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1 Introduction

The problems discussed in this thesis originate from the topics of convex and discrete

geometry. The results belong to three broad categories, namely, maximizing pairwise

angles between elements of a pencil of lines, zone-coverings of the unit sphere, and about

the volume of random parallelotopes in isotropic measures.

The dissertation is based on the following four papers of the author:

[FNZ18] F. Fodor, M. Naszódi, and T. Zarnócz, On the volume bound in the

Dvoretzky–Rogers lemma, Pacific J. Math. (2018), accepted for publication.

arXiv:1804.03444.

[BFVZ17] A. Bezdek, F. Fodor, V. Vı́gh, and T. Zarnócz, On the multiplicity of ar-

rangements of congruent zones on the sphere (2017), accepted for publication.

arXiv:1705.02172.

[FVZ16a] F. Fodor, V. Vı́gh, and T. Zarnócz, Covering the sphere by equal zones, Acta

Math. Hungar. 149 (2016), no. 2, 478–489, DOI 10.1007/s10474-016-0613-2.

MR3518649

[FVZ16b] F. Fodor, V. Vı́gh, and T. Zarnócz, On the angle sum of lines, Arch.

Math. (Basel) 106 (2016), no. 1, 91–100, DOI 10.1007/s00013-015-0847-1.

MR3451371

We note that two of the above papers are already published [FVZ16a,FVZ16b], and

two are accepted for publication [FNZ18,BFVZ17].
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2 On the angle sum of lines

This chapter of the dissertation is based on the paper [FVZ16b].

2.1 Introduction

Consider n lines in the d-dimensional Euclidean space Rd which all pass through the

origin o. What is the maximum S(n, d) of the sum of the pairwise (non-obtuse) angles

formed by the lines?

The question was raised by L. Fejes Tóth [FT59] in 1959 for d = 3. He also conjectured

that in the optimal configuration we have as many identical copies of an orthonormal basis

as we can from the lines and possibly an incomplete one (less than d dimensional) if the

number of lines is not divisible by d. More precisely, let n = k · d + m (1 ≤ m < d) be

the number of lines, and denote by x1, . . . , xd the axes of a Cartesian coordinate system

in Rd. The conjectured optimal configuration consists of k + 1 copies of x1, . . . , xm and

k copies of xm+1, . . . , xd. The sum of the pairwise angles in this configuration is[(
d

2

)
k2 +mk(d− 1) +

(
m

2

)]
π

2
.

L. Fejes Tóth proved the conjecture in 3-dimensional space for n ≤ 6 and gave an

upper bound using a recursive formula: S(n, 3) ≤ n(n − 1)π/5. This means that the

sum of angles is asymptotically less than n2π/5 as n → ∞. In our paper [FVZ16b], we

improved this upper bound to 3n2π/16 ≈ 0.589 · n2, and later Bilyk and Matzke [BM19]

further improved it to
(
π
4
− 69

100d

)
n2 as n→∞. We note that their result for d = 3 gives

asymptotically less than 0.556 · n2 as n→∞. However, their bound is for general d.

We also mention that this problem has other variants that have been considered, and

some of them completely solved. One important example is of the directed lines. Consider

n rays emanating from the origin. What is the maximum of the sum of pairwise angles

between the rays (vectors)?

Another direction is when instead of angles one consider certain functions of the angles

(or Euclidean distances). This direction gives rise to the so-called potentials.

2.2 Results

Our contribution to this problem is summarized in the following theorem.
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Theorem 2.1. Let l1, . . . , ln be lines in R3 which all pass through the origin. If we denote

by ϕij the angle formed by li and lj, then

∑
1≤i<j≤n

ϕij ≤

{
3
2
k2 · π

2
, if n = 2k,

3
2
k(k + 1) · π

2
, if n = 2k + 1.

We first investigated the planar case. The following theorem had probably been known

prior to our work, but we could not find an explicit proof in the literature so we decided

to include one. We say that a pencil of lines is balanced if for every line the number

of other lines making a positive angle (smaller than π/2) and the number of other lines

making a negative angle differ by at most one.

Theorem 2.2. Let l1, . . . , ln be lines in R2 which all pass through the origin. If we denote

by ϕij the angle formed by li and lj, then

∑
1≤i<j≤n

ϕij ≤

{
k2 · π

2
, if n = 2k,

k(k + 1) · π
2
, if n = 2k + 1.

Equality holds if, and only if, l1, . . . , ln is balanced.

The main idea of the proof of Theorem 2.2 is that if we have a perpendicular pair of

lines, then the pair can be rotated freely without changing the total sum of the pairwise

angles.

Let v1,v2 be vectors and ϕ the angle between them. Then for the 3-dimensional case

we first define the function

I : [0, π/2]→ R, I(ϕ) :=
1

4π

∫
S2

ϕu
∗ (v1,v2)du,

where ϕu
∗ (v1,v2) is the angle between the perpendicular components of the vectors v1

and v2 to u, or the complement of that angle (to π), whichever is smaller. Note that

the function I, in fact, depends only on ϕ and not on the vectors v1 and v2 themselves.

I(ϕ) is the average angle of the orthogonal projections of the lines to a plane with normal

vector u.

Next, we show, with the help of two lemmas, that I(ϕ) ≥ 2ϕ/3 for all ϕ ∈ [0, π/2].

The first lemma states that this holds at the end points of the domain, that is, for ϕ = 0

and ϕ = π/2.

Lemma 2.4. With the notation introduced above,

I(0) = 0 and I(π/2) = π/3.
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The second lemma shows that I is concave. The combination of the two statements

clearly proves our claim.

Lemma 2.5. The function I(ϕ) is concave on [0, π/2], and

I(ϕ) ≥ 2ϕ/3 for 0 ≤ ϕ ≤ π/2. (1)

From these results our main theorem follows directly. Since the average of the sum

of the pairwise angles of the projections (the average taken with respect to the normal

vector of the projecting plane) is at least 2/3 times the sum of the original angles, there

exist a u0 such that if we project the lines to the plane with normal vector u0 then the

sum of the angles formed by the projections is greater than 2/3 times the sum of the

angles formed by the lines. Finally we know the optimum for the planar case and hence

Theorem 2.1 holds.

3 Covering the sphere by equal zones

This chapter of the dissertation is based on the paper [FVZ16a].

3.1 Introduction

Let S2 be the unit sphere in the 3-dimensional Euclidean space R3 centered at the origin

o. The spherical distance between two points x, y ∈ S2 is defined as the length of the

shorter geodesic arc connecting x and y. We define a zone Z of half-width w as the

parallel domain of radius w of a great circle C, which is the set of point on S2 whose

spherical distance from C is at most w. The main problem investigated in this section is

the following.

Problem 3.1 (L. Fejes Tóth [FT73]). For a given n, find the smallest number wn such

that one can cover S2 with n zones of half-width wn. Find also the optimal configurations

of zones that realize the optimal coverings.

It is an analogous question to this one (also posed by L. Fejes Tóth) when we do not

require the zones to be congruent, and we seek the minimum of the sum of the widths

of the zones needed to cover S2. This minimum is conjectured to be π. A similar and

somewhat more general question in this topic that has been considered in the literature

is the following: What is the minimum of the sum of the half-widths of n not necessarily

congruent zones that can cover a spherically convex disc on S2? All of these questions

are similar in nature to the famous plank problem of Tarski.
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In 1932 Tarski posed the original problem [Tar32], which later became known as the

plank problem. He conjectured that if a convex body K ⊂ Rd is covered by a finite

number of planks, then the sum of their widths is no less than the minimal width of

K. The original conjecture was proved by Bang [Ban50,Ban51]. A plank in this context

means the part of Rd between two parallel hyperplanes. The width of such a plank is the

distance between its supporting hyperplanes.

Let K be a convex body, hK its support function and u ∈ Rd a unit vector. The width

of K in the direction u is hK(u) + hK(−u) and the minimal width of K is the minimum

of these widths

wK = min
u∈Sd−1

hK(u) + hK(−u)

Considering the case of the sphere covering by zones, before our work the only known

general lower bound was a trivial one: The sum of the areas of the zones must be at least

4π, so the common half-width of the zones needs to be at least arcsin(1/n). This trivial

lower bound is of course not sharp in case n ≥ 2, since any two zones intersect, so their

contribution to the covering (starting with the second one) cannot be their whole area.

We note, that the problem was solved for n = 3, 4 zones by Rosta [Ros72] and Linhart

[Lin74], respectively. We consider a covering as it is being built up zone by zone and

investigate the contribution of each zone (which is less than its area) to the covering.

Estimating the area of the intersection of two zones, depending on the half-width and

angle, we give an upper bound for the contribution of each zone, and, in turn, a lower

bound for wn which is better than the trivial one.

We note that after our work Jiang and Polyanskii [JP17] proved the original conjecture

of L. Fejes Tóth, thus completely solving the original problem. However, Lemma 3.3 was

used by Steinerberger subsequently to estimate the overlap of n zones of 1/(2n) width,

which has a strong connection to s-Riesz energies.

3.2 Intersection of two zones

Let 2F (w, α) denote the area of intersection of two zones with w radius and making an

angle of α.

Lemma 3.3. Let 0 ≤ w ≤ π/4 and 2w ≤ α ≤ π/2. Then

F (w, α) = 2π + 4 sinw arcsin

(
1− cosα

cotw sinα

)
+ 4 sinw arcsin

(
1 + cosα

cotw sinα

)
(2)

− 2 arccos

(
cosα− sin2w

cos2w

)
− 2 arccos

(
− cosα− sin2w

cos2w

)
.

Moreover, F (w, α) is a monotonically decreasing function of α in the interval [0, π/2].

6



This lemma helps us estimate the contribution of a zone to the covering. The closer

the zone is to an earlier zone the smaller its contribution (which is the area covered by

only this new zone) is.

3.3 A lower bound for the minimal width

Since the contribution of a zone to the covering depends on its proximity to other zones,

we needed to estimate how close n given points on the sphere can be to one another (this

is equivalent to asking how close the zones can be, as the distance of two zones is the

distance of their poles). For n ≥ 3, let dn denote the maximum of the minimal pairwise

(spherical) distances of n points on the unit sphere S2. Finding dn is a long-standing

problem of discrete geometry leading us back to the famous Tammes-problem. For a few

values of n the exact value of dn is known, for others, we are going to use estimations.

László Fejes Tóth [FT72] proved the following upper bound for dn:

dn ≤ δ̃n := arccos

(
cot2

(
n
n−2

π
6

)
− 1

2

)
, (3)

For n ≥ 13 Robinson [Rob61] improved this bound, let his bound be denoted by δn,

d∗n := min{π/2, dn} and let

δ∗n :=

d∗n for 3 ≤ n ≤ 14 and n = 24,

δn otherwise.
(4)

We also need a lower bound on dn and for a saturated point set a simple bound is

immediate:
2√
n
≤ d∗n ≤ δ∗n.

For 0 ≤ α ≤ π/2 and n ≥ 3 we introduce f(w, α) = 4π sinw − 2F (w, α) and

G(w, n) = 4π sinw +
n∑
i=2

f(w, δ∗2i).

Lemma 3.5. For a fixed n ≥ 3, the function G(w, n) is continuous and monotonically

increasing in w in the interval [0, δ∗2n/3]. Furthermore, G(0, n) = 0 and G(δ∗2n/3, n) ≥ 4π.

All of the above leads us to our main theorem.

Theorem 3.6. For n ≥ 3, let w∗n denote the unique solution of the equation G(w, n) = 4π

in the interval [0, δ∗2n/3]. Then arcsin(1/n) < w∗n ≤ wn.

7



4 On the multiplicity of arrangements of congruent

zones on the sphere

This chapter of the dissertation is based on the paper [BFVZ17].

In this section we examine arrangements of equal zones on Sd−1 from the point of view

of multiplicity. The multiplicity of an arrangement is the maximum number of zones the

points of the sphere belong to. We seek to minimize the multiplicity for given d and n as

a function of the common width of the zones. It is clear that for n ≥ d, the multiplicity

of any arrangement with n equal zones is at least d and at most n. Notice that in the

Fejes Tóth configuration the multiplicity is exactly n, that is, maximal.

In particular, if d = 3 and n ≥ 3, then the multiplicity of any covering is at least 3.

Our first result is a very slight strengthening of this simple fact for the case when n ≥ 4.

Theorem 4.1. Let n ≥ 1 be an integer, and let S2 be covered by the union of n congruent

zones. If each point of S2 belongs to the interior of at most two zones, then n ≤ 3. If,

moreover, n = 3, then the three congruent zones are pairwise orthogonal.

Now we want to find upper bounds on the multiplicity. For this, we need the following

definitions.

Let α : N → (0, 1] be a positive real function with limn→∞ α(n) = 0. For a positive

integer d ≥ 3, let md =
√

2πd + 1. Let k : N → N be a function that satisfies the limit

condition

lim sup
n→∞

α(n)−(d−1)
(
e C∗d n α(n)

k(n)

)k(n)
= β < 1, (5)

where C∗d is a suitable constant depending only on the dimension.

Theorem 4.2. For each positive integer d ≥ 3, and any real function α(n) described

above, for sufficiently large n, there exists an arrangement of n zones of spherical half-

width mdα(n) on Sd−1 such that no point of Sd−1 belongs to more than k(n) zones.

The following statement provides the wanted upper bound on the multiplicity of

coverings of the d-dimensional unit sphere by n congruent zones.

Theorem 4.3. For each positive integer d ≥ 3, there exists a positive constant Ad such

that for sufficiently large n, there is a covering of Sd−1 by n zones of half-width md
lnn
n

such that no point of Sd−1 belongs to more than Ad lnn zones.
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We note that Theorem 4.3 and an implicit version of Theorem 4.2 were proved by

Frankl, Nagy and Naszódi for the case d = 3, see Theorem 1.5 and Theorem 1.6 [FNN18]

and also the proof of Theorem 1.5 therein. They provided two independent proofs,

one of which is a probabilistic argument and the other one uses the concept of VC-

dimension. Our proofs of Theorems 4.2 and 4.3 are based on the probabilistic argument

of Frankl, Nagy and Naszódi [FNN18], which we modified in such a way that it works in

all dimensions. In the course of the proof we also give an upper estimate for the constant

Ad whose order of magnitude is O(d).

Below we list some more interesting special cases according to the size of the function

α(n).

Corollary 4.4. With the same hypotheses as in Theorem 4.2, the following statements

hold.

i) If α(n) = n−(1+δ) for some δ > 0, then k(n) = const.. Moreover, if δ > d− 1, then

k(n) = d.

ii) If α(n) = 1
n

, then k(n) = Bd
lnn

ln lnn
for some suitable constant Bd.

There is an obviously large gap between the lower and upper bounds for the multiplic-

ity. The problem of finding the minimum multiplicity for zone coverings of Sd−1 remains

open.

5 On the volume bound in the Dvoretzky–Rogers

lemma

This chapter of the dissertation is based on the paper [FNZ18].

5.1 Introduction and results

We say that a measure µ is an isotropic measure if it is a probability measure on Rd with

the following two properties. First its inertia tensor is the identity matrix∫
Rd

x⊗ x dµ(x) = Idd, (6)

and its center of mass of µ is at the origin, that is,∫
Rd

x dµ(x) = 0. (7)
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The Dvoretzky–Rogers lemma states that one may select a d-subset of any isotropic

vector set in Rd such that the subset is well spread out, which means that the volume

of the spanned parallelepiped is large. Consequently the determinant is at least
√
d!/dd.

The selection method here is deterministic.

On the other hand we can choose the d vectors randomly then compute the expectation

of the square of the resulting determinant. This has been worked out by Pivovarov [Piv10].

We extended this result to a wider class of measures to obtain the improved lower bound of

Pe lczyński and Szarek [PS91] on the maximum of the volume of the spanned parallelotope

and also we give a probabilistic interpretation of the volume bound in the Dvoretzky–

Rogers lemma.

The result of Pivovarov is in the following lemma.

Lemma 5.1 (Pivovarov [Piv10], Lemma 3). Let x1, . . . , xd be independent random vectors

distributed according to the isotropic measures µ1, . . . , µd in Rd. Assume that x1, . . . , xd

are linearly independent with probability 1. Then

E([det(x1, . . . , xd)]
2) = d!. (8)

Our extension allows us to apply it for discrete isotropic measures.

Lemma 5.2. Let x1, . . . , xd be independent random vectors distributed according to the

measures µ1, . . . , µd in Rd satisfying (6). Assume that µi({0}) = 0 for i=1,. . . , d. Then

(8) holds.

The geometric motivation in studying isotropic measures is the celebrated theorem of

John [Joh48].

Theorem 5.3. Let K be a convex body in Rd. Then there exists a unique ellipsoid

of maximal volume contained in K. Moreover, this maximal volume ellipsoid is the d-

dimensional unit ball Bd if and only if there exist vectors u1, . . . , um ∈ bdK ∩ Sd−1 and

(positive) real numbers c1, . . . , cm > 0 such that

m∑
i=1

ciui ⊗ ui = Idd, (9)

and
m∑
i=1

ciui = 0. (10)

If a set of unit vectors (u1, . . . um) along with positive constants satisfies the two

conditions in John’s theorem then we say those vectors form a John decomposition of
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the identity. If the vectors are the contact points of a convex body with its John ellipsoid

than one can always find a subset of the vectors {x1, . . . , xk} ⊆ {u1, . . . um} and weights

c1, . . . , ck > 0 such that together they form a John decomposition of the identity. The

classical lemma of Dvoretzky and Rogers stated that in a John decomposition of the

identity we can always find d vectors such that they are not too far from an orthonormal

system.

Lemma 5.4 (Dvoretzky–Rogers lemma [DR50]). Let u1, . . . , um ∈ Sd−1 and c1, . . . , cm >

0 such that (9) holds. Then there exists an orthonormal basis b1, . . . , bd of Rd and a subset

{x1, . . . , xd} ⊂ {u1, . . . , um} with xj ∈ lin{b1, . . . , bj} and√
d− j − 1

d
≤ 〈xj, bj〉 ≤ 1 (11)

for j = 1, . . . , d.

If we consider the parallelotope P spanned by the selected d vectors x1, . . . , xd then

its volume is bounded from below:

(Vol (P ))2 = [det(x1, . . . , xd)]
2 ≥ d!

dd
. (12)

Our main results in this topic are the following two Theorems, the first of which

is essentially the same as Pelczyński and Szarek’s [PS91], however with a probabilistic

approach, proof and interpretation.

Theorem 5.5. Let u1, . . . , um ∈ Sd−1 be unit vectors satisfying (9) with some c1, . . . ,

cm > 0. Then there is a subset {x1, . . . , xd} ⊂ {u1, . . . , um} with

[det(x1, . . . , xd)]
2 ≥ γ(d,m) · d!

dd
,

where γ(d,m) = md

d!

(
m
d

)−1
, and m = min{m, d(d+ 1)/2}.

Moreover, for γ(d,m), we have

(i) γ(d,m) ≥ γ(d, d(d+ 1)/2) ≥ 3/2 for any d ≥ 2 and m ≥ d. And γ(d, d(d+ 1)/2) is

monotonically increasing, and limd→∞ γ(d, d(d+ 1)/2) = e.

(ii) Fix a c > 1, and consider the case when m ≤ cd with c ≥ 1 + 1/d. Then

γ(d,m) ≥ γ(d, dcde) ∼
√
c− 1

c

(
c− 1

c

)(c−1)d

ed, as d→∞.

(iii) Fix an integer k ≥ 1, and consider the case when m ≤ d+ k. Then

γ(d,m) ≥ γ(d, d+ k) ∼ k!ek√
2π

ed

(d+ k)k+1/2
, as d→∞.
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The geometric interpretation of this theorem is the following. IfK is a convex polytope

with n facets, and Bd is the maximal volume ellipsoid in K, then the number of contact

points u1, . . . , um in John’s theorem is at most m ≤ n. Thus, it yields a simplex in K of

not too small volume, with one vertex at the origin.

The following statement provides a lower bound on the probability that d indepen-

dent, identically distributed random vectors selected from {u1, . . . , um} according to the

distribution determined by the weights {c1, . . . , cm} has large volume.

Proposition 5.6. Let λ ∈ (0, 1). With the notations and assumptions of Theorem 5.5, if

we choose the vectors x1, . . . , xd independently according to the distribution P(x` = ui) =

ci/d for each ` = 1, . . . , d and i = 1, . . . ,m, then with probability at least (1− λ)e−d, we

have that

[det(x1, . . . , xd)]
2 ≥ λγ(d,m) · d!

dd
.

In particular, consider k = 1 in 5.5 (iii), that is the case when K is the regular simplex

whose inscribed ball is Bd. Then after doing the necessary calculations we get that the

bound provided by our theorem is sharp in this case.
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