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On the angle sum of lines
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Abstract. What is the maximum of the sum of the pairwise (non-obtuse)
angles formed by n lines in the Euclidean 3-space? This question was
posed by Fejes Tóth in (Acta Math Acad Sci Hung 10:13–19, 1959). Fejes
Tóth solved the problem for n ≤ 6, and proved the asymptotic upper
bound n2π/5 as n → ∞. He conjectured that the maximum is asymp-
totically equal to n2π/6 as n → ∞. The main result of this paper is an
upper bound on the sum of the angles of n lines in the Euclidean 3-space
that is asymptotically equal to 3n2π/16 as n → ∞.
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1. Introduction. Consider n lines in the d-dimensional Euclidean space R
d

which all pass through the origin o. What is the maximum S(n, d) of the sum
of the pairwise (non-obtuse) angles formed by the lines? This question was
raised by Fejes Tóth in [3] for d = 3. For general d, the problem is formulated,
for example, in [5].

The conjectured maximum of the angle sum is attained by the following
configuration: Let n = k · d + m (0 ≤ m < d), and denote by x1, . . . , xd the
axes of a Cartesian coordinate system in R

d. Take k + 1 copies of each one of
the axes x1, . . . , xm, and take k copies of each one of the axes xm+1, . . . , xd.
The sum of the pairwise angles in this configuration is[

d(d − 1)k2

2
+ mk(d − 1) +

m(m − 1)
2

]
π

2
.

Fejes Tóth stated this conjecture only for d = 3, however, it is quite natural
to extend it to any d (see [5]). To the best of our knowledge, this problem is
unsolved for d ≥ 3.

In the case d = 3, Fejes Tóth [3] proved the conjecture for n ≤ 6. He
determined S(n, 3) for n ≤ 5 by direct calculation, and he obtained S(6, 3)
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using the recursive upper bound S(n, 3) ≤ nS(n−1, 3)/(n−2) and the precise
value of S(5, 3), see p. 19 in [3]. The recursive upper bound and S(6, 3) together
yield that S(n, 3) ≤ n(n − 1)π/5 for all n. We further note that Fejes Tóth’s
recursive upper bound on S(n, 3) also holds for S(n, d), that is, S(n, d) ≤
nS(n − 1, d)/(n − 2) for any meaningful n and d.

Our main result is summarized in the following theorem.

Theorem 1.1. Let l1, . . . , ln be lines in R
3 which all pass through the origin. If

we denote by ϕij the angle formed by li and lj, then

∑
1≤i<j≤n

ϕij ≤
{

3
2k2 · π

2 , if n = 2k,
3
2k(k + 1) · π

2 , if n = 2k + 1.

We note that the conjectured maximum for d = 3 is asymptotically equal to
n2π/6 as n → ∞. The upper bound in Theorem 1.1 is asymptotically 3n2π/16
as n → ∞, so it improves on Fejes Tóth’s bound which is n2π/5 as n → ∞.
We also note that if one could prove that S(8, 3) is equal to the conjectured
value, then combining it with Fejes Tóth’s recursive upper bound on S(n, 3),
one would obtain an upper bound on S(n, 3) that is asymptotically equal to
the one in Theorem 1.1.

We mention that the corresponding problem in which we seek the maximum
of the sum of the angles of n rays emanating from the origin of Rd is solved
for any d and n. This problem was also posed in the same paper of Fejes
Tóth [3] for d = 3. The 3-dimensional problem was fully solved as of 1965,
see [3,4,7–9]. The proof of Nielsen [8] uses a projection averaging argument.
We note that this argument can be modified so as to obtain a solution of
the general case of the problem for every n and d. Our proof of Theorem 1.1
also uses this projection averaging idea, however, the details are much more
intricate.

2. The planar case. Before we prove Theorem 1.1, we solve the problem in
the plane. This result is probably known [5], however, we were unable to find
any other reference, thus, we decided to include a short proof for the sake of
completeness. The related problem for rays in the plane was analysed by Jiang
[6] in 2008. He reproved the known upper bound and gave a full description of
the extremal configurations in terms of balanced configurations of vectors.

We say that a line l′ is to the right of l if l′ is obtained from l by a rotation
about the origin with angle α, where −π/2 < α < 0. Similarly, if 0 < α < π/2,
then l′ is to the left of l. If l′ = l or l′ is perpendicular to l, then l′ is neither
to the left nor to the right of l. We say that a configuration l1, . . . , ln of n
lines is balanced if for any line l �= l1, . . . , ln the number of lines to the left of l
and the number of lines to the right of l differ by at most 1. We remark that
Jiang defined balanced systems of vectors in [6]. Our definition of a balanced
configuration of lines is similar to but not the same as that of Jiang.

Theorem 2.1. Let l1, . . . , ln be lines in R
2 which all pass through the origin. If

we denote by ϕij the angle formed by li and lj, then
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Figure 1. Rotating l1

∑
1≤i<j≤n

ϕij ≤
{

k2 · π
2 , if n = 2k,

k(k + 1) · π
2 , if n = 2k + 1.

Equality holds if, and only if, l1, . . . , ln is balanced.

Proof. The idea of the proof is similar to that of Jiang [6, Theorem 1]. Note
that a simple compactness argument guarantees that the maximum of the
angle sum exists, and it is attained by some configuration.

Observe that if l and l′ are two perpendicular lines and l′′ is an arbitrary
third line, then the angle sum determined by l, l′, and l′′ is always π. This
implies that if we have a perpendicular pair in a configuration of lines, then
the pair can be freely rotated about the origin while the total sum of the angles
remains unchanged.

Let k = �n/2�, then n = 2k or n = 2k + 1. We are going to show that any
configuration of n lines can be continuously transformed into a configuration
that is the disjoint union of k perpendicular pairs (and possibly one remaining
line in arbitrary position) such that the angle sum does not decrease during
the transformation. This clearly proves Theorem 2.1.

Assume that (l1, l2), . . . , (l2m−1, l2m), m < k is a maximal set of pairwise
disjoint perpendicular pairs in l1, . . . , ln. During the transformation we will
keep each already existing perpendicular pair. By the above observation, we
may disregard these pairs as the angle sum of l1, . . . , ln is independent of their
positions.

Let ln be vertical (it coincides with the y-axis), see Fig. 1. By symmetry,
we may clearly assume that there are at least as many lines to the right of
ln as to the left. The case l2m+1 = l2m+2 = · · · = ln being obvious, we may
assume that there is at least one line to the right of ln.
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Observe that rotating ln by a small positive angle ε > 0, the sum of the
angles in l1, . . . , ln does not decrease. Thus, we may rotate ln until it becomes
perpendicular to a line on its right-hand side. In this way, we have created
a new perpendicular pair that is disjoint from (l1, l2), . . . , (l2m−1, l2m). This
completes the proof of Theorem 2.1.

We only sketch the analysis of the equality case. It is clear that if equality
holds then the configuration of lines must be balanced. One can see that if n =
2k, then a balanced configuration of n lines consists of k pairs of perpendicular
lines. On the other hand, a balanced configuration of n = 2k+1 lines, similarly
as in the proof of the inequality, can be continuously transformed into a disjoint
union of k perpendicular pairs of lines and one remaining line in arbitrary
position such that the angle sum does not change during the transformation.
The details are left to the reader. This yields that for a fixed n the angle sum
is the same in any balanced configuration of n lines. This finishes the proof of
the equality case. �

3. Proof of Theorem 1.1. Let S2 be the unit sphere of R3 centred at the origin.
We denote the Euclidean scalar product by 〈·, ·〉 and the induced norm by | · |.
For u,v ∈ S2, we introduce vu = (u × v) × u, which is the component of v
perpendicular to u. Let v1,v2 ∈ S2, and let ϕ = ∠(v1,v2) denote the angle
formed by v1,v2. Introduce ϕu = ϕu(v1,v2) for the angle formed by vu

1 and
vu
2 , and write

ϕu
∗ (v1,v2) := min{ϕu(v1,v2), π − ϕu(v1,v2)}.

Let

I(v1,v2) = I(ϕ) :=
1
4π

∫
S2

ϕu
∗ (v1,v2)du,

where the integration is with respect to the spherical Lebesgue measure. We
will use the following lemma of Fáry [2].

Lemma 3.1. (Fáry, Lemme 1. on p. 133 in [2])

ϕ =
1
4π

∫
S2

ϕudu for any 0 ≤ ϕ ≤ π.

We start the proof of Theorem 1.1 with two lemmas. The main aim of
these lemmas is to verify that I(ϕ) ≥ 2ϕ/3 for 0 ≤ ϕ ≤ π/2. From that fact
Theorem 1.1 follows quickly through an integral averaging argument. As a first
step, we calculate the exact values of I(ϕ) at the endpoints of the interval at
ϕ = 0 and ϕ = π/2.

Lemma 3.2. With the notation introduced above,

I(0) = 0 and I(π/2) = π/3.

Proof. The statement I(0) = 0 is clearly true, so we need to calculate I(π/2)
only. Let v1 = (1, 0, 0), v2 = (0, 1, 0) and define A = {(x, y, z) ∈ S2 | xy ≤ 0},
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AC = {(x, y, z) ∈ S2 | xy > 0}, and AC
+ = {(x, y, z) ∈ S2 | xy > 0, x > 0}.

Then the following holds

I(π/2) =
1
4π

∫
S2

ϕu
∗ (v1,v2)du =

1
4π

∫
A

ϕudu +
1
4π

∫
AC

π − ϕudu

=
1
4π

∫
S2

ϕudu − 1
4π

∫
AC

π − 2ϕudu

=
π

2
+

1
4π

∫
AC

πdu − 2 · 1
4π

∫
AC

ϕudu

= π − 4 · 1
4π

∫
AC

+

ϕudu

using Lemma 3.1. Obviously, it is enough to show that∫
AC

+

ϕudu =
2π2

3
.

Introduce the following spherical coordinates

u = u(θ, ψ) = (sin θ cos ψ, sin θ sin ψ, cos θ),

where 0 ≤ θ ≤ π and 0 ≤ ψ ≤ 2π. It is easily seen that

ϕu(v1,v2) = arccos
〈(u × v1) × u, (u × v2) × u〉
|(u × v1) × u| · |(u × v2) × u|

= arccos
〈u × v1,u × v2〉
|u × v1| · |u × v2| .

Straightforward calculations yield that u × v1 = (0, cos θ,− sin θ sinψ) and
u × v2 = (− cos θ, 0, sin θ cos ψ), and hence

〈u × v1,u × v2〉 = − sin2 θ sinψ cos ψ,

|u × v1| · |u × v2| =
√

cos2 θ + sin4 θ sin2 ψ cos2 ψ.

Thus

∫
AC

+

ϕudu =

π∫
0

π/2∫
0

arccos
− sin2 θ sin ψ cos ψ√

cos2 θ + sin4 θ sin2 ψ cos2 ψ
· sin θdψdθ

= 2 ·
π/2∫
0

π/2∫
0

(
π − arctan

cos θ

sin2 θ sinψ cos ψ

)
· sin θdψdθ

= π2 − 2

π/2∫
0

π/2∫
0

arctan
cos θ

sin2 θ sin ψ cos ψ
· sin θdθdψ. (1)
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The inner integral in (1) can be directly calculated as follows. Let

g(θ, ψ) =
1
2

tan ψ · ln (2 cos(2θ) cos(2ψ) + 2 cos(2θ) − 2 cos(2ψ) + 6)

+
1
2

cot ψ · ln (−2 cos(2θ) cos(2ψ) + 2 cos(2θ) + 2 cos(2ψ) + 6)

− cos θ · arctan
cos θ

sin2 θ sinψ cos ψ
.

One can check by a tedious but straightforward calculation that

∂g(θ, ψ)
∂θ

= arctan
cos θ

sin2 θ sinψ cos ψ
· sin θ.

Now, for a fixed 0 < ψ < π/2, we obtain

π/2∫
0

arctan
cos θ

sin2 θ sinψ cos ψ
· sin θdθ

=
1
2

tan ψ · ln (cos(π − 2ψ) + cos(π + 2ψ) − 2 cos(2ψ) + 4)

+
1
2

cot ψ · ln (− cos(π − 2ψ) − cos(π + 2ψ) + 2 cos(2ψ) + 4)

−
[
1
2

tan ψ · ln (cos(−2ψ) + cos(2ψ) − 2 cos(2ψ) + 8)

+
1
2

cot ψ · ln (− cos(−2ψ) − cos(2ψ) + 2 cos(2ψ) + 8) − π/2
]

=
1
2

tan ψ · ln(4(1 − cos(2ψ))) +
1
2

cot ψ · ln(4(1 + cos(2ψ)))

+ π/2 − ln 8
2

(tan ψ + cot ψ)

=
1
2
(π + tan ψ ln(sin2 ψ) + cot ψ ln(cos2 ψ))

=
π

2
+ tan ψ ln(sinψ) + cot ψ ln(cos ψ).

We turn to the outer integral in (1).

π/2∫
0

π/2∫
0

arctan
cos θ

sin2 θ sin ψ cos ψ
· sin θdθdψ

=

π/2∫
0

π

2
+ tan ψ ln(sin ψ) + cot ψ ln(cos ψ)dψ

=
π2

4
+

π/2∫
0

tan ψ ln(sinψ)dψ +

π/2∫
0

cot ψ ln(cos ψ)dψ.
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Using the substitution u = sinψ in the first integral and u = cos ψ in the
second integral, we obtain that

π/2∫
0

tan ψ ln(sinψ)dψ =

π/2∫
0

cot ψ ln(cos ψ)dψ =

1∫
0

u ln u

1 − u2
du.

Integration by parts gives
1∫

0

u ln u

1 − u2
du =

− ln u ln(1 − u2)
2

∣∣∣∣
1

0

+
1
2

1∫
0

ln(1 − u2)
u

du,

where − lnu ln(1−u2)
2

∣∣∣1
0

= 0 by L’Hospital’s rule. Now, the substitution x = u2

yields

1
2

1∫
0

ln(1 − u2)
u

du =
1
4

1∫
0

ln(1 − x)
x

dx =
−1
4

1∫
0

Li1(x)
x

dx

=
−1
4

Li2(1) =
−π2

24
,

where in the last two steps we used the polylogarithm functions Lis(z) and their
well-known properties. For more information on the polylogarithm functions,
we refer to [10]. This finishes the proof of Lemma 3.2. �

Lemma 3.3. The function I(ϕ) is concave on [0, π/2], and

I(ϕ) ≥ 2ϕ/3 for 0 ≤ ϕ ≤ π/2. (2)

Before we turn to the proof of Lemma 3.3, for the sake of completeness, we
recall some definitions and a theorem from [1].

The function f : [a, b] → R is superadditive on [a, b] if for any positive
h < b−a and x ∈ [a, b−h], f(a+h)−f(a) ≤ f(x+h)−f(x), cf. Definition 2.2
on p. 61 in [1]. We call f locally superadditive on [a, b] if for every x0 ∈ [a, b],
there exist arbitrarily small neighborhoods of x0 on which f is superadditive,
cf. Definition 2.3 on p. 62 in [1].

Theorem 3.1 (Bruckner, Theorem 3.1 on p. 62 in [1]). Let f be locally superad-
ditive and differentiable on an interval [a, b], with the derivative f ′ continuous
almost everywhere in [a, b]. Then f is convex.

Proof of Lemma 3.3. Obviously, I(ϕ) is a continuously differentiable function
of ϕ on [0, π/2].

Fix 0 ≤ α ≤ β ≤ π/2, a small 0 ≤ δ ≤ π/2 − β, and a vector u ∈ S2. Let
∠(·, ·) denote the angle formed by two vectors. Choose four coplanar vectors
w1,w2,w3,w ∈ S2 such that ∠(w1,w2) = α, ∠(w1,w3) = β, ∠(w1,w) = δ,
∠(w,w2) = α + δ, and ∠(w,w3) = β + δ, see Fig. 2. As before, we use the
abbreviations αu = αu(w1,w2) and αu

∗ = αu
∗ (w1,w2), and similarly for the

other angles.
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Figure 2. The projection of the angles

We claim that

(α + δ)u∗ − αu
∗ ≥ (β + δ)u∗ − βu

∗ . (3)

To prove (3), we write the left-hand side, and, respectively, the right-hand
side as follows:

(α + δ)u∗ − αu
∗ =

⎧⎨
⎩

−δu, if αu > π/2,
π − 2αu − δu, if αu ≤ π/2 and (α + δ)u > π/2,
δu, if (α + δ)u ≤ π/2,

(4)

and

(β + δ)u∗ − βu
∗ =

⎧⎨
⎩

−δu, if βu > π/2,
π − 2βu − δu, if βu ≤ π/2 and (β + δ)u > π/2,
δu, if (β + δ)u ≤ π/2.

(5)

To show (3), we consider three cases as in (4). If αu > π/2, then βu > π/2,
and equality holds in (3). If αu ≤ π/2 and (α+δ)u > π/2, then (β+δ)u > π/2,
and either the first or the second case applies in (5). Now, π −2αu − δu ≥ −δu

is equivalent to αu ≤ π/2, thus it holds true. Also, from αu ≤ βu, it follows
that π − 2αu − δu ≥ π − 2βu − δu, as claimed. The only case that remains to
be checked is when (α+ δ)u ≤ π/2, and thus (α+ δ)u∗ −αu

∗ = δu. If, in (5), the
first or the third case applies, then the inequality in (3) clearly holds. Thus, we
only need to consider the case when (β + δ)u > π/2. Then δu > π − 2βu − δu,
which finishes the proof of (3).

Since (3) holds true for any unit vector u ∈ S2, it follows that for any
0 ≤ α ≤ β ≤ π/2, and 0 ≤ δ ≤ π/2 − β, we have

I(α + δ) − I(α) ≥ I(β + δ) − I(β). (6)
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Hence −I is superadditive on any subinterval of [0, π/2], and thus it satisfies
all the conditions of Theorem 3.1 on the interval [0, π/2]. It follows that −I is
convex, and so I is concave, as stated. Finally, the inequality (2) is a simple
consequence of Lemma 3.2 and of the concavity of I. This completes the proof
of Lemma 3.3. �

Proof of Theorem 1.1. Consider the lines l1, . . . , ln, and a vector u ∈ S2. Let
S be the plane through the origin with normal vector u, and let l′i denote the
orthogonal projection of the line li onto S. We denote by ϕu

ij the (non-obtuse)
angle formed by l′i and l′j . Applying (2), we obtain that

1
4π

∫
S2

∑
1≤i<j≤n

ϕu
ijdu =

∑
1≤i<j≤n

1
4π

∫
S2

ϕu
ijdu

≥
∑

1≤i<j≤n

2ϕij/3 =
2
3

∑
1≤i<j≤n

ϕij .

Therefore, there exists a u0 ∈ S2 with the property
∑

1≤i<j≤n

ϕu0
ij ≥ 2

3

∑
1≤i<j≤n

ϕij .

Finally, Theorem 2.1 implies that
∑

1≤i<j≤n

ϕu0
ij ≤

{
k2 · π

2 , if n = 2k,
k(k + 1) · π

2 , if n = 2k + 1,

which completes the proof of Theorem 1.1. �
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[3] L. Fejes Tóth, Über eine Punktverteilung auf der Kugel, Acta Math. Acad.

Sci. Hungar 10 (1959), 13–19 (German).
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Furthermore, L. Fejes Tóth [6] posed the question: what is the minimum of
the sum of the half-widths of n (not necessarily congruent) zones that can
cover a spherically convex disc on S2? These questions are similar to the
classical plank problem of Tarski, see for example Bezdek [1] for a recent
survey on this topic.

L. Fejes Tóth formulated the following conjecture:

Conjecture 1 (L. Fejes Tóth [6]). For n � 1, wn = π/(2n).

It is clear that wn � π/(2n) since n zones of half-width π/(2n), whose
central great circles all pass through a pair of antipodal points of S2 and
which are distributed evenly, cover S2. On the other hand, as the zones must
cover S2, the sum of their areas must be at least (actually, greater than) 4π,
that is, wn > arcsin(1/n).

Rosta [13] proved that w3 = π/6, and that the unique optimal configu-
ration consists of three zones whose central great circles pass through two
antipodal points of S2 and are distributed evenly. Linhart [9] showed that
w4 = π/8, and the unique optimal configuration is similar to the one for
n = 3. To the best of our knowledge, no further results about this prob-
lem have been achieved to date and thus L. Fejes Tóth’s conjecture remains
open.

The paper is organized as follows. In Section 2, we determine the area of
the intersection of two congruent zones as a function of their half-widths and
the angle of their central great circles under some suitable restrictions. In
Section 3, we use the currently known best upper bounds for the maximum
of the minimal pairwise spherical distances of n points in S2 to estimate
from above the contribution of a zone in an optimal covering. Adding up
these estimated contributions, we obtain a lower bound for wn, which is the
main result of our paper, and it is stated in Theorem 1. Finally, we calculate
the numerical values of the established lower bound for some specific n.

2. Intersection of two zones

We start with the following simple observation. Consider two zones Z1

and Z2 of half-width w whose central great circles make an angle α. If
α � 2w, then the intersection of Z1 and Z2 is the union of two disjoint con-
gruent spherical domains. These domains are symmetric to each other with
respect to o, and they resemble a rhombus which is bounded by four small
circular arcs of equal (spherical) length. If α � 2w, then the intersection is
a connected, band-like domain. Let 2F (w,α) denote the area of Z1 ∩ Z2.

Lemma 1. Let 0 � w � π/4 and 2w � α � π/2. Then

F (w,α) = 4 sinw arcsin

(
1− cosα

cotw sinα

)
+ 4 sinw arcsin

(
1 + cosα

cotw sinα

)
(1)

Acta Mathematica Hungarica

Acta Math. Hungar.
DOI: 0

COVERING THE SPHERE BY EQUAL ZONES
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6720 Szeged, Hungary

e-mails: fodorf@math.u-szeged.hu, vigvik@math.u-szeged.hu, tzarnocz@math.u-szeged.hu

(Received December 21, 2015; revised February 2, 2016; accepted February 3, 2016)

Abstract. A zone of half-width w on the unit sphere S2 in Euclidean 3-
space is the parallel domain of radius w of a great circle. L. Fejes Tóth raised the
following question in [6]: what is the minimal wn such that one can cover S2 with
n zones of half-width wn? This question can be considered as a spherical relative
of the famous plank problem of Tarski. We prove lower bounds for the minimum
half-width wn for all n � 5.

1. Introduction

Let S2 denote the unit sphere in 3-dimensional Euclidean space R3 cen-
tred at the origin o. The spherical distance ds(x, y) of two points x, y ∈ S2 is
defined as the length of a (shorter) geodesic arc connecting x and y on S2, or
equivalently, the central angle ∠xoy spanned by x and y. Following L. Fejes
Tóth [6], a zone Z of half-width w in S2 is the parallel domain of radius w
of a great circle C, that is,

Z(C,w) :=
{
x ∈ S2 | ds(x,C) � w

}
.

We call C the central great circle of Z. In this paper, we investigate the
following problem.

Problem 1 (L. Fejes Tóth [6]). For a given n, find the smallest number
wn such that one can cover S2 with n zones of half-width wn. Find also the
optimal configurations of zones that realize the optimal coverings.

We note that in the same paper [6] L. Fejes Tóth also asked the analo-
gous question with not necessarily congruent zones, and conjectured that the
sum of the half-widths of the zones that can cover S2 is always at least π/2.
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Furthermore, L. Fejes Tóth [6] posed the question: what is the minimum of
the sum of the half-widths of n (not necessarily congruent) zones that can
cover a spherically convex disc on S2? These questions are similar to the
classical plank problem of Tarski, see for example Bezdek [1] for a recent
survey on this topic.

L. Fejes Tóth formulated the following conjecture:

Conjecture 1 (L. Fejes Tóth [6]). For n � 1, wn = π/(2n).

It is clear that wn � π/(2n) since n zones of half-width π/(2n), whose
central great circles all pass through a pair of antipodal points of S2 and
which are distributed evenly, cover S2. On the other hand, as the zones must
cover S2, the sum of their areas must be at least (actually, greater than) 4π,
that is, wn > arcsin(1/n).

Rosta [13] proved that w3 = π/6, and that the unique optimal configu-
ration consists of three zones whose central great circles pass through two
antipodal points of S2 and are distributed evenly. Linhart [9] showed that
w4 = π/8, and the unique optimal configuration is similar to the one for
n = 3. To the best of our knowledge, no further results about this prob-
lem have been achieved to date and thus L. Fejes Tóth’s conjecture remains
open.

The paper is organized as follows. In Section 2, we determine the area of
the intersection of two congruent zones as a function of their half-widths and
the angle of their central great circles under some suitable restrictions. In
Section 3, we use the currently known best upper bounds for the maximum
of the minimal pairwise spherical distances of n points in S2 to estimate
from above the contribution of a zone in an optimal covering. Adding up
these estimated contributions, we obtain a lower bound for wn, which is the
main result of our paper, and it is stated in Theorem 1. Finally, we calculate
the numerical values of the established lower bound for some specific n.

2. Intersection of two zones

We start with the following simple observation. Consider two zones Z1

and Z2 of half-width w whose central great circles make an angle α. If
α � 2w, then the intersection of Z1 and Z2 is the union of two disjoint con-
gruent spherical domains. These domains are symmetric to each other with
respect to o, and they resemble a rhombus which is bounded by four small
circular arcs of equal (spherical) length. If α � 2w, then the intersection is
a connected, band-like domain. Let 2F (w,α) denote the area of Z1 ∩ Z2.

Lemma 1. Let 0 � w � π/4 and 2w � α � π/2. Then

F (w,α) = 4 sinw arcsin

(
1− cosα

cotw sinα

)
+ 4 sinw arcsin

(
1 + cosα

cotw sinα

)
(1)
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− 2 arccos

(
cosα− sin2w

cos2w

)
− 2 arccos

(
− cosα− sin2w

cos2w

)
+ 2π.

Moreover, F (w,α) is a monotonically decreasing function of α in the inter-
val [0, π/2].

Proof. First, we prove (1). Let Z1 be the zone of half-width w whose
central great circle C1 is the intersection of the xy-plane with S2. Let c1
and c3 denote the small circles which bound Z1 such that c1 is contained in
the closed half-space z � 0.

Let Z2 be the zone of half-width w whose central great circle C2 is the
intersection of S2 with the plane which contains the y-axis and which makes
an angle α with the xy-plane as shown in Fig. 1. Let c2 and c4 be the small
circles bounding Z2, cf. Fig. 1.

The intersection Z1 ∩ Z2 is the union of two connected components R1

and R2. Assume that R1 is contained in the closed half-space y � 0. Let c′i,
i = 1, . . . , 4 denote the arc of ci that bounds R1. Observe that c′1, . . . , c

′
4 are

of equal length; we denote their common arc length by l(w,α). The radii of
c1, . . . , c4 are all equal to cosw.

Assume that the boundary ∂R1 of R1 is oriented such that the small
circular arcs follow each other in the cyclic order c′1, c′2, c′3, c′4. For i ∈
{1, . . . , 4}, let φi(w,α) denote the turning angle of ∂R1 at the intersection
point of c′i and c′i+1 with the convention that c5 = c1. Notice that the signed
geodesic curvature of ∂R1 (in its smooth points) is equal to − tanw.

By the Gauss–Bonnet Theorem it holds that

F (w,α) = 2π + 4 tanw · l(w,α)−
4∑

i=1

φi(w,α).

Next, we calculate the φi(w,α). Note that φi(w,α) = φi+2(w,α) for
i = 1, 2.

Let Π1 be the plane whose normal vector is u1 = (0, 0, 1) and contains
the point (0, 0, sinw). Let Π2 be the plane which we get by rotating Π1

around the y-axis by angle α so its normal vector is u2 = (− sinα, 0, cosα),
see Fig. 1. Note that S2 ∩Π1 = c1 and S2 ∩Π2 = c2.

Π1 : z = sinw, Π2 : −x sinα+ z cosα = sinw

Now let L1 = Π1 ∩Π2 and L1 ∩ S2 = {l1, l′1}, such that l1 has negative y-
coordinate. Then

l1 =
(
sinw(cotα− cscα),−

√
1− sin2w

(
1 + (cotα− cscα)2

)
, sinw

)
.

Let Π be the plane that is tangent to S2 in l1, and let E1 = Π1 ∩Π and
E2 = Π2 ∩Π. Then φ1 is one of the angles made by E1 and E2. Let v1 =
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Fig. 1: Orthogonal projection onto the xz plane

l1 × u1 and v2 = l1 × u2. Then v1 and v2 are vectors parallel to E1 and E2,
respectively, such that their orientations agree with that of ∂R1.

v1 =
(
−
√
1− sin2w

(
1 + (cotα− cscα)2

)
,− sinw(cotα− cscα), 0

)

v2 =
(
− cosα

√
1− sin2w

(
1 + (cotα− cscα)2

)
,− cosα sinw(cotα− cscα)

− sinα sinw,− sinα
√
1− sin2w

(
1 + (cotα− cscα)2

) )
.
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Fig. 1: Orthogonal projection onto the xz plane

l1 × u1 and v2 = l1 × u2. Then v1 and v2 are vectors parallel to E1 and E2,
respectively, such that their orientations agree with that of ∂R1.

v1 =
(
−
√

1− sin2w
(
1 + (cotα− cscα)2

)
,− sinw(cotα− cscα), 0

)

v2 =
(
− cosα

√
1− sin2w

(
1 + (cotα− cscα)2

)
,− cosα sinw(cotα− cscα)

− sinα sinw,− sinα
√

1− sin2w
(
1 + (cotα− cscα)2

) )
.
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We only need to calculate the lengths of v1 and v2 and their scalar product.
By routine calculations we obtain

φ1 = arccos
⟨v1, v2⟩
|v1| |v2|

= arccos

(
cosα− sin2w

cos2w

)
.

The angle φ2 can be evaluated similarly; one only needs to write π − α in
place of α in the above calculations. Then

φ2 = arccos

(
− cosα− sin2w

cos2w

)
.

To finish the calculation, we need to find l(w,α). Let li := c′i ∩ c′i+1 for
i = 1, . . . , 4 with c′5 = c′1. Let di, i = 1, . . . , 4 be the absolute value of the
y-coordinate of li. Simple trigonometry shows that

d1 =
1− cosα

cotw sinα
, and d4 =

1 + cosα

cotw sinα
.

Then the length of c′1 is equal to the following

l(w,α) = cosw arcsin d1 + cosw arcsin d4(2)

= cosw arcsin

(
1− cosα

cotw sinα

)
+ cosw arcsin

(
1 + cosα

cotw sinα

)
.

In summary,

F (w,α) = 2π + 4 sinw arcsin
(
tanw(cscα+ cotα)

)
(3)

+ 4 sinw arcsin
(
tanw(cscα− cotα)

)

− 2 arccos

(
cosα− sin2w

cos2w

)
− 2 arccos

(
cosα+ sin2w

− cos2w

)

Finally, we prove that F is monotonically decreasing in α. This is obvi-
ous in the interval [0, 2w].

Let α � 2w and ε > 0 be sufficiently small with α+ ε � π/2. Consider
the spherical “rhombus” R∗

1 which is obtained as the intersection of Z1 and
another zone Z∗

2 of half-width w whose central great circle C∗
2 is the inter-

section of S2 with the plane which contains the y-axis and which makes an
angle α+ ε with the xy-plane, similarly as for Z2 above. Let F1 be the area
of R1 \R∗

1 and F ∗
1 be the area of R∗

1 \R1. For the monotonicity of F (w,α)
in α, we only need to show that F1 > F ∗

1 .
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The region R1 \R∗
1 consists of two disjoint congruent connected domains

(in fact, two triangular regions bounded by arcs of small circles). Note that
one such region, say P , is fully contained in the positive hemisphere of S2

(z � 0), and the other region is contained in the negative hemisphere (z � 0).
Similarly, let Q be the one of the two connected, congruent and disjoint re-
gions whose union is R∗

1 \R1 and which has a common (boundary) point
with P . Let q = P ∩Q, then q has positive z-coordinate. It easily follows
from the position of q that the arc c2 ∩Q is longer than c2 ∩ P , and, simi-
larly, c∗2 ∩Q is longer than c∗2 ∩ P , so the area of Q is larger than the area
of P , which completes the proof of the lemma. �

Remark 1. Let Z1 and Z2 be two zones of half-width w ∈ (0, π/4] which
make an angle α. Then it is clear that the area of Z1 ∪Z2 is a monotonically
increasing function of α for α ∈ [0, 2w].

3. A lower bound for wn

For an integer n � 3, let dn denote the maximum of the minimal pair-
wise (spherical) distances of n points on the unit sphere S2. Finding dn is
a long-standing problem of discrete geometry which goes back to the Dutch
botanist Tammes [15]. As of now, the exact value of dn is only known in the
following cases.

n dn

3 2π/3 L. Fejes Tóth [7]

4 1.91063 L. Fejes Tóth [7]

5 π/2 Schütte, van der Waerden [14]

6 π/2 L. Fejes Tóth [7]

7 1.35908 Schütte, van der Waerden [14]

8 1.30653 Schütte, van der Waerden [14]

9 1.23096 Schütte, van der Waerden [14]

10 1.15448 Danzer [4]

11 1.10715 Danzer [4]

12 1.10715 L. Fejes Tóth [7]

13 0.99722 Musin, Tarasov [10]

14 0.97164 Musin, Tarasov [11]

24 0.76255 Robinson [12]

Table 1: Known (approximate) values of dn

Alternate proofs were given by Hárs [8] for the case n = 10, and by
Böröczky [2] for the case n = 11.
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gions whose union is R∗

1 \R1 and which has a common (boundary) point
with P . Let q = P ∩Q, then q has positive z-coordinate. It easily follows
from the position of q that the arc c2 ∩Q is longer than c2 ∩ P , and, simi-
larly, c∗2 ∩Q is longer than c∗2 ∩ P , so the area of Q is larger than the area
of P , which completes the proof of the lemma. �

Remark 1. Let Z1 and Z2 be two zones of half-width w ∈ (0, π/4] which
make an angle α. Then it is clear that the area of Z1 ∪Z2 is a monotonically
increasing function of α for α ∈ [0, 2w].

3. A lower bound for wn

For an integer n � 3, let dn denote the maximum of the minimal pair-
wise (spherical) distances of n points on the unit sphere S2. Finding dn is
a long-standing problem of discrete geometry which goes back to the Dutch
botanist Tammes [15]. As of now, the exact value of dn is only known in the
following cases.

n dn

3 2π/3 L. Fejes Tóth [7]

4 1.91063 L. Fejes Tóth [7]

5 π/2 Schütte, van der Waerden [14]

6 π/2 L. Fejes Tóth [7]

7 1.35908 Schütte, van der Waerden [14]

8 1.30653 Schütte, van der Waerden [14]

9 1.23096 Schütte, van der Waerden [14]

10 1.15448 Danzer [4]

11 1.10715 Danzer [4]

12 1.10715 L. Fejes Tóth [7]

13 0.99722 Musin, Tarasov [10]

14 0.97164 Musin, Tarasov [11]

24 0.76255 Robinson [12]

Table 1: Known (approximate) values of dn

Alternate proofs were given by Hárs [8] for the case n = 10, and by
Böröczky [2] for the case n = 11.
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For n � 3, L. Fejes Tóth [5] proved the following upper estimate

(4) dn � δ̃n := arccos

(
cot2 ( n

n−2
π
6 )− 1

2

)
,

where equality holds exactly in the cases n = 3, 4, 6, 12 (see the table above).

Moreover, limn→∞ δ̃n/dn = 1, that is, δ̃n provides an exact asymptotic upper
bound for dn as n → ∞.

Robinson [12] improved the upper estimate (4) of L. Fejes Tóth as fol-
lows. Assume that the pairwise distances between the n points on the sphere
are all at least a where 0 < a < arctan 2. Let ∆1(a) denote the area and α̃
the internal angle of an equilateral spherical triangle with side length a, and
denote by ∆2(a) the area of a spherical triangle with two sides of length
a making an angle of 2π − 4α̃. Let δn be the unique solution of the equa-
tion 4n∆1(a) + (2n− 12)∆2(a)− 12π = 0. Then (cf. [12]) dn � δn � δ̃n for
n � 13.

Let d∗n := min{π/2, dn} for n � 2, and let

(5) δ∗n :=

{
d∗n for 3 � n � 14 and n = 24,

δn otherwise.

We will also need a lower bound on dn for our argument. We note that,
for example, van der Waerden [16] proved a non-trivial lower bound on dn,
however, for our purposes the following simpler bound is sufficient. Set ϱn :=
arccos(1− 2/n), and consider a maximal (saturated) set of points p1, . . . , pm
on the unit sphere S2 such that their pairwise spherical distances are at
least ϱn. By maximality it follows that the spherical circular discs (spherical
caps) of radius ϱn centered at p1, . . . , pm cover S2. As the (spherical) area
of such a cap is 4π/n, we obtain that m · 4π/n � 4π, that is, m � n, which
implies that ϱn := arccos(1− 2/n) � dn. As x � arccos(1− x2/2) for 0 � x
� 1, the following inequality is immediate:

(6)
2√
n
� d∗n � δ∗n.

For 0 � α � π/2 and n � 3 we introduce f(w,α) = 4π sinw − 2F (w,α)
and

G(w, n) = 4π sinw +
n∑

i=2

f(w, δ∗2i).

Lemma 2. For a fixed n � 3, the function G(w, n) is continuous and
monotonically increasing in w in the interval [0, δ∗2n/3]. Furthermore,
G(0, n) = 0 and G(δ∗2n/3, n) � 4π.
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Proof. The continuity of G and that G(0, n) = 0 are obvious. First we
show that the function f(w,α) is monotonically increasing in w for 0 � w
� α/3. This clearly implies that G(w,n) is also monotonically increasing in
the interval stated in the lemma. As n � 3, we may and do assume that
w � δ∗6/3 = π/6.

Note that f(w,α) is the area of a zone of half-width w minus the area of
its intersection with a second zone of half-width w whose central great circle
makes an angle α with the central great circle of the first zone. With the same
notations as in the proof of Lemma 1, it is clear that for sufficiently small
∆w > 0, the quantity f(w +∆w,α)− f(w,α) is (approximately) propor-
tional to 2l(c1)− 4l(c′1)− 4l(c′2) = 2

(
l(c1)− 4l(c′1)

)
. Notice that, for a fixed

w ∈ [0, π/4], the function l(c′1) = l(w,α) is monotonically decreasing in α for
α ∈ [2w, π/2]. Thus, using 3w � α,

l(c1)− 4l(c′1) � l(c1)− 4l(w, 3w)

= 4 cosw

(
π

2
− arcsin

(
1− cos(3w)

cotw sin(3w)

)
− arcsin

(
1 + cos(3w)

cotw sin(3w)

))
.

One can check that if w ∈ (0, π/6], then both arguments in the above arcsin
functions take on values in [0, 2/3]. By the monotonicity and convexity of
arcsin, we obtain that

arcsin

(
1− cos(3w)

cotw sin(3w)

)
+ arcsin

(
1 + cos(3w)

cotw sin(3w)

)
� arcsin(2/3)

3 tanw

sin(3w)

� arcsin(2/3)
3 tan(π/6)

sin(π/2)
<

π

2
,

which shows the monotonicity of G(w, n).
Finally, we show that G(δ∗2n/3, n) � 4π. For n � 24, this statement can

be checked by direct calculation, thus we may assume n � 25. Using the
definitions of G and f , and Lemma 1, we obtain that

G

(
δ∗2n
3

, n

)
= n · 4π sin

δ∗2n
3

− 2 ·
n∑

i=2

F

(
δ∗2n
3

, δ∗2i

)

� 4nπ sin
δ∗2n
3

− 2

n∑
i=2

F

(
δ∗2n
3

, δ∗2n

)

= 4nπ sin
δ∗2n
3

− 2(n− 1)F

(
δ∗2n
3

, δ∗2n

)
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Proof. The continuity of G and that G(0, n) = 0 are obvious. First we
show that the function f(w,α) is monotonically increasing in w for 0 � w
� α/3. This clearly implies that G(w,n) is also monotonically increasing in
the interval stated in the lemma. As n � 3, we may and do assume that
w � δ∗6/3 = π/6.

Note that f(w,α) is the area of a zone of half-width w minus the area of
its intersection with a second zone of half-width w whose central great circle
makes an angle α with the central great circle of the first zone. With the same
notations as in the proof of Lemma 1, it is clear that for sufficiently small
∆w > 0, the quantity f(w +∆w,α)− f(w,α) is (approximately) propor-
tional to 2l(c1)− 4l(c′1)− 4l(c′2) = 2

(
l(c1)− 4l(c′1)

)
. Notice that, for a fixed

w ∈ [0, π/4], the function l(c′1) = l(w,α) is monotonically decreasing in α for
α ∈ [2w, π/2]. Thus, using 3w � α,

l(c1)− 4l(c′1) � l(c1)− 4l(w, 3w)

= 4 cosw

(
π

2
− arcsin

(
1− cos(3w)

cotw sin(3w)

)
− arcsin

(
1 + cos(3w)

cotw sin(3w)

))
.

One can check that if w ∈ (0, π/6], then both arguments in the above arcsin
functions take on values in [0, 2/3]. By the monotonicity and convexity of
arcsin, we obtain that

arcsin

(
1− cos(3w)

cotw sin(3w)

)
+ arcsin

(
1 + cos(3w)

cotw sin(3w)

)
� arcsin(2/3)

3 tanw

sin(3w)

� arcsin(2/3)
3 tan(π/6)

sin(π/2)
<

π

2
,

which shows the monotonicity of G(w, n).
Finally, we show that G(δ∗2n/3, n) � 4π. For n � 24, this statement can

be checked by direct calculation, thus we may assume n � 25. Using the
definitions of G and f , and Lemma 1, we obtain that

G

(
δ∗2n
3

, n

)
= n · 4π sin

δ∗2n
3

− 2 ·
n∑

i=2

F

(
δ∗2n
3

, δ∗2i

)

� 4nπ sin
δ∗2n
3

− 2

n∑
i=2

F

(
δ∗2n
3

, δ∗2n

)

= 4nπ sin
δ∗2n
3

− 2(n− 1)F

(
δ∗2n
3

, δ∗2n

)
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� 4nπ sin
δ∗2n
3

− 2(n− 1)F

(
δ∗2n
3

,
2δ∗2n
3

)
.(7)

Note that δ∗2n = δ2n for n � 25. Elementary trigonometry yields that

F
(α
2
, α

)
= 4 sin

α

2
arcsin

(
tan2

α

2

)
+ 2π sin

α

2
− 2 arccos

(
1− 2 tan2

α

2

)
.

Thus (7) is equal to

4π sin
δ2n
3

+ 4(n− 1)

(
arccos

(
1− 2 tan2

δ2n
3

)
− 2 sin

δ2n
3

arcsin

(
tan2

δ2n
3

))
.

As n � 25, we have that 0 < δ2n < 0.75. Using that cosx � 1− x2/2 for
x ∈ [0, π/2], we obtain that

arccos

(
1− 2 tan2

δ2n
3

)
� 2 tan

δ2n
3

.

Similarly, as for 0 < x < 0.16 we have that x < 1.01 sinx, we obtain that

2 sin
δ2n
3

arcsin

(
tan2

δ2n
3

)
< 2.02 tan3

δ2n
3

.

Finally, using that x− 1.01x3 > x− 1.01 · 0.42 · x > 0.8x for 0 < x < 0.4, we
obtain that (7) can be estimated from below as follows

G

(
δ∗2n
3

, n

)
� 6.4(n− 1) tan

δ2n
3

> 2.1(n− 1)δ2n.

By (6) we know that δ2n >
√
2/
√
n, and thus the proof of Lemma 2 is com-

plete. �
Now, we are ready to state our main theorem.

Theorem 1. For n � 3, let w∗
n denote the unique solution of the equa-

tion G(w, n) = 4π in the interval [0, δ∗2n/3]. Then arcsin(1/n) < w∗
n � wn.

Proof. Let Zi(wn, Ci), i = 1, . . . , n be zones that form a minimal cov-
ering of S2 with respect to w. For i ∈ {1, . . . , n}, let pi be one of the poles
of Ci and let pn+i = −pi. Then there exist two points pi1 , pj1 ∈ {p1, . . . , p2n}
with i1 < j1 and j1 ̸= n+ i1 (that is, pi1 and pj1 are poles of two different
great circles) such that ds(pi1 , pj1) � d∗2n. Observe that the area of the part

Acta Mathematica Hungarica

10 F. FODOR, V. VÍGH and T. ZARNÓCZ

of Zi1 that is not covered by any Zk with i1 ̸= k is at most f(w, δ∗2n) by
Lemma 1, inequality (6) and Remark 1. Now, remove Zi1 from the covering
and repeat the argument for the remaining zones. Note that in the last step
of the process there is only one zone left Zin , so the area of the part of Zin

not covered by any other zone is 4π sinw.
If for k = 1, . . . , n we add the areas of Zik not covered by any Zil for

l > k, then the sum is obviously bounded from above by G(w, n). Since
Z1, . . . , Zn cover S2, therefore G(w, n) � 4π, which shows that w∗

n � wn. It
is also clear form the argument that arcsin(1/n) < w∗

n. This finishes the
proof of Theorem 1. �

4. Concluding remarks

Remark 2. Instead of Robinson’s bound δn, one may use the original
bound δ̃n of L. Fejes Tóth, and prove Theorem 1, obtaining a lower bound
w̃∗
n for wn. Clearly, this bound is slightly weaker than w∗

n, that is, w̃
∗
n � w∗

n
� wn. However, we note that, thanks to the explicit formula (4), w̃∗

n can be
computed more easily than w∗

n. The difference between w∗
n and w̃∗

n is shown
in Table 2 for some specific values of n.

We also mention that for certain values of n Robinson’s upper bound
has been improved, see for example Böröczky and Szabó [3] for the cases
n = 15, 16, 17. These stronger upper bounds, if included in the calculations,
would provide only a very small improvement on w∗

n, so we decided to use
only the known solutions of the Tammes problem and Robinson’s general
upper bound.

Remark 3. We note that the analogous question to Problem 1 can be
raised in higher dimensions as well. A zone Z = Z(C,w) of half-width w on
the unit sphere Sd−1 of the d-dimensional Euclidean space Rd is the parallel
domain of radius w of a great sphere C. What is the minimal w(d, n) such
that one can cover Sd−1 with n zones of half-width w(d, n), and what config-
urations realize the optimal coverings? We do not wish to formulate a con-
jecture about this problem, instead, we note the following simple fact. For
d � 4, w(d, 3) = π/6. One can see this the following way. Let Zi = Z(Ci, w),
i = 1, 2, 3 be three zones that cover Sd−1. Assume that Ci = Sd−1 ∩Hi for
i = 1, 2, 3 where Hi is a hyperplane. Let L = ∩iHi. Then L is a linear sub-
space of Rd, and dimL � d− 3. Let L⊥ denote the linear subspace of Rd

which is the orthogonal complement of L. Clearly, L⊥ ∩ Sd−1 = Sj , where
j � 2. If dimL⊥ = 1, then w = π/2. So we may assume that dimL⊥ = 2
or 3. Notice that the zones Zi, i = 1, 2, 3 cover Sd−1 if and only if the zones
Z ′
i = Zi ∩ (L⊥ ∩ Sd−1), i = 1, 2, 3 cover L⊥ ∩ Sd−1 = Sj . We note also that

the half-widths of Z ′
i, i = 1, 2, 3 are all equal to w. Now, if j = 1, then it is
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of Zi1 that is not covered by any Zk with i1 ̸= k is at most f(w, δ∗2n) by
Lemma 1, inequality (6) and Remark 1. Now, remove Zi1 from the covering
and repeat the argument for the remaining zones. Note that in the last step
of the process there is only one zone left Zin , so the area of the part of Zin

not covered by any other zone is 4π sinw.
If for k = 1, . . . , n we add the areas of Zik not covered by any Zil for

l > k, then the sum is obviously bounded from above by G(w, n). Since
Z1, . . . , Zn cover S2, therefore G(w, n) � 4π, which shows that w∗

n � wn. It
is also clear form the argument that arcsin(1/n) < w∗

n. This finishes the
proof of Theorem 1. �

4. Concluding remarks

Remark 2. Instead of Robinson’s bound δn, one may use the original
bound δ̃n of L. Fejes Tóth, and prove Theorem 1, obtaining a lower bound
w̃∗
n for wn. Clearly, this bound is slightly weaker than w∗

n, that is, w̃
∗
n � w∗

n
� wn. However, we note that, thanks to the explicit formula (4), w̃∗

n can be
computed more easily than w∗

n. The difference between w∗
n and w̃∗

n is shown
in Table 2 for some specific values of n.

We also mention that for certain values of n Robinson’s upper bound
has been improved, see for example Böröczky and Szabó [3] for the cases
n = 15, 16, 17. These stronger upper bounds, if included in the calculations,
would provide only a very small improvement on w∗

n, so we decided to use
only the known solutions of the Tammes problem and Robinson’s general
upper bound.

Remark 3. We note that the analogous question to Problem 1 can be
raised in higher dimensions as well. A zone Z = Z(C,w) of half-width w on
the unit sphere Sd−1 of the d-dimensional Euclidean space Rd is the parallel
domain of radius w of a great sphere C. What is the minimal w(d, n) such
that one can cover Sd−1 with n zones of half-width w(d, n), and what config-
urations realize the optimal coverings? We do not wish to formulate a con-
jecture about this problem, instead, we note the following simple fact. For
d � 4, w(d, 3) = π/6. One can see this the following way. Let Zi = Z(Ci, w),
i = 1, 2, 3 be three zones that cover Sd−1. Assume that Ci = Sd−1 ∩Hi for
i = 1, 2, 3 where Hi is a hyperplane. Let L = ∩iHi. Then L is a linear sub-
space of Rd, and dimL � d− 3. Let L⊥ denote the linear subspace of Rd

which is the orthogonal complement of L. Clearly, L⊥ ∩ Sd−1 = Sj , where
j � 2. If dimL⊥ = 1, then w = π/2. So we may assume that dimL⊥ = 2
or 3. Notice that the zones Zi, i = 1, 2, 3 cover Sd−1 if and only if the zones
Z ′
i = Zi ∩ (L⊥ ∩ Sd−1), i = 1, 2, 3 cover L⊥ ∩ Sd−1 = Sj . We note also that

the half-widths of Z ′
i, i = 1, 2, 3 are all equal to w. Now, if j = 1, then it is
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n arcsin(1/n) w̃∗
n w∗

n π/(2n)

5 0.20135 0.22983 0.22983 0.31415

6 0.16744 0.18732 0.18732 0.26179

7 0.14334 0.15824 0.15824 0.22439

8 0.12532 0.13692 0.13692 0.19634

9 0.11134 0.12063 0.12067 0.17453

10 0.10016 0.10782 0.10787 0.15707

11 0.09103 0.09748 0.09753 0.14279

12 0.08343 0.08895 0.08899 0.13089

13 0.07699 0.08179 0.08183 0.12083

14 0.07148 0.07569 0.07573 0.11219

15 0.06671 0.07044 0.07048 0.10471

16 0.06254 0.06587 0.06591 0.09817

17 0.05885 0.06185 0.06189 0.09239

18 0.05558 0.05830 0.05833 0.08726

19 0.05265 0.05513 0.05516 0.08267

20 0.05002 0.05229 0.05232 0.07853

21 0.04763 0.04972 0.04975 0.07479

22 0.04547 0.04740 0.04743 0.07139

23 0.04349 0.04528 0.04531 0.06829

24 0.04167 0.04335 0.04337 0.06544

25 0.04001 0.04157 0.04159 0.06283

50 0.02000 0.02050 0.02051 0.03141

100 0.01000 0.01016 0.01017 0.01570

Table 2: Bounds for wn

clear that w � π/6 by elementary geometry, and if j = 2, then by Rosta’s re-
sult [13], it holds that w � w3 = π/6. Finally, in both cases, w = π/6 suffices
to cover Sd−1.
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[14] K. Schütte and B. L. van der Waerden, Auf welcher Kugel haben 5, 6, 7, 8 oder 9
Punkte mit Mindestabstand Eins Platz?, Math. Ann., 123 (1951), 96–124.

[15] P. M. L. Tammes, On the origin of number and arrangement of the places of exit on
pollen grains, Rec. Trv. Bot. Neerl, 27 (1930), 1–84.

[16] B. L. van der Waerden, Punkte auf der Kugel. Drei Zusätze, Math. Ann., 125 (1952),
213–222.

Acta Mathematica Hungarica

F. FODOR, V. VÍGH and T. ZARNÓCZ488



Acta Mathematica Hungarica 149, 2016
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ON THE MULTIPLICITY OF ARRANGEMENTS OF

CONGRUENT ZONES ON THE SPHERE

A. BEZDEK, F. FODOR, V. VÍGH, AND T. ZARNÓCZ

Abstract. Consider an arrangement of n congruent zones on the d-dimensional
unit sphere Sd−1, where a zone is the intersection of an origin symmetric Eu-
clidean plank with Sd−1. We prove that, for sufficiently large n, it is possible
to arrange n congruent zones of suitable width on Sd−1 such that no point
belongs to more than a constant number of zones, where the constant depends
only on the dimension and the width of the zones. Furthermore, we also show
that it is possible to cover Sd−1 by n congruent zones such that each point
of Sd−1 belongs to at most Ad lnn zones, where the Ad is a constant that
depends only on d. This extends the corresponding 3-dimensional result of
Frankl, Nagy and Naszódi [8]. Moreover, we also examine coverings of Sd−1

with congruent zones under the condition that each point of the sphere belongs
to the interior of at most d− 1 zones.

1. Introduction and Results

A plank in the Euclidean d-space R
d is a closed region bounded by two parallel

hyperplanes. The width of a plank is the distance between its bounding hyper-
planes. The famous plank problem of Tarski [15] seeks the minimum total width of
n planks that can cover a convex body K (a compact convex set with non-empty
interior).

In this paper we consider a spherical variant of the plank problem, which origi-
nates from L. Fejes Tóth [6]. Following Fejes Tóth, we call the parallel domain of
spherical radius w/2 of a great sphere C on the d-dimensional unit sphere Sd−1 a
spherical zone, or zone for short. C is the central great sphere of the zone and w
is its (spherical) width. For positive integers d ≥ 3 and n, let w(d, n) denote the
smallest number such that the union of n zones of width w(d, n) can cover Sd−1.
Fejes Tóth asked in [6] the exact value of w(3, n). He conjectured that in the opti-
mal configuration the central great circles of the zones all go through an antipodal
pair of points and they are distributed equally, so in this case w(d, n) = π/n. The
conjecture of Fejes Tóth was verified for n = 3 (Rosta [14]) and n = 4 (Linhart
[12]). Fodor, Vı́gh and Zarnócz [7] gave a lower bound for w(3, n) that is valid for all
n. Recently, Jiang and Polyanskii [10] completely solved L. Fejes Tóth’s conjecture
by proving for all d, that to cover Sd−1 by n (not necessarily congruent) zones, the
total width of the zones must be at least π, and that the optimal configuration is
essentially the same as conjectured by L. Fejes Tóth.

Here, we examine arrangements of congruent zones on Sd−1 from the point of
view of multiplicity. The multiplicity of an arrangement is the maximal number of
zones with nonempty intersection. We seek to minimize the multiplicity for given
d and n as a function of the common width of the zones. It is clear that for n ≥ d,
the multiplicity of any arrangement with n congruent zones is at least d and at

1
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most n. Notice that in the Fejes Tóth configuration the multiplicity is exactly n,
that is, maximal.

In particular, if d = 3 and n ≥ 3, then the multiplicity of any covering is at least
3. Our first result is a very slight strengthening of this simple fact for the case when
n ≥ 4.

Theorem 1. Let n ≥ 1 be an integer, and let S2 be covered by the union of n
congruent zones. If each point of S2 belongs to the interior of at most two zones,

then n ≤ 3. Moreover, if n = 3, then the three congruent zones are pairwise

orthogonal.

Note that Theorem 1 does not imply that the multiplicity of a covering of S2

with n ≥ 4 congruent zones would have to be larger than 3. In fact, one can cover
S2 with 4 zones such that the multiplicity is 3. For this, consider three zones whose
central great circles pass through a pair of antipodal points (North and South Poles)
and are distributed evenly. Let the central great circle of the fourth zone be the
Equator. The common width can be chosen in such a way that there is no point
contained in more than three zones. Also, one can arrange five zones such that
the multiplicity is still 3. We start with the previously given four zones, and take
another copy of the zone whose central great circle is the Equator. Now slightly
tilt these two zones. It is not difficult to see that the multiplicity of the resulting
configuration is 3. The details are left to the reader.

We further note, see Remark 1, that the statement of Theorem 1 can probably
be extended to all d ≥ 3. In particular, it certainly holds for 3 ≤ d ≤ 100.

Now, we turn to the question of finding upper bounds on the multiplicity of
arrangements of zones on Sd−1. Let α : N → (0, 1] be a positive real function with

limn→∞ α(n) = 0. For a positive integer d ≥ 3, let md =
√
2πd+ 1. Let k : N → N

be a function that satisfies the limit condition

(1) lim sup
n→∞

α(n)−(d−1)

(

e C∗
d n α(n)

k(n)

)k(n)

= β < 1,

where

C∗
d =

4(md + 1)(d− 1)κd−1

dκd

.

Theorem 2. For each positive integer d ≥ 3, and any real function α(n) described
above, for sufficiently large n, there exists an arrangement of n zones of spherical

half-width mdα(n) on Sd−1 such that no point of Sd−1 belongs to more than k(n)
zones.

The following statement provides an upper bound on the multiplicity of coverings
of the d-dimensional unit sphere by n congruent zones.

Theorem 3. For each positive integer d ≥ 3, there exists a positive constant Ad

such that for sufficiently large n, there is a covering of Sd−1 by n zones of half-width

md
lnn
n

such that no point of Sd−1 belongs to more than Ad lnn zones.

Below we list some interesting special cases of Theorem 3 according to the size
of the function α(n).

Corollary 1. With the same hypotheses as in Theorem 2, the following statements

hold.
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i) If α(n) = n−(1+δ) for some δ > 0, then k(n) = const.. Moreover, if

δ > d− 1, then k(n) = d.
ii) If α(n) = 1

n
, then k(n) = Bd

lnn
ln lnn

for some suitable constant Bd.

We note that Theorem 3 and an implicit version of Theorem 2 were proved by
Frankl, Nagy and Naszódi for the case d = 3, see [8, Theorem 1.5 and Theorem 1.6]
and also the proof of Theorem 1.5 therein. They provided two independent proofs,
one of which is a probabilistic argument and the other one uses the concept of VC-
dimension. We further add that the weaker upper bound of O(

√
n) on the minimum

multiplicity of coverings of S2 was posed as an exercise in the 2015Miklós Schweitzer
Mathematical Competition [11] by A. Bezdek, F. Fodor, V. Vı́gh and T. Zarnócz
(cf. Exercise 7).

Our proofs of Theorems 2 and 3 are based on the probabilistic argument of
Frankl, Nagy and Naszódi [8], which we modified in such a way that it works in
all dimensions. In the course of the proof we also give an upper estimate for the
constant Ad whose order of magnitude is O(d).

Obviously, there is a big gap between the lower and upper bounds for the multi-
plicity of coverings of Sd−1 by congruent zones. At this time, it is an open problem
if the minimum multiplicity of coverings of Sd−1 by n congruent zones is bounded or
not, and it also remains unknown whether the multiplicity is monotonic in n, see the
corresponding conjectures of Frankl, Nagy and Naszódi on S2 in [8, Conjectures 4.2
and 4.4].

The multiplicity of coverings of Rd and Sd by convex bodies have already been
investigated. In their classical paper, Erdős and Rogers [4] proved, using a proba-
bilistic argument, that R

d (d ≥ 3) can be covered by translates of a given convex
body such that the density of the covering is less than d log d+ d log log d+4n and
no point of Rd belongs to more than e(d log d + d log log d+ 4n) translates. Later,
Füredi and Kang [9] gave a different proof of the result of Erdős and Rogers using
John ellipsoids and the Lovász Local Lemma. Böröczky and Wintsche [3] showed
that for d ≥ 3 and 0 < ϕ < π/2, Sd can be covered by spherical caps of radius ϕ
such that the multiplicity of the covering is at most 400d lnd.

2. Proofs

2.1. Proof of Theorem 1. Assume that n ≥ 3 and S2 is covered by n congruent
zones such that no point of S2 belongs to the interior of more than two zones. Then
the n central great circles of the zones divide S2 into convex spherical polygons.
As no three such great circles can pass through a point of S2, every such polygon
has at least three sides.

In contrast to the Euclidean plane, the incircle of every convex spherical polygon
is uniquely determined. The inradius of each such polygon is less than or equal to
the half-width of the zones.

We will use the following lemma.

Lemma 1. Every convex spherical polygon with k > 3 sides and inradius r contains

a point P whose distance from at least three sides is less than r.

Proof. Denote the incircle by C and denote its centre by O.
Case 1. There are at least three sides tangent to the incircle C.

Among the tangent sides there are two, say e and f , which are not adjacent
on the boundary of C. The extensions of e and f form a spherical 2-gon. Start
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moving the centre O along the diagonal of this 2-gon towards its closest endpoint.
Then the distance of O from the extended sides e and f continuously decrease and
O eventually gets arbitrarily close to an additional side. When this happens O is
closer than r to at least three sides.
Case 2. There are exactly two sides tangent to the incircle C.

Let e and f be the only two sides tangent to the incircle C. Consider again the
2-gon whose sides are the extensions of e and f . Notice that C is also the incircle of
this 2-gon. Thus, moving O along the diagonal towards either of the two endpoints
continuously decreases the distance of O from the extended sides e and f . At least
one of the directions will take O arbitrarily close to an additional side. When this
happens O is, again, closer than r to at least three sides. �

Lemma 1 yields immediately that each spherical polygon determined by the n
central great circles of the zones is a spherical triangle. The vertices and sides of
these triangular domains form a planar graph G on S2. The number v of vertices
is 2

(

n
2

)

, and the number of edges is 2n(n − 1). By Euler’s formula, the number f
of faces (the number of spherical triangles) is

f = e + 2− v = n2 − n+ 2.

Furthermore, the degree of each vertex is four, thus 4v = 3f , which yields that

n2 − n− 6 = 0.

The only positive root of the above quadratic equation is n = 3.
Let n = 3, and assume that the central great circles of two zones intersect in

the North and South poles of S2. The part of S2 not covered by these two zones
is the union of two or four spherical 2-gons bounded by small circular arcs that are
parts of the boundaries of the zones. If the uncovered part consists of only two such
2-gons, then there must be a point of S2 which belongs to the interior of all three
zones. As the vertices of the uncovered 2-gons that are on the same hemisphere
(say the Northern one) must be on one of the bounding small circles of the third
zone, they must be coplanar. This is only satisfied when the first two zones are
perpendicular. This finishes the proof of Theorem 1.

Remark 1. Consider now n congruent zones on Sd−1 such that no point belongs
to the interior of more than d−1 zones. Then the central great spheres of the zones
divide Sd−1 into convex spherical polytopes similar to the 3-dimensional case. We
note that the argument of Lemma 1 can be generalized to arbitrary d, only one has
to consider d− 1 cases instead of two. Thus, the central great spheres of the zones
divide Sd−1 into spherical simplices.

Now, a similar combinatorial analysis can be carried out, with the help of the
Euler-Poincaré formula, as in S2. Let fi,d(n) denote the number of i-dimensional
faces determined by the central great spheres of the n zones for d ≥ 3 and n ≥ d−1.
We use the conventions: f−1,d(n) = 1 and fd,d(n) = 1. As we have seen in the proof
of Lemma 1, f0,3 = 2

(

n
2

)

, f1,3(n) = 2n(n− 1), and f2,3 = n2 − n+ 2.
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Then we have the following recursions for fi,d(n) when d ≥ 4:

f0,d(n) = 2

(

n

d− 1

)

,

fi,d(n) =
n

d− i− 1
fi,d−1(n− 1) (1 ≤ i ≤ d− 2),

fd−1,d(n) =
2

d
fd−2,d(n).

As the n central great spheres are in general position, a vertex is incident with
exactly d − 1 of them, which explains the formula for f0,d(n). Since the cells are
simplices, counting its facets one gets the identity 2fd−2,d(n) = dfd−1,d(n). Finally,
if 1 ≤ i ≤ d− 2, then consider a fixed central great sphere. The other central great
spheres intersect the chosen one in n− 1 great spheres (of one less dimension) that
are in general position. Taking into account that we have n great spheres and that
an i-dimensional face is incident with exactly d− i− 1 great spheres, one gets the
second formula above.

Now, for a fixed d, using the Euler–Poincaré formula,
∑d

i=−1(−1)d+1fi,d(n) =

0 this holds as we have a triangulation of Sd−1 into simplices one can obtain a
polynomial equation p(d, n) = 0 of degree at most d− 1 in n. When n = d, then n
pairwise orthogonal congruent zones satisfy all conditions, thus, n = d is always a
root of p(d, n). In particular, for 4 ≤ d ≤ 6, the reduced forms of p(d, n) in which
the coefficient of nd−1 is 1 are the following

p(4, n) = (n− 4)(n+ 1)n,

p(5, n) = (n− 5)(n3 − n2 − 2n− 8),

p(6, n) = (n− 6)(n− 2)(n− 1)2n.

Thus, if d = 4 or 6, then n = d is the largest root that satisfies our conditions. In
the case d = 5 one can check that p(5, d) has two complex roots and two real roots,
one real root is 5 and the other one is smaller than 5.

We can now formulate the following conjecture.

Conjecture 1. Let d ≥ 3 and n ≥ 1 be integers, and let Sd−1 be covered by the

union of n congruent zones. If each point of Sd−1 belongs to the interior of at most

d − 1 zones, then n ≤ d − 1. Moreover, if n = d, then the d congruent zones are

pairwise orthogonal

By Theorem 1 and the above argument we have proved the first statement of
Conjecture 1 for 3 ≤ d ≤ 6. If n = d, then the orthogonality of the zones can
be proved essentially the same way as in the proof of Theorem 1. Furthermore,
we have computed the roots of p(d, n) for 7 ≤ d ≤ 100 by computer (numerically)
and observed than in each case the largest real root is n = d, which supports our
conjecture.

Finally we note that computer calculations suggest that in the case when d ≥ 6
is even,

p(d, n) = (n− d)(n− d+ 5)

d−4
∏

i=0

(n− i).
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2.2. Proof of Theorem 2. For two points P,Q ∈ Sd−1, their spherical distance
is the length of the shorter unit-radius circular arc on Sd−1 that connects them.
We denote the spherical distance by dS(P,Q).

Let 0 < ω ≤ π/2. We say that the points P1, . . . , Pm ∈ Sd−1 form a saturated

set for ω if the spherical distances dS(Pi, Pj) ≥ ω for all i 6= j and no more points
can be added such that this property holds. Investigating the dependence of m on
d and ω is a classical topic in the theory of packing and covering; for a detailed
overview of known results in this direction see, for example, the survey paper by
Fejes Tóth and Kuperberg [5].

It is clear that m is of the same order of magnitude as ω−(d−1). In the next
lemma, we prove a somewhat more precise statement. Although the content of the
lemma is well-known, we give a proof because we need inequalities for m with exact
constants in subsequent arguments, and also for the sake of completeness. Let κd

denote the volume of the d-dimensional unit ball Bd.

Lemma 2. Let 0 < ε < 1. Then there exists 0 < ω0 ≤ π/2 depending on ε with

the following property. Let 0 < ω < ω0, and let P1, . . . , Pm be a saturated point set

for ω. Then

(1 + ε)−1 dκd

κd−1
ω−(d−1) ≤ m ≤ (1 + ε)

8
d−1
2 dκd

κd−1
ω−(d−1).

Proof. The following formula is known for the surface area S(t) of a cap of height
t of Sd−1, cf. [2, formula (3.4) on p. 796],

lim
t→0+

S(t) t−
d−1
2 = 2

d−1
2 κd−1.

Therefore, there exists 0 < t0 = t0(ε) such that for all 0 < t < t0 it holds that

(1 + ε)−12
d−1
2 κd−1 ≤ S(t) t−

d−1
2 ≤ (1 + ε)2

d−1
2 κd−1.

Furthermore, let 0 < ω0 = ω0(ε) be such that t0 = 1− cosω0.
The spherical caps of (spherical) radius ω/2 centred at P1, . . . , Pm form a packing

on Sd−1, and the spherical caps of radius ω form a covering of Sd−1. In view of
the above inequalities for the surface area of caps, we obtain that for 0 < ω < ω0

it holds that

m(1 + ε)−1 2
d−1
2 κd−1

(

1− cos
ω

2

)
d−1
2 ≤ dκd ≤ m(1 + ε)2

d−1
2 κd−1(1− cosω)

d−1
2 .

By simple rearrangement we get that

(1 + ε)−1 dκd

2
d−1
2 κd−1(1 − cosω)

d−1
2

≤ m ≤ (1 + ε)
dκd

2
d−1
2 κd−1

(

1− cos ω
2

)
d−1
2

.

Now, we use that for 0 < x < 1, it holds that x2/4 < 1− cosx < x2/2, which follow
simply from the Taylor series of cosx, and obtain the desired inequalities

(1 + ε)−1 dκd

κd−1
ω−(d−1) ≤ m ≤ (1 + ε)

8
d−1
2 dκd

κd−1
ω−(d−1).

�

We denote a spherical zone of (spherical) half-width t by Π(t). Since, for small
t, it holds that

2(d− 1)κd−1 sin t < S(Π(t)) < 2(d− 1)κd−1 t,
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it follows that

lim
t→0+

S(Π(t)) · t−1 = 2(d− 1)κd−1.

Let ε > 0. Then there exists t1 = t1(ε) > 0 such that for 0 < t < t1 the following
holds

(1 + ε)−12(d− 1)κd−1 t ≤ S(Π(t)) ≤ (1 + ε)2(d− 1)κd−1 t.

Let α(n) be a given positive function with limn→∞ α(n) = 0. From now on, we

fix ε = 1, set md =
√
2πd+ 1, and assume n to be sufficiently large.

Let Q1, . . . , Qm be a saturated set of points on Sd−1 such that dS(Qi, Qj) ≥
α(n)/2 for any i 6= j. It follows from Lemma 1 that

m ≤ 2
8

d−1
2 dκd

κd−1
(α(n)/2)−(d−1)

= 2
2

d−1
2 dκd

κd−1
α(n)−(d−1)

= cd α(n)−(d−1).

Consider n independent random points from Sd−1 chosen according to the uni-
form probability distribution and consider the corresponding spherical zones
Π1, . . . ,Πn of (spherical) half-width mdα(n) whose poles are these points. Fur-
thermore, let Π−

i , Π
+
i be the corresponding planks of half-width (md − 1)α(n) and

(md + 1)α(n), respectively.
Now, we are going to estimate the probability of the event that there exists a

point p on Sd−1 which belongs to at least k = k(n) zones. The probability that a
point p ∈ Sd−1 belongs to a spherical plank Π+

i can be estimated from above as
follows.

P(p ∈ Π+
i ) ≤

4(md + 1)(d− 1)κd−1

dκd

α(n) = C∗
d α(n).

Note that C∗
d = O(d) as d → ∞.

Then

P(∃p ∈ Πi1 ∩ · · · ∩ Πik : for some 1 ≤ i1 < . . . < ik ≤ n)

≤ P(∃Qj ∈ Π+
i1
∩ · · · ∩ Π+

ik
: for some 1 ≤ i1 < . . . < ik ≤ n)

≤ m · P(Q1 ∈ Π+
i1
∩ · · · ∩ Π+

ik
: for some 1 ≤ i1 < . . . < ik ≤ n)

≤ m ·
(

n

k(n)

)

(C∗
d α(n))

k(n)

≤ cd α(n)−(d−1)

(

n

k(n)

)

(C∗
d α(n))

k(n)

An application of the Stirling-formula (cf. Page 10 of [8]) yields that

(2)

(

n

k

)

≤ C
nn

kk(n− k)n−k

for some suitable constant C > 0.
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Then applying (2) we get that

cd α(n)−(d−1)

(

n

k(n)

)

(C∗
d α(n))k(n)

≤cd α(n)−(d−1) · C nn(n− k(n))k(n)

(k(n))
k(n)−n

(C∗
d α(n))k(n)

≤c̃d α(n)k(n)−d+1

(

n

k(n)

)k(n)

(e · C∗
d)

k(n)

= c̃d α(n)−(d−1)

(

e C∗
d n α(n)

k(n)

)k(n)

.(3)

By (1) we obtain

lim sup
n→∞

P(∃p ∈ Πi1 ∩ · · · ∩ Πik : for some 1 ≤ i1 < . . . < ik ≤ n) < 1,

therefore the probability of the event that no point of Sd−1 belongs to at least k(n)
zones is positive for sufficiently large n. This finishes the proof of Theorem 2.

2.3. Proof of Theorem 3. Let α(n) = lnn
n

, and let k(n) = Ad lnn, where Ad be
a suitable positive constant that satisfies the following equation

(

C∗
d

x

)x

= e−d−x.

Then

(1) = lim
n→∞

c̃d
nd−1

(lnn)d−1
· nAd

(

C∗
d

Ad

)Ad lnn

= 0.(4)

Furthermore, in this case the probability that an arbitrary fixed point p of Sd−1

is in Π−
i (for a fixed i) is

P(p ∈ Π−
i ) ≥ 2−1 · 2(d− 1)κd−1

dκd

· (md − 1)α(n).

Using the inequality κd−1

dκd

> 1√
2πd

(cf. Lemma 1 in [1]), we obtain that

P(p ∈ Π−
i ) ≥

(md − 1)(d− 1)√
2πd

· lnn
n

= (d− 1)
lnn

n

Thus, the probability that ∪n
1Πi does not cover S

d−1 satisfies

P(Sd−1 6⊆ ∪n
1Πi) ≤ P(∃Qj /∈ ∪n

1Π
−
i )

≤ m · P(Q1 /∈ ∪n
1Π

−
i )

≤ cd

( n

lnn

)d−1

·
(

1− (d− 1)
lnn

n

)n

≤ 2cd

(

1

lnn

)d−1

for a sufficiently large n. Therefore

(5) lim
n→∞

P(Sd−1 6⊆ ∪n
1Πi) = 0.
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Thus, taking into account (4) and (5), the probability of the event that all Sd−1

is covered by the zones and no point of Sd−1 belongs to more than Ad lnn zones is
positive for sufficiently large n. This finishes the proof of Theorem 3.

Remark 2. We note that Ad = O(d) as d → ∞. Clearly, Ad can be lowered
slightly by taking into account all the factors of (4).

Remark 3. We further note that one can obtain the result of Theorem 3 with the
help of Theorem 1.6 of [8] using the VC-dimension of hypergraphs; for more details
we refer to the discussion in [8] after Theorem 1.6. However, as this alternate proof
is less geometric in nature, we decided to describe the more direct probabilistic
proof of Theorem 3. We leave the proof of Theorem 3 that uses the VC-dimension
to the interested reader. Furthermore, the direct probabilistic argument provides
an explicit estimate of the involved constant Ad, as well.

2.4. Proof of Corollary 1. Let α(n) = 1
n1+δ for some δ > 0. If k = k(n) >

(d− 1)/δ + d− 1, then

lim sup
n→∞

α(n)−(d−1)

(

e C∗
d n α(n)

k(n)

)k(n)

= lim
n→∞

n(1+δ)(d−1)

(

e C∗
d n−δ

k

)k

= lim
n→∞

n(1+δ)(d−1)−δk = 0.

This means that in this case, for sufficiently large n, it can be guaranteed that one
can arrange n zones of half-width mdα(n) on Sd−1 such that no point belongs to
more than k = const. zones, and the value of k only depends on d and δ. Moreover,
if δ > d − 1, then k = d suffices. Of course, in this case the zones cannot cover
Sd−1. This proves i) of Corollary 1.

Now, let α(n) = 1
n
, and let k(n) = Bd

lnn
ln lnn

, where Bd > max{e C∗
d , d− 1} is a

positive constant. Then

lim sup
n→∞

α(n)−(d−1)

(

e C∗
d n α(n)

k(n)

)k(n)

= lim
n→∞

nd−1

(

e C∗
d ln lnn

Bd lnn

)Bd
lnn

ln lnn

≤ lim
n→∞





n
(d−1) ln lnn

Bd lnn ln lnn

lnn





Bd
lnn

ln lnn

= 0,

as

lim
n→∞

n
(d−1) ln lnn

Bd lnn ln lnn

lnn

= lim
n→∞

exp

(

d− 1

Bd

ln lnn+ ln ln lnn− ln lnn

)

= 0.

This finishes the proof of part ii) of Corollary 1. The above statement is inter-
esting because α(n) = 1

n
is the smallest order of magnitude for the half-width of

the zones for which one can possibly have a covering.

Remark 4. We note that the d = 3 special case of part ii) of Corollary 1 was
explicitly proved by Frankl, Nagy and Naszódi in [8] (cf. Theorem 4.1) in a slightly
different form both by the probabilistic method and using VC-dimension. We also
note that the general d-dimensional statement of part ii) of Corollary 1 may also
be proved from Theorem 1.6 of [8].
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ON THE VOLUME BOUND IN THE DVORETZKY–ROGERS LEMMA1

FERENC FODOR, MÁRTON NASZÓDI, AND TAMÁS ZARNÓCZ2

Abstract. The classical Dvoretzky–Rogers lemma provides a deterministic algorithm by which, from any
set of isotropic vectors in Euclidean d-space, one can select a subset of d vectors whose determinant is not

too small. Subsequently, Pelczyński and Szarek improved this lower bound by a factor depending on the
dimension and the number of vectors.

Pivovarov, on the other hand, determined the expectation of the square of the volume of parallelotopes

spanned by d independent random vectors in Rd, each one chosen according to an isotropic measure. We
extend Pivovarov’s result to a class of more general probability measures, which yields that the volume

bound in the Dvoretzky–Rogers lemma is, in fact, equal to the expectation of the squared volume of random

parallelotopes spanned by isotropic vectors. This allows us to give a probabilistic proof of the improvement
of Pelczyński and Szarek, and provide a lower bound for the probability that the volume of such a random

parallelotope is large.

1. Introduction3

Given a set of isotropic vectors in Euclidean d-space Rd (see definition below), the Dvoretzky–Rogers lemma4

states that one may select a subset of d “well spread out” vectors. As a consequence, the determinant of5

these d vectors is at least
√
d!/dd. This selection is deterministic: we start with an arbitrary element of the6

set, and then select more vectors one-by-one in a certain greedy manner.7

Pivovarov [Piv10, Lemma 3, p. 49], on the other hand, chooses d vectors randomly and then computes8

the expectation of the square of the resulting determinant. In this note, we extend Pivovarov’s result to9

a wider class of measures, and apply this extension to obtain the improved lower bound of Pelczyński and10

Szarek, cf. [PS91]Proposition 2.1, on the maximum of the volume of parallelotopes spanned by d vectors11

from the support of the measure. Thus, we give a probabilistic interpretation of the volume bound in the12

Dvoretzky–Rogers lemma.13

We denote the Euclidean scalar product by 〈·, ·〉, the induced norm by | · |. We use the usual notation Bd14

for the unit ball of Rd centered at the origin o, and Sd−1 for its boundary bdBd. We call a compact convex15

set K ⊂ Rd with non-empty interior a convex body. For detailed information on the properties of convex16

bodies, we refer to the books by Gruber [Gru07] and Schneider [Sch14].17

Let Idd be the identity map on Rd. For u, v ∈ Rd, let u ⊗ v : Rd → Rd denote the tensor product of u18

and v, that is, (u ⊗ v)(x) = 〈v, x〉u for any x ∈ Rd. Note that when u ∈ Sd−1 is a unit vector, u ⊗ u is the19

orthogonal projection to the linear subspace spanned by u.20

For two functions f(n), g(n), we use the notation f(n) ∼ g(n) (as n→∞) if limn→∞ f(n)/g(n) = 1.21

An isotropic measure is a probability measure µ on Rd with the following two properties.22

(1)

∫
Rd

x⊗ x dµ(x) = Idd,

and the center of mass of µ is at the origin, that is,23

(2)

∫
Rd

x dµ(x) = 0.

Pivovarov [Piv10] proved the following statement about the volume of random parallelotopes spanned by24

d independent, isotropic vectors.25

2010 Mathematics Subject Classification. 52A22,52B11,52A38,52A40.
Key words and phrases. isotropic vectors, John’s theorem, Dvoretzky-Rogers lemma, volume, decomposition of the identity.
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Lemma 1 (Pivovarov [Piv10], Lemma 3). Let x1, . . . , xd be independent random vectors distributed according1

to the isotropic measures µ1, . . . , µd in Rd. Assume that x1, . . . , xd are linearly independent with probability2

1. Then3

(3) E([det(x1, . . . , xd)]
2) = d!.

We note that Lutwak, Yang and Zhang in [LYZ04, §2] established similar results for the case of discrete4

isotropic measures, which could also be used to prove the volumetric bounds in Theorem 2, see, for example,5

[LYZ04, formula (2.5) on page 167].6

We extend Lemma 1 to a more general class of measures in the following way.7

Lemma 2. Let x1, . . . , xd be independent random vectors distributed according to the measures µ1, . . . , µd8

in Rd satisfying (1). Assume that µi({0}) = 0 for i=1,. . . , d. Then (3) holds.9

We provide a simple and direct proof of Lemma 2 in Section 2.10

Lemmas 1 and 2 yield the value of the second moment of the volume of random parallelotopes with11

isotropic generating vectors. On the other hand, Milman and Pajor [MP, §3.7] gave a lower bound for the12

p-th moment (with 0 < p < 2) of this volume in the case when the generating vectors are selected according13

to the uniform distribution from an isotropic and origin-symmetric convex body; for more general results,14

cf. [BGVV14, §3.5.1]. All of the previously mentioned results hold in expectation.15

As a different approach, we mention Pivovarov’s work [Piv10], where lower bounds on the volume of a16

random parallelotope are shown to hold with high probability under the assumption that the measures are17

log-concave.18

For more information on properties of random parallelotopes, and random polytopes in general, we refer19

to the book by Schneider and Weil [SW08], the survey by Schneider [Sch], and the references therein.20

In this paper, our primary, geometric motivation in studying isotropic measures is the following celebrated21

theorem of John [Joh48], which we state in the refined form obtained by Ball [Bal92] (see also [Bal97]).22

Theorem 1. Let K be a convex body in Rd. Then there exists a unique ellipsoid of maximal volume contained23

in K. Moreover, this maximal volume ellipsoid is the d-dimensional unit ball Bd if and only if there exist24

vectors u1, . . . , um ∈ bdK ∩ Sd−1 and (positive) real numbers c1, . . . , cm > 0 such that25

(4)

m∑
i=1

ciui ⊗ ui = Idd,

and26

(5)

m∑
i=1

ciui = 0.

Note that taking the trace in (4) yields
∑m
i=1 ci = d. Thus, the Borel measure µK on

√
dSd−1 with27

suppµK = {
√
du1, . . . ,

√
dum} and µK({

√
dui}) = ci/d (i = 1, . . . ,m) is a discrete isotropic measure.28

If a finite system of unit vectors u1, . . . , um in Rd, together with a set of positive weights c1, . . . , cm satisfies29

(4) and (5), then we say that it forms a John decomposition of the identity. For each convex body K, there30

exists an affine image K ′ of K for which the maximal volume ellipsoid contained in K ′ is Bd, and K ′ is31

unique up to orthogonal transformations of Rd.32

The classical lemma of Dvoretzky and Rogers [DR50] states that in a John decomposition of the identity,33

one can always find d vectors such that the selected vectors are not too far from an orthonormal system.34

Lemma 3 (Dvoretzky–Rogers lemma [DR50]). Let u1, . . . , um ∈ Sd−1 and c1, . . . , cm > 0 such that (4)35

holds. Then there exists an orthonormal basis b1, . . . , bd of Rd and a subset {x1, . . . , xd} ⊂ {u1, . . . , um} with36

xj ∈ lin{b1, . . . , bj} and37

(6)

√
d− j − 1

d
≤ 〈xj , bj〉 ≤ 1

for j = 1, . . . , d.38
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Consider the parallelotope P spanned by the selected d vectors x1, . . . , xd. The volume of P is bounded1

from below by2

(7) (Vol(P ))2 = [det(x1, . . . , xd)]
2 ≥ d!

dd
.

Our study of (7) is motivated in part by the recent proof [Nas16] of a conjecture of Bárány, Katchalski3

and Pach, where this bound is heavily relied on.4

The main results of this paper are the following two statements. Theorem 2 is essentialy the same as5

Proposition 2.1 of Pelczyński and Szarek [PS91], however, here we give a probabilistic proof and interpre-6

tation. In Theorem 2 (ii) and (iii), we also note that when m is small the improvement on the original7

Dvoretzky–Rogers bound is larger.8

Theorem 2. Let u1, . . . , um ∈ Sd−1 be unit vectors satisfying (4) with some c1, . . . , cm > 0. Then there is
a subset {x1, . . . , xd} ⊂ {u1, . . . , um} with

[det(x1, . . . , xd)]
2 ≥ γ(d,m) · d!

dd
,

where γ(d,m) = md

d!

(
m
d

)−1
, and m = min{m, d(d+ 1)/2}.9

Moreover, for γ(d,m), we have10

(i) γ(d,m) ≥ γ(d, d(d + 1)/2) ≥ 3/2 for any d ≥ 2 and m ≥ d. And γ(d, d(d + 1)/2) is monotonically11

increasing, and limd→∞ γ(d, d(d+ 1)/2) = e.12

(ii) Fix a c > 1, and consider the case when m ≤ cd with c ≥ 1 + 1/d. Then

γ(d,m) ≥ γ(d, dcde) ∼
√
c− 1

c

(
c− 1

c

)(c−1)d

ed, as d→∞.

(iii) Fix an integer k ≥ 1, and consider the case when m ≤ d+ k. Then

γ(d,m) ≥ γ(d, d+ k) ∼ k!ek√
2π

ed

(d+ k)k+1/2
, as d→∞.

We note that in (ii) and (iii), the improvements are exponentially large in d as d tends to infinity.13

The following statement provides a lower bound on the probability that d independent, identically dis-14

tributed random vectors selected from {u1, . . . , um} according to the distribution determined by the weights15

{c1, . . . , cm} has large volume.16

Proposition 1. Let λ ∈ (0, 1). With the notations and assumptions of Theorem 2, if we choose the vectors17

x1, . . . , xd independently according to the distribution P(x` = ui) = ci/d for each ` = 1, . . . , d and i =18

1, . . . ,m, then with probability at least (1− λ)e−d, we have that19

[det(x1, . . . , xd)]
2 ≥ λγ(d,m) · d!

dd
.

The geometric interpretation of Theorem 2 is the following. If K is a convex polytope with n facets, and20

Bd is the maximal volume ellipsoid in K, then the number of contact points u1, . . . , um in John’s theorem21

is at most m ≤ n. Thus, Theorem 2 yields a simplex in K of not too small volume, with one vertex at the22

origin.23

In particular, consider k = 1 in Theorem 2 (iii), that is, when K is the regular simplex whose inscribed24

ball is Bd. Then the John decomposition of the identity determined by K consists of d + 1 unit vectors25

that determine the vertices of a regular d-simplex inscribed in Bd, which we denote by ∆d, and note that26

Vol(∆d) = (d+1)
d+1
2 /(dd/2d!). Clearly, in this John decomposition of the identity, the volume of the simplex27

determined by any d of the vectors u1, . . . , ud+1 is28

(8) Vol(∆d)/(d+ 1) =
(d+ 1)

d−1
2

dd/2d!
.

By Theorem 2, we obtain that29

max[det(ui1 , . . . , uid)]2≥ (d+ 1)d−1

d!
· d!

dd
=

(d+ 1)d−1

dd
,

3



which yields the same bound for the largest volume simplex as the right-hand-side of (8). Thus, Theorem 21

is sharp in this case.2

We will use the following theorem in our argument.3

Theorem 3 ([Joh48,Pe l90,Bal92,GS05]). If a set of unit vectors satisfies (4) (resp., (4) and (5)) with some4

positive scalars c′i, then a subset of m elements also satisfies (4) (resp., (4) and (5)) with some positive5

scalars ci, where6

(9) d+ 1 ≤ m ≤ d(d+ 1)/2

(resp., d+ 1 ≤ m ≤ d(d+ 3)/2).7

In Section 4, we outline a proof of Theorem 3 for two reasons. First, we will use the part when only (4)8

is assumed, which is only implicitly present in [GS05]. Second, in [GS05], the result is described in terms9

of the contact points of a convex body with its maximal volume ellipsoid, that is, in the context of John’s10

theorem. We, on the other hand, would like to give a presentation where the linear algebraic fact and its11

use in convex geometry are separated. Nevertheless, our proof is very close to the one given in [GS05].12

2. Proof of Lemma 213

The idea of the proof is to slightly rotate each distribution so that the probability that the d vectors14

are linearly independent is 1. Then we may apply Pivovarov’s lemma, and use a limit argument as the d15

rotations each tend to the identity.16

Let A1, . . . , Ad be matrices in SO(d) chosen independently of each other and of the xis according to17

the unique Haar probability measure on SO(d). Fix an arbitrary non-zero unit vector e in Rd. Note18

that Aixi/|xi| and Aie have the same distribution: both are uniformly chosen points of the unit sphere19

according to the uniform probability distribution on Sd−1. A bit more is true: the joint distribution of20

A1x1/|x1|, . . . , Adxd/|xd| and the joint distribution of A1e, . . . , Ade are the same: they are independently21

chosen, uniformly distributed points on the unit sphere. It follows that22

P(A1x1, . . . , Adxd are lin. indep.) = P(A1e, . . . , Ade are lin. indep.) = 1.

Denote the Haar measure on Z := SO(d)d by ν. Thus, we have

1 = P(A1x1, . . . , Adxd are lin. indep.) =
23 ∫

Z

∫
Rd

∫
Rd

. . .

∫
Rd

1{A1x1,...,Adxd are lin. indep.}(x1, . . . , xd, A1, . . . , Ad)

dµ1(x1) . . . dµd(xd) dν(A1, . . . , Ad)

=

∫
Z

P(A1x1, . . . , Adxd are lin. indep. |A1, . . . , Ad) dν(A1, . . . , Ad),

where 1 denotes the indicator function.24

Thus,25

(10) 1 = P

[
P(A1x1, . . . , Adxd are lin. indep. |A1, . . . , Ad) = 1

]
.

We call a d-tuple (A1, . . . , Ad) ∈ Z ‘good’ if A1x1, . . . , Adxd are linearly independent with probability 1. In26

(10), we obtained that the set of not good elements of Z is of measure zero.27

Thus, we may choose a sequence (A
(j)
1 , A

(j)
2 , . . . , A

(j)
d ), j = 1, 2, . . . in Z, such that ‖A(j)

i − Idd‖ < 1/j for28

all i and j, and (A
(j)
1 , . . . , A

(j)
d ) is good for each j.29

Note that for any j,30

(11)
[
det
(
A

(j)
1 x1, . . . , A

(j)
d xd

)]2
≤ |A(j)

1 x1|2|A(j)
2 x2|2 . . . |A(j)

d xd|2,

and31

(12) E
[
|A(j)

1 x1|2|A(j)
2 x2|2 . . . |A(j)

d xd|2
]

= dd.

We conclude that32
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E
(

[det (x1, . . . , xd)]
2
)

=

E

([
det lim

j→∞

(
A

(j)
1 x1, . . . , A

(j)
d xd

)]2)
(a)
=

E

([
lim
j→∞

det
(
A

(j)
1 x1, . . . , A

(j)
d xd

)]2)
(b)
=

lim
j→∞

E

([
det
(
A

(j)
1 x1, . . . , A

(j)
d xd

)]2)
,

where, in (a), we use that the determinant is continuous. In (b), Lebesgue’s Dominated Convergence Theorem1

may be applied by (11) and (12).2

Fix j and let y1 = A
(j)
1 x1, . . . , yd = A

(j)
d xd. In order to emphasize that the assumption (2) is not needed,3

and also for completeness, we repeat Pivovarov’s argument. For k = 1, . . . , d−1, let Pk denote the orthogonal4

projection of Rd onto the linear subspace span{y1, . . . , yk}⊥. Thus,5

(13) |det(y1, . . . , yd)| = |y1||P1y2| · · · |Pd−1yd|.
Note that with probability 1, rankPk = d−k. It follows from (1) that E|Pkyk+1|2 = d−k. Fubini’s Theorem6

applied to (13) completes the proof of Lemma 2.7

3. Proofs of Theorem 2 and Proposition 18

Let u1, . . . um ∈ Sd−1 be a set of vectors satisfying (4) with some positive weights c1, . . . , cm. We set the9

probability of each vector ui, i = 1, . . .m as pi = ci/d, and obtain a discrete probability distribution.10

Let ui1 , . . . , uid be independent random vectors from the set u1, . . . , um chosen (with possible repetitions)11

according to the above probability distribution.12

By Lemma 2, we have that13

E
(
[det(ui1 , . . . , uid)]2

)
=
d!

dd
.

Since the probability that the random vectors ui1 , . . . , uid are linearly dependent is positive,14

max[det(ui1 , . . . , uid)]2 >
d!

dd
.

Our goal is to quantify this inequality by bounding from below the probability that the determinant is 0.15

Let16

M2 := max[det(ui1 , . . . , uid)]2.

Note that if an element of {u1, . . . , um} is selected at least twice, then det(ui1 , . . . , uid) = 0. Thus,17

E
(
[det(ui1 , . . . , uid)]2

)
≤M2P1,

where P1 denotes the probability that all indices are pairwise distinct. Therefore,18

M2 ≥ d!

dd
· 1

P1
.

Note that P1 is a degree d elementary symmetric function of the variables p1, . . . , pm. Furthermore,19

p1 + . . . + pm = 1 and pi ≥ 0 for all i = 1, . . . ,m. It can easily be seen (using Lagrange multipliers, or by20

induction on m) that for fixed m and d, the maximum of P1 is attained when p1 = . . . = pm = 1/m. Thus,21

P1 ≤ d!

(
m

d

)
1

md
.

In summary,22

M2 ≥ d!

dd
· m

d

d!

(
m

d

)−1
.

First, we note that γ(d,m) := md

d!

(
m
d

)−1
is decreasing in m. Thus, by (9), we may assume that m is as23

large as possible, that is, m = d(d+1)
2 proving the first part of Theorem 2.24
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3.1. Proof of Theorem 2 (i). Let γ(d) := γ (d, d(d+ 1)/2). We show that γ(d) is increasing in d.1

With the notation m := d(d+ 1)/2, we note that (d+ 1)(d+ 2)/2 = m+ d+ 1. Thus,2

γ(d+ 1)

γ(d)
=

(m+ d+ 1)d+1m · · · (m− d+ 1)

md(m+ d+ 1) · · · (m+ 1)
=

(m+ d+ 1)d

md
· m · · · (m− d+ 1)

(m+ d) · · · (m+ 1)

Thus, we need to show that3

1 +
d+ 1

m
> d

√(
1 +

d

m

)(
1 +

d

m− 1

)
· · ·
(

1 +
d

m− d+ 1

)
,

which, by the AM/GM inequality follows, if4

1 +
d+ 1

m
≥ 1 + d

1
m + 1

m−1 + . . .+ 1
m−d+1

d
,

which is equivalent to5

d

m
≥ 1

m− 1
+

1

m− 2
+ . . .+

1

m− d+ 1
.

For this to hold, it is sufficient to show that for every integer or half of an integer 1 ≤ i ≤ d/2, we have that6

(14)
2d

(d− 1)m
≥ 1

m− i
+

1

m− d+ i
.

After substituting m = d(d+ 1)/2, it is easy to see that (14) holds.7

Finally, limd→∞ γ(d) = e follows from Stirling’s formula.8

3.2. Proof of Theorem 2 (ii) and (iii). Stirling’s formula yields both claims.9

3.3. Proof of Proposition 1. Let X denote the random variable X := [det(x1, . . . , xd)]
2, E := E(X) = d!

dd
,10

and q := P
(
X ≥ λE

P1

)
, where, as in the proof of Theorem 2, P1 := P(x1, . . . , xd are pairwise distinct).11

In the proof of Theorem 2, we established12

(15) P1 ≤ (γ(d,m))−1, and thus, q ≤ P

(
[det(x1, . . . , xd)]

2 ≥ λγ(d,m) · d!

dd

)
.

Using the fact that X is at most one, we have

E ≤ λE

P1
P

(
X <

λE

P1
and x1, . . . , xd are pairwise distinct

)
+ P

(
X ≥ λE

P1

)
.

That is, E ≤ λE
P1

(P1 − q) + q, and thus, by (15)

q ≥ (1− λ)E

1− λE
P1

≥ (1− λ)d!

dd − λγ(d,m)d!
≥ (1− λ)e−d,

completing the proof of Proposition 1.13

4. Proof of Theorem 314

First, observe that (4) holds with some positive scalars ci, if and only if, the matrix Idd/d is in the convex15

hull of the set A = {vi⊗ vi : i = 1, . . . ,m} in the real vector space of d× d matrices. The set A is contained16

in the subspace of symmetric matrices with trace 1, which is of dimension d(d + 1)/2 − 1. Carathéodory’s17

theorem [Sch14, Theorem 1.1.4] now yields the desired upper bound on m.18

In the case when both (4) and (5) are assumed, we lift our vectors into Rd+1 as follows. Let v̂i =19 √
d
d+1 (vi, 1/

√
d) ∈ Rd+1. It is easy to check that |v̂i| = 1, and that (4) holds for the vectors v̂i with some20

positive scalars ĉi if, and only if, (4) and (5) hold for the vectors vi with scalars ci = d
d+1 ĉi. Now, v̂i ⊗ v̂i,21

i = 1, . . . ,m are symmetric (d+1)× (d+1) matrices of trace one, and their (d+1, d+1)th entry is 1/(d+1).22
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The dimension of this subspace of R(d+1)×(d+1) is d(d + 3)/2 − 1, thus, again, by Carathéodory’s theorem,1

the proof is complete.2
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