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Notation

N the set of positive numbers

N0 the set of nonnegative numbers

R the set of real numbers

Rn n-dimensional real vector space

C the set of complex numbers

Re real part

Im imaginary part

u′ the derivative of the function u

u̇ the derivative of the function u with respect to time

C(A,B) the Banach-space of continuous functions mapping from A to B,

where A and B are nonempty sets

CI C(I,R), where I ⊆ R
Cn(A,B) the Banach-space of n-times continuously differentiable functions

mapping from A to B, where A and B are nonempty sets

| · | the euclidean norm in the n-dimensional vector space Rn

‖u‖I the maximum of u ∈ C(I,Rn), defined by maxt∈I |u(t)|
ut the segment of the function u ∈ C(I,Rn), where [t− r, t] ⊆ I ⊆ R,

defined by ut(s) = u(t+ s), s ∈ [−r, 0]

‖(u, v)‖ the norm of (u, v) ∈ E × F , defined by ‖u‖E + ‖v‖F , where E and F are

Banach spaces with norms ‖ · ‖E and ‖ · ‖F , respectively
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Chapter 1

Introduction

The thesis summarizes the results of Balázs and Krisztin [4, 3]. Article [4] is accepted

for publication, an electronic version is available. Article [3] is submitted. The author

has another paper [5], joint with van den Berg, Courtois, Dudás, Lessard, Vörös-Kiss,

Williams and Yin, that is not presented here.

In papers [4, 3] and in the thesis we study two different types of differential equations

with delay. As for the two equations different technical tools are developed, we consider

them in separated chapters with slightly different notions.

The common in the two types of problems is that both are motivated by applications,

and both require new, non-classical theoretical techniques. Another joint feature is that we

solve open problems for both types of problems. In addition, we believe that the developed

methods will turn out to be useful for a wide class of analogous models.

First we study the price model

ẋ(t) = a[x(t)− x(t− 1)]− β|x(t)|x(t), (2.1.1)

introduced by Erdélyi, Brunovský and Walther [9, 8, 37]. The main result is that in case

0 < a < 1 the zero solution is globally asymptotically stable. This gives an affirmative

answer for a conjecture of Erdélyi, Brunovský and Walther. Earlier local stability was

known for all a ∈ (0, 1), see [9]. As linearization fails at zero, a center manifold reduction

was used. Global attractivity was proven only for a ∈ (0, 0.61) by Garab, Kovács and

Krisztin [14]. The technique of [14] worked for the more general price model

ẋ(t) = a

n∑
i=1

bi[x(t− si)− x(t− ri)]− g(x(t)). (2.1.2)

Our proof is based on the key idea that it is possible to connect the problem with a

different type of equations, namely with neutral functional differential equations, and in

addition, that Lyapunov functionals can be constructed for the neutral type problems.

2



CHAPTER 1. INTRODUCTION 3

By using Stieltjes integrals, equations (2.1.1) and (2.1.2) can be written as

ẋ(t) = a

∫ r

0

x(t− s)dη(s)− g(x(t)), (2.1.3)

ẏ(t) = a

∫ r

0

ẏ(t− s)dµ(s)− g(y(t)), (2.1.5)

assuming Hypotheses (Hg), (Hη) and (Hµ).

In Section 2.3, we consider equation (2.1.5), formulate the hypotheses on µ, and intro-

duce a suitable phase space. First it is shown that all solutions can be globally extended

to [−r,∞). Then, in Theorem 2.3.2, a sufficient condition is given for the global asymp-

totic stability of the zero solution of equation (2.1.5). The proof is based on a Lyapunov

functional which has been inspired by the one employed for the equation

ẋ(t) = aẋ(t− 1)− g(x(t)) (2.1.6)

in the book of Kolmanovskii and Myshkis [21, Chapter 9, p. 374].

In Section 2.4, we consider equation (2.1.3) under Hypotheses (Hg) and (Hη). Com-

bining the global stability result of Section 2.3 for equation (2.1.5) and the continuous

dependence on initial data for equation (2.1.3), the main result, that is stated as Theo-

rem 2.4.2, is that the zero solution of equation (2.1.3) is globally asymptotically stable

provided a ∈ (0, 1). As a consequence, global asymptotic stability is obtained for the zero

solution of the Erdélyi–Brunovský–Walther equation (2.1.1) and also for equation (2.1.2)

for the full conjectured region a ∈ (0, 1), see Corollaries 2.4.3, 2.4.4.

Finally in Section 2.5 we show that the global stability result for equation (2.1.3) is

optimal in the sense that for a > 1 under the additional condition g′(0) = 0 the zero

solution is unstable. In addition, some open problems are mentioned.

The second part of the thesis considers a system which is composed of a delay dif-

ferential equation and two auxiliary equations defining the delay. The delay differential

equation satisfies a negative feedback condition studied earlier in several fundamental

papers [26, 27], leading to the development of topics of nonlinear functional analysis like

fixed point theory in infinite dimensions. The studied particular system was introduced

by Ranjan, La and Abed [31, 30] to model a rate control mechanism for a simple com-

puter network. Mathematically, the difficulty arises from the particular form of the delay

defined by the two auxiliary equations. The classical results for constant delays [12, 16],

the recently developed methods for state-dependent delay [17, 35] do not seem to be ap-

plicable here. The first difficulty is to find a suitable phase space where the corresponding

initial value problem has a unique maximal solution, and the solutions define a continu-

ous semiflow. In fact, we develop two different frameworks to study the problem. These

require different phase spaces and different definitions for solutions. It depends on the

question which approach is more suitable. The second main result is that the rate control

system of Ranjan et al. may lead to a slowly oscillating periodic rate around the optimal
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rate, provided that the stationary solution at the optimal rate is unstable. This answers

affirmatively a conjecture of Ranjan and his coauthors [29, 28].

The network model contains a single user and a single server. The user sends data

by rate x(t) to the server for procession. The server processes the incoming data by the

capacity c. Kelly [19] introduced the utility U(x) and the price p(x) per unit flow of the

procession, and proposed an end user rate control algorithm as a differential equation.

As the rate x(t) can be larger than the capacity of the server, the data arriving at

the server may form a single waiting line (a queue) with length y(t) before procession.

Suppose that a unit of data, whose procession was completed and the user received an

acknowledgement about it at time t, arrived at the queue τ(t) time earlier, found a queue

with length y(t− τ(t)), and spent waiting time z(t) = (1/c)y(t− τ(t)) in the queue before

its procession started. Then the model can be described by the system of equations

ẋ(t) = κ
[
x(t)U ′(x(t))− x(t− r0 − z(t)− r1)p(x(t− z(t)− r1))

]
, (3.1.4)

ẏ(t) =


x(t− r0)− c if 0 < y(t) < q,

[x(t− r0)− c]+ if y(t) = 0,

−[x(t− r0)− c]− if y(t) = q,

(3.1.2)

z(t) =
1

c
y(t− z(t)− r1). (3.1.3)

First we consider a slightly more general system of equations

ẋ(t) = F (xt, yt) (3.1.5)

and (3.1.2) in X × Y . The phase space X × Y contains all possible segments (xt, yt).

In order to see that system (3.1.4), (3.1.2), (3.1.3) is a particular case of system (3.1.5),

(3.1.2) introduce Z = [0, q/c] ⊂ R as a state space for the variable z(t). A cruical fact is

the existence of a unique Lipschitz continuous map σ : Y → Z such that

σ(ψ) =
1

c
ψ(−σ(ψ)− r1) (ψ ∈ Y ).

Then, for a solution (x, y) : [−r,∞) → R2 of system (3.1.5), (3.1.2) in the phase space

X × Y , defining z(t) = σ(yt), t ≥ 0, equation (3.1.3) is always satisfied for all t ≥ 0.

Assume that a map G : X × Z → R is given such that, with the particular choice

F : X × Y 3 (ϕ, ψ) 7→ G(ϕ, σ(ψ)) ∈ R,

Hypotheses (H1)–(H4) hold. In this case system (3.1.5), (3.1.2) is equivalent to the system

composed of the equations

ẋ(t) = G(xt, z(t)), (3.1.6)

(3.1.2) and (3.1.3). Then, in the phase space X × Y , for each (ϕ, ψ) ∈ X × Y , system

(3.1.6), (3.1.2), (3.1.3) has the unique solution xϕ,ψ[−r,∞) → R, yϕ,ψ : [−r,∞) → R,
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zϕ,ψ : [0,∞)→ R where
(
xϕ,ψ, yϕ,ψ

)
is the solution of system (3.1.5), (3.1.2), and zϕ,ψ(t) =

σ(yϕ,ψt ), t ≥ 0.

In Section 3.3 we show that, under Hypotheses (H1)–(H4), for each (ϕ, ψ) ∈ X × Y ,

system (3.1.5), (3.1.2) has a unique maximal solution
(
xϕ,ψ, yϕ,ψ

)
: [−r,∞) → R2. The

solutions define the continuous semiflow

Φ : [0,∞)×X × Y 3 (t, ϕ, ψ) 7→
(
xϕ,ψt , yϕ,ψt

)
∈ X × Y,

and, for each t ≥ 0, the solution operators Φ(t, ·, ·) : X × Y → X × Y are Lipschitz

continuous, see Theorem 3.3.5

We also show that system (3.1.6), (3.1.2), (3.1.3) can be studied not only in the phase

space X×Y , but also in X×Z with a different notion of solution. The key technical result

is that there is a unique Lipschitz continuous map γ : X × Z → Y so that ψ = γ(ϕ, ζ)

satisfies ψ(s) = cζ for s ∈ [−r,−ζ − r1], and equation (3.1.2) holds a.e. in [−ζ − r1, 0].

In particular, ζ = (1/c)ψ(−ζ − r1). This means that the past of the length of the queue

can be recovered from the past of the rate (that is ϕ ∈ X) and from the present waiting

time. The maps h and k between the two different phase spaces are Lipschitz continuous,

h is injective, but k is not, k ◦ h = idX×Z , and h ◦ k
∣∣
h(X×Z) = idh(X×Z). Theorem 3.3.11

states that for each (ϕ, ζ) ∈ X × Z, there exists a unique solution xϕ,ζ : [−r,∞) → R,

zϕ,ζ : [0,∞) → R of system (3.1.6), (3.1.2), (3.1.3) in the phase space X × Z satisfying

the initial condition xϕ,ζ0 = ϕ, zϕ,ζ(0) = ζ. Moreover,

Ψ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→
(
xϕ,ζt , zϕ,ζ(t)

)
∈ X × Z

is a continuous semiflow on X × Z, and Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))) for all t ≥ 0.

In Section 3.4 we assume r0 = 0, r1 = 1 and consider system (3.1.4), (3.1.2), (3.1.3).

Condition r0 = 0 guarantees a single delay in equation (3.1.4), r1 = 1 can be achieved

by rescaling the time. Then for the new variable v = x − x∗ we can rewrite our system.

Theorem 3.3.11 implies that system (3.1.7), (3.1.8), (3.1.9) is well posed in the phase

space X × Z.

A solution (v, z) of system (3.1.7), (3.1.8), (3.1.9) is called slowly oscillatory if for any

two zeros t1, t2 of v with t1 < t2 the inequality z(t2) + 1 < t2− t1 holds. This means that

the distance between consecutive zeros of v is larger than the delay.

We introduce the sets W and W0 = W ∪ {(0, 0)}. Then, for each (ϕ, ζ) ∈ W , the

solution v = vϕ,ζ : [−r,∞) → R, z = zϕ,ζ : [0,∞) → R is slowly oscillatory with

infinite number of zeros. The second zero t2 of v in (0,∞) determines t∗2 > t2 so that

t2 = t∗2 − z(t∗2) − 1, and a return map P : W0 → W0 can be defined. A nontrivial fixed

point of P corresponds to a slowly oscillating periodic solution. A classical tool, that we

apply here as well, is Browder’s non-ejective fixed point theorem. A large part of Section

3.4 is devoted to the construction of a suitable subset of X ×Z where Browder’s theorem

is applicable.
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It is a crucial result that P (ϕ, ζ) cannot decay too fast: there are constants θ > 0,

ρ > 0 with vϕ,ζ(t∗2) ≥ θ (ϕ(0))ρ for all (ϕ, ζ) ∈ W . This fact allows to construct a proper

C2-function α. Defining the compact subsets Wα,K1 and Wα,K0 of X × Z, the inclusion

P (Wα,K1) ⊆ Wα,K0 is satisfied. However, Wα,K1 and Wα,K0 are not convex. Following

[25], the subset Vα,K1 of C[−1,0] × R is compact and convex. Set Vα,K1 can be mapped

into Wα,K1 by the streching map Q given by Q(ψ, ζ) = (ϕ, ζ) with ϕ(s) = ψ(s/(ζ + 1)),

s ∈ [−ζ − 1, 0], and ϕ
∣∣
[−r,−ζ−1] ≡ 0. The squeezing map R, defined by R(ϕ, ζ) = (ψ, ζ)

with ψ(s) = ϕ((ζ + 1)s), s ∈ [−1, 0], maps Wα,K0 into Vα,K1 . Browder’s theorem can be

applied for finding a non-ejective fixed point of the map Π = R◦P ◦Q in Vα,K1 . This yields

a non-ejective fixed point of P in Wα,K1 as well. The non-ejective fixed point is nontrivial

provided (0, 0) ∈ Wα,K1 is ejective. Ejectivity of (0, 0) ∈ Wα,K1 follows in a standard way

from that of the zero solution of the constant delay equation v̇(t) = −f(v(t))−g(v(t−1)).

So we can state our main result in Theorem 3.4.17.

Finally, Section 3.5 gives examples.

At the end of the thesis we summarize our results both in English and Hungarian.



Chapter 2

Global stability for price models

with delay

2.1 Introduction

Our primary aim is to prove the global stability conjecture for the price model of Erdélyi,

Brunovský and Walther [9, 8, 37]

ẋ(t) = a[x(t)− x(t− 1)]− β|x(t)|x(t), (2.1.1)

where a > 0, β > 0. They introduced equation (2.1.1) to model the short-time fluctuations

of the price of a foreign currency in a domestic reference currency, although the model

applies to other kind of assets as well. It is assumed that there is an equilibrium exchange

rate. The deviation from the equilibrium rate is denoted by x(t). The agents want to make

profit from their trading, and they try to predict the future exchange rate. As they do not

have precise information on the equilibrium exchange rate, for the prediction they use the

movement of the exchange rate in one unit of time. That is, in case x(t) − x(t − 1) > 0,

they expect the rate to raise leading to increasing demand and thus an increase of the

price. The case x(t) − x(t − 1) < 0 is expected to lead a decreasing demand and thus a

decrease of the price. This is expressed by the term a[x(t)−x(t− 1)]. The quadratic term

in equation (2.1.1) describes that once the rate moves far from its equilibrium more and

more agents expect that this trend will eventually turn back.

For 0 < a < 1, the local asymptotic stability of x = 0 was shown by Erdélyi, Brunovský

and Walther, and they conjectured global asymptotic stability. Numerical simulations

provided by Erdélyi [13] suggested the existence of a stable (slowly oscillating) periodic

solution of equation (2.1.1) for a > 1, which was established in [9, 8]. This result has

recently been generalized by Stumpf [33] for a state-dependent delay version of equation

(2.1.1). Walther analyzed further the slowly oscillating periodic solution of equation (2.1.1)

and showed that it converges to a square-wave solution as a tends to infinity [37], and

7
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that the period tends to infinity as a→ 1+ [36].

Recently, Garab, Kovács and Krisztin [14] obtained global asymptotic stability of

x = 0 for equation (2.1.1) provided a ∈ (0, 0.61). The key idea of [14] to prove global

asymptotic stability of x = 0 was to rewrite the equation as a neutral type functional

differential equation. Then an equivalent equation with infinite delay was obtained for

which a stability result of [22] was applied. The technique of [14] worked for the more

general price model

ẋ(t) = a
n∑
i=1

bi[x(t− si)− x(t− ri)]− g(x(t)), (2.1.2)

as well, where a > 0, bi > 0, 0 ≤ si < ri ≤ 1, i ∈ {1, . . . , n},
∑n

i=1 bi(ri − si) = 1 holds,

and g is a smooth increasing real function with ug(u) > 0 for u 6= 0. [14] proved global

asymptotic stability for equation (2.1.2) when a ∈ (0, 1) and an additional condition was

assumed, see the details in Section 2.4. In [14] it remained open to prove global asymptotic

stability without the additional condition, i.e., for a ∈ (0, 1).

In the sequel, we always assume r > 0, a > 0, and

(Hg)

 g : R→ R is C1-smooth, ug(u) > 0 for u 6= 0,∫ s
0
g(u) du→∞ as |s| → ∞.

By using Stieltjes integrals, equations (2.1.1) and (2.1.2) can be written as

ẋ(t) = a

∫ r

0

x(t− s)dη(s)− g(x(t)) (2.1.3)

with η satisfying

(Hη)

 η : [0, r]→ [0,∞) is of bounded variation,

η(0) = η(r) = 0,
∫ r
0
η(s) ds = 1.

Following [9], x(t) in equation (2.1.3) can represent the price of an asset at time t. Indeed, if

x : I → R is continuously differentiable on an interval containing [t−r, t], then integrating

the Stieltjes integral
∫ r
0
x(t− s) dη(s) by parts, and using η(0) = η(r) = 0, we find∫ r

0
x(t− s) dη(s) = [x(t− s)η(s)]s=rs=0 −

∫ r
0
η(s) dsx(t− s)

= −
∫ r
0
η(s) d

ds
x(t− s) ds

=
∫ r
0
ẋ(t− s) ds

(∫ s
0
η
)
.

(2.1.4)

As η is nonnegative, the function [0, r] 3 s 7→
∫ s
0
η ∈ R is monotone nondecreasing. Then

(2.1.4) shows that the term
∫ r
0
x(t− s) dη(s) is zero if x is constant on [t− r, t], and it is

positive (negative) if ẋ(s) > 0 (< 0) for all s ∈ [t−r, t]. Therefore, the term
∫ r
0
x(t−s) dη(s)

can be used to describe the tendency of the price, and the term a
∫ r
0
x(t − s) dη(s) with
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a > 0 can represent the positive response to the recent tendency of the price. The term

−g(x(t)) in equation (2.1.3) is responsible for the negative feedback to the deviation of

the price from the zero equilibrium.

Observe that if the function s 7→
∫ s
0
η(u)du in the integral term

∫ r
0
ẋ(t − s) ds

(∫ s
0
η
)

in equality (2.1.4) is replaced by an arbitrary nondecreasing function µ : [0, r] → R of

bounded variation, then the obtained integral term
∫ r
0
ẋ(t−s) dµ(s) can be still interpreted

as the tendency of the price. This motivates to study the neutral type differential equation

ẏ(t) = a

∫ r

0

ẏ(t− s)dµ(s)− g(y(t)), (2.1.5)

as well as a price model provided a > 0 and µ : [0, r] → R is of bounded variation and

nondecreasing with an additional technical assumption given in Section 2.3.

There is another reason to study the neutral type equation (2.1.5). It plays a crucial

role in the proof of the stability results for equations (2.1.1), (2.1.2), (2.1.3). However,

equation (2.1.3) and equation (2.1.5) are not equivalent. A solution of equation (2.1.3)

satisfies equation (2.1.5) with µ(s) =
∫ s
0
η only for t > r. The phase spaces and the

stability definitions are also different for equations (2.1.3) and (2.1.5).

The chapter is organized as follows. In Section 2.3, we consider equation (2.1.5), for-

mulate the hypotheses on µ, and introduce a suitable phase space. First it is shown that

all solutions can be globally extended to [−r,∞). Then a sufficient condition is given for

the global asymptotic stability of the zero solution of equation (2.1.5). The proof is based

on a Lyapunov functional which has been inspired by the one employed for the equation

ẋ(t) = aẋ(t− 1)− g(x(t)) (2.1.6)

in the book of Kolmanovskii and Myshkis [21, Chapter 9, p. 374]. There, equation (2.1.6)

describes a shunted power transmission line.

In Section 2.4, we consider equation (2.1.3) under Hypotheses (Hg) and (Hη). Com-

bining the global stability result of Section 2.3 for equation (2.1.5) and the continuous

dependence on initial data for equation (2.1.3), the main result is that the zero solution of

equation (2.1.3) is globally asymptotically stable provided a ∈ (0, 1). As a consequence,

global asymptotic stability is obtained for the zero solution of the Erdélyi–Brunovský–

Walther equation (2.1.1) and also for equation (2.1.2) for the full conjectured region

a ∈ (0, 1).

Finally in Section 2.5 we show that the global stability result for equation (2.1.3) is

optimal in the sense that for a > 1 under the additional condition g′(0) = 0 the zero

solution is unstable. In addition, some open problems are mentioned.
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2.2 Preliminary results

In the theory of neutral differential equations, we follow Kolmanovskii and Myshkis [21].

Note that there is also a bit different approach by Hale and Verduyn Lunel [16].

We consider the neutral differential equation

ẋ(t) = f(t, xt, ẋt) (2.2.1)

with initial condition

xt0 = ψ. (2.2.2)

The next result is Theorem 3.1 on page 107 in [21].

Theorem A. Let E = [t0,∞) × C([−r, 0],R)2, f : E → R be a continuous functional

and in some neighbourhood of any point of E it satisfies the condition

|f(t, ψ1, χ1)− f(t, ψ2, χ2)| ≤ L‖ψ1 − ψ2‖[−r,0] + l‖χ1 − χ2‖[−r,0]

with constants L ∈ [0,∞), l ∈ [0, 1) (which may depend on the point). Assume also that

ψ ∈ C1([−r, 0],R) and the sewing condition

ψ̇(0) = f(t0, ψ, ψ̇)

is fulfilled. Then there exists a constant tψ ∈ (t0,∞] such that

a) there exists a solution x of (2.2.1), (2.2.2) on the interval [t0, tψ);

b) on any interval [t0, t1] ⊂ [t0, tψ) this solution is unique;

c) if tψ <∞ then ẋ(t) does not have a finite limit as t→ t−ψ ;

d) the solution x and ẋ depend continuously on f , ψ.

2.3 Global stability in equation (2.1.5)

In this section we study equation (2.1.5) under condition a ∈ (0, 1), Hypothesis (Hg), and

the assumption on µ descibed below.

First we define a step function with (possibly) infinite number of steps. Let (cn)∞n=0 be

a sequence of nonnegative numbers with
∑∞

n=0 cn ≤ 1, and let (rn)∞n=0 be a sequence in

[0, r] such that r0 = 0, and rn > 0 for all n ∈ N. Let H : [0, r]→ R be given by H(0) = 0,

H(s) = 1 for s ∈ (0, r]. Define σ : [0, r]→ R by

σ(s) = c0H(s) +
∑

n: rn≤s

cn, s ∈ [−r, 0].
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Let a nondecreasing and absolutely continuous ν : [0, r] → R be given with ν(r) −
ν(s) ≤ 1.

Our hypothesis on µ is that it is nondecreasing without a singular part, that is,

(Hµ)

 µ : [0, r]→ R is given by µ = ν + σ

such that
∫ r
0
dµ = 1, i.e., ν(r)− ν(0) +

∑∞
n=0 cn = 1

holds.

Define the set

Y =

{
ψ ∈ C1([−r, 0],R)

∣∣∣ ψ̇(0) = a

∫ r

0

ψ̇(−s) dµ(s)− g(ψ(0))

}
,

and let

‖ψ‖Y =

(
(ψ(0))2 +

∫ r

0

(ψ̇(−s))2 ds
)1/2

for ψ ∈ Y . Set Y will be the phase space for equation (2.1.5).

A solution of equation (2.1.5) with initial function ψ ∈ Y is a continuously differen-

tiable function y = yψ : [−r, tψ) → R such that y0 = ψ, and equation (2.1.5) holds for

all t ∈ (0, tψ). The solution yψ is called a maximal solution if any other solution with the

same initial function is a restriction of yψ.

From g(0) = 0 it is clear that y = 0 is a solution of (2.1.5), and by (Hg) it is the

only equilibrium solution. The solution y = 0 of equation (2.1.5) is called stable if for any

ε > 0 there exists δ(ε) > 0 such that, for each ψ ∈ Y with ‖ψ‖Y < δ(ε), the solution

yψ exists on [−r,∞) and ‖yψt ‖Y < ε for all t ≥ 0. The solution y = 0 is called globally

asymptotically stable if it is stable and for each ψ ∈ Y the solution yψ exists on [−r,∞)

and ‖yψt ‖Y → 0 as t→∞.

Theorem A states that for each ψ ∈ Y , equation (2.1.5) has a unique maximal solution

yψ : [−r, tψ) → R, and in case tψ < ∞ the finite limit limt→tψ− ẏ
ψ(t) does not exist. We

will use this result to show that for any ψ ∈ Y there exists a unique solution on [−r,∞).

Proposition 2.3.1. Assume Hypotheses (Hg), (Hµ) hold, and a ∈ (0, 1). Let ψ ∈ Y

and consider the unique maximal solution yψ : [−r, tψ) → R of equation (2.1.5). If yψ is

bounded on [−r, tψ) then tψ =∞.

Proof. Let ψ ∈ Y , y = yψ : [−r, tψ)→ R, and let y be bounded on [−r, tψ).

Assume tψ <∞. Then, by Theorem A, the finite limit limt→tψ− ẏ(t) does not exist.

First we show that ẏ is bounded on [−r, tψ). If ẏ is unbounded from above on [−r, tψ)

then we can choose a sequence (τn)∞n=1 in [0, tψ) such that τn → tψ, ẏ(τn)→∞ as n→∞,

ẏ(t) < ẏ(τn) for all t ∈ [−r, τn), n ∈ N. For arbitrary n ∈ N, by using Hypothesis (Hµ),
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we have

ẏ(τn) = a

∫ r

0

ẏ(τn − s) dµ(s)− g(y(τn))

≤ a

∫ r

0

ẏ(τn) dµ(s)− g(y(τn)) = aẏ(τn)− g(y(τ(tn))).

Hence, from a ∈ (0, 1) and ẏ(τn)→∞, it follows that

−g(y(τn)) ≥ (1− a)ẏ(τn)→∞ as n→∞.

As y is bounded, this is a contradiction. The case when ẏ is unbounded from below leads

similarly to a contradiction. Thus, ẏ is bounded on [−r, tψ).

Define

α = lim inf
t→t−ψ

ẏ(t), β = lim sup
t→t−ψ

ẏ(t).

We know that −∞ < α < β <∞. There are strictly increasing sequences (tn)∞n=1, (sn)∞n=1

in [0, tψ) such that tn → tψ, sn → tψ, and

lim
n→∞

ẏ(sn) = α, lim
n→∞

ẏ(tn) = β.

Choose α′ < α < β < β′ so that a(β′ − α′) < β − α. There exists a δ > 0 such that

ẏ(t) ∈ [α′, β′] for all t ∈ [tψ − 2δ, tψ). From (2.1.5) it follows that

ẏ(tn)− ẏ(sn) = a

∫ δ

0

(ẏ(tn − s)− ẏ(sn − s)) dµ(s)

+ a

∫ r

δ

(ẏ(tn − s)− ẏ(sn − s)) dµ(s)− g(y(tn)) + g(y(sn)).

We have

lim
n→∞

a

∫ r

δ

(ẏ(tn − s)− ẏ(sn − s)) dµ(s) = 0

because ẏ is uniformly continuous on [−r, tψ − δ]. In addition,

lim
n→∞

[g(y(tn))− g(y(sn))] = 0

since the boundedness of ẏ on [−r, tψ) implies the uniform continuity of y and g ◦ y, and

that g(y(t)) has a finite limit at tψ. Combining these facts with ẏ(tn)− ẏ(sn)→ β − α as

n→∞, one obtains

β − α = lim
n→∞

(ẏ(tn)− ẏ(sn)) = lim
n→∞

a

∫ δ

0

(ẏ(tn − s)− ẏ(sn − s)) dµ(s)

≤ a

∫ δ

0

(β′ − α′) dµ(s) ≤ a(β′ − α′),

a contradiction. Therefore, tψ =∞, and the proof is complete.
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Next we show the global asymptotic stability of the zero solution of equation (2.1.5).

Theorem 2.3.2. Assume Hypotheses (Hg), (Hµ) hold, and a ∈ (0, 1). Then for each

ψ ∈ Y the unique maximal solution yψ of equation (2.1.5) is defined on [−r,∞), and the

zero solution of (2.1.5) is globally asymptotically stable.

Proof. Define the function

K : [0, r] 3 s 7→
∫ r

s

dµ ∈ [0, 1].

According to Hypothesis (Hµ), let K1(s) =
∫ r
s
dν and K2(s) =

∫ r
s
dσ. Then K(s) =

K1(s) +K2(s), and

K1(s) = ν(r)− ν(s), K2(s) =


∑∞

n=0 cn for s = 0,∑
rn>s

cn for s ∈ (0, r].

Let ψ ∈ Y and consider the unique solution y = yψ : [−r, tψ) → R. For t ∈ [0, tψ),

define

w(t) =

∫ t

t−r
K(t− s)(ẏ(s))2 ds+

2

a2

∫ y(t)

0

g(u) du

=

∫ t

t−r
[K1(t− s) +K2(t− s)] (ẏ(s))2 ds+

2

a2

∫ y(t)

0

g(u) du.

As y and K1 are continuously differentiable functions, the map

[0, tψ) 3 t 7→
∫ t

t−r
K1(t− s)(ẏ(s))2 ds ∈ R

is continuously differentiable, and

d

dt

∫ t

t−r
K1(t− s)(ẏ(s))2 ds

= K1(0)(ẏ(t))2 −K1(r)(ẏ(t− r))2 +

∫ t

t−r

d

dt
K1(t− s)(ẏ(s))2 ds

= [ν(r)− ν(0)] (ẏ(t))2 +

∫ r

0

(ẏ(t− s))2K ′1(s) ds

= [ν(r)− ν(0)] (ẏ(t))2 −
∫ r

0

(ẏ(t− s))2 dν(s).

Observe that ∫ t

t−r
K2(t− s)(ẏ(s))2 ds =

∞∑
n=0

cn

∫ t

t−rn
(ẏ(s))2 ds.
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This series of functions is continuously differentiable, it can be differentiated term by

term, and

d

dt

∫ t

t−r
K2(t− s)(ẏ(s))2 ds =

∞∑
n=0

cn
[
(ẏ(t))2 − (ẏ(t− rn))2

]
=

(
∞∑
n=0

cn

)
(ẏ(t))2 −

∫ r

0

(ẏ(t− s))2 dσ(s).

The last term in w(t) is clearly continuously differentiable with

d

dt

2

a2

∫ y(t)

0

g(u) du =
2

a2
g(y(t))ẏ(t).

Therefore, w is continuously differentiable on [0, tψ), and

w′(t) =

[
ν(r)− ν(0) +

∞∑
n=0

cn

]
(ẏ(t))2 −

∫ r

0

(ẏ(t− s))2 d(ν + σ)(s) +
2

a2
g(y(t))ẏ(t).

By Hypothesis (Hµ), we have ν(r)−ν(0)+
∑∞

n=0 cn = 1, and µ = ν+σ. Jensen’s inequality

implies (∫ r

0

ẏ(t− s) dµ(s)

)2

≤
∫ r

0

(ẏ(t− s))2 dµ(s).

Combining the above relations, it follows that

w′(t) ≤ (ẏ(t))2 −
(∫ r

0

ẏ(t− s) dµ(s)

)2

+
2

a2
g(y(t))ẏ(t). (2.3.1)

From equation (2.1.5), the term
∫ r
0
ẏ(t−s) dµ(s) is equal to (1/a)[ẏ(t)+g(y(t))]. Therefore,

by (2.3.1),

w′(t) ≤ −
(

1

a2
− 1

)
(ẏ(t))2 − 1

a2
(g(y(t)))2 (2.3.2)

holds for all t ∈ [0, tψ).

From inequality (2.3.2), by a ∈ (0, 1), it follows that w is a nonincreasing function on

[0, tψ), and w(t) ∈ [0, w(0)] for all t ∈ [0, tψ). This fact and the definition of w gives∫ y(t)

0

g(u) du ∈
[
0,
a2

2
w(0)

]
for all t ∈ [0, tψ). By Hypothesis (Hg) we obtain that y is bounded on [0, tψ), and then on

[−r, tψ). Proposition 2.3.1 can be applied to conclude tψ =∞.

Thus, inequality (2.3.2) holds for all t ∈ [0,∞). Then there exists w∗ ≥ 0 such that

w(t)→ w∗ as t→∞, and, for each T ≥ 0,

w(0)− w∗ ≥ w(0)− w(T ) = −
∫ T

0

w′(t) dt

≥
(

1

a2
− 1

)∫ T

0

(ẏ(t))2 dt+
1

a2

∫ T

0

(g(y(t)))2 dt.
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Hence it follows that ∫ ∞
0

(ẏ(t))2 dt ≤ a2

1− a2
w(0), (2.3.3)∫ ∞

0

(g(y(t)))2 dt ≤ a2w(0). (2.3.4)

In particular, (2.3.3) implies ∫ t

t−r
(ẏ(s))2 ds→ 0 as t→∞.

Then, using K(s) ∈ [0, 1], s ∈ [0, r], one finds that∫ r

0

K(s)(ẏ(t− s))2 ds ≤
∫ r

0

(ẏ(t− s))2 ds =

∫ t

t−r
(ẏ(s))2 ds,

and ∫ t

t−r
K(t− s)(ẏ(s))2 ds =

∫ r

0

K(s)(ẏ(t− s))2 ds→ 0 as t→∞.

Therefore,

w∗ = lim
t→∞

w(t) =
2

a2
lim
t→∞

∫ y(t)

0

g(u) du.

From Condition (Hg), the map [0,∞) 3 s 7→
∫ s
0
g(u) du ∈ R strictly increases from 0 to∞,

and the map (−∞, 0] 3 s 7→
∫ s
0
g(u) du ∈ R strictly decreases from∞ to 0. Consequently,

there exists y∗ ∈ R so that y(t) → y∗ as t → ∞. By (2.3.4), the integral
∫∞
0

(g(y(t)))2 dt

converges. These facts combined yield y∗ = 0. Thus, yψ(t)→ 0 as t→∞ for all ψ ∈ Y .

In order to show local stability of the zero solution, let ε > be given. By Hypothesis

(Hg), there exists m ≥ a2 such that

|g(u)| ≤ m|u| for all u ∈ [−1, 1].

Choose δ = δ(ε) ∈ (0, 1) so that (
1 +

m

1− a2

)
δ2 <

ε2

2
. (2.3.5)

In addition, by (Hg), δ can be chosen so small that∫ s

0

g(u) du <
m

2
δ2 implies s2 <

ε2

2
. (2.3.6)

Let ψ ∈ Y with ‖ψ‖Y < δ, and let y = yψ : [−r,∞) → R be the corresponding

solution of (2.1.5). Then K(s) ∈ [0, 1], s ∈ [0, r], |ψ(0)| ≤ ‖ψ‖Y < δ < 1, and the choice

of m guarantee that

w(0) =

∫ 0

−r
K(−s)(ψ̇(s))2 ds+

2

a2

∫ ψ(0)

0

g(u) du ≤
∫ 0

−r
(ψ̇(s))2 ds+

2

a2
m

2
(ψ(0))2

≤ m

a2

(∫ 0

−r
(ψ̇(s))2 ds+ (ψ(0))2

)
=
m

a2
‖ψ‖2Y <

m

a2
δ2.
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This estimation for w(0) combined with inequality (2.3.3) yields∫ ∞
0

(ẏ(t))2 dt <
m

1− a2
δ2. (2.3.7)

The estimation w(0) < (m/a2)δ2, the definition of w(t), and w(t) ≤ w(0) combined give∫ y(t)

0

g(u) du ≤ a2

2
w(t) ≤ a2

2
w(0) <

m

2
δ2, t ≥ 0. (2.3.8)

From ‖ψ‖Y < δ and inequality (2.3.7) it follows that∫ 0

−r
(ẏ(t+ s))2 ds <

(
1 +

m

1− a2

)
δ2 for all t ≥ 0. (2.3.9)

A combination of (2.3.9), (2.3.5), (2.3.6), (2.3.8) implies

‖yt‖Y =

(∫ 0

−r
(ẏ(t+ s))2 ds+ (y(t))2

)1/2

<

(
ε2

2
+
ε2

2

)1/2

= ε

for all t ≥ 0. This proves the local stability of y = 0.

The global attractivity of y = 0, that is ‖yψt ‖Y → 0 as t → ∞, for all ψ ∈ Y , follows

from
∫ 0

−r(ẏ
ψ(t+s))2 ds→ 0, t→∞, implied by (2.3.3), and yψ(t)→ 0, t→∞. Therefore,

y = 0 is globally asymptotically stable.

2.4 Global stability in equation (2.1.3)

In this section, we consider equation (2.1.3) under Hypotheses (Hg) and (Hη).

The natural phase space for equation (2.1.3) is C([−r, 0],R). A maximal solution of

(2.1.3) with initial function ϕ ∈ C([−r, 0],R) is a continuous function x = xϕ : [−r, tϕ)→
R with tϕ > 0 so that x|[−r,0] = ϕ, x is differentiable on (0, tϕ), equation (2.1.3) holds on

(0, tϕ), and any other solution with the same initial function is a restriction of xϕ.

Recall that the solution x = 0 of equation (2.1.3) is stable if for any ε > 0 there exists

δ(ε) > 0 such that, for each ϕ ∈ C([−r, 0],R) with ‖ϕ‖ < δ(ε), the solution xϕ exists on

[−r,∞) and ‖xϕt ‖ < ε for all t ≥ 0. The solution x = 0 is globally asymptotically stable

if in addition to stability for each ϕ ∈ C([−r, 0],R) the solution xϕ exists on [−r,∞) and

‖xϕt ‖ → 0 as t→∞.

First, for arbitrary a > 0, we show that the maximal solutions exist on [−r,∞).

Proposition 2.4.1. Assume that a > 0 and Conditions (Hg), (Hη) hold. For each

ϕ ∈ C([−r, 0],R) equation (2.1.3) has a unique maximal solution xϕ which is defined

on [−r,∞).
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Proof. The map

f : C([−r, 0],R) 3 ϕ 7→ a

∫ r

0

ϕ(−s) dη(s)− g(ϕ(0)) ∈ R

is continuous, it is also Lipschitzian in each compact subset of C([−r, 0],R), and f takes

bounded sets into bounded sets. Then, by Theorem [16, Chapter 2, Theorem 2.3], for each

ϕ ∈ C([−r, 0],R) there is a unique maximal solution xϕ : [−r, tϕ)→ R of equation (2.1.3).

Moreover, by Theorem [16, Chapter 2, Theorem 3.2], in case tϕ <∞ we have ‖xϕt ‖ → ∞
as t→ t−ϕ .

Let ϕ ∈ C([−r, 0],R), and let |η| denote the total variation of η. Define

k(t) = (‖ϕ‖+ 1) e(a|η|+1)t, t ∈ [0,∞).

We claim that

|xϕ(t)| < k(t) for all t ∈ [0, tϕ). (2.4.1)

If inequality (2.4.1) does not hold then, by |xϕ(0)| ≤ ‖ϕ‖ < k(0), there exists t0 ∈ (0, tϕ)

such that |xϕ(t)| < k(t) for all t ∈ [0, t0), |xϕ(t0)| = k(t0), |ẋϕ(t0)| ≥ k′(t0) = (a|η| +
1)k(t0). Assume xϕ(t0) = k(t0) (the case −xϕ(t0) = k(t0) is similar). Then equation

(2.1.3), k(t) < k(t0) for t ∈ [0, t0), and g(xϕ(t0)) > 0 combined yield the contradiction

ẋϕ(t0) ≤ a|η|k(t0)− g(xϕ(t0)) < a|η|k(t0).

Therefore, inequality (2.4.1) holds. Then, by Theorem [16, Chapter 2, Theorem 3.2],

tϕ =∞.

Now we consider equation (2.1.3) for a ∈ (0, 1), and prove the global asymptotic

stability of the zero solution.

Theorem 2.4.2. Assume Hypotheses (Hg), (Hη) hold, and a ∈ (0, 1). Then the zero

solution of equation (2.1.3) is globally asymptotically stable.

Proof. In order to show local stability, let ε > 0 be given. By Theorem 2.3.2 there exists

γ = γ(ε) > 0 such that for each ψ ∈ Y with ‖ψ‖Y < γ, for the solution yψ of equation

(2.1.5), the inequality ‖yψt ‖Y < ε holds for all t ≥ 0.

Define

δ1 =
1√

1 + r
γ.

Let |η| denote the total variation of η. By Condition (Hg), we can find δ2 ∈ (0, δ1) such

that

(1 + a|η|)δ2 + max
|u|≤δ2

|g(u)| < δ1.
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By continuous dependence on initial data of solutions of equation (2.1.3), see Theorem

[16, Chapter 2, Theorem 2.2], we can choose δ > 0 such that, for each ϕ ∈ C([−r, 0],R)

with ‖ϕ‖ < δ, the unique solution xϕ of equation (2.1.3) satisfies

|xϕ(t)| < min{ε, δ2} for all t ∈ [−r, r].

Then for xϕ with ϕ ∈ C([−r, 0],R) and ‖ϕ‖ < δ, from equation (2.1.3) it follows that

|ẋϕ(t)| ≤ a|η|δ2 + max
|u|≤δ2

|g(u)| < δ1 for all t ∈ (0, r]

and

|xϕ(t)| < δ2 < δ1 for all t ∈ [0, r].

By the uniform continuity of xϕ|[−r,r], there exists the limit

lim
t→0+

ẋϕ(t) = a

∫ r

0

ϕ(−s) dη(s)− g(ϕ(0)).

It follows that xϕ is right differentiable at t = 0, and xϕr ∈ C1([−r, 0],R). Then xϕr ∈ Y
and

‖xϕr ‖Y =

(∫ r

0

(ẋϕ(t))2 dt+ (xϕ(t))2
)1/2

<
(
rδ21 + δ21

)1/2
=
√
r + 1δ1 = γ.

By (2.1.4), y(t) = xϕ(t+ r), t ∈ [−r,∞), is a solution of equation (2.1.5) with µ(s) =
∫ s
0
η

and initial function y0 = xϕr ∈ Y . Then the choice of γ guarantees that

‖yt‖Y = ‖xϕt+r‖Y < ε for all t ≥ 0.

The definition of ‖ · ‖Y and the choice of δ imply that for each ϕ ∈ C([−r, 0],R) with

‖ϕ‖ < δ, the inequality

|xϕ(t)| < ε for all t ≥ 0

holds. Therefore the zero solution of equation (2.1.3) is locally stable.

Global attractivity of x = 0 also follows from Theorem 2.3.2 since xϕr ∈ Y for all

ϕ ∈ C([−r, 0],R).

equation (2.1.1) is a particular case of (2.1.3) with r = 1, g(u) = β|u|u and

η(s) =

 1 if s ∈ (0, 1),

0 if s = 0 or s = 1.

Therefore, Theorem 2.4.2 implies a solution to the global stability conjecture of [9, 8, 37].

Corollary 2.4.3. If a ∈ (0, 1) then the zero solution of equation (2.1.1) is globally asymp-

totically stable.
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Let the constants bi > 0, 0 ≤ si < ri ≤ 1, i ∈ {1, . . . , n}, be given so that
∑n

i=1 bi(ri−
si) = 1 holds. Define the functions

ηi(s) =

 bi if s ∈ (si, ri),

0 if s ∈ [0, si] ∪ [ri, 1],

for i ∈ {1, . . . , n}, and let

η : [0, 1] 3 s 7→
n∑
i=1

ηi(s) ∈ R.

Then it is easy to see that η satisfies Condition (Hη) with r = 1, and equation (2.1.2) is

a particular case of equation (2.1.3). Therefore the following result holds.

Corollary 2.4.4. If a ∈ (0, 1), bi > 0, 0 ≤ si < ri ≤ 1,
∑n

i=1 bi(ri−si) = 1, and g satisfies

Condition (Hg), then the zero solution of equation (2.1.2) is globally asymptotically stable.

The equation

ẋ(t) = α
n∑
i=1

βi[x(t− si)− x(t− ri)]− g(x(t)), (2.4.2)

was studied in [14] under the conditions α > 0, βi > 0, 0 ≤ si < ri ≤ 1, i ∈ {1, . . . , n},∑n
i=1 βi = 1, and g satisfied a condition stronger than (Hg). Setting

a = α
n∑
i=1

βi(ri − si), bi =
βi∑n

i=1 βi(ri − si)
(i ∈ {1, . . . , n}),

it is clear that equation (2.4.2) is equivalent to equation (2.1.2). Consequently, we obtain

the following result.

Corollary 2.4.5. If α > 0, βi > 0, 0 ≤ si < ri ≤ 1, i ∈ {1, . . . , n}, and g satisfies (Hg),

then

α
n∑
i=1

βi(ri − si) < 1

implies the global asymptotic stability of the zero solution of equation (2.4.2).

We remark that [14] proved global asymptotic stability of x = 0 for equation (2.4.2)

assuming α
∑n

i=1 βi(ri−si) < 1, a condition on g that is stronger than (Hg), and the extra

condition

α2

n∑
i=1

βi(r
2
i − s2i ) <

(
1− α

n∑
i=1

βi(ri − si)

)2

was also used. By the local stability result for equation (2.4.2), and by the analogous

conjecture for equation (2.1.1), it was suspected in [14] that Corollary 2.4.5 holds.
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2.5 Discussion

In this section we show that the global stability result a < 1 for equation (2.1.3), and

then also for equations (2.1.1) and (2.1.2), is sharp in the sense that under the additional

condition g′(0) = 0 inequality a > 1 implies that the zero solution is unstable. Remark

that g′(0) = 0 holds for equation (2.1.1). Paper [14] also assumed g′(0) = 0 when studied

equation (2.4.2) or equivalenty equation (2.1.2).

Theorem 2.5.1. Suppose that Hypotheses (Hg), (Hη) hold, and g′(0) = 0. If a > 1 then

the zero solution of equation (2.1.3) is unstable.

Proof. By g′(0) = 0, the linear variational equation of equation (2.1.3) is

ẋ(t) = a

∫ r

0

x(t− s) dη(s). (2.5.1)

The characteristic function is ∆ : C 3 λ 7→ λ− a
∫ r
0
e−λs dη(s) ∈ C.

Condition (Hη) and integration by parts for Stieltjes integrals gives∫ r

0

e−λs dη(s) =
[
e−λsη(s)

]s=r
s=0
−
∫ r

0

η(s) ds
(
e−λs

)
= λ

∫ r

0

η(s)e−λs ds.

Hence, if λ is real and tends to ∞, then, using again (Hη), it is clear that

∆(λ) = λ− a
∫ r

0

e−λs dη(s) = λ

[
1− a

∫ r

0

η(s)e−λs ds

]
→∞.

Combining this fact with ∆(0) = −a
∫ r
0
dη = 0 and ∆′(0) = 1− a

∫ r
0
η(s) ds = 1− a < 0,

it follows that ∆ has a real positive zero. Therefore, a classical result, e.g. from [16], yields

that x = 0 is unstable.

Equations (2.1.1), (2.1.2), (2.1.3) as price models are also important when the zero

solution is unstable. In this case there are results about the dynamics only for equation

(2.1.1) with a single delay, see [9, 8, 37, 36]. It is an interesting open problem to understand

the dynamics in the presence of multiple or distributed delays, that is, for equations (2.1.2)

and (2.1.3).

We have seen in the Introduction that the neutral differential equation (2.1.5) is also

interesting as a price model. Global asymptotic stability is obtained in this chapter for

a ∈ (0, 1) provided (Hg) and (Hµ) hold. However, the understanding of the dynamics is

completely open for a ≥ 1. The simple-looking equation (2.1.6) is a particular case. There

are results only for a ∈ (0, 1), and the case a ≥ 1 is also an interesting open problem.



Chapter 3

A differential equation with a

state-dependent queueing delay

3.1 Introduction

We consider a system which is composed of a delay differential equation and auxiliary

equations defining the delay. The delay differential equation satisfies a negative feedback

condition analogously to earlier works by Mallet-Paret and Nussbaum [26, 27], Arino,

Hadeler, Hbid and Magal [2, 25], Krisztin and Arino [23], Walther [39, 41, 38, 35]. In [26,

35] the state-dependent delay was an explicitly given function (i.e., no auxiliary equation).

Walther [39, 38] studied problems where the state-dependent delay was defined by an

algebraic relation, and in a suitable phase space it was possible to eliminate this auxiliary

equation. Arino, Hadeler, Hbid, Magal [2, 25] and Hu, Wu [18] considered an equation

where the auxiliary equation for the delay was given by an ordinary differential equation.

Here we study a differential equation with a state-dependent delay where the delay is

defined by two auxiliary equations: an algebraic equation and a differential equation with

a discontinuous right hand side. The considered system is interesting from the theoretical

point of view since previous results do not seem to work here. On the other hand, the

system is a prototype of rate control problems with delays appearing naturally in queueing

processes.

The particular model, that motivated our study, was introduced by Ranjan, La and

Abed in [31, 30]. The problem is specified for a simple computer network, however, anal-

ogous models appear, e.g., in more general computer networks, in road networks, in bio-

logical networks, or in general in those processes where a bottleneck phenomenon slows

down the performance or capacity of a system, see, e.g., [32, 10, 15]. The model is a fluid

model of a network containing a single user and a single server. The user sends data by

rate x(t) to the server for procession. The user’s transmission rate satisfies the bound

0 < a ≤ x(t) ≤ b, where b is a user-specific physical limitation, and the lower bound a

21
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is due to the fact that the user needs to probe the congestion level of the network by

continuously transmitting data. The server processes the incoming data by the capac-

ity c ∈ (a, b). Kelly [19] introduced the utility U(x) and the price p(x) per unit flow of

the procession, when the rate is x. Under natural conditions on the functions U(·) and

p(·), there is an optimal rate x∗ ∈ (a, c) (balancing between the utility and the price of

procession) as the unique maximum of the expression U(x) −
∫ x
0
p(y) dy subject to the

constraint 0 < x ≤ c, see Kelly et al. [20]. In addition, [20] proposed an end user rate

control algorithm as the differential equation

ẋ(t) = κ
[
x(t)U ′(x(t))− x(t)p(x(t))

]
(3.1.1)

where xU ′(x) is the price per unit time the user is willing to pay for the procession,

xp(x) is the price charged by the server for procession, κ > 0 is a gain parameter. The

solutions of equation (3.1.1) monotonically converge to x∗ as t→∞. On the other hand,

nonmonotone convergence and nonconvergent oscillation around x∗ arise in some rate

control problems. Equation (3.1.1) neglects the feedback delays appearing naturally in

the system.

The rate control model of Ranjan, La and Abed [31, 30] takes the feedback delays

into account. As the rate x(t) can be larger than the capacity of the server, the data

arriving at the server may form a single waiting line (a queue) before procession. Let y(t)

denote the length of the queue at time t. Suppose that it is bounded from above by q > 0,

and the units of data reaching the queue with length q are lost. Then, assuming that the

transmission time from the user to the server is r0 ≥ 0, it is natural that for the length

y(t) of the queue the differential equation

ẏ(t) =


x(t− r0)− c if 0 < y(t) < q,

[x(t− r0)− c]+ if y(t) = 0,

−[x(t− r0)− c]− if y(t) = q

(3.1.2)

is satisfied. Here, equation (3.1.2) is required to hold almost everywhere, and u+ =

max{u, 0}, u− = max{−u, 0} denote the positive and negative parts of u, respectively.

Suppose that a unit of data, whose procession was completed and the user received an

acknowledgement about it at time t, arrived at the queue τ(t) time earlier, i.e., at time

t − τ(t), and found a queue with length y(t − τ(t)). As the capacity of the server is c,

the given unit of data spent waiting time z(t) = (1/c)y(t − τ(t)) in the queue before its

procession started. Let r1 denote the sum of the procession time and the transmission time

from the server to the user. Then τ(t) = z(t) + r1, and this gives the algebraic equation

z(t) =
1

c
y(t− z(t)− r1) (3.1.3)

between y and z.
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With the waiting time z(t) and the transmission delays r0, r1, the user at time t

receives an acknowledgement from the server about the procession of that unit of data

which was sent at time t − r0 − z(t) − r1. The server determines a price for a unit rate

when it arrives at the server, i.e., at time t−z(t)−r1. When the procession of a unit ends,

the server sends a signal to the user including the identification of the processed unit and

the price information p(x(t − z(t) − r1)). Then the user is able to estimate the price for

the rate of data sent at t− r0 − z(t)− r1 as x(t− r0 − z(t)− r1)p(x(t− z(t)− r1)). This

led Ranjan, La and Abed [31, 30] to the rate control equation

ẋ(t) = κ
[
x(t)U ′(x(t))− x(t− r0 − z(t)− r1)p(x(t− z(t)− r1))

]
(3.1.4)

with a gain parameter κ > 0. See Figure 3.1. For similar models we refer to [1, 6].

processionuser userqueue

server

timett-r1t-z(t)-r1t-r0-z(t)-r1

r0
z(t) r1

Figure 3.1: The process in time.

In this chapter we consider rate control equations (like (3.1.4)) with delay, where the

delay is determined by two auxiliary equations, by (3.1.3) and (3.1.2), or only by (3.1.2).

The primary aim of this chapter is to find a suitable framework to study the above types

of rate control systems. We define a phase space where the corresponding initial value

problem has a unique maximal solution. The solutions define a continuous semiflow, and

the solution operators are Lipschitz continuous. We believe that this approach can be

extended to handle a wide class of systems modeling networks with queueing delays.

Observe that neither the classical results for equations with constant delay [12, 16] nor

the recently developed results for equations with state-dependent delay [17, 35] do not

work here.

The secondary aim is to apply the developed framework, and to show that the rate

control defined by system (3.1.4), (3.1.2), (3.1.3) may lead to a slowly oscillating periodic

rate around the optimal rate x∗, provided that the stationary solution x = x∗, y = 0,

z = 0 is unstable and r0 = 0. This answers affirmatively a conjecture of Ranjan and his

coauthors [29, 28].

We give an overview on the main steps toward the results.

Set r = r0 + r1 + q/c > 0 as an upper bound for the delays. For a Lipschitz continuous
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ϕ : I → R, let

lip(ϕ) = sup
s∈I, t∈I, s<t

∣∣∣∣ϕ(t)− ϕ(s)

t− s

∣∣∣∣ ∈ [0,∞) and

slope(ϕ) =

{
ϕ(t)− ϕ(s)

t− s
: s ∈ I, t ∈ I, s 6= t

}
⊆ R.

First we consider a slightly more general system than (3.1.4), (3.1.2), (3.1.3), that is,

in the equation we allow more general dependence on the length of the queue than that of

(3.1.4), (3.1.2), (3.1.3), and equation (3.1.3) may or may not hold. Consider the equation

ẋ(t) = F (xt, yt) (3.1.5)

together with (3.1.2) in the phase space X × Y where X, Y and F are defined as follows.

An upper bound K > 0 for the absolute value of the right hand side of equation (3.1.5)

comes from the nature of the problem. Then, by x(t) ∈ [a, b] and the bound K, the subset

X =
{
ϕ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [a, b], lip(ϕ) ≤ K
}

of C[−r,0] will contain all possible segments xt. Analogously, by y(t) ∈ [0, q], x(t) ∈ [a, b]

and equation (3.1.2), for the segments yt, it is natural to introduce the subset

Y =
{
ψ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [0, q], slope(ψ) ⊆ [a− c, b− c]
}

of C[−r,0]. On X ⊂ C[−r,0], Y ⊂ C[−r,0], X × Y ⊂ C[−r,0] × C[−r,0] we use the induced

subspace topologies and the corresponding norms. By the Arzelà–Ascoli theorem, X, Y

and X × Y are compact subsets of C[−r,0] and C[−r,0] × C[−r,0], respectively. Assume that

the map F : X × Y → R has the following properties:

(H1) there exists L > 0 such that, for all ϕ1, ϕ2 ∈ X, ψ1, ψ2 ∈ Y ,∣∣F (ϕ1, ψ1)− F (ϕ2, ψ2)
∣∣ ≤ L

(∥∥ϕ1 − ϕ2
∥∥
[−r,0] +

∥∥ψ1 − ψ2
∥∥
[−r,0]

)
;

(H2) max(ϕ,ψ)∈X×Y |F (ϕ, ψ)| ≤ K;

(H3) there exists r2 ∈ (0, r1] such that F (ϕ, ψ1) = F (ϕ, ψ2) provided ϕ ∈ X, ψ1 ∈ Y ,

ψ2 ∈ Y , and ψ1|[−r,−r2] = ψ2|[−r,−r2];

(H4) F (ϕ, ψ) > 0 if ϕ ∈ X, ψ ∈ Y , ϕ(0) = a, and F (ϕ, ψ) < 0 if ϕ ∈ X, ψ ∈ Y and

ϕ(0) = b.

A solution of system (3.1.5), (3.1.2) in the phase space X × Y on [−r, ω), ω ≤ ∞, with

initial condition x0 = ϕ ∈ X, y0 = ψ ∈ Y is a pair of functions

x = xϕ,ψ : [−r, ω)→ R and y = yϕ,ψ : [−r, ω)→ R

such that



CHAPTER 3. A DE WITH A STATE-DEPENDENT QUEUEING DELAY 25

(i) xt ∈ X for all t ∈ [0, ω), x0 = ϕ;

(ii) x is differentiable on (0, ω);

(iii) yt ∈ Y for all t ∈ [0, ω), y0 = ψ;

(iv) equation (3.1.5) holds on (0, ω);

(v) equation (3.1.2) holds almost everywhere in (0, ω).

The solution (x, y) = (xϕ,ψ, yϕ,ψ) on [−r, ω) is called maximal if any other solution (x̂, ŷ)

with x̂0 = ϕ, ŷ0 = ψ is a restriction of (x, y).

In Section 3.3 we show that, under Hypotheses (H1)–(H4), for each (ϕ, ψ) ∈ X × Y ,

system (3.1.5), (3.1.2) has a unique maximal solution
(
xϕ,ψ, yϕ,ψ

)
: [−r,∞) → R2. The

solutions define the continuous semiflow

Φ : [0,∞)×X × Y 3 (t, ϕ, ψ) 7→
(
xϕ,ψt , yϕ,ψt

)
∈ X × Y,

and, for each t ≥ 0, the solution operators Φ(t, ·, ·) : X × Y → X × Y are Lipschitz

continuous (Theorem 3.3.5). In order to sketch the main steps of the proof, let (ϕ, ψ) ∈
X×Y be given. As, by (H3), the value of F (ϕ, ψ) does not depend on ψ

∣∣
[−r2,0]

, a standard

contraction argument yields T ∈ (0, r2] and a unique x : [−r, T ] → R so that equation

(3.1.5) holds on (0, T ), for arbitrary extension of y0 = ψ to y : [−r, T ] → R. Next we

redefine y : [−r, T ]→ R on (0, T ] such that yt ∈ Y for all t ∈ [0, T ], and equation (3.1.2)

holds almost everywhere on [0, T ] with x : [−r, T ] → R obtained in the first step. In

order to appropriately redefine y : [−r, T ]→ R on [0, T ], we extend the right hand side of

(3.1.2) to an upper semicontinuous multivalued map, and apply a standard result from

[11] for differential inclusions. These two steps combined give a unique solution (xϕ,ψ, yϕ,ψ)

on [−r, T ]. By the method of steps the solution can be uniquely extended to a maximal

solution on some [−r, ω). Global existence, i.e., ω =∞, follows from (H4).

In order to see that system (3.1.4), (3.1.2), (3.1.3) is a particular case of system (3.1.5),

(3.1.2) introduce Z = [0, q/c] ⊂ R as a state space for the variable z(t). A cruical fact is

the existence of a unique Lipschitz continuous map (Proposition 3.3.6) σ : Y → Z such

that

σ(ψ) =
1

c
ψ(−σ(ψ)− r1) (ψ ∈ Y ).

Then, for a solution (x, y) : [−r,∞) → R2 of system (3.1.5), (3.1.2) in the phase space

X × Y , defining z(t) = σ(yt), t ≥ 0, equation (3.1.3) is always satisfied for all t ≥ 0.

Assume that a map G : X × Z → R is given such that, with the particular choice

F : X × Y 3 (ϕ, ψ) 7→ G(ϕ, σ(ψ)) ∈ R,

Hypotheses (H1)–(H4) hold. In this case system (3.1.5), (3.1.2) is equivalent to the system

composed of the equations

ẋ(t) = G(xt, z(t)), (3.1.6)
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(3.1.2) and (3.1.3). Then, in the phase space X × Y , for each (ϕ, ψ) ∈ X × Y , system

(3.1.6), (3.1.2), (3.1.3) has the unique solution xϕ,ψ[−r,∞) → R, yϕ,ψ : [−r,∞) → R,

zϕ,ψ : [0,∞) → R where
(
xϕ,ψ, yϕ,ψ

)
is the solution of system (3.1.5), (3.1.2) with the

above choice of F , and zϕ,ψ(t) = σ(yϕ,ψt ), t ≥ 0.

Defining the map G as

X × Z 3 (ϕ, ζ) 7→ κ
[
ϕ(0)U ′(ϕ(0))− ϕ (−ζ − r0 − r1) p (ϕ (−ζ − r1))

]
∈ R,

system (3.1.4), (3.1.2), (3.1.3) will be a particular case of system (3.1.6), (3.1.2), (3.1.3),

see Section 3.5.

In Section 3.3 we show that system (3.1.6), (3.1.2), (3.1.3) can be studied not only in

the phase space X × Y , but also in X × Z with a different notion of solution. For given

(ϕ, ζ) ∈ X × Z, the pair of functions x : [−r,∞)→ R, z : [0,∞)→ R is called a solution

of system (3.1.6), (3.1.2), (3.1.3) in the phase space X ×Z if xt ∈ X and z(t) ∈ Z for all

t ≥ 0, x0 = ϕ, z(0) = ζ, x is differentiable, equation (3.1.6) holds on (0,∞), moreover,

there exists a function y : [−r,∞) → R with yt ∈ Y , z(t) = σ(yt) for all t ≥ 0, and

equation (3.1.2) is satisfied almost everywhere on [−ζ − r1,∞).

The key technical result (see Section 3.3) to show that system (3.1.6), (3.1.2), (3.1.3)

is well posed in X ×Z is that there is a unique Lipschitz continuous map γ : X ×Z → Y

so that ψ = γ(ϕ, ζ) satisfies ψ(s) = cζ for s ∈ [−r,−ζ − r1], and equation (3.1.2) holds

a.e. in [−ζ − r1, 0]. In particular, ζ = (1/c)ψ(−ζ − r1). This means that the past of the

length of the queue (that is ψ ∈ Y ) can be recovered from the past of the rate (that is

ϕ ∈ X) and from the present waiting time (that is ζ ∈ Z). The maps

h : X × Z 3 (ϕ, ζ) 7→ (ϕ, γ(ϕ, ζ)) ∈ X × Y, k : X × Y 3 (ϕ, ψ) 7→ (ϕ, σ(ψ)) ∈ X × Z

are Lipschitz continuous, h is injective, and k ◦ h = idX×Z , h ◦ k
∣∣
h(X×Z) = idh(X×Z).

Then (see Theorem 3.3.11), for each (ϕ, ζ) ∈ X × Z, there exists a unique solution

xϕ,ζ : [−r,∞)→ R, zϕ,ζ : [0,∞)→ R of system (3.1.6), (3.1.2), (3.1.3) in the phase space

X × Z satisfying the initial condition xϕ,ζ0 = ϕ, zϕ,ζ(0) = ζ. Moreover,

Ψ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→
(
xϕ,ζt , zϕ,ζ(t)

)
∈ X × Z

is a continuous semiflow on X × Z, and Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))) for all t ≥ 0.

In Section 3.4 we assume r0 = 0, r1 = 1 and consider system (3.1.4), (3.1.2), (3.1.3).

Condition r0 = 0 guarantees a single delay in equation (3.1.4), r1 = 1 can be achieved by

rescaling the time. Then for the new variable v = x − x∗, by using U ′(x∗) = p(x∗), the
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rate control system (3.1.4), (3.1.2), (3.1.3) can be written as

v̇(t) = −f(v(t))− g(v(t− z(t)− 1)) (3.1.7)

ẏ(t) =


v(t)− d if 0 < y(t) < q

[v(t)− d]+ if y(t) = 0

−[v(t)− d]− if y(t) = q

(3.1.8)

z(t) =
1

c
y(t− z(t)− 1) (3.1.9)

where f(v) = −κ
[
(v + x∗)U

′(v + x∗)− x∗U ′(x∗)
]
, g(v) = κ

[
(v + x∗)p(v + x∗)− x∗p(x∗)

]
,

and d = c − x∗ > 0. With A = a − x∗ < 0, B = b − x∗ > 0, the nonlinearities f, g

are assumed to be in C1([A,B],R) satisfying 0 ≤ f(ξ)/ξ ≤ f1, 0 < g(ξ)/ξ ≤ g1 for all

ξ ∈ [A,B] \ {0} for some f1 ≥ 0, g1 > 0. Setting

K0 = (f1 + g1) max{−A,B}, r = 1 + q/c, K1 = rK0,

Theorem 3.3.11 implies that system (3.1.7), (3.1.8), (3.1.9) is well posed in the phase

space X × Z with

X =
{
ϕ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [A,B], lip(ϕ) ≤ K1

}
.

A solution (v, z) of system (3.1.7), (3.1.8), (3.1.9) is called slowly oscillatory if for any

two zeros t1, t2 of v with t1 < t2 the inequality z(t2) + 1 < t2− t1 holds. This means that

the distance between consecutive zeros of v is larger than the delay.

Inspired by [26] and [25], introduce

W =
{

(ϕ, ζ) ∈ X × Z
∣∣∣ ϕ∣∣

[−r,−ζ−1] ≡ 0, s 7→ ϕ(s)ef1s is nondecreasing, ϕ(0) > 0
}

and W0 = W ∪ {(0, 0)}. Then, for each (ϕ, ζ) ∈ W , the solution v = vϕ,ζ : [−r,∞)→ R,

z = zϕ,ζ : [0,∞) → R is slowly oscillatory with infinite number of zeros. The second

zero t2 of v in (0,∞) determines t∗2 > t2 so that t2 = t∗2 − z(t∗2) − 1, and a return map

P : W0 → W0 can be defined by P (0, 0) = (0, 0) and

P (ϕ, ζ) =
(
v̂t∗2 , z(t

∗
2)
)

for (ϕ, ζ) ∈ W where v̂t∗2 ∈ X is given by v̂t∗2(s) = v(t∗2+s) for s ∈ [t2−t∗2, 0], and v̂t∗2(s) = 0

for s ∈ [−r, t2−t∗2]. A nontrivial fixed point of P corresponds to a slowly oscillating periodic

solution. A classical tool, that we apply here as well, is Browder’s non-ejective fixed point

theorem. A large part of Section 3.4 is devoted to the construction of a suitable subset

of X × Z where Browder’s theorem is applicable. We remark that, although the papers

[26, 27, 2, 25, 39, 41, 38, 35] consider similar approach to get slowly oscillating periodic

solutions, none of them can be directly applied here, because of the particular definition
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of the state-dependent queueing delay. Some steps of the proof are analogous, and other

parts require new ideas.

It is a crucial result that P (ϕ, ζ) cannot decay too fast: there are constants θ > 0, ρ > 0

with vϕ,ζ(t∗2) ≥ θ (ϕ(0))ρ for all (ϕ, ζ) ∈ W . This fact allows to construct a C2-function α

on [0, q/c] such that α(0) = 0, α′ > 0, α′′ > 0 on (0, q/c], α(q/c) is small enough, and the

delayed inequality

α(ξ − d/c) ≥ θ (α(ξ))ρ
(
ξ ∈

[
d

c
,
q

c

])
holds. Defining the compact subsets

Wα,K1 =
{

(ϕ, ζ) ∈ W0

∣∣ϕ(0) ≥ α(ζ)
}
,

Wα,K0 =
{

(ϕ, ζ) ∈ Wα,K1

∣∣ lip(ϕ ≤ K0)
} (3.1.10)

of X ×Z, the inclusion P (Wα,K1) ⊆ Wα,K0 is satisfied. However, Wα,K1 and Wα,K0 are not

convex. Following [25], the subset

Vα,K1 =
{

(ψ, ζ) ∈ C[−1,0] × Z
∣∣∣ψ([−1, 0]) ⊆ [0, B], lip(ψ) ≤ K1,

[−1, 0] 3 s 7→ ψ(s)ef1rs ∈ R is nondecreasing, ψ(−1) = 0, ψ(0) ≥ α(ζ)
} (3.1.11)

of C[−1,0]×R is compact and convex. Set Vα,K1 can be mapped into Wα,K1 by the streching

mapQ given byQ(ψ, ζ) = (ϕ, ζ) with ϕ(s) = ψ(s/(ζ+1)), s ∈ [−ζ−1, 0], and ϕ
∣∣
[−r,−ζ−1] ≡

0. The squeezing map R, defined by R(ϕ, ζ) = (ψ, ζ) with ψ(s) = ϕ((ζ+ 1)s), s ∈ [−1, 0],

maps Wα,K0 into Vα,K1 . Browder’s theorem can be applied for the map

Π : Vα,K1 ∈ (ψ, ζ) 7→ R ◦ P ◦Q(ψ, ζ) ∈ Vα,K1

to find a non-ejective fixed point of Π in Vα,K1 . This yields a non-ejective fixed point of

P in Wα,K1 as well. The non-ejective fixed point is nontrivial provided (0, 0) ∈ Wα,K1

is ejective. Ejectivity of (0, 0) ∈ Wα,K1 follows in a standard way from that of the zero

solution of the constant delay equation v̇(t) = −f(v(t))− g(v(t− 1)).

Finally, Section 3.5 gives examples.

3.2 Preliminary results

In order to study the queue equation (3.1.2) we recall a basic result of [11] for differential

inclusions.

Let J = [t0, t1] ⊂ R for some fixed t0, t1 ∈ R, t0 < t1. Let D ⊆ Rj be closed. The

multivalued map

F : J ×D → 2Rj \ {∅} =
{
A ⊆ Rj, A 6= ∅

}
is called upper semicontinuous if F−1(A) is closed in J ×D whenever A ⊆ Rj is closed.
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Let ρ(y,D) = infz∈D|y − z| for y ∈ Rj. For y ∈ D define

TD(y) =

{
z ∈ Rj : lim inf

λ→0+

1

λ
ρ(y + λz,D) = 0

}
.

The following existence result is Theorem 5.1 in [11]:

Theorem B. Suppose that the multivalued map F : J ×D → 2Rj \ {∅} is upper semicon-

tinuous, for all (t, y) ∈ J ×D the set F (t, y) is closed and convex in Rj,

F (t, y) ∩ TD(y) 6= ∅ for all (t, y) ∈ J ×D,

moreover, there is a Lebesgue integrable c : J → [0,∞) such that, for all (t, y) ∈ J ×D,

sup{|z| : z ∈ F (t, y)} ≤ c(t)(1 + |y|)

holds. Then, for each y0 ∈ D, there exists an absolutely continuous y : J → D such that

y(t0) = y0 and the inclusion

ẏ(t) ∈ F (t, y(t)) holds a.e. on [t0, t1].

Assume that E is a Banach space, C ⊂ E is compact and convex in E , the map

F : C → C is continuous. A fixed point x0 ∈ C of F is said to be ejective if there exists

an open neighborhood U of x0 in C such that for each x ∈ U \ {x0} there exists a positive

integer k(x) such that for the iterate Fk(x)(x) ∈ C \ U holds. In Section 3.4 we will apply

the following result [7] of Browder on the existence of a non-ejective fixed point.

Theorem C. Assume that E is a Banach space, C ⊂ E is an infinite dimensional compact

and convex subset of E, the map F : C → C is continuous. Then F has a non-ejective

fixed point.

For the application of the above result, we have to guarantee the ejectivity of the

trivial fixed point of a return map. The proof of the ejectivity uses properties of the linear

autonomous equation with constant delay

ẇ(t) = −µw(t)− νw(t− 1) (3.2.1)

where µ ≥ 0 and ν > 0. We recall some basic results from [12, 16, 40]. It is well known

that every ϕ ∈ C[−1,0] uniquely determines a solution wϕ : [−1,∞) → R of equation

(3.2.1) with wϕ|[−1,0] = ϕ, and the solutions define the strongly continuous semigroup

(T (t))t≥0 on [0,∞) × C[−1,0]. The spectrum of the generator consists of the solutions

λ ∈ C of the characteristic equation λ+µ+νe−λ = 0. Assume ν > e−µ−1. Then all points

in the spectrum form a sequence of complex conjugate pairs (λj, λj)
∞
j=1 with Reλj >
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Reλj+1, Imλj ∈ ((2j − 2)π, (2j − 1)π) for all j ∈ N, and Reλj → −∞ as j → ∞. An

explicit criterion for Reλ1 > 0 is

ν >
ϑ

sinϑ
where ϑ ∈ (0, π) is the unique solution of µ = −ϑ cotϑ. (3.2.2)

Let L and Q denote the realified generalized eigenspaces of the generator associated with

the spectral sets {λ1, λ1} and {λk, λk : k ≥ 2}, respectively. Then C[−1,0] = L ⊕ Q. A

basis of L is given by the restrictions of the functions

t 7→ eReλ1t sin(Imλ1t), t 7→ eReλ1t cos(Imλ1t)

to the interval [−1, 0].

Let S ⊂ C[−1,0] \ {0} be the set of functions with at most one sign change in [−1, 0].

The set S is invariant, i.e., T (t)S ⊆ S for all t ≥ 0. Moreover,

S ∩Q = ∅.

Proposition 3.2.1. If µ ≥ 0 and ν > 0 are given such that Reλ1 > 0, i.e., (3.2.2) holds,

and ϕ ∈ S, then the solution wϕ of equation (3.2.1) is unbounded on [−1,∞).

Proof. Let ϕ ∈ S and w = wϕ. From C[−1,0] = L ⊕ Q, S ∩ Q = ∅ and ϕ 6= 0 it follows

that ϕ = ϕL + ϕQ with ϕL ∈ L \ {0}, ϕQ ∈ Q. Then w = wL + wQ where wL = wϕ
L

and wQ = wϕ
Q

. As ϕL ∈ L \ {0}, there exist k1, k2 ∈ R with k21 + k22 6= 0 so that, for all

t ≥ −1,

wL(t) = eReλ1t [k1 sin(Imλ1t) + k2 cos(Imλ1t)] .

The estimate on the complementary space Q (see, e.g., [12] or [16]) implies that there are

δ > 0 and M > 0 such that, for all t ≥ −1,

|wQ(t)| ≤Me(Reλ1−δ)t.

Then, by Reλ1 > 0, it easly follows that w is unbounded.

3.3 The solution semiflow

Assume that r0, r1, r2, q, a, b, c,K, L are given constants as in Section 3.1, and Hypotheses

(H1)–(H4) hold. First we consider system (3.1.5), (3.1.2). Condition (H3) means that

F (ϕ, ψ) does not depend on ψ|[−r2,0]. Consequently, for given ϕ ∈ X and ψ ∈ Y , we can

find x : [−r, T ] → R with x0 = ϕ satisfying equation (3.1.5) on an interval [0, T ] for

some T ∈ (0, r2), no matter how y|[−r,0] = ψ is extended to [−r, T ]. This is done in the

next proposition by using a standard fixed point technique. After that x : [−r, T ]→ R is

obtained, we will be able to determine y : [−r, T ]→ R satisfying equation (3.1.2) on [0, T ].

These two results together give a solution of system (3.1.5), (3.1.2) on [−r, T ]. Repeating

this procedure by time-T steps a global solution will be obtained.
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Proposition 3.3.1. Let T ∈ (0, r2] be fixed such that TL < 1. For every (ϕ, ψ) ∈ X × Y
there exists a unique function x = x(ϕ, ψ) : [−r, T ] → R such that x0 = ϕ, xt ∈ X for

all t ∈ [0, T ], x is differentiable on (0, T ], and, for each y : [−r, T ]→ R with y0 = ψ and

yt ∈ Y for all t ∈ [0, T ], x satisfies equation (3.1.5) on (0, T ]. Moreover, the Lipschitz

continuity property∥∥x (ϕ1, ψ1
)
− x

(
ϕ2, ψ2

)∥∥
[−r,T ] ≤

‖ϕ1 − ϕ2‖[−r,0] + TL ‖ψ1 − ψ2‖[−r,0]
1− TL

holds for all (ϕ1, ψ1), (ϕ2, ψ2) in X × Y .

Proof. Let (ϕ, ψ) ∈ X × Y be given. Define ϕ̂, ψ̂ ∈ C[−r,T ] by

ϕ̂(t) =

ϕ(t) if t ≤ 0,

ϕ(0) if t > 0,
ψ̂(t) =

ψ(t) if t ≤ 0,

ψ(0) if t > 0.

The set

M =
{
u ∈ C[0,T ] : u(0) = 0, lip(u) ≤ K

}
,

is a complete metric space with distance d(u, v) = ‖u − v‖[0,T ]. Introduce the map m :

M × [a, b]→ C[−r,T ] by

m(u, ξ)(t) =

0 if t ∈ [−r, 0],

min{max{u(t), a− ξ}, b− ξ} if t ∈ [0, T ].

Function m(u, ξ) is a trivial extension of u to [−r, 0], and it cuts the values of u on [0, T ]

so that m(u, ξ)(t) ∈ [a− ξ, b− ξ] is satisfied. Then it is clear that

ϕ̂t +mt(u, ϕ(0)) ∈ X, ψ̂t ∈ Y for all t ∈ [0, T ],

and [0, T ] 7→ ϕ̂t +mt(u, ϕ(0)) ∈ X, [0, T ] 7→ ψ̂t ∈ Y are continuous maps. It is easy to see

that ∥∥m (u1, ξ)−m (u2, ξ)∥∥
[−r,T ] ≤

∥∥u1 − u2∥∥
[0,T ]

(u1 ∈M, u2 ∈M, ξ ∈ [a, b]).

Define the map N : X × Y ×M →M as follows:

N (ϕ, ψ, u)(t) =

∫ t

0

F
(
ϕ̂s +ms(u, ϕ(0)), ψ̂s

)
ds, t ∈ [0, T ].

By (H1) and (H2), F is continuous and |F | ≤ K. Therefore, it is obvious thatN (ϕ, ψ, u) ∈
M .

Now, fix (ϕ, ψ) ∈ X × Y . For functions u1, u2 ∈M , by the definition of N , m, and by

(H1) and the Lipschitz property of m, we have∥∥N (ϕ, ψ, u1)−N (ϕ, ψ, u2)∥∥
[0,T ]

= max
t∈[0,T ]

∣∣∣∣∫ t

0

[
F
(
ϕ̂s +ms

(
u1, ϕ(0)

)
, ψ̂s

)
− F

(
ϕ̂s +ms

(
u2, ϕ(0)

)
, ψ̂s

)]
ds

∣∣∣∣
≤
∫ T

0

L
∥∥m (u1, ϕ(0)

)
−m

(
u2, ϕ(0)

)∥∥
[−r,T ] ds ≤ TL

∥∥u1 − u2∥∥
[0,T ]

.
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Since TL < 1, for all (ϕ, ψ) ∈ X×Y , the map M 3 u 7→ N (ϕ, ψ, u) ∈M is a contraction.

Therefore, as M is a complete metric space, there is a unique fixed point u∗(ϕ, ψ) ∈M .

Let (ϕi, ψi) ∈ X × Y and u∗i = u∗ (ϕi, ψi), i = 1, 2. From the obvious inequality∥∥ϕ̂1 +m
(
u, ϕ1(0)

)
− ϕ̂2 −m

(
u, ϕ2(0)

)∥∥
[−r,T ] ≤

∥∥ϕ1 − ϕ2
∥∥
[−r,0] ,

it follows that

‖u∗1 − u∗2‖[0,T ] =
∥∥N (ϕ1, ψ1, u∗1

)
−N

(
ϕ2, ψ2, u∗2

)∥∥
[0,T ]

≤ max
t∈[0,T ]

∣∣∣∣∫ t

0

[
F
(
ϕ̂1
s +ms

(
u∗1, ϕ

1(0)
)
, ψ̂1

s

)
− F

(
ϕ̂2
s +ms

(
u∗2, ϕ

2(0)
)
, ψ̂2

s

)]
ds

∣∣∣∣
≤
∫ T

0

L

(∥∥ϕ̂1 +m
(
u∗1, ϕ

1(0)
)
− ϕ̂2 −m

(
u∗1, ϕ

2(0)
)∥∥

[−r,T ]

+
∥∥m (u∗1, ϕ2(0)

)
−m

(
u∗2, ϕ

2(0)
)∥∥

[−r,T ] +
∥∥∥ψ̂1 − ψ̂2

∥∥∥
[−r,T ]

)
ds

≤ TL
(∥∥ϕ1 − ϕ2

∥∥
[−r,0] + ‖u∗1 − u∗2‖[0,T ] +

∥∥ψ1 − ψ2
∥∥
[−r,0]

)
.

Consequently,∥∥u∗ (ϕ1, ψ1
)
− u∗

(
ϕ2, ψ2

)∥∥
[0,T ]
≤ TL

1− TL

(∥∥ϕ1 − ϕ2
∥∥
[−r,0] + ‖ψ1 − ψ2‖[−r,0]

)
.

We claim that, for all (ϕ, ψ) ∈ X × Y, t ∈ (0, T ],

ϕ(0) + u∗(ϕ, ψ)(t) ∈ (a, b).

If t0 ∈ [0, T ] and ϕ(0) + u∗(ϕ, ψ)(t0) = a, we have ϕ̂(t0) + m(u∗(ϕ, ψ), ϕ(0))(t0) = a.

Then by (H4), F (ϕ̂t0 + mt0(u
∗(ϕ, ψ), ϕ(0)), ψ̂t0) > 0. By continuity, it follows that there

is a δ > 0 so that F (ϕ̂t + mt(u
∗(ϕ, ψ), ϕ(0)), ψ̂t) > 0 for all t ∈ (t0 − δ, t0 + δ) ∩ [0, T ].

The fixed point equation for u∗(ϕ, ψ) implies that t 7→ u∗(ϕ, ψ)(t) strictly increases in

(t0 − δ, t0 + δ) ∩ [0, T ]. Hence it is easy to see that

ϕ(0) + u∗(ϕ, ψ)(t) > a for all t ∈ (0, T ].

Analogously, ϕ(0) + u∗(ϕ, ψ)(t) < b holds for all t ∈ (0, T ]. So the claim is true.

A consequence of the claim is that

m(u∗(ϕ, ψ), ϕ(0))(t) = u∗(ϕ, ψ)(t) for all t ∈ [0, T ],

and the function

x(t) = x(ϕ, ψ)(t) =

ϕ(t) if t ∈ [−r, 0],

ϕ(0) + u∗(ϕ, ψ)(t) if t ∈ [0, T ]

satisfies x0 = ϕ, xt ∈ X for t ∈ [0, T ], x is differentiable on (0, T ], and equation (3.1.5)

holds on (0, T ] with the particular choice y = ψ̂. Observe that, by Hypothesis (H3), the
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above construction gives the same x(ϕ, ψ) for any y : [−r, T ] → R so that y0 = ψ and

yt ∈ Y for t ∈ [0, T ].

Finally, it is straightforward to get the estimate∥∥x (ϕ1, ψ1
)
− x

(
ϕ2, ψ2

)∥∥
[−r,T ] ≤

∥∥ϕ1 − ϕ2
∥∥
[−r,0] +

∥∥u∗ (ϕ1, ψ1
)
− u∗

(
ϕ2, ψ2

)∥∥
[0,T ]

≤ 1

1− TL
∥∥ϕ1 − ϕ2

∥∥
[−r,0] +

TL

1− TL
∥∥ψ1 − ψ2

∥∥
[−r,0] .

This completes the proof.

In the next step we study equation (3.1.2). Since we need the same type of result in

another situation as well, a slightly more general version is considered.

Let t0, t1 ∈ R with t0 < t1. Assume that a function ξ ∈ C([t0, t1], [a, b]) is given. Let

y0 ∈ [0, q] be fixed. We consider the equation

ẏ(t) =


ξ(t)− c if 0 < y(t) < q,

[ξ(t)− c]+ if y(t) = 0,

−[ξ(t)− c]− if y(t) = q

(3.3.1)

on the interval [t0, t1] with initial condition y(t0) = y0.

Proposition 3.3.2. For each ξ ∈ C([t0, t1], [a, b]) and each y0 ∈ [0, q] there exists a

unique Lipschitz continuous function y = y(ξ, y0) : [t0, t1] → [0, q] such that y(t0) =

y0, slope(y) ⊆ [a − c, b − c], and equation (3.3.1) holds almost everywhere in [t0, t1]. In

addition, y(ξ, y0) is Lipschitz continuous in ξ, y0, namely, for all ξ1, ξ2 ∈ C([t0, t1], [a, b])

and y0,1, y0,2 ∈ [0, q],∥∥y(ξ1, y0,1)− y(ξ2, y0,2)
∥∥
[t0,t1]

≤
∣∣y0,1 − y0,2∣∣+ (t1 − t0)

∥∥ξ1 − ξ2∥∥
[t0,t1]

.

Proof. Let ξ ∈ C([t0, t1], [a, b]) and y0 ∈ [0, q] be fixed. Define the map h : [t0, t1]× [0, q]→
R by

h(t, y) =


ξ(t)− c if 0 < y < q,

[ξ(t)− c]+ if y = 0,

−[ξ(t)− c]− if y = q.

Then equation (3.3.1) with y(t0) = y0 on [t0, t1] can be written as an initial value problemẏ(t) = h(t, y(t)) a.e. for t ∈ [t0, t1],

y(t0) = y0.
(3.3.2)

The remaining part of the proof is divided into three steps. In Steps 1–2 we show

existence, in Step 3 uniqueness and the Lipschitz property are obtained.
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Step 1. We extend h to a multivalued function h̃ : [t0, t1]× [0, q]→ 2R \ {∅} as follows:

h̃(t, y) =



{ξ(t)− c} if y ∈ (0, q),

or y = 0 and ξ(t) ≥ c,

or y = q and ξ(t) ≤ c,

[ξ(t)− c, 0] if y = 0 and ξ(t) < c,

[0, ξ(t)− c] if y = q and ξ(t) > c.

It is easy to check that h̃ is an upper semicontinuous function. We apply Theorem B

by choosing j = 1, D = [0, q], J = [t0, t1], F = h̃. Clearly, TD(y) = R for y ∈ (0, q),

TD(0) = [0,∞) and TD(q) = (−∞, 0]. It is obvious that the conditions of Theorem B

are satisfied with c(t) = max{c − a, b − c}. Therefore, there is an absolutely continuous

y = y(ξ, y0) : [t0, t1]→ [0, q] such that

ẏ(t) ∈ h̃(t, y(t)) a.e. for t ∈ [t0, t1] (3.3.3)

and y(t0) = y0.

Step 2. We show that for the function y = y(ξ, y0), obtained in Step 1, equation (3.3.1)

holds almost everywhere, and y(t0) = y0.

Assume that t ∈ (t0, t1) is given such that ẏ(t) exists and ẏ(t) ∈ h̃(t, y(t)).

If y(t) ∈ (0, q) then h̃(t, y(t)) = {ξ(t) − c}, and consequently ẏ(t) = h(t, y(t)). If

y(t) = 0 then necessarily ẏ(t) = 0. From ẏ(t) = 0 ∈ h̃(t, 0) it follows that ξ(t) ≤ c, and

thus 0 = ẏ(t) = [ξ(t)− c]+ = h(t, y(t)). The case y(t) = q is analogous.

Therefore, y = y(ξ, y0) satisfies equation (3.3.2). Then, by the definition of h(t, y) and

ξ([t0, t1]) ⊆ [a, b], it is clear that (3.3.1) holds almost everywhere for y, y(t0) = y0, and

slope(y) ⊆ [a− c, b− c].
Step 3. Let ξ1, ξ2 ∈ C([t0, t1],R), y0,1, y0,2 ∈ [0, q], y1 = y(ξ1, y0,1), y2 = y(ξ2, y0,2).

Then the map [t0, t1] 3 t 7→ |y1(t)− y2(t)| ∈ R is absolutely continuous.

Claim 3.3.3. For ξ1, ξ2 ∈ C([t0, t1],R), y0,1, y0,2 ∈ [0, q], y1 = y(ξ1, y0,1), y2 = y(ξ2, y0,2)∣∣ẏ1(s)− ẏ2(s)∣∣ ≤ ∣∣ξ1(s)− ξ2(s)∣∣ holds a.e. in [t0, t1].

For almost all s ∈ (t0, t1) the derivative ẏi(s) exists with ẏi(s) = hi(s, yi(s)), where hi

is the map constructed as h above with ξ replaced by ξi, i = 1, 2. Fix such an s ∈ (t0, t1).

We distinguish 4 cases.

Case 1. yi(s) ∈ (0, q), i ∈ {1, 2}. Then, by the definition of h1,h2, |ẏ1(s) − ẏ2(s)| =

|ξ1(s)− ξ2(s)|.
Case 2. yi(s) ∈ {0, q}, i ∈ {1, 2}. In this case ẏ1(s) = ẏ2(s) = 0, and hence |ẏ1(s) −

ẏ2(s)| = 0 ≤ |ξ1(s)− ξ2(s)|.
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Case 3. y1(s) = 0, y2(s) ∈ (0, q). Then ẏ1(s) = 0 and consequently ξ1(s) ≤ c. In

addition, ∣∣ẏ1(s)− ẏ2(s)∣∣ =
∣∣− (c− ξ2(s))∣∣ =

∣∣ξ2(s)− c∣∣ ≤ ∣∣ξ2(s)− ξ1(s)∣∣ .
Case 4. y1(s) ∈ (0, q), y2(s) = q. Then ẏ2(s) = 0 and ξ2(s) ≥ c follows. Hence∣∣ẏ1(s)− ẏ2(s)∣∣ =

∣∣− (ξ1(s)− c)∣∣ =
∣∣c− ξ1(s)∣∣ ≤ ∣∣ξ2(s)− ξ1(s)∣∣ .

The remaining cases can be obtained by changing the indices. This completes the proof

of the claim.

Since

y1(t)− y2(t) = y0,1 − y0,2 +

∫ t

t0

d

ds
[y1(s)− y2(s)] ds for t ∈ [t0, t1],

we have ∥∥y1 − y2∥∥
[t0,t1]

≤
∣∣y0,1 − y0,2∣∣+

∫ t1

t0

∣∣ẏ1(s)− ẏ2(s)∣∣ ds
=
∣∣y0,1 − y0,2∣∣+ (t1 − t0)

∥∥ξ1 − ξ2∥∥
[t0,t1]

.

This implies the uniqueness of y(ξ, y0), and the Lipschitz continuity of y(ξ, y0) with respect

to ξ and y0. The proof is complete.

The following corollary is immediate from Proposition 3.3.2.

Corollary 3.3.4. Let T > 0. For all ξ̃ ∈ C([−r, T ], [a, b]) and ψ ∈ Y there exists a unique

Lipschitz continuous function y = y(ξ̃, ψ) : [−r, T ] → [0, q] such that y0 = ψ, slope(y) ⊆
[a−c, b−c], and equation (3.3.1) with ξ(t) = ξ̃(t−r0) holds almost everywhere in [0, T ]. In

addition, y(ξ̃, ψ) is Lipschitz continuous in ξ̃, ψ, namely, for all ξ̃1, ξ̃2 ∈ C([−r, T ], [a, b])

and ψ1, ψ2 ∈ Y ,∥∥∥y(ξ̃1, ψ1)− y(ξ̃2, ψ2)
∥∥∥
[−r,T ]

≤
∥∥ψ1 − ψ2

∥∥
[−r,0] + T

∥∥∥ξ̃1 − ξ̃2∥∥∥
[−r,T ]

.

Now we are in a position to prove existence, uniqueness, and continuous dependence

of the solutions of system (3.1.5), (3.1.2).

Theorem 3.3.5. For each (ϕ, ψ) ∈ X × Y there exists a unique solution

xϕ,ψ : [−r,∞)→ R, yϕ,ψ : [−r,∞)→ R

of system (3.1.5), (3.1.2) on [−r,∞) satisfying the initial condition xϕ,ψ0 = ϕ, yϕ,ψ0 = ψ.

The mapping

Φ : [0,∞)×X × Y 3 (t, ϕ, ψ) 7→
(
xϕ,ψt , yϕ,ψt

)
∈ X × Y

defines a continuous semiflow on X × Y . In addition, Φ has the following Lipschitz con-

tinuity property∥∥Φ
(
t, ϕ1, ψ1

)
− Φ

(
t, ϕ2, ψ2

)∥∥
X×Y ≤

∥∥(ϕ1, ψ1
)
−
(
ϕ2, ψ2

)∥∥
X×Y e

t(1+L).
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Proof. Let T ∈ (0, r2], TL < 1 and (ϕ, ψ) ∈ X × Y . By Proposition 3.3.1 there exists a

unique function x = x(ϕ, ψ) : [−r, T ] → R such that x0 = ϕ, xt ∈ X for all t ∈ [0, T ],

x is differentiable on (0, T ], x satisfies equation (3.1.5) on (0, T ], and the function y :

[−r, T ]→ R in (3.1.5) is arbitrary with y0 = ψ and yt ∈ Y for all t ∈ [0, T ]. By Corollary

3.3.4, with ξ̃ = x(ϕ, ψ), we can choose a unique y = y(x(ϕ, ψ), ψ) : [−r, T ]→ R such that

y0 = ψ, yt ∈ Y for all t ∈ [0, T ], and equation (3.1.2) holds almost everywhere in [0, T ].

The functions xϕ,ψ : [−r,∞) → R and yϕ,ψ : [0,∞) → R are defined as follows.

Set xϕ,ψ(t) = x(ϕ, ψ)(t), yϕ,ψ(t) = y(x(ϕ, ψ), ψ)(t) for t ∈ [−r, T ]. Hence we can define

ϕ̃ = xϕ,ψT ∈ X and ψ̃ = yϕ,ψT ∈ Y . For (ϕ̃, ψ̃) ∈ X × Y , the functions x(ϕ̃, ψ̃) and y(ϕ̃, ψ̃)

can be constructed as above. Set xϕ,ψ(t) = x(ϕ̃, ψ̃)(t− T ), yϕ,ψ(t) = y(x(ϕ̃, ψ̃), ψ̃)(t− T )

for t ∈ [T, 2T ]. This procedure can be repeated to define xϕ,ψ and yϕ,ψ on the interval

[−r,∞). The differentiability of xϕ,ψ on (0,∞) follows from the continuity of the map

[0,∞) 3 t 7→ F (xϕ,ψt , yϕ,ψt ) ∈ R. It is not difficult to see that xϕ,ψ and yϕ,ψ will be the

unique solution of system (3.1.5), (3.1.2) on [−r,∞) with initial condition xϕ,ψ0 = ϕ,

yϕ,ψ0 = ψ. Defining

Φ(t, ϕ, ψ) =
(
xϕ,ψt , yϕ,ψt

)
(t ≥ 0, ϕ ∈ X, ψ ∈ Y ) ,

the uniqueness clearly guarantees the semigroup property. Continuity of [0,∞) 3 t 7→
Φ(t, ϕ, ψ) ∈ X × Y is a consequence of the Lipschitz property of X and Y . Combining

these properties with the stated Lipschitz continuity property of Φ it is easy to conclude

the continuity of Φ.

So, it remains to prove that Φ is Lipschitz continuous in ϕ, ψ as claimed in the The-

orem. Before the proof, we remark that the unique pair xϕ,ψ, yϕ,ψ does not depend on T

used in Proposition 3.3.1 and later. Hence, the construction works for all T ∈ (0, r2] with

TL < 1.

Let (ϕi, ψi) ∈ X × Y , xi = xϕ
i,ψi , yi = yϕ

i,ψi , i = 1, 2. For each t ≥ 0 with T ∈
(0, r2] and TL < 1, by using Proposition 3.3.1 and Corollary 3.3.4, we have the following

estimate: ∥∥x1 − x2∥∥
[t−r,t+T ] +

∥∥y1 − y2∥∥
[t−r,t+T ]

≤
∥∥x1 − x2∥∥

[t−r,t+T ] +
∥∥y1 − y2∥∥

[t−r,t] + T
∥∥x1 − x2∥∥

[t−r,t+T ]

= (1 + T )
∥∥x1 − x2∥∥

[t−r,t+T ] +
∥∥y1 − y2∥∥

[t−r,t]

≤ 1 + T

1− TL

(∥∥x1 − x2∥∥
[t−r,t] + TL

∥∥y1 − y2∥∥
[t−r,t]

)
+
∥∥y1 − y2∥∥

[t−r,t]

=
1 + T

1− TL
∥∥x1 − x2∥∥

[t−r,t] +
1 + T 2L

1− TL
∥∥y1 − y2∥∥

[t−r,t]

≤ 1 + T

1− TL

(∥∥x1 − x2∥∥
[t−r,t] +

∥∥y1 − y2∥∥
[t−r,t]

)
.
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Hence, we get an estimate for the right-hand upper Dini derivative:

D+
(∥∥x1t − x2t∥∥[−r,0] +

∥∥y1t − y2t ∥∥[−r,0])
= lim sup

T→0+

1

T

(∥∥x1t+T − x2t+T∥∥[−r,0] +
∥∥y1t+T − y2t+T∥∥[−r,0]

−
∥∥x1t − x2t∥∥[−r,0] − ∥∥y1t − y2t ∥∥[−r,0] )

= lim sup
T→0+

1

T

(
1 + T

1− TL

(∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0])

−
∥∥x1t − x2t∥∥[−r,0] − ∥∥y1t − y2t ∥∥[−r,0])
≤ lim sup

T→0+

1 + L

1− TL

(∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0])

≤ (1 + L)
(∥∥x1t − x2t∥∥[−r,0] +

∥∥y1t − y2t ∥∥[−r,0]) .
Then the inequality

D+
[
e−(L+1)t

(∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0])] ≤ 0

easily follows for all t ≥ 0. By Zygmund’s inequality (see e.g., [34, p. 10] or [24, p. 9]) the

function

[0,∞) 3 t 7→ e−(L+1)t
(∥∥x1t − x2t∥∥[−r,0] +

∥∥y1t − y2t ∥∥[−r,0]) ∈ R

is monotone nonincreasing. Consequently,∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0] ≤ e(L+1)t

(∥∥x10 − x20∥∥[−r,0] +
∥∥y10 − y20∥∥[−r,0])

for all t ≥ 0. This completes the proof.

Now, we turn to the study of system (3.1.6), (3.1.2), (3.1.3), and show that it can be

considered in the phase space X × Z as well.

First we show that equation (3.1.3) can be solved uniquely provided yt ∈ Y .

Proposition 3.3.6. There is a unique map σ : Y → Z satisfying

σ(ψ) =
1

c
ψ(−σ(ψ)− r1). (3.3.4)

The map σ : Y → Z is Lipschitz continuous, namely, for all ψ1, ψ2 ∈ Y the inequality∣∣σ (ψ1
)
− σ

(
ψ2
)∣∣ ≤ 1

a
max

s∈[−max{σ(ψ1),σ(ψ2)}−r1,−r1]

∣∣ψ1(s)− ψ2(s)
∣∣

≤ 1

a

∥∥ψ1 − ψ2
∥∥
[−r,0]

(3.3.5)

holds.
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Proof. Let ψ ∈ Y be given. Define % : [0, q/c] 3 s 7→ s− ψ(−s− r1)/c. For 0 ≤ s1 < s2 ≤
q/c, by using slope(ψ) ⊆ [a− c, b− c] and 0 < a < c, it follows that

%(s1)− %(s2)

s1 − s2
=
s1 − ψ(−s1 − r1)/c− s2 + ψ(−s2 − r1)/c

s1 − s2

= 1− 1

c

ψ(−s1 − r1)− ψ(−s2 − r1)
s1 − s2

= 1 +
1

c

ψ(−s1 − r1)− ψ(−s2 − r1)
(−s1 − r1)− (−s2 − r1)

≥ 1 +
a− c
c

=
a

c
> 0.

Hence, function % is strictly increasing in [0, q/c]. Observe that

%(0) = −ψ(−r1)
c

≤ 0 and %
(q
c

)
=
q

c
− ψ(q/c− r1)

c
≥ q

c
− q

c
= 0.

So, % has a unique zero, denoted by σ(ψ), in [0, q/c]. Clearly, σ(ψ) is unique with (3.3.4).

In order to prove the Lipschitz continuity of σ, let ψ1, ψ2 be given. If σ(ψ1) = σ(ψ2)

then inequality (3.3.5) trivially holds. Without loss of generality assume σ(ψ1) > σ(ψ2).

By slope(ψ2) ⊆ [a− c, b− c] we obtain∣∣σ (ψ1
)
− σ

(
ψ2
)∣∣ = σ

(
ψ1
)
− σ

(
ψ2
)

=
ψ1(−σ(ψ1)− r1)− ψ2(−σ(ψ2)− r1)

c

=
ψ1(−σ(ψ1)− r1)− ψ2(−σ(ψ1)− r1)

c
+
ψ2(−σ(ψ1)− r1)− ψ2(−σ(ψ2)− r1)

c

≤ 1

c
max

s∈[−σ(ψ1)−r1,−r1]

∣∣ψ1(s)− ψ2(s)
∣∣+

c− a
c

∣∣σ (ψ1
)
− σ

(
ψ2
)∣∣ .

Hence(
1− c− a

c

) ∣∣σ (ψ1
)
− σ

(
ψ2
)∣∣ ≤ 1

c
max

s∈[−max{σ(ψ1),σ(ψ2)}−r1,−r1]

∣∣ψ1(s)− ψ2(s)
∣∣ ,

from which inequality (3.3.5) easily holds.

The next proposition is a key technical result. It shows that, for given ϕ ∈ X and

ζ ∈ Z, we can find uniquely an element ψ ∈ Y such that ψ satisfies equation (3.1.2), with

x = ϕ and y = ψ a.e. in [−ζ − r1, 0], and ζ = σ(ψ) holds as well. In order to guarantee

the uniqueness of γ we choose it to have the constant value cζ on [−r,−ζ − r1].

Proposition 3.3.7. There is a unique map

γ : X × Z → Y

so that ψ = γ(ϕ, ζ) satisfies

ψ(s) = cζ for s ∈ [−r,−ζ − r1],

ψ̇(s) =


ϕ(s− r0)− c if 0 < ψ(s) < q,

[ϕ(s− r0)− c]+ if ψ(s) = 0,

−[ϕ(s− r0)− c]− if ψ(s) = q

a.e. in [−ζ − r1, 0].
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In addition, ζ = σ(γ(ϕ, ζ)) for all (ϕ, ζ) ∈ X × Z, and∥∥γ (ϕ1, ζ1
)
− γ

(
ϕ2, ζ2

)∥∥
[−r,0] ≤ r

∥∥ϕ1 − ϕ2
∥∥
[−r,0] + max{2c− a, b}

∣∣ζ1 − ζ2∣∣
for all ϕ1, ϕ2 ∈ X and ζ1, ζ2 ∈ Z.

Proof. Let (ϕ, ζ) ∈ X × Z be given. Define a function ψ : [−r, 0] → R as follows. Let

ψ(s) = cζ for s ∈ [−r, ζ − r1]. Applying Proposition 3.3.2 with [t0, t1] = [−ζ − r1, 0],

ξ(s) = ϕ(s − r0) for s ∈ [−ζ − r1, 0], y0 = cζ, we can uniquely define ψ(s) = y(ξ, y0)(s)

for s ∈ [−ζ − r1, 0]. It is clear that γ(ϕ, ζ) = ψ is the unique element of Y satisfying the

stated properties.

By the definition of γ(ϕ, ζ), we have ζ = (1/c)γ(ϕ, ζ)(−ζ− r1), that is ζ = σ(γ(ϕ, ζ)).

In order to show the Lipschitz continuity of γ, let (ϕi, ζ i) ∈ X ×Z and ψi = γ(ϕi, ζ i),

i = 1, 2. Without loss of generality, assume that ζ1 ≥ ζ2. If −r ≤ s ≤ −ζ1 − r1 then∣∣ψ1(s)− ψ2(s)
∣∣ =

∣∣cζ1 − cζ2∣∣ = c
∣∣ζ1 − ζ2∣∣ . (3.3.6)

If −ζ1 − r1 ≤ s ≤ −ζ2 − r1 then, by using that ψ1 is absolutely continuous (because it is

Lipschitz continuous) and thus ψ1(s)− cζ1 =
∫ s
−ζ1−r1 ψ̇

1(u) du,

|ψ1(s)− ψ2(s)| =
∣∣∣∣cζ1 +

∫ s

−ζ1−r1
ψ̇1(u) du− cζ2

∣∣∣∣
≤
∣∣cζ1 − cζ2∣∣+

∫ −ζ2−r1
−ζ1−r1

∣∣ϕ1(u− r0)− c
∣∣ du

≤ c
∣∣ζ1 − ζ2∣∣+ max{c− a, b− c}

∣∣ζ1 − ζ2∣∣ = max{2c− a, b}
∣∣ζ1 − ζ2∣∣ . (3.3.7)

If −ζ2 − r1 ≤ s ≤ 0 then, similarly to the above case, and applying Claim 3.3.3,

∣∣ψ1(s)− ψ2(s)
∣∣ =

∣∣∣∣cζ1 +

∫ s

−ζ1−r1
ψ̇1(u) du− cζ2 −

∫ s

−ζ2−r1
ψ̇2(u) du

∣∣∣∣
≤
∣∣cζ1 − cζ2∣∣+

∫ −ζ2−r1
−ζ1−r1

∣∣ϕ1(u− r0)− c
∣∣ du

+

∫ 0

−ζ2−r1

∣∣ϕ1(u− r0)− ϕ2(u− r0)
∣∣ du

≤ max{2c− a, b}
∣∣ζ1 − ζ2∣∣+ r

∥∥ϕ1 − ϕ2
∥∥
[−r,0] . (3.3.8)

Combining (3.3.6), (3.3.7), (3.3.8), we get the stated Lipschitz continuity.

Proposition 3.3.8. Let y ∈ C([−r,∞), [0, q]) be a Lipschitz continuous function with

slope(y) ⊆ [a− c, b− c]. Then the function z : [0,∞) 3 t 7→ σ(yt) ∈ R satisfies slope(z) ⊆
[1− c/a, 1− c/b].
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Proof. Clearly, z(t) = σ(yt) = (1/c)y(t−σ(yt)− r1) = (1/c)y(t− z(t)− r1), t ≥ 0. Choose

t1 ≥ 0, t2 ≥ 0 with t1 6= t2. Then, clearly t1 − z(t1) 6= t2 − z(t2), and

z(t1)− z(t2)

t1 − t2
=

1

c

y(t1 − z(t1)− r1)− y(t2 − z(t2)− r1)
t1 − t2

=
1

c

y(t1 − z(t1)− r1)− y(t2 − z(t2)− r1)
(t1 − z(t1)− r1)− (t2 − z(t2)− r1)

(t1 − z(t1)− r1)− (t2 − z(t2)− r1)
t1 − t2

=
1

c

y(s1)− y(s2)

s1 − s2

(
1− z(t1)− z(t2)

t1 − t2

)
with sj = tj − z(tj)− r1, j = 1, 2. Rearranging terms and multiplying by c we obtain(

c+
y(s1)− y(s2)

s1 − s2

)
z(t1)− z(t2)

t1 − t2
=
y(s1)− y(s2)

s1 − s2
.

Using slope(y) ⊆ [a− c, b− c], and ξ/(c+ ξ) ∈ [(a− c)/a, (b− c)/b] for ξ ∈ [a− c, b− c],
it follows that

z(t1)− z(t2)

t1 − t2
=

y(s1)−y(s2)
s1−s2

c+ y(s1)−y(s2)
s1−s2

∈
[
a− c
a

,
b− c
b

]
=
[
1− c

a
, 1− c

b

]
,

and the proof is complete.

Proposition 3.3.9. Let y ∈ C([−r,∞), [0, q]) be a Lipschitz continuous function with

slope(y) ⊆ [a− c, b− c], and define z : [0,∞) 3 t 7→ σ(yt) ∈ R. Then the map

η : [0,∞) 3 t 7→ t− z(t)− r1 ∈ R

is Lipschitz continuous with slope(η) ⊆ [c/b, c/a]. In particular, η is a strictly increasing

function, and, for its inverse η−1, slope(η−1) ⊆ [a/c, b/c] holds.

Proof. From Proposition 3.3.8, with t1 ≥ 0, t2 ≥ 0 and t1 6= t2 we have

η(t1)− η(t2)

t1 − t2
=

(t1 − z(t1)− r1)− (t2 − z(t2)− r1)
t1 − t2

= 1− z(t1)− z(t2)

t1 − t2
∈
[c
b
,
c

a

]
.

Let tj = η(sj), j = 1, 2, with t1 6= t2. Then, for the inverse

η−1(t1)− η−1(t2)
t1 − t2

=
η−1(η(s1))− η−1(η(s1))

η(s1)− η(s1)
=

s1 − s2
η(s1)− η(s1)

∈
[
a

c
,
b

c

]
,

that completes the proof.

In the remaining part of this section we consider a map G : X ×Z → R such that for

F : X × Y → R given by

F (ϕ, ψ) = G(ϕ, σ(ψ))

Hypotheses (H1), (H2), (H4) hold. We remark that (H3) also holds with r2 = r1 > 0

because σ(ψ) is determined by ψ|[−r,−r1]. We consider the system composed of equations

ẋ(t) = G(xt, σ(yt)) (3.3.9)
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and (3.1.2) in the phase space X × Y as it is a particular case of system (3.1.5), (3.1.2).

Define the mappings

h : X × Z 3 (ϕ, ζ) 7→ (ϕ, γ(ϕ, ζ)) ∈ X × Y,
k : X × Y 3 (ϕ, ψ) 7→ (ϕ, σ(ψ)) ∈ X × Z.

(3.3.10)

Note that both of them are Lipschitz continuous, h is injective, but k is not. For their

compositions, we have

k ◦ h = idX×Z and h ◦ k
∣∣
h(X×Z) = idh(X×Z) .

Proposition 3.3.10. If ϕ ∈ X, ψ1 ∈ Y , ψ2 ∈ Y , ζ ∈ Z with ζ = σ(ψ1) = σ(ψ2) and

ψ1(s) = ψ2(s) for all s ∈ [−ζ − r1, 0],

then, for the semiflow Φ generated by system (3.3.9), (3.1.2), we have

k
(
Φ
(
t, ϕ, ψ1

))
= k

(
Φ
(
t, ϕ, ψ2

))
for all t ≥ 0.

Proof. From Theorem 3.3.5 we know that Φ exists. Let (xi, yi) : [−r,∞) → R2 be given

such that Φ (t, ϕi, ψi) = (xit, y
i
t), t ≥ 0).

First we show that

x1(t) = x2(t) for all t ∈ [−r,∞), y1(t) = y2(t) for all t ∈ [−ζ − r1,∞). (3.3.11)

If (3.3.11) does not hold, then there exists a maximal t0 ∈ [0,∞) such that

x1(t) = x2(t) for all t ∈ [−r, t0], y1(t) = y2(t) for all t ∈ [−ζ − r1, t0]. (3.3.12)

We claim that σ (y1t ) = σ (y2t ) for all t ∈ [0, t0 + r1].

Proposition 3.3.9 implies, for i = 1, 2, that

t− σ
(
yit
)
− r1 ≥ −σ

(
yi0
)
− r1 = −ζ − r1 for all t ∈ [0,∞).

From this inequality and from Proposition 3.3.6, it follows for each t ∈ [0, t0 + r1] that∣∣σ (y1t )− σ (y2t )∣∣ ≤ 1

a
max

s∈[−max{σ(y1t ),σ(y2t )}−r1,−r1]

∣∣y1(t+ s)− y2(t+ s)
∣∣

=
1

a
max

s∈[t−max{σ(y1t ),σ(y2t )}−r1,t−r1]

∣∣y1(s)− y2(s)∣∣ ≤ 1

a
max

s∈[−ζ−r1,t0]

∣∣y1(s)− y2(s)∣∣ = 0.

Therefore the claim holds.

Set m(t) = σ (y1t ) = σ (y2t ), t ∈ [0, t0+r1]. Clearly, for both x1 and x2 the same equation

ẋ(t) = G(xt,m(t)) holds for all t ∈ (0, t0 + r1). By (3.3.12), x1t = x2t for all t ∈ [0, t0].

Since G : X ×Z → R is Lipschitz continuous, a standard uniqueness technique yields the

existence of a δ ∈ (0, r1) so that x1(t) = x2(t) for all t ∈ [−r, t0 + δ]. Now we can apply

Proposition 3.3.2 to conclude y1(t) = y2(t) for all t ∈ [−ζ − r1, t0 + δ]. This contradicts

the definition of t0. It follows that (3.3.11) is satisfied, and also k(x1t , y
1
t ) = k(x2t , y

2
t ) for

all t ≥ 0. This proves our statement.
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Now we have all tools to show that for system (3.1.6), (3.1.2), (3.1.3) the space X×Z
is a suitable phase space.

Theorem 3.3.11. For each (ϕ, ζ) ∈ X × Z there exists a unique pair of functions

xϕ,ζ : [−r,∞)→ R, zϕ,ζ : [0,∞)→ R

such that (x, z) is a solution of system (3.1.6), (3.1.2), (3.1.3) in the phase space X × Z
satisfying the initial condition xϕ,ζ0 = ϕ, zϕ,ζ(0) = ζ. The mapping

Ψ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→
(
xϕ,ζt , zϕ,ζ(t)

)
∈ X × Z

defines a continuous semiflow on X ×Z. In addition, there exists a constant M > 0 such

that ∥∥Ψ
(
t, ϕ1, ζ1

)
−Ψ

(
t, ϕ2, ζ2

)∥∥ ≤M
∥∥(ϕ1, ζ1

)
−
(
ϕ2, ζ2

)∥∥ et(1+L)
for all t ≥ 0, ϕ1, ϕ2 ∈ X, ζ1, ζ2 ∈ Z. Moreover, for all t ≥ 0, ϕ ∈ X, ζ ∈ Z,

Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))).

Proof. Let (ϕ, ζ) ∈ X × Z be given.

1. Existence. By Theorem 3.3.5, system (3.3.9), (3.1.2) has a unique solution in the

phase space X×Y , denoted by (x, y) : [−r,∞)→ R2, with x0 = ϕ, y0 = γ(ϕ, ζ). Defining

z(t) = σ(yt) ∈ Z, t ∈ [0,∞), (x, z) is a solution of system (3.1.6), (3.1.2), (3.1.3) in X×Z
with x0 = ϕ, z(0) = ζ.

2. Uniqueness. Assume that the pair of functions x̃ : [−r, ω) → R, z̃ : [0, ω) → R is

a also solution of system (3.1.6), (3.1.2), (3.1.3) in X × Z with initial condition x̃0 = ϕ,

z̃(0) = ζ. Then, by definition, there exists a Lipschitz continuous function ỹ : [−r, ω)→ R
so that ỹt ∈ Y , z̃(t) = σ(ỹt) for all t ∈ [0, ω), and equation (3.1.2) holds a.e. in [−ζ−r1, ω).

From z̃(0) = ζ = σ(ỹ0) = (1/c)ỹ(−ζ − r1) and (3.1.2), it easily follows that

ỹ(s) = γ(ϕ, ζ)(s) for all s ∈ [−ζ − r1, 0].

Proposition 3.3.10 implies that

(xt, z(t)) = k(Φ(t, ϕ, γ(ϕ, ζ))) = k(Φ(t, ϕ, ỹ0)) = (x̃t, z̃(t)) for all t ∈ [0, ω).

It is clear that the pair (x̃, ỹ) : [−r, ω)→ R2 is also a solution of system (3.3.9), (3.1.2) in

X × Y . Moreover Φ(t, ϕ, ỹ0) can be uniquely extended to [0,∞) with Φ(t, ϕ, ỹ0) = (x̃t, ỹt)

for all t ∈ [0, ω).

Now we see that the function Ψ is well defined.

3. Properties of Ψ. We have to show that Ψ is a semiflow on X × Z, i.e.,

Ψ(t1 + t2, ϕ, ζ) = Ψ(t2,Ψ(t1, ϕ, ζ)) for all t1 ≥ 0, t2 ≥ 0. (3.3.13)



CHAPTER 3. A DE WITH A STATE-DEPENDENT QUEUEING DELAY 43

Let x : [−r,∞) → R, z : [−ζ − 1,∞) → R be the solution of system (3.1.6), (3.1.2),

(3.1.3), y : [−r,∞)→ R be such that (3.1.2) holds a.e. in [−r,∞), and t1 ≥ 0, t2 ≥ 0.

Since Ψ(t, ϕ, ζ) = (xt, z(t)) for t ≥ 0, (3.3.13) is equivalent to

(xt1+t2 , z(t1 + t2)) = Ψ(t2, (xt1 , z(t1))). (3.3.14)

Using functions h and k defined in (3.3.10), it is easy to see that

Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))) for all t ≥ 0,

so (3.3.14) can be written as

(xt1+t2 , z(t1 + t2)) = k(Φ(t2, xt1 , γ(xt1 , z(t1)))). (3.3.15)

The assumptions of Proposition 3.3.10 clearly hold with xt1 , γ(xt1 , z(t1)), yt1 , zt1 in-

stead of ϕ, ψ1, ψ2, ζ, so we have

k(Φ(t2, xt1 , γ(xt1 , z(t1)))) = k(Φ(t2, xt1 , yt1)) = k(xt1+t2 , yt1+t2)

= (xt1+t2 , σ(yt1+t2)) = (xt1+t2 , z(t1 + t2)).

Thus, (3.3.15) holds, and Ψ is a semiflow on X × Z.

From the Lipschitz property of Φ in Theorem 3.3.5, and the Lipschitz continuity of h

and k, our lasts statement also holds, where M is the product of the Lipschitz constants

of h and k.

3.4 Slowly oscillating periodic solutions

In this section it is shown that, for a class of rate control problems, like the system

composed of equations (3.1.4), (3.1.3), (3.1.2), it is possible to have slowly oscillatory

periodic solutions.

We need the simplifying assumption r0 = 0. This condition is important technically.

Equation (3.1.4) with r0 = 0 becomes an equation with a single delay, while in case r0 > 0

there are two different delays. By rescaling the time, without loss of generality we may

suppose r1 = 1.

Recall from Section 3.1 the constants a, b, c, q, with 0 < a < c < b, q > 0. For the

rate x(t), x(t) ∈ [a, b] is assumed, c is the maximal capacity of the server, q is an upper

bound for the length of the queue y(t). We suppose that there exists x∗ ∈ (a, c) serving

as a stationary solution of the rate control equation.

As we are interested in the oscillatory behaviour of x(t) around x∗ we introduce v(t) =

x(t)− x∗, and write the rate control equation for v instead of x. Defining d = c− x∗ > 0,

we obtain system (3.1.7), (3.1.8), (3.1.9), which will be studied in this section.

Set A = a− x∗, B = b− x∗, and assume the following conditions for f and g:
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(S1) f, g ∈ C1([A,B],R);

(S2) f(ξ)ξ ≥ 0 and g(ξ)ξ > 0 for all ξ ∈ [A,B] \ {0}, g′(0) > 0;

(S3) g([A,B]) ∈ (−f(B),−f(A));

(S4) the map C 3 λ 7→ λ+ f ′(0) + g′(0)e−λ ∈ C has a zero with positive real part.

Define the functions f̃ , g̃ : [A,B]→ R as follows:

f̃(ξ) =


f(ξ)
ξ

if ξ 6= 0,

f ′(0) if ξ = 0,
g̃(ξ) =


g(ξ)
ξ

if ξ 6= 0,

g′(0) if ξ = 0.

From (S1) and (S2) it follows that f̃ and g̃ are continuous, and there are constants f1 ≥ 0,

g1 > g0 > 0 such that

f̃([A,B]) ⊆ [0, f1], g̃([A,B]) ⊆ [g0, g1].

Let

K0 = (f1 + g1) max{−A,B}, r = 1 +
q

c
, K1 = rK0.

Since a, b, c, q, r are given, by setting K = K1, we can define the sets X and Y as in

Section 3.1. It is easy to verify that system (3.1.7), (3.1.8), (3.1.9) is a particular case of

system (3.1.6), (3.1.2), (3.1.3) when r0 = 0, r1 = 1,

G(ϕ, ζ) = −f(ϕ(0)− x∗)− g(ϕ(−ζ − 1)− x∗) ((ϕ, ζ) ∈ X × Z) ,

and x(t) = v(t) +x∗. Moreover, under Hypotheses (S1)–(S3), with F (ϕ, ψ) = G(ϕ, σ(ψ)),

(H1)–(H4) hold. Therefore, by Theorem 3.3.11, for all (ϕ, ζ) ∈ X × Z, there exists a

unique solution xϕ,ζ : [−r,∞) → R, zϕ,ζ : [0,∞) → R with xϕ,ζ0 = ϕ, zϕ,ζ(0) = ζ, and

Ψ(t, ϕ, ζ) = (xϕ,ζt , zϕ,ζ(t)).

For ϕ ∈ C[−r,0] and k ∈ R define ϕ + k ∈ C[−r,0] as [−r, 0] 3 s 7→ ϕ(s) + k ∈ R.

Introduce the set

X =
{
ϕ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [A,B], lip(ϕ) ≤ K1

}
=
{
ϕ ∈ C[−r,0]

∣∣ ϕ+ x∗ ∈ X
}
.

Now, for each (ϕ, ζ) ∈ X × Z, the unique solution v = vϕ,ζ : [−r,∞) → R, z = zϕ,ζ :

[0,∞)→ R of system (3.1.7), (3.1.8), (3.1.9) with v0 = ϕ, z(0) = ζ can be determined as(
vϕ,ζt , zϕ,ζ(t)

)
= Ψ(t, ϕ+ x∗, ζ)− (x∗, 0). (3.4.1)

In addition to v and z, there exists y = yϕ,ζ : [−r,∞)→ R with yt ∈ Y for all t ≥ 0, and

y is uniquely determined on [−ζ − 1,∞) such that equation (3.1.7) holds for all t > 0,

(3.1.9) holds for all t ≥ 0, and (3.1.8) holds almost everywhere on [−ζ− 1,∞). Therefore,

we obtain
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Proposition 3.4.1. Under Conditions (S1)–(S3), the solutions of system (3.1.7), (3.1.8),

(3.1.9) define a continuous semiflow by (3.4.1) on X×Z, and the same Lipschitz continuity

holds for the semiflow as for Ψ in Theorem 3.3.11.

In the sequel, when we write (v, z, y), we always mean that v = vϕ,ζ , z = zϕ,ζ , y = yϕ,ζ

for some (ϕ, ζ) ∈ X × Z.

Define T0 = 2q/d.

Proposition 3.4.2. If τ1 ≥ −ζ − 1, τ2 ≥ τ1 + T0, and v(t) ≤ d/2 for all t ∈ [τ1, τ2], then

y(t) = 0 for all t ∈ [τ1 + T0, τ2]. If, in addition, τ2 ≥ τ1 + T0 + 1, then z(t) = 0 for all

t ∈ [τ1 + T0 + 1, τ2].

Proof. From equation (3.1.8) and from v(t) ≤ d/2, t ∈ [τ1, τ2], it follows that, if there

is τ∗ ∈ [τ1, τ2) with y(τ∗) = 0, then ẏ(t) ≤ 0 almost everywhere in [τ∗, τ2], and thus,

y(t) = 0 for all t ∈ [τ∗, τ2]. Consequently, either y(t) = 0 for all t ∈ [τ1, τ2], or there

exists a maximal τ∗∗ ∈ (τ1, τ2] with y(t) > 0 for all t ∈ [τ1, τ∗∗). In the first case the

statements of the proposition trivially hold. In the second case, by equation (3.1.8), ẏ(t) =

v(t) − d ≤ −d/2 almost everywhere in [τ1, τ∗∗]. As y(τ1) ∈ [0, q], it easily follows that

0 ≤ y(τ∗∗) ≤ q − (d/2)(τ∗∗ − τ1), and hence τ∗∗ ≤ τ1 + T0. Therefore, y(t) = 0 for all

t ∈ [τ1 + T0, τ2]. The statement for z can be obtained by using equation (3.1.9).

Observe that (0, 0) ∈ X ×Z is a stationary point of the semiflow generated by system

(3.1.7), (3.1.8), (3.1.9). Under Conditions (S1)–(S3), and assuming that (S4) does not

hold, and slightly more, that is

(S5) Re z < 0 for all zeros of the map C 3 λ 7→ λ+ f ′(0) + g′(0)e−λ ∈ C,

it is expected that (0, 0) is stable. In fact, combining Theorem 3.3.11 and Proposition

3.4.2, local stability is straightforward.

Theorem 3.4.3. Assume that Conditions (S1)–(S3), (S5) hold. Then the stationary point

(0, 0) ∈ X × Z of the semiflow generated by system (3.1.7), (3.1.8), (3.1.9) is locally

asymptotically stable.

Proof. By Theorem 3.3.11 there exists L̃ > 1 such that, for each (ϕ, ζ) ∈ X × Z the

unique solution v = vϕ,ζ , z = zϕ,ζ of system (3.1.7), (3.1.8), (3.1.9) satisfies

‖(vt, z(t))− (0, 0)‖ = ‖Ψ(t, ϕ+ x∗, ζ)− (x∗, 0)‖
= ‖Ψ(t, ϕ+ x∗, ζ)−Ψ(t, x∗, 0)‖ ≤ L̃‖(ϕ, ζ)‖

for all t ∈ [0, T0 + 1].

As Proposition 3.4.2 holds with τ1 = −1 and arbitrarily large τ2, if v(t) ≤ d/2 for all

t ≥ −r, then z(t) = 0 for all t ≥ −1 + T0 + 1 = T0, and, consequently,

v̇(t) = −f(v(t))− g(v(t− 1)) for all t > T0 + 1.



CHAPTER 3. A DE WITH A STATE-DEPENDENT QUEUEING DELAY 46

A classical result for equations with constant delay (see e.g. [12, 16]) is that, under Con-

ditions (S1)–(S3), (S5), for each ε ∈ (0, d/2) there exists δ = δ(ε) ∈ (0, ε) such that

max
−1≤s≤0

|v(T0 + 1 + s)| ≤ δ implies |v(t)| < ε for all t ≥ T0.

Now, for given ε ∈ (0, d/2) choosing (ϕ, ζ) ∈ X × Z with ‖(ϕ, ζ)‖ < δ(ε)/L̃, it should

be clear that ‖(vt, z(t))‖ < ε follows for all t ≥ 0. That is, (0, 0) is locally stable.

Asymptotic stability follows in the same way by using again the constant delay result

from [12].

From this point throughout this section, we assume that Conditions (S1)–(S4) are

satisfied. Then instability of (0, 0) ∈ X ×Z can be easily obtained. We show after a series

of technical results that there exists a nontrivial slowly oscillating periodic solution (v, z)

of system (3.1.7), (3.1.8), (3.1.9). Here slow oscillation of (v, z) means that

t1 < t2 − z(t2)− 1

holds for any two zeros t1 < t2 of v.

Observe that equation (3.1.7) can be written as

v̇(t) = −f̃(v(t))v(t)− g̃(v(t− z(t)− 1))v(t− z(t)− 1). (3.4.2)

For (ϕ, ζ) ∈ X × Z consider v = vϕ,ζ , z = zϕ,ζ . Define

u = uϕ,ζ : [−r,∞) 3 t 7→ v(t) exp

(∫ t

0

f̃(v(s)) ds

)
∈ R and

C : [0,∞) 3 t 7→ g̃(v(t− z(t)− 1)) exp

(∫ t

t−z(t)−1
f̃(v(s)) ds

)
∈ R

where z = zϕ,ζ . Setting c0 = g0, c1 = g1e
f1r, for all (ϕ, ζ) ∈ X × Z we have

C(t) ∈ [c0, c1] for all t ≥ 0.

Proposition 3.4.4. For each (ϕ, ζ) ∈ X × Z, the function u = uϕ,ζ : [−r,∞) → R is

continuous, it is continuously differentiable on (0,∞), and

u̇(t) = −C(t)u(t− z(t)− 1) (t > 0) (3.4.3)

holds with z = zϕ,ζ. In addition,

|u(t)| ≤ |v(t)| ≤ |u(t)|ef1r for all t ∈ [−r, 0],

|v(t)| ≤ |u(t)| ≤ |v(t)|ef1t for all t ≥ 0.
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Proof. Differentiating u and using equation (3.4.2) for t > 0, we get

u̇(t) =
(
v̇(t) + f̃(v(t))

)
exp

(∫ t

0

f̃(v(s)) ds

)
= −g̃(v(t− z(t)− 1))v(t− z(t)− 1)

· exp

(∫ t−z(t)−1

0

f̃(v(s)) ds

)
exp

(∫ t

t−z(t)−1
f̃(v(s)) ds

)
= −C(t)u(t− z(t)− 1),

so equation (3.4.3) holds. The continuity and differentiability property of u is immediate

from the definition. The stated inequalities between |u(t)| and |v(t)| are easy consequences

of the definition and the bounds on f̃ .

Let

W =
{

(ϕ, ζ) ∈ X × Z
∣∣∣ ϕ(s) = 0 for all s ∈ [−r,−1− ζ],

[−ζ − 1] 3 s 7→ ϕ(s)ef1s ∈ R is nondecreasing, ϕ(0) > 0
}

and W0 = W ∪ {(0, 0)}. Our plan is to define a return map on W0 and to show that it

has a nontrivial fixed point on W0 corresponding to a slowly oscillating periodic orbit.

Proposition 3.4.5. There exists a constant T2 > 1 such that for all (ϕ, ζ) ∈ W , v = vϕ,ζ

has at least two zeros in [0, T2].

Proof. As v = vϕ,ζ and u = uϕ,ζ have the same zeros, it suffices to show the statement for

u = uϕ,ζ .

Let λ be a zero of λ+ f ′(0) + g′(0)e−λ with Reλ > 0 guaranteed by Hypothesis (S4).

Setting µ = λ+ f ′(0), we have Reµ > 0 and µ+ g′(0)ef
′(0)e−µ = 0. This is possible only

if

g′(0)ef
′(0) >

π

2

(see [12, Ch. XI.]). As f̃ , g̃ are continuous and f̃(0) = f ′(0), g̃(0) = g′(0), there exists

δ ∈ (0, d/2) such that

g̃(ξ1)e
f̃(ξ2) >

π

2
for |ξ1| ≤ δ, |ξ2| ≤ δ.

Observe that B/δ > 1. Define

s0 = r +
1

c0
log

Bef1r

δ
, s1 = s0 + T0 + 1, T1 = s1 + 7.

First, we prove that for all (ϕ, ζ) ∈ W , u = uϕ,ζ has at least one zero in [0, T1].

Indirectly, assume that there exists a (ϕ, ζ) ∈ W such that u(t) > 0 for all t ∈ [0, T1]. By
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the definition of W and our assumption, u is nonnegative on [−r, T1]. From Proposition

3.4.4 and equation (3.4.3) it follows that u̇(t) ≤ 0 for all t ∈ (0, T1]. Thus, u is monotone

nonincreasing on [0, T1]. In particular, u(t) ≤ u(t − z(t) − 1) for t ∈ [r, T1]. Then, again

by Proposition 3.4.4,

u̇(t) ≤ −c0u(t) for all t ∈ [r, T1]. (3.4.4)

As v(r) ≤ B, u(r) ≤ Bef1r, from inequality (3.4.4) we get

u(t) ≤ Bef1re−c0(t−r) for all t ∈ [r, T1].

Then, since Bef1re−c0(s0−r) = δ, for all t ∈ [s0, T1],

v(t) ≤ u(t) ≤ Bef1re−c0(t−r) ≤ Bef1re−c0(s0−r) = δ <
d

2
.

Applying Proposition 3.4.2 with τ1 = s0, τ2 = T1, we find z(t) = 0 for all t ∈ [s1, T1]. This

means that equation (3.4.3) becomes

u̇(t) = −C(t)u(t− 1) for all t ∈ [s1, T1]

where, by v(t) ≤ δ for all t ∈ [s0, T1], and by the choice of δ,

C(t) = g̃(v(t− 1)) exp

(∫ t

t−1
f̃(v(s)) ds

)
≥ g̃(v(t− 1)) exp

(
min

s∈[−1,0]
f̃(v(s))

)
>
π

2
.

There exists a minimal integer N ≥ 1 with 4N ≥ s1 + 1. Clearly, 4N ≤ s1 +

5 and 4N + 2 ≤ T1 = s1 + 7. The function sin(π/2)t is positive on (4N, 4N + 2),

has zero at 4N and 4N + 2. Define

wε(t) = ε sin
(π

2
t
)
, ε > 0, t ∈ R.

As u is positive on [4N, 4N + 2], there are a minimal ε = ε0 > 0 such that w(t) =

wε0(t) ≤ u(t) for all t ∈ [4N, 4N + 2], and a minimal t ∈ (4N, 4N + 2), denoted by t̂ with

w(t̂) = u(t̂). Now it is clear that

ẇ
(
t̂
)

= u̇
(
t̂
)
, and w(t) < u(t) for all t ∈

[
4N, t̂

)
.

From the monotonicity of u on [0, T1], it follows that ẇ(t̂) = u̇
(
t̂
)
≤ 0. Consequently,

t̂ ∈ [4N + 1, 4N + 2) and t̂− 1 ∈ [4N, 4N + 1).

Hence we obtain 0 ≤ w(t̂− 1) < u(t̂− 1).

Therefore, by using C(t̂) > π/2, ẇ(t) = −(π/2)w(t− 1) and 0 ≤ w(t̂− 1) < u(t̂− 1),

we get

u̇
(
t̂
)

= −C
(
t̂
)
u
(
t̂− 1

)
< −π

2
w
(
t̂− 1

)
= ẇ

(
t̂
)
,

a contradiction to u̇(t̂) = ẇ(t̂). Thus, u has a zero t∗ in [0, T1]. By similar argument, we

can show that there exists a constant s2 > 0 such u has another zero in (t∗, t∗ + s2 + 7].

Thus the statement is true with T2 = s1 + s2 + 14.
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Let (ϕ, ζ) ∈ W , v = vϕ,ζ , z = zϕ,ζ , u = uϕ,ζ . Proposition 3.4.5 allows us to define

t0 ∈ [−r,−1], t1, t2 ∈ (0, T2] as

t0 = t0(ζ) = −ζ − 1,

t1 = t1(ϕ, ζ) = min{t > 0 | v(t) = 0},
t2 = t2(ϕ, ζ) = min{t > t1 | v(t) = 0}.

Recall the function η = ηϕ,ζ : [0,∞) 3 t 7→ t − z(t) − 1 ∈ R from Proposition 3.3.9 and

its properties slope(η) ⊆ [c/b, c/a] , η−1 exists and slope(η−1) ⊆ [a/c, b/c]. Then we can

define

t∗0 = η−1(t0) = 0, t∗1 = t∗1(ϕ, ζ) = η−1(t1), t∗2 = t∗2(ϕ, ζ) = η−1(t2).

Clearly, t∗j ∈ [0, T2 + r] for j ∈ {0, 1, 2}. From equation (3.1.7), Conditions (S1)–(S4) and

the above definitions it easily follows that the map [−r, 0] 3 s 7→ v(s)ef1s ∈ R is monotone

nondecreasing, v|[−r−ζ−1] = 0, v is positive on [0, t1) and on (t2, t
∗
2], and it is negative on

(t1, t2), see Figure 3.2. The function u is nonnegative on [−r, 0], it is positive on [0, t1) and

on (t2, t
∗
2], and it is negative on (t1, t2), moreover it is monotone nonincreasing on [0, t∗1],

and monotone increasing on [t∗1, t
∗
2]. In particular, we have

−r ≤ t0 = −ζ − 1 < t∗0 = 0 < t1 < t∗1 < t2 < t∗2 ≤ T2 + r.

Proposition 3.4.6. The functions

W 3 (ϕ, ζ) 7→ tj(ϕ, ζ) ∈ [−r, T2], W 3 (ϕ, ζ) 7→ t∗j(ϕ, ζ) ∈ [0, T2 + r]

are continuous for j ∈ {0, 1, 2}.

Proof. The statement is evident for j = 0. Let (ϕ, ζ) ∈ W and a sequence (ϕn, ζn)∞n=0 in

W be given with (ϕn, ζn)→ (ϕ, ζ) as n→∞ in the norm of C[−r,0] × R. Theorem 3.3.11

implies, with the notation v = vϕ,ζ , z = zϕ,ζ , vn = vϕ
n,ζn , zn = zϕ

n,ζn , that

vn(t)→ v(t) as n→∞ uniformly in t ∈ [−r, T2 + r],

zn(t)→ z(t) as n→∞ uniformly in t ∈ [0, T2 + r]. (3.4.5)

Then the right hand side of equation (3.1.7) with v = vn, z = zn tends to the right hand

side of (3.1.7) as n→∞ uniformly in t ∈ [0, t2 + r]. Consequently,

v̇n(t)→ v̇(t) as n→∞ uniformly in t ∈ (0, T2 + r].

It is elementary to show that these uniform convergences guarantee the continuity of

t1(ϕ, ζ) and t2(ϕ, ζ) in (ϕ, ζ) provided that t1 and t2 are simple zeros.

It is clear that v̇(t1) ≤ 0. If v̇(t1) = 0 then, by equation (3.1.7) and v(t1) = 0,

g(v(t1 − z(t1)− 1)) = 0 and v(t1 − z(t1)− 1) = 0 follow. The minimality of the zero t1 in

[0, T2] yields t1 − z(t1) − 1 < 0. Hence, by the definition of W and (ϕ, ζ) ∈ W , v0 = ϕ,
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one finds v(t) = 0 for all t ∈ [−r, t1 − z(t1)− 1]. Using the monotone increasing property

of t 7→ t − z(t) − 1, we conclude v̇(t) = −f(v(t)) for all t ∈ (0, t1]. This is an ordinary

differential equation, so it is uniquely solvable backwards. As v(t1) = 0, f(0) = 0, it gives

v(t) = 0 for t ∈ (0, t1]. By continuity, we get a contradiction. Therefore, v̇(t1) < 0, and t1

is a simple zero of v.

For t2 we have t2 − z(t2)− 1 ∈ (t1, t2), and thus v(t2 − z(t2)− 1) < 0. Hence v̇(t2) =

−g(v(t2 − z(t2)− 1)) > 0. Therefore, t1(ϕ, ζ) and t2(ϕ, ζ) are continuous in (ϕ, ζ) ∈ W .

It also follows from (3.4.5) that

ηn(t)→ η(t) as n→∞ uniformly in t ∈ [0, T2 + r], (3.4.6)

where η = ηϕ,ζ , ηn = ηϕ
n,ζn . Define tn1 = t1 (ϕn, ζn) and tn,∗1 = (ηn)−1 (tn1 ). From t1 = η(t∗1),

tn1 = ηn(tn,∗1 ) and the Lipschitz property of η, one obtains

|t1 − tn1 | = |η (t∗1)− ηn (tn,∗1 )| ≥ |η (t∗1)− η (tn,∗1 )| − |η (tn,∗1 )− ηn (tn,∗1 )|

≥ c

b
|t∗1 − t

n,∗
1 | − ‖η − ηn‖[0,T2+r] .

Hence

|t∗1 − t
n,∗
1 | ≤

b

c

(
|t1 − tn1 |+ ‖η − ηn‖[0,T2+r]

)
.

This shows tn,∗1 → t∗1, n → ∞, since tn1 → t1 by the first part of the proof, and ‖η −
ηn‖[0,T2+r] → 0 by (3.4.6).

The proof for tn,∗2 → t∗2 is analogous.

The existence of t∗2 allows us to define a return map P : W0 → X × Z by

P (ϕ, ζ) =

(0, 0) if (ϕ, ζ) = (0, 0),(
v̂t∗2 , z(t

∗
2)
)

otherwise,

where v̂t∗2 ∈ X is determined by v̂t∗2(s) = v(t∗2 + s) for s ∈ [t2 − t∗2, 0], and v̂t∗2(s) = 0 for

s ∈ [−r, t2 − t∗2].

v

t2t1
t1

0t0=-1-δ-r * t2
*

tt2-r
*

φ

Figure 3.2: The return map P .

Proposition 3.4.7. P is continuous, and P (W0) ⊆ W0, P (W ) ⊆ W .
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Proof. P (0, 0) = (0, 0) ∈ W0 trivially. Let (ϕ, ζ) ∈ W and v = vϕ,ζ , z = zϕ,ζ .

First we prove P (ϕ, ζ) =
(
v̂t∗2 , z(t

∗
2)
)
∈ W . By the discussion at the beginning of this

section, Theorem 3.3.11 can be applied to get (vt∗2 , z(t
∗
2)) ∈ X ×Z. It is obvious that then(

v̂t∗2 , z(t
∗
2)
)
∈ X × Z. As −z(t∗2)− 1 = t2 − t∗2, it remains to show that

[−z(t∗2)− 1, 0] 3 s 7→ v (t∗2 + s) ef1s ∈ R is monotone nondecreasing.

If s ∈ (−z(t∗2)− 1, 0] then v(t∗2 + s) > 0, v(η(t∗2 + s)) < 0, and

d

ds

(
v(t∗2 + s)ef1s

)
= v̇(t∗2 + s)ef1s + f1v(t∗2 + s)ef1s

= ef1s
[(
f1 − f̃(v(t∗2 + s))

)
v(t∗2 + s)− g̃(v(η(t∗2 + s)))v(η(t∗2 + s))

]
> 0.

Thus, P (ϕ, ζ) =
(
v̂t∗2 , z(t

∗
2)
)
∈ W whenever (ϕ, ζ) ∈ W .

A combination of results in Theorem 3.3.11 and Proposition 3.4.5, 3.4.6 can be used

to verify the continuity of P at elements of W .

Continuity of P at (0, 0) ∈ W0 is an easy consequence of Theorem 3.3.11 since for

(ϕ, ζ) ∈ W and t∗2 = t∗2(ϕ, ζ) we have

‖P (ϕ, ζ)− P (0, 0)‖ = ‖Ψ(t∗2, ϕ+ x∗, ζ)− (x∗, 0)− (0, 0)‖
= ‖Ψ(t∗2, ϕ+ x∗, ζ)−Ψ(t∗2, x∗, 0)‖
≤M‖(ϕ+ x∗, ζ)− (x∗, 0)‖et∗2(1+L) ≤M‖(ϕ, ζ)‖e(T2+r)(1+L).

Let (ϕ, ζ) ∈ X ×Z and u = uϕ,ζ . Combining the definition of u, X , f1, using equation

(3.4.3) and applying Proposition 3.4.4 we obtain

lip(u|[−r,T2+r]) ≤ max
{

lip(u|[−r,0]), lip(u|[0,T2+r])
}

≤ max
{

lip(v0) + ‖v0‖[−r,0]f1, c1‖u‖[−r,T2+r]
}

≤ max
{
K1 + f1 max{−A,B}, c1ef1(T2+r) max{−A,B}

}
≤ K1 + (1 + c1)e

f1(T2+r) max{−A,B}.

Choose L1 > 0 such that

L1 ≥ K1 + (1 + c1)e
f1(T2+r) max{−A,B} and

2cL1

c0a
≥ max{1,−A,B}.

Then, clearly, lip(u|[−r,T2+r]) ≤ L1. Define

β =
2cL1

c0a
, ρ = 2T2+r and θ = e−(T2+r)f1βρ.

Proposition 3.4.8. For all (ϕ, ζ) ∈ W ,

v(t∗2) ≥ θ (ϕ(0))ρ .
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Proof. Let (ϕ, ζ) ∈ W , u = uϕ,ζ , η = ηϕ,ζ . Recall that u is monotone decreasing on [0, t∗1],

monotone increasing on [t∗1, t
∗
2], positive on [0, t1) ∪ (t2, t

∗
2], and negative on (t1, t2). In

addition, u(η(t)) < 0 for all t ∈ (t∗1, t
∗
2).

Define s−1 = t∗2 and sj = η(sj−1) for j ∈ {0, . . . , k}, where k is the unique integer such

that sk ∈ (t1, t
∗
1]. Let

mj = max
t∈[sj ,sj−1]

|u(t)|, j ∈ {0, . . . , k}.

t2=s0
t1=s0

0t0

u

t
*

*s1
sk-1sks1sk-1sk' ' '' ......

t1=s-1

t2=s-1'

' '

Figure 3.3: The times used in the proof.

Then, by Proposition 3.3.9,

mj ≥ u(sj−1)− u(sj) =

∫ sj−1

sj

u̇(t) dt = −
∫ sj−1

sj

C(t)u(η(t)) dt

≥ −c0
∫ sj−1

sj

u(η(t)) dt = −c0
∫ sj

sj+1

u(t) dη−1(t) ≥ −c0
a

c

∫ sj

sj+1

u(t) dt

for j ∈ {0, . . . , k − 1}. The last integral can be estimated with the area of a rectangular

triangle with height mj+1 and slope L1. So, for j ∈ {0, . . . , k − 1}, we have

mj ≥ c0
a

c

∫ sj

sj+1

|u(t)| dt ≥ c0
a

c

m2
j+1

2L1

=
m2
j+1

β
.

As u is decreasing on [t1, t
∗
1] and increasing on [t∗1, t2], by induction, we have

|u(t∗2)| = m0 ≥
m2k

k

β1+2+...+2k−1 ≥
(
mk

β

)2k

=

(
|u(t∗1)|
β

)2k

.

Similarly, define s′−1 = t∗1 and s′j = η(s′j−1) for j ∈ {0, . . . , k′}, where k′ is the unique

integer such that s′k ∈ (t0, 0]. Let

m′j = max
t∈[s′j ,s′j−1]

|u(t)|, j ∈ {0, . . . , k′}.

Analogously to the above estimations, we have

|u(t∗1)| = m′0 ≥
m′2

k′

k′

β1+2+...+2k′−1
≥
(
m′k
β

)2k
′

≥
(
|u(0)|
β

)2k
′

,
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and thus

|u(t∗2)| ≥
(
|u(t∗1)|
β

)2k

≥

((
|u(0)|
β

)2k
′)2k

=

(
|u(0)|
β

)2k+k
′

.

We have k + k′ ≤ T2 + r and |u(0)| ≤ β by the choice of β. Using Proposition 3.4.4, our

statement follows.

Let N be the minimal integer with N ≥ T2 + r, and define

δ0 =
de−f1r

2(1 + c1)N
.

Proposition 3.4.9. If (ϕ, ζ) ∈ X × Z with ‖ϕ‖[−r,0] ≤ δ0e
f1r then |v(t)| ≤ d/2 for all

t ∈ [−r, T2 + r].

Proof. Let (ϕ, ζ) ∈ X × Z and suppose ‖ϕ‖[−r,0] ≤ δ0e
f1r.

As v0 = ϕ, Proposition 3.4.4 implies ‖u0‖[−r,0] ≤ δ0e
f1r. Assume that, for some j ∈

{0, N − 1}, we have

|u(t)| ≤ δ0e
f1r(1 + c1)

j for all t ∈ [−r, j].

Then, for t ∈ [j, j + 1], from equation (3.4.3) it can be obtained that

|u(t)| ≤
∣∣∣∣u(j) +

∫ t

j

u̇(s) ds

∣∣∣∣ ≤ |u(j)|+
∫ j+1

j

C(s)|u(s− z(s)− 1)| ds

≤ δ0e
f1r(1 + c1)

j + c1δ0e
f1r(1 + c1)

j = δ0e
f1r(1 + c1)

j+1.

So, by induction, we get |u(t)| ≤ δ0e
f1r(1 + c1)

N . Hence, by Proposition 3.4.4 we conclude

|v(t)| ≤ δ0e
fr(1 + c1)

N =
d

2

for all t ∈ [−r, T2 + r] ⊆ [−r,N ].

Proposition 3.4.10. If (ϕ, ζ) ∈ W with ϕ(0) ≤ δ0, then z(t∗2) ≤ [ζ − d/c]+.

Proof. Let (ϕ, ζ) ∈ W with ϕ(0) ≤ δ0, and let v = vϕ,ζ , z = zϕ,ζ , y = yϕ,ζ .

From (ϕ, ζ) ∈ W it follows that 0 ≤ ϕ(s) ≤ ϕ(0)ef1r ≤ δ0e
f1r, s ∈ [−r, 0]. Proposition

3.4.9 can be applied to get |v(t)| ≤ d/2 for all t ∈ [−r, T2 + r].

Recall that t0 = −ζ − 1, y(t0) = cζ, and y satisfies equation (3.1.8) a.e. in [t0,∞).

Moreover, z(t∗2) = (1/c)y(t∗2 − z(t∗2)− 1) = (1/c)y(t2).

Observe that if y(t) > 0 on an interval I ⊂ [t0, T2 + r] then, by |v(t)| ≤ d/2 on

[−r, T2 + r], we have ẏ(t) ≤ (d/2)− d = −(d/2) a.e. in I. It follows that either y(t2) = 0,

or y(t) > 0 for all t ∈ [t0, t2]. In case y(t2) = 0 the statement trivially holds since z(t∗2) =
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(1/c)y(t2) = 0. Assume that y(t) > 0 for all t ∈ [t0, t2]. Using t2− t0 ≥ t∗1− t1 + t∗0− t0 ≥ 2,

we find

z(t∗2) =
1

c
y(t2) =

1

c

(
y(t0) +

∫ t2

t0

ẏ(t) dt

)
≤ 1

c

(
cζ − d

2
(t2 − t0)

)
≤ ζ − d

c
.

This is a contradiction if ζ < d/c since z(t∗2) > 0.

Therefore, either ζ ∈ [0, d/c] and z(t∗2) = 0, or ζ > d/c and z(t∗2) ≤ ζ − d/c.

We need a function α ∈ C2([0, q/c],R) with the properties

(α1) α(0) = 0,

(α2) α′(ξ) > 0, α′′(ξ) > 0 for all ξ ∈ (0, q/c],

(α3) α(q/c) ≤ θ(δ0)
ρ,

(α4) α
(
ξ − (d/c)

)
≤ θ
(
α(ξ)

)ρ
for all ξ ∈ [d/c, q/c].

Proposition 3.4.11. There exists α ∈ C2([0, q/c],R) such that (α1)–(α4) are satisfied.

Proof. We look for α in the form

α(ξ) = a1 exp

(
−a2 exp

(
a3
ξ

))
for ξ ∈

(
0,
q

c

]
with some a1 > 0, a2 > 0, a3 > 0 determined later. For ξ ∈ (0, q/c], we have

α′(ξ) =
a1a2a3
ξ2

exp

(
a3
ξ
− a2 exp

(
a3
ξ

))
,

α′′(ξ) =
a1a2a3
ξ4

(
a2a3 exp

(
a3
ξ

)
− a3 − 2ξ

)
exp

(
a3
ξ
− a2 exp

(
a3
ξ

))
.

It is elementary to see that

α(ξ)→ 0, α′(ξ)→ 0, α′′(ξ)→ 0 as ξ → 0 + .

Then, by setting α(0) = 0, it follows that α ∈ C2([0, q/c],R). Condition (α1) holds by

definition. The property for α′ in (α2) is obvious from the above form of α′(ξ). From the

above expression for α′′(ξ) it is clear that α′′(ξ) > 0 for all ξ ∈ (0, q/c] if

a2a3 exp

(
a3
ξ

)
> a3 + 2ξ for all ξ ∈

(
0,
q

c

]
,

which is guaranteed by

a2a3 exp

(
a3

(q/c)

)
> a3 + 2

q

c
,
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that is,

a2 >

(
1 + 2

q

a3c

)
exp

(
−a3c

q

)
. (3.4.7)

Property (α3) holds if

a1 ≤ θδρ0 exp

(
a2 exp

(
a3c

q

))
. (3.4.8)

Inequality (α4) is valid if

a1 exp

(
−a2 exp

(
a3

ξ − (d/c)

))
≤ θaρ1 exp

(
−a2ρ exp

(
a3
ξ

))
for all ξ ∈ (d/c, q/c]. This inequality holds if both

a1 ≤ θaρ1 and exp

(
a3

ξ − (d/c)

)
≥ ρ exp

(
a3
ξ

)
for all ξ ∈

(
d

c
,
q

c

]
are satisfied, that is, by ρ > 1,

a1 ≥
1

θρ−1
(3.4.9)

and

a3 ≥ ξ
( c
d
ξ − 1

)
log ρ for all ξ ∈

(
d

c
,
q

c

]
.

Since ξ 7→ ξ
(
(c/d)ξ − 1

)
log ρ is increasing on (d/c, q/c], the last inequality is guaranteed

by

a3 ≥
q

c

(q
d
− 1
)

log ρ. (3.4.10)

We have to find a1 > 0, a2 > 0, a3 > 0 so that all Inequalities (3.4.7), (3.4.8), (3.4.9)

and (3.4.10) are true.

First, fix a1 > 0 so that (3.4.9) is satisfied. Now, choose a∗3 > 0 such that (3.4.10)

holds for all a3 ≥ a∗3. In the next step, using that the expression on the right hand side

of (3.4.7) is monotone decreasing in a3, we can fix a2 > 0 such that (3.4.7) is valid for all

a3 ≥ a∗3. Finally, as a1 and a2 are fixed, on can find a sufficiently large a3 ≥ a∗3 so that

(3.4.8) holds as well. This completes the proof.

With the α given in Proposition 3.4.11, recall that K0 = (f1 + g1) max{−A,B},
K1 = rK0, and the sets Wα,K0 , Wα,K1 , Vα,K1 are defined by Formulas (3.1.10), (3.1.11).

Proposition 3.4.12. The set Vα,K1 is a compact and convex subset of C[−1,0] × R.

Proof. Compactness of Vα,K1 follows in a straighforward way from the definition of Vα,K1

and from the Arzela–Ascoli theorem.
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In order to show the convexity of Vα,K1 , let (ψ1, ζ1) and (ψ2, ζ2) be in Vα,K1 , and set

(ψ, ζ) = λ(ψ1, ζ1) + (1−λ)(ψ2, ζ2) with some λ ∈ [0, 1]. Proposition 3.4.11 guarantees the

convexity of α. Hence

ψ(0) = λψ1(0) + (1− λ)ψ2(0) ≥ λα
(
ζ1
)

+ (1− λ)α
(
ζ2
)

≥ α
(
λζ1 + (1− λ)ζ2

)
= α(ζ).

All other properties of Vα,K1 are obviously preserved by the convex combination.

It is easy to see that Wα,K1 ⊂ W0. Therefore, the map P is well defined on Wα,K1 .

We know that W0 and W are invariant under P . The next result shows the invariance of

Wα,K1 , and slighlty more since, by K0 < K1, Wα,K0 ⊆ Wα,K1 .

Proposition 3.4.13. P (Wα,K1) ⊆ Wα,K0.

Proof. We have P (0, 0) = (0, 0) ∈ Wα,K0 . Suppose (ϕ, ζ) ∈ Wα,K1 \ {(0, 0)}. Then the

inequality ϕ(0) ≥ α(ζ) and the nondecreasing property of [−r, 0] 3 s 7→ ϕ(s)ef1s ∈ R
combined imply that (ϕ, ζ) ∈ W . By Proposition 3.4.7, P (ϕ, ζ) = (v̂t∗2 , z(t

∗
2)) ∈ W . Thus,

two facts remain to show: lip(v̂t∗2) ≤ K0, and that P preserves the property ϕ(0) ≥ α(ζ),

i.e., v(t∗2) ≥ α(z(t∗2)).

From equation (3.4.2) and from vt ∈ X it follows that |v̇(t)| ≤ K0 for all t > 0. Hence

the definition of v̂t∗2 and 0 < t2 < t∗2 imply lip(v̂t∗2) ≤ K0.

By (ϕ, ζ) ∈ Wα,K1 \ {(0, 0)} ⊂ W we have ϕ(0) ≥ α(ζ), and want to prove v(t∗2) ≥
α(z(t∗2)). There are two cases.

Case 1. ϕ(0) ≥ δ0. Then, by Proposition 3.4.8, properties (α2), (α3) of α, and z(t∗2) ∈
[0, q/c], one obtains

v(t∗2) ≥ θ(ϕ(0))ρ ≥ θ(δ0)
ρ ≥ α

(q
c

)
≥ α(z(t∗2)).

Case 2. ϕ(0) < δ0. Proposition 3.4.10 gives z(t∗2) ≤ [ζ − (d/c)]+. If ζ ≤ d/c then

z(t∗2) = 0, and, by (α1), trivially v(t∗2) ≥ 0 = α(0) = α(z(t∗2)). If ζ > d/c then applying

Proposition 3.4.8, ϕ(0) ≥ α(ζ), (α4) and (α2), we conclude

v(t∗2) ≥ θ(ϕ(0))ρ ≥ θ(α(ζ))ρ ≥ α

(
ζ − d

c

)
= α

([
ζ − d

c

]+)
≥ α(z(t∗2)).

This completes the proof.

Define the subsets

H1 =
{

(ψ, ζ) ∈ C[−1,0] × Z
∣∣ ψ(−1) = 0

}
⊂ C[−1,0] × R

Hr =
{

(ϕ, ζ) ∈ C[−r,0] × Z
∣∣ ϕ(s) = 0 for all s ∈ [−r,−ζ − 1]

}
⊂ C[−r,0] × R
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with the induced subspace topologies.

Introduce the streching map Q : H1 → Hr by Q(ψ, ζ) = (ϕ, ζ) so that

ϕ(s) =

ψ
(

s
ζ+1

)
if s ∈ [−ζ − 1, 0],

0 if s ∈ [−r,−ζ − 1],

and the squeezing map R : Hr → H1 by R(ϕ, ζ) = (ψ, ζ) so that

ψ(s) = ϕ((ζ + 1)s) for all s ∈ [−1, 0].

Proposition 3.4.14. The maps Q : H1 → Hr, R : Hr → H1 are continuous, and

Q (Vα,K1) ⊆ Wα,K1 , R (Wα,K0) ⊆ Vα,K1 .

Proof. In order to see the continuity of Q, let (ψ, ζ) ∈ H1,

(ψn, ζn)∞n=0 ∈ H1 with ‖(ψn, ζn)− (ψ, ζ)‖ → 0 as n→∞,

and let Q(ψ, ζ) = (ϕ, ζ) ∈ Hr, Q(ψn, ζn) = (ϕn, ζn) ∈ Hr, n ∈ N. By definition, ϕ(s) =

ϕn(s) for all s ∈ [−r,−max{ζ, ζn} − 1]. For s ∈ [−min{ζ, ζn} − 1, 0] we have

|ϕ(s)− ϕn(s)| =
∣∣∣∣ψ( s

ζ + 1

)
− ψn

(
s

ζn + 1

)∣∣∣∣
≤
∣∣∣∣ψ( s

ζ + 1

)
− ψ

(
s

ζn + 1

)∣∣∣∣+

∣∣∣∣ψ( s

ζ + 1

)
− ψn

(
s

ζn + 1

)∣∣∣∣
≤
∣∣∣∣ψ( s

ζ + 1

)
− ψ

(
s

ζn + 1

)∣∣∣∣+ ‖ψ − ψn‖[−1,0]

If s ∈ [−max{ζ, ζn} − 1,−min{ζ, ζn} − 1], then in case ζ ≥ ζn, one can get

|ϕ(s)− ϕn(s)| =
∣∣∣∣ψ( s

ζ + 1

)
− 0

∣∣∣∣ =

∣∣∣∣ψ( s

ζ + 1

)
− ψ(−1)

∣∣∣∣ ,
and in case ζ < ζn, we obtain

|ϕ(s)− ϕn(s)| =
∣∣∣∣0− ψn( s

ζn + 1

)∣∣∣∣
≤
∣∣∣∣ψ( s

ζn + 1

)
− ψn

(
s

ζn + 1

)∣∣∣∣+

∣∣∣∣ψ( s

ζn + 1

)∣∣∣∣
≤ ‖ψ − ψn‖[−1,0] +

∣∣∣∣ψ( s

ζn + 1

)
− ψ(−1)

∣∣∣∣
For fixed (ψ, ζ) ∈ H1, by using the uniform continuity of ψ, the above estimations yield

that ‖(ϕ, ζ)−(ϕn, ζn)‖ tends to zero as n tends to infinity. Since the choice of the sequence

(ψn, ζn) was arbitrary, this shows the continuity of Q at (ψ, ζ) ∈ H1. The continuity of R

can be obtained analogously.



CHAPTER 3. A DE WITH A STATE-DEPENDENT QUEUEING DELAY 58

The inclusion Q (Vα,K1) ⊆ Wα,K1 is obvious from the definitions of Vα,K1 , Wα,K1 and

from the fact that the streching does not increase the Lipschitz constant.

Similarly, to prove the inclusion R (Wα,K0) ⊆ Vα,K1 we have to check how the squeezing

changes the Lipschitz constant and the exponential property. From the definition of R it

is clear that the Lipschitz constant of ψ ∈ C[−1,0], given by ψ(s) = ϕ((ζ+1)s), s ∈ [−1, 0],

can be at most ζ + 1 ≤ r times lip(ϕ) ≤ K0. The facts that

[−ζ − 1, 0] 3 s 7→ ϕ(s)ef1s ∈ R is nondecreasing and r ≥ ζ + 1

imply that the map

[−1, 0] 3 s 7→ ψ(s)ef1rs = ϕ((ζ + 1)s)ef1(ζ+1)sef1(r−ζ−1)s is nondecreasing

because it is the product of two nondecreasing functions.

This completes the proof.

Now we can define a new return map

Π : Vα,K1 ∈ (ψ, ζ) 7→ R ◦ P ◦Q(ψ, ζ) ∈ Vα,K1 .

In order to get the ejectivity of the fixed point (0, 0), we prove the following proposition.

Proposition 3.4.15. There exists a constant γ1 > 0 with

sup
t≥0

∥∥∥vϕ,ζt ∥∥∥ > γ1 for all (ϕ, ζ) ∈ W. (3.4.11)

Proof. Suppose that there is no γ1 with inequality (3.4.11). Then there exists a sequence

(ϕn, ζn)∞n=1 in W such that

sup
t≥0

∥∥∥vϕn,ζnt

∥∥∥
[−r,0]

≤ min

{
d

2
,

1

n

}
.

By Proposition 3.4.2, we can assume without loss of generality, that zϕ
n,ζn(t) = 0, t ≥ 0,

n ∈ N. Setting vn = vϕ
n,ζn , n ∈ N, we have

v̇n(t) = −f(vn(t))− g(vn(t− 1)) (t > 0). (3.4.12)

Considering the iterates P j(ϕn, ζn), j ∈ N, n ∈ N, and taking into account the definition

of t1, t
∗
1, t2, t

∗
2, and P , for each n ∈ N there is a sequence (tnk)∞k=0 such that

tn0 = −1, tnk + 1 < tnk+1, v
n (tnk) = 0,

vn(t) > 0 for t ∈
(
tn2k, t

n
2k+1

)
,

vn(t) < 0 for t ∈
(
tn2k+1, t

n
2k+2

)
.

(3.4.13)

for all integers k ≥ 0.
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We claim that ∥∥∥vntnk+1

∥∥∥
[−1,0]

≤ ef1
∣∣∣vntnk+1

∣∣∣ for all k ∈ N (3.4.14)

where f1 is an upper bound for f̃ .

Recalling functions f̃ , g̃, equation (3.4.12) can be written in the form (3.4.2) with

z(t) = 0. Then, for k ∈ N, by using condition (3.4.13), we obtain

d

ds

[
vn (tn2k + s) ef1s

]
= v̇n (tn2k + s) ef1s + vn (tn2k + s) f1e

fs

=
[(
f1 − f̃ (vn(tn2k + s))

)
vn(tn2k + s)− g̃ (vn(tn2k + s− 1)) vn(tn2k + s− 1)

]
ef1s ≥ 0

for all s ∈ [0, 1] because vn(tn2k + s) ≥ 0, 0 ≤ f̃(vn(tn2k + s)) ≤ f1, g̃(vn(tn2k + s − 1)) > 0

and vn(tn2k + s− 1) ≤ 0. Thus,

0 ≤ vn (tn2k + s) ≤ vn (tn2k + 1) ef1(1−s) ≤ vn (tn2k + 1) ef1 (s ∈ [0, 1]).

Analogously, for each nonnegative integer k,

0 ≥ vn
(
tn2k+1 + s

)
≥ vn

(
tn2k+1 + 1

)
ef1(1−s) ≥ vn

(
tn2k+1 + 1

)
ef1 (s ∈ [0, 1]).

This proves the claim.

By (S2), (3.4.12) and (3.4.13), we find that t 7→ |vn(t)| is a decreasing function on

[tnk + 1, tnk+1] for all k ∈ N. This fact, combined with (3.4.14) and the choice of (ϕn, ζn)∞n=1,

yields, for all n ∈ N, the existence of an integer k(n) > n such that

1

2
sup
s≥0

∣∣vn (tnk(n) + s
)∣∣ ≤ ∥∥∥vntn

k(n)
+1

∥∥∥ < 1

n
. (3.4.15)

For each n ∈ N, defining

wn : [−1,∞) 3 t 7→
vn
(
tnk(n) + 1 + t

)
∣∣∣vn (tnk(n)+1

)∣∣∣ ,

it satisfies |wn(0)| = 1 and, by (3.4.14),

sup
t≥−1
|wn(t)| ≤ 1∣∣∣vn (tnk(n) + 1

)∣∣∣ sup
s≥0

∣∣vn (tnk(n) + s
)∣∣ ≤ 2

∥∥∥vntn
k(n)+1

∥∥∥
[−1,0]∣∣∣vn (tnk(n) + 1
)∣∣∣ ≤ 2ef1 .

Moreover, equation (3.4.12), the definition of f̃ , g̃ and wn imply

ẇn(t) = −f̃
(
vn
(
tnk(n) + 1 + t

))
wn(t)− g̃

(
vn
(
tnk(n) + t

))
wn(t− 1) (3.4.16)

for all t > 0. Hence |ẇn(t)| ≤ 2(f1 + g1)e
f1 for all t > 0.
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We can apply the Arzela–Ascoli theorem and the Cantor diagonalization process for

the sequence
(
wn|[0,∞)

)∞
n=1

of continuous functions to find a subsequence (nl)
∞
l=1 of N and

a continuous function w : [0,∞)→ R so that

wnl(t)→ w(t) as l→∞ uniformly in t on compact subsets of [0,∞).

From (3.4.15) and the definitions of f̃ , g̃ it follows that

f̃
(
vnl
(
tnlk(nl) + 1 + t

))
→ f ′(0) and g̃

(
vnl
(
tnlk(nl) + t

))
→ g′(0) as l→∞.

Hence the right-hand side of equation (3.4.16) converges to −f ′(0)w(t) − g′(0)w(t − 1)

uniformly on compact subsets of [1,∞). Consequently, w is differentiable on (1,∞), and

satisfies

ẇ(t) = −f ′(0)w(t)− g′(0)w(t− 1) (t > 1). (3.4.17)

So, we obtained a continuous w : [0,∞) → R so that |w(0)| = 1, |w(t)| ≤ 2ef1 for all

t ≥ 0, the restriction w|(1,∞) is differentiable and equation (3.4.17) holds. From (3.4.13)

observe that wn has at most one sign change on [0, 1], n ∈ N. Then w can have at most

one sign change on [0, 1] as well. By Proposition 3.2.1 it follows that w is unbounded on

[0,∞). This is a contradiction, and the proof is complete.

Proposition 3.4.16. (0, 0) ∈ Vα,K1 is an ejective fixed point of Π.

Proof. As the maps Q and R act on (ψ, ζ) ∈ C[−1,0] × R and (ϕ, ζ) ∈ C[−r,0] × R, respec-

tively, such that the norms of ψ and ϕ are preserved, it suffices to show the ejectivity of

the map of the fixed pont (0, 0) of P on Wα,K1 .

By Propositions 3.4.1, 3.4.15, and by the fact that (0, 0) is an equilibrium point, there

exists γ2 > 0 such that if (ϕ, ζ) ∈ W and ‖(ϕ, ζ)‖ = ‖ϕ‖[−r,0] + ζ < γ2 then∥∥∥(vϕ,ζt , zϕ,ζ(t)
)∥∥∥ =

∥∥∥vϕ,ζt ∥∥∥
[−r,0]

+ zϕ,ζ(t) < γ1 for all t ∈ [0, T2 + r].

Indirectly, suppose that there exists (ϕ, ζ) ∈ W so that∥∥P k(ϕ, ζ)
∥∥ < γ2 for all k ∈ {0, 1, 2, . . .}. (3.4.18)

For k ∈ {3, 4, . . .}, define tk = min{t > tk−1 | v(t) = 0}. Observe that, by the choice of

γ2, for each fixed k ∈ {0, 1, 2, . . .}, the inequality ‖P k(ϕ, ζ)‖ < γ2 and the fact that the

solutions of system (3.1.7), (3.1.8), (3.1.9) generate a semiflow imply that∥∥∥(vϕ,ζt , zϕ,ζ(t)
)∥∥∥ =

∥∥∥vϕ,ζt ∥∥∥
[−r,0]

+ zϕ,ζ(t) < γ1 for all t ∈ [tk, tk + T2 + r].

Recall that t∗2 ≤ T2 + r in the definition of P . Thus, from (3.4.18), it can be obtained by

induction that ∥∥∥vϕ,ζt ∥∥∥
[−r,0]

≤
∥∥∥vϕ,ζt ∥∥∥

[−r,0]
+ zϕ,ζ(t) < γ1 for all t ≥ 0.
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This inequality contradicts the existence of γ1 > 0 with inequality (3.4.11).

Therefore, ejectivity of the trivial fixed point (0, 0) of P on Wα,K1 follows with the

open set Wα,K1 ∩ U , where

U = {(ϕ, ζ) ∈ C[−r,0] × R : ‖(ϕ, ζ)‖ < γ2}.

The proof is complete.

Now we are able to show the main result.

Theorem 3.4.17. Assume that Conditions (S1)–(S4) hold. Then system (3.1.7), (3.1.8),

(3.1.9) has a slowly oscillatory periodic solution.

Proof. By Proposition 3.4.12 the set Vα,K1 is a compact and convex subset subset of the

Banach space C[−1,0] × R. Propositions 3.4.13, 3.4.7, 3.4.14 combined show that the map

Π : Vα,K1 → Vα,K1 is continuous. According to Proposition 3.4.16 the fixed point (0, 0) of

Π is ejective. Then Theorem C guarantees that Π has a nonejective fixed point (ψ∗, ζ∗)

in Vα,K1 . By the ejectivity of (0, 0), we have (ψ∗, ζ∗) 6= (0, 0), in particular ψ∗ 6= 0.

Define ϕ∗ ∈ C[−r,0] so that (ϕ∗, ζ∗) = Q(ψ∗, ζ∗). Let (ϕ∗∗, ζ∗∗) = P (ϕ∗, ζ∗). From

R(ϕ∗∗, ζ∗∗) = (ψ∗, ζ∗) one obtains ζ∗∗ = ζ∗. Therefore, ϕ∗∗(s) = 0 = ϕ∗(s) for all s ∈
[−r,−ζ∗ − 1]. Moreover, Q streches ψ∗ with the same factor ζ∗ + 1 as R squeezes ϕ∗∗.

Then necessarily

ϕ∗(s) = ψ∗
(

s

ζ∗ + 1

)
= ϕ∗∗

(
(ζ∗ + 1)

s

ζ∗ + 1

)
= ϕ∗∗(s)

for all s ∈ [−ζ∗ − 1, 0]. Therefore, (ϕ∗∗, ζ∗∗) = (ϕ∗, ζ∗), that is, (ϕ∗, ζ∗) = Q(ψ∗, ζ∗) is a

nontrivial fixed point of P .

The solution (vϕ
∗,ζ∗ , zϕ

∗,ζ∗) of system (3.1.7), (3.1.8), (3.1.9) defines a slowly oscillatory

periodic solution (v, z) : R→ R in the following way. As (ϕ∗, ζ∗) is a fixed point of P , the

restriction vϕ
∗,ζ∗|[0,∞) of vϕ

∗,ζ∗ and zϕ
∗,ζ∗ are t∗2-periodic functions with t∗2 = t∗2(ϕ

∗, ζ∗) > 0.

A t∗2-periodic extension of vϕ
∗,ζ∗ |[0,∞) and zϕ

∗,ζ∗ from [0,∞) to R give the slowly oscillating

periodic solution (v, z) : R→ R.

3.5 Examples

1. Consider system (3.1.4), (3.1.2), (3.1.3) with U ∈ C2((0,∞),R) and p ∈ C1((0,∞),R)

satisfying

U ′(ξ) > 0, U ′′(ξ) < 0 p(ξ) > 0, p′(ξ) > 0 for all ξ ≥ 0.

Then U ′′ − p′ < 0, so U ′ − p has at most one zero. Assume that there exists x∗ ∈ (0, c)

with U ′(x∗)− p(x∗) = 0. Then x∗ is the optimal rate.
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For fixed constants κ, a, b, q, r0, r1 with κ > 0, 0 < a < x∗ < c < b, q > 0, r0 ≥ 0,

r1 > 0 set K = κ[maxξ∈[a,b] ξU
′(ξ) + maxξ∈[a,b] ξp(ξ)]. Define X, Y, Z and G : X × Z → R

as in Section 3.1. Then, for F (ϕ, ψ) = G(ϕ, σ(ψ)), (ϕ, ψ) ∈ X × Y , Hypothesis (H2)

holds. The Lipschitz continuity in (H1) can be obtained easily from the smoothness of

U, p and the Lipschitz properties for X, Y, σ. (H3) is valid with r2 = r1 by the definition

of σ. Hypothesis (H4) requires the additional condition

aU ′(a) > max
ξ∈[a,b]

ξp(ξ), bU ′(b) < min
ξ∈[a,b]

ξp(ξ). (3.5.1)

Under the above assumptions, Theorems 3.3.5, 3.3.11 yield that system (3.1.4), (3.1.2),

(3.1.3) is well posed both in X × Y and X × Z, and all solutions can be extended to the

right half line.

2. In system (3.1.4), (3.1.2), (3.1.3) choose r0 = 0, r1 = 1, and U(ξ) = −ξ−α/α,

p(ξ) = ξβ with some positive α and β. Then U ′(ξ) = ξ−α−1, ξU ′(ξ) = ξ−α, ξp(ξ) = ξβ+1,

and x∗ = 1. It is straightforward that with a fixed c > 1 all conditions of Section 3.1

are satisfied provided there are constants a, b so that 0 < a < 1 < c < b and condition

(3.5.1) holds. In our particular case condition (3.5.1) holds if a−α > bβ+1 and b−α < aβ+1,

or equivalently aαbβ+1 < 1 < aβ+1bα. This can be true only if β + 1 < α, and even with

β + 1 < α we cannot choose a > 0 arbitrarily small, b > 1 arbitrarily large.

In order to satisfy condition (3.5.1) we modify function U close to zero. For ε ∈ (0, 1)

define

Uε(ξ) = − 1

αξα
− Vε(ξ), where Vε(ξ) =

exp
(

1
ξ

+ 1
ξ−ε

)
if 0 < ξ < ε,

0 if ξ ≥ ε.

Cleary, Vε and Uε are in C∞((0,∞),R), and ξU ′ε(ξ) = ξ−α+[ξ−1 + ξ/(ξ − ε)2]Vε(ξ) for all

ξ > 0. We want to find a, b such that 0 < a < 1 < b, and aU ′ε(a) > bβ+1 and b−α < aβ+1.

For given a > 0 choose b > 0 such that b−α = aβ+1/2, i.e., b = 21/αa−(β+1)/α. Then

b−α < aβ+1 holds. Inequality aU ′ε(a) > bβ+1 is satisfied if

aU ′ε(a) > 2
β+1
α a−

(β+1)2

α ,

which is valid if a > 0 is small enough since aU ′ε(a)→∞ faster than a−(β+1)2/α as a→ 0+.

Consequently, for each fixed ε ∈ (0, 1), there exists a = aε ∈ (0, ε) so that, by choosing

a ∈ (0, aε) and b = 21/αa−(β+1)/α, condition (3.5.1) is valid with Uε instead of U . Clearly,

b→∞ as a→ 0+. In particular, we may assume that b > c).

Therefore, for each ε ∈ (0, 1), Theorem 3.3.11 is applicable for system (3.1.4), (3.1.2),

(3.1.3) with r0 = 0, r1 = 1, p(ξ) = ξβ and Uε instead of U . For the new variable v =

x− 1 we obtain system (3.1.7), (3.1.8), (3.1.9) with f(v) = −κ [(v + 1)U ′ε(v + 1)− U ′(1)],

g(v) = κ
[
(v + 1)β+1 − 1

]
, and d = c− 1 > 0.

It is easy to see that Conditions (S1)–(S3) hold with A = a− 1, B = b− 1. We have

f ′(0) = κα and g′(0) = κ(β + 1).



CHAPTER 3. A DE WITH A STATE-DEPENDENT QUEUEING DELAY 63

If α > β + 1 then (S5) holds. Indeed, let λ ∈ C with Reλ ≥ 0, and suppose λ +

κα + κ(β + 1)e−λ = 0. Then κα ≤ |λ + κα| = |κ(β + 1)e−λ| ≤ κ(β + 1), a contradiction

to α > β + 1. Therefore, by Theorem 3.4.3, the (0, 0) solution of system (3.1.7), (3.1.8),

(3.1.9) is locally asymptotically stable.

Assume α < β+1. Then there exists ϑ0 ∈ (π/2, π) so that − cosϑ0 = α/(β+1). Define

κ0 = −(1/α)ϑ0 cotϑ0. For each κ > κ0 there exists ϑ1 ∈ (ϑ0, π) such that κα = −ϑ1 cotϑ1

since [π/2, π) 3 ϑ 7→ −ϑ cotϑ ∈ R increases from 0 to ∞. Then

κ(β + 1) =
β + 1

α
κα = − 1

cosϑ0

(−ϑ1 cotϑ1) =
− cosϑ1

− cosϑ0

ϑ1

sinϑ1

>
ϑ1

sinϑ1

,

and condition (3.2.2) is satisfied implying (S4) for all κ > κ0. Thus, Theorem 3.4.17

implies that, with the above particular choice of f, g, system (3.1.7), (3.1.8), (3.1.9) has

a slowly oscillatory periodic solution provided κ > κ0 and α < β + 1. Equivalently, if

α < β + 1 and κ > κ0 then system (3.1.4), (3.1.2), (3.1.3) with r0 = 0, r1 = 1, p(ξ) = ξβ

and Uε instead of U has a periodic solution (x, z) oscillating slowly around x∗ = 1. For

this periodic solution x, we claim that

x(t) ∈
[
(1 + κr)−

β+1
α , 1 + κr

]
for all t ∈ R. (3.5.2)

Let t1 ≥ 0 be such that x(t1) > 1 and x has a local maximum at t1. Then ẋ(t1) = 0. If

x(t) > 1 for all t ∈ [t1 − r, t1] then, by x(t1)U
′
ε(x(t1)) < 1 and x(t1 − z(t1) − 1) > 1, one

obtains

ẋ(t1) = κ
[
x(t1)U

′
ε(x(t1))− [x(t1 − z(t1)− 1)]β+1

]
< 0,

a contradiction. Therefore, there is a maximal t0 ∈ [t1 − r, t1) such that x(t0) = 1. An

integration gives

x(t1) = 1 +

∫ t1

t0

κ
[
x(t)U ′ε(x(t))− [x(t− z(t1)− 1)]β+1

]
dt ≤ 1 + κr,

the upper bound in (3.5.2). If t2 ∈ R is such that x(t2) < 1 and x has a local minimum at

t2, then ẋ(t2) = 0 and x(t2)U
′
ε(x(t2)) = [x(t2 − z(t2) − 1)]β+1. Hence, using Uε ≥ U , the

inequality

[x(t)]−α = x(t)U ′(x(t)) ≤ x(t)U ′ε(x(t)) ≤ [1 + κr]β+1 for all t ∈ R

follows, yielding the lower bound in (3.5.2).

Consequently, if, for a fixed κ > 0, we choose ε > 0 so that ε < (1 + κr)−(β+1)/α, and

a, b such that condition (3.5.1) and a ∈ (0, ε), b > max{c, 1 + κr} are satisfied, then all

possible periodic solutions (oscillating around x∗ = 1) of system (3.1.4), (3.1.2), (3.1.3),

with r0 = 0, r1 = 1, p(ξ) = ξβ and Uε instead of U , satisfy the system with the original

U as well.
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(a) For κ = 1, the solution tends to the globally asymptotically stable equilibrium, the queue

disappears and the delay becomes constant.
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(b) For κ = 4, the solution is asymptotically periodic, there is no queue, so the delay is constant.
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(c) For κ = 10, the solution is asymptotically periodic, the length of the queue and the waiting

time are not identically zero. In this case the delay of our system is state-dependent indeed.

Figure 3.4: Numerical solutions with α = 3, β = 1, q = C = 1.01, x∗ = 1, r0 = 0, r1 = 1.



Summary

The thesis summarizes the results of Balázs and Krisztin [4, 3]. It has three chapthers.

Chapter 1 is the introduction, it shows the sketch of the thesis.

The aim of Chapter 2 is to prove the global stability conjecture for the price model of

Erdélyi, Brunovský and Walther [9, 8, 37],

ẋ(t) = a[x(t)− x(t− 1)]− β|x(t)|x(t). (2.1.1)

Garab, Kovács and Krisztin [14] obtained global asymptotic stability of x = 0 for equation

(2.1.1) provided a ∈ (0, 0.61). The technique of [14] worked for the more general price

model

ẋ(t) = a
n∑
i=1

bi[x(t− si)− x(t− ri)]− g(x(t)). (2.1.2)

[14] proved global asymptotic stability for equation (2.1.2) when a ∈ (0, 1) and an addi-

tional condition was assumed, but it remained open to prove global asymptotic stability

without the additional condition, i.e., for a ∈ (0, 1).

By using Stieltjes integrals, equations (2.1.1) and (2.1.2) can be written as

ẋ(t) = a

∫ r

0

x(t− s)dη(s)− g(x(t)), (2.1.3)

ẏ(t) = a

∫ r

0

ẏ(t− s)dµ(s)− g(y(t)), (2.1.5)

assuming Hypotheses (Hg), (Hη) and (Hµ).

In Section 2.3, we consider equation (2.1.5), formulate the hypotheses on µ, and intro-

duce a suitable phase space. First it is shown that all solutions can be globally extended

to [−r,∞). In Theorem 2.3.2 a sufficient condition is given for the global asymptotic sta-

bility of the zero solution of equation (2.1.5). The proof is based on a Lyapunov functional

which has been inspired by the one employed for the equation

ẋ(t) = aẋ(t− 1)− g(x(t)) (2.1.6)

in the book of Kolmanovskii and Myshkis [21, Chapter 9, p. 374].

In Section 2.4, we consider equation (2.1.3) under Hypotheses (Hg) and (Hη). Com-

bining the global stability result of Section 2.3 for equation (2.1.5) and the continuous

65



CHAPTER 4. SUMMARY 66

dependence on initial data for equation (2.1.3), the main result, stated in Theorem 2.4.2,

is that the zero solution of equation (2.1.3) is globally asymptotically stable provided

a ∈ (0, 1). As a consequence, global asymptotic stability is obtained for the zero solution

of the Erdélyi–Brunovský–Walther equation (2.1.1) and also for equation (2.1.2) for the

full conjectured region a ∈ (0, 1), see Corollaries 2.4.3, 2.4.4.

Finally in Section 2.5 we show that the global stability result for equation (2.1.3) is

optimal in the sense that for a > 1 under the additional condition g′(0) = 0 the zero

solution is unstable. In addition, some open problems are mentioned.

In Chapter 3 we consider a network model that was introduced by Ranjan, La and

Abed in [31, 30]. It contains a single user and a single server. The user sends data by rate

x(t) to the server for procession. The server processes the incoming data by the capacity

c. Kelly [19] introduced the utility U(x) and the price p(x) per unit flow of the procession,

and proposed an end user rate control algorithm as a differential equation.

As the rate x(t) can be larger than the capacity of the server, the data arriving at

the server may form a single waiting line (a queue) with length y(t) before procession.

Suppose that a unit of data, whose procession was completed and the user received an

acknowledgement about it at time t, arrived at the queue τ(t) time earlier, found a queue

with length y(t− τ(t)), and spent waiting time z(t) = (1/c)y(t− τ(t)) in the queue before

its procession started. Then the model can be described by the system of equations

ẋ(t) = κ
[
x(t)U ′(x(t))− x(t− r0 − z(t)− r1)p(x(t− z(t)− r1))

]
, (3.1.4)

ẏ(t) =


x(t− r0)− c if 0 < y(t) < q,

[x(t− r0)− c]+ if y(t) = 0,

−[x(t− r0)− c]− if y(t) = q,

(3.1.2)

z(t) =
1

c
y(t− z(t)− r1). (3.1.3)

First we consider a slightly more general system of equations

ẋ(t) = F (xt, yt) (3.1.5)

and (3.1.2) in X × Y . The phase space X × Y contains all possible segments (xt, yt).

In order to see that system (3.1.4), (3.1.2), (3.1.3) is a particular case of system (3.1.5),

(3.1.2) introduce Z = [0, q/c] ⊂ R as a state space for the variable z(t). A cruical fact is

the existence of a unique Lipschitz continuous map σ : Y → Z such that

σ(ψ) =
1

c
ψ(−σ(ψ)− r1) (ψ ∈ Y ).

Then, for a solution (x, y) : [−r,∞) → R2 of system (3.1.5), (3.1.2) in the phase space

X × Y , defining z(t) = σ(yt), t ≥ 0, equation (3.1.3) is always satisfied for all t ≥ 0.
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Assume that a map G : X × Z → R is given such that, with the particular choice

F : X × Y 3 (ϕ, ψ) 7→ G(ϕ, σ(ψ)) ∈ R,

Hypotheses (H1)–(H4) hold. In this case system (3.1.5), (3.1.2) is equivalent to the system

composed of the equations

ẋ(t) = G(xt, z(t)), (3.1.6)

(3.1.2) and (3.1.3). Then, in the phase space X × Y , for each (ϕ, ψ) ∈ X × Y , system

(3.1.6), (3.1.2), (3.1.3) has the unique solution xϕ,ψ[−r,∞) → R, yϕ,ψ : [−r,∞) → R,

zϕ,ψ : [0,∞)→ R where
(
xϕ,ψ, yϕ,ψ

)
is the solution of system (3.1.5), (3.1.2), and zϕ,ψ(t) =

σ(yϕ,ψt ), t ≥ 0.

In Section 3.3 we show that, under Hypotheses (H1)–(H4), for each (ϕ, ψ) ∈ X × Y ,

system (3.1.5), (3.1.2) has a unique maximal solution
(
xϕ,ψ, yϕ,ψ

)
: [−r,∞) → R2, see

Theorem 3.3.5. The solutions define the continuous semiflow

Φ : [0,∞)×X × Y 3 (t, ϕ, ψ) 7→
(
xϕ,ψt , yϕ,ψt

)
∈ X × Y,

and, for each t ≥ 0, the solution operators Φ(t, ·, ·) : X × Y → X × Y are Lipschitz

continuous.

In Theorem 3.3.11, we also show that system (3.1.6), (3.1.2), (3.1.3) can be studied not

only in the phase space X ×Y , but also in X ×Z with a different notion of solution. The

key technical result is that there is a unique Lipschitz continuous map γ : X ×Z → Y so

that ψ = γ(ϕ, ζ) satisfies ψ(s) = cζ for s ∈ [−r,−ζ−r1], and equation (3.1.2) holds a.e. in

[−ζ − r1, 0]. In particular, ζ = (1/c)ψ(−ζ − r1). This means that the past of the length of

the queue can be recovered from the past of the rate (that is ϕ ∈ X) and from the present

waiting time. The maps h and k between the two different phase spaces are Lipschitz

continuous, h is injective, but k is not, k ◦ h = idX×Z , and h ◦ k
∣∣
h(X×Z) = idh(X×Z).

Then, for each (ϕ, ζ) ∈ X × Z, there exists a unique solution xϕ,ζ : [−r,∞) → R,

zϕ,ζ : [0,∞) → R of system (3.1.6), (3.1.2), (3.1.3) in the phase space X × Z satisfying

the initial condition xϕ,ζ0 = ϕ, zϕ,ζ(0) = ζ. Moreover,

Ψ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→
(
xϕ,ζt , zϕ,ζ(t)

)
∈ X × Z

is a continuous semiflow on X × Z, and Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))) for all t ≥ 0.

In Section 3.4 we assume r0 = 0, r1 = 1 and consider system (3.1.4), (3.1.2), (3.1.3).

Condition r0 = 0 guarantees a single delay in equation (3.1.4), r1 = 1 can be achieved

by rescaling the time. Then for the new variable v = x − x∗ we can rewrite our system.

Theorem 3.3.11 implies that system (3.1.7), (3.1.8), (3.1.9) is well posed in the phase

space X × Z.

A solution (v, z) of system (3.1.7), (3.1.8), (3.1.9) is called slowly oscillatory if for any

two zeros t1, t2 of v with t1 < t2 the inequality z(t2) + 1 < t2− t1 holds. This means that

the distance between consecutive zeros of v is larger than the delay.
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We introduce the sets W and W0 = W ∪ {(0, 0)}. Then, for each (ϕ, ζ) ∈ W , the

solution v = vϕ,ζ : [−r,∞) → R, z = zϕ,ζ : [0,∞) → R is slowly oscillatory with

infinite number of zeros. The second zero t2 of v in (0,∞) determines t∗2 > t2 so that

t2 = t∗2 − z(t∗2) − 1, and a return map P : W0 → W0 can be defined. A nontrivial fixed

point of P corresponds to a slowly oscillating periodic solution. A classical tool, that we

apply here as well, is Browder’s non-ejective fixed point theorem. A large part of Section

3.4 is devoted to the construction of a suitable subset of X ×Z where Browder’s theorem

is applicable.

It is a crucial result that P (ϕ, ζ) cannot decay too fast: there are constants θ > 0,

ρ > 0 with vϕ,ζ(t∗2) ≥ θ (ϕ(0))ρ for all (ϕ, ζ) ∈ W . This fact allows to construct a proper

C2-function α. Defining the compact subsets Wα,K1 and Wα,K0 of X × Z, the inclusion

P (Wα,K1) ⊆ Wα,K0 is satisfied. However, Wα,K1 and Wα,K0 are not convex. Following

[25], the subset Vα,K1 of C[−1,0] × R is compact and convex. Set Vα,K1 can be mapped

into Wα,K1 by the streching map Q given by Q(ψ, ζ) = (ϕ, ζ) with ϕ(s) = ψ(s/(ζ + 1)),

s ∈ [−ζ − 1, 0], and ϕ
∣∣
[−r,−ζ−1] ≡ 0. The squeezing map R, defined by R(ϕ, ζ) = (ψ, ζ)

with ψ(s) = ϕ((ζ + 1)s), s ∈ [−1, 0], maps Wα,K0 into Vα,K1 . Browder’s theorem can be

applied for finding a non-ejective fixed point of the map Π = R◦P ◦Q in Vα,K1 . This yields

a non-ejective fixed point of P in Wα,K1 as well. The non-ejective fixed point is nontrivial

provided (0, 0) ∈ Wα,K1 is ejective. Ejectivity of (0, 0) ∈ Wα,K1 follows in a standard way

from that of the zero solution of the constant delay equation v̇(t) = −f(v(t))−g(v(t−1)).

So we can state our main result in Theorem 3.4.17.

Finally, Section 3.5 gives examples.



Összefoglaló

A disszertáció összefoglalja Balázs és Krisztin [4, 3] eredményeit. Három fejezete van.

Az 1. Fejezet a bevezetés, ez bemutatja a disszertáció vázlatát.

A 2. Fejezet célja bebizonýıtani Erdélyi, Brunovský és Walther [9, 8, 37] globális sta-

bilitásra vonatkozó sejtését az

ẋ(t) = a[x(t)− x(t− 1)]− β|x(t)|x(t) (2.1.1)

ármodellre. Garab, Kovács és Krisztin [14] az x = 0 globális stabilitását mutatta meg az

(2.1.1) egyenletre, feltéve, hogy a ∈ (0, 0.61). [14] technikája az általánosabb

ẋ(t) = a
n∑
i=1

bi[x(t− si)− x(t− ri)]− g(x(t)). (2.1.2)

ármodellre is működött. [14] globális aszimptotikus stabilitást bizonýıtott az (2.1.2) egyen-

letre, ha a ∈ (0, 1), és egy további feltételt teszünk, de nyitott maradt a globális stabilitás

bizonýıtása ezen plusz feltétel nélkül, azaz a ∈ (0, 1)-re.

Stieltjes-integrálokat használva, a (2.1.1) és (2.1.2) egyenletek

ẋ(t) = a

∫ r

0

x(t− s)dη(s)− g(x(t)), (2.1.3)

ẏ(t) = a

∫ r

0

ẏ(t− s)dµ(s)− g(y(t)), (2.1.5)

alakban ı́rhatók, feltéve a (Hg), (Hη) és (Hµ) Hipotéziseket.

A 2.3. Szakaszban a (2.1.5) egyenletet tekintjük, megfogalmazzuk a hipotéziseket µ-

re, és bevezetjük a megfelelő fázisteret. Először megmutatjuk, hogy minden megoldás

globálisan kiterjeszthető [−r,∞)-re. A 2.3.2 Tételben elégséges feltételt adunk a (2.1.5)

zéró megoldásának globális aszimptotikus stabilitására. A bizonýıtás egy olyan Ljapunov-

funkcionálon alapszik, amilyet Kolmanovskii és Myshkis könyve, [21, 9. Fejezet, 374. oldal]

alkalmaz az

ẋ(t) = aẋ(t− 1)− g(x(t)) (2.1.6)

egyenletre.

A 2.4. Szakaszban a (2.1.3) egyenletet tekintjük a (Hg) és (Hη) hipotézisek mellett.

A 2.3. Szakasz (2.1.5) egyenletre vonatkozó globális stabilitási eredményét és a (2.1.3)

69
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egyenlet megoldásainak kezdeti értékétől vett folytonos függését kombinálva adódik a fő

eredmény, melyet a 2.4.2 Tételben mondunk ki, hogy a (2.1.3) egyenlet zéró megoldása

globálisan aszimptotikusan stabil, feltéve, hogy a ∈ (0, 1). Következésképpen kapjuk

a zéró megoldás globális aszimptotikus stabilitását Erdélyi–Brunovský–Walther (2.1.1)

egyenletében és a (2.1.2) egyenletben az a ∈ (0, 1) paraméterre, amire a sejtés vonatko-

zott, lásd a 2.4.3, 2.4.4 Következményeket.

Végül, a 2.5. Szakaszban megmutatjuk, hogy a (2.1.3) egyenletre kapott globális sta-

bilitási eredmény optimális abban az értelemben, hogy a > 1-re a g′(0) = 0 feltétel mellett

a zéró megoldás intstabil. Továbbá, megemĺıtünk néhány nyitott problémát.

A 3. Fejezetben egy hálózat-modellt tekintünk, amelyet eredetileg Ranjan, La és Abed

vezetett be a [31, 30] cikkekben. Ez egyetlen felhasználót és egyetlen szervert tartalmaz.

A felhasználó x(t) rátával küld adatokat feldolgozásra a szervernek. A szerver a bejövő

adatokat c kapacitással dolgozza fel. Kelly [19] bevezette a feldolgozás U(x) hasznosságát

és p(x) egységárát, illetve javasolt egy végfelhasználói rátaszabályzási algoritmust egy

differenciálegyenlet formájában.

Amint az x(t) ráta a szerver kapacitása fölé nő, a szerverhez beérkező adatok a fel-

dolgozás előtt egy y(t) hosszú sort alkotnak. Tegyük fel, hogy azon adategység, amely fel

lett dolgozva, és amelyről a felhasználó a t időben egy visszajelzést, τ(t) idővel korábban

ért a sorhoz, y(t − τ(t)) hosszú sort talált, és z(t) = (1/c)y(t − τ(t)) időt töltött sorban

állással, mielőtt megkezdődött a feldolgozása. Ekkor a modell a

ẋ(t) = κ
[
x(t)U ′(x(t))− x(t− r0 − z(t)− r1)p(x(t− z(t)− r1))

]
, (3.1.4)

ẏ(t) =


x(t− r0)− c if 0 < y(t) < q,

[x(t− r0)− c]+ if y(t) = 0,

−[x(t− r0)− c]− if y(t) = q,

(3.1.2)

z(t) =
1

c
y(t− z(t)− r1) (3.1.3)

egyenletrendszerrel ı́rható le.

Előbb egy valamivel általánosabb, az

ẋ(t) = F (xt, yt) (3.1.5)

és (3.1.2) egyenletekből álló rendszert tekintjük X × Y -ban. Az X × Y fázistér az összes

lehetséges (xt, yt) szegmenst tartalmazza.

Azért, hogy lássuk, hogy a (3.1.4), (3.1.2), (3.1.3) rendszer a (3.1.5), (3.1.2) egy

speciális esete, bevezetjük a Z = [0, q/c] ⊂ R halmazt mint a z(t) változó állapotterét.

Egy döntő tény az, hogy a σ : Y → Z Lipschitz-folytonos leképezés létezik és egyértelmű

a

σ(ψ) =
1

c
ψ(−σ(ψ)− r1) (ψ ∈ Y ).
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feltétellel. Ekkor a X × Y fázistéren a (3.1.5), (3.1.2) rendszer egy (x, y) : [−r,∞)→ R2

megoldására z(t) = σ(yt)-t definiálva t ≥ 0-ra, a (3.1.3) egyenlet mindig teljesül minden

t ≥ 0-ra.

Tegyük fel, hogy adott egy G : X × Z → R leképezés úgy, hogy a speciális

F : X × Y 3 (ϕ, ψ) 7→ G(ϕ, σ(ψ)) ∈ R,

választással a (H1)–(H4) hipotézisek teljesülnek. Ebben az esetben a (3.1.5), (3.1.2) rend-

szer ekvivalens a

ẋ(t) = G(xt, z(t)), (3.1.6)

(3.1.2) és (3.1.3) egyenletekből összeálĺıtott rendszerrel. Ekkor, az X × Y fázistérben,

minden (ϕ, ψ) ∈ X × Y -ra a (3.1.6), (3.1.2), (3.1.3) rendszernek létezik és egyértelmű az

xϕ,ψ[−r,∞) → R, yϕ,ψ : [−r,∞) → R, zϕ,ψ : [0,∞) → R megoldása, ahol
(
xϕ,ψ, yϕ,ψ

)
a

(3.1.5), (3.1.2) rendszer megoldása, és zϕ,ψ(t) = σ(yϕ,ψt ), t ≥ 0.

A 3.3. Szakaszban megmutatjuk, hogy a (H1)–(H4) hipotézisek mellett bármely

(ϕ, ψ) ∈ X × Y -ra a (3.1.5), (3.1.2) rendszernek létezik és egyértelmű a maximális(
xϕ,ψ, yϕ,ψ

)
: [−r,∞)→ R2 megoldása, lásd a 3.3.5 Tételt. A megoldások egy folytonos

Φ : [0,∞)×X × Y 3 (t, ϕ, ψ) 7→
(
xϕ,ψt , yϕ,ψt

)
∈ X × Y,

félfolyamot definiálnak, és a Φ(t, ·, ·) : X × Y → X × Y megoldásoperátorok Lipschitz-

folytonosak minden t ≥ 0-ra.

A 3.3.11 Tételben azt is megmutatjuk, hogy a (3.1.6), (3.1.2), (3.1.3) rendszer nem csak

az X × Y , hanem az X × Z fázistéren is vizsgálható a megoldás egy másik fogalmával.

A legfontosabb technikai eredmény az, hogy létezik és egyértelmű az γ : X × Z → Y

Lipschitz-folytonos leképezés úgy, hogy ψ = γ(ϕ, ζ) teljeśıti a ψ(s) = cζ egyenlőséget

s ∈ [−r,−ζ− r1]-re, és a (3.1.2) teljesül majdnem mindenhol a [−ζ− r1, 0] intervallumon.

Sőt, ζ = (1/c)ψ(−ζ−r1). Ez azt jelenti, hogy a sorhossz rekonstruálható a ráta múltjából

(ami ϕ ∈ X) és a jelenlegi várakozási időből. A két különböző fázistér között ható h és k

leképezések Lipschitz-folytonosak, h injekt́ıv, de k nem, k ◦ h = idX×Z , és h ◦ k
∣∣
h(X×Z) =

idh(X×Z). Ekkor minden (ϕ, ζ) ∈ X × Z-re létezik és egyértelmű a (3.1.6), (3.1.2), (3.1.3)

rendszer xϕ,ζ0 = ϕ, zϕ,ζ(0) = ζ kezdeti feltételt teljeśıtő megoldása. Továbbá

Ψ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→
(
xϕ,ζt , zϕ,ζ(t)

)
∈ X × Z

folytonos félfolyam X × Z-n, és Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))) minden t ≥ 0-ra.

A 3.4. Szakaszban feltesszük, hogy r0 = 0, r1 = 1, és tekintjük a (3.1.4), (3.1.2), (3.1.3)

rendszert. Az r0 = 0 feltétel garantálja, hogy a (3.1.4) egyenletnek egyetlen késletetése

van, r1 = 1 elérhető az idő újraskálázásával. Ekkor az új v = x− x∗ változóra át́ırhatjuk

a rendszerünket. A 3.3.11. tételből következik, hogy a (3.1.7), (3.1.8), (3.1.9) rendszer jól

definiált az X × Z fázistéren.
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A (3.1.7), (3.1.8), (3.1.9) rendszer egy (v, z) megoldását lassan oszcillálónak nevezzük,

ha v bármely két t1, t2 zéróhelyére t1 < t2 esetén a z(t2) + 1 < t2 − t1 egyenlőtlenség

teljesül. Ez azt jelenti, hogy v egymást követő zéróhelyei közt a távolság nagyobb, mint

a késleltetés.

Bevezetjük a W és W0 = W ∪ {(0, 0)} halmazokat. Ekkor minden (ϕ, ζ) ∈ W -ra a

v = vϕ,ζ : [−r,∞) → R, z = zϕ,ζ : [0,∞) → R megoldás lassan oszcilláló végtelen

sok zéróhellyel. A v második zéróhelye (0,∞)-en, t2 meghatározza t∗2 > t2-t úgy, hogy

t2 = t∗2 − z(t∗2) − 1, és egy P : W0 → W0 visszatérési leképezést tudunk definiálni. P

egy nemtriviális fixpontja egy lassan oszcilláló periodikus megoldásnak felel meg. Egy

klasszikus eszköz, amit itt alkalmazunk, Browder nem-tasźıtó fixpont-tétele. A 3.4. Sza-

kasz egy nagy része X ×Z egy megfelelő részhalmazának konstrukciójáról szól, ahol Brow-

der tétele alkalmazható.

Az egy döntő eredmény, hogy P (ϕ, ζ) nem csökkenhet túl gyorsan: vannak olyan θ > 0,

ρ > 0 konstansok, hogy vϕ,ζ(t∗2) ≥ θ (ϕ(0))ρ minden (ϕ, ζ) ∈ W -re. Ez a tény lehetővé

teszi, hogy konstruáljunk egy megfelelő C2-sima α függvényt. A X ×Z kompakt Wα,K1 és

Wα,K0 részhalmazait definiálva, teljesül a P (Wα,K1) ⊆ Wα,K0 tartalmazás. Azonban Wα,K1

ésWα,K0 nem konvex. [25]-t követve, a C[−1,0]×R tér Vα,K1 részhalmaza kompakt és konvex.

A Vα,K1 halmaz Wα,K1-be képezhető a Q nyújtó leképezéssel, amit a Q(ψ, ζ) = (ϕ, ζ),

ϕ(s) = ψ(s/(ζ+1)), s ∈ [−ζ−1, 0], és ϕ
∣∣
[−r,−ζ−1] ≡ 0 képletek adnak meg. Az R zsugoŕıtó

leképezés, melyet aR(ϕ, ζ) = (ψ, ζ), ψ(s) = ϕ((ζ+1)s), s ∈ [−1, 0] képletek adnak,Wα,K0-

t Vα,K1-ba képezi. Browder tétele alkalmazható a Π = R ◦ P ◦ Q leképezés nem-tasźıtó

fixpontjának megtalálására Vα,K1-ben. Ez egyben a P egy nem-tasźıtó fixpontját is adja

Wα,K1 . A nem-tasźıtó fixpont nemtriviális, feltéve, hogy (0, 0) ∈ Wα,K1 tasźıtó. A (0, 0) ∈
Wα,K1 tasźıtó tulajdonsága szokásos módon jön az v̇(t) = −f(v(t))− g(v(t− 1)) egyenlet

zéró megoldásának tasźıtó tulajdonságából. Így kimondhatjuk a fő eredményünket a 3.4.17

Tételben.

Végül, a 3.5. Szakasz példákat ad.
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