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1. Introduction 

The rising world population, income levels, and urban density led to increasing demand 

for all kinds of goods and services, including the land. As a relevant development, a rising 

share of the world population started living in urban areas and large cities. Urban living is not 

an old concept. Ritchie and Roser (2018) note that before the seventeenth century, less than 

5% of the population lived in urban settings, and by 1900 this ratio was only 16%. So, it was 

in the 20th century that the world experienced very high levels of urbanisation. The new 

capitalist economic system where the production is centralized in the large factories and the 

relationships economically take place in clustered that considered one of the driving sources 

of increasing urbanisation. According to the UN World Urbanisation Prospects (2018), the 

urbanisation level in 2015 was 91.4% for Japan, 82% for the US, 70% for Iraq, 56% for China, 

and 33% for India, with the world average being 56%. Another development that accompanied 

the urbanisation trend is the rising urban density. Namely, the established cities generally have 

limited capacity to grow in terms of their land areas, while the number of people living in these 

cities tends to increase faster. This process, in return, leads to a higher population density in 

the urban areas. According to the UN-Habitat Global Observatory (2014), the population 

density is 44000 persons/km2 in Dhaka, 32300 persons/km2 in Mumbai, 11600 persons/km2 in 

Delhi, 7100 persons/km2 in Sao Paulo, 5800 persons/km2 in London, 3900 persons/km2 in 

Paris, 2400 persons/km2 in Los Angeles, 1800 persons/km2 in New York, and in Erbil 473 

persons/km2. While urban density rates can vary significantly across cities, the rising trend is 

evident in most parts of the world. As another essential trend, around 12% of the world 

population lives in megacities with sizes larger than 10 million. However, the higher speed of 

urbanisation and growth of large metropolitan areas, especially in developing countries, come 

with significant problems as improving infrastructure and maintaining the quality of urban 

services are difficult with such fast trends. Rakonczai (2018) notes that some of the relevant 

issues include “not enough main waters,” “no hygienic toilets, sewage systems,” “problems 

with transportation, waste removal services,” “air pollution,” and “excessive urban growth.” 

Then, these problems create high social, political, and economic costs for these developing 

countries. To give some context to the concentration of human effects on the Earth. Ritchie and 

Roser (2018) estimate that only 1% of the global habitable area is useful for urban 

infrastructures. European Commission (2019) provides more accurate numbers for the EU 

countries. The report estimates that the share of land area in the EU used for urban centres is 

0.9%, and it is 2.9% for urban clusters, making the total metropolitan area share 3.8%. Another 

classification in the same report estimates the land share of cities in the EU at 4%. 
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Within the above context, one issue that emerges as crucial for the quality of life in 

urban areas is the vegetation area or green fields. These areas provide relaxation and 

entertainment opportunities to the citizens as well as they become essential to address climate 

issues. In terms of economic value, houses/accommodations can be more expensive if they are 

close to vegetation in the city. In the last decades, the pressures on vital ecosystem functions 

have increased rapidly due to the expansion in the global population, higher demand for land 

consumption, and the robust urbanisation process. So, both the rate of urbanisation and the loss 

of vegetation are two interrelated developments rapidly increasing across the world (Weng et 

al., 2004; Liu, Y. et al. 2015). The rise of urban areas is one of the factors supporting climate 

change, and in return, cities can be significantly affected by climate change. More volatile heat 

and rain patterns can put significant constraints on the city infrastructures as well as the life 

quality of its citizens, including air pollution. In this setup, green fields emerge as an essential 

measure to address climate change challenges in the cities. Poor planning and lack of enough 

vegetation area can lead to the problem of Urban Heat Island (UHI) effects (Arnfield, 2003). 

Then, it is possible to use vegetation to reduce the impact of UHI. The vegetation cover is also 

known to affect the social and physical environment in more than one way (van den Bosch & 

Ode Sang, 2017). The influence of urban greenery to the quality of human life considered 

aspects of better air quality, stress reduction, and even social contacts (Grimmond, 2007; 

Carrus et al., 2015). The lack of vegetation can alter many types of environmental conditions 

such as climate change, biodiversity, and the quality of water and air. Then, higher levels of 

vegetation area, as well as its optimal spatial distribution over the city, would balance some of 

the adverse climate change effects and limit the environmental costs of cities. Therefore, the 

proper measurement of vegetation area and the assessment of its spatiotemporal distribution 

are essential inputs in the urban planning and development policies and studies. 

The current dissertation focuses in this research field, and it uses satellite imagery 

technologies to study the spatial and temporal distribution of vegetation area in a semiarid 

region, such as the city of Erbil in Kurdistan, Iraq has experienced an intense urbanisation 

process and providing enough infrastructure and maintaining the quality of urban services 

stand out as essential problems. While covering all dimensions of urbanisation problems is out 

of scope for the current dissertation, this research project focuses on the urban vegetation 

dimension. It conducts a detailed analysis of the evolution of surface topology, and especially 

the vegetation areas, in the city covering the period of 1990–2015. The distribution of green 

spaces within the city limits is also displayed as it matters for the inhabitants’ quality of life. 

The measurement of vegetation areas involves various parameters like the “frequency, cover, 
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density, and biomass” of a specific area (Bonham, 2013). The primary technological tool for 

this purpose is the use of remote sensing using satellite imagery technologies. Bonham (2013) 

states that “spectral imagery from aerial and satellite platforms can be used effectively to 

describe vegetation-environmental systems as a combination within pixels produced by the 

spectral imagery. These pixels can be ground located within a reasonable precision level, 

sampled by the use of quadrats, lines, and/or points to obtain a description of species 

composition, biomass, density, and/or ground cover”. Among the remote sensing technologies 

based on satellite imagery, there are various sensors that differ in terms of coverage and 

precision. The current dissertation uses data from three different sources, i.e., Moderate 

Resolution Imaging Spectroradiometer (MODIS) sensor, Landsat satellite, and Pleiades 

satellite. So, these three data sets provide a mapping from larger to smaller scale, with rising 

resolution and precision levels. In this way, various indices, statistical measures, and graphical 

representations produced at different spatial scales. 

 

1.1 Research aim and objectives 

Based on the above research rationale and motivation, the main aim of this research is 

to utilise different remote sensing data and sensors at different spatial resolutions (from large 

to small) to study and analyse the spatial and temporal patterns of the vegetation cover in the 

city of Erbil. The study further attempts to use these data to characterise and discuss the 

influence of urbanisation in the city on the spatial distribution and the temporal dynamics of 

the vegetation cover. Then it evaluates the usefulness and the suitability of the applied land 

surface data as a means to study vegetation cover from a temporal and spatial perspective. So, 

the goal of the research project is to provide a comprehensive picture and understanding of the 

urban vegetation dynamics in the last decades, to examine the factors affecting these dynamics, 

and to assess the access of citizens to the green areas in the city limits. Within this context, 

three objectives mentioned as follows: 

First objective: To investigate the spatiotemporal variation of urban vegetation cover 

in the city and its surroundings using the MODIS sensor and examine its relation to climate 

conditions. In this objective, the following research questions that addressed below:  

How did the spatiotemporal variation of urban vegetation cover in the city and its 

surrounding area measured by the MODIS sensor in the last decades, and how is it related to 

climate conditions? 

How did urbanisation impact the vegetation and quasi-natural (grassland) vegetation in 

the city and its surroundings? 
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Second objective: To study the spatiotemporal variation of urban greenness cover in 

the city limits and examine the role of urban expansion, using Landsat satellite data. In this 

objective, the following research question that addressed below: 

What is the influence of urbanisation on the temporal dynamics and spatial distribution 

of vegetation cover in the last decades inside the city limits? 

Third objective: To provide a detailed analysis of urban greenness distribution for 

particular city districts using Pleiades satellite data in the last decades and examine the access 

of city dwellers to green areas. In this objective, the following research question that addressed 

at the following: 

How the urban greenness distributed within a particular district of the city, and what is 

the level of greenness access to city dwellers? 

 One can also construct relevant hypotheses for the three research objectives and 

questions in the context of the city of Erbil as follow: 

The first hypothesis stated as H1: Spatiotemporal variation of urban vegetation cover 

in the larger city area is related to the climate conditions.  

The second hypothesis can be put forward as H2: The spatial and temporal changes in 

the urban vegetation in the city of Erbil have a close association with the urban expansion. 

The third hypothesis stated as follows: H3: The spatial distribution of urban 

vegetation worsened over time in terms of the access of the habitants to green areas within 

feasible distances.  

As the coverage of the research problem and hypotheses is pervasive, complementing 

imagery data from different satellites becomes valuable to get a comprehensive picture of the 

relevant issues. Besides, using multiple platforms helps address problems at different scales. 

In terms of the research concept and methodology, the project follows quantitative research 

methods based on multispectral content where the raw imagery data pre-processed, processed, 

and then converted into various surface coverage types and Spectral Vegetation Indices (SVIs). 

In line with the relevant literature, commonly used SVIs, the Enhanced Vegetation Index (EVI), 

and the Normalized Difference Vegetation Index (NDVI) constructed for each satellite imagery 

data. Then, the evolutions of these indices that examined in terms of the spatial and temporal 

distribution of greenness. With a perspective on their connections to the practical life that could 

be used for mapping and monitoring the urban vegetation and land cover dynamics for planning 

purposes to give a clear notion to the city planners and authorities, besides, it is a central issue 

to the understanding of urban ecosystems and gives the researchers access for further studies, 

related to the study field. 
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2. Literature Review 

The research topic has two dimensions. The first one is the vegetation cover in urban 

cities and their relation to the life quality of city habitats, climate change issues, and urban 

planning. The second one is the use of remote sensing and satellite technologies in the 

identification of surface cover types, including the vegetation area. 

 

2.1 Vegetation area as an important component of the urban landscape 

The global area covered by urban land, built-up and impervious surface, were 3%, 

0.65%, and 0.45%, respectively, of the world's total land area in 2010 (Liu, Z. et al., 2014). 

While low, the impacts of urbanisation are essential from the local to the global scale. Urban 

areas now account for about 60% of housing water use, 75% of energy use, and 80% of human 

greenhouse gas emissions. Ecosystem processes, biodiversity, ecosystem services, human 

wellbeing, and their relationship to urban landscape are severely affected by the speed and 

spatiotemporal pattern of urbanisation that is driven mainly by socio-economic processes 

(Figure 2-1). As a consequence, this helps to understand the effect of urbanisation on these 

critical elements (Wu, 2014). 

 

 
Figure 2-1: Represents Relationships among Elements of the Environment- Economy- 

Society in an Urban Landscape (Wu, 2014) 
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Vegetation area in the urban landscape describes all forms of plant life located within 

the city environments. These may include pre-existing native plant species to the exotic plants 

introduced by city dwellers to improve the city landscape and include shrubs, trees, grass, and 

even flowers. Urban vegetation might be widespread, but, in some instances is concentrated 

along roadsides, urban parks, and forests, around ponds and streams, or even within urban 

homesteads and residential plots. Traces of urban vegetation exist at the wastelands and the 

less built sections of the cities and the aquatic green spaces. These vegetation types fall into 

three subcategories. (1) The natural plants existed before the construction of the city; (2) the 

semi-natural exist due to human interference while the (3) introduced plants are those found 

planted along the roads such as gardens, roadside trees and green belts (Tzoulas et al., 2007; 

Liu, T. & Yang, 2013; J. Zhao et al., 2013; Blanusa et al., 2019). 

The presence of urban vegetation proves useful in many ways. These include reducing 

air pollution, moderating the UHI problem, where the statistics show a significant problem 

worldwide, termed as local climate regulation, absorbing noise, enhancing recreation, and 

ensuring air quality (Figure 2-2). They also offer aesthetic and while some plant species used 

in educational services. The scale of importance of urban vegetation depends on the needs of 

the city residents, but, most importantly, they are responsible for urban ecosystem regulation 

and improved quality of urban life (Rafiee et al., 2009; Tang et al., 2012; Zhao et al., 2013). 

Therefore the current model of land use is vital for sustainable ecological preparation, growth, 

management, and protection. 

 

 
Figure 2-2: Global Urban and Rural Temperature Difference (Center for International Earth 

Science Information Network, 2013) 
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Impervious surfaces have a relation to the density of UHI in urban areas where the 

concentration of the human activity focused in a small area (Mucsi et al., 2017). The former is 

very detrimental to the micro-climate of the respective city. The most crucial challenge of 

vegetation deficiency in the cities is the UHI effect. Here, the high CO2 concentration leads to 

increased city temperatures, thereby causing discomfort and health complications to the 

residents (Pataki et al., 2006; Imhoff et al., 2010; Unger et al., 2014). Other than the provision 

of shadows, the urban greenery mitigates UHI through CO2 balance and evapotranspiration 

hence the significance of having urban vegetation (Small & Miller, 2000). It has strongly 

counted as a significant part of the urban ecosystem. In reinforcing the vital role played by 

vegetation in UHI mitigation, urban planners are responding by using artificial coverage such 

as using reflective building surfaces to minimise solar insolation that would otherwise lead to 

city warming (Bretz et al., 1998; Solecki et al., 2005). 

Decision making plans to specialise in the distribution of urban vegetation is already 

underway. De la Vega-Leinert et al. (2012) looked into UNESCO‘s plan which seeks to change 

the land-use patterns in the city. They elaborated that the ongoing conversion of urban 

settlements into areas of development considered systematically and while paying serious 

attention to nature. Further, there is a selection of plans to encourage the protection of 

indigenous species with large biomasses such as forested, green areas, and the ability to adapt 

it to urban habitats. The conversion of urban centres into developed areas through rapid 

industrialization and expansion of settlements threaten existence in the city of the urban 

ecosystem (Tredici, 2010). It is particularly alarming since contact with the natural 

environment is known to promote health (Tzoulas et al., 2007). A current land use baselines 

model is essential for sustainable ecological preparation, growth, management, and protection. 

 

2.2 Remote sensing in urban vegetation studies  

The analysis of urban vegetation change by satellite imagery became an increasingly 

common and efficient method to study urbanisation impacts on vegetation in urban areas 

(Yunhao et al., 2006; Rafiee et al., 2009; Tang et al., 2012). Spatial and temporal changes in 

terrestrial ecosystems can be identified, mapped, and monitored by using multi-temporal data, 

multi-spectral, and satellite-sensor acquired data. Both natural and anthropogenic generate 

spatial and temporal changes that identifying the use of remote sensing techniques and satellite 

imageries (Martínez & Gilabert, 2009). Therefore, to study urban vegetation change on 

different scales, this research draws on multi-spatial and multi-temporal resolution remote 

sensing data literature, including methods of (1) high temporal resolution, (2) moderate 
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temporal and spatial resolution and (3) high spatial resolution. The literature review chapter 

provides a description of SVIs and their applications, then the selected studies grouped 

according to the satellite sensors, i.e., MODIS, Landsat, and high-resolution data with a 

particular focus on current approaches. To present a discussion of remote sensing applications 

in various fields that related to the urban. Finally, highlight the most significant previous 

studies related to the study area. 

The identification of the spatial and temporal analysis of vegetation cover globally 

identified as a highly urgent need, for assessing the level of threat and for developing strategies 

to overcome the risks to the living beings (Kong & Nakagoshi, 2006). The spatial pattern and 

temporal dynamic analysis hold much significance, where the results of the analysis provide 

insights into the rate of change of the vegetation cover and the average of changing the 

urbanisation. Hence, have proven to deliver a pool of benefits such as assessing urban 

ecological, identify the geographical distribution patterns as well as the time series patterns, 

simultaneously (Zhou & Wang, 2011; Wu, 2014). 

The centre of this study was the use of Spectral Vegetation Indices (SVIs) such as the 

NDVI and EVI in extracting patterns of vegetation cover in the area of study. To better 

differentiate between the individual spectral features separating the various forms of vegetation 

cover, the study relied on the high-resolution remote sensing satellites to process the images. 

In the SVIs, NDVI provided adequate sensitivity to vegetation presences and density used in 

quantifying biomass (Balik et al., 2017). it used solely to predict the natural vegetation cover 

due to its high highly sensitive to the vegetation existence and dynamics (Zhang, X. et al., 

2006). The EVI, is less effective in predicting the actual vegetation but improves the quality of 

an NDVI product by eradicating the background cover of canopies (Xiao et al., 2009). 

Ji and Peters (2007) compared the NVDI and EVI sensitivity to biophysical parameters; 

statistics show “a high relative sensitivity of NDVI to EVI when NDVI is less than 0.72 and 

high relative sensitivity of EVI to NDVI when NDVI is greater than 0.72, and this indicates 

that NDVI is more sensitive to the low-density canopy, and EVI is more sensitive to the high-

density canopy” (Figure 2-3). 

The majority of studies in the literature has focused on the use of different SVIs derived 

from medium to low spatial resolution data such as; Landsat, and MODIS (Buyantuyev et al., 

2007; Martínez & Gilabert, 2009; Ahmad, 2012; Bhandari et al., 2012; Fatiha et al., 2013; 

Kovács & Gulácsi, 2019). Whereas the other studies used spectral and pixel-based 

classification methods when using high-resolution satellite imagery likes IKONOS, SPOT, 

Worldview, and Rapid-Eye (Kong & Nakagoshin, 2005; Hofmann et al., 2011; Noor et al., 
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2013). SVIs are spectral transformations of two or more spectral bands developed by 

algorithms to optimize plant properties to evaluate vegetation distribution, biomass, and 

dynamics of change in quantitative and qualitative terms (Huete et al., 2002). In the diverse 

urban environment, green vegetation is comparatively distinct and homogeneous, due to its 

unique electromagnetic spectral activity during photosynthesis. Thus, even at the pixel level, 

extracting green vegetation is easier compared to other cover types, using only spectral 

attributes. Vegetation indices often used to improve image information to promote this process 

(Anchang et al., 2016). 

 

 
Figure 2-3: Sensitivity Analysis for MODIS NDVI and EVI. “(A) NDVI on EVI regression 

function (thick solid line), one standard error (thin solid line), and first derivative (dashed 

line). (B) EVI on NDVI regression function (thick solid line), one standard error (thin solid 

line), and first derivative (dashed line). (C) Relative sensitivity of NDVI to EVI 

(sNDVI|EVI) and relative sensitivity of EVI to NDVI (sEVI|NDVI)” (Ji & Peters, 2007) 

 

For this reason, it has been widely used by researchers to study vegetation cover. On 

the other hand, because of the variety of different combinations of light spectra, 

instrumentation, platforms, and resolutions used, there is no single mathematical definition that 

describes all Spectral Vegetation Indices (SVIs). The advantage of SVIs is that it allows the 

extraction of long-term data series to be reliable and comparable, which can be low-cost. 

However, there are two main problems: spatial resolution and revisitation time, particularly on 

the MODIS and Landsat platforms, revisit time for MODIS is 1-2 days for the same point 

where it is 16 days for Landsat. Also, passive sensors can’t reach the atmosphere, and there is 

no useful data collection for cloudy days. New satellites, including the Pleiades, have recently 

increased pixel resolution with potential daily revisit any Earth point within one day. However, 

the images on this platform may be costly for long-term data series studies (Xue & Su, 2017). 
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As a result, the current study used three different data sources and three different scales 

combined to construct effective vegetation indices. 

It has proved that the MODIS data can provide information necessary for monitoring 

ecosystem dynamics at adequate spatiotemporal resolution using vegetation indices such as 

EVI and the NDVI (Schucknecht et al., 2013; Zoran et al., 2013; Esau et al., 2016; Li, F. et al., 

2016; Hussein et al., 2017). MODIS NDVI generally has a higher range of values over semiarid 

sites, and the opposite for more humid forested sites with a lower range (Huete et al., 2002). 

With the support of satellite imagery time-series data, it became possible for researchers to 

obtain phenological information at various spatial and temporal intervals. According to the 

previous studies, the first use of MODIS data in the identification of the key phenological 

parameters using NDVI described in publications by Zhang, X. et al. (2003). Mertes et al. 

(2015) demonstrated a methodology over East Asia to monitor urban land expansion at 

continental to global scales using a multi-temporal composite change detection approach based 

on MODIS 250 m annual maximum EVI index data improved. The classification results are 

capable of distinguishing between landscape changes in the urban environment. Yuan and 

Bauer (2007) demonstrated a strong correlation between impervious surface and land surface, 

covering twin cities of Minnesota. 

Friedl et al. (2002) noted that: “Advanced very high-resolution radiometer (AVHRR) 

observations were the only viable source of data for global land cover mapping.” MODIS data 

presented better information on the spectral, spatial, geometric, and radiometric characteristics 

of the land surfaces for large scale mapping. MODIS was used to construct global land cover 

maps at 1-km spatial resolution. The initial data mapping trained using information collated 

from particular sites with high-resolution imagery and supplementary data. They use the 

International Geosphere-Biosphere Programme Data classification system, with its 17 land 

surface types ranging from different types of forest to shrubland, savannah, grassland, wetland, 

cropland, and urban and high-density land. “The quality of the early results presented in this 

paper, therefore, provides strong evidence supporting the radiometric quality and spectral 

information content of MODIS data for large-scale land cover mapping applications.” This 

result has further strengthened our confidence in using MODIS to determine the land cover 

types in the Erbil region. 

Zhang, X. et al. (2003) used MODIS to examine the vegetation dynamics for the North-

eastern region of the USA. Vegetation phenology is dependent on climate and water conditions. 

Across a year, vegetation intensities can display high variability depending on major 

phenological vegetation phases. The authors followed the rate of change in the curvature of the 
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fitted logistic models is employed over a 16-day time period and constructed moving EVI 

indices over a year. They examined the phenological transition dates of vegetation and 

reflection values. This study shows that MODIS can be used to provide “a flexible means to 

monitor vegetation dynamics over large areas using remote sensing.”  

Another relevant point the current study used data from three different sensors to 

construct SVIs, providing a comparative analysis among them. Lunetta et al. (2006) used 250 

m multi-temporal MODIS NDVI 16-day composite data. MODIS cannot capture dynamics 

within areas of size 1.5 ha. Also, urban areas often have lower accuracy levels. 

A series of recent studies have indicated that MODIS SVIs time-series used to carry 

out surveys of the urban vegetation phenology. Mostly, it uses SVIs to investigate vegetation 

dynamics and keep them under observation using methodology that is fit for urban areas with 

a low density of biomass (Zoran et al., 2013; Li, F. et al., 2017).  

Zoran et al. (2013) explored the use of time-series MODIS NDVI 16-day composites 

with a 250 m spatial resolution (MOD13Q1) between 2002 and 2012, to examine urban 

vegetation land cover dynamics for the metropolitan area of Bucharest. The vegetation 

dynamics in urban areas at seasonal and longer timescales reflect large-scale interactions 

between the terrestrial biosphere and the climate system to understand the urban vegetation 

dynamic. Also, Li, F. et al. (2017) compared MODIS NDVI with 250 m spatial resolution 

(MOD13Q1) and HJ-1A/B NDVI satellite data to analyse urban vegetation phenology using 

the time-series method in the city of Nanjing in China; their research indicates MODIS NDVI 

time series reflect better temporal variation because of coarse spatial resolution that shows the 

trend of vegetation growth and is more appropriate to ascertain the main growth period of 

vegetation. These underlines demonstrate just how important uses the coarse spatial resolution 

in our study. 

One of the first studies on Landsat imagery to assess the urban greenness areas 

conducted in 1987; it focused on defining the spatial patterns of urban vegetation and separate 

woody and herbaceous vegetation (Sadowski et al., 1987). The most relevant studies regarding 

the use of remotely acquired data are by Small & Miller (2000), Myint (2006), Tang et al. 

(2012), Gupta et al. (2012), and Liu, T. & Yang (2013). They focused on the basic concepts of 

subpixel classification techniques and endmember extraction. Other studies have used 

vegetation indices in land-use change analysis, such as Salimi Kouchi et al. (2013), who 

derived indices like NDVI, Soil Adjusted Vegetation Index (SAVI) and spectral mixture 

analysis method (SMA). Tooke et al. (2009) used the SMA and decision tree classification 

methods. Numerous other studies focused on the subject matter and consequently provided 
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distinctive results. These include research carried out by Dewan and Yamaguchi (2009), El-

Kawy et al. (2011), Rawat, and Kumar (2015). Melaas et al. (2016) have examined the impact 

of elevated temperature in Boston-USA on eco-physiological processes in urban areas and 

showed the strong coupling between Boston's surface heat island and vegetation phenology at 

the scale of both individual landscape units and for the region as a whole. The composite nature 

of pixels is a weakness of remotely sensed data, which led to not being ultimately used. The 

potential problems of image assessment are therefore considerably affected by the mixed 

nature of spectral data limiting the accuracy of spectral analyses. One of the methods of image 

analysis to address mixing problems was the spectral mixture analysis (Somers et al., 2011). 

One of the disadvantages of Linear Spectral Mixture Analysis (LSMA) is the number of end-

members restricted by the number of available bands provided by image data; also, the 

reflective values cannot differentiate the features automatically by values alone thus, the 

selection of end-member images requires higher spatial resolution images (Tang et al., 2012). 

Concerning the specifics of the most examined-related studies evaluating urban growth 

and urban vegetation by applying various remote sensing methods. Rafiee et al. (2009) using 

ML classification on NDVI in Mashad city based on multispectral and multi-spatial (Landsat 

TM and IRS LISS-III imagery belonging to 1987 and 2006 respectively) to obtain a detailed 

change matrix for urban green areas during the 19 years. The study emphasises that the 

combination of satellite image classification and vegetation indices is a reliable tool to analyse 

vegetation trends and life quality in urban areas. Consequently, this present study draws on the 

combination of classifications, vegetation indices, and climatic parameters to evaluate urban 

greenness changes.  

Another study developed by Tang et al. (2012) have combined Maximum Likelihood 

Classification (MLC) and LSMA as classifications using three Landsat TM datasets to 

characterise and analyse the urban greenness changes in the Baltimore–Washington corridor 

area. The research results appear very high in accuracy for both classifications; the LSMA 

classification has higher efficiency and shows that LSMA extends a better-classified map than 

the MLC, and also shows that the greenness in the study area has continuously decreased and 

has impacted the morphology of the urban environment. Rawat & Kumar (2015) have analysed 

the dynamics of land use and land cover in Almora District (Uttarakhand, India), using Landsat 

TM from 1990 to 2010, the MLC used to classify different land use, and land cover shows that 

agriculture areas have decreased, while built-upon land and vegetation areas have increased 

over the 20 years, it concluded that multi-temporal satellite imagery has a vital role due to the 

significant results; highlighting that remote sensing combined with GIS represents a reliable 
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approach to quantify spatial phenomena. The study uses the MLC method and Landsat satellite 

images in urban vegetation mapping. Liu, T., and Yang (2013) employ the multiple endmember 

SMA method and the stratified classification technique to study the vegetation cover in the 

Atlanta metropolitan area the authors conduct different analysis with the data, including 

landscape partition, sub-pixel analysis, and supervised classification and NDVI. Their method 

is very robust in identifying the vegetation cover density and types. They show the 

relevance and robustness of Landsat imagery data and relevant techniques in examining 

vegetation issues. 

Elmore et al. (2000) have combined methods like SMA and NDVI in quantifying 

vegetation variables in the Owens Valley, California, based on fourteen Landsat TM images 

from 1984 to 1997. This outlines that considered NDVI is a reliable source of data regarding 

changes of greenness for an area, and SMA is an exact method to measure land cover variables. 

The results obtained linked with the present study by supporting the use of NDVI and SMA 

approaches to classify Landsat images in vegetation mapping and land cover variables. 

 Zhou and Wang (2011), have used supervised classification methods like MLC and 

also landscape metrics analysis on three different types of satellite imageries; namely Landsat 

5 TM from 1992, Landsat 7 ETM+ image from 2000, and SPOT 4 image from 2009 in 

Kunming city, China, to analyses intensities of green areas and patterns of greenness. The 

outcomes of the study highlighted that satellite images and methods are helpful to 

understand how green areas change in urban space and also to clarify how green policies 

can contribute to the recovery of greenness in the cities, thus confirming the current study 

that shows that using different types of satellite images and various remote sensing 

approaches to analyse those images. 

Several studies that used pixel-based and multispectral based classification method for 

studying urban vegetation cover using Landsat-MSS, TM, and OLI imagery. However, these 

techniques are more accurate when using very high-resolution data. They have explored the 

benefits of commercial remote sensing data such as IKONOS (Noor et al., 2013; Anchang et 

al., 2016), Worldview-2 (Mustafa et al., 2015), SPOT, (Kong & Nakagoshin, 2005), Quickbird 

(Tooke et al., 2009), GeoEye, (Hofmann et al., 2011), Indian Remote Sensing satellite data IRS 

P6 LISS IV (Gupta et al., 2012), Pleiades (Balik et al., 2017), to map and detect urban green 

areas. In an early study, Demetriades-Shah et al. (1990) note that high-resolution methods are 

beneficial to solve overlapping land surface issues. In particular, these methods are precious 

“for tackling analogous problems such as interference from soil background reflectance in the 

remote sensing of vegetation or for resolving complex spectra of several target species within 
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individual pixels in remote sensing” (Demetriades-Shah et al., 1990). These methods are 

successfully used for the assessment of the UHI effect (Lo et al., 1997), the determination of 

forest species composition (Martin et al., 1998), and the land and water resource monitoring. 

A recent study analyses and explained the evaluation of urban trees ecosystem services through 

the use of tree cadastral data to offers a good application for planners due to more economically 

feasible solutions (Scholz et al., 2018). 

Examine and measure the access of city residents to green areas for health, physical 

activities, and recreation potential. NDVI Landsat imagery in 2010 and the Netherlands 

national land-use database have been employed by Klompmaker et al. (2018) to evaluate green 

area distribution, in association with being overweight and the physical activity areas in the 

city of Utrecht. Based on buffer zones and the distance calculated using NDVI. NDVI is a 

reliable source obtained from satellite images to study the greenness in urban areas related to 

different types of demographic data. 

McMorris et al. (2015) developed an assessment of greenness in the urban areas in 

Canada using Landsat images between 1991 and 1995 and buffer zones to describe relationship 

residential greenness and physical activity based on NDVI. The remarkable result to emerge 

from the study is that the NDVI method is valuable in terms of obtaining information regarding 

the spatial distribution of greenness in urban areas. Consequently, physical activity for 

individuals of different ages, and also the importance of greenness development and 

maintenance as a significant contribution to improve population health. These relate to the 

present study by pointing out the importance of urban greenness for population living 

conditions. A similar study focused on urban greenness mapping using object-based methods 

in Bishkek and fuzzy class assignments to examine and classify vegetation classes using 

GeoEye-1 imaging from Hofmann et al. (2011). As a related example of using high-resolution 

satellite data, Gupta et al. (2012) processed the NDVI in the city of Delhi using Indian Remote 

Sensing satellite data IRS P6 LISS IV data acquired in 2006 to study vegetation dynamics 

within the city limits of Delhi. Measures quality of green neighbourhood for Delhi and access 

of the population to green areas by address combinations of remote sensing and GIS methods 

used. A similar analysis is conducted in the current study to see the access of Erbil population 

to green areas in the city limits. The current dissertation uses similar measures such as NDVI 

and EVI, related to pre-processing and processing procedures, and kind of a similar analysis 

(such as time-series analysis, correlations, and supervisor classification). Therefore, results 

produced consistently with the literature. Also, Noor et al. (2013) have utilised multi datasets 

of SPOT-4, SPOT-2 and IKONOS from 1990, 2001 and 2010 respectively to outline 
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changes in vegetation areas in the urban space of the city of Kuala Lumpur, detection 

analysis approach and implementing MLC as supervised classification was used and having 

results with very high accuracy for the MLC, thus signaling MLC as a reliable method to 

be used in the present study. 

To our knowledge, the use and the comparison of different spatial resolution data (low-

medium and high) have not yet been investigated all together in the field of the spatial 

distribution of urban green areas. 

The analyses of the relevant remote sensing studies have categorized into various 

groups such as remote sensing in vegetation researches, remote sensing in urban vegetation 

researches, remote sensing in urbanisation and urbanisation effects on vegetation, and remote 

sensing in the urban environment and ecological studies. 

Although remotely sensed data/techniques are not the optimal solution for 

understanding and monitoring urban ecosystem services to understand and improve the quality 

of work that provided the correct method (Ahmad, 2012; Tavares et al., 2019), such as time of 

day and year, spatial and temporal resolution (Ayanu et al., 2012). Xie et al. (2008) compare 

different spectral, spatial, radiometric, and temporal characteristics of remote sensing imagery. 

Note that remote sensing imageries play an essential role in vegetation researches by examining 

the global vegetation changes and their classifications, understanding the impact of natural and 

human-related factors, and providing a basis for restoration and protection. “Traditional 

methods (e.g., field surveys, literature reviews, map interpretation, and collateral and ancillary 

data analysis), however, are not effective in acquiring vegetation covers because they are time-

consuming, date lagged, and often too expensive.”  

Ahmad (2012) used a variety of SVIs (EVI, SAVI, NDVI, and Transformed Normalized 

Difference Vegetation Index (TNDVI)) from MODIS and Landsat to examine the vegetation 

dynamics in the Sargodha district of Pakistan, the methods used for image processing and the 

mainstream classification accuracy assessment. The region is longer than 100 km in its longest 

dimension, so the study is large-scale geographic analysis similar to the current research. Then, 

using the constructed indices, the paper implements a before-and-after analysis like a satisfied 

percent of surface cover displaying a decrease in SVIs. Multi-temporal and multi-sensor 

satellite data showed to have great success in the study of biomass. Therefore, environmental 

monitoring evaluation. 

Moreover, the report does not perform a detailed analysis of time series and does not 

address the relationship with climate influences. Other studies, by contrast, examined this 

relation. Brown et al. (2012) use remote sensing methods at a global scale to explore the 
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dynamics of cropland surface types in the world. The paper constructs NDVI measure and 

examines its relationship with humidity and temperature. The article shows that the growing 

period of crops increased in length in the last decades, and it has paper also has time series 

indicators for various countries. In a similar study, Camberlin et al. (2007) examine the 

relationship between rainfall and vegetation cover in Africa for the period of 1981–2000. The 

most significant correlation between rainfall and vegetation indices found for the semi-arid 

regions in Africa.  

In another large-scale analysis, El-Kawy et al. (2011) use remote sensing methods to 

examine the land cover changes in Nile delta. They analyse data for the 1984–2009 period and 

find that there were large scale conversions from bare land to agricultural land and some limited 

conversion from agricultural land to urban areas. In an attempt to evaluate the efficiency of 

urban green space ecosystem, Senanayake et al. (2013) derive green space areas in Sri Lanka 

Earth Observation System satellite utilising NDVI. An environmental criticality map based on 

population density and green space established to classify high-critical areas. The study found 

that 34 divisions in 55 districts lack the World Health Organization suggested a minimum per 

capita green living space of 9.5m2 /person. 

According to Anchang et al. (2016), the use of IKONOS imagery data to classify the 

urban surface types that including vegetation areas in the city of Bamenda in Cameroon. The 

authors use SAVI measure and apply various pre-processing and processing procedures like 

pan-sharpening, Fisher Jenks classification and clustering, and data training. However, they 

argue that unsupervised index results are robust enough to classify land cover types. Given that 

financial and technical resources might be limited in developing countries to obtain supervised 

index results. They claim that their method is sufficient for urban vegetation analysis. The study 

is minimal in terms of robustness analysis, comparative discussion of different methods, and 

the time series analysis. The current dissertation provides a comprehensive perspective by 

including these dimensions. Buyantuyev et al. (2007) examine the urban vegetation dynamics 

for the city of Phoenix in the US. They have used two measures of NDVI and SAVI in their 

analysis and conducted LSMA. They compared the SMA data to field data and implemented 

some regression analysis and found that “SMA was a more accurate approach to vegetation 

quantification in urban and agricultural land uses.”SMA is a robust method to study urban and 

agricultural methods. Buyantuyev et al. (2007) confirm the usefulness and appropriateness of 

methods in the current research. 

A recent study by Henits et al. (2016) employs three long-term Landsat time-series data 

sets to assess changes in urban land cover by using two data sets each year. The research used 
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the classification of maximum likelihood by doing so provided an approach could reduce the 

problem of classification error between bare lands or forms of impervious surface and 

vegetation cover. The finding suggests that Landsat multi-temporal data will improve the 

accuracy of urban land cover. Dewan and Yamaguchi (2009) examine changes in land cover 

types for the Greater Dhaka in Pakistan for the period of 1975–2003 using three different data 

sources and asses the accuracy levels. They find significant urban expansion at the expense of 

vegetation area. Then, as an essential contribution, they conduct multiple regression analyses 

examining the effects of socio-economic factors on this urbanisation process. Results indicate 

that Greater Dhaka and the population stand out at the most significant factors driving the urban 

expansion. This study is also valuable as it conducts a detailed time series analysis of the data 

and examines substantial determinants. Esau et al. (2016) examine the case of rapid 

urbanisation in Western Siberia and its impact on vegetation cover using NDVI measure 

covering the period of 2000–2014. The authors conduct time-series and correlation analyses 

and find that “Urbanisation destroys the vegetation cover within the developed areas and at 

about 5–10 km distance around them. The studied urbanized areas have NDVI values by 15 to 

45% lower than the corresponding areas at 20–40 km distance”. The remote sensing methods 

used for ecological purposes in urban areas. 

 

2.3 Urban vegetation, land use and land cover studies in the study area 

There have been numerous studies investigating land use, land cover, and vegetation 

cover in and around the city of Erbil. The first systematic study on remote sensing data was 

carried out by Kak Ahmed H. A (2006). The study investigated urban land-use changes in the 

city of Erbil using two data sets; a cadastral map from 1986 and an image of IKONOS data, 

1m panchromatic, and 4 m multispectral bands resolution from 2005. The results indicate that 

the proportion of green spaces within the city is 5%. Rasul et al. (2017) measured LST daytime 

and the effect of swift urban expansion on urban heat and cooling island impacts using Landsat 

imageries. They also determined land-use and land-cover changes from 1993 to 2013. They 

used three data sets 1992, 2002, and 2013 in the dry season (July, August, and September), to 

estimate land use and land cover changes using pixel samples (impervious surface area, LST 

and NDVI). The results show that 55.3 km2 of city land cover changed from bare soil to urban. 

Another study assessed the effect of vegetation and moisture on the observed patterns of LST 

and Surface Urban Cool Island (SUCI) / Surface Urban Heat Island (SUHI) by investigating 

the relationships of LST with NDVI and the Normalized Multi-band Drought Index (NMDI) 

(Rasul et al., 2016). The paper employed MODIS NDVI 16-day composite 250 m resolution 
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from 2003 to 2014 to investigate the relationship between NDVI and LST and comparing LST 

of rural and the city. The results show that: “During the daytime, in summer, autumn and winter, 

densely built-up areas had lower LST acting as the SUCI compared to the non-urbanised area 

around the city. 

In contrast, at night-time, Erbil experienced higher LST and demonstrated a significant 

SUHI effect. The relationship between LST and NDVI is affected by seasonality and inverted 

during spring.” Abdullah (2012) used two data sets of Landsat-5 TM imagery in 1998 and 2011 

to reveal and assess the urban expansion of the city of Erbil, and its impact on LST between 

the years. MLC classification and change detection methods used. The results show that a fast 

and vast expansion took place in the city. Constructed coverage increased from 14% in 1998 

to 30% in 2011, and vegetated land decreased from 7% to 4%. Khalid (2014) investigated 

urbanisation’s impact on the local climate. The study used weather station temperature data, 

for the city and surrounding areas, and one Landsat 7 ETM+ imagery acquired in September 

2011 to estimate LST and NDVI. The research findings showed considerable changes in the 

local climate of the city's overtime period. In a similar study, Ibrahim (2013) assesses urban 

expansion in the city, and its surroundings covered an area 32334 ha; (Equilateral square 

without any mention of criteria), using multi-dated Landsat 5 TM imageries from 1987, 2000 

and 2011. Maximum likelihood used to classify land use and change detection methods to 

identify changes. Significant changes accrued in vegetation and open land classes during the 

period, also constructed upon areas increased. It is not possible to compare the result with the 

current study due to the area difference, and the vegetation class includes green areas and 

agricultural land where we separated them. 

Urban vegetation in the study area very effective in influencing the urban environment 

and climate change due to located in the semi-arid region. The previous studies, also stressed 

that the rapid change in land uses land cover due to urbanisation. 

 

  



23 
 

 

3. Data and Methodology 

 

3.1 Study area 

The study area for this research is the city of Erbil and its surroundings. Erbil is the 

capital of the Iraqi Kurdistan Region, and it is the central city in northern Iraq (Figure 3-1). It 

lies between longitudes 43° 51' 20", 44° 12' 28" and latitudes 36° 05' 58", 36° 15' 54". It is 412 

m above mean sea level, covering an area around 572 km2. The population of Iraqi Kurdistan 

is around 5.2 million people, while the population of Erbil city increased by 210%, from 

485,968 in 1987 to 1,025,000 in 2011 (Ministry of Planning, 2014). 

 

 
Figure 3-1: Overview of Erbil City and its Surroundings 

 

The area is fertile plains up, hills and mountainous lands. The Zagros Mountains (3600 

m above the sea level) form the main landscape of the northern Kurdistan region. Regarding 

the vegetation types, agricultural areas form approximately 34% of Iraqi Kurdistan, while the 

dominant land cover is composed of grasses and forests. Most of the Kurdistan lands/Iraq use 

for agricultural purposes (Hameed, 2013). However, during the past two decades, healthy 

economic development and related political changes have produced an intensive urbanisation 
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process on the fertile agricultural lands around the city, which is now one of the most populated 

cities in this region. 

The city of Erbil characterized by a semi-arid, continental, and Mediterranean climates, 

type BSsh, according to the Koppen classification (Köppen et al., 2011). It has two clear 

weather patterns; cold and wet in winter and dry and hot in summer. In general, annual 

precipitation is between 300–500 mm, with the highest rainfall levels taking place between 

October and May. The annual relative humidity is approximately 47%, and the monthly 

average air temperature ranges from 9-34 oC. The climate of the study area is typically dry in 

summer with little-to-no precipitation, while winters are we (Figure 3-2). According to a 

recent study by Khalid (2014), the minimum temperature increasing at an annual level 

rate of 0.055 ºC/year. 

 

Figure 3-2: Monthly Precipitation 1941–2015, Monthly Air Temperatures, and Monthly 

Humidity 1992–2015 in Erbil (KRG, 2016) 

 

Regarding the geology of the region, more recent deposits cover the upper Bakhtiari 

formation. The thickness of deposits ranges around 100-150 m, and the second part of 

geological formation is Bakhtiari, which dates back to the Pliocene. The thickness of this group 

is more than 1800 m (Omer, 1998). Erbil and the surrounding area have three different soil 

types. The first is lithosolic soil in limestone (sandstone, claystone, and gypsum), while the 

second is brown soil medium and shallow phase over Bakhtiari gravel (sand, silt, and partly 

clay). The last type is the brown soil deep phase (sand, clay, and silt) (Hameed, 2013). In terms 

of surface topology, the region is a plain area. It has low levels of slopes towards the south, 
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being less than 3% in most of Erbil. The south and the south-west regions are flatlands. 

However, the area is gently sloping to 3-7% in northern and northeast areas (Hussein, 2008). 

In terms of vegetation and green area, the region is characterised by density spring 

grasses and herbs, while in the summer, soil moisture is poor, and vegetation is scarce in rural 

areas around the city. The natural vegetation in the area is steppe grass and open shrubland, a 

transition region between northern mountain vegetation and southern desert vegetation (Hasan, 

2006). Winter grains such as wheat and barley are the most frequently grown crops in rural 

areas, and overall agriculture depends on rainfall rather than on irrigation in the study area. As 

a result, most croplands are dry during the summer. The green area of the city includes the 

gardens inside the houses. During the urban expansion in the second half of the twentieth 

century, homes in newly constructed areas had large frontal garden areas, the later stages of 

urban development characterized by smaller or no gardens (Rasul, 2016). 

The rate of arable land in the governorate of Erbil is 41.3%, 92.7% that rely on rainfall 

(KRG, 2016). Green areas cover 12% of the urban area, and the authorities want to raise it to 

15%, which is the minimum ratio set by the International Organization for Standardization 

(ISO) (Hussein, 2018). There are numerous parks and gardens around the city, including Sami 

Abdulrahman Park, Minare Park, Gllkand Park, and Shanadar Park (Figure 3-3). Sami Abdul-

Rahman Park is in the west of Erbil and is the largest green area (about two km²). It divided 

into gardens and one forest. It consists of lawns, a floral quarter, and a variety of trees and 

50,000 trees in the forest (Rasul, 2016). 

 

Figure 3-3: Levels of Spatial Scales in the Study Area 
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3.2 Methodological background 

In the remote sensing studies on urban vegetation, the specifications of the platforms 

and the sensors are significant. The spatial and spectral resolutions of remote sensing data are 

two essential features. For example, MODIS often has mixed pixels because of their low spatial 

resolution, and thus they cannot be defined as a specific pure class and can only detect land-

use types at the regional level (Bajgiran et al., 2009). As shown in Table 3-1, it is generally 

more suitable to study mapping at global, regional, or national scales. Still, it can be a good 

starting point to examine the surface types and vegetation indices at city levels as well.  

Time-series methods used to differentiate long-term land coverage change from short-

term variations, mapping of vegetation dynamics, and improved land cover mapping and 

update. Time series quality is essential concerning these tasks. Data sometimes distorted by 

several factors, including cloud coverage, high levels of the aerosol, opposing view and 

illumination angles, sensor defects. These lead to an erroneous interpretation. Therefore, the 

proper pre-processing and processing of raw data and the generation of relevant vegetation 

indices are essential steps in the analysis (Colditz et al., 2006). 

In particular, MODIS NDVI satellite-based measures have been concentrated by 

Helbich (2019) because they afford universal coverage in the form of pre-processed time series 

and involve less computational effort compared to Landsat or other higher-resolution data. The 

practice of using moderate/coarse resolution data to describe land cover has resulted in the 

creation of a wide range of methods to exploit satellite data (Borak et al., 2000) Time-series 

spectral profiles used in a wide range of methods exploiting observations spanning multiple 

seasons and years. The main reason belongs to the signal is more effectively distinguished from 

noise and vegetation phenology can be correlated with spectral trajectory based on the 

multitude of data points (Kennedy et al., 2014), Two methods employed for keeping track of 

vegetation dynamics and deriving phenological indicators in forest or agricultural landscapes 

are wavelet transformation (Sakamoto et al., 2007), and curve-fitting (Kennedy et al. 2007). 

Temporal compositing benefited by other methods, thus streamlining quantities of data 

without compromising temporal variability associated with land coverage or phenological 

conditions (Borak et al., 2000; Clark et al., 2012). Although characterization of time series 

achieved with any metric, the ‘dense time stacks’ change detection method lately employed in 

urban areas. In this method, vegetation phenology approximated based on the yearly mean. 

Besides, the added seasonal information helped to overcome spectral confusion between fallow 

cropland and new urban development; monthly mean helps to estimate general trend phenology 

by year (Schneider, 2012; Hussein, 2017a; Li, F. et al., 2017; Zhang, Y. & Yang, 2019). 
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Table 3-1: Features of Different Remote Sensing Data (Source: (Xie et al., 2008; “Satellite 

Overview | Geoimage,” 2019))  

 

 



28 
 

 

These studies used mean value compositing vegetation indices to assess temporal 

variations of vegetation. The results of these studies recommend using mean methods to 

evaluate the temporal dynamics of vegetation and need a high temporal resolution data of 

remote sensing satellite imagery. 

In addition to the MODIS sensor and Landsat satellite data, the current study also uses 

a very high-resolution sensor from the Pleiades. It delivers high spatial resolution with 0.5 m 

panchromatic and four spectral bands image data 2m resolution. So, it is precious to make 

analysis within particular city districts, where identifying the surface type can be more complex 

and demanding (Koedsin & Huete, 2015; Anchang et al., 2016). Overall, these three imageries 

provide complementary data, and the data analysis conducted comparatively. 

The EVI is more responsive to the changes in the canopy, while the NDVI is 

sensitive to chlorophyll (Hussein et al., 2017). The equations for NDVI and EVI described 

below (Huete et al., 2002).  

𝑁𝐷𝑉𝐼 =
ρNIR−ρRED

ρNIR+ρRED
    [1] 

 

𝐸𝑉𝐼 = 2.5
ρ𝑁𝐼𝑅−ρ𝑅𝑒𝑑

ρ𝑁𝐼𝑅+(6∗ρ𝑅𝐸𝐷)−(7.5 ρ𝐵𝐿𝑈𝐸)+1
    [2] 

 

The purpose of EVI is to improve on a standard NDVI product. They include the 

enhancement of vegetation signal and sensitivity in abundant biomass regions, the reduction 

of soil and atmospheric effects, and the reduction of the smoke impact generated as the result 

of biomass combustion in the tropical areas (Xiao et al., 2009). NDVI is saturated when plants 

grow well, which will help monitor plant growth status, and EVI improves the sensitivity for 

well-vegetated areas (Li, H. et al., 2007). The NDVI and EVI products computed from 

atmospherically corrected bi-directional surface reflectance that masked for water, clouds, 

heavy aerosols, and cloud shadows (USGS, 2016). A substantial requirement of SVIs science 

products is that they be accurately validated. Gao et al. (2003) carry out MODIS SVIs product 

validation at the semiarid, New Mexico, the results show the accuracy, reliability, and science 

utility of the MODIS SVIs products in arid and semiarid areas. 

Remote sensing data based on SVIs widely used in urban areas (Yunhao et al., 2006; 

Buyantuyev et al., 2007; Rafiee et al., 2009; Zoran et al., 2013; Anchang et al., 2016). These 

vegetation indices used in various methods, such as the estimation of fractional vegetation 

cover (Yunhao et al., 2006), a combination of two or more spectral bands using parameters 

such as radiance, surface reflectance, or apparent reflectance (Zoran et al., 2013), analysis of 
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the differences in the histogram of satellite images, and reclassification of these images to 

obtain a detailed change matrix for urban green areas (Rafiee et al., 2009).  

Other approaches use the optimal filter for NDVI time series derivation of vegetation 

phenology in urban areas (Li, F. et al., 2017). Methods in urban areas with a high amount of 

background soil include the combination of NDVI and SAVI (Buyantuyev et al., 2007; 

Anchang et al., 2016). Additionally, NDVI used in a study in combination with radiant surface 

temperature and multiple-comparison approach. The methods of this study include visual 

interpretation, GIS zoning categories (Wilson et al., 2003). 

In the case of MODIS data, the NDVI and EVI indices generated within the sample 

years and across the years. Also, five land cover types identified by using MODIS land cover 

type, and the change of surface types investigated from 2000 to 2015. Then, time series and 

cross-correlation analyses conducted to see the temporal dynamics of SVIs and their 

relationship with climate variables. In the case of Landsat data, time series of NDVI, as well 

as EVI measures produced to conduct some statistical analysis. In this case, the methods of 

MLC and LSMA also employed in the analysis. A similar analysis also conducted for Pleiades 

data. Method of MLC performed to classify land use NDVI values extracted using GIS 

techniques such as zonal statistics. Then, based on these data, mean values and buffer zone 

criteria are constructed. At this stage, providing some information on the MLC and LSMA 

techniques would prove useful.  

To classify the land cover types at the pixel level, the LSMA and the MLC methods 

employed. Regarding the MLC method, Sun et al. (2013) state that “MLC is a method for 

determining a known class of distributions as the maximum for a given statistic. During 

classification, all unclassified pixels assigned membership based on the relative likelihood 

(probability) of that pixel occurring within each category’s probability density function.” 

So, MLC provides a robust way of classifying the pixels from the satellite imagery data. 

Then, using the distribution of these pixels, one can construct different surface cover types and 

vegetation indices measures. In this analysis, mixed pixels can present difficulty in terms of 

creating errors with poor classification methods. To address such problems, the LSMA method 

used in the literature. Chang (2016) states that LSMA is “a widely used theory in hyperspectral 

data exploration. It first assumes that for a given finite set of basic material substances, a data 

sample that modelled as a linear admixture of these substances from which the data sample 

unmixed into their corresponding abundance fractions. In this case, analysis of the data sample 

performed on these abundance fractions rather than the sample itself”. So, both MLC and 

LSMA methods are used in the current dissertation to derive robust measures of vegetation. 
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Difficulties in urban classifications using satellite data may arise during the 

establishment of the NDVI thresholds needed to separate dense vegetation by bare soil areas 

(Belgiu et al., 2014). Another difficulty during classification in urban areas may occur while 

using only single high-resolution panchromatic data (Benediktsson et al., 2003). Moreover, 

Sertel & Akay (2015) posit that pixel-based classification does not rely on spatial, topological, 

and textural features, and as a result, high-resolution and very high-resolution images can 

engender challenges for spatial analysis in urban areas. Chanussot et al. (2006) support the 

notion that, in urban areas, accurate classifications require geometrical information to 

distinguish between pixels that may be very similar. Spectral separation can present a challenge 

in urban tree canopies (Walton, 2008; Moskal et al., 2011), as well as bare land in urban areas, 

due to the similarity of spectral responses (Cai et al., 2019). 

Furthermore, shadow boundaries may also cause difficulty in urban area image 

classification (Dare, 2005). Moreover, the high heterogeneity in urban areas and the similarity 

of spectral responses of urban land cover may represent other difficulties in remote sensing 

classifications (Herold et al., 2002). The low spectral variation between different land cover 

types can also be a challenge in urban area classification if the classification process relies only 

on spectral information (Salehi et al., 2012). 

 

3.3 Data and methods 

 

3.3.1 Data of satellite imagery 

The research process involves the use of satellite imagery taken from MODIS, Landsat, 

and the Pleiades. The temporal scale covers 25 years from 1990 to 2015. The spatial scale 

involved dividing the study area into three levels, which are looked at in greater detail below, 

and which reflect different levels of proximity and analysis. These enable a better 

understanding of distribution and localization in terms of urban change and vegetation cover 

over time (Figure 3-3). Scale 1 in the below graph is the most significant section of the scale, 

covering an area of 572 km2, and it is similar to the city in terms of natural characteristics, it 

selected to identify the impact of urbanisation on vegetation cover. The data extracted to 

analyse the dynamics of vegetation cover surrounding the city of Erbil and the effects of 

urbanisation in these areas. Scale 2, which is the most dynamic area affected by human 

activities, covering an area of 140 km2. The data uses to analyse the spatial-temporal variations 

of vegetation dynamics and built-up areas. Scale 3 represents a sample of the city that 

investigates evaluate the spatial distribution of vegetation cover, covering an area 25 km2. All 
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analyses performed once by using ENVI ver. 5.3, ERDAS Imagine 2014, and ArcGIS ver. 10.6 

to establish supervised classification and producing the final maps, respectively. 

 

3.3.2 Reference data 

For Landsat based classes 850 ground truth data using handheld GPS, historical maps, 

images from Google Earth database, QuickBird image from 2005, and SPOT-5 image from 

2013 are used in the analysis. For the Pleiades satellite data from 2015, interviews and local 

knowledge and experience of the study area are employed. Also, for the Pleiades, 550 ground 

truth data using handheld GPS for each land cover class from the year 2015. Along with images 

of Google Earth database and maps of the Erbil city master plan, are considered in the study. 

 

3.3.3 Climate data 

The monthly temperature, humidity, and rainfall data were collected from Erbil station 

and plotted over the 16 years (2000 – 2015). Humidity data collected at an altitude of 470 m. 

All climate data source from the Kurdistan region government, Ministry of Agriculture and 

Water Resources (2016). 

 

3.3.4 Vector data of the city districts 

The vector data used in the study are the boundary of Erbil city at scale 1:10000 and 

the city districts at 1: 5000 that obtained from Erbil Governorate in 2015 (KRG, 2015). 

 

3.3.5 Scale 1: MODIS vegetation indices and land cover 

1- MODIS vegetation indices (MOD13Q1)  

The study uses the 16-day composite, 84 single images for NDVI and the same for EVI, 

one image for each month, blue, red, and NIR reflectance bands, cantered at 469 nm, 645 nm, 

and 858 nm respectively, to determine the MODIS vegetation indices. The mean values of 

NDVI and EVI indices generated to identify temporal variations from 2000 to 2015, using 2-

3-year time intervals, with methods involving NDVI and EVI time series analysis and land use 

classification in 250 m spatial resolution (Table 3-2). 

2- MODIS 500 m land cover (MCD12Q1) 

The study uses MODIS Land Cover Type Yearly L3 Global 500m resolution 

(MCD12Q1), Land Cover Type 1 Annual International Geosphere-Biosphere Programme 

(IGBP) classification (IGBP) global vegetation classification scheme with five global land 

cover classification systems. Open Shrubland, Grassland, Cropland, Urban/Built-up area, and 
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barren or spare vegetation. The 16 single images investigated, for each year into one image. 

MODIS land cover used to carry out change assessment and distribute NDVI and EVI into 

land cover classes by using zonal statistical table technique (Table 3-2).  

 

Table 3-2: MODIS Data Products Used in the Study 

Datasets Sensor 
Spatial resolution 

(m) 
Date of acquisition 

MODIS Vegetation Indices 16-Day 
L3 Global 250m (MOD13Q1) 

MODIS-Terra 250 2000–2015 

MODIS Land Cover Type Yearly L3 

Global 500m (MCD12Q1), Land 

Cover Type 1: IGBP global 
vegetation classification scheme. 

MODIS-Terra 500 2000–2015 

 

 

In the case of the MODIS method, the processing flow-chart is given in (Figure 3-4). 

Data compilation and raster statistics generated in ArcGIS 10.3. Statistical analysis and 

investigation of possible trends carried in Microsoft Excel. Pre-processing of satellite data was 

required and conducted in the study. Data pre-processing included checking pixel reliability 

and vegetation index quality. Bad pixels are omitted from the analysis as they represent clouds, 

cloud shadows. Mean NDVI and EVI generated to provide an average index over the complete 

study area, allowing the comparison between years to examine a temporal trend. Plots of 

monthly NDVI and EVI statistics (mean, minimum, maximum, and standard deviation) are 

generated from 2000 to 2015, identifying temporal variations. 

 

 
Figure 3-4: Pre-Processing and Processing of MODIS Satellite Imagery Data at Scale 1 
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3.3.6 Scale 2: Landsat satellite data and multispectral classification 

A set of six cloud-free Landsat images used in the analysis. The data ordered in Science 

Research and Development (LSRD). Pre-progressing such as image enhancement, geometric 

correction, and atmospheric correction already corrected by LSRD. To avoid seasonally 

derived errors, to use scenes only in the summer months, which represent the same vegetation 

condition. Also, the selection of specific periods reflects spatial distributions and temporal 

changes due to significant economic and urban development (Table 3-3). 

 

Table 3-3: Description of the Satellite Imagery Used in the Study  

Characteristics/sensor TM4 TM5 TM5 TM5 TM5 OLI_TIRS8 

Date of acquisition 10-Jul-90 16-Jul-95 14-Aug-00 12-Aug-05 10-Aug-10 8-Aug-15 

Pixel size (m)  30 

Number of bands  6 

Path and raw  169 / 35 

Projection / Ellipsoid  UTM Zone 38 / WGS 84 

 

In the case of Landsat imagery data, a four-step framework is used in the analysis, as 

presented in (Figure 3-5). Step one involved the use of the MLC and the LSMA methods to 

classify image pixels. In the second step, the results from the LSMA fuzzified to extract the 

land-use classes, after which both LSMA and MLC results undergo a classification accuracy 

assessment, which must be greater than 80% for the classification to use in the analysis. In the 

third step, the determined magnitude of green vegetation change. Then, in the last step, 

vegetation indices are extracted to generate statistics (mean, minimum, maximum, and 

standard deviation) and create maps to determine spatial-temporal variations. These steps are 

repeated for 5-year intervals starting from 1990 and finishing in 2015. 

The accuracy levels for both methods assessed using a series of 50 random validation 

points for each class; historical maps, field surveys, interviews, and local knowledge and 

experience of the study area were used as reference data for the assessment, providing a 

confidence level of 95% and a confidence interval of ±10% for both classification methods 

(Czaplewski, 2003), resulting in an overall accuracy of over 85% (Figure 3-6). Based on the 

results from the LSMA, the large type of membership was chosen for the fuzzification process, 

resulting in a raster file with values ranging from 0 to 1, where the pixels with values close to 

1 have the highest probability of representing that specific land-use class. The trial and error 

method used to identify the smallest value representing that particular land-use class. After 
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multiple trials, the value of 0.92 that identified as the lower limit for each type. The change of 

urban greenness magnitude determined by considering 1990 as T0, 1995 as T1, 2000 as T2, 

2005 as T3, 2010 as T4 and 2015 as T5. Furthermore, All T1, T2, T3, T4, and T5 would be 

compared with T0 to assess the magnitude change for each period. 

 

 
Figure 3-5: Pre-Processing and Processing of Landsat Satellite Imagery Data at Scale 2 

 

 
Figure 3-6: Examples of accuracy assessment, three points investigated: (A) view of field 

measurement. (B) classified of Landsat. (C) classified of Pleiades. (D) Pleiades satellite 

imagery 
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3.3.7 Scale 3: Pleiades very high-resolution imagery and multispectral classification 

The area of scale 3 selected as a sample representing old and new districts; this study 

utilised very high resolution and cloud-free multispectral satellite data. Data requested on 21st 

June 2015 (Table 3-4). The data delivered in ORTHO form, which means geometrically 

corrected data in the Universal Transverse Mercator (UTM) coordinate system and matched 

with sub-pixel accuracy. The Pleiades deliver high spatial resolution 0.5 m panchromatic and 

2 m multispectral bands (blue, green, red, and infrared (430-550 nm), (490-610 nm), (600-720 

nm), (750-950 nm) respectively. The satellite images used to produce detailed vegetation maps 

at a section of Erbil City (Hussein et al., 2019). The year is the same as the last image of 

MODIS and Landsat (2015). 

 

Table 3-4: Pleiades Metadata 

sensor Date Projection Ellipsoid 
Processing 

level 
Spectral Bands 

Spatial 

resolution 

Pleiades-L1 21- 6- 2015 UTM Zone 38 WGS 84 ORTHO 4 2 m 

 

Lastly, the data from the Pleiades also went under some pre-processing and processing 

stages. A series of pre-processing steps applied to prepare the satellite images for further 

analysis (Figure 3-7). First, image radiometric calibration was applied to convert the radiance 

value to Top-of-Atmosphere (TOA) reflectance. A MODTRAN4-based atmospheric correction 

software package (FLAASH) used to convert the TOA Reflectance to surface reflectance 

(Adler-Golden et al., 1999) using ENVI software. Second, the MLC method used to assign the 

digital pixel values of the satellite images into different land cover classes. There were MLC 

works based on spectral pattern recognition of each land cover type represented by each pixel 

in the satellite image (Campbell & Wynne, 2011; Chuvieco, 2016). In supervised classification, 

training data collected by drawing boundaries around areas that are representative of the land 

cover types meant to map in the image. After these steps, the image divided into four classes 

concerning the main objectives of this study. These classes are bare land, water, vegetation, 

and built-up land areas. 

Finally, to assess the classification accuracy, the error matrix method technique 

(confusion matrix) is used in the study (Congalton, 1991). A total of 550 ground truth points 

was collected for the study area as follows; 150 for each urban, vegetation, bare land, and 100 

for a body of water. Afterward, the overall user and producer accuracy calculated. 

Regarding the NDVI measures, to establish whether the variation between city districts 

in terms of vegetation cover is significantly different, the analysis of variance (ANOVA) is 

performed. This statistical method examines whether groups means are different from each 
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other in a statistically significant way. Finally, to examine visually how the city districts are 

different NDVI box plot technique was employed using mean and standard deviation. 

Furthermore, the percentage of each land cover class was extracted and compared for further 

analysis, such as comparing with Landsat results. 

 

 
Figure 3-7: Pre-Processing and Processing of Pleiades Satellite Imagery Data at Scale 3 

 

Regarding the conversion of results into the GIS environment, the nature of recorded 

data in remotely sensed images is pixel values, where each pixel records X, Y information for 

the ground location. Therefore, this allows remotely derived information that used with other 

data in spatially distributed modelling efforts, such as with GIS (Lindgren, 1985; Jensen & 

Hodgson, 2004). GIS techniques included to analyse and evaluate spatial information. These 

techniques included the input and conversion of all obtained results into ArcGIS software to 

facilitate the conversion of data type from raster to polygons. This step has rarely used in 

literature and, thus, counts as a point of strength for this study. The polygon data of the city 

used to extract the NDVI value and the classification result based on each district in the city.  

Moreover, to determine and explore the accessibility to green spaces within the city 

districts, buffer zone criteria are used. The most common way to assess exposure to green areas 

is to determine the greenness within a circular buffer of the residential address (James et al., 
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2015). The radius of the buffers used to define surrounding green space varied among studies 

and ranged from 30 (McMorris et al., 2015) to 2000 m (Maas et al., 2008). Green space within 

a buffer can be assessed by using NDVI or by classification of land use for the given area. 

The current study used the following criteria: 1) 300 m of buffer was applied to green areas 

between 2 and 20 ha; 2) A buffer zone of 2 km applied to green areas more than 20 ha. 

Subsequently, the total area of each district in those buffer zones was extracted and 

converted into a percentage of the analysis to determine the accessibility of green space 

throughout ArcGIS 10.6. 
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4. Results 

 

4.1 Monitoring spatiotemporal variation of urban vegetation cover using 

MODIS satellite data 

Spatiotemporal changes in vegetation cover in and around the city of Erbil investigated 

by using the NDVI and EVI derived from MODIS satellite imagery. To have high temporal 

resolution and a long-term perspective on the vegetation dynamics in the city of Erbil, we have 

constructed an analysis MODIS images covering the period between 2000 and 2015, using 

time series scatter plots of mean NDVI and EVI values and summary statistics including 

standard deviation, minimum and maximum. Both indices evaluated within a year for seven 

separate years between 2000 and 2015 to analyse between the years and the vegetation periods 

during a year as well. The examined years are 2000, 2003, 2005, 2008, 2010, 2013, and 2015. 

 

4.1.1 Temporal trends 

One of the striking features from the plots is the monthly pattern within the years. The 

NDVI and EVI indexes usually starts the year with a value of around 0.2-0.3 and 0.1-0.2 

respectively and then reach the highest value of the year during two months of March and 

April, where the index values can reach the levels of 0.4 to 0.5 for NDVI and 0.3.5 to 0.4 for 

EVI (Figure 4-1 and, Figure 4-2). Then, indexes fall to the lowest values within the year 

during summer and autumn months and stand on the level between 0.1-0.2 for NDVI and 

0.5-0.1 for EVI during June and November, while it  might experience a slight increase at 

the end of the year. 

The within-month pattern of vegetation index correlated with the humidity NDVI and 

EVI with values of 0.92 and 0.94 in April and rainfall NDVI and EVI levels with values of 

0.64 and 0.62 in April. According to the weather station of Erbil (2016), the average rainfall is 

highest in January with an average value of 80 mm, followed by 74 mm in February, and 71 

mm in March. April, along with November and December, also have 37-70 mm rainfall to 

argue that sustained rise in rains starting from November leads to the highest levels of 

vegetation during March and April. The high correlation with the rainfall also implies that city 

policies on irrigation systems for parks and other green fields do not have a sizeable effect on 

the pattern of vegetation in Erbil. When some broad comparisons made across years for the 

NDVI and EVI indices, it is seen that 2003 and 2015 stand out as greener years, while 2008 

was a notably less green year in the sample. NDVI value started from 0.2 in January 2003 and 

reached to 0.5 in April, with the values of above 0.3 for February and May of the same year.  
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On the other hand, in the same year, EVI started at 0.1 and peaked at 0.4 in April, that 

is mean the difference is 0.1 value; according to the field data NDVI more represent the 

environment better than EVI. Similarly, 2015 was also a very green year, with NDVI starting 

from 0.3 in January and staying above 0.4 in March and April. In contrast, 2008 was a mainly 

dry year with NDVI values being between 0.1 and 0.2 for the whole year, except the index 

being slightly above 0.2 in April. The figures also provide information on minimum and 

maximum values in addition to the mean levels. So, one can analyse the standard deviation in 

the data. When the most significant values examined, it can be seen that 2015 has the highest 

levels of maximum values, followed by 2003. 2015 also has the highest NDVI values in 4 of 

12 months. Similar to the average value dynamics, 2008 has the lowest values of maximum 

NDVI and EVI. In terms of minimum values, 2003 stands out again as the year with the highest 

values. When the standard deviations across the years are examined, it can be seen that 2015 

has the highest volatility. Overall, these statistics imply that greener years have high minimum, 

maximum, and standard deviation values as well. 

To see the monthly pattern across the years, Figure 4-3 provides a detailed comparison 

between the years that shows less green months display limited variation over the years, while 

more green months display higher variety across the years. For example, June has an average 

value of close to 0.1. The same can be said for the other less green months of July, August, 

September, October, November, and December. There was a little variation in these months 

across years, with average NDVI values being in the vicinity of 0.1; the only small temporal 

difference observed in some of these months is that 2003 had slightly higher NDVI value, 

while 2008 had slightly lower NDVI value. Based on these observations, it was clear that there 

is no obvious upward or downward trend in NDVI values for these months over the sample 

years from 2000 to 2015, as confirmed by the near-constant linear fit lines in (Figure 4-3).  

In contrast to the stable course of NDVI values for months from June to December, the 

first five months displayed some variation as well as trends across years. In the sample years, 

2008 stands out as the least green year in the first five months of the year. NDVI graphs make 

a thorough in 2008, while the peak year is observed in 2003 for April and May, in 2005 for 

March and 2015 for January and February. In terms of long-term trends, according to the figure, 

January, February, and especially March have clear upward trends, while April has a stable 

course, and May has a downward trend. For example, in the case of March observations, the 

last three sample years (i.e., 2010, 2013, and 2015) have larger NDVI values than the first three 

sample years (i.e., 2000, 2003, and 2005). So, the vegetation indices display some temporal 

variation, especially in the first five months of the year. 
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Figure 4-1: NDVI Monthly Summary Statistics for 2000–2015 

 

Graphs for EVI dynamics in Figure 4-3 also display similar properties, as in the case 

of NDVI. From June to December, there is limited variation across the sample years. Besides, 

EVI dynamics in the first five months also display similar trends and volatilities. Overall, two 

measures of vegetation indices produce very similar findings on the evolution of vegetation 

area in the city of Erbil. The figure also presents information on min, maximum, and standard 

deviation across months in different years. For example, December is the driest month in terms 

of NDVI and EVI values. December also has the lowest minimum and maximum values. 
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Figure 4-2: EVI Monthly Summary Statistics for 2000–2015 

 

Similarly, April is the greenest month in terms of average NDVI and EVI. April also 

has the highest minimum and maximum values. So, the minimum and maximum values are 

positively associated with the average vegetation indices. Also, the standard deviation is 

highest in the greenest month, so being green comes with some volatility in the data. In 

contrast, dry months like December and July have very low standard deviations in NDVI 

and EVI values. 
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Figure 4-3: Monthly plots of NDVI and EVI Summary Statistics for 2000–2015 
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Moreover, the result examines the distribution of NDVI and EVI into a map of land 

cover/land use. Annual MODIS was used to calculate land cover statistics for time series for 

both indices, which showed in (Figure 4-4). Most of the sample years contain SVIs values with 

variation, except for both SVIs values in 2008. NDVI shows a higher variety than EVI. Abrupt 

climatic explained that changes were resulting in vegetation growth or decline. The cropland 

class had the highest NDVI values over any other class during the 16 years, which expected as 

healthy green crops would exhibit a higher NDVI value compared to open shrub and grassland 

ecosystems that contain various plant species with varying foliage colours and types. 

Barren/sparsely vegetated and urban areas displayed the lowest mean NDVI values for the 

study area over the 16 years, except grassland; the mean values showed the lowest in 2010. 

 

 
Figure 4-4: Mean NDVI & EVI Yearly Values for 2000–2015, Comparing 5 Land Cover 

Types 
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The EVI time series presents a similar trend, as cropland appears to generally have 

higher biomass over grasslands and open shrublands over the 16 years. Cropland EVI exceeds 

grassland due to additional crop irrigation for those years. As expected, EVI in urban areas 

remains relatively low over the study period; however, EVI in barren/sparsely vegetated classes 

seems to spike in 2003 and 2015 (Figure 4-4). The spikes explained by an increase in sparse 

vegetation species and opportunistic species such as weeds. Based on Figure 4-1, Figure 4-2 

and, Figure 4-4, it suggested that NDVI is more sensitive than EVI for fluctuations in 

vegetation health and biomass in the study area. 

When the literature examines the dynamics of vegetation indices, the relevant studies 

also look at the possible factors associated with the given dynamics (Lanorte et al., 2014; 

Fernández-Martinez et al., 2015). Some of the leading variables that the literature examines 

are the rainfall (Nicholson et al., 1990; Davenport & Nicholson, 1993; Santos & Negri, 1997), 

humidity (Stabler et al., 2005; Brown et al., 2012), and temperature (Sandholt et al., 2002; 

Kustas et al., 2003). Annual rainfall, average temperature, average humidity, and covering the 

16 years presented (Figure 4-5, and Figure 4-6). Total rainfall was higher in 2003 and 2006, 

followed by low rainfall years in 2004, 2010, and 2007. After 2007 total rainfall has remained 

more constant with less variation between years, with a positive increasing trend towards 2015. 

 

 
Figure 4-5: Total Annual Rainfall and Average Temperature Time-Series from 2000 – 2015 

(KRG, 2016) 
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Figure 4-6: Annual Mean Humidity Time-Series from 2000 – 2015 (KRG, 2016) 

 

Humidity shares a similar pattern to rainfall, with high averages in 2003 and 2006, 

followed by lows and then a gradually increasing trend towards (Figure 4-6). Interestingly to 

note, the average temperature for 2003 was the lowest over the 16 years, while in 2006, the 

temperature was relatively high for that period (Figure 4-5). In 2010 average temperature 

spiked at 23ºC, the highest average temperature over the 16 years. By comparison, total rainfall 

was deficient in 2010 with average humidity. Average rainfall, humidity, and temperature all 

appear to have generally increased between 2000 and 2015 with various positive and navigate 

fluctuations in-between.  

The relationship of MODIS vegetation indices with climate factors presents in Table 

4-1.The correlation between three climate variables and two SVIs from 2000 to 2015 measures. 

The table shows that humidity has a very high positive correlation to SVIs in April with a value 

of 0.94 and 0.92 for EVI and NDVI, respectively, followed by March with a value of 0.78 

and 0.86. The positive impact of humidity on vegetation also begins in November and 

continues until April. Rainfall measures indicate a significant correlation in April in the 

case of EVI with a value of 0.82 and the months of April, November, and December 

positively associated with SVIs.  

Regarding the temperatures, the months of January, February, and October have a 

weakly positive relationship, and the rest of the months have a negative correlation. So, 

humidity and rainfall have positive associations with the SVIs measures in the city of Erbil. 

However, the relationship of SVIs with temperature is negative in general. Consequently, the 

results from climatic conditions analysis show that humidity and rainfall are parameters more 

important in vegetation evolution. 
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Table 4-1: Correlation Analysis between Monthly Rainfall, Humidity, Temperature and 

Monthly Vegetation Indices (NDVI & EVI), Green Highlighted Refers to a Correlation 

Months 

Rainfall Temperatures Humidity 

NDVI  EVI EVI NDVI EVI NDVI 

Jan -0.13 -0.11 0.22 0.27 0.58 0.57 

Feb 0.06 -0.06 0.40 0.45 0.52 0.55 

Mar 0.05 0.03 -0.12 -0.17 0.78 0.86 

Apr 0.64 0.62 -0.88 -0.93 0.92 0.94 

May 0.24 0.22 -0.23 -0.23 0.08 0.11 

Jun 0.00 0.00 -0.32 -0.05 -0.48 -0.26 

Jul 0.00 0.00 -0.37 -0.33 0.05 0.21 

Aug 0.00 0.00 0.26 -0.29 -0.13 0.22 

Sep 0.00 0.00 -0.25 0.08 -0.16 0.06 

Oct 0.00 0.00 0.37 0.31 -0.48 -0.58 

Nov 0.74 0.82 -0.35 -0.23 0.52 0.90 

Dec 0.53 0.65 -0.51 -0.69 0.28 0.42 

 

4.1.2 Spatiotemporal variation 

Figure 4-7 and Table 4-2 clarify the distribution of land cover types from 2000 to 

2015. The table that urban and built-up areas remained relatively similar at this resolution 

over time, except for 2015. While vegetation areas experienced a volatile pattern. 

Especially, cropland and grassland displayed some ups and downs in the sample period. As 

a result, the plants around the city are seasonal vegetation, seasonal crops associated with 

precipitation, hence indicate to the weak interaction between urban ecosystem and 

suburban and rural environments. 

 

Table 4-2: Area Coverage of MODIS Land Cover (% Share) 

Land Covers 2000 2003 2005 2008 2010 2013 2015 

Open shrublands 62 64 52 86 84 59 28 

Grasslands 6 8 1 1 2 19 12 

Croplands 12 11 36 2 2 10 45 

Urban and built-up 11 11 11 11 11 11 15 

Barren or sparsely vegetated 9 6 1 1 2 1 1 

 

Figure 4-9, and Figure 4-10 present visualize the spatiotemporal variation of vegetation 

from April 2000 to April 2015 for NDVI and EVI measures, respectively. April is chosen as 

the comparison month as it had the highest vegetation growth, and as a result, it would best 

represent differences in true vegetation coverage extent (Figure 4-8). 
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Figure 4-7: Spatiotemporal Distribution of Land Cover Types 
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Figure 4-8: View of the Surrounding Vegetation in April 2016 (“Wikimedia Commons,” 

2020) 

 

It is evident from the maps that the spatial distribution of urban areas and/or barren or 

sparsely vegetated areas with values less than 0.25 has expanded over the past 16 years. 

However, this growth did not happen in a linear way (Figure 4-4). From 2000 to 2003, there 

was a significant increase in the vegetation areas with the index values of higher than 0.4. The 

situation worsened in 2005 and reached its lowest vegetation level in 2008. As seen from both 

Figure 4-9, and Figure 4-10, there was almost no area with higher than 0.4 SVIs levels in the 

study area. Then the situation slightly improved. These observations are consistent with the 

previous findings that the sample years of 2003 and 2015 were relatively green years, while 

2008 was the least green year. When the initial year of 2000 and the final year of 2015 

compared in Figure 4-9, and Figure 4-10, showed that there is a decrease in the SVIs 

measures, especially within the city limits.  

Consequently, vegetation surrounding the urban centre replaced by urban growth. The 

EVI imagery has displayed a large area of poor vegetation health, which is more likely in the 

semi-arid regions of Iraq. The variation in vegetation distribution in the city of Erbil and its 

surrounding areas is a consequence of the following factors: the significant increase in built-

up land, the constructions of green spaces such as parks; reducing vacant land; reducing 

agricultural land until almost to zero value. 
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Figure 4-9: April NDVI Raster Time-Series of Erbil from 2000 to 2015 
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Figure 4-10: April EVI Raster Time-Series of Erbil from 2000 to 2015 
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4.2 Spatiotemporal variation of urban greenness cover using Landsat imagery 

 

4.2.1 Results of Linear Spectral Mixture Analysis and Maximum Likelihood 

Classification 

This section presents the results achieved from urban greenness cover and urban land 

use land cover that covered an area 14032 ha, derived from LSMA and MLC classification. 

The spatiotemporal variation of urban greenness cover specifically presents a summary of 

LULC classification statistics and the results of LSMA and MLC for 1990, 2000, 2005, 2010, 

and 2015 images presented. Based on a Landsat image classification, four major land use land 

cover identified and verified. 

The results of the MLC classification showed that land cover types displayed a 

significant change in the sample years covering the period of 1990–2015 ( 

Figure 4-11, Figure 4-12, and Figure 4-16). As an important finding, the share of built-

up land increased significantly from 24% in 1990 to 58% in 2015. This development is closely 

related to the rising population and the increasing urbanisation rates in the city of Erbil (KRG, 

2015). Figure 4-12 shows that the rising share of build-up land happened at the expense of bare 

land and agricultural land. The share of the built-up area increased by 34% points, while the 

share of bare land decreased by 24% points, and the share of agricultural land decreased by 8% 

points between 1990 and 2010. The agricultural land had a share of 8% as of 1990 and 

decreased gradually to 2005, while its share disappeared totally as of 2010. 

Regarding the green vegetation area, it displayed little difference between 1990 and 

2015, as the total green vegetation area was 889 ha in 1990 and 815 ha in 2015. That means 

that the area remained unchanged and did not keep pace with other levels of land use growth. 

However, its share first declined to 2.7% in 2005, and its share increased back to 6% in 2015. 

So, the urban expansion affected the green vegetation area negatively in the 1990–2005 period, 

while with the construction of green areas by the local administration government (KRG, 

2015), the green vegetation area recovered back in the 2005–2015 period. 

A similar analysis also presented using the LSMA method Figure 4-13, along with 

Figure 4-14, and Figure 4-17. The figures show that green vegetation had a lower share of 

4.2% in 1990, while build-up land and agricultural land had higher shares compared to the 

MLC method. The LSMA method also showed that the share of built-up land increased 

significantly from 25.6% in 1990 to 61.2% in 2015 (i.e., a rise of 35.6% points that happened 

at the expense of agricultural land, which lost 9.3% points in share, and bare land, which lost 

29.3% points. 
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Figure 4-11: MLC Land Cover Classification (Area, hectares) 

 

 

 
Figure 4-12: MLC Land Cover Classification (% Share) 
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Figure 4-13: LSMA Land Cover Classification (Area, hectares) 

 

 

 
Figure 4-14: LSMA Land Cover Classification (% Share) 
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it declined to 2.3% in 2000. However, it displayed strong growth in the following years, and 

the share of green vegetation increased to 7.1% in 2015. 

The above parts provide general temporal characteristics of different land cover types. 

Figure 4-16, and Figure 4-17 display the spatiotemporal variation of land cover types in the 

city of Erbil for MLC and LSMA methods, respectively. 

Both MLC and LSMA spatiotemporal distribution of land cover types display very 

similar dynamics. Significant changes have taken place in the land use classes. Built-up land 

grew slowly from 1990 to 2000 and extended from the north-east to the south-west. According 

to KRG (2015), this is due to low internal migration, whether rural to urban or urban to urban, 

due to economic and political crises. Then it increased rapidly to 2015, and the city expanded 

in different directions. The reasons were the lifting of UN sanctions after 2003 and a stable 

security situation, which stimulated economic growth and expansion in construction (KRG, 

2015). Evidently, as of 1990, there existed dispersed green vegetation areas within the city 

limits as well as sizeable agricultural land in the surroundings of the city. However, over time, 

agricultural land disappeared totally, and the green vegetation became more concentrated in 

certain parts of the city. The most noticeable change in vegetation land occurs around the urban 

centre and main roads in 2000 and 2005, which can be explained by the subsequent increase 

in spatial extension and seasonal drought. As discussed by Hussein (2018), the construction of 

Sami Abdulrahman Park, covering around 200 ha or close to 50% of green vegetation as of 

2010 in LSMA method, was instrumental in the concentrated increase in the share of green 

vegetation in the city.  

Assessed the scale of urban ecology throughout the city in 2015 by evaluating satellite 

images or using ground-survey data. Three types of vegetation areas monitored: the presence 

of built environments without vegetation; built environments lacking vegetation; vegetation 

abundance areas (Figure 4-15). 

The accuracy levels for both methods were assessed using a series of 50 random trust 

points for each class. Feld surveys and the validation datasets were used as reference data for 

the assessment. The research uses overall accuracy, user’s, and producer’s for land use/cover 

classes. LSMA table showed very high accuracy rates, with values being above 90% for all 

sample years. In the case of the MLC method, it also has enough accuracy levels expect for the 

sample year of 2000 (Table 4-3). 
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Table 4-3: Classification Accuracy Assessment for LSMA and MLC Methods 

% 1990 1995 2000 2005 2010 2015 

LMSA Overall accuracy 92 96 95 90 91 92 

MLC Overall accuracy 96 93 81 87 89 87 

 

 
Figure 4-15: A Visual Samples of Landsat Imagery Represent Distribution of Vegetation in 

Erbil: (A) Built environments without vegetation, (B) built environments lacking vegetation, 

and (C) vegetation abundance areas. 
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Figure 4-16: MLC Spatiotemporal Variation of Land Cover Types 
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Figure 4-17: LSMA Spatiotemporal Variation of Land Cover Types 
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4.2.2 Spatiotemporal variation of urban vegetation cover derived from vegetation 

indices 

Landsat imagery data used to construct the EVI and NDVI, similar to MODIS 

imagery data. Table 4-4 presents the estimated values for both indices covering the period of 

1990–2015 at five-year intervals. The table indicates that the mean EVI measure declined 

from 0.114 in 1990 to 0.080 in 2015, and the mean NDVI measure declined from 0.137 to 

0.113 in the same period.  

Figure 4-18, and Figure 4-19 also, show that the biomass of vegetation remains low 

with a value of less than 0.2 according to Landsat SVIs data. The mean of EVI and NDVI 

started at the highest value in 1990 and decreased gradually to dip in 2005, then increased 

gradually to 2015. Overall, vegetation indices showed a gradually decreasing trend from 1990 

to 2015. Besides the mean levels, the figure also provides information on min, maximum, and 

standard deviation values. When evaluating the most critical values, 2015 has the highest 

NDVI, and EVI maximum, and standard deviation values, followed by 1995 and 1990. Similar 

to the average value dynamics 1990, 1995, 2015, have the highest NDVI, EVI, and standard 

deviation values. 2005 has the lowest maximum and standard deviation values as well. Same 

to the average value dynamics, 2005 has the smallest standard deviation, NDVI, and EVI 

maximum values. Generally, such statistics indicate that greener year also has high, maximum, 

and standard deviation values, and the opposite is exact for the least green years.  

 

Table 4-4: EVI & NDVI results from Landsat Imagery 

SVIs year Min Max Mean STD 

EVI 1990 0.007 0.605 0.114 0.048 

EVI 1995 0.074 0.632 0.102 0.048 

EVI 2000 0.015 0.461 0.076 0.027 

EVI 2005 0.076 0.425 0.060 0.025 

EVI 2010 0.095 0.489 0.088 0.045 

EVI 2015 0.147 0.802 0.080 0.051 

NDVI 1990 0.008 0.673 0.137 0.059 

NDVI 1995 0.130 0.682 0.132 0.059 

NDVI 2000 0.020 0.472 0.090 0.030 

NDVI 2005 0.082 0.435 0.070 0.028 

NDVI 2010 0.180 0.523 0.112 0.052 

NDVI 2015 0.452 0.857 0.113 0.072 

 

So, the vegetation indices show that the biomass of green vegetation and agricultural 

lands has significantly declined. This outcome also confirmed by the spatiotemporal 
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distributions given in (Figure 4-20, and Figure 4-21). The figures confirm that some vegetation 

areas scattered around the city, as pointed in 1990. The green areas were mostly on the 

surroundings of the city, implying agricultural land held an essential share in them. However, 

over time, the green vegetation in the surrounding areas disappeared, and some concentrated 

green areas emerged in the city limits. The new green areas included the construction of parks, 

especially the massive Sami Abdulrahman Park. 

 

 

 

Figure 4-18: NDVI Measure from Landsat Imagery 

 
Figure 4-19: EVI Measure from Landsat Imagery 

 

Overall, the Landsat imagery data indicates a significant change in the level and 

composition of vegetation areas in the city of Erbil. EVI and NDVI values gradually decreased 

from 1990 to 2015. 
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Figure 4-20: NDVI Distribution from Landsat Imagery 
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Figure 4-21: EVI Distribution from Landsat Imagery 
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4.3 Spatial distribution of vegetation cover in Erbil city districts using high-

resolution Pleiades satellite imagery 

The section subdivided into three major sections that correspond to the supervised 

classification and presented in the study design. As the study herein has adopted a 

predominantly interpretive approach, the only statistical evaluation is in the description of the 

classifications (not totally statistical as the figures presented as percentages). The statistical 

figures help identify the levels of vegetation cover for the various classifications of the 

research, which is built-up land, vegetation cover, water body, and bare land. The main 

headlined sections include and are limited to one, the spatial distribution of vegetation indicator 

using NDVI and two, green spaces access in the city of Erbil. These two form a platform from 

which to base the interpretation of the results and produce a detailed vegetation map for the 

optimization of the urban ecosystem services (Ahern et al., 2014). 

 

4.3.1 Results of land use land cover by Pleiades imagery 

Pleiades satellite imagery used to construct in a particular land surface types and 

vegetation indices. This part of the city comprises of 24 Districts and coverage of 2371 hectare. 

Establishing the percentage of vegetation cover in each district to subcategorized the land 

surface into four classes, including the body of water, built-up land, bare land, and 

vegetation cover, considered as land use and land cover. The results of the supervised 

classification highlighted that most of the districts, which are 69% urban land, following 

this, bare land covers an area of 17%. However, the ratio of the vegetation land cover is 

only 14% (Figure 4-22). 

 The overall accuracy of the LULC image was determined to be 96% following the 

comparison of user’s and producer’s accuracies of particular classes were continuously high, 

ranging from 92% to 99% (Table 4-5). 

 

Table 4-5: Assessment of Classification Result 

Categories 
Producer’s accuracy 

[%] 

User’s accuracy 

[%] 

Urban 92 96 

Vegetation 96 94 

Water 99 99 

Bare land 95 97 

Overall accuracy 96% 
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Figure 4-22: Land Cover Classes according to Pleiades Imagery 

 

Table 4-6 indicates that some districts have very high vegetation areas, such as 

Sami Abdulrahman Park having 44% vegetation share, Zaniary with 38% vegetation 

share, Taajeel with a 22% share and Brayaty 21% vegetation share. However, half of the 

districts have less than 10% vegetation area.  
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Table 4-6: Percentage of land Use Classes for each District of Pleiades Imagery 

Name of District 
Land Use Land Cover Classes (%)   

Urban Water Bare land Vegetation 

 Sami Abdulrahman 

Park 
34 1 21 44 

≥ 

20% 
Zaniary 53 0 9 38 

Taajeel 70 0 8 22 

Brayaty 70 0 9 21 

Minara 70 0 11 18 

10-

20% 

Shorsh 79 0 5 15 

Raperin 81 0 6 13 

Tairawa 86 0 3 11 

Setaqan 86 0 3 11 

Xanzad 81 0 8 11 

Saidawa 82 0 8 10 

Kuestan 64 0 27 9 

< 

10% 

Naz 59 0 32 9 

Dream City 48 0 43 9 

Kany 81 0 11 8 

Xanaqa 83 0 9 8 

Mustawfi 89 0 3 7 

Selaheddin 68 0 25 7 

Bekhtiary 81 0 13 7 

Areb 90 0 4 6 

Qalat 42 0 51 6 

Parlieman 58 0 36 6 

Kurany Ainkawa 68 0 27 6 

Bazar 99 0 1 0 

 

4.3.2 Spatial distribution of vegetation indicator using NDVI  

Pleiades satellite imagery data also used to construct vegetation indices such as NDVI 

measure; therefore, a quantitative indicator obtained to compare different districts within the 

city. In general, the mean value of NDVI less than 0.3, and high NDVI values clustered in the 

districts of Sami Abdulrahman Park, Zaniary, Taajeel, and Minara, 0.35, 0.25, 0.22 and 0.18, 

while the areas that covered by tall trees, dense bushes and shrubs as well as grasses, while 

NDVI is less than 0.1 in the city centre areas as constructed areas dominate it (Figure 4-23).  
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Figure 4-23: Spatial Distribution of NDVI Measure 

 

On the other hand, some districts have low vegetation covers, such as Setaqan, Xanzad, 

Raperin, Xanaqa, Mustawfi, Tairawa, and Qalat (Figure 4-23, and Figure 4-25). This result 

counts as a significant point in terms of justifying the study objectives (Figure 4-26). Because 

insufficient vegetation cover in those districts may have impacted the ecosystem function, 

biodiversity, and climatic variables. In addition, the lack of greenery in those districts is 

negatively affected regarding the process of the observation of solar radiation by particular 

ground surfaces (Mallick et al., 2008). Thus, the other climatic indicators, such as surface 

temperature, evaporation, and storage of heat, will also change (Figure 4-24). 

Similarly, the districts located close to the city centre, such as Mustawfi, Tairawa, 

Setaqan, and Bazar show the lowest green space compared to the other city districts. The 

possible reason for this finding might be related to the history of these areas because Erbil is 

one of the oldest cities in the northern part of Iraq due to having an ancient castle at its centre. 

Over its history, the city has expanded in a circular shape around the castle. Therefore, the older 

districts, which are close to the castle, have a very low proportion of green space due to the 

lack of available land. Built-in or built-up areas have low values of mean NDVI 0.16 and 0.074. 

In the new build districts like Dream city and Naz, still, NDVI values are low (Figure 4-23, 

and Figure 4-25). This result is in line with our classification result, as it shows that those new 
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build districts have more bare lands compared to other places in the city. This spat ial 

distribution confirms the previous finding that green vegetation is distributed very 

unevenly across districts. 

 

 
Figure 4-24: Overview of Shanadar Park (“Wikimedia Commons,” 2020) 

 

 

 

Figure 4-25: Mean NDVI Values across Districts 
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Figure 4-26: A Visual Samples of Pleiades Imagery Represent Distribution of Vegetation in 

Erbil: (A) Built-up area with no vegetation, (B) Built-up area with limited vegetation, and (C) 

General view of the park. 

 

4.3.3 Green space access results 

Assessing the accessibility of green spaces based on each city district by applying the 

buffer zone technique. The study area divided using six different scales (A-E). The ‘A’ scale 

shows the district is not in any buffer zone. The ‘B’ scale shows the area located within one 

buffer zone of 300 m. The ‘C’ scale shows the areas situated in two and above buffer zones of 

300 m. The ‘D’ scale shows the areas are within 2 km, and one 300 m buffer zone, and finally, 

the ‘E’ scale shows the areas that have access to green spaces with 2 km and more than one 

300 buffer zones (Figure 4-27). The graph refers that green access within 300 m is minimal in 

most districts except the surroundings of Sami Abdulrahman Park. Moreover, 4 districts have 

zero access within the 300m buffer zone, while four of these also have zero green access within 

a 2km buffer zone. These values imply that green vegetation areas unevenly distributed within 

the city limits. Districts such as Bazar, Qalat, Mustawfi, Tairawa, and Dream city have 100% 

access to one 300 m and 2 km buffer zone around the biggest green area of the city, the Sami 

Abdulrahman Park as well, representing 21% of districts (Table 4-7). However, some of the 
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parks and green areas located in the northeast of the city were small, such as small playgrounds 

or public gardens. They have access to a 300 m buffer zone (Figure 4-27). 

 

 
Figure 4-27: Buffer Zone of Green area in the Districts 

 

The most significant results indicate the 42% of districts have access to 2 km and more 

than one 300 m buffer zone, 7 of them such as Taajeel, Zaniary, Areb, Sami Abdulrahman Park, 

Minara, Bekhtiary, and Parlieman have 100% access.  

It is important to note that Sami Abdulrahman Park is the only area in the city that 

provides green areas > 20 hectares. According to the Accessible Natural Greenspace Standard 

(ANGSt), all people should have accessible natural green space “of at least two hectares in 

size, no more than 300 m (five minutes’ walk) from home” or “at least one accessible 20-

hectare site within 2km of home”. As can be seen from Figure 4-27, Sami Abdulrahman park 

provided 100% access to green areas within 2 km buffer for 11 districts (Bazar, Qalat, Areb, 

Mustawfi, Bekhtiary, Parlieman, Dream city, Taajeel, Zaniary) and other four districts 

(Xanaqa, and Selaheddin) has access higher than 50% to this park. 
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Figure 4-28: Distribution of Districts within the Scales of the Buffer Zones 
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Table 4-7: Percentage Districts within the Scale of the Buffer Zones 

 A: No 

buffer zone 

B: One 

300 m 

C: Two and 

above 300 m 

D: 2 km and 

one 300 m 

E: 2 km and 

more 300 m 

Districts 4 5 15 5 10 

% of districts 17 21 63 21 42 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

 

5. Discussion 

Economic growth and rising urbanisation levels are affecting the world climate, and the 

surface topology in significant ways. As a relevant development, population density, especially 

in large metropolitan areas, increased sharply all over the world (United Nations, 2014). 

However, these trends also create many challenges and problems. In order to create favourable 

living conditions in cities, there would be a need for public spaces, recreational spaces, and 

green fields or vegetation areas. 

Moreover, these facilities and areas should be distributed evenly in line with urban 

density, and the city population should have easy access to them. Within this context, the 

detailed measurements of surface cover types in cities and their surrounding areas become a 

crucial ingredient in the relevant analyses and policy designs. So, the measurement of 

vegetation area is a key factor in urban development and planning. The surface measurement 

involves various parameters like the “frequency, cover, density, and biomass” of a particular 

area (Bonham, 2013), and the assessment of changes is required as well. Remote sensing 

technologies emerged as the leading way of describing the surface cover types and densities, 

including the vegetation area (Xie et al., 2008). The current dissertation makes an essential 

contribution to the literature by using various spatial resolution data at different spatial scales 

to assess urban vegetation changes in a semiarid region, namely the city of Erbil in Kurdistan, 

Iraq. Detailed satellite data covering the 1990–2015 period used to derive the spatiotemporal 

dynamics of green fields, as well as their distribution. In particular, imagery from the MODIS, 

Landsat, and the Pleiades is used in the construction of vegetation indices and densities. 

One crucial and distinguishing property of the current dissertation is that three 

complementary satellite imagery data sets are used at three spatial scales at the same time to 

study the spatial and temporal distribution of vegetation area in the city of Erbil and its 

surroundings. In this way, one can check the robustness of outcome from one method against 

the others, and thus obtain significant results. Also, the varying resolution of MODIS, Landsat, 

and the Pleiades provide different perspectives on the same research topic. Usually, the MODIS 

is more suitable for large-scale mapping, and Landsat is better suited for regional mapping, 

while the Pleiades provides a local analysis. So, while MODIS and Landsat are suitable to 

study the spatiotemporal distribution of vegetation for the broader area around the city of Erbil, 

Pleiades is more suitable to study the vegetation distribution within the city districts. In this 

way, three different methods produce supportive and complementary evidence. Using these 

data sets at the same time, it becomes feasible to derive comprehensive and consistent findings 

at both larger and smaller scales for the vegetation state in the city of Erbil and its 
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surroundings, and providing a comparative analysis of relevant results makes the 

contribution clearer; therefore, the methodological approach also provides an important 

contribution to the literature. 

The most marked observations to emerge from the data comparison for MODIS and 

Landsat indicate that MODIS is a coarse way to see surface type changes. There was not much 

change in the figures between 2000 and 2010 (Figure 5-1). It was only in 2015 that MODIS 

shows some significant increases in the built-up areas of the east and west of the city at the 

expense of green vegetation. 

 

 
Figure 5-1: Spatial-Temporal Comparison of MODIS and Landsat land cover from 2000 to 

2015 
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In contrast, Landsat provides more detailed dynamics of surface types over the sample 

years. It is seen that the built-up area increased continuously in the Landsat result (Figure 5-1). 

While MODIS is not able to capture green areas within the inner city areas, Landsat shows that 

vegetation area within the city limits also displayed some increases, especially with the 

construction of large parks in the latter periods. Another relevant note of agricultural land for 

2000 and 2005 tends to be a correlation between MODIS and Landsat. Unfortunately, it was 

not possible to investigate the significant relationships of MODIS green vegetation and Landsat 

bare land because MODIS data is yearly, but Landsat data is daily; therefore, bare lands of 

Landsat is matching to agriculture area of MODIS. So, this comparative analysis shows that 

MODIS can be useful for larger scales like the city and its surroundings due to high temporal 

resolution. In comparison, Landsat is better capturing vegetation dynamics at finer but not 

providing regular data such as MODIS. Also, MODIS is not appropriate for land cover changes 

detection on a small scale; however, the advantage of MODIS land cover in the current study 

to distributing MODIS NDVI and EVI inside land cover classes. 

The comparison of MODIS and Landsat results can be made more concretely with the 

graphs in Figure 5-2, which shows the shares of different surface types in both methods. 

 

 
Figure 5-2: Statistical comparison of land uses for MODIS and Landsat from 2000 to 2015 
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 It is seen that MODIS estimated the share of built-up land at 37% for sample years of 

2000, 2005, and 2010. It is was only in 2015 that MODIS estimated the share of built-up land 

as 52%, which means an increase of 140%. 

In contrast, Landsat results show that this increase was smoother, with the built-up land 

share increasing from 27% in 2000, to 35% in 2005, to 43% in 2010, and 61% in 2015 that 

means grew by 225% compared to 2000. Agricultural land of MODIS fluctuates between 

increased and decreased at the bare land expense. While at Landsat gradually reduced at the 

bare land expense. So, Landsat provides a more accurate picture over time, and the results are 

different to some extent than MODIS. 

In addition to comparing MODIS and Landsat in terms of surface types, one can 

examine the levels and dynamics of SVIs across these satellite imagery data as well (Figure 

5-3). It is seen that in each vegetation index, Landsat has higher values than MODIS over time 

Landsat. In addition, Landsat-based indices display larger movements, while the MODIS-

based measures are more stable due to the low density of biomass. For example, in the case of 

Landsat, NDVI increased from 0.35 in 2005 to above 0.40 in 2010, whereas the same index 

for MODIS increased slightly from 0.28 to 0.30 only, while they have a similar dynamics  

in the semiarid urban environments. Therefore, SVIs of Landsat more suitable to estimate 

the magnitude of biomass due to higher of mean values, and both are applicable to 

determine the dynamics. 

 

 
Figure 5-3: Compares Mean NDVI and EVI Values for MODIS and Landsat from (2000–

2015) 
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The comparison of the spatial-temporal dynamics of NDVI and EVI measures across 

MODIS and Landsat from 2000 to 2015 indicates that Landsat has more detailed and finer 

identification of vegetation levels, however the locations of the vegetation areas similar. 

Overall, MODIS is useful to display the surface types and vegetation dynamics for the large 

scales like the city and its surroundings (Figure 5-4, and Figure 5-5). 

 

 

Figure 5-4: Spatial-Temporal Comparison of MODIS and Landsat EVI (2000–2015) 



76 
 

 

 

Figure 5-5: Spatial-Temporal Comparison of MODIS and Landsat NDVI (2000–2015) 

 

After comparing MODIS and Landsat, one can also make a comparison between 

Landsat and Pleiades results. Figure 5-6 shows that the Pleiades has much finer documentation 

of surface types as it can focus on smaller scales more effectively. 

In contrast, Landsat has more coarse identification of land uses. The Pleiades can 

identify small spots of green areas within the urban lands and around streets, where the average 
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size of paths was 0.01 hectare and for Landsat was 0.94 hectare. So, there are many tiny green 

areas in the map for the Pleiades, while such areas were usually identified on Landsat images 

as a built-up place. When comparing the distribution of green areas of LSMA and Pleiades, 

also different; red colour referred in LSMA and blue in the Pleiades (Figure 5-6). 

 

 
Figure 5-6: Spatial Comparison of Landsat MLC, LSMA, and Pleiades Land Uses in 2015 

 

Statistical comparison of Landsat MLC, LSMA, and Pleiades land cover area for 2015 

involve the same proportion of vegetation area for Landsat LSMA and the Pleiades 14%. On 

the other hand, the share of bare land for LSMA 8% more accurate than the share of MLC 3%, 

while the urban area was similar. Our results have several similarities with Tang et al. (2012), 

which indicates the results of LSMA more accurately than the MLC result comparing with the 
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Pleiades (Figure 5-7). Meanwhile, the spatial distribution of green spaces in the districts 

differs; for example, the share of the city's largest green area, Sami Abdulrahman Park are 32%, 

40% and, 46% for the Pleiades, Landsat LSMA and MLC, respectively. 

 

 
Figure 5-7: Land Use Shares across Landsat MLC, LSMA, and the Pleiades in 2015 

 

Finally, one can compare three satellite imagery data at the same time, in addition to 

bivariate comparisons. In this context, Figure 5-8 shows the min, maximum, and average 

values of NDVI measure with MODIS, Landsat, and the Pleiades. It is seen that for this 

vegetation index, MODIS and Landsat do not produce different average values, with both 

estimating an index value of around 0.14.  

In contrast, Pleiades has a higher average value with 0.16. In addition, the difference 

between the minimum and maximum values widens from MODIS to Landsat to the Pleiades. 

These results imply that the Pleiades has much more reliable and robust identification when 

studying smaller scales like the city districts. 

 

Figure 5-8: Comparison of MODIS, Landsat, and Pleiades NDVI in 2015 

 



79 
 

 

Similar three-way comparisons can be made for spatial distribution as well. Figure 5-9 

shows the spatial maps of MODIS, Landsat, and Pleiades NDVI for 2015. It is seen that 

MODIS provides a very coarse map since it does not fit to study such small scales. It is only 

able to identify around Abdulrahman Park and a few other places. When one moves to Landsat, 

the map becomes much clearer with more details. However, Landsat also fails to identify small 

green fields within urban areas. So, Figure 5-9 shows that studying the spatial distribution of 

vegetation areas, Pleiades gives much accurate documentation. 

It is difficult to map in an urban landscape considering the small footprints of various 

features such as trees, parks, clusters of buildings, as well as roads. Mertes et al. (2015) stated 

that urban areas tend to be heterogeneous considering both material composition and 

configuration, and with the new expansion, they are often highly variable between locations. 

However, vegetation indices help obtain features of green space from complex urban areas. 

 

 

Figure 5-9: Spatial comparison of MODIS, Landsat and Pleiades NDVI in 2015 
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Lunetta et al. (2006) and Zoran et al. (2013) examined that vegetation indices of 

MODIS suitable for urban areas with a low density of biomass. Overall, MODIS data remains 

able to provide valuable information on the general SVIs dynamics over time and space in the 

semi-arid urban areas. However, the information is at broader levels with little fine details. 

Then, the results from Landsat and Pleiades provides supporting evidence on further details. 
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6. Conclusion 

With economic development and rising urbanisation levels, city life experiences 

significant changes. Higher incomes and population densities lead to rises in demand for 

residential and commercial property along with a need for more effective infrastructure and 

transportation networks. Faced with such strong trends, ensuring the efficiency of cities and 

improving their economies of scale (or the agglomeration economies) would be necessary to 

create beneficial living conditions. In contrast, when these demands are not satisfied in proper 

ways, and if the city development progresses in a chaotic and uncoordinated fashion, then cities 

can become significant sources of environmental, economic, and social problems. Therefore, 

analysing the economic, demographic, social, and geographic/topographic dynamics of cities 

and urban areas is of the utmost importance of public officials and city managers. In this broad 

context, the vegetation area emerges as one of the most important dimensions for the 

favourable living conditions in cities. The lack of enough vegetation and green areas or their 

uneven distribution can create many problems for the city residents and worsen the living 

conditions. For example, some climate change consequences of limited green area, or the urban 

heat island impact of uneven vegetation distribution are among the important problems 

discussed in the literature review.  

Remote sensing of urban area and greenery provides information on human growth 

spatial and temporal patterns that are useful to understand social, political, economic, climate, 

and ecological variations. Based on such essential points, the current dissertation examines the 

temporal and spatial vegetation dynamics in the city of Erbil and its surroundings. The primary 

methodological approach of the study is the use of remote sensing techniques by employing 

satellite data from three different sources, like MODIS, Landsat, and the Pleiades. In this way, 

three different data sources and three different scales are combined in a comparative to 

construct robust vegetation indices and to classify the surface cover into different types. This 

multi-method approach is an essential advantage of the current study, and it is the first step 

towards enhancing our knowledge of urban ecology in the city of Erbil. Within this context, 

the main aim of this research is to utilise different remote sensing data and approaches at 

different spatial resolutions (from large to small) to study and analyse the spatial and 

temporal patterns of the vegetation cover in the city of Erbil, Iraqi Kurdistan. Based on the 

relevant data, factors that lead to the changes in the vegetation indices also discussed, and 

better information to understand how the environmental and urban changes influence 

vegetation cover and urban ecology obtained. 
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The results from three different methods are supportive of and complementary with 

each other. In the analysis of MODIS satellite imagery, as stated in the introduction, our main 

objective was to investigate the spatiotemporal variation of urban vegetation cover in the city 

and its surroundings and examine its relation to climate conditions. The primary target variable 

in the data analysis is the vegetation index, measured by EVI and NDVI variables. They show 

that over time the vegetation indices displayed some volatilities. For example, 2003 and 2015 

were relatively green years, while 2008 was a mainly dry year. Also, the evolution of vegetation 

within a year displayed clear patterns. The spring months were the greenest periods, while the 

summer and autumn months had the lowers vegetation levels. Taken as a whole, it is clear that 

there is an expansion in the urban areas’ spatial distribution in Erbil as well as its surrounding 

bare ground. Hence, in the past 16 years, urban growth has replaced the vegetation area. When 

the relationship of these vegetation dynamics with other factors examined, it found that rainfall 

and humidity are the main factors determining the vegetation pattern. The impact of 

temperature found to be relatively limited. The evidence from this study suggests that using 

MODIS for city environment analysis is beneficial to provide phenological information at 

various spatial and temporal resolutions. 

Compared to the MODIS satellite imagery data, Landsat produces more detailed results 

at the regional level and more computationally intensive, due to higher spatial resolution, and 

providing a longer-term record of data. A set of six cloud-free Landsat images were adopted in 

the summer months to study the spatiotemporal variation of urban greenness cover in the city 

limits and examine the role of urban expansion. Sample of years starting from 1990 to 2015 at 

five-year intervals. To classify the land cover types at the pixel level, the linear spectral mixture 

analysis (LSMA), and the maximum likelihood classification (MLC) methods are employed. 

The results from Landsat satellite imagery data show that land cover types displayed a 

significant change in the sample years covering the period of 1990–2015. This development is 

closely related to the rising population and the increasing urbanisation rates in the city of Erbil. 

The rising share of build-up land happened at the expense of bare land and agricultural land. 

On the other hand, vegetation area displayed significant volatilities over the sample period of 

1990-2015. Up to 2005, there was a significant decline in the vegetation area due to the strong 

rise of urbanisation. Then, the municipality involved in the construction of large parks in 

the city. These parks were instrumental in the rise of vegetation area in the city limits. So, 

when the initial year of 1990 and the final year of 2015, the relevant vegetation indices 

show small variations and remained unchanged compared to other rates of land use growth. 
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Overall, the Landsat imagery data indicates a significant change in the level and 

composition of green areas in Erbil.  

Similar to MODIS imagery data, Landsat SVIs (EVI and NDVI) were examined from 

1990 to 2015. The results indicate that the biomass of vegetation remains low. The mean of 

EVI and NDVI started at the highest value in 1990 and decreased gradually to dip in 2005, 

then increased gradually to 2015. Overall, vegetation indices showed a gradually decreasing 

trend from 1990 to 2015. This finding is consistent with the above results, which show that 

biomass of green vegetation and agricultural land declined significantly, with the decline 

coming from the disappearance of agricultural land. 

 As part of the methodological approach, the high spatial resolution of Pleiades satellite 

imagery data with 0.5 m was used to provide a detailed analysis of urban greenness distribution 

for particular city districts in 2015 and examine the access of city dwellers to green areas. An 

essential advantage of this method is that it can construct very detailed land surface types and 

vegetation indices within the city districts. The results show that the Sami Abdulrahman Park 

stands out as the greenest area in the city, while other areas have small and dispersed green 

areas. In addition, the area of vegetation distributed unequally; it found that some districts have 

very high vegetation areas, while half of the regions have very limited or almost no green areas. 

These indicate the lack of vegetation cover in the city of Erbil as compared with the 

international criterions of green areas in cities. The spatial distribution confirms the previous 

finding that green vegetation is distributed very unevenly across districts. Consequently, this 

finding considering as a significant point in terms of justifying the study objectives. May have 

impacted the ecosystem function, biodiversity, and climatic variables. 

Overall, as discussed above, the three methods, which used in a complementary way, 

produce valuable data on the spatial and temporal distribution of surface cover types and 

vegetation indices in the city of Erbil and its surroundings. In general terms, all results indicate 

that built-up land increased significantly since 1990, while vegetation within the city limits 

displayed a volatile pattern. It declined significantly until 2005 with the strong process of 

urbanisation, but then the construction of large parks increased the vegetation share back to 

initial levels. However, the spatial picture turned into a very uneven vegetation distribution 

with significant portions of the city having very limited access to green areas. The Pleiades 

best obtains such detailed documentation compared to MODIS and Landsat. Therefore, the 

current dissertation produces significant consequences for city planning and ecological 

sustainability purposes. 
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In Iraq's semi-arid areas, especially Erbil, vegetation patterns can be significantly 

affected and influenced by anthropogenic activity. Human environmental change has triggered 

a spatial-temporal transition from native plant species to controlled monocultures for 

agricultural or urban purposes. Due to seasonal vegetation and rained crop production, the 

relationship between urban and suburban ecosystems is weak. Therefore, local governments 

must strive to apply green sustainable development policies as well as climate change strategies 

to reduce vegetation loss and related impacts such as biodiversity loss and climate change. 

Finally, the analysis of the dissertation succeeds in successfully answering the research 

questions. The evaluation of urban vegetation changes on different scales in the semi-arid 

region between 2000 and 2015 successfully conducted using three satellite imagery satellites. 

The results indicated that satellite images like MODIS are better at the documentation of larger 

scales, and they can become too coarse for identification of vegetation distribution and 

dynamics within smaller scales. In contrast, Landsat improves the documentation of surface 

types and dynamics significantly compared to MODIS. The relevant comparisons show that 

MODIS can stay silent over long periods with limited change in the shares of land use due to 

its coarse identification at smaller scales. However, Landsat is much successful in identifying 

vegetation distribution and dynamics. As a further step, if one aims to study very small scales, 

like the areas within the city limits, Pleiades is much better as it is able even to capture tiny 

green fields within urban areas. These outcomes add to a growing body of literature on the 

evaluation of urban ecology. However, Our investigations into this area are still in progress 

and seem likely to confirm our hypothesis. The most important limitation lies in spatial-

temporal resolution, so using more modern and fine-detailed satellite imagery can improve the 

vegetation documentation to a large extent. Therefore the new-generation satellites that offer a 

higher spatial and temporal resolution, such as Sentinel-2, more appropriate for future research 

to provide more detailed accounts of vegetation.  
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