University of Szeged

Szegedi Tudoméanyegyetem
Természettudomanyi és Informatikai Kar

SZTE Informatika Doktori Iskola

DOCTORAL DISSERTATION

THE k-CLIQUE PROBLEM

USAGE, MODELING EXPRESSIVITY,
SERIAL AND MASSIVELY PARALLEL
ALGORITHMS

ZAVALNILJ, Bogdan

Szeged, 2020.

Aduvisors:
Dr. KrRESZ, Miklos
Dr. SZABO, Sandor

Contents

(1 Introduction — graphs and cliques| 1
(1.1 ~ Definition of the problems| 3
(1.1.1 ~ Other related problems| 4

(1.2 Motivation and background| 5

2 Modeling expressivity] 6
[2.1 Puzzles, games, codes and other combinatorial problems| 7
2.1.1 Latin squares| 7

[2.1.2 Nom-attacking queens|. 10

2.1.3 Monotonic matrices oL 10

[2.1.4 Costas arrays| 11

[2.1.5 Communication and coding theory| 13

[2.2 Subgraph isomorphism|o 14
2.2.1 Chemistry| L 14

[2.2.2 Pattern matching and Artificial Intelligence| 15

2.3 Job shop scheduling|. 15
[2.3.1 The clique reformulation of the problem| 16

2.3.2 A small example, 17

[2.3.3 Numerical experiments| 18

2.4 Network analysis| 20

[3 Modeling graph and hypergraph coloring with cliques| 22
[3.1 Legal coloring of the nodes of a graph| 22
B.1.1 Classical formulation 23

[3.1.2 The k-clique approach| 23

[3.2 3-clique free coloring| 25
[3.3 Reducing hypergraph coloring to clique search| 30
[3.3.1 Reducing hypergraph problems to ordinary graph |

| problems|.o oo 32
[3.3.2 The auxiliary hypergraphl 34

[3.3.3 Examples 36

[3.3.4 An application|o 44

[4 Maximum clique solvers, kernelization, auxiliary algorithms| 48
[4.1 Sequential algorithms|. 48
[4.2 Auxiliary algorithms| 49

[4.2.1 Coloring 49
4.2.2 Fractional and 0-fold coloringl 50
4.2.3 s-clique free coloringl 51
[4.2.4 kdgecoloringl 53
42,5 Lovasz numberl oL 54
[4.2.6 The partial MaxSAT bound 54
[4.2.7 Numerical experiments| 55
43 Kernelizationl 56
4.3.1 Structions| 56
4.3.2 Colorindices 59
43,3 Dominancel oL 59

[New method for k-clique search and its extension to a max- |

[1mum clique solver| 60
[>.1 Backeground o 61
[>.2 Nuts and Bolts for k-clique search|. 61

[>.2.1 Branching and Bounding| 62
[>.2.2 Efficient coloringl 63
[5.2.3 Recoloring thenodes| 63
[5.2.4 Rearranging branching nodes| 64
[5.3 Numerical results for maximum cliquel 64
[b.3.1 Test graphs| 66
b.3.2 Resultsl. 67
H.3.3 Bvaluationl.o 67
.4 PACE competition|, 70

[6 Concepts on parallelization| 72
[6.1 The problem of even distribution| 72
(6.2 Effects on speedup|o 74

[6.2.1 Problem of decomposition| 75
[6.2.2 Possible decomposition methods| 76
[6.2.3 Division by the branching tree/ 7
[6.2.4 Fixed and dynamic distribution| 7
[6.3 Evaluation of scalability] 78
6.3.1 Problematiccasel 78
[6.4 Framework for parallel implementations|. 79

ii

[06.4.2 Scheduling|.00, 80
[6.4.3 Problems arising ot parallelization|. 81
6.4.4 Amdahl’s law and Gustavson’s law| 82
[6.4.5 Superlinear speed-up| L. 83

7 Parallelization by disturbing structures| 84
[7.1 Disturbing structures| 84
[7.1.1 k-clique covering nodeset| 85
[7.1.2 k-clique covering s-cliqueset|. 86

[7.2 Partitioning the k-clique problem for parallel architectures] . . 88
[7.2.1 k-clique covering node set partitioning | 89
[7.2.2 Partitioning using the Lovasz number| 89
[7.2.3 Partitioning by k-clique covering edge set|. 90
[7.2.4 Parallelization by s-free quasi coloring 90
[7.2.5 Parallelization by quasi coloringl 91

[7.3 Increasing and modifying the subproblems| 92
[7.3.1 Refinement by usage of edge weights| 93

[8 The Las Vegas method for parallelization| 94
[8.1 Implementation of a massively parallel algorithm| 95
[8.1.1 Parallel Las Vegas algorithms| 95
[8.1.2 Other possible usage| 98
BIZ Testd o o 98
8.1.4 FEvaluation|. oo 99

(8.2 Further possible usage] 102
[8.2.1 Anything goes|. 102
[8.2.2 Combined with disturbing structures 103
[8.2.3 Las Vegas search for disturbing structures 103

[9 Summary and conclusions| 105
DI Thesed o 105
9.1.1 1% thesisl. 105
0.1.2 2" thesisl 106
9.1.3 3" thesisl. 106
9.1.4 4% thesisl. 106
0.1.5 5™ thesisl. L 106
0.1.6 6" thesisl. 107

9.2 Futureworkl 107
0.3 Author’sownresultsd 107

il

(A 6sszefoglal()| 109

A1 Tézisekl. oo 109
AT, Blsé tézisl oo 109

[A.1.2. Masodik tézislo 109

A.1.3. Harmadik tézisl 0. 110

A.1.4. Negvedik tézis|. L. 110

Otédik tézisl 110

[A.1.6. Hatodik téziglo 110

[A.2. A szerz6 sajat eredményell 110
[B__Publications related to this thesisl 112
(Bibliography| 115

v

List of Figures

2.1 Example of a 9 x 9 Latin squarel. 7
[2.2 Example of a 3 x 3 Latin squarel. 9
[2.3 Example of a sudoku puzzle and 1t’s solution| 9
[2.4 Example of a Five Queens problem solution| 10
[2.5 Example of an n = 8 size Monotonic Matrix 11
[2.6 Example of an n = 8 size Costas array| 12
[2.7 Depiction of constraints 1, 2, 3and 4.[. 13
[2.8 Possible time slots (triplets) for the given problem in Table |
| [2.1| with makespan of 6 hours.| 17
[3.1 A graphical representation of the graph G in Example[3.1]| . . 28
[3.2 On the left is the conflict graph G in Example [3.2l Each |

distinct two among the elements of {5,6,7,8} are adjacent.

the same holds for the sets {9,10, 11,12}, {13,14,15,16},

{17,18,19,20}, {1,2}, {3,4}. In order to avoid an overly clut-

tered picture these edges are not drawn. On the right is a

condensed form of the conflict graph. The nodes inside each

|
|
ovals are pair-wise adjacent. An edge between ovals represents [
several edges. The number of the edges are given near to the |

ovals and near to the edges.| 37

[3.3

The condensed form of the conflict graph G in Example [3.3] |

The nodes inside an oval are pair-wise connected by edges. |

Edges between ovals represent many edges. The number of [

| edges are written near to the ovals and near to the edges.|. . . 41
[3.4 Results of the A series, where an adge can be a (' edge or a |
[D edge but not both{ 0L 46
[3.5 Results of the B series, where an edge can be (' edge and D |
[edge at the same time] 47
[4.1 The I" auxiliary graph tor C5 and its node coloring with 5 colors.| 52

[c.1 PACE 2019, Exact Vertex Cover track. Number of solved |

instances in given time limit — the medalists compared to others.| 71

[7.1 A 5-clique covering node set — {ds,c3, a5} 86
[r.2 A o-clique covering edge set — |
{{dg,d2}7{03,b3},{b3,a5},{a4,a5}}.l 87
[8.1 The sorted running times of the monoton-9 subproblems.| . . . 101
[8.2 T'he time sequence of running times of the monoton-9 sub- |
problems.| 102

vi

List of Tables

2.1 Processing times on the machines in the small example]
[2.2 Nodes ot the graph G in the small example|
[2.3 The adjacency matrix of the graph G in the small example . .

17
18
19

[3.1 'T'he adjacency matrix of the auxiliary graph [' in Example[3.1l] 29

[3.2 The adjacency matrix of the graph G' in Example (3.1} 29
[3.3 T'he nodes ot the auxiliary graph ['in Example|3.1}| 29
[3.4 T'he tiles assigned to the hyperedges in Example [3.2. The |
hyperedges are cut into two tiles.| 32
[3.5 'T'he incidence matrix of the hypergraph A in Example|3.2]| . . 36
[3.6 The adjacency matrix of the conflict graph in Example[3.2]| . . 38
[3.7 The edges ot the conflict graph in Example[3.2] The 9-th row |
of the table codes the information that the unordered pairs [
{9,19} and {9,20} are edges of the conflict graph G| 39
[3.8 T'he tiles coincide with the hyperedges in kExample [3.3. The |
hyperedges are cut into one tile. | 41

[3.9 The colored tiles assigned to the hyperedges in Example [3.3]

rows contain the colors).

[The first rows of the matrices contain the tiles and the second |

[3.10 T'he edges of the conflict graph in Example|3.3. The 7-th row

of the table holds the information that the unordered pairs

{7,14}, {716}, {7, 17}, {7, 18} are edges of the conflict graph

{4.1 The summary for the upper limit of w(G) by different methods.

The sign * indicates that the bound cannot be computed due

to time or memory limit.|o

(5.1 DIMACS, coding theory and random instances. Running time

results in seconds. The “>12h" sign indicates that the running

times are exceeding the 12 hour hmat.|.

vil

[>.2 BHOSLIB and EVIL instances. Running time results in sec-

onds. The “>12h" sign indicates that the running times are

exceeding the 12 hour lmuat.|

viii

1X

Notations

G graph

G(V')

A clique

k-clique

maximum
clique

N({u,v})

N{uq,...,ux})

In this work we consider G = (V, E) finite, undirected
and unweighted graphs. It consists of the V' set of nodes,
and the E set of edges, where an u,v € V,{u,v} € £
edge is an unordered pair of two nodes.

Induced subgraph in G(V, E) over the node set V' C V.
The edges E' of G(V’) are the same of G, that is V' C
V,E' C E,and iffu,v € V' {u,v} € FE then {u,v} € F'.

A = (V' E’) is an all connected spanned subgraph of G.
That is A = G(V’) and if u,v € V' then {u,v} € E'
We call the size of the A clique the size of the set of its
nodes |V'].

We call a clique k-clique, if its size is equal to k.

A clique A of G called a maximum clique of G, if no
other clique of G has a bigger size than A.

The clique size of the G graph, which is the size of a
maximum clique A of G.

Neighborhood of the node u, thus all the nodes of G
which are adjacent to u. That is the set of all v € V' if
{u,v} € E. N(v) ={u € V|{u,v} € E}

Common neighborhood of the node u and v, N(u) N
N(v). Usually these nodes connected, thus they form
an edge of the graph, {u,v} € E.

Common neighborhood of the nodes {uy,us, ..., u},
ﬂle N(u;). Usually these nodes connected, thus they
form a k-clique in G.

X

Chapter 1

Introduction — graphs and cliques

Our thesis work is focused on discrete optimization problems, and specifically
on problems represented by graphs. These problems emerge in various appli-
cations, and form an interesting subclass of Mathematical Programming. Our
thesis concentrates on a special problem of this class, the k-clique problem.
We shall in some cases also mention the maximum clique problem as well.
The k-clique problem is well known problem from mathematics [Karp1972],
but our aim is to show its usage as a modeling and problem solving tool.

As the problems in question belong to NP-complete and NP-hard prob-
lem class, these problems are considered to be hard even for medium sized
problems. Thus in order to solve them we may want to use more efficient al-
gorithms and more computational power, for example supercomputers. This
will lead us to other problems, as dividing the problem to subproblems,
scheduling these subproblems, and gathering the results. For discrete opti-
mization problems especially problematic is the huge variation of the com-
plexity of subproblems, and this is known to be a challenging problem for
graphs [Madd2007]. If approached by a poor algorithm one may end with
a subproblems of which one (or more) will be no easier to solve then the
original problem. In this case no or little speedup will be achieved on any
supercomputer. The other problem is to deal with the massive core num-
bers of today’s supercomputers. Parallel algorithms developed and test for
few cores won’t scale up in arcitectures with thousands or even million of
cores that must be employed for effective work. In our thesis we will show
algorithms especially developed and tested in such environments.

The first chapter of the present work defines the problem class in question,
and notes some related problems — those lay outside the scope of our work.
We also detail the motivation background of our work.

In the second and third chapter we shall discuss the expressive power
of modeling by k-clique. We shall show how to solve problems from differ-

ent fields by graph modeling and clique search. In the second chapter we
try to summarize such problems. We list models for combinatorial games
and puzzles like Latin squares, Sudoku game, the problem of non attack-
ing queens, Costas Arrays and combinatorial problems arising from coding
theory. A problem class based on subgraph isomorphism including molecule
search, protein docking, fingerprint recognition is detailed. We show model-
ing for complex scheduling like open shop, flow shop and job shop problems.
Finally we show a few application in network analysis as market graph or
brain graph.

The third chapter shall focus on one problem class, the graph coloring
problems, extensively. With detailed examples we show graph based models
for legal node coloring, 3-free coloring of nodes and coloring nodes of hy-
pergraphs. We show an application of the last one to an open question by
Voloshin [Volo2002].

The fourth chapter tries to show the landscape of the clique search com-
munity, lists best practices and approaches. After a short historical review
we analyze and compare in details different upper bound procedures. Finally,
we speak about nowadays important kernelization techniques.

In the fifth chapter we introduce our own algorithm for k-clique search.
We detail the main advantages of our approach, and compare it to other
state-of-the-art solvers. The comparison is made by comparing our program
to maximum clique solvers, and for that aim we constructed a maximum
clique solver from our k-clique solver. It turned out, that our construction
even have advantages against other maximum clique algorithms. (Note, that
to our knowledge there is no other specialized k-clique solver but ours.)

The sixth chapter is about the theoretical concepts of parallelization, with
special focus on parallelization of combinatorial problems. We speak about
the hardware and software background, detail some problems of parallel al-
gorithms, and speak about their evaluation.

In the seventh chapter we are introducing the concept of disturbing struc-
tures and propose methodology for algorithm parallelization. We will show
that dealing with the k-clique problem instead of the maximum clique prob-
lem has its major advantages in parallelization, as it opens up quite a lot
possibilities.

In the eight chapter, based on the ideas of the previous chapter, we present
an implementation of a parallel algorithm. This algorithm is capable of
massive parallelization, as we will show that it can scale up even on several
hundreds of cores. Driven from the experiment we are introducing the Las
Vegas method of dealing with combinatorial optimization subproblems.

The last chapter draws conclusions and aims for future work. In this
chapter we also point out which of the results in this work is my own result.

1.1 Definition of the problems

Let G = (V, E) be a finite simple graph. Here V' is the set of nodes of the
graph, and F is a subset of the Cartesian product V x V. The set V is finite
and consequently the set E is also finite. The graph does not contain any
double edges and the graph does not contain any loops. Of course the graph
cannot contain any triple or quadruple edges. The edges are undirected and
there are no weights assigned to the nodes nor to the edges.

Consider a subgraph A = (U, F') of G. We say that A is a clique in G if
F =U x U. In other words A is a clique in G if each two distinct nodes of
A are adjacent in G. The number of nodes of A, that is, the size of the set
U is called the size of the clique A. Instead of saying that A is a clique of
size k we sometimes say that A is a k-clique in the graph G.

A clique A in the graph G is called a maximal clique in G if for any clique
Q) in G for which A C Q holds it follows that A = Q. In other words A is
a maximal clique in G if A cannot be extended to a larger clique in G by
adding a node of G to A.

A clique A is a maximum clique in G if G does not contain any clique
whose size is bigger then the size of A.

It is an empirical fact that finding cliques in a given graph has many appli-
cations inside and outside of computer science. We state the most commonly
occurring clique search problems in a formal matter.

Problem 1.1. We are given a finite simple graph G. Let us determine the
size of a maximum clique in G.

The size of all the maximum cliques in G is well defined common value
and it is called the clique number of G. The clique number of G is denoted
by w(G). Problem [1.1]is referred as the maximum clique problem.

The following decision problem is commonly called the k-clique problem:

Problem 1.2. Given a finite simple graph G and given a positive integer k.
The task is to decide if G contains a k-clique.

The complexity theory of algorithms teaches us that the maximum clique
problem is an NP-hard problem. while the k-clique problem is a well
known NP-complete problem, and appears 3'¢ among Karp’s original 21 NP-
complete problems [Karp1972]. In our thesis we focus on this problem, the
k-clique problem, although sometimes we will refer to the first one as well.

The solutions for these problems are fall into two categories. Our thesis
will deal exclusively with exact methods, but we need to mention that heuris-
tic methods that won’t certainly lead to optimum solution are also widely

used. There are some smaller problems, which with the aid of modern exact
algorithms can be solved efficiently and fast. Other problems are too big for
these and heuristic methods applied for finding non exact solution. These so-
lutions may be of great use in some cases, but in others one certainly needs to
find an exact solution. In our thesis we would like to widen the abilities of the
exact methods by using massively parallel algorithms and supercomputers.

The two problems listed are obviously connected. A program that solves
one can be used to solve the other as well. A maximum clique search program
obviously also answers if there is a k-clique present in the graph for any k.
A program that solves the k-clique problem also can be used for finding
maximum clique by a sequence of several runs with different values of k.
This method will be described in details in Chapter

1.1.1 Other related problems

There are several connected problems to the already described ones. Obvi-
ously the problem of independent sets — maximum independent set, indepen-
dent set of size k — are the same problems: one should apply a maximum
clique or k-clique algorithm on the complement graph. The k vertex cover —
and the minimum vertex cover problem — is also the same, its solution is the
complement set of the n — k independent set — or maximum independent set.

Some related problems are not just about if there is a k-clique present
in the graph, but the question is rater the number of these k-cliques. Thus
sometimes one needs to enumerate all k-cliques or all maximum cliques as
well [EbI2012].

Another variations of these problems are connected to different types
of graphs. There can be weights assigned to nodes — or edges, or both —
in the graph. In this case one can search for a maximum (node or edge)
weight clique, or a k node clique with the biggest weight, or a clique with the
prescribed weight. Also, the graph can be a directed one, and we can search
for directed cliques, which in the literature called transitive tournament. One
can search for a maximum one or for one with a prescribed size [Kivi2016].

Next related problem is the problem of the quasi cliques [Patt2013b]
Abel1999]. Here we search for a big subgraph, but with eased constrain of the
subgraph being a complete graph only a dense one. There is no definition of
a quasi clique, but with a given definition one can search for a maxium one
or one of size k.

Finally, we would like to mention the problem of motif search. It asks
us to find some (usually small) subgraph, named motif, present in the given
graph [Milo2002] [Sch12016]. Obviously, if the motif is a complete graph we
get the same problem as the k-clique.

1.2 Motivation and background

In management science or operations research the main task one faced is
to solve a real life problem. This is done by the means of mathematical
programming, which basically consists of two steps. First step is the modeling
of the problem in some well known approach, and the second one is to solve
this problem with the aid of specialized solver.

There are numerous ways of modeling, and these usually can be freely
interchanged. So the decision of choosing the model is rather backed up by
the software tool at hand. The most widely used approach is to use a Lin-
ear Programming (LP) toolkit, or its variants according the specialty of the
problem like Mixed Integer Linear Programming (MILP) or Integer Linear
Programming (ILP), or Zero-One Linear Programming (0-1 LP). For combi-
natorial optimization or decision problems ILP or 0-1 LP is used, but there
are other methods, such as Satisfiability (SAT or MaxSAT) or Constraint
Programming (CP). While most times any of them can be used there are ef-
ficiency differences. These differences caused by two phenomena. First, some
problems are more suitable for one model then the other, and so the software
solving the problem may be more efficient. Second, some software is simply
more advanced then the other, as more developers work on its perfection.
Consequently, for any combinatorial optimization problem the first choice is
an ILP formulation, given its versatility and easy to model feature and the
very developed software. Note though, that this is not necessarily the most
efficient approach, and in the case of a harder problem may lead to failure.
And there is another problem, which invovles the reliability of the compu-
tations. ILP solvers use LP as an auxiliary algorithm, so rounding errors
may affect the result [Aki2016]. If one needs reliable computation she or he
needs to choose another solver, which is free of such defects, and of course
the clique solvers are such using exclusively integer and bit computations.

The present work aim to widen the possibility of modeling by showing
that modeling by graphs and finding a maximum clique or k-clique of given
size is a good approach for solving several problems. In the present work we
shall show the versatility of this modeling. Also, it is important to express
that the current state-of-the-art clique solvers are as well developed as the
SAT solvers, CP solvers or perhaps close to ILP solvers as well. This means
that there can be some problems for which the clique formulation is more
natural, and so the solution using graph modeling is more efficient.

We shall also in detail show that the graph formulation is more suitable
for developing a massively parallel algorithm, and so using supercomputers to
aid in solution of some hard problems. This task, of efficient parallelization,
is usually considered very problematic in combinatorial optimization.

Chapter 2

Modeling expressivity

In this chapter we would like to list some problems related or solvable with k-
clique or maximum clique search. First, we enumerate some simple problems
and in details show a possible according graph model. Second, we list real
life problems connected to subgraph isomorhism, where the solution may be
obtained by clique search or some clique search algorithm may prove useful
as an auxiliary algorithm. Third, in detail we show how can some complex
sheduling problems modeled and solved by k-clique approach. Finally, we
point out some possible connections with network analysis.

We need to mention that the proposed methods are not the only pos-
sible mathematical models for these problems. Some of these are solved
with Integer Programming, SAT solvers, Constraint Programming, special-
ized backtracking, set cover or graph coloring algorithms. Out aim is solely to
demonstrate the possibility of graph modeling and solution using a k-clique
algorithm.

For some problems we will include numerical experiments and such re-
sults. We do not claim, that these graph models and our k-clique solver would
be the best possible solution to solve these problems. Our aim is simply to
demonstrate that some non trivial problems can be solved in this way, even if
some other methods would be better. But we do claim, that there is a great
potential of such models. First, with future extensions like kernelization or
symmetry breaking, we think that this approach can sometimes even be bet-
ter for some few problems. Second, in contrast to ILP formulation, which is
the most often used option, our method does not suffer from rounding errors.
Of course, ILP solvers can be modified to be also rounding error free — by
usage of rational numbers or interval arithmetic —, but then they will be a
magnitude slower, and our method would turn out faster.

2.1 Puzzles, games, codes and other combina-
torial problems

Modeling with graphs and searching for cliques in these can be utilized for
solving various combinatorial problems, puzzles and games. It is well known
that different puzzles can be solved in graph theoretical methods [Foul1992].
Here we would like to list some of those, particularly ones where the solution
could be obtained by searching for a k-clique in an auxiliary graph. For the
extended descriptions of these puzzles see [Krail953|. For each problem we
construct an auxiliary graph G and show that the original question can be
answered by finding a maximum or k-clique of given size.

2.1.1 Latin squares

Given an array of n xn we need to fill it with numbers (or symbols) 1...n (or
A...Z), such that each symbol must appear once on each row and column,

see Figure 2.1]

DIBIFIEGIA|IC|I|H
HEGIB|/T|C|A|D|F
A|C|T|DIFIH|B|G|E
I GIA|[CIH|E|F|B|D
E/ID|C|G|B|F|H|A|I
FIHIB|/A|/D|IT G|E|C
G|I|D/FIC|B/E/HA
BIFIEIH|A|D|T|C|G
C/IA\H/T|E/G|D|F|B

Figure 2.1: Example of a 9 x 9 Latin square

We will show how to solve this problem with the aid of constructing an
auxiliary graph and deciding if there is a k-clique present, with a given k.

The auxiliary graph G = (V| E) constructed as follows. The nodes V' of
graph noted by (z,y, z) triples, z,y,z € {1...n}, where = and y represent
the coordinate, while z represents the symbol written on that coordinate. V'
is the list of all possible triplets, that is all possible way to write a symbol at
any cell in the array. The edges of the graph will represent agreeable pairs
of triples that is when two actions represented by two triples can occur in

the same solution. For example triples (2,4, D) and (2,9, D) are in conflict,
as the symbol D cannot appear in the same row, thus there will be no edge
between them. But triples (2,4, D) and (2,9, F') are agreeable, thus there
will be an edge between them. Also, one cannot write two symbols in the
same cell, so triples where x1 = x5, y; = ys are not connected.

Formally, two triples (x1, 41, 21) and (22, Y2, 22) connected iff:

1. T 7é T2,U1 3& Y2 Or,
2. 11 = To, Y1 F Yo, 21 F %2 OI,
3. X1 F To, Y1 = Y2, 21 F 22

We shall call this type of graph an agreement gmphﬂ

A solution means n? number of agreeable triples as one needs to fill in n?
number of cells. That is if we search for a k = n? k-clique, then finding one
we obtain a solution for our problem.

Let us see a small example of board size 3 x 3. The tripples are:

o (1717A)7(1727A>7<1737A)7(271714)7(272714)7(273;14);
(3,1,A),(3,2,A4),(3,3,A)

e (1,1,B),(1,2,B),(1,3,B),(2,1,B),(2,2,B), (2,3, B),
(3,1,B),(3,2,B),(3,3,B)

® (1,1,0),(1,2,0),(1,3,0),(2,1,0),(2,2,0),(2,3,0)7
(3,1,0),(3,2,(0),(3,3,C)

For the sake of the example let us see to which nodes the node (1,1, A) is
connected. We list the connecting nodes according the previous enumeration
of the rules:

1. (2,2,A),(2,3,A),(3,2,A),(3,3,A4),(2,2,B),(2,3,B),(3,2,B), (3,3, B),
(2,2,0),(2,3,0),(3,2,C),(3,3,C)

2. (1,2,B),(1,3,B),(1,2,(),(1,3,C)

3. (2,1,B),(3,1,B),(2,1,C),(3,1,C)

We do can find a (3% = 9) 9-clique in this graph, for example the node
set {(1,1, A4), (1,2,B),(1,3,C),(2,1,B),(2,2,C),(2,3,A),(3,1,C), (3,2, A),
(3,3, B)}, which solution is depicted on Figure [2.2]

1On the other hand, the graph type, where the edges represent conflicts between the
nodes usually called the conflict graph in the literature. Note, that they are complement
graphs.

AB|C
B|C|A
C|A|B

Figure 2.2: Example of a 3 x 3 Latin square

There are several possible modifications to the original Latin square prob-
lem. One can add constrains as for example the diagonals are also forbidden
to have same symbols. The famous game of sudoku is also a variation. The
the constrain of nine 3 x 3 boxes is added, where no two symbols can appear
at the same time. All these problems can be solved by the same method with
modified rules on the edge connectionsf]

Most usually if one encounters a puzzle of this sort, the sudoku puzzle is
of different appearance. It is set up the following way. Some of the symbols
are already placed and one needs to fill in the missing cells, see [2.3]

2 D 1 9 412165713198

8 2 3 6 815 |712]9(3|1]4]6
3 6 7 1131914(6[8[2]7]5

1 6 9171113851624

54 119 514131712618 [1]9
2 7 618121149 7]5]3

9 3 8 7191416312158]|1

2 7 216581141937
1 6 31118195 |7[4]6]2

Figure 2.3: Example of a sudoku puzzle and it’s solution

Thus, the original proposed method must be altered to meet this demand.
For finding the solution using the auxiliary graph we need first to find the
common neighborhood of the triples representing the filled in places. Then
one simply needs to find a k-clique in the reduced graph where k is the
number of empty places.

2There is another method to solve sudoku, which is done by constructing a specific
conflict graph as an auxiliary graph and performing a coloring of this graph. The reader
can notice that the two methods are connected through the modeling described in the
Chapter

2.1.2 Non-attacking queens

A somehow similar problem arises from the game chess. The question is
if one can place eight queens on the chessboard such that none of them
threaten each other. The problem also can be rephrased for placing n queens
on an n x n chessboard. On Figure n = 5. Again a similar n® graph
can be constructed, where the nodes will consist of triples (z,y, z), = and
y representing the coordinate and z representing the number of the queen.
An agreement graph can be constructed the same way as in the previous
example. The nodes should be connected if they represent different queens
not in threatening each other. A k = n k-clique will represent a solution.

7 7

Figure 2.4: Example of a Five Queens problem solution

This previous example uses too many nodes and thus be easily reduced.
As there always should be one queen per row we can omit the number of
the queen. The nodes so will be pairs (x,y), representing a queen standing
at this coordinate. A k-clique will represent k queens on the chessboard not
threatening each other.

2.1.3 Monotonic matrices

As an example of modeling a more complex problem we would like to detail
the so called Monotonic Matrices problem. From Wolfram Web [Weisst] “A
monotonic matrix of order n is an nxn matrix in which every element is either
0 or contains a number from the set {1,...,n} subject to the conditions:

10

1. The filled-in elements in each row are strictly increasing,
2. The filled-in elements in each column are strictly decreasing, and

3. Positive slope condition: for two filled-in cells with same element, the
one further right is in an earlier row.”

An example depicted on Figure 2.5 where the possibly maximum 23 cells
are filled in.

2 41718
718
7
4 6
1 316
4
3
1 3)

Figure 2.5: Example of an n = 8 size Monotonic Matrix

The graph reformulation of the problem in question again similar to the
previous ones. The nodes of the auxiliary graph are the triples (x,y, 2), x
and y representing the coordinate and z representing the positive number
written in the cell. The edges will consist of agreeable nodes, where the
above mentioned properties hold. For details see [Szab2013, [0st2019).

2.1.4 Costas arrays

Finally, we would like to show the expressing power of the graph representa-
tion with a special problem. The proposed representation — to our knowledge
— is not known in the literature. We propose a graph representation to the
Costas array problem [Cost1965] [(Cost1984]. This problem derives from radar
and sonar technology, namely phased array radar engineering. The solution
helps generating radar and sonar signals with ideal ambiguity functions. The
formalization of the problem as follows. Given an n x n array one needs to
fill it in with n dots. The constrain is that no two dots may lay on the same
row or column, and the displacement vectors of any two pairs of dots must
be distinct from all the other such displacement vectors. A possible solution
for n = 8 demonstrated on Figure [2.6]

11

Figure 2.6: Example of an n = 8 size Costas array

The graph representation of this problem is more complex then the pre-
vious examples. As the constrain of different displacement vectors instruct
us about pairs of dots (4 coordinates altogether in one pair), the nodes of the
auxiliary graph G(V, E) shall be denoted by quadruples (x1, y1, 2, y2), where
the coordinates of the represented dot-pair are (1, y1) and (22, y2). One could
list all possibilities, but clearly only pairs of agreeable nodes needed to be
listed, thus the rows and columns of the two dots must be different. That
means that we omit for example the quadruple (1,1,1,3), because the two
dots lie in the same column. The size of this graph is n?(n — 1)2/2. The
edges of the graph represent the agreement between two dot-pairs. We need
to take special care of the case when one of the dots of a pair coincides with
a dot from the other dot-pair. In this case we have 3 instead of 4 distinct
dots.

Formally there should be no edge between two nodes (z1,y1, Z2,y2) and
(CLl, b17 as, b2>7 iff:

1. If two pairs of dots have same row or column;

2. If one pair of dots have same row or column and there are 4 distinct
nodes;

3. If one pair of dots have same row or column and there are 3 distinct
nodes, and some of the displacement vectors of these three are the
same;

4. If no pair of dots have same row or column and there are 4 distinct
nodes, and some of the displacement vectors of these four are the same.

12

Figure 2.7: Depiction of constraints 1, 2, 3 and 4.

In other cases there will be an edge between these two nodes. A k-clique
of size k = n(n—1)/2 represents all pairs from n dots, and thus it is a solution
to the problem in question.

With the help of this simple formulation — even without using any ker-
nelization techniques — one can find one solution of the non trivial 14 x 14
array in few seconds and calculate all possible solutions in half an hour.

2.1.5 Communication and coding theory

In theory of communication one important aspect is the construction of codes
that are resilient to deletion or flipping errors. We would like to detect or
reconstruct the digital information, and for this purpose special codes are
constructed. Because of the (always) limited bandwidth one would like such
construction be of less overhead, so we would like to find the maximum
number of code words under specific conditions. One approach to this task
is to list all possible code words — they will be the nodes of the graph — and
construct a conflict graph. The maximum independent set is the optimum
code. For more see [But2002, But2009, Sloan, Bogd2001, [0st2020]. Note
that some of the widely used maximum clique test problems are coming from
coding theory, such as the Hamming graphs of Johnson graphs.

There is a special question in coding theory, which asks for the maximum
amount of information that can be sent over a noisy channel using multiple
signal code words. The limit of this is the so called Shannon capacity. If
we represent the confusion between the code signals by a graph, then we can
speak about the Shannon capacity of a graph. It is uniquely hard to compute
this number for most cases, but we can still calculate some upper bound. One
way of doing such calculation is to calculate the size of the independent set
in a (finite) sequence of product graphs [Pol2019, Math2017].

13

2.2 Subgraph isomorphism

After pure mathematical puzzles let us demonstrate the usefulness of graph
representation and k-clique search for solving real life problems. First cat-
egory is the problem class, when the problems can be modeled with in-
duced subgraph isomorphism. Formally, given the graphs H = (W, F') and
G = (V,E), there is a subset V' C V, where the induced graph G(V’) iso-
morphic to H. The problem called as isomorphic embedding problem as
H can be isomorphically injected into G. The problem is to decide if two
given graphs maintain this property or not. Many different computationally
challenging problems with important practical applications fall into this cat-
egory. For example in computer vision, biochemistry, and model checking.
Especially wide usage of this method is found in chemistry where similarities
between drug compounds checked and databases built up on that information
[Konc2007]. Also similar method can be used for checking protein docking
abilities of drugs.

The induced subgraph isomorphism problem modeled with graph by using
a modular product of the given two graphs. A k-clique of the size of the
smaller graph, k£ = |W| will give an answer if H is an isomorphic subgraph
of G.

2.2.1 Chemistry

The maximum common induced subgraph problem is used in chemistry as
a means of comparing shapes of molecules, either as 3D scans or molecular
graphs, which represent the structural formula directly [Konc2010, [Konc2012]
Les2020]. An example of such use is in prediction of protein function. The
characteristic of proteins, which allows them to function within an organism,
is their ability to bind other molecules. From the point of physics this can be
described as an energy function, where the bond between two atoms means
lower energy level. But as molecules have (partially) rigid structures, we
cannot place any atom to its best place, but all together needed to be placed
at once achieving the energy minimum. Thus proteins bind to other molecules
similarly as jigsaw puzzle fit together, by matching their shape to the shape of
target molecule. The function of unknown protein can therefore be estimated
by comparing its shape to shapes of known proteins with known functions.
One of the traditional ways of solving the maximum common subgraph
problem is by reduction to a maximum clique problem, using auxiliary prod-
uct graph. The two input graphs, in which the maximum common subgraph
is to be found, are multiplied to form a product graph, which is then in-
put to the maximum clique algorithm. The result of the latter are used to

14

identify the nodes of the input graphs that form the maximum common sub-
graph. Although the maximum clique problem can be solved by a modern
branch-and-bound based algorithm for general graphs, such approach is far
from optimal. Some special properties of the product graph can be exploited
to guide the maximum clique search. Namely, the modern state-of-the-art
clique search programs use coloring as auxiliary algorithm, but finding a good
coloring of a graph itself a hard task.

2.2.2 Pattern matching and Artificial Intelligence

Correspondence between atoms in the molecules gives us a straightforward
example of subgraph isomorphism. This method can be extended to be used
as pattern recognition. For example in images one can set up some points
of interests, and making pairs of such point as a correspondence, and using
distance similarity between such points a very similar auxiliary graph as in
the case of molecules can be built.

As the theory behind comparing fingerprints already works with such
point of interests it seems a natural way of using this method for fingerprint
matching [Seg2010].

2.3 Job shop scheduling

As we will discuss later in Chapter [3| the graph coloring problem can be
transformed into maximum clique or k-clique problem. So any real world
problem that can be represented by graph coloring, such as timetables, sim-
ple scheduling and assignment problems [Marx2004], can be solved by clique
search as well. But the k-clique modeling can be used to solve more com-
plex scheduling problems as well, such as open shop, flow shop or job shop
scheduling problems. We should mention, that with some modification the
method can be extended to flexible job shop problems as well. In this section
we choose the job shop problem as an example to show the expressive power
of the k-clique modeling.

The job sequencing problem is an optimization problem [Jain1999|. Cer-
tain products are to be produced on given machines satisfying predetermined
technological order. The objective is to determine the sequence of jobs in
which the various products are processed on the machines in the least possi-
ble time. The well-known standard approach recasts the problem by means
of a mixed integer linear program. Here we experiment with a more combi-
natorial idea.

Given a positive number 7" we constructand an auxiliary graph G and

15

compute an integer k. The graph G encodes the agreements of the job
sequencing problem. If the graph G contains a k-clique, then there is a
feasible job sequencing whose total completion time is at most 7. So, instead
of an optimization problem we are dealing with a decision problem.

2.3.1 The clique reformulation of the problem

One has to make a decision which item should be scheduled to which machine
at a specified time. So we consider a triplet (u,v,w), where the number u
refers to item uw. The number v means that item u is assigned to machine v.
Finally, the number w tells that the work on item wu is started at the time
point w. We consider a list of triplets that are relevant to the scheduling at
hand. There are pairs of triplets that cannot be part together of any valid
schedule. Such conflicts can be recorded by constructing a conflict graph.
It turns out that a specified size conflict free set of triplets defines a valid
schedule. The graph G we use is actually the complement of the conflict
graph and instead of looking for a independent set of size k we are looking
for a k-clique.

The nodes of the auxiliary graph G are the triplets relevant to the sched-
ule. That is all possible job, machine and starting time combinations except
for those times that cannot occur — a machine starting too soon or too late.
Initially we connect all the pairs of distinct nodes by an edge. Next we delete
edges that connects conflicting triplets. Specifically we delete an edge if any
of the following conditions holds.

1. The machines are processing a given job not in the technologically
prescribed order.

2. Distance in time for two machines processing a given job are not suffi-
cient to fit in the prescribed intermediate processing times.

3. Processing periods of the same machine on different jobs overlap.
4. Processing periods of different machines on the same job overlap.

5. Processing of a fixed job on a fixed machine occurs several times.

Set k = (number of items) x (number of machines). How large clique
can appear in the graph G7 The answer is that the graph GG can contain an
k-clique. A Gantt chart which corresponds to a feasible schedule provides an
k-clique in G. The reader may note, that our formulation is quite generic.
That means that the three different problem classes, the flow shop, the job
shop and the open shop problems, all can be solved by this approach with
little variations.

16

2.3.2 A small example

In order to illustrate the previous considerations we work out small size
example in details. Three items are to be scheduled on two machines. The

work times are summarized in Table 211

Item | Machine 1 | Machine 2
work time | work time
1d(1,1)=1|d(1,2)=3
21d2,1)=2]d(2,2)=1
31d(3,1)=31]d(3,2)=1

Table 2.1: Processing times on the machines in the small example

1
Loy 1
| 1

1
(ran| 1 .

Figure 2.8: Possible time slots (triplets) for the given problem in Table

with makespan of 6 hours.

Using some greedy heuristics, one can verify that there is a feasible sched-
ule with a completion time 7 hours. We ask if there is a schedule with a
completion time 6 hours. Assuming a 6 hours makespan the auxiliary graph
G has 20 vertices. The nodes of the graph G are triplets. We numbered
the triplets by 1,...,20. Table lists the triplets together with the cor-
responding numbers. The adjacency matrix of the graph G is in Table

17

name | triplet | name | triplet | name | triplet | name | triplet
1| (1,1,0) 6| (1,2,3) 11] (2,2,2) 16 | (3,1,1)
2| (1,1,1) 71 (2,1,0) 12 | (2,2,3) 17 | (3,1,2)
31 (1,1,2) 81 (2,1,1) 13 | (2,2,4) 18 | (3,2,3)
41 (1,2,1) 91 (2,1,2) 14 | (2,2,5) 19 | (3,2,4)
51 (1,2,2) 10 | (2,1,3) 15 | (3,1,0) 20 | (3,2,5)

Table 2.2: Nodes of the graph G in the small example

The question is if G contains any 6-clique. With exact clique search one can
prove that the graph G does not contain any 6-cliques. So the given schedul-
ing problem cannot be completed in 7" = 6 hours makespan, concluding that
T = 7 is the optimal value.

2.3.3 Numerical experiments

Given the graph reformulation of the flow shop, job shop and open shop
problems we are interested in the efficiency of the clique search approach.
We considered two large problems, of which the second is still open. As the
reader will see our first approach to this problem is not yet as efficient as
modern state-of-the-art solvers but can solve moderately hard problems. We
used heavy kernelization like detailed Section [4.3] but more sophisticated
according to the special features of the auxiliary graph. We do not detail
these as they lay outside the scope of the present work.

In fact, for medium problems we could use an exact k-clique solver af-
ter the kernelization, as the graph was considerably reduced. For the large
instances — apart from some trivial cases —, the reduced graph was still too
big for exact solvers. So we could use two heuristic algorithms to set upper
and lower bounds. As one can see our approach is stronger for finding lower
bounds.

The resulting graphs are very large, so we do not expect that exact clique
solvers could solve the k-clique problem. Instead we used two heuristics. First
is the DSatur coloring from Brelaz [Brel1979|]. If the resulting graph after
kernelization can be colored with less then k colors, then there cannot be a
k-clique present and thus we can set the lower bound. Second is the KaMIS
heuristics [Lam2016] for finding independent sets — we used the complement
graph for this purpose. If the resulting graph after kernelization do has a
k-clique present this gives us an upper bound.

We tested our algorithm with two known instances from [Adal988].

The abz8 instance, which sets up a problem of 20 jobs and 15 machines,
has a known lower bound of 648 and upper bound of 665. We could set the

18

11111111112

12345678901234567890

X o|lo|e®

[BN BN BN NP4

X el o 0| @

[BN BN NIDY

O|le|e|e

9le|e

1) |le|o|o|o|o]|e

11

12 (oo |e@

13 |e|0|0]|e

14 (e|o|o|0|e@

15

16 | e

17 |e | @

18 (@@ @

19 [e|o|0|e@

20 |loe|o|o 0@

Table 2.3: The adjacency matrix of the graph G in the small example

19

lower bound by setting the makespan to 599. The auxiliary graph has 66 210
nodes and 2105395622 edges. After kernelization the resulting auxiliary
graph has 58565 nodes and 1569659812 edges, and the DSatur coloring
could color the graph with 296 colors, while we are looking for a clique of
size 300. This set the lower limit to 600.

For upper limit we used makespan 859. The auxiliary graph has 144 210
nodes and 10264 886 876 edges. The KaMIS heuristic search found a clique
of size 300. This value proved that there is a feasible schedule with the given
makespan, leading to an upper bound of 859.

The abz5 instance, which sets up a problem of 10 jobs and 10 machines,
has an optimum of 1234. This problem is solvable by our method to opti-
mality. First we set the makespan to 1233. The auxiliary graph has 45670
nodes and 956998 171 edges. After kernelization the resulting graph has
27072 nodes and 318810474 edges, and could be colored by 99 colors with
the DSatur algorithm, while we are looking for a clique of size 100. Thus the
lower bound is 1234.

With setting the makespan to 1234 the resulting auxiliary graph has
45770 nodes and 961249429 edges. After preconditioning with node dom-
inance the resulting graph has 32014 nodes and 461551291. The KaMIS
heuristic search found a clique of size 100, which sets the upper bound to
1234. As the lower and upper bounds are the same we have the optimum
solution.

We can conclude from these examples, that the instances are too big for
the available exact maximum clique solvers. On the other hand it is possible
to find a lower bound by the proposed preconditioning methods and an upper
bound by means of approximate methods.

2.4 Network analysis

There is an emerging tool in data science which we call network analy-
sis [Bota2014]. In some of these problems questions about cliques arise
[Patt2013al, [Chan2014]. Among these problems we find the interaction of
people on a telephone network, for which a so called call graph is constructed
[Abe1999]. A clique or a quasi clique can hint the operator about being one
family or group of friends. One can also look for a terrorist cell in a friendship
graph [Kre2002, [Hay2006] or find insurance frauds. Marketing information
also can be collected into graphs, as for example we can store similar pur-
chases.

The most common way to obtain data from networks is done by com-
munity detection, that is clustering. Cliques are used in clique clustering as

20

an auxiliary algorithm [Bota2015]. Also, k-clique search can be useful for
preprocessing [Kump2008|, [Greg2012].

A special usage of networks is the data analysis of stock price for careful
portfolio selection. The so called market graph is constructed, where each
node represents a stock, and nodes are connected if the price change in values
are correlated over a given time period. An independents set or a quasi
independent set means that the prices are pairwise independent making those
stocks a good portfolio [Bogi2003], Bogi20006], Bogi2014]. Also, one can use
the clique number to detect stock market crash. If the maximum clique in
the market graph becoming too big — almost all nodes of the graph are in the
clique —, then the prices moving in one direction and we should shut down
the stock exchange.

An interesting method of modeling the brain — either human or other
animals — arise in today’s neuroscience. Researchers detect certain regions of
the brain (nodes) and find correlations between their work (edges). Graph
based analysis done on these so called Brain Graphs, among them clique or
quasi clique search [Bull2009]. This method is used for detecting neurological
disorders and diseases such as epilepsy [Chi2014] or for characterization of
the connectivity of the brain [Rub2009] in brain research.

21

Chapter 3

Modeling graph and hypergraph
coloring with cliques

In the second chapter we presented an extended list of problems that can be
modeled and solved through graph representation and searching a k-clique
or maximum clique in the corresponding auxiliary graph. In the present
chapter we will pick one particular problem class. We shall explore more
deeply a case study of different types of graph and hypergraph colorings.
In all cases we will show how the problem can be modeled and solved with
k-clique search as a versatile method. In the present chapter we use results
from [Szab2016b] and [Szab2019b).

In this chapter we first define the legal coloring of the nodes of a graph and
show two methods of modeling it by maximum clique and k-clique. Second,
we discuss a special graph coloring method of nodes, the 3-free coloring, and
its modeling. Third, we conclude with hypergraph coloring problem and
models. Finally, with the the aid of proposed modeling method we give a
partial answer to an open problem by Voloshin. On usage of graph coloring
the reader can find more for example in [Ahm2012, [Coop2006].

3.1 Legal coloring of the nodes of a graph
We color the nodes of a graph G satisfying the following conditions.
1. Each node of G receives exactly one color.
2. Adjacent nodes in G cannot receive the same color.

This is the most commonly encountered coloring of the nodes of a graph and
it is referred as legal or proper coloring of the nodes.

22

Problem 3.1. Given a finite simple graph G find the smallest integer k, such
that the nodes of G have a legal coloring using k colors.

Problem 3.2. Given a finite simple graph G and given a positive integer k.
Decide if the nodes of G have a legal coloring using k colors.

Problem [3.1]is an optimization problem and belongs to the NP-hard com-
plexity class. Problem is a decision problem and belongs to the NP-
complete complexity class [Karp1972].

3.1.1 Classical formulation

There is a well known formulation of Problem [3.1} the minimum coloring
problem, into an auxiliary graph and a maximum independent set search
[Corn2008|. The auxiliary graph T' has n? + n nodes, and it is constructed
as follows. We take n copies of the graph G — G1,Gs, ..., G,. We connect
all copies of a node pairwise in I'. We add extra nodes x1, s, ..., x,. We
connect x; to all nodes of GG;. A coloring of G will be represented as a union
of independent sets in some of the G, G, ..., G, subgraphs. For each other
(G; that has no part of the independent set one can add the node x;, making
a minimal coloring using the maximum number of z;-s, that is making the
independent set maximal. Obviously one can take the complement of the
auxiliary graph and instead of searching for the maximum independent set
search for the maximum clique, as we will do further.

A newer approach originating from the above was described in [Corn2016].
But we will go to a different direction, because we would like to extend this
method to other related problems as well.

3.1.2 The k-clique approach
Both Problems[3.2] - the k coloring problem — and Problem [I.2— the k-clique

problem — are decision problems. From the complexity theory of computa-
tions we know that these problems belong to the NP-complete complexity
class. Problems |3.2 and are polynomially reducible to each other. The
point we would like to make here is that reducing Problem to Problem
[1.2] can be utilized in practical computations.

Here is a way how Problem can be reduced to Problem [I.2]

Using the graph G = (V| E) and using the positive integer k£ one con-
structs an auxiliary graph I' = (W, F). The nodes of I are the ordered
pairs

(v,a), where veV, 1<a<k.

23

The intended meaning of the pair (v, a) is that node v of G receives color a.
Let us pick two distinct nodes

wy; = (v1,a1) and wy = (ve, as)

of T'. If the unordered pair {vy,v5} is an edge of G, then in a legal coloring
of the nodes of GG the colors a;, ay cannot be identical. When we construct
[' we do not connect the nodes wy, wy if the unordered pair {vy,v9} is an
edge of G and if in addition a; = as holds. In a coloring of the nodes of GG
a node cannot receive two distinct colors. Thus when we construct I' we do
not connect wy, wy by an edge in I' if v; = vs.

Let n be the number of vertices of G, that is, let n = |[V|. The graph I'
has nk vertices.

Observation 3.1. If the nodes of the graph G have a legal coloring using k
colors, then the graph I' contains a n-clique.

Proof. Let us assume that the nodes of G can be colored legally using &
colors. Let f:V — {1,...,k} be a function which describes this coloring.
Let

D={(v,f(v)): veV}

and let A be the subgraph of I' induced by D. Clearly, D has n elements.
We claim that A is an n-clique in T.
In order to verify this claim we pick two distinct nodes

wy = (vy, f(v1)) and wy = (vy, f(v2))

from D.

If v; = vy, then f(v;) = f(vz) must hold as the node v; receives exactly
one color. This means that w; = w,. But we know that w; # ws.

If v; # vy and the unordered pair {vy,v9} is an edge of G, then f(vy) #
f(v9) holds since the coloring defined by f is legal. This means that we have
connected the nodes wy, we by an edge in I' when we constructed I.

If v; # vy and the unordered pair {v;, vy} is not an edge of G, then we

have connected the nodes wq, we by an edge in I' when we have constructed
I. O

Observation 3.2. If the graph I' contains an n-clique, then the nodes of the
graph G can be colored legally using k colors.

Proof. Let us suppose that ' has an n-clique A and D is the set of nodes of
A. Let
I, ={(v,a): 1<a<k}

24

for each v € V. Obviously, I, has k elements. Note that the sets [,,, v € V
are pair-wise disjoint independent sets in I'. Further note that the union of
these sets is equal to W.

The nodes of I can be colored legally using n colors. The sets I,, v € V
can play the roles of the color classes of the nodes of I'. Since A is a clique
in I' it follows that each I, contains at most one element from D. Using the
fact that |D| = n we can conclude that D is a complete set of representatives
of the sets I,, v e V.

Set

T={v: (v,a) € D}

We can see that T' = V. Therefore each v € V receives exactly one color.
We may express this result such that the map f: V — {1,...,k} defined by
f(v) = a is a function. It remains to show that the function f describes a
legal coloring of the nodes of G.

Suppose that the unordered pair {v;, vy} is an edge of G. and consider
two distinct nodes

wy = (vy, f(v1)) and wy = (vo, f(v2))

of A. When we constructed the graph I' we have connected the nodes wy,
wy by an edge in ' because f(vy) # f(vq). O

Theorem 3.1. Given a graph G on n nodes and an integer k and a auxiliary
graph T' described above. There is a legal k coloring of nodes of G iff there is
an n-clique in I

Proof. Follows from Observation [3.1] and [3.2 O

Note, that the construction described here is quite similar to the classical
formulation for maximum independent set.

3.2 3-clique free coloring

As we stated above we would like to extend this modeling method to other
related problems. Here we shall show this for 3-clique free coloring problem
described in [Szab2012] and detailed in Subsection [1.2.3]

We color the nodes of a simple, finite graph G satisfying the following
conditions.

1. Each node of G receives exactly one color.

2. The three nodes of a 3-clique in G cannot receive the same color.

25

We call this type of coloring of the nodes of G' a 3-clique free coloring. Col-
oring can be used for estimating clique size.

Let us suppose that A is an [-clique in G and let us suppose that the
nodes of GG have a 3-clique free coloring with %k colors. Then [< 2k holds.

We indicate the proof in the case when [is an even number. A 3-clique
free coloring of the nodes of G gives a 3-clique free coloring of the nodes of
A. Note that in a 3-clique free coloring of the nodes of A at least [/2 colors
must occur. This gives [/2 < k, as required.

Problem 3.3. Given a finite simple graph G and given a positive integer k.
Decide if the nodes of G have a 3-clique free coloring using k colors.

Problem [3.3] can be reduced to Problem [1.2] Starting with the the graph
G = (V, E) and the positive integer k we construct an auxiliary graph I' =
(W, F). The nodes of T" are the triples

({u,v},a,b), where {u,v}e€FE, 1<a,b <k.

Let m be the number of edges of G, that is, let m = |E|. The number of the
triples is equal to mk?.

The triple ({u, v}, a,b) intends to code the information that the end points
u, v of the edge {u,v} are colored with the colors a, b respectively. In this
section we assume that each node of the graph G is end point of some edge
of GG. In other words we assume that the graph G does not contain isolated
nodes.

Let us consider two distinct nodes

w, = ({ul,vl},al,bl) and Wy = ({U,Q,Ug},ag,bg)

of I'. Set
X — {ulavl} U {U27U2} - {U17U1,U2,U2}.

It is clear that |X| < 4 and since u; # v; we get that |X| > 2. Thus
2 < |X| < 4. Let Hx be the subgraph of G induced by X. The nodes uy,
vy, Ug, Vo Teceive the colors ay, by, as, be, respectively in the graph Hy.

When |X| < 3, then these nodes are not pair-wise distinct and it may
happen that two distinct colors are assigned to a node in Hyx. In this case
we call the graph Hy a non-qualifying graph.

It also may happen that there is a 3-clique in Hx and all the three nodes of
this 3-clique receive the same color. In this situation again we call the graph
Hx a non-qualifying graph. In all the other cases Hy is called a qualifying
graph.

When we construct the graph I' we connect the nodes wy, ws by an edge
in I if Hy is a qualifying graph.

26

Observation 3.3. If the nodes of G have a 3-clique free coloring with k
colors, then the graph I' contains an m-clique.

Proof. Suppose that the nodes of the graph G have a 3-clique free coloring
using k colors. Let f:V — {1,...,k} be a function that codes this coloring.
Set

D = {({u, v}, f(u), f(0) : {u,v} € B}

and let A be the subgraph of I' induced by D. It is clear that |D| = m. We
claim that A is a clique in I'.

In order to verify the claim let us choose two distinct nodes wq, wy from
D. Let us consider the subgraph Hx associated with w;, ws. Since f is
a function, each node of Hy receives exactly one color. As f describes a
3-clique free coloring of the nodes of G, it follows that the restriction of f to
the nodes of Hy is a 3-clique free coloring of the nodes of Hy. Thus Hx is a
qualifying graph. Consequently, we connected wq, ws by an edge in I' when
we constructed I'. O]

Observation 3.4. If the auxiliary graph I' contains an m-clique, then the
nodes of the graph G have a 3-clique free coloring with k colors.

Proof. Suppose that I' contains an m-clique A and D is the set of nodes of
Set
Iuwy = {({w,v},a,b) 1 1 <a,b, <k}

for each {u,v} € E. Obviously, |I,.;| = k*. Note that the sets g},
{u,v} € E are pair-wise disjoint independent sets in I'.
Indeed, if

wy = ({uav}aa’bbl) and Wy = ({U,'U},(ZQ,bQ)

are distinct elements of Iy, .1, then the graph Hx associated with w;, w, has
two nodes. From w; # ws it follows that a; = as, by = by cannot hold. Thus
Hy is not qualifying. This means when we constructed I" we did not connect
w1, wy by an edge in I'.

The nodes of T' have a legal coloring using m colors. The independent
sets Ify v}, {u,v} € I can play the roles of the color classes.

As A is a clique in I" each color class contains at most one element from
D. Using the cardinality of D we can conclude that D is a complete set of
representatives of the color classes.

Set

T = {{u,v}: ({u,v},a,b) € D}.

27

Figure 3.1: A graphical representation of the graph G in Example [3.1]

It follows that £ = T'. Consequently, each node of G which is an end point
of at least one edge of GG receives at least one color. We claim that each node
receives exactly one color.

In order to prove the claim assume on the contrary that more than one
colors are assigned to a node of GG. In this case there are distinct nodes wy,
ws of A such that a node receives more than one color in the subgraph Hx
associated with wy, wy. This means that Hx is not qualifying. On the other
hand when we constructed I' we connected w;, wy by an edge on the base
that the subgraph Hx was qualifying.

We may summarize our consideration by saying that we can define a
function f : V — {1,...,k} by setting f(u) = b whenever ({u,v},a,b) is a
node of A. It remains to show that the coloring of the nodes of G described
by the function f is a 3-clique free coloring.

Suppose there is a 3-clique €2 in G whose nodes receive the same color.
There are distinct nodes wy, we of A such that €2 is a 3-clique in the subgraph
Hx associated with wy, wy. This means that Hy is not qualifying. On the
other hand when we constructed I' we connected wq, wy by an edge in I'
because the subgraph Hyx was qualifying. m

Theorem 3.2. Given a graph G with m edges and an integer k and a aux-
tliary graph U described above. There is a 3-free coloring of nodes of G with
k colors iff there is an m-clique in T'.

Proof. Follows from Observation [3.3] and [3.4] O

Example 3.1. Let the finite simple graph G = (V, E) be given by its adja-
cency matriz in Table [3.3 The graph has 4 nodes and 4 edges. Figure
depicts a possible geometric version of G .

28

1111111

123456789012 345¢6
1 |x oo °
2 X ° oo ole
3 X . ole
4 X °
5 X °
6|e X ° ° °
7 ° X ° ° °
8 x|l ® °
O le|e e o0 X ole
10 (e | @ ooo X
11 oo olo|e X
12 AR X||o|e
13 ° X
14 | e ° ° ol e ° X
15 ° oo ° oo X
16 ° ° ole %

Table 3.1: The adjacency matrix of the auxiliary graph I' in Example [3.1}

1 2
X

o X | o @ | W

= W DN =
[]

Table 3.2: The adjacency matrix of the graph G in Example [3.1

TTAL3LLY | 9] ({2,3}1,1)
2 ({1,3},1,2) | 10 | ({2,3},1,2)
3] ({1,3},2,1) |11 | ({2,3},2.0)
1] ({1,3},2,2) [12 ({2,3}.2,2)
5 ({L4},1,1) |[13 | ({3,4},1,1)
6| {1,4},1,2) |[14 | ({3,4},1,2)
71 ({1,4},2,1) [15 | ({3,4},2,1)
81 ({1,4},2,2) |[16 | ({3,4},2,2)

Table 3.3: The nodes of the auxiliary graph I' in Example [3.1].

29

We wish to decide if the nodes of the graph G have a 3-clique free legal
coloring with 2 colors. By constructing the auxiliary graph I' = (W, F') the
question is reduced to a clique search. The graph T has [V|-k? = (4)(2%) = 16
nodes. The nodes of T" are listed in Table [3.3l

3.3 Reducing hypergraph coloring to clique
search

Our final example for using this technique will be the coloring of hypergraphs.
Namely, we will show how legal coloring of the nodes of a hypergraph can
be reduced to clique search in a uniform hypergraph. (More on hypergraphs
see |Berg1973], Bret2013).)

Let H = (V,E) be a finite simple hypergraph. The hypergraph has
finitely many nodes and finitely many edges. Further it does not have any
loop (hyperedge containing only one element) and it does not have double
hyperedges.

We color the nodes of the hypergraph H in the following way.

1. Each node receives exactly one color.
2. All the nodes of a hyperedge cannot receive the same color.

This type of coloring of the nodes of the hypergraph is called a legal coloring
of the nodes of H. A coloring of the nodes of the hypergraph H = (V| F)
can be conveniently given by a map f : V — {1,...,k}. Here the numbers
1,..., k represent the colors and f(v) is the color of the node v € V. The i-th
level set of the function f is commonly referred to as the i-th colors class.
The i-th color class C; is equal to {v: v € V| f(v) =i}. A coloring of the
nodes can also be given by the colors classes C1, ..., Ck.
The next problem is known as the k-colorability problem

Problem 3.4. Given a finite simple hypergraph H = (V, E) and given a
positive integer k. Let us decide if the nodes of H can be legally colored using
k colors.

For each finite simple hypergraph H there is a well defined positive integer
k such that the nodes of H can be legally colored using k colors but the
nodes of H cannot be legally colored using k — 1 colors. This k is called the
chromatic number of H and is denoted by y(H).

By the complexity theory of algorithms, Problem belongs to the NP-
complete complexity class even in the k = 2 special case (see [Gare2003,

30

Papal994].) One may interpret this fact by saying that deciding if the nodes
of a given hypergraph can be legally colored using two colors is a computa-
tionally demanding problem. Consequently determining the chromatic num-
ber of a given hypergraph is a computationally hard problem as well.

There are other types of hypergraph colorings, namely rainbow coloring,
mixed coloring, etc. We will describe some in the text, but actually, al-
though they are truly different constructions, from the point of view of our
construction there is little difference between them.

A subset I of the nodes of the hypergraph H is called an independent set
if a subset of I is never a hyperedge of H. An independent set [is maximal
in H if it cannot be extended to a larger independent set by augmenting it
by a node of H. An independent set [with cardinality k is a maximum inde-
pendent set in H if H does not contain any independent set with cardinality
k+1.

Legally coloring the nodes of an ordinary graph or a hypergraph has many
important applications in various fields besides its theoretical significance.
Since finding the optimal number of colors of a legal coloring can easily
exceed the available computational resources in many practical situation we
settle for approximate greedy coloring procedures. In this work we will reduce
hypergraph coloring problems to hyperclique search problems in r-uniform
hypergraph. We intend to exploit the many possible greedy clique locating
procedures to construct approximate legal coloring of the nodes of a given
hypergraph.

Let H = (V, E) be a finite simple r-uniform hypergraph. It means that
H is a finite simple hypergraph such that each edge contains exactly r nodes.
Let C be a subset of V. We say that C' is a clique in H if each r pair-wise
distinct nodes in C' are the nodes of a hyperedge of H. The size of the clique
is the cardinality |C| of C. If |C| = k we speak of a k-clique.

The next problem is the so-called k-clique problem for hypergraphs.

Problem 3.5. Given a finite simple r-uniform hypergraph H and given a
positive integer k. Decide if H contains a k-clique.

For a given finite simple r-uniform hypergraph H there is a well defined
positive integer k£ such that H has a hyperclique of size k and H does not
have any hyperclique of size k + 1. This k is called the clique number of H
and is denoted by w(H). It is a well-known result from complexity theory
that the k-clique problem is in the NP-complete complexity class even in the
r = 2 particular case (see [Gare2003, [Papal994].) As the k-clique problem
is computationally challenging it must hold for the problem of determining
the clique number too.

31

hyperedge | tiles

{1,3,6} {1,3},{6}
{1, 3,8} {1,3},{8}
{1,5,8} {1,5}, {8}
{2,4,5,7} | {2,4},{5,7}

Table 3.4: The tiles assigned to the hyperedges in Example [3.2] The hyper-
edges are cut into two tiles.

To an r-uniform hypergraph H it is customary to assign an r-uniform
hypergraph H’ such that the nodes of H' are the same as the nodes of H
and an r element subset e of the nodes is a hyperedge of H' when e is not a
hyperedge of H. The graph H' is called the complement of H. Note that the
nodes of hyperclique in H form an independent set in H’ and the elements
of an independent set in H are the nodes of a hyperclique in H'. We can
speak of maximal and maximum cliques in the same way as we spoke about
maximal and maximum independent sets.

3.3.1 Reducing hypergraph problems to ordinary graph
problems

Let H = (V, E) be a finite simple hypergraph. We assign colors to the nodes
of H such that the following two conditions are met.

1. Each node receives exactly one color.
2. Two distinct nodes of a hyperedge never receive the same color.

This type of coloring of the nodes of the hypergraph is called a rainbow
coloring of the nodes of H. The following problem can be called as the
k-rainbow colorability problem

Problem 3.6. Given a finite simple hypergraph H = (V, E) and given a
positive integer k. Let us decide if the nodes of H can be rainbow colored
using k colors.

One can observe that Problem is not a genuine hypergraph problem
in the sense that it can be reduced to the coloring of the nodes of an ordinary
graph. Let us define an ordinary graph G. The nodes of G are identical to
the nodes of the hypergraph H. Two distinct nodes u, v of G will be adjacent
in G if u, v are elements of a hyperedge of H simultaneously. It is easy to

32

verify that if the nodes of the hypergraph H have a rainbow coloring with &
colors then the nodes of the ordinary graph G have a legal coloring using k
colors. And conversely, if the nodes of G have a legal coloring with £ colors,
then the nodes of H have a rainbow coloring with % colors.

One may define cliques in a hypergraph H = (V, E) in the next way. A
subset C' of V' is a clique in H if for each distinct nodes u, v in V there is a
hyperedge of H that contains both u and v. We may consider Problem in
connection with this clique concept. Locating a k-clique in the hypergraph H
can be reduced to find a k-clique in an ordinary graph G. For this purpose it
is enough to introduce the ordinary graph G we have described above. In this
sense this new clique concept is not a genuine generalization of the ordinary
clique concept for hypergraphs.

Let H = (V,E) be a 3-uniform hypergraph and suppose that we are
looking for a k-hyperclique in H. This problem can be reduced to a clique
search in an ordinary graph G. Let ey, ..., e, be all the hyperedges of H.
These hyperedges will be the nodes of G. Two distinct edges e; = {u;, v;, w; },
e; = {u;,v;,w;} are adjacent in G if the unordered triplets

{wisuj, 05, {wi,uj,ws}, {ui, vy, w5},
{visujovi}, {vi ujwyy, {vi,v5, w55,
{wi, uj, v}, {wiugw;}, {wi, v, w;}

are all hyperedges of the hypergraph H. Both of the set {w;,v;, w;},
{u;, v;, w;} has three elements. It can happen that these sets are not disjoint.
In this case not all of the listed nine sets have three elements. We should
check if the three elements subsets among the listed nine sets are hyperedges
of the hypergraph H.

We claim that if the hypergraph H has a hyperclique of size k, then the
ordinary auxiliary graph G has a clique of size (g)

In order to prove the claim let C' C V with |C| = k such that for each
pair-wise distinet u,v,w € C the unordered triplet {u,v,w} is a hyperedge
of H. We can form (g) unordered triples from the elements of C. All these
triplets are hyperedges of H. Further these hyperedges are pair-wise adjacent
nodes in the graph GG. Thus G has a clique of size (';)

Next we claim that if G has a clique of size (g), then H has a hyperclique
of size k. Let m = (g) and let e; = {uy, vy, w1}, ..., em = {Um, Vm, Wy} be all
the nodes of a clique of size m in G. Of course ey, . . ., e, are hyperedges of the
hypergraph H. Set C' = {uy, vy, w,. .., Un, Um, Wy . There maybe repetition
among the elements uy, vy, Wy, ..., Up, Uy, Wy. In other words these elements
are not necessarily pair-wise distinct. Let us suppose that |C| = t. As
€1,...,6, are pair-wise distinct three element subsets of C', it follows that

m:(’;)g(;) and so k < ¢.

33

Choose u,v,w € C such that u, v, w are pair-wise distinct. By the
definition of C there are hyperedges e, €,, e, of H for which u € ¢,, v € ¢,
w € e, and e,,¢e4,e, € C. Note that e, e, are adjacent nodes in GG. Using
the nine subsets in the definition of the adjacency in G we get that there is
a hyperedge e, of H such that u,v € e, and e, C (. Note that e,, e, are
adjacent nodes in G. We get that there is a hyperedge of H that contains
u, v, w. Therefore each three element subset of C' is a hyperedge of H. This
means that H has a hyperclique of size k.

3.3.2 The auxiliary hypergraph

We pick a hyperedge e of the hypergraph H. We partition e into the subsets
T(e,1),...,T(e,r). In other words we choose the subsets T'(e, 1),...,T(e,r)
such that they satisfy the following conditions.

1. T(e,i) # 0 for each 4, 1 < i <.
2. T(e,1)U---UT(e, 1) =e.
3. T(e,i)NT(e,j) =0 foreach i, j, 1 <i<j<r.

We will refer to the subsets T'(e,1),...,T(e,r) as tiles associated with the
hyperedge e.

We pick a tile T'(e, i) and color its elements with the & colors in all possible
ways. If T'(e,7) has t elements, then the number of possible colorings is equal
to k*. We will denote this number by «(e,i). We will denote a colored tile
by [T'(e,i),C(e,i,7)]. Here C(e,i,j) is a coloring of the elements of T'(e, 1),
that is, C'(e, 4, j) is a map from T'(e,) to the set of colors {1,...,k}.

We define an ordinary graph I';. The nodes of I'; are the colored tiles we
have just constructed. Two distinct colored tiles

[T(e1,i1), Cler,ir, 1)), [T(ea,da), Cleg, iz, jo)]

will be adjacent in I'y if the colorings C/(ey, i1, j1), C(eg,is,j2) do not agree
on the intersection of the tiles T'(ey,4;), T'(ea,i2).

Next we define an r-uniform hypergraph I';. The nodes of I'y are the
colored tiles. The pair-wise distinct colored tiles

[T(e,1),C(e,1,51)],...,[T(e,r),Cle,r,jr)]

form a hyperedge of I's if all the nodes of the hyperedge e of H receive the
same color at the colorings C(e, 1, j1),...,C(e,r, j.) of the tiles. We call I'y,
['s conflict graphs. Both represent situations that obstruct legal coloring of

34

the nodes of the hypergraph H. As it turns out the information contained
by the conflict graphs I'y, I's is sufficient to locate legal coloring of the nodes
of the hypergraph H. We will state the results formally in two lemmas.
Suppose the given hypergraph H has m hyperedges. The m hyperedges are
partitioned into mr tiles.

Lemma 3.1. If the nodes of the hypergraph H can be legally colored using
k colors, then the conflict graphs 'y, I's contain an independent set I of size
mr simultaneously.

Proof. Let us assume that the nodes of the hypergraph H are legally colored
using k colors and suppose that the map f : V — {1,... k} defines this
coloring. Note that the colored tiles

[T(e,i),C(e,i,7)], 1<j<alei)

that are all the colored versions of the tile T'(e, i) are pair-wise adjacent in
the conflict graph I';. This means that only one of them can be an element
of an independent set in I';. It follows that an independent set in I'; can
have at most mr elements.

The map [restricted to the tile T'(e,7) provides a colored tile
[T(e,i),C(e,i,j)] for some j, 1 < j < a(e,i). There are m choices for e
and there are r choices for 7. Therefore I'y has an independent set I of size
mr.

The colored tiles that form a hyperedge of the conflict graph I's are all
associated one fixed hyperedge e of H. Further all these tiles are colored
with one fixed color. But the map f cannot assign the same color to each
node of e. This shows that the set I is an independent set in the conflict
graph I's. O]

Lemma 3.2. If the conflict graphs I'y, I's contain an independent set I of
size mr simultaneously, then the nodes of the hypergraph H can be legally
colored using k colors.

Proof. Let us assume that the conflict graphs I'y, I'; have an independent set
I of size mr simultaneously. As in the previous proof note that the colored
tiles

[T(e,i),Cle,i,7)], 1<j<alei)

are pair-wise adjacent in I'y. It follows that exactly one of these colored tiles
must be an element of /. This means that each tile is colored, that is, no tile
remains uncolored. Consequently, each node of the hypergraph H receives
a color. The conflict graph I'; guarantees that a node can receive only one
color. The conflict graph I's makes sure that all the nodes of a hyperedge of
H cannot receive the same color.]

35

12345678

e |® [°
€y | @ [}

€3 |®

€4) 3K °

Table 3.5: The incidence matrix of the hypergraph H in Example 3.2

Let W be the set of all colored tiles. The edges of the conflict graph I'y
are two element subsets of WW. The hyperedges of the conflict graph I'y are r
element subsets of W. We add r — 2 new nodes (1, ..., 8,_2 to W to get W".
We construct a new conflict graph I' = (W', F'). If the unordered pair {u, v}
is an edge of T'y, then we add the hyperedge {u,v, 51, ..., 5,2} to I'. We add
the hyperedges of I'; to I' without any modification. The conflict graph I'
carries exactly the same information as the conflict graphs I'y, I's. In order
to find a legal coloring of the nodes of H we should locate an independent
set I of size mr + r — 2 in the conflict graph I'. Or equivalently we should
look for a hyperclique of size mr + r — 2 in the complement of the conflict
graph T'.

3.3.3 Examples

Let us consider the hypergraph H = (V,E) with V = {1,2,...,8} and
E ={ey,...,e4}, where

€1 = {173a6}a €2 = {17378}7
€3 — {1,5,8}, €4 — {2,4,5,7}

The hypergraph H has 8 nodes and 4 hyperedges. We ask if the nodes of H
can be colored legally using two colors. The incidence matrix of the edges of

H is in Table B.5.

Example 3.2. Using the hypergraph H we construct an auziliary hypergraph
G = (W, F). In this example we cut the hyperedges of H into two tiles. In
other words we choose the number r in the construction to be 2.

Using the hyperedges of the hypergraph H = (V, E) we construct certain
subsets of V. As in Section we will call the family of these subsets tiles.
The list of pair-wise distinct tiles is the following

Tl - {6}’ T2 - {8}7 TS = {1’3}7
T,={1,5), Ty ={2,4}, Ty={57).

36

(o o) 1,2 1 edge

2 edges

5,6
7,8 6 edges

6 edges
1 1 1 2
/ J 8 0 2 edges
Co ° ° o)
6 edges
13 14 15 16

Figure 3.2: On the left is the conflict graph G in Example[3.2] Each distinct
two among the elements of {5,6,7,8} are adjacent. the same holds for the
sets {9, 10, 11,12}, {13,14, 15,16}, {17,18,19,20}, {1,2}, {3,4}. In order to
avoid an overly cluttered picture these edges are not drawn. On the right is
a condensed form of the conflict graph. The nodes inside each ovals are pair-
wise adjacent. An edge between ovals represents several edges. The number
of the edges are given near to the ovals and near to the edges.

37

11111111112

12345678901234567890

X

X o|l®| ®

o X o|@®

e o X|o®

e o 0 0 X

RO BN BN BN J

o X @o|@®

[AN BDEN]

o o 0 X

e o X|e@

e o0 X

[AN BDGN BN BN J

[AN BN E-dN BN J

X o|lo|e®

o X @@

e o X o | 0|0

[AN BN BN BD-GN BN]

10
11
12
13
14
15
16

17
18
19
20

Table 3.6: The adjacency matrix of the conflict graph in Example

38

1 5

2] 8

3 51 9
4 8112
5 11 | 12
6| 11 | 12
71 9110
81 9110
91 19 | 20
10 || 17 | 18
11 |/ 19 | 20
12] 17 | 18
13]| 17
14

15

16 || 20
17

18

19

20

Table 3.7: The edges of the conflict graph in Example [3.2] The 9-th row of
the table codes the information that the unordered pairs {9,19} and {9,20}
are edges of the conflict graph G.

39

The way we constructed the tiles is summarized in Table [3.4 There are
many ways to divide the hyperedges of H into two tiles. Any of these can
be used to construct an auxiliary graph. These auxiliary graphs need not to
have the same number of nodes.

After the list of tiles is available we construct a list of colored tiles by
assigning colors to the nodes in the tiles in all possible ways. If a tile has
n nodes and we try to color the nodes of the hypergraph H using k colors,
then from the uncolored tile we will construct k™ colored tiles. The colored
tiles are the nodes of the auxiliary hypergraph G.

There is a conflict in the following cases.

1. Two tiles are not disjoint and the common part of the tiles is not colored
in the same way in the two tiles.

2. The union of two tiles is equal to a hyperedge of the hypergraph H and
all the nodes in the two tiles are receiving the same color.

We are looking for a conflict free collection of colored tiles. In other
words we are looking for an independent set in the conflict graph. Or we are
looking for a clique in the complement of the conflict graph. Only one colored
version of each of the six uncolored tiles can enter into an independent set.
On the other hand each uncolored tile must occur in one colored version in
the independent set. As there are six uncolored tiles we are looking for an
independent set of size six in the conflict graph. Equivalently, we are looking
for a clique of size six in the complement of the conflict graph.

An inspection shows that the colored tiles numbered 1, 3, 6, 10, 13, 19
form an independent set in the conflict graph. From this we can read off a
coloring of the node of the given hypergraph H.

node 1 2 3 45 6 7 8
color 11 21 2 1 11

This coloring of the nodes is a legal coloring of the nodes of H using two
colors.

Example 3.3. Using the hypergraph H we construct an auziliary hypergraph
G = (W, F). In Section we did not cover the case when the tiles are
identical with the hyperedges of H. In this example we choose the number r
to be 1.

In this case the tiles coincide with the hyperedges of the hypergraph H.
For the sake of a unified treatment we listed the tiles in Table 3.8l The list
of pair-wise distinct tiles is the following

Tl = {17376}a T2 = {17378}7
T3 ={1,5,8}, T,=1{2,4,5T7}.

40

hyperedge | tile
{1,3,6} {1,3,6}
{1, 3,8} {1, 3,8}
{1,5,8} {1,5,8}
{2,4,5,7} | {2,4,5,7}

Table 3.8: The tiles coincide with the hyperedges in Example [3.3, The
hyperedges are cut into one tile.

18 edges

19,20, 21, 22, 23

24,25, 26, 27, 28
29,30, 31, 32

15 edges 15 edges 15 edges 91 edges

Figure 3.3: The condensed form of the conflict graph G in Example The
nodes inside an oval are pair-wise connected by edges. Edges between ovals
represent many edges. The number of edges are written near to the ovals
and near to the edges.

Table lists the colored tiles. We dropped the colored tiles whose elements
are colored with one color. The remaining 32 colored tiles are the nodes of
the conflict hypergraph G.

There is a conflict in the following case.

1. Two tiles are not disjoint and the common part of the tiles is not colored
in the same way in the two tiles.

The conflict hypergraph is a 2-uniform hypergraph, that is, an ordinary
graph. We are looking for an independent set of size 4 in the conflict graph.
Or a clique of size 4 in the complement of the conflict graph. The 4 tiles we
constructed must be colored in same way and the corresponding 4 colored
tiles must be conflict free.

41

T T T T 1
b~ ~ ~ M~
™ AN T AN ™ AN ™M AN 10 AN 10O AN [I 0 AN 1O AN 0 AN
— — N — — A — — <t — <t <f — <t N
|
[ap] D 0 L 1 L i L | L |
— .o .o .o
— L0 D
N [a\} [a\l
1T T r T
O © 0 — o0 i 0 i o0 ~ — D~ — ~ D~ —
™ AN ™M AN ™M AN ™M AN 1O AN 0 A 1O AN 0 AN 1O AN O AN
— = — — — — — <t < <t <t
) L)
N Ne 0 (] <t o0 L 1 L | L | L |
— — —
o < 0 o
[\ (o] (] [ap]
1T r r T
© AN © AN o0 AN o0 AN o0 AN 0 AN M~ D~ ~ M~
o o — o — ™M — 1O — 0 — 1O — 00— O — 10—
— — — — — — <t <f AN <t <t
) L)
— 10 r~ — o r~ L L L L
— — —
D el I~ —
— (a\| [aN] ™
1T r r r
o — © - o0 — oo — o0 — o0 ~ — D~ — ~ — D~ —
™ o ™M o 10— 10— 10— 10— 10— 10—
— = — — — — — <t <f AN <t —~ < AN
)
<t o © L L L L
— —
[\ O (@]
[N} N [ap]

Table 3.9: The colored tiles assigned to the hyperedges in Example |3.3] The
first rows of the matrices contain the tiles and the second rows contain the

colors.

42

1 8| 91011 |12|16 | 17|18
2 711011 12 | 16 | 17 | 18

3 711011 12|16 | 17| 18

410 71 8] 9112|1314 |15

5 7181 9112131415

6 7| 8 9|10 |11 |13 |14 |15
71 14]16 | 17|18

81 13|15 |16 |17 | 18

91 14 |16 | 17 | 18

10| 13| 14 | 15 | 17

1113114 | 15|16 | 18

12| 13 | 14 | 15 | 17

1312021 |24 |25|28 |29 |32

14 1119 122 23|26 |27 |30 |31
151922 23]26 |27 |30 |31

16 120 | 21 | 24 | 25 | 28 | 29 | 32
17112021 124 25|28 |29 | 32
181119 |22 (23|26 |27 |30 | 31

19
32

Table 3.10: The edges of the conflict graph in Example 3.3] The 7-th row
of the table holds the information that the unordered pairs {7,14}, {7, 16},
{7,17}, {7,18} are edges of the conflict graph G.

43

3.3.4 An application

Voloshin [Volo2002| introduced the following type of coloring of the nodes of
a hypergraph. The edges of the given hypergraph H are labeled as C' type
or D type hyperedges. An edge may belong to both types or may belong to
neither. We color the nodes of the hypergraph H in the following way.

1. Each node receives exactly one color.
2. All the nodes of a D type hyperedge cannot receive the same color.
3. The nodes of a C type hyperedge cannot receive all different colors.

It is easy to see that the proposed construction of I';y and I's conflict
graphs can easily be carried out for this type of graph coloring too.

One remarkable property of mixed hypergraph coloring is that there are
some mixed hypergraphs that cannot be colored properly at all. In his book
Voloshin proposes some open questions and this particular one is among
them. “Develop a probabilistic method for the colorability problem. Let
H = (V,C, D) be a mixed hypergraph with the probability of each C' edge
given by p and the probability of each D edge is given by ¢. What is the
probability, as a function of p and ¢ that H will be colorable.” We are not
going to solve the proposed problem, but can back up this question with
some extended computational results. The question is ambiguous as it leaves
open if the same subset can be a C' and D edge at the same time or not. So
we considered both possibilities.

We constructed a big series of 3-uniform mixed hypergraphs. In series A
all 3 element subset of the nodes were either a C' edge or a D edge or no edge.
A random number 0 < z < 1 was generated for each 3 nodes, and if z < p
these nodes became a C' edge, if p < z < ¢ these nodes became a D edge. In
series B we allowed the same 3 size subset to be a C' edge with probability of
p and to be a D edge with probability of q. That means that the same subset
can be either a C edge, or a D edge, or both, or not an edge. As in each
graph at least one C' edge was present that meant that the graph cannot be
colored by |V colors. So we asked the question if it can be colored by |V|—1
colors or less, and constructed an auxiliary graph I' accordingly. There are
few practical software for hyperclique or hyper independent search. A recent
publication [Tor2017] can deal with only small hypergraphs. We used r = 2,
that is normal graphs for this construction. This also meant that we did not
need two but only one auxiliary graph. We performed the k-clique search
using the algorithm described in Chapter

The nodes of the auxiliary graph I' are all possible pairs of the set V'
colored by all possible colors. At this juntion we would like to point that

44

when we ask if a the nodes of a hypergraph can be colored legally using &
colors we actually mean k or less than k colors.

The series of experiments calculated the colorability of graphs of size
6,8,10,12 and 14. We set the values for p and ¢ all possible ways by 5% steps.
We generated 20 instances with the same p and ¢ values, and checked the
colorability of the resulting graphs. The results are the f frequency of the
colorable ratio of these graphs, and pictured in Figure [3.4] for A series, and
Figure [3.5] for B series.

45

Figure 3.4: Results of the A series, where an adge can be a C' edge or a D
edge but not both

46

P

v'

W"«l

Figure 3.5: Results of the B series, where an edge can be C' edge and D edge
at the same time

47

Chapter 4

Maximum clique solvers,
kernelization, auxiliary algorithms

In the present chapter we wold like to summarize the current results on
maximum clique solvers. First, we shortly list the history of these solvers
and try to point out the special steps in the development of the maximum
clique search algorithms. Second, we should compare the auxiliary algorithms
used in these solvers for bounding and cutting the search tree. The results
are from [Szab2017|. Finally, we would like to focus on kernelization, that
is the preconditioning techniques. These are becoming a very interesting
branch for solving hard combinatorial optimization problems, although they
are not yet found their way into the usage of the clique search community:.
Apart from exact methods we would like to mention that the maximum
clique problem, as being very hard for even medium sized graphs, is of-
ten solved by some heuristic approach [Bom1997]. Apart from solving it
by usual computer program |[Lam2016|, some even use custom FPGA for
a Markov-chain Monte-Carlo search, which the authors name “Digital An-
nealer” [Nagh2019|, and even quantum computing is used [Chap2019).

4.1 Sequential algorithms

The history of exact maximum clique search programs is a long one
[Bom1999|]. The efficient programs always use some Branch-and-Bound tech-
nique [Carm2012].

The first specialized algorithm for clique search was the Bron-Kerbosh
[Bron1973|. It lists all maximal cliques, and today is not considered good
for maximum clique search. The second important algorithm was by Car-
raghan and Pardalos [Carr1990|. This algorithm makes the base for almost

48

all algorithms by today, at least any author would claim that.

The refinement of the Carraghan-Pardalos algorithm was using node col-
oring for bounding function instead of just the size of the ‘prospective’ nodes
set. Many researchers was doind research in this area including Tomita
[Tom2003|, Kumlander [Kuml2005, Kuml2020] and Konz [Konc2007]. An
interesting variation of the program was embedding the search into a russian
doll techique by Ostergard [Ost2002].

Nowadays the basic direction of the refinement is to use better bounds
then the bound coming from coloring. They would call such bound ‘in-
frachromatic’ noting this feature. Researchers like San Segundo [Seg2011]
Seg2012, [Seg2013| [Seg2014], [Seg2015, Kom2015, [Nik2015] or Li [Li2010al
Li2013, [Li2017| are the most prominent researchers in this field.

4.2 Auxiliary algorithms

In this section we would like to focus on different upper bounds for the clique
size. These bounds can be used for estimating such upper bound for large
problems and then compared to some heuristically found result. But they are
also extendedly used in the state-of-the-art clique solvers. These bounding
functions give us different results — some are sharper then others —, but the
algorithms that giving us these results are also of different complexity. Also,
some bounds can be computed exactly, while calculation the exact value for
others is NP-hard, so heuristic algorithms are in use. One would be interested
to compare these algorithms and bounds, and that is exactly we would like
to do in this section.

4.2.1 Coloring

The most common method for establishing a bound for w(G) is determining
a legal coloring of the nodes of the graph G such that:

1. Each node receives exactly one color.

2. Two adjacent nodes cannot have the same color.

More formally, a node coloring of G with r colors, also an r-coloring, is
a surjective map f : V. — {1,...,r}. Here we identify the r colors with
the numbers 1, ..., r respectively. The level sets of f are the so-called color
classes of the coloring. The i-th color class C; = {v : v € V, f(v) = i} consists
of all the nodes of G that are assigned color ¢. The color classes C',...,C.
form a partition of V. Vice versa, the coloring is uniquely determined by the
color classes (1, ..., C,.

49

The smallest number of colors required by any legal coloring of the nodes
of the graph G is called the chromatic number of the graph and denoted by
X(G). As the nodes of a clique A are all pairwise adjacent, any legal coloring
of the nodes in A will require at least as many colors as the cardinality of
the clique. Consequently, the chromatic number is always an upper bound
for the size of the largest clique in the graph, that is, x(G) > w(G).

Finding the chromatic number of a graph is well known to be NP-hard.
In practice, approximate coloring algorithms are used as bound for the clique
number. Specifically, we are interested in two coloring heursitics. The first is
the well known Dsatur algorithm from Daniel Brélaz [Brel1979]. The second
one is the iterative coloring heuristic from Joseph C. Culberson [Culb1992],
in the following IC.

There is a vast literature on coloring, such as [Ross2014]. But different
coloring methods lay outside the scope of our work.

4.2.2 Fractional and b-fold coloring

[Wood1997]

Any legal k-coloring of the nodes of a graph G = (V| E) assigns the
same color number ¢ = 1...k% to the nodes of each independent set C; that
determines a partition of V. On the other hand, fractional coloring assigns
one real number as the weight of a color to every independent set [God2001]
pp. 135-138.]. More formally, let I(G,u) denote the independent sets of
G that contain the node u. A fractional coloring of the nodes of G is a
nonnegative real function f such that, for any node u € V,

Y os) =1
Sel(Gyu)

The sum of the values of f for every node is called the weight of the frac-
tional coloring, and the minimum possible weight of every fractional coloring
of the nodes of G is called the fractional chromatic number x(G).

A simpler variation of the fractional coloring, the b-fold coloring of G,
is an assignment of a set of b colors to every one of its vertices such that
adjacent vertices receive disjoint sets. An a:b-coloring is a b-fold coloring
out of a available colors. Finally, the b-fold chromatic number x,(G) is the
smallest a such that an a:b-coloring exists. The special case of b = 1, the 1-
fold coloring, reduces to finding a legal node coloring, so consequently finding
the b-fold chromatic number is NP-hard. The connection between fractional
and b-fold chromatic number is the following:

xs(@) = Jim X1

b—o0 b

(4.1)

30

A b-fold coloring of the nodes of a graph G also bounds the clique number
from above. Also, each k-clique must receive b x k colors, thus w(G) <
@. Since computing the fractional chromatic number is NP-hard, we
consider the heuristic b-fold coloring as substitute problem. To further reduce
computation resources we consider only small values of b, in particular b has
been set to 5 in our experiments.

From it can easily be established that the bound derived from any
b-fold coloring is also an upper bound for the clique number of the graph.
Our choice of b-fold coloring is motivated by the fact that this coloring can
be easily reformulated as a legal node coloring of a graph [Szab2016b]. This
is done by using an auxiliary graph I' = (W, F') constructed from the given
G = (V, E) graph. The nodes of I are ordered pairs (v;, k) € W,v; € V1 <
k < b. The edges are defined as follows:

)i, k), (v,)} itk #£ 1<k I1I<b (4.2)
{(vi, k), (v,)} if {vj,v;} €eE 1<kI1<Db '

It is easy to see from that any legal node coloring of the graph T’
represents a b-fold coloring of the nodes of the graph GG and vice versa. The
key idea is that the different color numbers assigned to the nodes (v;, k) in
I become the set of colors assigned to v; in the corresponding b-fold coloring
of the nodes of GG. Figure shows I' in a 5:2-fold coloring of the nodes of
Cs cycle, that is, a 2-fold coloring using 5 colors.

If we are given a b-fold coloring to G, which means that a node v; of
G is assigned b different colors, then assigning these b colors to the nodes
Vi1, Vi2, ..., U;p in result we get a legal coloring for I'. The same way back-
wards we can construct an b-fold coloring for GG in the case if we are given a
legal coloring to I'.

4.2.3 s-clique free coloring

Another modification to legal coloring may be proposed [Szab2012|. Let
G = (V, E) be a finite simple graph and let s be a positive integer such that
s> 2.

Definition 4.1. A subset U of V s called an s-free set if the graph spanned
by U in G does not contain any s-clique. A partition Uy, ..., U, of V is called
an s-clique free partition of V' if U; is an s-clique free subset of V' for each 1,
1<i<r.

We color the nodes of GG such that each node receives exactly one color
of the given r colors. A coloring of the nodes of G with r colors can be

51

Figure 4.1: The I" auxiliary graph for C5 and its node coloring with 5 colors.

described more formally as a surjective map f : V. — {1,...,r}. Here
we identify the r colors with the numbers 1,... 7, respectively. The level
sets of f are the so-called color classes of the coloring. The ¢-th color class
C;={v:v €V, f(v) =i} consists of all the nodes of G that are colored
with color i. The color classes (1, ..., C, form a partition of V. Obviously,
the coloring is uniquely determined by the color classes C1, ..., C,.

Definition 4.2. A coloring of the nodes of G with r colors is called an s-

clique free coloring if the color classes Cy,...,C, are all s-clique free subsets
of V.

In particular, in a 2-clique free coloring of GG adjacent nodes cannot receive
the same color. A 2-clique free coloring is commonly referred as a legal or
well coloring of G. In a 3-clique free coloring of G the nodes of a triangle in
G cannot receive the same color.

Proposition 4.1. If G has an s-clique free coloring with r colors, then

w(G@) <r(s—1).

Proof. Let A be a k-clique in G and suppose that C1,...,C, are the color
classes of an s-clique free coloring of GG with r colors. Note that A can have
at most s — 1 nodes in each of the color classes C,...,C,. It follows that
k <r(s—1) and therefore w(G) < r(s —1). O

We implemented two different algorithms for obtaining s-clique free col-
orings. One is based on Brelaz’ DSatur algorithm. Here the problem arose
from defining the saturation of a node. The other algorithm is derived from

52

the Culberson’s iterative coloring scheme. Note that combining any s — 1
color classes of a legal node coloring we get an s-clique free coloring. So
we started from a legal coloring scheme and started the iterative recoloring
proposed by Culberson, where the color classes were defined as above. Sadly
the results were not satisfactory. While for some tiny graphs we could get
better results for moderate and big graphs as our proposed test graphs we
never get any better result for upper estimate for w(G) as the legal coloring.
So we omit here the table of our non-conclusive results.

4.2.4 Edge coloring

Edge coloring can also provide a good upper bound for the clique number.
We consider an edge coloring of a graph G with k colors an assignment of
color numbers to the edges of G such that:

1. Each edge of G receives exactly one color.

2. If x, y, z are distinct nodes of a 3-clique in G, then the edges {z,y},
{y, z}, {x, z} must receive three distinct colors.

3. If z, y, u, v are distinct nodes of a 4-clique in G, then the edges {x,y},
{z,u}, {z,v}, {y,u}, {y,v}, {u,v} must receive six distinct colors.

Note, that this edge coloring differs from the one usually found in the
graph literature. Comparable to node coloring, edge coloring can also be
used as an upper bound for the clique number of G, base on the following

property:

Property 4.1. Let A be an l-clique in a graph G, and let G be edge-colorable
with k colors. Then (1 —1)/2 <k holds.

Proof. A legal edge coloring of G must also provide a legal edge coloring of
A]. Since any legal edge coloring of A must contain at least /(I —1)/2 colors,
then (I — 1)/2 < k, as required. O

The procedure to color the edges of a graph G is to use an auxiliary graph
I' = (W, F). Each edge of G is represented by a node in I'." We connect
the nodes of I according the rules above, that is two nodes in I" should be
connected if the corresponding edges in G forming a 3- or a 4-clique. It is
easy to see that any legal coloring of the nodes of I' represents a legal edge
coloring of GG. The auxiliary graph I' can be quite large, but greedy coloring
procedure like the Brélaz’ Dsatur can still be used. We constructed the
auxiliary graph I' from all our test graphs and tried to run first the Brélaz’
Dsatur coloring procedure, then using its output the Culberson’s iterative
coloring algorithm on these auxiliary graphs.

33

4.2.5 Lovasz number

The last bound considered is the Lovdsz number of a graph, a real
number that is an upper bound on the Shannon capacity of the graph
[Lov1976l Karg1998, [Hrg2019]. It is also known as Lovdsz theta function
and is commonly denoted by ¥(G). Lovasz theta is actually an upper bound
for the maximum independent set. There are several formulations of this
number, Knuth composed an extended list [Knul994].

4.2.6 The partial MaxSAT bound

The bound based on partial MaxSAT was first described in [Li2010a], and
referred to as UBgap. It reduces the maximum clique problem for a k-colored
graph G to a partial maximum satisfiability problem, and employs typical
Boolean constraint propagation techniques to prove that no k-cliques exists in
(. This bound is at least as good as the bound coming from coloring. In the
literature we find that it has been successfully applied as bounding function to
determine the clique number of a graph in the algorithms MaxCLQ [Li2010b]
and IncMaxCLQ [Li2013].

The input of the algorithm is an independent set partition C,Cl, ..., Cy
of the vertices of the G, that is a coloring of the nodes of the graph. The
algorithm greedily looks for r conflicting subsets of independent sets [=
{I,I,...,I,} to reduce the upper bound for the clique number from the
original k¥ to kK —r. A conflicting subset [; in I is such that w(G[[;]) <
11;], (1 < j <r), where G[[;] is the graph induced by the vertices in I;, and
|1;] denotes the number of independent sets. For this step the algorithm uses
unit clause propagation from SAT. It stores all unit independent sets in a
queue @, and repeatedly dequeues each one and assumes that its single node
v is part of a new clique. In the remaining independent sets, all vertices that
do not belong to v’s neighbor set N (v) are removed, which, in turn, may lead
to fresh independent sets added to (). The procedure ends when either @) is
empty, or an independent set becomes empty.

A node v is called failed if the application of UP driven by @ = {v}
leads to an empty independent set. If this is the case, and v belongs to a
unit independent set f, a conflict I, is determined by the set of independent
sets that participated in the UP chain (including the final one that became
empty) together with f. Another possible conflict derives from a non unit f
set with all its vertices failed. In this case, Iy =, Io-

The second way to find disjoint conflicts with overlapping independent
sets is by using the clause relaxation method employed in maximum Boolean
satisfiability (MAX-SAT) [Fu2006]. Once a conflicting set of cardinality s

o4

is found, a fresh node w;, (1 < i < s) is added to each independent set
in the conflict such that it is connected to all the other vertices in G with
two exceptions. Those vertices that belong to its same independent set,
and the other fresh vertices w;, (j # ¢). Each added node and its enlarged
independent set are denoted relaxed. It is easy to see that for a given conflict
I;, the set of || relaxed vertices thus defined cover all possible cliques of size
|I;] in I;. Once a relaxed independent set Cj, (1 < j < k) from [; becomes
unit and is inserted into the UP queue @), the remaining sets in [; \ C; can
take part in future disjoint conflicts.

4.2.7 Numerical experiments

The listed auxiliary algorithms are of different complexity thus have big varia-
tion in running time. The upper bounds derived from them are also different.
For some we do not know how good the bound is, for others we have some
theoretical comparison, see [Karg1998] [God2001]:

w(G) < xu(G) <Y(G) < xp(G) < x(G) (4.3)

We performed extended measurements on a carefully selected data set of
35 graphs, and reported the results in Table 4.1 The first 11 graphs in the
Table come from various error correcting code problems [Sloan][] The next 19
graphs are taken from the 2nd DIMACS Challenge [Hass1993]"} The next 3
graphs are reformulated problems of monotonic matrices [Szab2013]|f], and the
last 2 are from the so-called EVIL instances [Szab2019a]|ﬂ. For the reported
graphs, the clique number is extremely hard to compute, and in some cases
these problems are still open. There are also instances where w(G) is known
but which cannot be determined by state-of-the-art solvers. Examples of
these are the EVIL graphs, where w(G) is known by construction, and a
subset of the johnson graphs. The latter are derived from code theory —
values for w(G) available at https://www.win.tue.nl/ aeb/codes/Andw.
html#d4.

Table reports the sizes of the 35 selected graphs, along with their
clique number, or alternatively the best known bounds. Also in the Table,
the columns Dsatur color and IC color show the best upper bound for w(G)
considering the Dsatur and the IC coloring heuristics respectively. The IC
coloring is the obtained after 1000 iterations, taking the Dsatur coloring as

"https://oeis.org/A265032/a265032.html

Zhttp://iridia.ulb.ac.be/ fmascia/maximum_clique/DIMACS-benchmark
3http://mathworld.wolfram.com/MonotonicMatrix.html
4http://clique.ttk.pte.hu/evil

95

https://www.win.tue.nl/~aeb/codes/Andw.html#d4
https://www.win.tue.nl/~aeb/codes/Andw.html#d4
https://oeis.org/A265032/a265032.html
http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark
http://mathworld.wolfram.com/MonotonicMatrix.html
http://clique.ttk.pte.hu/evil

starting point. For the experiments conerning U Bg a1 the coloring obtained
from IC was the starting point.

We used the CSDP program from Brian Borchers [Bor1999, Bor2007] for
calculating the value of Lovasz’ theta, J(G).

We omitted the result on 3-free coloring, as we could not design a heuristic
algorithm that would give a better bound then legal node coloring. This task
is yet to be done.

A “¥” in any cell refers to a bound that could not be computed due
to memory or time limitations. Table also reports some previous, not
published, results by the author for some problems using a supercomputer.
These results are also indicated by a “*” and the bound is given in parenthesis.
Those calculations used up to several hundred of cores, up to half terabyte
of memory, and they run sometimes for weeks.

Table reports the clique bound provided by Dsatur, and the best
bound obtained by the iterative Culberson’s method for legal coloring, the
Lovasz’ theta function over the complement graph, the partial MaxSAT
bound, the Culberson’s iterative method for the auxiliary edge graph and
the 5-fold node coloring. From the table, the best results were always pro-
vided by the Lovasz’ theta function. The second best bound came from
different algorithms, but mostly from the 5-fold coloring.

4.3 Kernelization

In the present section we would like to list some possible preconditioning
tools that can aid the maximum and k-clique solvers. Although there is
no strict definition the term “kernelization” usually used for such algorithm
which reduces the problem instance [Cyg2015|. For clique search we usually
would like to delete some nodes or edges, or transform the graph into a
smaller one. Our list is not complete, for other kernelization methods in this
area see [Aki2016| [Hes2020].

4.3.1 Structions

In this section we rely on publications [Ebel984) [Ale2003]. We introduce
some notations. Let V' = {1,...,n} be the set of nodes of G. We may
assume that node 1 is the pivot node, that is, the node which plays a pivotal
role in the struction construction. This is only a matter of renaming the
nodes of the graph G.

Let A = {ay,...,a,} be the set of neighbors of the pivot node 1 and let
B = {by,...,bs} be the set of non-neighbors of the pivot node 1. Using the

56

Dsatur | Iterated pMax | Edge | 5-fold

\4 w(G) color color 9(G) | SAT | color | color

1dc.512-c | 512 52 83 74 53.03 136 65 56.8
1dc.1024-c | 1024 94 152 137 95.98 136 * 103
1dc.2048-c | 2048 | 172-174 304 268 | *(174.73) 266 * 1 190.2
let.1024-c | 1024 171 225 215 184.23 209 * 1 194.4
let.2048-c | 2048 316 436 404 342.03 399 * | 358.6
1tc.1024-c | 1024 196 241 229 206.3 225 * 1 217.2
1tc.2048-c | 2048 352 450 426 374.64 422 * 1 389.8
1z¢.512-c | 512 62 104 93 68.75 92 84 74.4
1z¢.1024-c | 1024 | 112-117 201 177 128.67 176 * 138
2dc.1024-c | 1024 16 34 30 * 29 * 22.2
2dc.2048-c | 2048 24 65 54 * 53 * 38
brock800 2 | 800 24 134 118 * 117 79 107
brock800 4 | 800 26 136 118 * 117 79 | 106.4
C1000.9 | 1000 68— 305 255 * 246 * 1 236.6
C250.9 | 250 44 92 78 56.24 71 70 76
C500.9 | 500 57— 164 140 84.2 132 123 | 131.8
hamm10-4 | 1024 40 85 74 * 73 * 95.8
johns-10-4-4 | 210 30 48 41 30 40 37 32
johns-11-4-4 | 330 35 71 61 41.25 60 53 45
johns-11-5-4 | 462 66 97 88 66 87 81 66.4
johns-12-4-4 | 495 51 99 86 55 85 73| 60.8
johns-12-5-4 | 792 80 161 138 99 137 128 99
johns-13-4-4 | 715 65 133 116 71.5 115 * 80.4
johns-13-5-4 | 1287 123- 248 212 143 211 * 143
keller5 | 776 27 61 31 * 31 42 31
keller6 | 3361 59 141 63 * 63 * 63
MANN a45 | 1035 345 369 360 356.05 359 * 360
MANN a81 | 3321 1100 1153 1134 1126.62 | 1133 11134
p_hat1500-3 | 1500 94 270 265 * 263 * 1 244.8
p_hat700-3 | 700 62 143 134 * 131 105 125
monoton-9 | 729 28 93 47 | *(34.41) 46 46 42.6
monoton-10 | 1000 32— 71 60 | *(41.83) 59 59 93.2
monoton-11 | 1331 37— 84 72| *(49.96) 71 73 64.2
evil-N330 | 330 60 109 100 71.99 85 90 | 90.2
evil-N500 | 500 80 165 140 100 119 121 | 128.2

Table 4.1: The summary for the upper limit of w(G) by different methods.
The sign * indicates that the bound cannot be computed due to time or
memory limit.

57

set B we construct a new set C. The elements by, ..., b, of B are listed such
that
by < -+ < by (44)

holds. The ordered pair (b,,bs) is an element of C' whenever the unordered
pair {b,, bz} is an edge of G and o < 3. We denote such an ordered pair by
C(ba, bg)

The set of nodes of the struction graph G’ is AUC. Two distinct elements
a; and a; from A are adjacent in G’ if the unordered pair {a;,a;} is an edge
of G. Otherwise a; and a; are not adjacent in G'.

Two distinct elements ¢(b,, bg) and ¢(b,, bs) from C are adjacent in G’ if
bo = by and the unordered pair {bg, b5} is an edge of G. Otherwise ¢(by, bg)
and c(b,, bs) are not adjacent in G’

An element ¢(b,,bs) from C' and an element a; from A are adjacent in
G’ if the unordered pairs {b,,a;} and {bg, a;} are edges of G. Otherwise the
elements ¢(by, bg) and a; are not adjacent in G'.

Lemma 4.1. If A is a clique in G, then there is a clique A in G, where
Al =[A]+1

Proof. If A’ contains no node from C, then A = A’ U {1} is such a required
clique.

If A’ contains nodes from C, they must be of the form ¢(i,b,), c(i, bg),
c(i,by), ..., and the nodes 7, by, bg, b, . . . are the nodes of a clique in G. Then
A = A"\ {c(i, by, c(i,bp), c(i,by), ...} U{i, ba,bg, by, ...} is a clique of G. O

Lemma 4.2. If A is a clique in G, then there is a clique A in G, where
A = |A] -1

Proof. Let A be a clique in G, and set Ag = AN (AU {1}).

If |Ag| = 0 then removing any node from A results a required clique A’
in G'.

If |Ag| = 1 then A" = A\ Ag is a required clique.

If Ag = {iy,i2,...,4,}, where r > 2 and i; < ip < -+ < i,, then A’ =
(A\ Ag) U{cliy, i2), c(ir,i3), ..., c(i1, i)} is a required clique. O

The following result is a corollary of Lemma 4.1 and [4.2]
Theorem 4.1. w(G) — 1 = w(F)

Before embarking on a large scale clique search it is advisable to carry
out a thorough inspection of the original graph to detect deletable nodes and
edges. We will use the notation N(a) for the set of neighbors of the node a.

58

4.3.2 Color indices

Suppose that the nodes of a finite simple graph G are legally colored using
k colors and C1, ..., C} are the color classes of this coloring.

Definition 4.3. The color index of a node v of G (with respect to a legal
coloring of the nodes of G) is the number of color classes C; that contains at
least one node adjacent to v.

Note that if the color index of a node v is less than k — 1, then v cannot
be a node of a k-clique in GG. In other words if the colors index of v is at
most k — 2, then v can be deleted from G without loosing any k-clique.

Definition 4.4. The color index of an edge {u,v} of G (with respect to a legal
coloring of the nodes of G) is the number of color classes C; that contains at
least one node adjacent to u and v simultaneously.

Note that if the color index of an edge {u, v} is less than k — 2, then the
edge {u,v} can be deleted from G when one is looking for a k-clique in G.
(We do not delete the nodes u or v.)

4.3.3 Dominance

Definition 4.5. Let G be a graph and let a, b be distinct nodes of G. We say
that node b dominates node a if a and b are not adjacent and N(a) C N(b).

The basic observation is that a dominated node can be dropped from the
graph during the search for a k-clique. Note that we may loose k-cliques
during this reduction. But we are not going to loose all of them.

Definition 4.6. Let G be a graph and let a, u, b be distinct nodes of G such
that {a,u}, {u,b} are edges of G. We say that edge {u,b} dominates edge
{a,u} if b ¢ N(a) " N(u) and N(a) N N(u) € N(u) N N(b).

If edge {u, b} dominates edge {a, u}, then the edge {a,u} can be canceled
from G when we are deciding if G contains a k-clique. (We do not delete the
nodes a or u.)

Definition 4.7. Let G be a graph and let x, y, u, v be distinct points of G
such that {x,y}, {u,v} are edges of G. We say that edge {u,v} dominates
edge {z,y} if {u,x} or {u,y} is not edge of G, and {v,z} or {v,y} is not
edge of G, and N(z) N N(y) C N(u) N N(v).

If edge {u, v} dominates edge {x, y}, then the edge {x,y} can be canceled
from G when we are deciding if G' contains a k-clique. (We do not delete the
nodes or y.)

59

Chapter 5

New method for k-clique search
and its extension to a maximum
clique solver

In the last years the scientific viewpoint about NP-complete and NP-hard
problems has shifted. First, today we have a more detailed analysis which
can distinguish between subclasses. By doing so we know that although
two problem are being in the same NP-hard class can be quite different
in difficulty. Second, the introduction of parameterized algorithms showed
that some problems happen to be much easier than the conservative worst
case prediction made by being in a certain class. In these cases some extra
information can guide the algorithm to solve the problem more efficiently.
Finally, the approach of parameterized algorithms sometimes able to deal
with the more complex problems by dividing the problem into an easier and
a harder part. Solving the easy parts as a preprocessing step we are left with
the hard part and so reducing the size of the original problem.

In this chapter, which is based mostly on [Szab2018a], we would like to
propose an approach driven by these ideas. The problem in question is the
NP-hard combinatorial optimization problem of maximum clique search in
simple graphs. There are many different algorithms and proposition for solv-
ing it, and most of the proposed algorithms are being refinements of the
Carraghan-Pardalos algorithm. (Patric Ostergard’s cliquer is being as an
exception.) Our contribution is based on the fact that the NP hard maxi-
mum clique optimization problem can be replaced by a series of NP-complete
k-clique decision problems. The structure of a k-clique search algorithm is
simpler than the maximum clique problem. In addition the combined search
space of the k-clige problems is significantly smaller than the original max-
imum clique problem. Basically the parameter k drives the search and thus

60

we are able to reduce the size of the search tree.

This approach turns out to be more efficient in several cases. Using
simple methods, our program can keep up with the much more sophisticated
programs and even beat them on several instances.

5.1 Background

The Carraghan-Pardalos algorithm [Carr1990, Wu2015|] forms the base for
many of the exact clique search algorithms. In this sense it occupies a spe-
cial position among the clique search procedures. The Carraghan-Pardalos
algorithm divides a given clique search instance into smaller instances by
choosing nodes into a prospective clique and repeats this process. We can
see this algorithm as a good example of the well known Branch and Bound
algorithm family.

In the present chapter we would like to introduce a different approach
for the maximum clique search optimization problem. As known from the
literature (see [Cyg2015]) one can often build a more efficient parameterized
algorithm for the k-clique search problem. So we followed this path and
started to build our own program, the kclique, which instead of solving the
optimization problem of maximum clique deals with the decision problem of
k-clique. Based on this program we could build a very simple and yet efficient
maximum clique search program, which we will call kclique-sequence. We will
first detail the key features of building a k-clique search program. Second
we will shortly describe the maximum clique search program. Last, we will
present results by a large scale numerical experiments. We will test our
procedures using well established test graphs, and compare these results to
those of the other programs. Finally, we will evaluate the results and make
comments and remarks on our implementation.

The program was implemented in C++ language, and we used dynamic
bitsets from the Boost Template Library.

5.2 Nuts and Bolts for k-clique search

The main idea behind our program is the strong reduction of the search tree.
For both branching and bounding the choice of searching for k-clique helps us
to reduce the search tree. It is also worth noting, that the k-clique approach

can help to make an efficient parallel program as well as the reader can learn
in Chapter [§

61

5.2.1 Branching and Bounding

Other implementations for maximum clique use the biggest yet found clique
as a bounding condition. It is more than obvious, that such bounding will
be dependent on the early finding of a big clique. Thus, those programs that
find the final maximum clique early run faster. That is possibly why the
heuristics of ordering nodes by node degree in descending order plays such
an important role in these algorithms. And certainly that is why parallel
implementations of maximum clique search [McCr2015| find strange speed-
up results — sometimes even superlinear speed-ups — in the literature, as they
are dependent on this early big clique finding. In our case, by choosing a
different problem formulation, we always can bound by the value of k.

Also, for branching we can use the value of k. As we describe later, we use
coloring in our implementation. It is well known, that the coloring gives us
an upper limit for the clique size. Thus if given the value of k and a coloring
with ¢ colors (¢ > k), then we can choose the smallest ¢ — (k — 1) color
classes, and use those nodes in them for branching — as a branching rule. (As
a terminology later we will call these nodes the k-clique covering node set —
KCCNS -, as introduced in the Chapter ﬁ]) The importance of this comes
from the nature of the Branch and Bound algorithms. These algorithms
sort out the nodes already examined, meaning that they are not taken into
account in the future search. Thus if all these nodes are eliminated, then
the remaining nodes can be colored with (k — 1) colors, so there cannot be
any k-clique present. Note, that without the value of k£ one cannot make this
branching rule, and need to branch on all nodes. This method is the base of
our Branch and Bound algorithm. The size of the k-clique covering node set
is the branching factor, and finding the smallest possible of such set can aid
us in bounding the size of our search tree.

Algorithm [I| summarizes our kclique algorithm based on this branching
rule.

Algorithm 1 kclique
Require: G=(V,E),P=V
1: function kCLIQUE(P, k)
if £ =1 then return true

KCCNS < construct a k-clique covering node set

for all vertex p € KCCNS do
if kCLIQUE(P N N(p),k — 1) then return true

P« P\ {p}

return false

62

5.2.2 Efficient coloring

It is well known from the literature, that coloring of the nodes can speed-up
the clique search. Two methods are widely used in the literature. One is
a simple sequential greedy algorithm, where in sequence we place the nodes
in the first possible color class. The second is a coloring procedure named
Dsatur presented by Daniel Brélaz [Brel1979], which always places the least
“suitable” node into a color class. The Brélaz’s algorithm usually gives us
better approximation to the chromatic number than the simple sequential
coloring algorithm, but it costs more in time complexity.

Designing a clique search algorithm one usually decides over the first,
especially when coloring takes place not only at the top of the search tree.
Using Dsatur at all levels reduces the size of the search tree, but costs in
time — as we learned from our preliminary test runs. Actually we need not to
choose between these two algorithms. An efficient algorithm can use a costly
DSatur coloring at the top of the search tree, and later it can switch to the
cheaper sequential greedy coloring.

Although Dsatur gives us a good coloring it is often quite far from the
optimum. So we used in addition another technique, the Iterated Coloring
presented by Culberson [Culb1992]. This technique uses reordering the color
classes and using a sequential coloring several times. The result cannot be
worse than the previous coloring in terms of the number of colors, but it can
be better. Thus we started from a Dsatur coloring and performed iterated
coloring. Our stopping criteria was if the number of colors did nod decreased
after 1000 iterations, and we used it on the top of the search tree.

5.2.3 Recoloring the nodes

Some researchers proposed methods that would use the color classes from the
previous level of the search tree and use a recoloring procedure to improve
the actual coloring. |[Nik2015] Here we present a similar approach.

As it was described by Culberson [Culb1992], the sequential greedy col-
oring has a special property, namely that it does not increase the number
of colors if it is applied to suitable orderings of the nodes. If this procedure
given a graph sequenced by color classes of a best possible coloring in which
exactly so many color classes used as the chromatic number of the graph,
then it will produce a coloring with the same number of color classes. If this
procedure given a sequence ordered by any color classes, then it will result
with a coloring at least as good as the previous one. One may see this pro-
cedure as repacking the color classes. Each node is moved forward as far as
possible in the already given color classes, and never backwards.

63

So during the Branch and Bound procedure, when there are less and less
nodes as we go down on the search tree, we can use the coloring of the previous
level, and use the repacking feature of the sequential greedy coloring. We
sort the color classes by their size, and start a greedy sequential coloring from
the biggest color class. As the k-clique covering node set is actually the set of
smallest color classes, the nodes from them moved ahead to the bigger color
classes. So this procedure directly reduces the size of the k-clique covering
node set and so the branching factor. Our tests showed us, that using this
method the size of the search tree is comparable with that when we would
use a DSatur coloring at each level while reducing the running time.

As this coloring is performed on each node of the search tree, we needed
a fast implementation of the sequential greedy coloring. Our original version
was of O(c|V]) for ¢ colors, and proved quite fast. Later we implemented
this coloring using bitsets, similarly to the algorithm described in [Kom2015].
This method led to an even faster algorithm.

5.2.4 Rearranging branching nodes

From previous results [Zav2014al, Zav2014bl [Zav2015| on parallel clique
search algorithms we concluded, that the branching is even more important
than it was thought before. It seems that the sequence of the nodes by which
we proceed in the branch has a big effect on the search tree size if pruning is
present. This was shown for SAT problems [Ouy1998|, and could be shown
for clique search problems as well. This effect is used by our algorithm, and
so it reduces the search space. Note though, that this effect is different from
the effect of finding a big clique early, where the sequence by decreasing node
degrees proved useful!

We use a very basic reordering rule. We proceed with the nodes with the
smallest degree in the remaining subgraph. That is we ordered the nodes by
node degree in increasing order. By doing this we solve first the more easy
problems and reduce the size of the later ones. Although simple and “cheap”
this approach had quite a good effect on the size of the search tree.

5.3 Numerical results for maximum clique

The structure of our maximum clique problem is extremely simple. First
we find an upper bound for the size of the maximum clique. Although we
tried more sophisticated methods simply using the number of colors from the
coloring of the graph was good enough and the fastest. Note, that we started
with the Dsatur coloring and used Culberson’s Iterated Coloring scheme till

64

the number of colors did not changed for 1000 iterations.

We set k equal to the obtained number of colors and run our kclique
program with this parameter. If the result was that the graph did not contain
a k-clique we decreased the value of k£ by one. Doing these procedure as a
sequence our program finally founds the biggest value of k for which there is a
k-clique present. Thus w(G) = k. We called this program “kclique-sequence
down”, see Algorithm 2] Note, that the program calls Algorithm [I] several
times.

Require: G = (V, E)
function MAIN
k < an upper bound by coloring
kCLIQUE-SEQ-DOWN
Print k£ as the size of the maximum clique

Algorithm 2 kclique-sequence down
1: function KCLIQUE-SEQ-DOWN
2 FOUND < false
3 while -FOUND do
4: FOUND < kcCLIQUE(V, k)
)
6
7

if =FOUND then
k+ k-1
return k

Our opinion was that the most time consuming part of maximum clique
search is the last but one step, namely to prove the non-existence of a clique of
size w(G) + 1. Our experiments confirmed this view in most of the cases. We
also included the running time of this particular subproblem in the Tables
and under column “kclique, k = w(G) + 17. Also McCreesh and Prosser
pointed out so in the Section 3.3 in their work [McCr2015|, and our results
confirmed this. This observation confirms our approach of using the k-clique
search in this sequential way as opposed for example to a more complex
binary search.

Though, one can question the decision of using a top-down approach,
and instead propose using a bottom-up sequence. We also implemented the
second algorithm as well, and it is built the following way. First we find a
lower bound for the size of the maximum clique. This is done by a simple
greedy clique search algorithm. We set k equal to the obtained number plus
one and run our kclique program with this parameter. If the result was that
the graph do contain a k-clique we increased the value of k£ by one. Repeating

65

this procedure as a sequence our program finally finds the smallest value of
k for which there is no k-clique present. Thus w(G) = k — 1. We call this
program “kclique-sequence up”, see Algorithm [3]

Require: G = (V, E)
function MAIN
k < a lower bound by greedy clique search
k+—Ek+1
kCLIQUE-SEQ-UP
Print £ — 1 as the size of the maximum clique

Algorithm 3 kclique-sequence up
1: function kCLIQUE-SEQ-UP
2 FOUND < true
3 while FOUND do
4: FOUND < kcLIQUE(V, k)
)
6
7

if FOUND then
k+—k+1
return k

5.3.1 Test graphs

We performed extended measurements on a carefully selected data set of dif-
ferent graphs and various maximum clique search programs. As there are no
challenges performed nowadays — the last well known is being the 2nd DI-
MACS Challenge more than 25 years ago — we used test graphs and programs
that have been published about exact maximum clique search recently. Our
program intends to solve previously infeasible or extremely hard problems,
thus we choose appropriate problems. Most of these test problems can be
solved only in minutes, if not in several hours. In the present chapter we
chose 50 examples out of all together 80 graphs tested in our extended ex-
periment. Those that were not chosen were either too easy, that is solvable
under a couple of second, or too hard, that is could not be solved in 12 hours
by any program including ours. We also omitted some examples that were
too repetitive in kind and results.

The Table list graph from various sources. The first 7 graphs are
taken from the 2nd DIMACS Challenge [Hass1993[}} The next 2 graphs are

"http://iridia.ulb.ac.be/ fmascia/maximum_clique/DIMACS-benchmark

66

http://iridia.ulb.ac.be/~fmascia/maximum_clique/DIMACS-benchmark

reformulated problems of monotonic matrices [Szab2013[%, and the next 2
graphs in the table come from various error correcting code problems[Sloan]ﬂ
Last 13 graphs are problems of Erdés—Renyi type random graphs [Erd1959],

In the second table, Table [5.2] we first list instances from benchmark tests
collected in the BHOSLIB library[] Next in the table are graphs from the
so-called EVIL instances [Szab2019al[]

5.3.2 Results

For comparison we choose the most known and best state-of-the-art programs
for exact maximum clique search.

We compared our program with the programs by Ostergérdﬂ [0st2002],
L{ [Li2010a, Li2013], Kondf| [Konc2007], Prosser| (who implemented
Tomita’s algorithm [Tom2003]) and San Segundd'’| [Seg2011) [Seg2013)
Seg2014), [Seg2015]. We indicated not only the running times but the size
of the search tree as well. (For this purpose a small modification was made
to the cliquer program, and the type of the counter in mcqd needed to be
changed to long long from int.)

For our kclique program we indicated not only the time and search tree
size of the whole maximum clique search, but also the time and the search
tree size for the k = w(G) + 1 step, that is where our program proved the
nonexistence of cliques of size one bigger than w(G).

Columns “kclique-seq up” and “kclique-seq down” show result from our
programs, |V| the size of the graph, % the density of the graph and w(G)
stands for the clique size of the graph.

The hardware used for comparison was a Xeon E5-2670 v3 machine at
2.30GHz clock speed with 128GB of RAM, and we used a 12 hour time limit.

5.3.3 Evaluation

As the reader can see in Tables and [5.2], our simple approach of running
the k-clique program with various k£ values gives time result that are usually
comparable or even better than most of the other programs. It is also worth

2http://mathworld.wolfram.com/MonotonicMatrix.html
3https://oeis.org/A265032/a265032.html
“http://www.nlsde.buaa.edu.cn/ kexu/benchmarks/graph-benchmarks.htm
Shttp://clique.ttk.pte.hu/evil
Shttp://users.aalto.fi/~pat/cliquer.html
"http://home.mis.u-picardie.fr/~cli/EnglishPage.html
Shttp://www.sicmm.org/konc/maxclique/

9http://www.dcs.gla.ac.uk/ pat/maxClique/distribution/
Ohttps://www.biicode.com/pablodev/examples_clique

67

http://mathworld.wolfram.com/MonotonicMatrix.html
https://oeis.org/A265032/a265032.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-bench marks.htm
http://clique.ttk.pte.hu/evil
http://users.aalto.fi/~pat/cliquer.html
http://home.mis.u-picardie.fr/~cli/EnglishPage.html
http://www.sicmm.org/konc/maxclique/
http://www.dcs.gla.ac.uk/~pat/maxClique/distribution/
https://www.biicode.com/pablodev/examples_clique

“JWI] INOY g oY) SUIPIsIXe oIe SOWIT} SUTUUNLI 91 Je1[} So)RIIPUI
uSs YgI<, oY, 'SPU0D9S UI S}HMNSOI oW} SUMUUNY] "S90UR)SUT Wopuel pue L1097} SUIPod ‘SOVINIA :T1°C 9[qel

INTF9¥ INTTIV | INLS INL8Y INgEE INELS INT6¥ INTTS N99€E NTF76 IN8STE

yz1< yg1< SEE86 SE896T | SE60LT S8GGIT SV9TL ST996 S6T0€T S8S86 STV66 S86£9¢ S6TGL 61 09 | 000T | 9-000TPuel

IN9LTT V6 NG9 NLS H98¥ 1 1T NL NLT NOT NOT NEL N9TT INTL

SY8L SGBL SG9T sv9€ s9ge S9Z¢ B4l s621 s91% sgz1 S861 S6L9 STLT g1 0S | 000T | §-000TPUeL

INLT NG Ne Y 79 S0PV T 8TE J08L 65T SNPEL WY INTT ¥

sve sze SP1 s9T s0g s9€ s9 s9 6 SL STT S6€ s6 z1 0¥ | 000T | ¥-000Tpuel

INLBETT | IN609 ING8T IN60S NG INLL IN8E N96 VS N68 IN66E INTSTT INL6E

S86E8 S99 S9671 SETST SLG9T STLGT S9EL szLOT SGOPT S€zIl szegl ST91€ S698 61 09 | 008 | 9-008pPUEL

INS¥E NGT NLT NET A6V NG NT ¥ NE ¥ 1T INO9 NTZ

SL6T SLLT S6¢ SGL SL0T SeTT s1E sge STg s1E S6¥ S99T sgy VI 05 | 008 | g-008pPUEL

NPT J8LOT s£98 A1S6 APE MLLE 3109 SLET {18 SLET e Y 106

STT SL sg sg s9 SL ST ST sg ST sg STT sg 4 0¥ | 008 | ¥-008PUEL

IN8999Z | INLLS INLTT IN6FS NT INLY INO¥ INGTT N09 N90T IN8LE IN868 NETE

SYPEIT S9GY9 S8T6 S8L6T S626 S896 S8€9 sz99 SL9TT s988 SL66 S9GET STIL 4 0L | 00 | L-00g¢puex

INEBT N0Z INTT NLT Mg91T NE 6991 ¥ T ¥ INGT NGE INTT

SL6T S9€T s6€ ST9 sze sLG s0T Si44 s9€ sTe sO¥ s98 EiZd LT 09 | 00¢ | 9-00gpues

NPT ATTCT ATV SOTTT | M8T 29e 20T {6€T qEPT 44 INT ne INT

STT SL sg sg sy sy ST ST ST ST sg SL sg €1 05 | 00§ | g-00gpues
INTF9Z N6 NOTE INTO8 INESOT N9STT IN8STE

yz1< yg1< S0086 yz1< ST68¢ SG¥99 SPLGLT STL08T s02T6T sgeege | ueI< yg1< 8% 06 | 00€ | 6-00gpueL

ING90TS | INTLE INTL INTOZ 0LE N6 INTT NLE NOT NeE INLOT IN6LE INOET

S19Z62 S9GLT SVLT S8GL SGTT SPGT STyl S091 s91% sz91 SGT9 S786 SE1E 82 08 | 00€ | 8-00gpueL

INZST NL ¥ N9 %92 AE6S €8S 9951 TH8 N0FPPT | IN8 NET ¥

sG6 sO¥ STT SLT sg SOT s9 sg s8 sg SGT S8T SL 0g 0L | 00€ | L-00gpues

NP8 NPT INTY ML AF6Y NT N6 ne NL NEY INTS INGT

yg1< S89Z1 s88 etdd sg szl s0€ s9€ sov see S8GT S¥0T S8S jad 06 | 002 | 6-00gpueL

IN8ILT N8 INET N8 HL0€ NT JqSPET T M60ST NT NIT INST N6T

S090€ S6ET SOV 1 sL9 S661 sz81 sO¥ s0€ s9€ S62 sgeT S8LT STIT 91 89 | ¥20T | ¥201'°PT

INGPS NPTV JEETE JEIVT | MM2T S9ST 18T N16¥ 81T z8e N9 NE S8GS

SGLE SG9 44 SGT sg s9 4 se sg se S61 s8 sg 0€ 88 | 962 | 992°oP1
IN9SEE INGTTIT | N9 68 INLLSGT INFFEE INO9LT INE9IT | INLBT INTST INTST

yz1< yz1< STLTOT yz1< S6LTT STETY S6V0ST S6TITLT SLTEET SBI6LT | SEEL S8 SLLS €C Z8 | gIg | 8-uojouow

IN88TT NLT NOT INTS 8T 4819 NG NOT NG N8 NG NG INT

Syget S6¥C STL STGT s9 S6C s1€ sey s8¢ S6¥ STT szl sg 61 6L | €ve | L-uojouow

INGESS INTOT IN8E INTS MLV N8 N9 NLT N6 INGT N69 IN69T NLY

S€69e STY6 SOTT STET SLTT STIT SG0T SYIT sgetT seTT SLSGT S6TV SOV T 1z 0L | 00% | L'0-00F1ues

IN9STTIZT | INT9 N9 INST 38 bt4ad 098 ¥ H0LET Wy ST N8E NST

yz1< SE16 s0€ seeT s SL s1C s0€ s1E SLT s98 STV SGg 44 06 | 002 | 6°0-00gIUes

3T G8T MLY9V RIS 44 0L S8TT INT M8TT INT

yz1< ST69€ S8G0T STRET sezl Betd sz8 SGg1 sL9 S8y 1 yz1< yg1< Sve | 66 | GEOT | SFE-NNVIN
INTLZE R Gigd INEVT N8 N6 N8

yz1< yz1< S86081T yz1< S8ET S8Y89 yz1< 1< g1 < 1< Sgg seg s9¥ L2 GL | 9LL | go1Y
INOS A8YY NL INTT INL oTorenbs-

yz1< yz1< SO8TT yz1< yg1< SLY yz1< 1< g1 < qyz1< s9eT Se1g sTeT 06 9L | 006 | -uiyef

INYSS6 INGT6T IN¥9S INOFOT | INGT IN6TT IN6S INPIT IN8S IN6PT INTTOV IN99ST INTLY

S8€09 S6YETT SzLOE STY19 SLE0L SOLEY SL8LT S9LYT SY62T sz9TT SGRETT SLLTL Seyal 9z g9 | 008 | ¥-0083°01q

INEGL8E | INP8ST INTSS INGPST | INST INSTT INT6 INEST INSET INVET INTOEE ING0ST INFS9

S6SYST SE106T S062¥ S£888 S19G¢ SO8SY Szeve s6Ege SY19% SL6TE STLITT S.€88 SGG6T 14 g9 | 008 | £-0083001q

i.maﬁov AﬁmEotio:o&v io:ov: 7:1: €1 7:1: ot i.w@m.mv i.mwm.mv i.mwm.mv i.?m.m;a: T;Sv T+ 7 ;

19nb1d YOI udp-pbow | pbow OTID-XeN | DTO-XCIN | X-DINGd | T-DINAd | H-OINdd | OINdd | bes-onbroy | bas-aubroy | = 3y ‘enbipy | (9)m | % | |Al

68

“JIWI] INOY gT oY) SUIPesdXd oIk Soull) SUTUUNI
97} YeT} S9YedIpUl USTS T<,, O, 'SPUOIOS UL SIMNSOI W} Furwuny “seouwe)sur TIAH Pue gIISOHI ‘¢S P19RL

INP0T INVvE
ST qz1< qg1< i< ygi< S0869 i< ygr< ygr< i< i< i< (0)7%4 €6 | 09T 0Txgguwgs
N06 NE INEE 0 18 1992 NV 4919 NV
yg1< soTEE S6¢ S6TE s0 s0 sgT sqg sgT sgg yg1< qg1< 96 L6 | 0T | 8FxgoLw
N9TC INESOT INTOZTT
i< qzi< yg1< yg1< SGYGL S01C9C SY0T18¢E yzr< yor< yzi< yg1< yo1r< (014 16 | 0€C 0TxggoAw
IN99E
qz 1< qgT< qgI< YgI< | s61¢8€ qg1< qg1< qzT< qgT< qI< | 9gI< qg1< o 96 | 02T | 0gXTToAw
NG6 NE INTS 0 9 76 NG 16 NG INESS N6TR INELS
yz 1< SYIVT s9g sep¥ S0 S0 sy sqT sqT s9z SL90Y S8709 S900¥ 78 86 | 0T¢ | ghxgokw
T8 INGLOZT | INGT60T | INPRTOT | INF INOT INOETOT | ING990S INOVSTT
S0 S68007 | S8PIST S8LLTT | SL8F ST8T SL868€ sep8py | UeI< s€gz9¥ | UgI< qgI< 43 26 | 00C | 8xgguigs
INETTGS INSE IN96T INETTT INSEE9T INOT6ST
S69TE uzI< g1 < yzI< | SGLET S8LET S960g sLg6ee | UgI< S60T0¥ | UgT< uz1< ve G6 | L8T | LTXTT0oAw
INT6TE INTS0E | INT INTZ NiZd Ne8 NS N9Y INT68 IN906 INT68
yz1< uzI< S06ET SRETT | S06 sg1e s38 sgTT seoT selT ser9 sar9 S€Z9 91 06 | P81 | 8xggodw
e NE INEOT IN99€ET NO6LTZ | INO66CT | INSTITOZ
SO qgi< i< i< ST8T SGETT S96.LL SG¥09C ST9TIVE S6109C i< i< 015 76 | 08T GIXTTIAYD
30 IN6T INCVT N6V MLTT Aqveec INV6 IN8ST IN9LT IN61T ING8T IN86C ING8T
s0 S8ZT sz6 s79 s s S981 SG6T $8.% sz61 SL9T S6LT S8GT ¥z 06 | 0ST | 9xgzuugs
INVISSET | INS 39ce NT 30 AT ML 3012 MET V6T INTT INST INTT
sghoehy | sL¥ sg sOT S0 S0 s ST ST ST sLy s€9 sLy 09 L6 | 09T | 0gxgoku
N098% | INGPS INFLT INLEST | 0T 109 ATHE N9 NG N9 INLPE NogE INLYE
S6£T ST80T sgg sL60T | sO sT sg) g1 8 syee SR€ET sgeT 44 €6 | TCT | TIXTI24w
30 INLLY NLB INT60LT | LT M8 M9€T NE T e INOSTE INSTSE INOSFE
S0 S00L sy S6SLY | SO sT ST s sg s SZI6T SL68T SOF8T 0z 26 | 02T | 0TXZTAYD
i< qzi< qzi< qzi< i< i< qzi< yzr< yzr< yzr< yor< yor< 6S 68 | PEST | T-9C-6991F
0T IN60EE 0
qz 1< qgI< qg1< YgI< | s06T qg1< qg1< qg1< qgT< qI< | qgI< SP1S9E S0 €g 88 | TLTT | &-FE-€59T
M2ST INESSE 0
qz 1< qg1< qg1< yzI< | STLLY qz 1< qg1< yzI< qg1< qgI< | 4gI< S980TF S0 €g 88 | 2221 | 1-72-€99Y
6T N99T NS8TY 0
yz1< g1 < g1 < yzI< | sg9g g 1< g 1< uzI< zI< uyzI< | sgege S8T8€ S0 0¢ 88 | 0STT | 2-£2-099Y
9% INTEY INGTT 0
yz1< g1 < g1 < yzI< | sp9L Yz 1< g1 < uz1< uzI< uz1< SLTTL SL8TT S0 0¢ 88 | 0STT | 1-€2-099Y
i N9Z INTE 0
yz1< uzI< g1 < yzI< | sgL Yz 1< Yz 1< uz1< uzI< uyzI< | sese SQLT S0 92 18 | ¢¥6 | 2 12-SPqY
ATT IN9ZT INTTT 0
yz1< uzI< g1 < ygI< | S6IT g1 < g1 < uz1< uz1< uyzI< | s91gl sLT8 s0 94 L8 | ¢¥6 | I-12-S7qY
0 NT INT 0
i< qgi< qg1< qg1< S0 qg1< g1 < yzg1< ygr< ygr< S61T 6 S0 oV 98 | 094 Z-61-07913
INEOY 0 NE T 0
ygi< 68GTT ycr< ygi< ST yg1i< yg1i< yzi< yzi< yzi< S6¢C S9T S0 (0] 4 98 | 094 T-61-07913
INELI6S 0 NT INT 0
SEEgee qzi< yg1r< yg1< ST yg1< yg1< yzi< yor< ygi< STT sq S0 ge 78 | 669 T-LT1-9€993
INOE9ZT | NETLT 0 ALEY pt44s 0
ST€C9 sggere | UeT< ygI< | sT qo1< qg1< qg1< qgT< yzI< | sg sg S0 ge ¥8 | 965 | T-L1-¢€9
NS NEL IN8L8 N899 |30 NOY IN89 NS0T NOR IN6ST | ST 10€ 0
sg SG06 SGSTY s6gee | S0 sT¢6 SLYOT ST6TT SV60T SOTOT | sO S0 S0 o€ 28 | 0S¥ | T-ST1-0£9Y
47 IN88T VLY PTG |30 INST INGOT NOTE IN6TT N9ST | 99T qeT 0
S0 s§L9¢ STPST sgeLg | s0 SGLS SEI91 SY691 SGH9T STI9T | S0 S0 S0 o€ 28 | 06 | T-61-0£9Y
imsﬁov EES&;GE&V 7?:05 T_d €1 795 o1 i.m,@m.mv immm.mv T.mmm.mv im%.m;a: umop 1+ (D) 7 7 ;
tenbid | UDIW ufp-pbow | pbow OTO-XeIN | DTO-XeIN | X-DINGd | T-DINAd | H-OWdd | DINdd | bes-onbrdy | bes-anbrpy | = y ‘enbipy | (D)™ | % | |Al

69

noting, that our program achieves the main goal, and it reduces the search
space considerably. It also clear, that although the “down” and “up” methods
are different, they are very close and none of them is superior to the other.
This follows from the fact that in our approach the proving of non-existence
of a (w(G) + 1)-clique takes the most time, and that part is common to the
two methods.

Evaluating the numerical results the reader can see, that our simple ap-
proach of running the k-clique program with decreasing or increasing k values
gives running time result that are usually comparable with, or even better
than most of the best state-of-the-art programs. In 4 cases our simple ap-
proach is clearly better than more sophisticated programs that using subchro-
matic bounds — the keller5 graph, the monoton-8 graph and two BHOSLIB
instances. It is also at second place in 10 cases — the monoton-7, the latin
square and all of the BHOSLIB instances['T] It is also worth noting, that our
program achieves the main goal, and it reduces the search space considerably.
And it is very bad on one instance, the MANN-a45. But one would expect
exactly such a mixed behavior for a program that is based on a very differ-
ent approach. Note, that the EVIL graph instances were designed especially
against programs using coloring, so it is not surprising that programs using
subchromatic approach from San Segundo and Li perform better than our
program.

Also, we would like to mention, that the proposed program is highly
tunable, as one can use any suitable method to find the k-clique. We suspect
that fractional coloring or other means of finding a better bound — see Section
— than the chromatic number may increase the efficiency of our program.

5.4 PACE competition

Perhaps not the best way to compare programs, but stil a good indica-
tor is the results of the la track of the 2019 PACE competition, https:
//pacechallenge.org/2019/. The competition was about finding the min-
imum vertex cover, and was open for contestants Worldwide. The results
proved that the best practice to this problem is strong kernelization and
good maximum clique solver. The first place (solved 87 instances from 100)
and second place (solved 77 instances from 100) teams used a maximum
clique solver from Chu Min Li [Li2017], while the author of this work, result-

1 Although the BHOSLIB instances are widely used for exact maximum clique search
testing we do not consider them as really good tests. This is because of the fact that in
each case w(G) =