19) feltétel. Az előző példa alapján felmerül a

kérdés, hogy a (2.19) feltétel helyettesíthető-e az alábbival:
k∏

n=0

∥Mn∥ ≤ K (k = 0, 1, 2, . . .).
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Tudomásunk szerint ez jelenleg még megoldatlan probléma.

2.2. A 2.2. tétel bizonyítása

Az előző szakaszbeli előkészítés után már minden eszköz adott a 2.2. tétel

bizonyításához.

Bizonyítás. Bevezetve az y = x′/an (n = 1, 2, . . .) változót, a (2.5) egyenlet

átírható az

x′ = any, y′ = −anx− cny (tn−1 ≤ t < tn, n = 1, 2, . . .) (2.21)

elsőrendű rendszerré. Mivel a (2.5) egyenlet megoldásai folytonosan differen-

ciálhatóak a [0,∞) intervallumon, ezért ugyanott az x′(t) = any(t) függ-

vénynek is folytonosnak kell lennie. Így, ha t 7→ (x(t), y(t)) a (2.21) egyen-

let egy megoldása a [0,∞) intervallumon, akkor a t 7→ y(t) függvénynek

jobbról folytonosnak kell lennie minden t ≥ 0 esetén és ki kell elégítenie az

any(tn − 0) = an+1y(tn) egyenletet minden n-re (n = 1, 2, . . .), ahol y(tn − 0)

az y bal oldali határértékét jelöli a tn időpillanatban. Ez azt jelenti, hogy

az x-re vonatkozó (2.5) egyenlet ekvivalens a következő impulzív elsőrendű

rendszerrel:

x′ = any, y′ = −anx− cny (tn−1 ≤ t < tn)

y(tn) =
an
an+1

y(tn − 0), n = 1, 2, . . . .
(2.22)

Az (r, φ) polárkoordinátákat a szokásos x = r cosφ, y = r sinφ egyenletekkel

bevezetve a (2.21) rendszert

r′ = −cnr sin
2 φ,

φ′ = −an −
cn
2
sin 2φ, (tn−1 ≤ t < tn, n = 1, 2, . . .)

(2.23)

alakra hozhatjuk. Vegyük észre, hogy az (i) feltétel alapján φ′(t) ≤ 0 tel-

jesül minden t ∈ [tn−1, tn) esetén (n = 1, 2, . . .). A sin2 φ = (1 − cos 2φ)/2
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azonosság és a Newton-Leibniz-formula segítségével az alábbi becsléshez ju-

tunk:

ln
r(tn − 0)

r(tn−1)
= −cn

∫ tn

tn−1

sin2 φ(t) dt = −cn

∫ tn

tn−1

sin2 φ(t)φ′(t)

φ′(t)
dt

= −cn

∫ tn

tn−1

sin2 φ(t)φ′(t)

−an − cn
2
sin 2φ

dt

= −cn

∫ φ(tn−1)

φ(tn−0)

sin2 u

an +
cn
2
sin 2u

du

≤ − cn
an +

cn
2

∫ φ(tn−1)

φ(tn−0)

sin2 u du

= − cn
an +

cn
2

{[
1

2
u− sin 2u

4

]φ(tn−1)

φ(tn−0)

}

=
cn

2an + cn

[
(φ(tn − 0)− φ(tn−1))

− 1

2
(sin 2φ(tn − 0)− sin 2φ(tn−1))

]
.

(2.24)

A (2.23) rendszer második egyenletéből φ′-re a

φ′ = −an −
cn
2
sin 2φ ≤ −an +

cn
2
, (tn−1 ≤ t < tn, n = 1, 2, . . .)

becslés adódik. Ebből integrálással a

φ(tn−1)− φ(tn − 0) = −
∫ tn

tn−1

φ′(t) dt ≥
(
an −

cn
2

)
(tn − tn−1) (2.25)

egyenlőtlenséget kapjuk. Ennek felhasználásával a (2.24) becslést tovább foly-

tathatjuk:

ln
r(tn − 0)

r(tn−1)
≤ − cn

2(2an + cn)
[(2an − cn)(tn − tn−1)− 2] = −γn

2
. (2.26)

Legyen M
(1)
n−1 a (2.23) rendszer alapmátrixa, azaz x(tn − 0)

y(tn − 0)

 = M
(1)
n−1

 x(tn−1)

y(tn−1)

 .
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A (2.22) rendszer alapján az (x(tn), y(tn))
T vektor definíciója a következő: x(tn)

y(tn)

 =

 1 0

0 an
an+1

 x(tn − 0)

y(tn − 0)

 = Mn−1

 x(tn−1)

y(tn−1)

 ,

ahol

Mn−1 :=

 1 0

0 an
an+1

M
(1)
n−1.

Nyilvánvalóan a (2.22) rendszer stabilitási tulajdonságai ekvivalensek az xn

yn

 = Mn−1

 xn−1

yn−1

 (n = 1, 2, . . .) (2.27)

rendszer stabilitási tulajdonságaival. A (2.26) becslést felhasználva becslést

tudunk adni az M
(1)
n−1 mátrixok normáira:

∥M(1)
n−1∥ = sup

0<r(tn−1)

r(tn − 0)

r(tn−1)
≤ exp

[
−γn

2

]
, (2.28)

ahol a szuprémumot minden olyan megoldás esetében vesszük, amelyre tel-

jesül, hogy a tn−1 időpillanatban r értéke pozitív. Így kapjuk, hogy

∥Mn−1∥ ≤ ∥M(1)
n−1∥max

{
an
an+1

; 1

}
≤ exp

[
−γn

2

]
max

{
an
an+1

; 1

}
= exp

[
−γn

2
+ lnmax

{
an
an+1

; 1

}]
.

(2.29)

Ennek alapján könnyen látható, hogy tetszőleges n (n = 1, 2, . . .) esetén a

(iii) feltétel miatt

n∏
k=1

∥Mk−1∥ ≤
n∏

k=1

exp

[
−γn

2
+ lnmax

{
an
an+1

; 1

}]

= exp

[
n∑

k=1

(
−γk

2
+ lnmax

{
ak
ak+1

; 1

})]
< K.

(2.30)
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Ebből következik, hogy tetszőleges p, q (1 ≤ p ≤ q) esetén
∏q

k=p ∥Mk−1∥ <

K is teljesül. A 2.9. tétel állítása alapján elegendő megmutatnunk, hogy∏∞
n=0 |detMn| = 0 is fennáll a (2.27) rendszerre. Ehhez szükségünk lesz a

|detM| ≤ ∥M∥m

egyenlőtlenségre, mely tetszőleges m × m-es (m ∈ N) valós mátrix esetén

fennáll. A (2.28) becslés és az előző egyenlőtlenség alapján érvényes az alábbi:

n∏
k=1

|detMk−1| =
n∏

k=1

ak
ak+1

∣∣∣detM(1)
k−1

∣∣∣
≤

n∏
k=1

 ak
ak+1

(
sup

0<r(tk−1)

r(tk − 0)

r(tk−1)

)2


≤
n∏

k=1

exp

[
−γk + ln

ak
ak+1

]

= exp

[
n∑

k=1

(
−γk + ln

ak
ak+1

)]
.

A (ii) feltétel alapján kapjuk, hogy
∏∞

n=0 |detMn| = 0, így a 2.9. tétel alkal-

mazásával az állítást bebizonyítottuk.

2.10. Megjegyzés. A 2.2. tételben szereplő (ii) és (iii) feltételek függetlenek

egymástól.

A cn = 0, tn = n és an = a > 0 (n = 1, 2, . . .) választással adódik, hogy

(iii)-ból nem következik (ii), hisz ekkor mindkét kifejezésben a tagok értéke

0. A másik irány megmutatásához legyen cn = 0, tn = n (n = 1, 2, . . .), az an

sorozat elemeit pedig definiáljuk a következőképp:

a1 := 2, a2k := 2k, a2k+1 := 2(2k + 1), k = 1, 2, . . .
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Mivel limn→∞ an = ∞, így (ii) teljesül, azonban az alábbiak miatt (iii) nem

áll fenn:

n∑
k=1

lnmax

{
ak
ak+1

; 1

}
=

⌊n−1
2 ⌋∑

k=1

ln
2(2k + 1)

2(k + 1)

≥
⌊n−1

2 ⌋∑
k=1

ln
4

3
= ln

4

3

⌊
n− 1

2

⌋
→ ∞ (n → ∞).

2.11. Megjegyzés. Az x−1 ≥ ln x egyenlőtlenség felhasználásával könnyen

látható, hogy a cn = 0 (n = 1, 2, . . .) esetben Hatvani 2.1. tételéből következik

a 2.2. tétel.

2.3. Nemlineáris differenciaegyenletek kis meg-

oldásairól

A szakaszban a 2.9. tétel és az annak bizonyítására alkalmazott geometriai

módszer nemlineáris differenciaegyenlet-rendszerekre történő általánosítha-

tóságát vizsgáljuk.

Tekintsük az alábbi nemlineáris differenciaegyenlet-rendszert

xn+1 = f(n,xn) n = 0, 1, 2, . . . , (2.31)

ahol m ∈ N, xn ∈ Rm oszlopvektor, és az f(n, ·) függvények olyanok, hogy

minden n ∈ N0 esetén rendelkeznek a következő tulajdonságokkal:

f(n, ·) : Dn ⊂ Rm → Rm, ran f(n, ·) ⊂ Dn+1,

f(n, 0) = 0, f(n, ·) ∈ C1(Dn),

ahol Dn egy konvex tartomány (n = 0, 1, . . .). Legyen q ≥ p (p, q ∈ N0). Az

f(p, ·), . . . , f(q, ·) függvények kompozíciójára vezessük be az

F(q, p ; ·) := f(q, ·) ◦ . . . ◦ f(p, ·)
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jelölést, továbbá legyen F j(q, p ; ·) : Dp → R (j = 1, . . . ,m) az F(q, p ; ·)

függvény j-edik komponensfüggvénye, azaz

F(q, p ;x) =


F 1(q, p ;x)

...

Fm(q, p ;x)

 .

Mivel F(n, 0 ; ·) a (2.31) egyenlet folyama, így az egyenlet minden {xn}∞n=0

megoldására teljesül az F(n, 0 ;x0) = xn egyenlőség. Egy g : Rm → R függ-

vény esetén grad g(x) jelölje g gradiensét, azaz grad g(x) =
(

∂g(x)
∂x1

, . . . , ∂g(x)
∂xm

)T
.

Legyen H0 ⊂ D0 egy korlátos, összefüggő nyitott halmaz lezártja. Ekkor H0-

nak a (2.31) egyenlet folyama melletti n-edik képe Hn = F(n, 0;H0), Hn

fázistérfogata pedig

µ(Hn) =

∫
H0

|detF′(n, 0;x)| dx, (2.32)

ahol µ a Lebesque-mérték. Egy H ⊂ Rm halmaz esetén annak lezártjára,

határára, illetve belsejére pedig vezessük be a H, ∂H és intH = H \ ∂H

jelöléseket. Megjegyezzük, hogy a (2.9) lineáris differenciaegyenlet esetén egy

korlátos, zárt és összefüggő H0 halmaz fázistérfogata

µ(Hn) =

(
n∏

k=0

|detMk|

)
µ(H0). (2.33)

A (2.31) egyenletre vonatkozóan Karsai, Graef és Li [37] a fent vázolt

feltételeknél valamivel általánosabbak mellett, Ljapunov-függvény segítségé-

vel már megadott elegendő feltételt kis megoldás létezésére. Ennek a feltétel-

nek az alkalmazhatóság szempontjából kritikus része egy, a Ljapunov-függ-

vényre vonatkozó folytonossági feltétel. A lineáris esetre alkalmazott topoló-

giai módszert használva a legáltalánosabb esetben eddig csak olyan részered-

ményt sikerült elérnünk, amely Karsaiék módszerével is megkapható. Mivel
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ez a tétel, a 2.9. tételhez hasonlóan csak a (2.31) egyenlet jobb oldalán talál-

ható függvényeket használja fel, továbbá a bizonyítása a 2.9. tételével analóg,

ezért ezt az alábbiakban bemutatjuk.

2.12. Tétel. Tegyük fel, hogy található olyan origó körüli H0 zárt gömb és

K > 0, hogy ∥∥gradF j(q, p ;x)
∥∥ ≤ K (2.34)

tetszőleges p, q ∈ N0 (0 ≤ p ≤ q), j = 1, . . . ,m és x ∈ H0 esetén teljesül,

továbbá

lim
n→∞

∫
H0

|detF ′(n, 0;x)| dx = 0. (2.35)

Ekkor a (2.31) egyenletnek létezik legalább egy kis megoldása.

2.13. Megjegyzés. A

lim
n→∞

detF′(n, 0;x) = 0 (x ∈ H0) (2.35′)

feltétel teljesülése esetén (2.35) is teljesül.

Bizonyítás. Jelölje sn a ∂Hn halmaz origóhoz legközelebb eső pontjainak

egyikét. Könnyen látható, hogy a (2.35) feltétel miatt limn→∞ sn = 0. Legyen

rn valamely pont azon x ∈ ∂H0 pontok közül, amelyekre F(n, 0 ;x) = sn tel-

jesül. Mivel ∂H0 kompakt, ezért az {rn}∞n=0 sorozatnak létezik {rnl
}∞l=0 kon-

vergens részsorozata. Legyen liml→∞ rnl
=: r ∈ H0. Meg fogjuk mutatni, hogy

az r pontból indított megoldás kis megoldás, vagyis limn→∞ F j(n, 0; r) = 0

(j = 1, . . . ,m). Válasszunk egy tetszőleges j (1 ≤ j ≤ m) indexet. Mivel

F(nl, 0; rnl
) → 0 és ∥r − rnl

∥ → 0, ha l → ∞, ezért minden ε > 0 esetén

megadható olyan l̃ ∈ N küszöbindex, hogy ha l > l̃, akkor az ∥F(nl, 0; rnl
)∥ <

ε/(2K) és az ∥r − rnl
∥ < ε/(2K) egyenlőtlenségek egyszerre teljesülnek.
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Legyen l > l̃. Ekkor, mivel az origó fixpont, n > nl̃ esetén érvényes az alábbi

becslés

|F j(n, 0; r)| ≤ |F j(n, 0; r)− F j(n, 0; rnl
)|+ |F j(n, 0; rnl

)|

= |F j(n, 0; r)− F j(n, 0; rnl
)|

+ |F j(n, nl + 1;F (nl, 0; rnl
))− F j(n, nl + 1;0)|.

A becslésben szereplő mindkét tagra a vektor-skalár függvényekre vonatkozó

Lagrange középérték-tételt alkalmazva kapjuk, hogy

|F j(n, 0; r)| ≤ |⟨gradF j(n, 0; ξj), (r− rnl
)⟩|

+|⟨gradF j(n, nl + 1;ηj), F (nl, 0; rnl
)⟩|

≤ ∥gradF j(n, 0; ξj)∥∥(r− rnl
)∥

+∥gradF j(n, nl + 1;ηj)∥∥F (nl, 0; rnl
)∥

< K
ε

2K
+K

ε

2K
= ε,

ahol ξj = λjr+ (1− λj)rnl
, ηj = νjF (nl, 0; rnl

) és λj, νj ∈ [0, 1]. Ezzel, mivel

ε és j tetszőleges, a tételt beláttuk.

2.14. Megjegyzés. A bizonyítás alapján könnyen látható, hogy a (2.34)

feltételből következik a (2.31) nemlineáris egyenlet megoldásainak korlátossága.

2.15. Megjegyzés. A (2.9) lineáris egyenlet esetén F (q, p ;x) =(∏q
n=pMn

)
x, így a 2.9. tétel elegendősége következik a 2.12. tételből.
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3. fejezet

Lépcsősfüggvény-együtthatós

másodrendű féllineáris

differenciálegyenletek

stabilitásáról

Ebben a fejezetben az

x′′|x′|n−1 + q(t)|x|n−1x = 0, 1 ≤ n ∈ R,

ún. féllineáris differenciálegyenlet triviális megoldásának x-re vonatkozó a-

szimptotikus stabilitására adunk meg elegendő feltételt abban az esetben,

amikor n > 1 és a q együtthatófüggvény lépcsős. A bizonyításánál alkal-

mazott geometriai módszer szintén alkalmazható kétdimenziós nemautonóm

lineáris differenciaegyenlet-rendszerek esetén is. Az első szakaszban ennek a

módszernek a segítségével Elbert ilyen differenciaegyenletek triviális megol-

dásának aszimptotikus stabilitásáról szóló tételét élesítjük és egy egyszerűbb

bizonyítást is adunk rá. A második szakaszban rövid bevezetőt adunk a
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féllineáris differenciálegyenletek elméletének idevágó részéből, majd belátjuk

a fejezet fő tételét, mellyel Bihari és Elbert ezen egyenletekre vonatkozó

Armellini-Tonelli-Sansone-típusú tételeit általánosítjuk.

3.1. Differenciaegyenletek aszimptotikus stabi-

litásáról

3.1.1. Előzmények

Ebben a szakaszban az

xn+1 = Mnxn, n = 0, 1, 2, . . . (3.1)

kétváltozós differenciaegyenlet-rendszert tekintjük, azaz xn ∈ R2 és Mn ∈

R2×2. Ahogy azt már korábban is említettük, jól ismert [3, p. 232], hogy

a
∏∞

n=0 ∥Mn∥ = 0 feltétel teljesülése esetén a (3.1) minden megoldása az

origóhoz tart, ha n → ∞, vagyis az egyenlet triviális megoldása aszimp-

totikusan stabil. Fontos kérdés, hogy ha ez a feltétel nem teljesül, akkor is

lehetséges-e garantálni az aszimptotikus stabilitást. Elbert [22] dolgozatában

az alábbi feltevések mellett adott elegendő feltételt a triviális megoldás a-

szimptotikus stabilitására:

(i)
∏∞

n=0 max {∥Mn∥, 1} < ∞,

(ii) 0 <
∏∞

n=0 ∥Mn∥,

(iii)
∏∞

n=0 max {| detMn|, 1} < ∞.

Magát a tételt csak később, bizonyos technikai előkészületek után mondjuk

ki. Az állítás bizonyítása az Mn mátrixok egy „trükkös” dekompozícióján

és az ebből származtatott speciális mátrixok normáinak a becslésén alapul.
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A szakasz célja megmutatni, hogy a tételben szereplő (i) − (iii) feltételek

tovább gyengíthetőek. Nevezetesen, belátjuk, hogy (i)− (iii) helyett elegendő

megkövetelni a lim supn→∞
∏n

k=0 ∥Mk∥ < ∞ feltételt. Ezen túlmenően, a

bizonyításnál Elbert módszere helyett egy egyszerűbb, geometriai technikát

alkalmazunk. Ez a módszer már, mint azt később megmutatjuk, a nemlineáris

esetben is alkalmazható.

3.1.2. Eredmények

A (3.1) egyenlethez egy stabilitási szempontból vele ekvivalens rend-

szert definiálunk. Mivel a későbbiekben eredményeinket alkalmazni akarjuk

a féllineáris egyenletre , ezért olyan síkbeli koordinátarendszert tekintünk

melyben az x-tengely a függőleges, az y-tengely pedig a vízszintes tengely,

a szögeket pedig az y-tengelyhez képest mérjük az óra járásával ellentétes

irányban.

A sík két egybevágósági transzformációjának, az x-tengelyre való tükrözés-

nek és az origó körüli, φ szöggel történő forgatásnak mátrixaira vezessük be

a következő jelöléseket:

R =

 1 0

0 −1

 , E(φ) =

 cosφ − sinφ

sinφ cosφ

 . (3.2)

Nyilvánvaló, hogy

E(φ1)E(φ2) = E(φ1 + φ2), E(φ)R = RE(−φ). (3.3)

Szükségünk lesz a következő tételre (lásd például [34, p. 188]):

3.1. Tétel (Polár faktorizáció). Minden Rn-beli M lineáris transzformá-

ció felírható M = SQ szorzatalakban, ahol S szemidefinit és Q ortogonális.

S egyértelműen meghatározott, míg Q akkor és csakis akkor egyértelmű, ha

M nemelfajuló.
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A tételben szereplő S az MTM szimmetrikus mátrix négyzetgyöke. Ha M

nemelfajuló, akkor az MTM szorzat pozitív definit, azaz diagonalizálható:

MTM = PD2P−1, ahol D2 az MTM sajátértékeit tartalmazó diagonális

mátrix, P pedig az az ortogonális mátrix, melynek oszlopaiban a sajátérté-

keknek megfelelő sajátvektorok helyezkednek el. Ekkor S = PDP−1 alakban

írható, továbbá

M = PDP−1Q. (3.4)

Legyenek Λ és λ az MTM mátrix sajátértékei. A nemelfajuló esetben tudjuk,

hogy mindkettő pozitív, ezen kívül tegyük fel, hogy Λ ≥ λ. Megjegyezzük,

hogy ∥M∥ =
√
Λ, továbbá tegyük fel, hogy a D mátrixban a diagonális

elemek csökkenő sorrendben szerepelnek. Abban az esetben, amikor detM =

0, feltehetjük, hogy S pozitív szemidefinit és legyen S = ∥M∥S̃. Mivel S̃

szimmetrikus, így S̃ = PD̃P−1, ahol P ortogonális mátrix és

D̃ =

 1 0

0 0

 .

A fentieket a (3.1) egyenlet együttható-mátrixaira alkalmazva kapjuk, hogy

Mn = ∥Mn∥PnD̂nP
−1
n Qn, (3.5)

ahol

D̂n :=

 1 0

0 dn

 , dn :=


√

λn

Λn
, ha detMn ̸= 0;

0, ha detMn = 0.
(3.6)

Tekintsük most a (3.1) egyenlet folyamát, legyen Fn :=
∏n

k=0 Mk. Kihasz-

nálva, hogy ortogonális mátrixok szorzata is ortogonális, a folyam

Fn =
n∏

k=0

PkD̂kP
−1
k Qk =

(
n∏

k=0

∥Mk∥

)
Pn

(
n∏

k=0

D̂kOk

)
(3.7)
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alakra hozható, ahol az Ok (k = 0, . . . , n+1) ortogonális mátrixok a követke-

zők:

O0 := P−1
0 Q0, Ok = P−1

k QkPk−1, k = 1, . . . , n. (3.8)

Elemi geometriából ismert, hogy a síkon minden ortogonális transzformáció

vagy forgatás, vagy egy forgatás és az x-tengelyre történő tükrözés szorzata.

Ekkor, ha Ok se nem forgatás, se nem az identitás, se nem R, akkor Ok =

E(ϑk)R alakú valamely ϑk szöggel. Kihasználva a (3.3) tulajdonságokat, és

hogy R a diagonális mátrixokkal felcserélhető, kapjuk, hogy

Fn =

(
n∏

k=0

∥Mk∥

)
RmE(αn)

(
n∏

k=0

D̂kE(ωk)

)
(3.9)

valamely m ∈ N0 (m ≤ n + 1)-re és valamely ωk értékekre, ahol αk és ωk az

M0, . . . ,Mk mátrixok segítségével számíthatóak ki.

Tekintsük most az

xn+1 = ∥Mn∥

 1 0

0 dn

 cosωn − sinωn

sinωn cosωn

xn,

0 ≤ dn ≤ 1, n = 0, 1, 2, . . .

(3.10)

differenciaegyenletet. A fenti gondolatmenet alapján látható, hogy a (3.1)

egyenlet (0, 0)T egyensúlyi helyzete akkor és csakis akkor stabil, illetve a-

szimptotikusan stabil, ha a (3.10) egyenlet (0, 0)T egyensúlyi helyzete is sta-

bil, illetve aszimptotikusan stabil.

Az előkészületek után most már kimondhatjuk Elbert tételét.

3.2. Tétel (Elbert, [22]). Tegyük fel, hogy teljesülnek az alábbiak:

(i)
∏∞

n=0 max {∥Mn∥, 1} < ∞,

(ii) 0 <
∏∞

n=0 ∥Mn∥,

(iii)
∏∞

n=0 max {det |Mn|, 1} < ∞.
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Ha
∞∑
n=0

min{1− dn, 1− dn+1} sin2 ωn+1 = ∞, (3.11)

akkor a (3.10) differenciaegyenlet triviális megoldása aszimptotikusan stabil.

A szakasz fő tételében belátjuk, hogy az előző tételben szereplő (i) − (iii)

feltételek gyengíthetőek.

3.3. Tétel ([33]). Tegyük fel, hogy lim supn→∞
∏n

k=0 ∥Mk∥ < ∞. Ha

∞∑
n=0

min{1− dn, 1− dn+1} sin2 ωn+1 = ∞, (3.12)

akkor a (3.10) differenciaegyenlet triviális megoldása aszimptotikusan stabil.

3.1. ábra. A (3.10) egyenlet dinamikája

A bizonyítás során elég azt az esetet vizsgálnunk, amikor ∥Mk∥ = 1 (k =

0, 1, . . .). Geometriai szempontból nézve a (3.10) egyenlet dinamikája nem
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más, mint egymást követő forgatások és az y-tengellyel párhuzamos kon-

trakciók sorozata (lásd a 3.1. ábrát). A kontrakció miatt a forgatás után

az x tengelyen lévő pontok kivételével mindegyik pont origótól való távol-

sága csökken, mégpedig annál kisebb mértékben, minél közelebb van az x-

tengelyhez. Mint azt látni fogjuk, a (3.12) feltétel azt garantálja, hogy ne

legyen olyan pont, ami valahonnét kezdve a forgatások után mindig az x-

tengely közelében marad, vagyis azt az esetet zárja ki, hogy a forgatások

szöge valahonnét kezdve közel legyenek a π egész számú többszöröseihez,

emellett pedig, hogy a kontrakciók túlságosan kicsik se lehessenek.

Bizonyítás. Ahogy már említettük, elegendő az ∥Mk∥ = 1 (k = 0, 1, . . .)

esetet tekintenünk, és elég belátnunk, hogy
∥∥∥∏∞

n=0 D̂nE(ωn)
∥∥∥=0. Vezessük

be az r és φ polárkoordinátákat a következőképp:

x :=

 x

y

 , x = r sinφ, y = r cosφ.

Ekkor a (3.10) rendszer fázistere azon (r, φ) pontpárok halmaza, amelyekre

r ≥ 0, −∞ < φ < ∞ teljesül. Definiáljuk az alábbiakat:

x̃n := E(ωn)xn, κn := φn+1 − (φn +ωn), ∆rn := rn+1 − rn, n = 0, 1, . . .

Könnyen látható, hogy teljesülnek a következők:

√
x2
n + y2n =

√
x̃2
n + ỹ2n, xn+1 = x̃n, yn+1 = dnỹn

φn+1 = φ0 +
n∑

i=0

(ωi + κi), rn+1 = r0 +
n∑

i=0

∆ri,

továbbá, hogy a kontrakció miatt ∆ri ≤ 0. Ebből következik, hogy az {rn}∞n=0

sorozat monoton csökkenő, így létezik határértéke is.

Tegyük fel, hogy nem igaz a tétel állítása, azaz r̄ := limn→∞ rn > 0. Az

31



3.2. ábra. A (3.10) egyenlet dinamikája polárkoordinátákban

előző összefüggések alapján az alábbi becslés adódik −∆ri-re:

−∆ri = ri − ri+1 =
√

x2
i + y2i −

√
x2
i+1 + y2i+1

=
√
x̃2
i + ỹ2i −

√
x̃2
i + d2i ỹ

2
i =

(1− d2i )ỹ
2
i√

x̃2
i + ỹ2i +

√
x̃2
i + d2i ỹ

2
i

≥ (1− d2i )r
2
i cos

2(φi + ωi)

2ri
≥ r̄

2
(1− di) cos

2(φi + ωi).

(3.13)

A célunk megmutatni, hogy az r̄ > 0 feltevés mellett az alsó becslések összege

divergens, ami ellentmondáshoz vezet, hiszen
∑n

i=0 ∆ri = r0 − rn+1 < r0 −

r̄ < ∞. A problémát az adja, hogy a (3.13) becslésben szereplő tagokban a

megoldásoktól függő, ismeretlen φi szögek is megjelennek, melyeket ki kell

küszöbölnünk. Nyilvánvaló, hogy

| cos(φi + ωi)| = | cosφi cosωi − sinφi sinωi|

≥ | sinφi|| sinωi| − | cosφi|| cosωi|.
(3.14)

Legyen 0 < γ < ε < 1 és µ(ε, γ) :=
√
1− γ2− εγ. Mivel limε→0,γ→0 µ(ε, γ) =
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1, ezért γ és ε megválaszthatóak úgy, hogy µ(ε, γ) ≥ 1/2 teljesüljön. Három

alesetet fogunk megkülönböztetni.

a) γ| sinωi| ≥ | cosφi| és | cosωi| ≥ ε. Ekkor | sinφi| ≥ | cosωi|,

a (3.14) felhasználásával pedig adódik, hogy

| cos(φi + ωi)| ≥ | sinωi|| cosωi|(1− γ) ≥ | sinωi|(1− γ)ε. (3.15)

Ebben az esetben a (3.13) becslés a következőképp folytatható:

−∆ri ≥
r̄

2
(1− di) cos

2(φi + ωi) ≥
r̄

2
(1− γ)2ε2(1− di) sin

2 ωi. (3.16)

b) γ| sinωi| ≥ | cosφi| and | cosωi| < ε. Mivel

| sinφi| ≥
√

1− γ2 sin2 ωi ≥
√
1− γ2, (3.17)

így kapjuk, hogy

| cos(φi + ωi)| ≥ (
√
1− γ2 − εγ)| sinωi| = µ(ε, γ)| sinωi| ≥

1

2
| sinωi|.

(3.18)

Ekkor a (3.13) becslés folytatásaként

−∆ri ≥
r̄

2
(1− di) cos

2(φi + ωi) ≥
r̄

8
(1− di) sin

2 ωi (3.19)

adódik.

c) γ| sinωi| < | cosφi|. Ebben az esetben −∆ri helyett −∆ri−1 becsül-

hető alulról | sinωi| segítségével. Vegyük észre, hogy a kontrakció miatt

| cosφi| =
|yi|√
x2
i + y2i

=
di−1|ỹi−1|√

x̃2
i−1 + d2i−1ỹ

2
i−1

≤ |ỹi−1|√
x̃2
i−1 + ỹ2i−1

= | cos(φi−1 + ωi−1)|
(3.20)
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teljesül. Ennek felhasználásával −∆ri−1-re a

−∆ri−1 ≥
r̄

2
(1− di−1) cos

2(φi−1 + ωi−1) ≥
r̄

2
(1− di−1) cos

2 φi

≥ r̄

2
γ2(1− di−1) sin

2 ωi ≥
r̄

2
γ2min{1− di−1, 1− di} sin2 ωi

(3.21)

becslést kapjuk.

Legyen

c :=
r̄

2
min{(1− γ)2ε2;

1

4
; γ2} > 0,

ekkor minden i index esetén

cmin{1− di−1; 1− di} sin2 ωi ≤ −∆ri−1 −∆ri = ri−1 − ri+1

teljesül. Ezen egyenlőtlenségek összegére

c
∞∑
i=1

min{1− di−1; 1− di} sin2 ωi ≤ r0 − r̄ < ∞,

adódik, amely ellentmond a (3.12) feltevésnek.

3.2. Az Armellini-Tonelli-Sansone tétel kiter-

jesztése lépcsősfüggvény-együtthatós má-

sodrendű féllineáris differenciálegyenletek-

re

3.2.1. A másodrendű féllineáris differenciálegyenletekről

általában

A fejezet hátralévő részébenben a Bihari Imre [8] és Elbert Árpád [20]

által bevezetett

x′′|x′|n−1 + q(t)|x|n−1x = 0, n ∈ R+, (3.22)
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ún. féllineáris differenciálegyenletet tekintjük, mely a lineáris oszcillátor moz-

gását leíró (1.1) egyenlet általánosítása, ahol q : [0,∞) → R. Az egyenlet

elnevezése arra utal, hogy megoldásainak tere homogén, de nem additív.

Abban az esetben, amikor q folytonos függvény, Elbert [20] belátta, hogy

adott kezdeti értékhez a (3.22) egyenletnek létezik egyértelmű megoldása,

mely a [0,∞) intervallumra kiterjeszthető. A (3.22) egyenlet az együtthatók

megfelelő megválasztásával és bizonyos transzformációk végrehajtásával a

szintén jól ismert

(r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) := |x|p−1sgnx, p > 1 (3.23)

alakra hozható (n = p− 1), mely ebben a formában az

(r(t)x′)′ + c(t)x = 0 (3.24)

Sturm-Liouville differenciálegyenlet általánosításának tekinthető. A félline-

áris egyenletek kvalitatív vizsgálatának egyik motivációja az, hogy például

több fizikai jelenség olyan parciális differenciálegyenlettel írható le, amelyben

az ún. p-Laplace operátor szerepel. Ezen egyenletek az egydimenziós eset-

ben bizonyos feltételek mellett a (3.22), vagy a vele ekvivalens (3.23) alakra

hozhatóak. A p-Laplace operátor a következő:

∆pu(x) := div(∥∇u(x)∥p−2∇u(x)),

ahol x = (x1, . . . , xm) ∈ Rm, p > 1, ∇ a gradiens-, továbbá div :=
∑m

k=1
∂

∂xk
a

divergenciaoperátor. Az alkalmazásra példaként szolgál bizonyos nem-newtoni

folyadékok, az ún. hatványközegek mechanikája. Egy folyadékot newtoninak

nevezünk, ha a nyírófeszültség, vagyis a folyadék felszínével párhuzamos erő

nagysága egyenesen arányos a hatására létrejövő sebességváltozással. Azokat

a folyadékokat, amelyekre ez nem teljesül, nem-newtoniaknak nevezzük. New-

toni folyadék például a víz, nem-newtoniak például különféle sóoldatok, a

35



vér, stb. Egy folyadékot hatványközegnek nevezünk, ha a nyírófeszültség és a

hatására létrejövő sebességváltozás közötti kapcsolatot hatványfüggvény írja

le. Ilyen közegekre példa a tej, a festékek, bizonyos polimerek olvadékai, vagy

az ásványi anyagokat tartalmazó zagy (lásd pl. [39]).

Az alkalmazások fontossága miatt (pl. [13], [14]), de magában is érdekes

kérdés, hogy a másodrendű lineáris egyenletekre kidolgozott elméletek meny-

nyiben vihetőek át a féllineáris esetre. A téma széleskörű irodalommal ren-

delkezik, ehhez kapcsolódóan már több monográfia is született (lásd például

[4], [17], [18] és a bennük szereplő hivatkozásokat).

3.2.2. Előzmények és eredmények

Hasonlóan az (1.1) egyenlethez, a (3.22) egyenlet esetében is egy nem-

triviális x0 megoldást kis megoldásnak nevezünk, ha arra limt→∞ x0(t) = 0

teljesül. Milloux tételének (1.2. tétel) elegendőségét kis megoldás létezésére

Atkinson és Elbert [6] terjesztette ki a féllineáris egyenletre. Az Armellini-

Tonelli-Sansone tételt, mely azt garantálja, hogy minden megoldás kis meg-

oldás lesz, Bihari [9] általánosította abban az esetben, amikor q folytonosan

differenciálható és regulárisan növekedő módon tart végtelenbe, ha t → ∞ (a

pontos definícióért lásd a Bevezetést). Ahogy azt már korábban említettük,

az irreguláris növekedésre a legegyszerűbb példa egy monoton növekedő lép-

csősfüggvény. Tekintsük a (3.22) egyenletet abban az esetben, amikor a q

együttható az utóbb említett tulajdonságú:

x′′|x′|n−1 + qk|x|n−1x = 0 (tk ≤ t < tk+1, k = 0, 1, . . .), (3.25)

ahol

0 = t0 < t1 < . . . < tk < tk+1 < . . . , lim
k→∞

tk = ∞,

0 < q0 ≤ q1 ≤ . . . ≤ qk ≤ qk+1 ≤ . . . , lim
k→∞

qk = ∞.
(3.26)
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Egy x : [0,∞) → R függvény megoldása a (3.25) egyenletnek, ha

a) x kétszer differenciálható és megoldása a (3.25) egyenletnek a [tn−1, tn)

intervallumokon (n = 1, 2, . . .),

b) x folytonosan differenciálható a [0,∞) intervallumon.

Elbertnek [20] a folytonos együtthatós (3.22) egyenlet megoldásainak létezé-

sét és unicitását garantáló tételéből következik a (3.25) egyenlet megoldá-

sainak egzisztenciája és unicitása is, mivel a (3.25) egyenlet adott (x(0), x′(0))

kezdeti értékekhez tartozó megoldása az egyes [tn−1, tn) intervallumokhoz tar-

tozó konstans együtthatós egyenletek megoldásával és az adott kezdeti érték-

ből kiindulva azok összeillesztésével adhatóak meg.

Hatvani [28] bizonyította be, hogy a (3.26) feltételek mellett a (3.25)

egyenletnek is létezik kis megoldása. Az n = 1 esetre, amikor a féllineáris

egyenlet megegyezik az (1.1) lineáris egyenlettel, Elbert [21, 23] a 3.2. tétel

felhasználásával általánosította az Armellini-Tonelli-Sansone tételt.

3.4. Tétel (Elbert, [21, 23]). Legyen n = 1. Ha
∞∑
k=0

min

{
1− qk

qk+1

, 1− qk+1

qk+2

}
sin2(

√
qk+1(tk+2 − tk+1)) = ∞, (3.27)

akkor az

x′′ + qkx = 0 (tk ≤ t < tk+1, k = 0, 1, . . .) (3.28)

lineáris egyenlet minden nemtriviális megoldása kis megoldás.

A fejezet célja, hogy kiterjesszük a 3.4. tételt a (3.25) egyenlet n > 1 esetére.

Ehhez szükségünk lesz a Lundberg [41] és Elbert [20] által bevezetett ún.

általánosított szinusz és koszinusz függvényekre. Legyen S = Sn(Φ) azS ′′|S ′|n−1 + S|S|n−1 = 0,

S(0) = 0, S ′(0) = 1
(3.29)
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kezdetiérték-probléma megoldása. Az egyenletet S ′-vel megszorozva, majd a

[0,Φ] intervallumon kiintegrálva az

|S(Φ)|n+1 + |S ′(Φ)|n+1 = 1 (−∞ < Φ < ∞), (3.30)

összefüggést kapjuk, mely az n = 1 esethez tartozó sin2 φ + cos2 φ = 1

pitagoraszi azonosság általánosítása. Abban az esetben, amikor S és S ′ is

nemnegatív, S inverze a következő formulával adható meg:

Φ =

∫ S

0

dt

(1− tn+1)
1

n+1

, (0 ≤ S ≤ 1).

Legyen

π̂ := 2

∫ 1

0

dt

(1− tn+1)
1

n+1

,

melyből kapjuk (lásd [20]), hogy

π̂ =
2 π
n+1

sin π
n+1

,

ami az n = 1 közönséges esetben megegyezik π-vel. Az előzőek alapján S

egyértelműen definiált a [0, π̂/2] intervallumon. S a következő definíció szerint

kiterjeszthető a teljes számegyenesre 2π̂ periodikus függvényként:

S(Φ) =


S(π̂ − Φ), ha

π̂

2
≤ Φ ≤ π̂,

− S(Φ− π̂), ha π̂ ≤ Φ ≤ 2π̂,

S(Φ− 2kπ̂), ahol k = ±1,±2, . . .

A definícióból következik, hogy S ′ is 2π̂ periodikus függvény, továbbá, ha-

sonlóan a közönséges esethez, S páratlan, illetve S ′ páros. Szükségünk lesz

az általánosított tangens függvényre is, mely a közönséges esethez hasonlóan

definiálható:

T (Φ) :=
S(Φ)

S ′(Φ)
.
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Az általánosított trigonometrikus függvények vizsgálatának központi szerep

jut a féllineáris egyenletek elméletében, a témának jelentős irodalma van

(lásd pl. [11], [12], [15], [49], illetve pl. a [40] monográfiát és a benne szereplő

hivatkozásokat).

Az előkészületek után most már kimondhatjuk a fejezet fő tételét.

3.5. Tétel. Legyen n > 1. Ekkor, ha

∞∑
k=0

min

{
1− qk

qk+1

, 1− qk+1

qk+2

} ∣∣∣∣∣S
(
q

1
n+1
k+1 (tk+2 − tk+1)

)∣∣∣∣∣
n+1

= ∞, (3.31)

a (3.25) egyenlet minden nemtriviális megoldása kis megoldás.

Bizonyítás. Először is, vezessünk be egy új τ időváltozót:

τ = φ(t) =

∫ t

0

q(s)
1

n+1 ds, τk := φ(tk). (3.32)

Legyen x(t) = x(φ−1(τ)) =: y(τ), ahol φ−1 a φ inverz függvénye. Ekkor

x′(t) = ẏ(τ)q
1

n+1 (t), x′′(t) = ÿ(τ)q
2

n+1 (t) (t ̸= tk, k = 0, 1, 2, . . .)

teljesül, ahol ()· = d/dτ . Ezt felhasználva a (3.25) egyenlet az alábbi alakot

ölti:

ÿ(τ)|ẏ(τ)|n−1 + |y(τ)|n−1y(τ) = 0 (τk ≤ τ < τk+1, k = 0, 1, . . .). (3.33)

Mivel a (3.25) egyenlet tetszőleges x megoldásának folytonosan differenciál-

hatónak kell lennie a (0,∞) intervallumon, ezért minden k ∈ N esetén a

x′(tk+1 − 0) = x′(tk+1 + 0) egyenlőségnek teljesülnie kell, vagyis

ẏ(τk+1) = ẏ(τk+1 + 0) =

(
qk
qk+1

) 1
n+1

ẏ(τk+1 − 0),

ahol f(t − 0) és f(t + 0) az f függvény t pontbeli bal, illetve jobb oldali

határértékét jelöli. Emiatt a (3.25) egyenlet ekvivalens a következő impulzív
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differenciálegyenlettel: ÿ(τ)|ẏ(τ)|n−1 + |y(τ)|n−1y(τ) = 0, τ ̸= τk

ẏ(τk+1) =
(

qk
qk+1

) 1
n+1

ẏ(τk+1 − 0), k = 0, 1, 2, . . . .
(3.34)

Vezessük be az ẏ = ρṠ(Φ), y = ρS(Φ) általánosított polárkoordinátákat,

ahol

ρ = (|ẏ|n+1 + |y|n+1)
1

n+1 , T (Φ) =
y

ẏ
, −∞ < Φ < ∞.

Ez az ún. általánosított Prüfer-transzformáció. Ezen változók segítségével

a (3.33) egyenletet a

Φ̇ = 1, ρ̇ = 0 (τk ≤ τ < τk+1, k = 0, 1, . . .) (3.35)

rendszerré alakíthatjuk. Ennek alapján a (3.34) egyenlet dinamikája az (ẏ, y)

Minkowski-síkon (lásd [47]) a következő. Tetszőleges (ẏ0, y0) pont a [τ0, τ1)

időintervallumon az origó körüli ρ0 := (|ẏ0|n+1+|y0|n+1)
1

n+1 sugarú Minkowski-

körön mozog egységnyi szögsebességgel, majd a τ1 időpillanatban a (ẏ(τ1 −

0), y(τ1 − 0)) pont a

(ẏ(τ1), y(τ1)) :=

((
q0
q1

) 1
n+1

ẏ(τ1 − 0), y(τ1 − 0)

)

pontba ugrik át, majd ez a folyamat ismétlődik az egymást követő [τ1, τ2),

[τ2, τ3), . . . időintervallumokon. Definiáljuk az alábbiakat:

ρk :=
(
|ẏ(τk)|n+1 + |y(τk)|n+1

) 1
n+1 , Φk := Φ(τk), Ωk := τk+1 − τk,

∆ρk := ρk+1 − ρk, κk := Φk+1 − (Φk + Ωk), k = 0, 1, . . .

Az előzőek alapján nyilvánvaló, hogy

Φk+1 = Φ0 +
k∑

i=0

(Ωi + κi), ρk+1 = ρ0 +
k∑

i=0

∆ρi, k = 0, 1 . . .
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Mivel ∆ρi ≤ 0, a {ρk}∞k=0 sorozat monoton csökkenő így létezik határértéke.

Legyen ρ̄ := limk→∞ ρk. Tegyük fel, hogy nem igaz a tétel állítása, azaz létezik

legalább egy (ρ,Φ) megoldás, amelyre ρ̄ > 0 teljesül. Tekintsünk egy ilyen

megoldást. −∆ρi-re érvényes az alábbi becslés:

−∆ρi = ρi − ρi+1

= (|ẏ(τi)|n+1 + |y(τi)|n+1)
1

n+1 − (|ẏ(τi+1)|n+1 + |y(τi+1)|n+1)
1

n+1

= (|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1)
1

n+1

− (|ẏ(τi+1)|n+1 + |y(τi+1)|n+1)
1

n+1

= (|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1)
1

n+1

−
(

qi
qi+1

|ẏ(τi+1 − 0)|n+1 + |y(τi+1 − 0)|n+1

) 1
n+1

=
1

n+ 1

(
ρn+1
i+1 + ηi

(
ρn+1
i − ρn+1

i+1

))− n
n+1

×
(
1− qi

qi+1

)
|ẏ(τi+1 − 0)|n+1

≥ 1

n+ 1

(
(ρ̄)n+1

)− n
n+1

(
1− qi

qi+1

)
ρn+1
i |S ′(Φi + Ωi)|n+1

≥ ρ̄

n+ 1

(
1− qi

qi+1

)
|S ′(Φi + Ωi)|n+1,

(3.36)

ahol ηi ∈ (0, 1) minden i ∈ N0 esetén. Hasonlóan a 3.3. tétel bizonyításához,

most is |S ′(Φi + Ωi)|-t kell alulról becsülnünk |S(Ωi)| vagy |S(Ωi+1)| segít-

ségével. Abban a bizonyításban a koszinusz függvény addíciós formuláját

használtuk fel ehhez. Mivel tudomásunk szerint az általános esetben egzakt

addíciós formulát S-re és S ′-re még nem sikerült találni, így jelen esetben

egy más módszert alkalmazunk. (Az addíciós formulákra vonatkozó részered-

ményeket lásd pl. az [1] és a [2] dolgozatokban.)

Az |S ′(Φ+Ω)| és |S(Ω)| függvények π̂ periódusúak mind a Φ, mind pedig

az Ω változóra nézve, így a (Φ,Ω) síkon történő vizsgálatukhoz elegendő a
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[−π̂/2, π̂/2]× [−π̂/2, π̂/2] téglalapot tekintenünk. Sőt, köszönhetően S és S ′

szimmetria-tulajdonságainak |S ′(Φ+Ω)| alsó becslését elég a Q := [0, π̂/2]×

[0, π̂/2] téglalapon megadnunk.

Definiáljuk a

Qε := {(Φ,Ω) ∈ Q : |S ′(Φ)| < ε}

halmazt, ahol ε > 0 elegendően kicsi. Legyen

Qγ := {(Φ,Ω) ∈ Q : |S ′(Φ)| ≤ γ|S(Ω)|} (0 < γ < 1),

és tekintsük először a Qγ
ε := Qε ∩Qγ halmazt (lásd a 3.3. ábrát). A

3.3. ábra. A Qε, Q
γ és Qγ

ε halmazok

Γ : |S ′(Φ)| = γ|S(Ω)|

egyenlőség által definiált görbe egy darabja része az utóbbi halmaz határá-

nak. Megmutatjuk, hogy ha n > 1, akkor a Γ görbe érintője a (π̂/2, 0) pont-
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ban a Φ = π̂/2 egyenletű egyenes, azaz

lim
Φ→π

2
−0

f ′(Φ) = −∞, ahol f(Φ) := S−1

(
1

γ
S ′(Φ)

)
. (3.37)

Könnyen ellenőrizhető, hogy

(S−1)′(W ) =
1

(1−W n+1)
1

n+1

(0 ≤ W ≤ 1).

A (3.29) differenciálegyenlet alapján

S ′′(Φ) = −|S ′(Φ)|−n+1|S(Φ)|n−1S(Φ), (3.38)

melyet felhasználva kapjuk, hogy

d
dΦ

f(Φ) = f ′(Φ) =
− 1

γ
(S ′(Φ))−n+1Sn(Φ)(

1− 1
γn+1 (S ′(Φ))n+1

) 1
n+1

,

tehát a (3.37) határérték γ értékétől függetlenül −∞. Ebből következik, hogy

található olyan δ > 0, hogy

f ′(Φ) < −2

(
(S ′)−1(ε) <

π̂

2
− δ < Φ <

π̂

2

)
teljesüljön, így

f(Φ) ≥ −2

(
Φ− π̂

2

)
,

amely azt jelenti, hogy a (π̂/2, 0) pont közelében a Γ görbe az Ω = −2(Φ−

π̂/2) egyenestől jobbra helyezkedik el (lásd a 3.3. ábrát). |S ′(Φi + Ωi)|-nek

|S(Ωi)|-vel történő alsó becsléséhez a |S ′(Φ + Ω)| /|S(Ω)| hányadost fogjuk

vizsgálni. A (Φ,Ω) ∈ Qγ
ε pont helyett a vele ugyanazon a vízszintes egyenesen

lévő (π̂/2 − Ω/2,Ω) pontot véve, mely egyúttal a Φ = π̂/2 − Ω/2 egyenesre

is illeszkedik, a hányados értéke csökken (lásd ismét a 3.3. ábrát). Ennek
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alapján a L’Hospital szabály és a (3.38) összefüggés alkalmazásával a

limΦ→ π̂
2
−0,Ω→0+0, (Φ,Ω)∈Qγ

ε

|S ′(Φ + Ω)|
|S(Ω)|

≥ lim
Ω→0+0

−S ′
((

π̂
2
− 1

2
Ω
)
+ Ω

)
S(Ω)

= lim
Ω→0+0

−S ′
(

π̂
2
+ 1

2
Ω
)

S(Ω)
= lim

Ω→0+0

−S ′′
(

π̂
2
+ 1

2
Ω
)

1
2

S ′(Ω)

= lim
Ω→0+0

∣∣∣S ′
(

π̂
2
+ Ω

2

)∣∣∣−n+1 ∣∣∣S ( π̂
2
+ Ω

2

)∣∣∣n−1

S
(

π̂
2
+ Ω

2

)
2S ′(Ω)

= ∞

becsléshez jutunk. Ebből következik, hogy található olyan κ > 0, hogy

|S ′(Φ + Ω)| ≥ κ|S(Ω)| ((Φ,Ω) ∈ Qγ
ε ) (3.39)

teljesüljön.

Most már minden eszköz a rendelkezésünkre áll, hogy a (3.36) becslést

folytatni tudjuk. Három alesetet fogunk megkülönböztetni.

A) (Φi,Ωi) ∈ Qγ
ε . Ekkor (3.36) és (3.39) alapján kapjuk, hogy

−∆ρi ≥
ρ

n+ 1

(
1− qi

qi+1

)
κn+1|S(Ωi)|n+1. (3.40)

A másik két esetben −∆ρi−1-t fogjuk becsülni. A (3.20) egyenlőtlenséghez

hasonlóan megmutatható, hogy

|S ′(Φi−1 + Ωi−1)| ≥ |S ′(Φi)|

is mindig teljesül, így

−∆ρi−1 ≥
ρ

n+ 1

(
1− qi−1

qi

)
|S ′(Φi−1 + Ωi−1)|n+1

≥ ρ

n+ 1

(
1− qi−1

qi

)
|S ′(Φi)|n+1.

B) (Φi,Ωi) ∈ Qε\Qγ
ε . Ekkor |S ′(Φi)| ≥ γ|S(Ωi)|, ezért

−∆ρi−1 ≥ γn+1 ρ

n+ 1

(
1− qi−1

qi

)
|S(Ωi)|n+1. (3.41)
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C) (Φi,Ωi) ∈ Q\Qε. Ebben az esetben |S ′(Φi)| ≥ ε|S(Ωi)|, így

−∆ρi−1 ≥ εn+1 ρ

n+ 1

(
1− qi−1

qi

)
|S(Ωi)|n+1. (3.42)

Definiáljuk a C számot a következőképp:

C :=
ρ

n+ 1
min{κn+1; γn+1; εn+1} > 0.

A (3.40), (3.41) és (3.42) becslések alapján tetszőleges i index esetén

Cmin

{
1− qi−1

qi
; 1− qi

qi+1

}
|S(Ωi)|n+1 ≤ ∆ρi−1 −∆ρi = ρi−1 − ρi+1

teljesül. Ezen egyenlőtlenségeket összegezve kapjuk, hogy

C
∞∑
i=1

min

{
1− qi−1

qi
; 1− qi

qi+1

}
|S(Ωi)|n+1 ≤ ρ0 − ρ < ∞,

ami ellentmondás.

A 3.5. tétel szerint az n > 1 esetben a (3.31) feltétel elegendő a (3.25)

egyenlet triviális megoldásának x-re vonatkozó aszimptotikus stabilitásához.

A következő példa mutatja, hogy ennek nem teljesülése esetén található olyan

megoldás, amely nem kis megoldás. Legyen

n =: 1,1, tk := kπ̂, qk := kn+1, (k = 1, 2, . . .), (3.43)

ekkor a (3.31) feltételben szereplő sor összege 0, az (x′(0), x(0)) = (1, 0)

kezdeti értékből indított megoldás viszont nem kis megoldás (lásd a 3.4.

ábrát is).

Érdekes lenne kiterjeszteni a 3.5. tételt a 0 < n < 1 esetre is. Numerikus

szimulációk alapján úgy gondoljuk, hogy a tétel ebben az esetben is igaz.

Emellett a (3.43) feltételekben n megfelelő választásával a példa változatlanul

működik.
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3.4. ábra. A (3.25) egyenlet (x′(0), x(0)) = (1, 0) kezdeti értékből indított

megoldása a (3.43) feltételek mellett

Szintén érdekes probléma a kis megoldásokhoz tartozó kezdeti értékek

eloszlása. Jelölje C a Minkowski-egységkört, Y pedig C azon pontjait, ahon-

nan indított megoldások kis megoldások lesznek, X pedig legyen Y-nak C-re

vonatkoztatott komplementere. Az n = 1, vagyis a lineáris esetben vagy min-

den megoldás kis megoldás, vagy csak egy lineárisan független megoldás lesz

kis megoldás. Ez topológiai szempontból azt jelenti, hogy ha létezik legalább

egy olyan megoldás, amelyik nem kis megoldás, akkor Y két összefüggő hal-

mazból áll. Atkinson és Elbert [6] ezt az állítást terjesztette ki a (3.22)

féllineáris egyenletre abban az esetben, amikor q folytonosan differenciálható.

3.6. Tétel (Atkinson-Elbert [6]). Tegyük fel, hogy X ̸= ∅. Ekkor léteznek

olyan α és β valós számok úgy, hogy α ≤ β ≤ α+ π̂, továbbá

Y =
∞∪

k=−∞

[α+ kπ̂, β + kπ̂], (3.44)

X =
∞∪

k=−∞

(β + kπ̂, α + (k + 1)π̂), (3.45)

ahol k befutja az egész számok halmazát.
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A tétel kiterjesztése a lépcsősfüggvény-együtthatós esetre még megoldatlan

probléma.

47



Összefoglalás

A disszertációban lépcsősfüggvény-együtthatós differenciálegyenletekhez

kapcsolódó két stabilitási problémát vizsgálunk. Elsőként elegendő feltételt

adunk meg kis megoldás, azaz nemtriviális, x-re vonatkozóan 0-hoz tartó

megoldás létezésére olyan másodrendű lineáris differenciálegyenletek eseté-

ben, amelyekben a rugalmassági és a súrlódási együttható is lépcsősfüggvény.

A tétel bizonyításához szükségünk van kétdimenziós differenciaegyenlet-rend-

szerek kis megoldásainak létezését garantáló feltételekre. Ezt a feladatot vizs-

gálva többet is bizonyítunk: szükséges és elegendő feltételeket adunk meg

tetszőleges véges dimenziós differenciaegyenlet-rendszerek kis megoldásának

létezésére.

A második részben az Armellini-Tonelli-Sansone tételt, mely azt garan-

tálja, hogy a változó rugalmassági együtthatós másodrendű lineáris differ-

enciálegyenlet minden megoldása kis megoldás legyen, terjesztjük ki az al-

kalmazásokban is fontos szerephez jutó ún. féllineáris differenciálegyenletek-

re a lépcsősfüggvény-együtthatós esetben. A féllineáris egyenletre vonatkozó

tétel bizonyításának eszközeként kétdimenziós differenciaegyenlet-rendszerek

triviális megoldásának aszimptotikus stabilitására vonatkozóan bizonyítunk

egy új tételt, majd az ott alkalmazott geometriai módszert általánosítjuk a

nemlineáris esetre.

Az értekezés a szerző következő publikációin alapul:
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• L. Hatvani, L. Székely, On the existence of small solutions of linear

difference equations with varying coefficients, J. Difference Equ. Appl.,

12 (2006), No. 8, 837–845.

• L. Hatvani, L. Székely, Asymptotic stability of two dimensional systems

of linear difference equations and of second order half-linear differential

equations with step function coefficients, E. J. Qualitative Theory of

Diff. Equ., 38 (2011), 1–17.

Tekintsük az

x′′ + a(t)x = 0 (LO)

másodrendű lineáris differenciálegyenletet, mely egy változó rugalmassági

együtthatójú lineáris oszcillátor mozgását írja le. Ha a : [0,∞) → [0,∞)

monoton nemcsökkenő függvény, akkor az (LO) egyenlet minden nemtriviális

megoldása oszcillál, |x| maximuma, azaz az amplitúdók nagysága nem nő, |x|

szomszédos maximumhelyei, azaz az x szomszédos szélsőértékhelyei közötti

távolság nem csökken. Az (LO) egyenlet egy x0 nemtriviális megoldását kis

megoldásnak nevezzük, ha arra limt→∞ x0(t) = 0 teljesül. Milloux [43], Prodi

[45] és Trevisan [51] bizonyította be, hogy ha a : [0,∞) → [0,∞) differen-

ciálható és nemcsökkenő, akkor az (LO) egyenletnek akkor és csakis akkor

létezik legalább egy kis megoldása, ha limt→∞ a(t) = ∞. Milloux egy olyan

példán keresztül, amelyben az együtthatófüggvény lépcsősfüggvény volt, azt

is megmutatta, hogy az (LO) egyenletnek nem feltétlenül minden megoldása

kis megoldás. Hartman [25] az

x′ = A(t)x (LR)

lineáris differenciálegyenlet-rendszert vizsgálva, ahol x m-dimenziós vektor,

A pedig a [0,∞) intervallumon értelmezett folytonos valós-valós függvények
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m×m-es mátrixa, az alábbi eredményre jutott:

1.3. Tétel. Tegyük fel, hogy az (LR) egyenlet minden x megoldása esetén

limt→∞ ∥x(t)∥ < ∞ teljesül. Ekkor az (LR) egyenletnek akkor és csakis akkor

létezik kis megoldása, ha∫ t

trA(s)ds → −∞ (t → ∞).

Ennek felhasználásával Hartman [25] Milloux, Prodi és Trevisan tételét rend-

szerekre is kiterjesztette, emellett belátta, hogy az a együtthatófüggvény

differenciálhatósága helyett elegendő feltenni annak folytonosságát.

Arra a kérdésre, milyen feltétel garantálja azt, hogy az (LO) egyenlet min-

den megoldása kis megoldás legyen, elsőként az Armellini-Tonelli-Sansone

[42] tétel adta meg a választ: elegendő, ha a folytonosan differenciálható

és „reguláris” módon tart végtelenbe. Ez leegyszerűsítve azt jelenti, hogy a

növekedése nem koncentrálódhat egy kis mértékű halmazra. Fontos megje-

gyezni, hogy ez a stabilitási tulajdonság gyengébb a triviális megoldás a-

szimptotikus stabilitásánál. Az irreguláris növekedésre a legegyszerűbb példa

egy monoton növekvő lépcsősfüggvény. Az alkalmazások terén az ilyen együtt-

hatós egyenleteknek az ún. bang-bang elv alapján fontos szerep jut például

az irányításelmélet egyes területein belül. A lépcsősfüggvény-együtthatós dif-

ferenciálegyenletek átírhatóak differenciaegyenlet-rendszerré, emiatt az ilyen

típusú egyenletekre vonatkozó tételek bizonyításai visszavezethetőek diffe-

renciaegyenletekre vonatkozó állítások bizonyítására.

A második fejezetben az

x′′ + c(t)x′ + a2(t)x = 0 (LOS)

változó rugalmassági együtthatós oszcillátor mozgását leíró egyenletet tekint-

jük abban az esetben, amikor a rugalmassági erőn kívül −c(t)x′ (c(t) ≥ 0)
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súrlódási erő is hat a rendszerre, ahol a és c lépcsősfüggvény, azaz adottak a

{tn}∞n=1, {an}∞n=1 és {cn}∞n=1 valós sorozatok az alábbi tulajdonságokkal:

0 = t0 < t1 < . . . < tn−1 < tn < . . . ; lim
n→∞

tn = ∞,

an > 0, cn ≥ 0 (n = 1, 2, . . .),

továbbá a(t) = an és c(t) = cn a [tn−1, tn) intervallumon. Abban az esetben,

amikor limn→∞ an = ∞ és cn = 0 (n = 1, 2, . . .), azaz nincs súrlódás, Hatvani

[27] belátta, hogy az

x′′ + a2nx = 0 (tn−1 ≤ t < tn, n = 1, 2, . . .)

egyenletnek létezik kis megoldása, ha
∑∞

n=1 max{an/an+1 − 1; 0} < ∞. Ter-

mészetes gondolat, hogy a súrlódás figyelembe vételével ez a feltétel, sőt, a

limn→∞ an = ∞ feltétel is tovább gyengíthető. Ezt mutatja fejezetünk fő

tétele.

2.2. Tétel. Tegyük fel, hogy teljesülnek az {an}∞n=1, {cn}∞n=1 és {tn}∞n=1

sorozatokra a fenti feltételek, és vezessük be a

γn :=
cn

2an + cn
[(2an − cn)(tn − tn−1)− 2]

jelölést. Továbbá, tegyük fel, hogy

(i) an > cn/2 (n = 1, 2, . . .),

(ii)
∞∑
k=1

(
−γk + ln

ak
ak+1

)
= −∞,

(iii) létezik K szám úgy, hogy tetszőleges n (n = 1, 2, . . .) esetén

n∑
k=1

(
−γk

2
+ lnmax

{
ak
ak+1

; 1

})
< K.
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Ekkor az (LOS) egyenletnek létezik legalább egy kis megoldása.

Az (LOS) egyenlet átírható egy vele ekvivalens kétdimenziós differen-

ciaegyenlet-rendszerré, ezért tételünk bizonyításához szükségünk van olyan

elegendő feltételre, amely ezen rendszerek kis megoldásainak létezését biz-

tosítja.

A következő szakaszban a kétdimenziós rendszerekre vonatkozó elegendő

feltétel problémáját egy még általánosabb kontextusban tárgyaljuk, még-

pedig szükséges és elegendő feltételeket adunk meg tetszőleges véges dimen-

ziós differenciaegyenlet-rendszerek kis megoldásának létezésére. Az alábbi

nem-autonóm rendszert tekintjük:

xn+1 = Mnxn, n = 0, 1, 2, . . . , (DE)

ahol xn ∈ Rm oszlopvektor, m ∈ N és Mn ∈ Rm×m m ×m-es valós mátrix.

Ennek az egyenletnek egy nemtriviális {xn}∞n=0 megoldását kis megoldásnak

nevezzük, ha arra limn→∞ xn = 0 teljesül. Célunk Hartman lineáris dif-

ferenciálegyenlet-rendszerre vonatkozó tételének a fenti differenciaegyenlet-

rendszerre való kiterjesztése. A szakasz első tételében (2.8. tétel) beláttuk,

hogy ha
∏∞

n=0 ∥Mn∥ < ∞, akkor a differenciaegyenlet minden megoldásá-

ra limn→∞ ∥xn∥ < ∞ teljesül, továbbá az egyenletnek akkor és csakis akkor

létezik legalább egy kis megoldása, ha
∏∞

n=0 |detMn| = 0. Ezzel Peilnek és

Pattersonnak [44], illetve Elbertnek [22] a megoldások normabeli határérté-

kének létezésére vonatkozó elegendő feltételeit tovább gyengítettük, továbbá

az Elberttől származó, a kétdimenziós esetre vonatkozó bizonyítási technika

tetszőleges véges dimenziós esetre történő kiterjesztésével Peil és Petterson

tételére egy új bizonyítást adunk.

Könnyen konstruálható példa arra, hogy a
∏∞

n=0 ∥Mn∥ < ∞ feltétel nem

szükséges a megoldások normabeli határértékének létezéséhez. Szintén egy-

szerű példával kimutatható az is, hogy a megoldások normabeli határértéké-
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nek létezése nem szükséges kis megoldás létezéséhez. A szakasz fő tételében

egy geometriai módszer segítségével megmutatjuk, hogy kis megoldások lé-

tezésére a
∏∞

n=0 |detMn| = 0 feltétel szükséges és elegendő abban az esetben

is, ha mindössze a ∥
∏q

n=pMn∥ (0 ≤ p ≤ q) sorozat korlátosságát követeljük

meg.

2.9. Tétel. Tegyük fel, hogy található olyan K ∈ R, hogy tetszőleges p, q ∈ N,

(0 ≤ p ≤ q) esetén ∥∥∥∥∥
q∏

n=p

Mn

∥∥∥∥∥ ≤ K

teljesül. Ekkor a (DE) egyenletnek akkor és csakis akkor létezik kis megoldása,

ha
∞∏
n=0

|detMn| = 0.

Egy példán keresztül megmutatjuk, hogy a tételben szereplő
∥∥∥∏q

n=pMn

∥∥∥
≤ K feltétel nem helyettesíthető a

∥∥∥∏k
n=0 Mn

∥∥∥ ≤ K (k = 0, 1, 2, . . . ) feltétel-

lel. Hogy helyettesíthető-e a
∏k

n=0 ∥Mn∥ ≤ K (k = 0, 1, 2, . . .) feltétellel,

tudomásunk szerint jelenleg még megoldatlan probléma.

A második fejezet utolsó szakaszában a 2.9. tétel nemlineáris differenciál-

egyenlet-rendszerekre történő kiterjesztésének lehetőségeit vizsgáljuk. Ilyen

egyenletek esetén kis megoldások létezésére vonatkozóan Karsai, Graef és Li

[37] Ljapunov-függvények segítségével már adott elegendő feltételt. Ennek a

feltételnek az alkalmazhatóság szempontjából kritikus része egy, a Ljapunov-

függvényre vonatkozó folytonossági feltétel. A lineáris esetre alkalmazott

topológiai módszert használva a legáltalánosabb esetben eddig csak olyan

részeredményt sikerült elérni, amely Karsaiék módszerével is megkapható,

ezt a szakasz keretein belül bemutatjuk.

A harmadik fejezetben a lineáris oszcillátor mozgását leíró (LO) egyen-
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let egy fontos általánosítását, a Bihari Imre [8] és Elbert Árpád [20] által

bevezetett

x′′|x′|n−1 + q(t)|x|n−1x = 0, n ∈ R+, (FD)

ún. féllineáris differenciálegyenletet tekintjük. Az egyenlet elnevezése arra

utal, hogy a megoldások tere homogén de nem additív. Erre az egyenletre

Bihari [9] bizonyított egy Armellini-Tonelli-Sansone típusú tételt, vagyis be-

bizonyította, hogy a triviális megoldás x-re vonatkozóan aszimptotikusan sta-

bilis, ha a q együttható-függvény sima és „regulárisan" tart végtelenbe, ha t →

∞. Ilyen típusú eredmény [33] dolgozatunkig nem volt ismert nem-regulárisan

növekedő együttható-függvényre. A 3. fejezetben ennek a dolgozatnak az

eredményeit ismertetve elegendő feltételt adunk a féllineáris (FD) egyenlet

triviális megoldásának x-re vonatkozó aszimptotikus stabilitására abban a

legtipikusabban nem-reguláris esetben, amikor q lépcsősfüggvény. Az ered-

mény annak köszönhető, hogy a lépcsősfüggvényt tartalmazó lineáris egyen-

letekre (n = 1 (FD)-ben) ismert lineáris technikákat sikerült helyettesíteni

egy geometriai módszerrel, amely nem igényli a linearitást, sőt, még a lineáris

esetre vonatkozó eredmények javítását is lehetővé teszi. Ennek köszönhetően

eredményünk tartalmazza, sőt, élesíti Elbert [21, 23] lineáris lépcsősfüggvény-

együtthatós egyenletre vonatkozó Armellini-Tonelli-Sansone tételeit, ezért

ezt a módszert a fejezet elején először lineáris differenciaegyenlet-rendszerekre

mutatjuk be.

A fejezet első szakaszában a (DE) lineáris differenciaegyenlet-rendszer tri-

viális megoldásának aszimptotikus stabilitását vizsgáljuk a kétváltozós eset-

ben. Jól ismert, hogy a
∏∞

n=0 ∥Mn∥ = 0 feltétel teljesülése esetén (DE) min-

den megoldása az origóhoz tart, ha n → ∞. Elbert [22] dolgozatában ezen

feltétel nem teljesülése esetén adott elegendő feltételt a triviális megoldás a-

szimptotikus stabilitására. Bizonyítása az Mn mátrixok egy „trükkös” dekom-
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pozícióján és az ebből származtatott speciális mátrixok normáinak a becslé-

sén alapul.

A (DE) egyenlet vizsgálatához egy stabilitási szempontból vele ekvivalens

(DE’) rendszert definiálunk, melynek megkonstruálása a polár faktorizáció

tételén (lásd például [34, p. 188]) alapul:

xn+1 = ∥Mn∥

 1 0

0 dn

 cosωn − sinωn

sinωn cosωn

xn,

0 ≤ dn ≤ 1, n = 0, 1, 2, . . . ,

(DE’)

ahol dn és ωn (n = 0, 1, 2, . . . ) az M0, . . . ,Mn mátrixegyütthatókból megha-

tározhatóak. A szakasz fő tétele a következő:

3.3. Tétel. Tegyük fel, hogy lim supn→∞
∏n

k=0 ∥Mk∥ < ∞. Ha
∞∑
n=0

min{1− dn, 1− dn+1} sin2 ωn+1 = ∞

teljesül, akkor a (DE’) differenciaegyenlet triviális megoldása aszimptotikusan

stabil.

A fejezet második szakaszában az (FD) féllineáris differenciálegyenletet

tekintjük.

3.5. Tétel. Legyen n > 1 és

0 = t0 < t1 < . . . < tk < tk+1 < . . . , lim
k→∞

tk = ∞,

0 < q0 ≤ q1 ≤ . . . ≤ qk ≤ qk+1 ≤ . . . , lim
k→∞

qk = ∞.

Ekkor az

x′′|x′|n−1 + qk|x|n−1x = 0 (tk ≤ t < tk+1, k = 0, 1, . . .)

egyenlet minden nemtriviális megoldása kis megoldás, ha

∞∑
k=0

min

{
1− qk

qk+1

, 1− qk+1

qk+2

} ∣∣∣∣∣S
(
q

1
n+1
k+1 (tk+2 − tk+1)

)∣∣∣∣∣
n+1

= ∞.
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A tételben szereplő S függvény az ún. általánosított szinusz függvény, azaz

az S ′′|S ′|n−1 + S|S|n−1 = 0,

S(0) = 0, S ′(0) = 1

kezdetiérték-problémának a megoldása, amely mellékesen eleget tesz az

|S(Φ)|n+1+ |S ′(Φ)|n+1 ≡ 1 azonosságnak. A bizonyítás menete hasonló a 3.3.

tételéhez, azonban becsléseink módszerét az általánosított trigonometrikus

függvények miatt módosítanunk kell. A nehézséget az okozza, hogy ezekre a

függvényekre egzakt addíciós formulák nem ismeretesek.
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Summary

In the dissertation we examine two stability problems related to differen-

tial equations with step function coefficients. First, we consider second order

linear differential equations, where both elasticity coefficient and damping

coefficient are step functions. For such equations, we give sufficient condi-

tion on the existence of a small solution, i.e. the existence of such a solution

which tends to 0 with respect to x. For the proof of the theorem, as a tool, we

need conditions guaranteeing the existence of a small solution of two dimen-

sional systems of linear difference equations. Although, we prove more: we

give necessary and sufficient conditions on the existence of a small solution

of difference equations of arbitrarily finite dimension.

In the second part of the thesis, we consider the Armellini-Tonelli-Sansone

theorem for second order linear differential equations with varying elasticity

coefficient. This theorem gives a sufficient condition on that all solutions

of such equations are small. We extend this theorem to the so-called half-

linear differential equations in the case when the coefficient is a step function.

Half-linear differential equations have many important applications. For the

extension of the Armellini-Tonelli-Sansone theorem to the half-linear case, we

need to prove a new theorem on the asymptotic stability of two dimensional

systems of linear difference equations. The proof is based on a geometric

method which applies also for the nonlinear case.
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Consider the second order differential equation

x′′ + a(t)x = 0 (LO)

describing the motion of a linear oscillator with varying elasticity coefficient.

If a : [0,∞) → [0,∞) is a monotone non-decreasing function, then all non-

trivial solutions of equation (LO) are oscillatory, the maxima of |x|, i.e. the

size of the amplitudes is non-increasing, and the neighboring maxima of |x|,

that is the distances between neighboring extrema of x are non-decreasing.

A nontrivial solution x0 of equation (LO) is called small if limt→∞ x0(t) = 0.

Milloux [43], Prodi [45] and Trevisan [51] proved that if a : [0,∞) → [0,∞) is

differentiable and non-decreasing then equation (LO) has at least one small

solution if and only if limt→∞ a(t) = ∞ holds. Milloux also constructed an

example with a step function coefficient a, where not all solutions of equation

(LO) were small. Hartman [25] investigated the linear system of differential

equations

x′ = A(t)x, (LR)

where x is an m dimensional vector and A is an m ×m matrix having real

continuous entries with domain [0,∞). He proved the following:
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Theorem 1.3 Suppose that for all solutions x of equation (LR) limt→∞ ∥x(t)∥

< ∞ holds. Then equation (LR) has at least one small solution if and only

if ∫ t

trA(s)ds → −∞ (t → ∞).

Based on this result, Hartman [25] extended the theorem of Milloux, Prodi

and Trevisan to systems of equations, furthermore, he proved that instead of

differentiability, it is sufficient to assume the continuity of a.

The Armellini-Tonelli-Sansone [42] theorem was the first to give a suffi-

cient condition on that all solutions of equation (LO) are small. The theorem

says that if a is continuously differentiable and tends "regularly" to infinity

as t → ∞ then limt→∞ x(t) = 0 holds for all solutions x of equation (LO).

Roughly speaking, this condition means that the growth of a cannot be lo-

cated to a set with small measure. It is important to note that this stabil-

ity property is weaker than the asymptotic stability of the trivial solution

of equation (LO). The simplest case of intermittent growth is when q is a

monotonously increasing step function. Such equations have an important

role for example in the field of control theory thanks to the so-called Bang-

Bang principle. Differential equations with step function coefficients can be

rewritten as systems of difference equations, thus the proof of theorems on

such equations can be deduced to the proof of statements on difference equa-

tions.

In Chapter 2 we consider the equation

x′′ + c(t)x′ + a2(t)x = 0 (LOS)

describing the motion of an oscillator where both elasticity coefficient a

and damping coefficient c are step functions. Namely, {tn}∞n=1, {an}∞n=1 and
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{cn}∞n=1 are real sequences with the following properties:

0 = t0 < t1 < . . . < tn−1 < tn < . . . ; lim
n→∞

tn = ∞,

an > 0, cn ≥ 0 (n = 1, 2, . . .),

furthermore, a(t) = an and c(t) = cn on the interval [tn, tn−1). In the case

when limn→∞ an = ∞ and damping doesn’t act, i.e. cn = 0 (n = 1, 2, . . .),

Hatvani [27] proved that there exists at least one small solution of equation

(LOS) if
∑∞

n=1 max {an/an+1 − 1; 0} < ∞ holds. It is natural to guess that

damping helps weaken this condition and even the condition limn→∞ an = ∞.

In fact, in the main theorem of this chapter we could prove the following.

Theorem 2.2 Assume that the above conditions on sequences {an}∞n=1,

{cn}∞n=1 and {tn}∞n=1 are satisfied, and let us introduce the notation

γn :=
cn

2an + cn
[(2an − cn)(tn − tn−1)− 2].

Suppose, in addition, that

(i) an > cn/2 (n = 1, 2, . . .),

(ii)
∞∑
k=1

(
−γk + ln

ak
ak+1

)
= −∞,

(iii) there is a number K such that for arbitrary n (n = 1, 2, . . .)

n∑
k=1

(
−γk

2
+ lnmax

{
ak
ak+1

; 1

})
< K

holds.

Then equation (LOS) has at least one small solution.

Equation (LOS) is equivalent with a two dimensional system of difference

equations, therefore for the proof of our theorem we need a sufficient condition

guaranteeing the existence of a small solution of such system.
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In the next section we discuss the problem of finding a sufficient condition

guaranteeing the existence of a small solution of two dimensional system of

difference equations in a more general manner, namely, we give necessary and

sufficient conditions for the existence of such solutions of arbitrarily finite

dimensional systems. We consider the following nonautonomous system of

difference equations

xn+1 = Mnxn, n = 0, 1, 2, . . . , (DE)

where xn ∈ Rm is a column vector, m ∈ N and Mn ∈ Rm×m is an m × m

matrix having real entries. A nontrivial {xn}∞n=0 solution of this equation is

called small if limn→∞ xn = 0. The aim of this section is to extend Hartman’s

theorem on linear system of differential equations to linear systems of differ-

ence equations. In Theorem 2.8 we prove that if
∏∞

n=0 ∥Mn∥ < ∞ holds, then

limn→∞ ∥xn∥ < ∞ is satisfied for all solutions of equation (DE), furthermore,

the equation has at least one small solution if and only if
∏∞

n=0 |detMn| = 0.

With this result we weaken the sufficient conditions on the existence of the

limit of the solutions’ norm given by Peil and Patterson [44] and Elbert [22].

In addition, we extend Elbert’s method of proof from two dimension to ar-

bitrary dimension m and we give a new proof to the theorem of Peil and

Patterson.

One can easily see, that
∏∞

n=0 ∥Mn∥ < ∞ is not necessary for the ex-

istence of the limit of the norm of all solutions of (DE). A simple example

can be constructed to show that this property is not essential from the point

of view of the existence of a small solutions. Using a geometric method of

proof we show that
∏∞

n=0 |detMn| = 0 is necessary and sufficient to have at

least one small solution if we require only the boundedness of the sequence

∥
∏q

n=pMn∥ (0 ≤ p ≤ q).

Theorem 2.9 Suppose that there is a K ∈ R such that for every p, q ∈ N,
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(0 ≤ p ≤ q) we have ∥∥∥∥∥
q∏

n=p

Mn

∥∥∥∥∥ ≤ K.

Then there exists at least one small solution of (DE) if and only if

∞∏
n=0

|detMn| = 0.

With an example we show that condition
∥∥∥∏q

n=p Mn

∥∥∥ ≤ K in Theorem 2.9

cannot be replaced by
∥∥∥∏k

n=0 Mn

∥∥∥ ≤ K (k = 0, 1, 2, . . . ). The question that

this can condition be replaced by
∏k

n=0 ∥Mn∥ ≤ K (k = 0, 1, 2, . . .) has

remained open here.

In the final section of this chapter we examine the possible extensions of

Theorem 2.9 to nonlinear systems of difference equations. With the aid of

a Lyapunov function, Karsai, Graef and Li [37] gave a sufficient condition

for such equations to have at least one small solution. Currently, with the

application of our topological method of proof, we could only conclude such

result which is a consequence of their theorem. In this section we discuss this

result as well.

In Chapter 3 we consider the half-linear second order differential equation

x′′|x′|n−1 + q(t)|x|n−1x = 0, n ∈ R+, (FD)

which is an important generalization of the second order differential equation

(LO) and was introduced by Imre Bihari [8] and Árpád Elbert [20]. They

called it half-linear because its solution set is homogeneous, but it is not

additive. To this equation Bihari [9] proved an Armellini-Tonelli-Sanone-type

theorem, namely, he proved that the trivial solution of (LO) is asymptotically

stable with respect to x if coefficient q is continuously differentiable and
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tends "regularly" to infinity as t → ∞. Such result for this equation with

irregularly (or intermittently) growing coefficients was unknown until the

appearance of our paper [33]. In Chapter 3 we give a sufficient condition on

the asymptotic stability of the trivial solution with respect to x in the case

when coefficient q is the most typically intermittently growing, that is when

q is a step function. In the proof of our theorem we could successfully replace

the method used for the linear case (n = 1 in (FD)) to a geometric technique

which does not require linearity. What is more, this new method of proof

allows us to sharpen the known results for the linear case. Therefore, our

results not just include, but even sharpen the Armellini-Tonelli-Sanone-type

theorems of Elbert [21, 23] for linear differential equations with step function

coefficients, thus we first introduce this method to linear systems of difference

equations.

In the first section we investigate the asymptotic stability of the trivial

solution of the linear system of difference equations (DE) in the case when it is

two dimensional. It is well-known that if
∏∞

n=0 ∥Mn∥ = 0, then all solutions of

equation (DE) tend to zero as n → ∞. Elbert [22] gave a sufficient condition

for the asymptotic stability in the case when the previous assumption does

not hold. His proof was based on estimation of the norm of some special

matrices and a „tricky” decomposition of matrices Mn.

To investigate equation (DE), we define a difference equation (DE’) on

the plane which has the same stability properties as equation (DE). The

construction of this equation is based on the polar factorization theorem (see

eg. [34, p. 188]). Let

xn+1 = ∥Mn∥

 1 0

0 dn

 cosωn − sinωn

sinωn cosωn

xn,

0 ≤ dn ≤ 1, n = 0, 1, 2, . . . ,

(DE’)
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where dn and ωn (n = 0, 1, 2, . . . ) can be calculated from matrices M0, . . . ,Mn.

The main theorem of this section is as follows:

Theorem 3.3 Suppose that lim supn→∞
∏n

k=0 ∥Mk∥ < ∞. If
∞∑
n=0

min{1− dn, 1− dn+1} sin2 ωn+1 = ∞,

then the zero solution of difference equation (DE’) is asymptotically stable.

In the second section we consider the half-linear second order differential

equation (DE).

Theorem 3.5 Let n > 1 and

0 = t0 < t1 < . . . < tk < tk+1 < . . . , lim
k→∞

tk = ∞,

0 < q0 ≤ q1 ≤ . . . ≤ qk ≤ qk+1 ≤ . . . , lim
k→∞

qk = ∞.

Then all non-trivial solutions of equation

x′′|x′|n−1 + qk|x|n−1x = 0 (tk ≤ t < tk+1, k = 0, 1, . . .)

are small, if

∞∑
k=0

min

{
1− qk

qk+1

, 1− qk+1

qk+2

} ∣∣∣∣∣S
(
q

1
n+1
k+1 (tk+2 − tk+1)

)∣∣∣∣∣
n+1

= ∞.

The function S appearing in the theorem is the so-called generalized sine

function, that is, the solution of the initial value problemS ′′|S ′|n−1 + S|S|n−1 = 0,

S(0) = 0, S ′(0) = 1.

Note, that S satisfies the identity |S(Φ)|n+1 + |S ′(Φ)|n+1 ≡ 1. The proof is

similar to the one of Theorem 3.3, but due to the appearance of the gener-

alized trigonometric functions we have to modify our estimations. The main

difficulty is that exact addition formulae for these functions are unknown.
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