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1. Introduction 

1.1. Overview of Vitamin E 

In 1922, Evans and Bishops published the first article about the discovery of vitamin 

E.
1
 Then, in the next decades the field of biological activity of vitamin E has been widely 

investigated. In the first few years, vitamin E were regarded as only an antioxidant 

compound, but nowadays it became clear that its mechanism of action is extremely 

complex.   

Vitamin E is crucial for the normal physiological functions. It is classified to the group 

of fat-soluble vitamins and like most of them, it cannot be synthesized in the human body, 

thus it is necessary to get into from other sources e.g. food or dietary supplements. The 

recommended intake dose for adults is 15 mg/22.4 IU/day by RDA.
2
 In the nature, 

vitamin E exists as a mixture of eight forms such as α-, β-, γ-, δ-tocopherols, and 

tocotrienols. Each analogue consists of a chromanol ring and a 16-carbon phytyl-like side 

chain, wherein tocopherols are saturated while tocotrienols have three double bonds.
3
 The 

difference between isoforms of tocopherols and tocotrienols is the number and position of 

the -CH3 group of the chromanol ring. All forms possess peroxyl radical scavenger ability 

due to the –OH group of chromanol ring.
4
 (Figure 1.) 

 

Figure 1. Chemical structure of tocopherols and tocotrienols.
5
 

 

Numerous in vitro and in vivo studies have demonstrated that the activity of the 

analogues is quite various. α-tocopherol is the most effective against vitamin E deficiency 

disease and it can reach the highest plasma concentration. Based on these facts, α-

tocopherol is the only which can be named as vitamin E.
6
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The low level (< 5 mcg/ml in adults)
7
 of Vitamin E in blood can lead to muscle 

weakness, areflexia, Purkinje-cells degeneration, ataxia, mostly in ages 5 and 15 years
8;9

 

and it may increase the risk of several diseases, including atherosclerosis, inflammation, 

non-alcoholic fatty liver diseases NASH, cancer and neurodegenerative diseases.
10–14

  

The mechanism of action of vitamin E has not yet been fully clarified. On the one 

hand, as an antioxidant, α-tocopherol can protect against oxidative damage in membranes 

and lipoproteins by way of scavenging of reactive oxygen and nitrogen species and 

inhibiting of lipid peroxidation.
15

 In organism, free radicals are liberated during metabolic 

process. In a physiological case, there is a balance between free radicals and antioxidants 

wherein the parts of the protective system are CAT, GSH-Px, SOD, vitamin C, 

carotinoids and vitamin E. This balance can be shifted by some environmental effects, 

hereby certain tissues and proteins such as DNA, neurons, erythrocytes and retina which 

are sensitive specifically to the amount of free radicals can be damage. During the 

antioxidant process, α-tocopherol is oxidized to α-tocopheroxyl, then it can transform 

back to α-tocopherol by ascorbate.
16

 (Figure 2.) Moreover, beyond of the protection, 

tocopherol participates in the action of redox regulated enzymes and transcriptions factors 

i.e. protein kinase C, protein phosphatase 2A, protein tyrosine phosphatase 1B, NFκB and 

others.
17

  

 

 

 

Figure 2. The mechanism of antioxidant system in human body.
16
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On the other hand, α-tocopherol also has a non-antioxidant molecular mechanism of 

action. Many studies report that α-tocopherol binds non-covalently to several proteins and 

affects their efficacy. It has already been shown that α-tocopherol is able to bind transport 

proteins immediately such as α-tocopherol transfer protein, CD36/FAT scavenger 

receptor/fatty acids transporter, tocopherol associated proteins 1, 2 and 3 and enzymes: 

PLA2, PKCα, 5-,12-, 15-lipoxygenase (5-, 12-, 15-LOX), cyclooxygenase 1 and 2 (COX-

1, COX-2), which play an important role in signal transduction and production of active 

lipid mediators.
18

 Moreover, tocopherol alters the interaction of membrane-proteins and 

the protein translocation to plasma membrane.
19

 Additional non-antioxidant property of 

vitamin E is that it may regulate gene expression.
20

 

Role of vitamin E in reproduction 

Vitamin E was first described as a necessary dietary factor for reproduction in human 

and animals.
1,21

 In fact, vitamin E plays a significant role in pregnancy, it protects foetus, 

placenta and uterus from oxidative damage, in addition, it improves microcirculation of 

placenta and myometrium and increases the level of progesterone.
22

 Normally, the plasma 

concentration of vitamin E is enhanced during pregnancy,
23

 furthermore the oxidative 

stress index (OSI) of pregnant uteri remains low while its antioxidant status can be high 

in rats.
24

 Based on these facts, normally it is not necessary to supplement extra vitamin E 

for pregnant women. At the same time, if their dietary is not adequate or in case of 

inflammatory bowel diseases or cystic fibrosis, vitamin E should be supplemented.  

Since, vitamin E deficiency in pregnant woman can be associated with vascular 

endothelial injury, preeclampsia, low-birthweight placental abruption, abortion and 

premature birth, the background of these pregnancy outcomes may be the increased 

oxidative stress and/or the impaired antioxidant mechanism.
25

 In non-pregnant woman, 

the enhanced serum level of α-tocopherol may raise the risk of anovulation.
26

  Moreover, 

it was shown that vitamin E administration before and during menstruation decreased the 

dysmenorrhea-caused pain and menstrual bleeding.
27
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Role of vitamin E in respiratory system 

World-widely, the incidence of asthma is fairly high; according to WHO evaluation, 

339 million people suffer from it.
28

  This is the most common chronic disease among 

children. Asthma is a heterogeneous respiratory disease which is characterised by chronic 

airway inflammation, reversible airflow obstruction and enhanced bronchial reactivity. Its 

main symptoms are wheezing, breathlessness, chest tightness, cough and sputum 

production. In most of the cases, asthma starts from childhood when the allergic 

sensitization is coming off. The allergens bind to IgE on dentric cells (DCs) and this 

process induces the production and release of inflammatory mediators such as allergic-

specific T helper type cells Th2, Th17, Th9, interleukin (IL)-17A, IL-17F, IL-22. 
29

 Since, 

asthma is correlated with inflammation, and vitamin E possesses an anti-inflammatory 

ability, in the last decade it has been suggested that vitamin E may help the treatment or 

prevention of asthma. Both in vitro and in vivo studies demonstrated that vitamin E 

isoforms can reduce the intensity of asthma response, furthermore it diminishes the 

airway hyper-reactivity, production of mucus and liberation of inflammatory cytokines.  

In addition, it can inhibit the eosinophil and neutrophils infiltration to lung and IL-4 

expression in T-cells. It seems that low level of vitamin E in maternal blood can affect the 

development of childhood asthma
30,31

 and may influence the growth of foetal lungs.
32

 

Finally, vitamin E can participate against infection of respiratory system such as 

Streptococcus pneumonia
33

 and secondary  Staphylococcus aureus pneumonia in mice.
34

 

 

1.2. The cyclooxygenase (COX) pathway 

The COX pathway is a part of the arachidonic acid cascade, in which the 

phospholipids of cell membrane transform to different types prostanoids such as 

thromboxane, prostacyclin and prostaglandin. Several enzymes catalyse this conversion, 

however COX is amongst the most important. COX or in other name PGH synthase, 

possesses double activities: it catalyses arachidonic acid to PGG2, while by peroxidase 

activity, it transforms PGG2 to PGH2. There are two isoforms of COXs, COX-1 and 

COX-2. COX-1, as a constitutive form, is responsible for the synthesis of PGs which help 

the maintenance of the physiological functions, while COX-2 is induced by 

inflammation.
35

 At the same time, it is also generally accepted that in physiological 

condition, COX-2 is presented only in low amounts. Furthermore, in tissues the 

expression and activity of COXs can be different.
36
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In the past years, it has been established that due to the peroxidase activity of COXs, 

reactive oxygen species (ROS) can be released and on the other hand, ROS can modulate 

the COX pathway. ROS and oxidative stress induced the expression and up-regulation of 

COXs, but mainly COX-2.
37

 

1.3. COX inhibitors 

COX inhibitors are grouped by selectivity of inhibition. Thus, selective COX-1 

inhibitors i.e. SC-560, selective COX-2 inhibitors i.e. rofecoxib and non-selective COX 

inhibitors i.e. diclofenac can be marked. Since, there is no inhibitor with 100 % 

selectivity, their selectivity can be typified as log IC50 COX-1/COX-2 ratio. The 

inhibition effect may be irreversible or reversible, the best-known irreversible COX 

inhibitor is acetylsalicylic acid. COX inhibitors diminish the production and release of 

prostaglandins, prostacyclin and thromboxane. Many of the COX inhibitors are applied as 

non-steroidal anti-inflammatory drugs (NSAIDs). The NSAIDs are one of the most 

frequently used medicines in the world, in most of the cases, they are available without 

prescription. The main indications of these compounds are pain, inflammation and fever. 

Despite of these, low dose about 100 mg per day of aspirin is used for thrombocytes 

aggregation inhibition, indomethacin for acute gout and close a ductus arteriosus in 

neonates. NSAIDs also have side effects, such as ulcers, GI bleeding, bronchoconstriction 

and allergic reaction.
38,39

 

1.4. Role of prostaglandins in smooth muscle contraction and cervical ripening 

It is well known that prostanoids (PGI2, PGE2, PGD2 and PGF2α, thromboxane A2) 

play an important role in contraction or relaxation of smooth muscles. These effects are 

evolved via G protein-coupled prostaglandin receptors. Prostaglandin receptor subfamily 

are typified by letter code such as PGs e.g. PGE2: EP1-4, PGF2α: FP, PGI2: IP, PGD2: 

DP, TXA2-TP. Generally, the expression of prostanoid receptors is tissue specific and 

their provoked cell signalling is very complex due to isoform of subtypes (Table 1.).
40,41
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Table 1. The summarized table about prostanoids receptors.
41

 

In myometrium, mainly the PGE2 is responsible for contraction and relaxation. The 

EP1 and EP3 receptors induce contractions while EP2 and 4 mediate relaxations. 

Compared to non-pregnant and pregnant uteri the level of COXs, PGE2, PGF2α, and their 

receptors are varied, in addition during pregnancy, their amount is also changed. Since, 

parturition is an extremely complex process, some question has still remained open about 

the exact mechanism.
42

 

Prostanoids are also associated with airway contraction and relaxation. They are 

synthesized in the mast cell, epithelium and smooth muscle of the airway. In fact, PGE2 

and PGI2 can cause bronchodilation via DP1, EP2/EP4 and IP1 receptors, while PGD2, 

PGF2α and TXA2 can evoke bronchoconstriction by nonselective thromboxane and 

EP1/EP3 and FP receptors.
43,44

  In respiratory diseases which involve bronchoconstriction 

like asthma or COPD, imbalance is evolved in production of prostanoids by 

inflammation.
45

  

The cervical ripening is crucial part of parturition. During pregnancy, the cervix 

undergoes a drastic transformation which is induced by various endogenous substances 

such as PGs, cytokines and hormones. At the end of pregnancy, both levels of COX-1 and 

COX-2 enzymes are also increased. Moreover, it is possible that the liberation of COX-2 

related PGs liberation has higher importance in cervical ripening and spontaneous labor 

and out of prostanoids, PGE2 and PGF2α play a more potent role in this process.
42,46

 In 



12 
 

clinical practice, the synthetic PGE1 analogue misoprostol and PGE2 formulation 

dinoprostone are used for the induction of labour.
47

  

1.5.  Interaction between tocopherols and cyclooxygenase enzymes 

Only a few studies were published about the association of vitamin E and COXs. Wu 

et al.
48

 reported that vitamin E inhibited the activity of COXs in human aortic endothelial 

cells. Moreover, vitamin E can affect different steps of the arachidonic acid cascade, but 

this effect may be diverse in tissues. According to literature, prostaglandin E2 production 

was reduced in mouse
49,50

 and rat
51

 macrophages by vitamin E. Analogues of tocopherols 

have different effects on COX. Alpha-tocopherol succinate inhibited more efficiently the 

LPS-stimulated PGE2 production in macrophages and also the COX activity in human 

lung epithelial cells than other analogues.
52,53
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2. Aims 

The mechanism of action of vitamin E is still not fully understood. In addition, based 

on literature data we hypothesized that it may be able to alter the COXs activity. Thus, the 

focus of my PhD thesis was to determine how α-tocopherol succinate modifies the effects 

of COX-inhibitors on several types of smooth muscles and cervical ripening. 

Accordingly, the following aims were set:  

 

1. Since, prostaglandins liberated by COX enzymes have a crucial role in 

development of uteri and tracheal smooth muscle contraction, the first purpose of 

our study was to investigate the effects of non-selective COX inhibitor diclofenac, 

selective COX-2 inhibitor rofecoxib and selective COX-1 inhibitor SC-560 alone 

and after pre-treatment of tocopherol in non-pregnant, 22-day-pregnant rat uteri 

and trachea tissues in vitro. 

2. Prostaglandins also participate in cervical ripening process. Hence, the second aim 

of the study was to examine the action of tocopherol and mentioned COX 

inhibitors on non-pregnant and 22-day-pregnant rat cervical resistance in vitro. 

3. The third aim of the study was to analyse how tocopherol alters the activity of 

COX-1 and 2 in uteri, cervical and tracheal tissues. 

4. As we hypothesized that tocopherol may modify the effects of COX inhibitors via 

modification of COX enzymes activity, the fourth aim was to observe how 

tocopherol and COX inhibitors applied alone and in combination change the time 

of the initiation of parturition in rats in vivo.  
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3. Materials and methods 

3.1. Housing and mating of the animals 

All experiments involving animal subjects were carried out with the approval of the 

Hungarian Ethical Committee for Animal Research (permission number: IV/198/2013). 

The animals were treated in accordance with the European Communities Council 

Directives (86/609/ECC) and the Hungarian Act for the Protection of Animals in 

Research (Article 32 of Act XXVIII).  

The applied Sprague-Dawley rats were stemmed from INNOVO Ltd. (Gödöllő, 

Hungary). For the animals, controlled temperature (22 ± 3 °C), 30-70 % relative 

humidity, 12 h dark-light cycle was ensured, additionally they were fed standard rodent 

pellet (Charles-River Laboratories, Budapest, Hungary) and were given tap water ad 

libitum.  

To the mating of rats, the females (180-200 g) were chosen by their oestrous phase, 

which was measured by an Oestrus Cycle Monitor EC40 (Fine Science Tools, Foster 

City, CA, USA). The mature males (240-260 g) and females in oestrus were placed 

separately into the mating cage. It was divided with a time-controlled movable metal door 

which was opened before dawn.  In the morning, vaginal smear samples were taken from 

female animals and under a microscope at a magnification of 1200x, presence of sperm 

was searching. If there was copulation plug or the vaginal smears were positive the 

copulation was successful. In these cases, females were separated and the initiation of 

pregnancy were calculated from this day.  

 

3.2. In vitro studies 

22-day-pregnant and non-pregnant rats in oestrous phase were used for in vitro studies.  

3.2.1. Organ bath studies 

Before preparation of uteri, trachea and cervix, animals were terminated by CO2 

inhalation. Moreover, in any cases the organ bath was heated at 37 °C and carbogen (95% 

O2 + 5% CO2) was bubbled into the chambers. The tension of cervix, the contraction of 

uterus and the tone of trachea were measured with gauge transducer (SEN-03; MDE Ltd., 

Budapest, Hungary) and recorded with a SPEL Advanced ISOSYS Data Acquisition 
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System (MDE Ltd., Budapest, Hungary). α-tocopherol-acid-succinate (Sigma-Aldrich 

Hungary Ltd.) which was administered for organ bath studies, was dissolved in mixture 

of ethanol 96% : Macrogol 400 (1:14) and diluted further in Macrogol 400. Tissues were 

incubated for 1 h with a buffer renewal in every 15 minutes. The samples were 

equilibrated for another 60 min with tocopherol (10
−7

 M); it was added to tissues after 

every wash of buffer solution. The control preparations were incubated for 1 h without 

tocopherol 

3.2.1.1. Preparation of uteri 

After the termination, the abdominal wall was excised and the two horns of uterus 

were pried out. Ovarium and cervix were disconnected and the two horns of uterus were 

cut into 5-mm-long muscle rings. In case of pregnant rats, after foetuses and placentas 

removal, 5-mm-long samples including the sites of implantations were sliced.  The tissues 

were mounted vertically in an organ baths containing 10 ml de Jong buffer (composition 

in mM: 137 NaCl, 3 KCl, 1 CaCl2, 1 MgCl2, 12 NaHCO3, 4 NaH2PO4, 6 glucose, pH 7.4). 

The initial tension of uteri samples was set to 1.5 g. After the incubation period, the 

control contractions of uteri were evoked with 25mM KCl and the cumulative dose-

response curves of non-selective COXi diclofenac (10
− 9

–10
−5

 M) and COX-2 selective 

inhibitor rofecoxib (10
− 10

–10
− 5

 M) were obtained.  

3.2.1.2. Preparation of cervix 

The cervices were separated from the two horns of 22-day-pregnant and non-pregnant 

uterus, then their two rings were cut with razorblade. The samples were mounted 

vertically by hooks in an organ bath containing de Jong solution (composition in mM: 

137 NaCl, 3 KCl, 1 CaCl2, 1 MgCl2, 12 NaHCO3, 4 NaH2PO4, 6 glucose, pH 7.4). Initial 

tension was set to 1.00 g. The cervices were stretched in growing steps and were allowed 

to relax for 5 min, the tension after 5 min was read from the record by the analysing 

software. After every 5 min, the next initial tension was set, in 1-g steps between 1 and 12 

g. The tension was set up manually via the fine control screw of a gauge transducer. The 

developed stress-strain curves had a sawtooth shape.  In the evaluation of cervical 

resistance, the initial tension of the cervix was plotted versus the stretch after 5 min. 

Straight lines were suited by linear regression and the slopes of the lines were applied to 
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express the degree of resistance. A steeper slope reflected a higher resistance.
54

 (Figure 

3) 

 

Figure 3. The  recorded  saw-tooth  shape  stress-strain  curves  of  22-day-pregnant  cervices.  

(A) control; (B) in  the  presence of diclofenac (10
-6

 M); (C) after pretreatment with  α-tocopherol 

(10
-7

 M) and diclofenac (10
-6

 M); (D) α-tocopherol alone (10
-7

M). The linear regression of curves 

A; B; C; D. The steeper the slope of the line (r), the higher the cervical resistance (E). 

3.2.1.3. Preparation of trachea 

Tracheas were dissected from non-pregnant rats which were in oestrous phase (160-

260 g n=8), then blood vessels and the oesophagus were removed. The tracheal tube was 

sliced into 4-5 mm wide rings, then were placed in Krebs buffer (composition in mM: 118 

NaCl; 4.75 KCl; 2.5 CaCl2; 1.19 K2HPO4; 25 NaHCO3; 1.2 MgSO4 and 11 glucose). 

After the tracheal samples were installed with their longitudinal axis vertically by hooks, 

their initial strains were set to about 2.00 g.  
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3.2.2. Measurement of COX activity 

The COX activity was measured in 22-day-pregnant and non-pregnant myometrial, 

tracheal, cervical and non-pregnant tracheal samples (n=6/group). After the preparation, 

the smooth muscle tissues were incubated in organ bath as described above.  Then, they 

were perfused with cold Tris buffer pH 7.4 to clear away any red blood cells and clots, 

and were frozen in liquid nitrogen and stored at −80 °C until the measurement.  On the 

day of assay, samples were homogenized in 5 ml of cold buffer (0.1 M Tris-HCl, pH 7.8, 

containing 1 mM EDTA) per gram tissue, centrifuged at 10.000 ×g for 15 min at 4 °C. 

The supernatant was stored on ice. The activity of COX enzymes was determined by 

COX Activity Assay Kit (Cayman Chemicals, Ann Arbor, MI) which measures the 

peroxidase activity of COX. The peroxidase activity is assayed with the colorimetric 

method by monitoring the appearance of oxidized N,N,N′,N′-tetramethyl-p-

phenylenediamine (TMPD) at 590 nm. 

3.3. In vivo studies 

The pregnant rats were split into four groups (n=8/group): (1) control, (2) tocopherol 

treated, (3) rofecoxib-treated, (4) tocopherol+rofecoxib-treated. The animals received a 

single treatment with 1 ml water (control), 250 mg/kg tocopherol
55

, 5 mg/kg rofecoxib
56

 

or 250 mg/kg tocopherol+5 mg/kg rofecoxib on the 21
st 

day of the pregnancy at 16:00 h 

by oral gavage. After the treatment, the onset of deliveries was detected and the elapsed 

hours were registered. Presence of blood or first foetus in the bedding was regarded as the 

onset of labour.  

3.4. Statistical analyses 

To the data were analysed by using Prism 5.01 (GraphPad Software, USA) computer 

program while the values were evaluated statistically with unpaired t-test and ANOVA 

Tukey-Multiple Comparison Test. 
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4. Results 

4.1. Isolated organ bath studies 

4.1.1. Uterus 

4.1.1.1. Uterine contractions on non-pregnant and 22-day-pregnant uteri with or 

without tocopherol treatment 

The KCl-evoked contraction of 22-day-pregnant uteri was higher than in non-pregnant 

uteri. In presence of tocopherol (10
-7

 M) the contraction of non-pregnant did not change 

while that of pregnant was increased significantly.  
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Fig. 1. The area under the curve of KCl-evoke myometrium contractions after the incubation
with  tocopherol. The presence of tocopherol did not alter the contraction of non-pregnant

myometrium (empty columns), but increased significantly it in 22-day-pregnant uteri (striped
columns). The statistical analyses were carried out with the two-tailed unpaired t-test. (ns: non

significant; *** p < 0.001) Each value denotes the mean ± S.E.M, n = 6.

A
U

C

 

Figure 4. Alteration of the uterine contractions (expressed in area under the curve - 

AUC) on non-pregnant (empty columns) and 22-day-pregnant (striped columns) uteri by 

incubation with tocopherol. The statistical analyses were carried out with the two-tailed 

unpaired t-test. (ns: not significant; *** p < 0.001) Each value denotes the mean ± 

S.E.M, n = 6. 
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4.1.1.2. The effects of non-selective COX inhibitor diclofenac and selective COX-2 

inhibitor rofecoxib on KCl-evoked control contraction of non-pregnant rat uteri 

alone and in the presence of tocopherol 

The non-selective COX inhibitor diclofenac (10
−9

–10
−5

 M) (A) and the selective COX-

2 inhibitor rofecoxib (10
−10

–10
−5

 M) (B) inhibited the contractions of non-pregnant uterus 

in a concentration-dependent manner. After tocopherol treatment, the relaxant effects of 

diclofenac and rofecoxib remained unchanged. 

 

 

 

 

 

 

 

 

 

Figure 5. The relaxant effect of non-selective COX inhibitor diclofenac (A) and selective 

COX-2 inhibitor rofecoxib (B) on non-pregnant rat uteri alone and in the presence of 

tocopherol (10
-7

 M). The statistical analyses were carried out with the two-tailed 

unpaired t-test. Each value denotes the mean ± S.E.M, n = 6.  
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4.1.1.3. The effect of non-selective COX inhibitor diclofenac and selective COX-2 

inhibitor rofecoxib on KCl-evoked control contraction of 22-day-pregnant rat uterus 

alone and in the presence of tocopherol 

In the 22-day-pregnant uteri tissues, the maximum relaxant effect of selective COX-2 

inhibitor rofecoxib was 55.33 %; it was 3.5 times as higher as than that of diclofenac 

(15.29 %). With tocopherol the impact of both compounds was enhanced significantly in 

each concentration.  

 

 

 

 

  

B 

A 

Figure 6. The relaxant effect of nonselective COXi diclofenac (A) and 

selective COX-2 inhibitor rofecoxib (B) on 22-day-pregnant rat uteri alone 

and in the presence of tocopherol (10
-7

 M). The statistical analyses were 

carried out with the two-tailed unpaired t-test. Each value denotes the mean 

± S.E.M, n = 6. (* p < 0.05; ** p < 0.01; *** p < 0.001) 
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4.1.1.4. The effect of non-selective COX inhibitor diclofenac after pretreatment with 

selective COX-2 inhibitor rofecoxib on the KCl-evoked evoked contractions of 22-

day-pregnant rat uteri alone and in the presence of tocopherol 

When COX-2 was inhibited with one dose of rofecoxib (10
-7

 M) before the 

administration of diclofenac (10
−9

–10
−5

 M), the relaxant effect of diclofenac was then 

practically ceased. (continuous line) The presence of tocopherol did not change this 

action. (dotted line) 
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Fig. . Effects of non-selective COXi diclofenac on the KCl-evoked contractions of  22-day-pregnant
rat myometria alone and in the presence of tocopherol. The concentration-response curves of

diclofenac and diclofenac with tocopherol (10
-7

 M) were  decreased to minimum by pretreatment  of

selective COX inhibitor rofecoxib (10
-7

 M)
The change in contraction was calculated via the area under the curve and expressed in % ± S.E.M.
The statistical analyses were carried out with the  two-tailed unpaired t-test. (**p<0.01; ***p<0.001)
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Figure 7. The concentration-response curves of diclofenac after COX-2 inhibition with 

rofecoxib alone (continuous line) and in the presence of tocopherol (dotted line). The 

statistical analyses were carried out with the two-tailed unpaired t-test. Each value 

denotes the mean ± S.E.M, n = 6. 
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4.1.1.5. The effect of selective COX-2 inhibitor rofecoxib after pretreatment with 

selective COX-1 inhibitor SC-560 on the KCl-evoked evoked contractions of 22-day-

pregnant rat uteri alone and in the presence of tocopherol 

When COX-1 was inhibited with selective COX-1 inhibitor SC-560 (10
-7

 M) 

(continuous line), the relaxing effect of rofecoxib was enhanced as compared with Fig. 

6/B (concentration-response curve of rofecoxib).  Tocopherol significantly increased 

further the uterine relaxant action of rofecoxib. (dotted line)  
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Figure 8. The concentration-response curves of rofecoxib after COX-1 inhibition with 

SC-560 alone (continuous line) in the presence of tocopherol (dotted line). The statistical 

analyses were carried out with the two-tailed unpaired t-test. (ns: not significant; *p < 

0.05; *** p < 0.001) Each value denotes the mean ± S.E.M, n = 6. 
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4.1.2. Trachea 

4.1.2.1. Tracheal tone-reducing effect of non-selective COX inhibitor diclofenac and 

COX-2 selective rofecoxib on trachea tissues from rats in oestrus cycle 

Both diclofenac (10
−9

–10
−5

 M) and rofecoxib (10
−10

–10
−5

M) decreased the tone of 

tracheal samples. Diclofenac and rofecoxib reduced the average tone by 46.8 ± 5.0 mg 

and 32.6 ± 10.4 mg, respectively. Tocopherol impacted the effect of diclofenac and 

rofecoxib only in lower concentrations. 

 

 

 

 

 

 

 

 

Figure 9. Tone-reducing effect of non-selective COXi diclofenac (A) and selective COX-2 

inhibitor rofecoxib (B) on trachea tissues from rats in oestrus cycle. The statistical 

analyses were carried out with the two-tailed unpaired t-test. Each value denotes the 

mean ± S.E.M, n = 6. (*p < 0.05) 
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4.1.3. Cervix 

4.1.3.1. The effects of alpha-tocopherol (10
-7

 M), COX inhibitors [diclofenac, SC-560, 

refocoxib] (10
-6

 M) and COX inhibitors combined with tocopherol in non-pregnant 

cervical resistance. 

Neither the investigated COX inhibitors and tocopherol alone nor COX inhibitors 

combined with tocopherol altered the cervical resistance in non-pregnant cervical 

samples.  
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Figure 10. Alteration of non-pregnant cervical resistance by tocopherol, different selectivity COX 

inhibitors alone and combined with tocopherol. The statistical analyses were carried out with 

the two-tailed unpaired t-test. Each value denotes the mean ± S.E.M, n = 6. 
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Figure 11. Alteration of 22-day-pregnant cervical resistance by tocopherol, different 

selectivity COX inhibitors alone and combined with tocopherol. The statistical 

analyses were carried out with the two-tailed unpaired t-test. Each value denotes the 

mean ± S.E.M, n = 6. (ns: not significant; # p < 0.05; ***/### p < 0.001) 

4.1.3.2. The effects of alpha-tocopherol (10
-7

 M), COX inhibitors [diclofenac, SC-560, 

refocoxib] (10
-6

 M) and COX inhibitors combined with tocopherol in 22-day-

pregnant cervical resistance. 

In the 22-day-pregnant samples, the control cervical resistance was 0.85 ± 0.01. 

Tocopherol reduced resistance to 0.72 ± 0.02. The same remission in resistance (0.72 ± 

0.02) was detected in the case of non-selective COX inhibitor diclofenac, and it was 

further decreased to 0.62 ± 0.02 by pre-treatment with tocopherol. The selective COX-1 

inhibitor SC-560 possessed no effect on cervical resistance. However, in the presence of 

tocopherol, the resistance value was reduced to 0.69 ± 0.02. The selective COX-2 

inhibitor rofecoxib also decreased cervical resistance to 0.70 ± 0.01. Rofecoxib with 

tocopherol induced the strongest reduction in cervical resistance (0.60 ± 0.02). 
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4.2. COXs activities in the investigated smooth muscles tissues 

The highest level of total COX activity was found in trachea tissues, while the lowest 

was in non-pregnant uteri. After pre-treatment with tocopherol, neither the COX activity 

of the trachea nor the COX activity of non-pregnant uteri and cervix changed. In 22-day-

pregnant uterus and cervix, the total COXs activities were significantly increased by pre-

treatment with tocopherol. The activity of COX-1 was not altered in the samples in the 

presence of tocopherol. However, the activity of COX-2 was enhanced significantly in 

tocopherol pre-treated 22-day-pregnant uterus and cervix.  
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Figure 12. Changes in the COXs activities in control and tocopherol treated tissues. 

(A): total COXs activity, (B): COX-1 activity, (C): COX-2 activity 

(np: non-pregnant, p: 22-day-pregnant) The statistical analyses were carried out with 

the two-tailed unpaired t-test. Each value denotes the mean ± S.E.M, n = 6. (ns:not 

significant; * p < 0.05; ** p <0.01; ***p < 0.001) 
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4.3. In vivo studies 

The delivery occurred 40 hours after the water treatment in control rats. Neither 

tocopherol- nor rofecoxib-treatment was able to change the time of delivery as compared 

with control groups. However, in case of co-administration of tocopherol and rofecoxib, 

the labour had been initiated 16 hours earlier as compared with the control group.  

  

Figure 13. Changes in the initiation time of delivery by tocopherol, rofecoxib and 

tocopherol combined with rofecoxib. The delivery occurred earlier by the treatment of 

tocopherol combined with rofecoxib. Each value denotes the mean ± S.E.M, n = 8. 

(ns: not significant; ***p < 0.001) 
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5. Discussion 

In this study, we demonstrated that α-tocopherol succinate modifies the uteri relaxant 

and cervical resistance-reducing effect of COX inhibitors via alteration of COX activity. 

Moreover, it was able to decrease the cervical resistance alone in 22-day-pregnant rats.  

It is well known, that there are enormous differences between non-pregnant and 

pregnant female reproductive system. The whole reproductive tract undergoes a drastic 

transformation during pregnancy which is regulated by difficult biological mechanisms; 

this action is still not widely understood. The purpose of this alteration is to maintain the 

pregnancy and to prepare the mothers for labour at the end of pregnancy.  

In pregnant uteri, the levels of several proteins and enzymes i.e.: PGs and COX 

enzymes are changed.
57–59

 Moreover gap junctions and ion channels protein are activated 

in phase 1 of labor, while myometrial contractions are enhanced by oxytocin and 

prostaglandins in phase 2.
60

 

PGs play an important role in uteri contractions and relaxations at the end of 

pregnancy. Thanks to the increased activity and expression of COXs, the levels of 

prostaglandins are enhanced. On the other hand, there is no general agreement in the 

literature as to which isoenzyme of COX leads to the liberation of prostaglandins at the 

time of parturition.  

St-Louis et al.
61

 suggested that the amounts of both COX-1 and COX-2 enzymes were 

equal in the oestrous phase in non-pregnant rat endometrium while in case of pregnant rat 

higher expression of COX-1 enzyme was observed than that of COX-2 at time of 

parturition. Other observations indicate that the expression of COX-2 was enhanced in 

rodent myometrium during labour, hence COX-2 derived PGs were determinant in the 

final pathway  of parturition.
62

 Furthermore, the increased expression of COX-2 issued in 

a high level of PGE2, since the expression of COX-1 remained low and was not altered 

with gestational age in human uteri.
63

 In our experiment, in non-pregnant uteri the activity 

of the COX-1 and COX-2 ratio was about similar, while in pregnant uteri the activity of 

COX-2 was temperately lower than that of COX-1 enzyme. In addition, the total COX 

activity of pregnant uteri was higher than in non-pregnant samples. The maximum effect 

of selective COX-2 inhibitor rofecoxib was more powerful than that of non-selective 

diclofenac both in pregnant and non-pregnant uteri. However, diclofenac as non-selective 

COX inhibitor is 20-fold more potent for COX-2 than COX-1.
64,65

 These results indicate 

that both COX-1 and COX-2 enzymes play a role in uterine contractions, though, the 



30 
 

relaxation mostly depends on COX-2 inhibition. The relaxant effect of diclofenac and 

rofecoxib was more potent in non-pregnant than in pregnant uteri, which can be explained 

by the activities of COX-1 and COX-2 in these tissues. In non-pregnant uteri, the 

COX1/COX2 ratio is 1.09, which means that the two isoenzymes possess similar activity. 

Nevertheless, in pregnant uteri the COX-1 activity was 1.22, showing the greater activity 

of COX-1. Further evidence is that the amount of COX-2 determines the relaxing efficacy 

of COXi: less COX-2 means less efficacy, while more COX-2 means higher efficacy in 

the relaxing effect of COXi. 

As in case of uteri, the functions and structures of non-pregnant and pregnant cervix 

are also different. The non-pregnant cervix is firm, it consists mostly of collagen in about 

90 %, with a minority of smooth muscle (10 %). The pregnant cervix become dilated and 

softened, especially near term 
66

, thus the resistance of non-pregnant cervix is stronger 

than that of  pregnant cervical resistance.
67

 This phenomenon was clearly confirmed in 

our study. Prior the onset of labour, the cervix goes through the ripening process which is 

induced by numerous endogenous substances: PGs, cytokines and hormones such as 

progesterone, oestrogens and relaxin. Due to these compounds, at the term of pregnancy 

collagen is degraded and the cervix turns into hydrated, which causes the softness. 
68

 

Some studies examined the exact role of PGs in cervical remodelling. PGE2 enhanced the 

activity of collagenase in the human cervix 
69

 and the inflammatory response, which 

characterizes cervical ripening and remodelling.
70

 PGF2α activated the synthesis of 

hyaluronic acid and glycosaminoglycans.
71

 Moreover, prostaglandins were able to 

intensify cytokine synthesis
72

 and PGE2 stimulated cervical softening, while the non-

selective COX inhibitor indomethacin inhibited this action.
73

 However, those cervices 

were investigated on pregnancy day 17 and not on day 22, like in our experiment. 

In the last decade, scientists investigated COX inhibitors as a probable tocolytic drugs. 

They established that the NSAIDs particularly indomethacin can decrease the contractility 

of uteri and inhibit the ripening of cervix.
74–76

 On the other hand, just a few study are 

available which examined the effect of COX inhibitors on uteri or cervix near term. 

Klauser et al.
77

 set against the tocolytic efficacy of magnesium sulphate, nifedipine and 

indomethacin in acute preterm women with 4-6 cm dilated cervix.  Indomethacin could 

stop the preterm labour and extend the gestational period by 15.7 ± 20.6 days. Berghella 

et al.
78

 found no significant benefit between indomethacin treated and control women 

who were in acute labour at gestational weeks of 14-25 with 1 cm dilated cervix. 

Furthermore, Marx et al. showed that in normal term pregnancy of rats the COX-2 
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enzyme was localized in cervical smooth muscle throughout gestation and its expression 

level was increased on 22-day labouring.
79

 Kishore et al. demonstrated that the enhanced 

level of COX-2 enzyme and 15-PGDH down-regulation are crucial for the PGE2-induced 

cervical ripening.
80

 

Based on these earlier findings, we presumed that COX inhibitors would enhance 

cervical resistance through abating the levels of PGs. Surprisingly, COX-1 selective 

inhibitor SC-560 possessed no action on cervical resistance, while the non-selective 

inhibitor diclofenac and COX-2 selective inhibitor rofecoxib lowered the pregnant 

cervical resistance.  

Cervical remodelling is distributed into four different phases: softening, ripening, 

dilatation and postpartum. The dilatation phase is assigned directly before labour.
81

 Our 

isolated organ bath experiments were carried out on pregnancy day 22. Since anticipated 

delivery of SD rats occurs on 22
nd

 day of pregnancy, the cervical samples had probably 

undergone the ripening process. There is a new approach regarding the significance of 

cervical smooth muscle (CSM) in pregnancy. Over the past 60 years, the cervix has been 

known as a particularly collagenous structure.
82–84

 Researchers have underrated the 

existence of smooth muscle in the cervix believed that CSM stays inactive in pregnancy 

and labour, and interpreted the premature cervical failure by the disorder of the cervical 

collagen network.
85–87

 The CSM function has received more attention in the last years; 
88

 

it was published that CSM stayed active during pregnancy and labour and in addition, it 

may contributed efficiently to cervical remodelling in rats. Vink et al. suggested that 

CSM has a possible role in uterine contraction and remodelling.
89

 At the end of cervical 

ripening, collagens are degraded by matrix metalloproteinase, while the content of CSM 

remains fixed. Hence, it is possible that CSM may influence all phases of cervical 

remodelling and it might have a key function in the dilatation phase as well. 

Furthermore, the differences in the selectivity of COX inhibitors imply that COXs may 

affect the dilatation of CSM. COXs catalyse the liberation of PGs in arachidonic acid 

cascade. In the cervix, both COX enzymes were observed, however, their amounts were 

different in non-pregnant and pregnant cervices. Dong et al. demonstrated that the 

cervical expression of COX-2 was elevated 2-fold at the end of pregnancy and the activity 

of COX-2 also rose during labour.
46

 Therefore, COX-2 seems to be more essential for 

cervical ripening and spontaneous labour than COX-1. Although the activity of COX-2 

did not change significantly in pregnancy, but it is visible that the COX-1/COX-2 ratio of 

pregnant cervices was shifted to direction of the predominance of COX-2.  This result has 
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a discrepancy with earlier findings that proved the increased COX-2 expression in late-

term rat 
46

, but in those experiment only the protein expressions of COXs were measured 

without detecting the real enzymatic activity.  

Only a few studies investigated the relationship between vitamin E, its analogues and 

COXs.
48–50,52,53,90

 Abate et al.
91

 demonstrated that vitamin E reduced LPS-mediated COX-

2 induction alone and in combination with aspirin in macrophages. Moreover, O’Leary et 

al. 
92

 reported that tocopherols decreased the activity of COX-2 in Caco2 cells. The 

drawback of those studies was that experiments were made in cell cultures, so their 

applicability is limited. At the same time, just a few papers focused on the connection of 

tocopherol and COXs in uteri and no research was carried out for the cervix before. 

According to our results, pre-treatment with tocopherol unambiguously raised the area 

under the curve of KCl-evoked contractions in pregnant uteri. This implies that 

tocopherol may enhance the contractibility of pregnant myometrium. Interestingly, the 

influence of tocopherol was not detectable in the case of non-selective COX inhibitor 

diclofenac either in non-pregnant or in 22-day-pregnant uteri. These results suggest that, 

in contrast to earlier findings, pre-treatment with tocopherol may increase the contractility 

of uteri by enhancing the activity of COX-2 enzyme, and hereby the relaxant effect of 

COX inhibitors may be more pronounced, especially in the case of selective COX-2 

inhibitors. To confirm this hypothesis, the alteration of the activity of COXs was 

measured in the tissues before and after the incubation with tocopherol. Tocopherol itself 

induced the COX activity and shifted the COX-1 and COX-2 ratio to COX-2 in pregnant 

uteri. When COX-1 was blocked by selective inhibitor SC-560, the relaxant effect of 

rofecoxib increased alone and further increased in the presence of tocopherol. However, 

when COX-2 was inhibited by the selective blocker rofecoxib, the dose-response curve of 

diclofenac was shifted slightly left, and after pre-treatment with tocopherol the significant 

difference between the curves practically ceased. These findings provide further evidence 

that COX-2 is predominant in pregnant uterine contraction and the tocopherol-induced 

modification of the COX-1 and COX-2 ratio led to the increased relaxing efficacy of 

COX inhibitors. In cervical samples, we found that tocopherol can reduce the pregnant 

cervical resistance and enhance the resistance-inhibition effect of diclofenac and 

rofecoxib. Its effect was maintained in the presence of COX-1 selective inhibitor SC-560. 

These results can be explained by COX activity measurements in which alpha-tocopherol 

decreased the activity of COX-2 in pregnant cervical samples. These findings suggest that 

COX-2 mediated PG liberation may have a crucial role in the contraction of CSM during 
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delivery. Moreover, tocopherol may have a synergist effect with COX inhibitors on rat 

cervical resistance. 

The in vivo experiments implied that tocopherol together with COX-2 selective 

rofecoxib were able to shorten the gestational period by 16 hours. In the in vitro 

experiments we determined that they have a synergist effect on the reduction of cervical 

resistance. On the other hand, the co-administration of these compounds significantly 

reduced the myometrium contractions that would predict a delay in delivery. Thus, this in 

vivo result suggests that the joint effect of tocopherol and rofecoxib on the reduction of 

cervical resistance is predominant over their myometrium relaxing effect.  

Finally, in trachea tissues the levels of COX-1 and COX-2 activity were similar (the 

COX-1/COX-2 ratio was 0.97), which correlates with the previous findings in literature. 

93,94
 Diclofenac decreased the tracheal tone more than rofecoxib, suggesting that COX-1 

derived prostaglandins may play a larger role in airway smooth muscle contraction in rat. 

Interestingly, pre-treatment with tocopherol increased the relaxing effects of rofecoxib 

and diclofenac, but only in low concentrations of the drugs. We have no clear explanation 

for this phenomenon, but it might be related to the weak antioxidant capacity of rat 

trachea as compared with pregnant uterus.
24
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6. Conclusion 

The mechanism of action of vitamin E is extremely complex. It is known that it can 

influence the activity of various receptors and enzymes but in many cases its exact 

process is unfamiliar.  

In the light of our results, we can conclude that: 

1. COX enzymes, especially COX-2 and PGs liberated by COX-2 play a significant 

role in the contraction of pregnant uteri and in cervical ripening, and also in the 

contraction of cervical smooth muscle before parturition.  

2. Tocopherol can strengthen COX-2 activity in pregnant uteri, leading to the 

stronger relaxant effect of COX-2 inhibitor; at the same time it has no such action 

in non-pregnant uteri or tracheal tissue.  

3. Alpha-tocopherol potentiates the cervical-resistance reducing effect of COX 

inhibitors via the inhibition of COX-2 activity in late-term and ripened rat cervix. 

Interestingly, alpha-tocopherol has an opposite effect on COX-2 activity in 

pregnant cervices as compared with pregnant myometria. Hereby, it seems that 

tocopherol has a tissue specific COX-2 activity effect.  

4. The single oral administration with tocopherol and rofecoxib can shorten the 

gestational period and accelerate the onset of labour. This result suggests that this 

synergist effect between tocopherol and rofecoxib on the reduction of cervical 

resistance is prevailing over their myometrial relaxing effect.  

Our results contribute to the understanding of the complex mechanism of action of 

vitamin E revealing its influence on the COX system. Although the experiments were 

carried out with rats, the data may provide a basis for further studies in humans. 
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