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Notation

u

C(A, B)
Cr
C™(A, B)
||U||1

Uy

I, v)|

the set of positive numbers

the set of nonnegative numbers

the set of real numbers

n-dimensional real vector space

the set of complex numbers

real part

imaginary part

the derivative of the function u

the derivative of the function u with respect to time

the Banach-space of continuous functions mapping from A to B,
where A and B are nonempty sets

C(I,R), where I CR

the Banach-space of n-times continuously differentiable functions
mapping from A to B, where A and B are nonempty sets

the euclidean norm in the n-dimensional vector space R"

the maximum of u € C(I,R"), defined by max;cy |u(t)]

the segment of the function v € C(1,R"), where [t —r,t] C I C R,
defined by u:(s) = u(t +s), s € [—r,0]

the norm of (u,v) € £ x F, defined by ||ul|¢ + ||v||#, where £ and F are

Banach spaces with norms || - ||¢ and || - || 7, respectively



Chapter 1
Introduction

The thesis summarizes the results of Baldzs and Krisztin [4, 3]. Article [4] is accepted
for publication, an electronic version is available. Article [3] is submitted. The author
has another paper [5], joint with van den Berg, Courtois, Dudés, Lessard, Voros-Kiss,

Williams and Yin, that is not presented here.

In papers [4, 3] and in the thesis we study two different types of differential equations
with delay. As for the two equations different technical tools are developed, we consider
them in separated chapters with slightly different notions.

The common in the two types of problems is that both are motivated by applications,
and both require new, non-classical theoretical techniques. Another joint feature is that we
solve open problems for both types of problems. In addition, we believe that the developed

methods will turn out to be useful for a wide class of analogous models.

First we study the price model

#(t) = ala(t) — a(t — 1)] - Bla(0)la(2), (2.1.1)

introduced by Erdélyi, Brunovsky and Walther [9, 8, 37]. The main result is that in case
0 < a < 1 the zero solution is globally asymptotically stable. This gives an affirmative
answer for a conjecture of Erdélyi, Brunovsky and Walther. Earlier local stability was
known for all @ € (0, 1), see [9]. As linearization fails at zero, a center manifold reduction
was used. Global attractivity was proven only for a € (0, 0.61) by Garab, Kovéics and

Krisztin [14]. The technique of [14] worked for the more general price model

i(t) = a Z bilx(t — ;) — a(t — ;)] — g(x(t)). (2.1.2)

Our proof is based on the key idea that it is possible to connect the problem with a
different type of equations, namely with neutral functional differential equations, and in

addition, that Lyapunov functionals can be constructed for the neutral type problems.
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By using Stieltjes integrals, equations (2.1.1) and (2.1.2) can be written as

f@yngZ@—sumg—g@@» (2.1.3)

i) =a [ it = s)duls) = (v, (2.15)

assuming Hypotheses (Hy), (H,) and (H,).

In Section 2.3, we consider equation (2.1.5), formulate the hypotheses on p, and intro-
duce a suitable phase space. First it is shown that all solutions can be globally extended
to [—7,00). Then, in Theorem 2.3.2, a sufficient condition is given for the global asymp-
totic stability of the zero solution of equation (2.1.5). The proof is based on a Lyapunov

functional which has been inspired by the one employed for the equation

#(t) = ai(t — 1) — g(z(t)) (2.1.6)

in the book of Kolmanovskii and Myshkis [21, Chapter 9, p. 374].

In Section 2.4, we consider equation (2.1.3) under Hypotheses (H,) and (H,). Com-
bining the global stability result of Section 2.3 for equation (2.1.5) and the continuous
dependence on initial data for equation (2.1.3), the main result, that is stated as Theo-
rem 2.4.2, is that the zero solution of equation (2.1.3) is globally asymptotically stable
provided a € (0, 1). As a consequence, global asymptotic stability is obtained for the zero
solution of the Erdélyi-Brunovsky—Walther equation (2.1.1) and also for equation (2.1.2)
for the full conjectured region a € (0,1), see Corollaries 2.4.3, 2.4.4.

Finally in Section 2.5 we show that the global stability result for equation (2.1.3) is
optimal in the sense that for @ > 1 under the additional condition ¢’(0) = 0 the zero

solution is unstable. In addition, some open problems are mentioned.

The second part of the thesis considers a system which is composed of a delay dif-
ferential equation and two auxiliary equations defining the delay. The delay differential
equation satisfies a negative feedback condition studied earlier in several fundamental
papers [26, 27], leading to the development of topics of nonlinear functional analysis like
fixed point theory in infinite dimensions. The studied particular system was introduced
by Ranjan, La and Abed [31, 30] to model a rate control mechanism for a simple com-
puter network. Mathematically, the difficulty arises from the particular form of the delay
defined by the two auxiliary equations. The classical results for constant delays [12, 16],
the recently developed methods for state-dependent delay [17, 35] do not seem to be ap-
plicable here. The first difficulty is to find a suitable phase space where the corresponding
initial value problem has a unique maximal solution, and the solutions define a continu-
ous semiflow. In fact, we develop two different frameworks to study the problem. These
require different phase spaces and different definitions for solutions. It depends on the
question which approach is more suitable. The second main result is that the rate control

system of Ranjan et al. may lead to a slowly oscillating periodic rate around the optimal
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rate, provided that the stationary solution at the optimal rate is unstable. This answers

affirmatively a conjecture of Ranjan and his coauthors [29, 28].

The network model contains a single user and a single server. The user sends data
by rate z(t) to the server for procession. The server processes the incoming data by the
capacity c. Kelly [19] introduced the utility U(x) and the price p(z) per unit flow of the

procession, and proposed an end user rate control algorithm as a differential equation.

As the rate z(t) can be larger than the capacity of the server, the data arriving at
the server may form a single waiting line (a queue) with length y(t) before procession.
Suppose that a unit of data, whose procession was completed and the user received an
acknowledgement about it at time ¢, arrived at the queue 7(¢) time earlier, found a queue
with length y(t —7(t)), and spent waiting time z(¢) = (1/¢)y(t — 7(t)) in the queue before

its procession started. Then the model can be described by the system of equations

i(t) = k[z(O)U" (2(t) — x(t — ro — 2(t) — ri)p(z(t — 2(t) — m1))], (3.1.4)
x(t—19) —c if 0 < y(t) <q,

y(t) = [e(t —ro) =t if y(t) =0, (3.1.2)
—lz(t—ro) =~ ify(t) =g,

A(t) = %y(t ) =), (3.1.3)

First we consider a slightly more general system of equations
@(t) = Flae, y) (3.1.5)

and (3.1.2) in X x Y. The phase space X X Y contains all possible segments (zy, ;).

In order to see that system (3.1.4), (3.1.2), (3.1.3) is a particular case of system (3.1.5),
(3.1.2) introduce Z = [0, ¢/c] C R as a state space for the variable z(t). A cruical fact is

the existence of a unique Lipschitz continuous map o : Y — Z such that

o) = “U(-o() —n)  (BEV).

Then, for a solution (z,y) : [-r,00) — R? of system (3.1.5), (3.1.2) in the phase space
X x Y, defining 2(t) = o(y:), t > 0, equation (3.1.3) is always satisfied for all ¢ > 0.

Assume that a map G : X x Z — R is given such that, with the particular choice
F:XxY 3 (p¢) = Gle,0¥)) €R,

Hypotheses (H1)—-(H4) hold. In this case system (3.1.5), (3.1.2) is equivalent to the system
composed of the equations

(t) = G(xy, 2(1)), (3.1.6)
(3.1.2) and (3.1.3). Then, in the phase space X x Y, for each (¢,1) € X x Y, system
(3.1.6), (3.1.2), (3.1.3) has the unique solution z#¥[—r c0) — R, y#¥ : [-r,c0) — R,
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29" 1 [0,00) — R where (¢, y#*) is the solution of system (3.1.5), (3.1.2), and 2#¥(t) =
o(yf"), t = 0.

In Section 3.3 we show that, under Hypotheses (H1)—(H4), for each (¢,9) € X x Y,
system (3.1.5), (3.1.2) has a unique maximal solution (z#¥,y#") : [—r,00) — R% The

solutions define the continuous semiflow
D :[0,00) Xx X XY 3 (t,p,0) — <xf’¢,yf’w> € X xY,

and, for each ¢ > 0, the solution operators ®(t,-,-) : X x Y — X x Y are Lipschitz

continuous, see Theorem 3.3.5

We also show that system (3.1.6), (3.1.2), (3.1.3) can be studied not only in the phase
space X XY, but also in X x Z with a different notion of solution. The key technical result
is that there is a unique Lipschitz continuous map v : X X Z — Y so that ¢ = (¢, ()
satisfies 1(s) = ¢( for s € [—r, —( — 1], and equation (3.1.2) holds a.e. in [—( — 71, 0].
In particular, ¢ = (1/¢)y(—¢ — r1). This means that the past of the length of the queue
can be recovered from the past of the rate (that is ¢ € X) and from the present waiting
time. The maps h and k between the two different phase spaces are Lipschitz continuous,
h is injective, but k is not, ko h = idx«z, and h o k{h(XXZ) = idy(xxz). Theorem 3.3.11
states that for each (p,() € X x Z, there exists a unique solution z#¢ : [—r,00) — R,
2#¢ 1 [0,00) — R of system (3.1.6), (3.1.2), (3.1.3) in the phase space X x Z satisfying

the initial condition =& = ¢, 2#<(0) = ¢. Moreover,
U:[0,00) x X X Z 53 (t,p,() — <xf’<,z(p’<(t)) eXxZ

is a continuous semiflow on X x Z, and ¥(t, ,() = k(®(t, h(p,())) for all t > 0.
In Section 3.4 we assume ro = 0, 7, = 1 and consider system (3.1.4), (3.1.2), (3.1.3).

Condition ry = 0 guarantees a single delay in equation (3.1.4), r; = 1 can be achieved
by rescaling the time. Then for the new variable v = x — x, we can rewrite our system.
Theorem 3.3.11 implies that system (3.1.7), (3.1.8), (3.1.9) is well posed in the phase
space X X Z.

A solution (v, z) of system (3.1.7), (3.1.8), (3.1.9) is called slowly oscillatory if for any
two zeros tq, ty of v with ¢; < t5 the inequality z(t3) + 1 < t3 — t; holds. This means that

the distance between consecutive zeros of v is larger than the delay.
We introduce the sets W and Wy = W U {(0,0)}. Then, for each (¢,() € W, the

solution v = v#¢ : [-r,00) — R, 2 = 2#¢ : [0,00) — R is slowly oscillatory with
infinite number of zeros. The second zero ty of v in (0,00) determines t5 > ¢y so that
ty = t5 — z(t5) — 1, and a return map P : Wy — Wy can be defined. A nontrivial fixed
point of P corresponds to a slowly oscillating periodic solution. A classical tool, that we
apply here as well, is Browder’s non-ejective fixed point theorem. A large part of Section
3.4 is devoted to the construction of a suitable subset of X x Z where Browder’s theorem

is applicable.
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It is a crucial result that P(y, () cannot decay too fast: there are constants 6 > 0,
p > 0 with v#¢(¢5) > 60 (p(0))” for all (¢,¢) € W. This fact allows to construct a proper
C?-function «. Defining the compact subsets Wa.k, and W, g, of X x Z, the inclusion
PWak,) € Wyk, is satisfied. However, W, k, and W, g, are not convex. Following
[25], the subset V, x, of Cl_19 X R is compact and convex. Set V, x, can be mapped
into W, i, by the streching map @ given by Q(¢, () = (¢, () with ¢(s) = ¥(s/(¢ + 1)),
s € [-¢—1,0], and w‘[—r,—c—l] = 0. The squeezing map R, defined by R(p,() = (¢,()
with ¥ (s) = o((¢ + 1)s), s € [—1,0], maps W, g, into V, g,. Browder’s theorem can be
applied for finding a non-ejective fixed point of the map II = RoPo(Q in V,, k,. This yields
a non-ejective fixed point of P in W, , as well. The non-ejective fixed point is nontrivial
provided (0,0) € W, g, is ejective. Ejectivity of (0,0) € W, g, follows in a standard way
from that of the zero solution of the constant delay equation 0(t) = — f(v(t)) —g(v(t—1)).

So we can state our main result in Theorem 3.4.17.
Finally, Section 3.5 gives examples.

At the end of the thesis we summarize our results both in English and Hungarian.



Chapter 2

Global stability for price models
with delay

2.1 Introduction

Our primary aim is to prove the global stability conjecture for the price model of Erdélyi,
Brunovsky and Walther [9, 8, 37]

#(t) = ale(t) —(t = 1)] = fla(t)|=(?), (2.1.1)

where a > 0, f > 0. They introduced equation (2.1.1) to model the short-time fluctuations
of the price of a foreign currency in a domestic reference currency, although the model
applies to other kind of assets as well. It is assumed that there is an equilibrium exchange
rate. The deviation from the equilibrium rate is denoted by x(t). The agents want to make
profit from their trading, and they try to predict the future exchange rate. As they do not
have precise information on the equilibrium exchange rate, for the prediction they use the
movement of the exchange rate in one unit of time. That is, in case z(t) — z(t — 1) > 0,
they expect the rate to raise leading to increasing demand and thus an increase of the
price. The case z(t) — x(t — 1) < 0 is expected to lead a decreasing demand and thus a
decrease of the price. This is expressed by the term a[z(t) — z(t — 1)]. The quadratic term
in equation (2.1.1) describes that once the rate moves far from its equilibrium more and

more agents expect that this trend will eventually turn back.

For 0 < a < 1, the local asymptotic stability of x = 0 was shown by Erdélyi, Brunovsky
and Walther, and they conjectured global asymptotic stability. Numerical simulations
provided by Erdélyi [13] suggested the existence of a stable (slowly oscillating) periodic
solution of equation (2.1.1) for a > 1, which was established in [9, 8]. This result has
recently been generalized by Stumpf [33] for a state-dependent delay version of equation
(2.1.1). Walther analyzed further the slowly oscillating periodic solution of equation (2.1.1)

and showed that it converges to a square-wave solution as a tends to infinity [37], and
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that the period tends to infinity as a — 17 [36].

Recently, Garab, Kovacs and Krisztin [14] obtained global asymptotic stability of
x = 0 for equation (2.1.1) provided a € (0,0.61). The key idea of [14] to prove global
asymptotic stability of © = 0 was to rewrite the equation as a neutral type functional
differential equation. Then an equivalent equation with infinite delay was obtained for
which a stability result of [22] was applied. The technique of [14] worked for the more

general price model
—aZb (t —s;) — a(t — ;)] — g(x(t)), (2.1.2)

as well, where a > 0, b, > 0,0<s; <r; <1,i€e{l,...,n}, > bi(r; —s;) = 1 holds,
and ¢ is a smooth increasing real function with ug(u) > 0 for u # 0. [14] proved global
asymptotic stability for equation (2.1.2) when a € (0,1) and an additional condition was
assumed, see the details in Section 2.4. In [14] it remained open to prove global asymptotic

stability without the additional condition, i.e., for a € (0, 1).

In the sequel, we always assume r > 0, a > 0, and

(i) g: R — R is C'-smooth, ug(u) > 0 for u # 0,
: Jy 9(u) du — oo as |s| — co.

By using Stieltjes integrals, equations (2.1.1) and (2.1.2) can be written as

x(t) = a/or x(t — s)dn(s) — g(z(t)) (2.1.3)
with n satisfying

n:[0,r] = [0,00) is of bounded variation,

H,
() n(0) =n(r) =0, [;n(s)ds=1.

Following [9], (t) in equation (2.1.3) can represent the price of an asset at time ¢. Indeed, if
x : I — Ris continuously differentiable on an interval containing [t —r, ], then integrating
the Stieltjes integral [ z(t — s) dn(s) by parts, and using 7(0) = n(r) = 0, we find

Jo w(t = s)dn(s) = [z(t —s)n(s)lizy — fy 1(s) dsa(t — s)
= - forn(s)%x(t —5)ds (2.1.4)
= forj:(t —5)ds (fos 77) )

As 7 is nonnegative, the function [0,r] 3 s — [ € R is monotone nondecreasing. Then
(2.1.4) shows that the term [ z(t — s) dn(s) is zero if x is constant on [t — r,t], and it is
positive (negative) if #(s) > 0 (< 0) for all s € [t—r,t]. Therefore, the term [ z(t—s) dn(s)
can be used to describe the tendency of the price, and the term a [; z(t — s) dn(s) with
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a > 0 can represent the positive response to the recent tendency of the price. The term
—g(z(t)) in equation (2.1.3) is responsible for the negative feedback to the deviation of

the price from the zero equilibrium.

Observe that if the function s — [’ n(u)du in the integral term [ &(t — s)ds (f; n)
in equality (2.1.4) is replaced by an arbitrary nondecreasing function p : [0,7] — R of
bounded variation, then the obtained integral term [ @(t—s) du(s) can be still interpreted

as the tendency of the price. This motivates to study the neutral type differential equation

it)=a / gt — s)duls) — g(y(), (2.1.5)

as well as a price model provided a > 0 and p : [0,7] — R is of bounded variation and

nondecreasing with an additional technical assumption given in Section 2.3.

There is another reason to study the neutral type equation (2.1.5). It plays a crucial
role in the proof of the stability results for equations (2.1.1), (2.1.2), (2.1.3). However,
equation (2.1.3) and equation (2.1.5) are not equivalent. A solution of equation (2.1.3)
satisfies equation (2.1.5) with u(s) = [;n only for ¢ > r. The phase spaces and the
stability definitions are also different for equations (2.1.3) and (2.1.5).

The chapter is organized as follows. In Section 2.3, we consider equation (2.1.5), for-
mulate the hypotheses on y, and introduce a suitable phase space. First it is shown that
all solutions can be globally extended to [—r,00). Then a sufficient condition is given for
the global asymptotic stability of the zero solution of equation (2.1.5). The proof is based

on a Lyapunov functional which has been inspired by the one employed for the equation
(t) = az(t — 1) — g(x(t)) (2.1.6)

in the book of Kolmanovskii and Myshkis [21, Chapter 9, p. 374]. There, equation (2.1.6)

describes a shunted power transmission line.

In Section 2.4, we consider equation (2.1.3) under Hypotheses (H,) and (H,). Com-
bining the global stability result of Section 2.3 for equation (2.1.5) and the continuous
dependence on initial data for equation (2.1.3), the main result is that the zero solution of
equation (2.1.3) is globally asymptotically stable provided a € (0,1). As a consequence,
global asymptotic stability is obtained for the zero solution of the Erdélyi-Brunovsky—
Walther equation (2.1.1) and also for equation (2.1.2) for the full conjectured region
aec(0,1).

Finally in Section 2.5 we show that the global stability result for equation (2.1.3) is
optimal in the sense that for @ > 1 under the additional condition ¢’(0) = 0 the zero

solution is unstable. In addition, some open problems are mentioned.
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2.2 Preliminary results

In the theory of neutral differential equations, we follow Kolmanovskii and Myshkis [21].

Note that there is also a bit different approach by Hale and Verduyn Lunel [16].

We consider the neutral differential equation

a(t) = f(t,z, @) (2.2.1)

with initial condition

2y = 0. (2.2.2)
The next result is Theorem 3.1 on page 107 in [21].

Theorem A. Let E = [ty,00) X C([—r,0],R)?, f: E — R be a continuous functional

and 1n some neighbourhood of any point of E it satisfies the condition

|FE 0t X = F 0 )] < LIt — 92|l mng + UIX = Xl =0

with constants L € [0,00), | € [0,1) (which may depend on the point). Assume also that
Y € CY([-r,0],R) and the sewing condition

$(0) = f(to. ¥, ¥)
is fulfilled. Then there exists a constant t,, € (to, 00| such that
a) there ezists a solution x of (2.2.1), (2.2.2) on the interval [to,ty);
b) on any interval [to, t1] C [to,ty) this solution is unique;
c) if ty < oo then i(t) does not have a finite limit ast —t,;

d) the solution x and & depend continuously on f, 1.

2.3 Global stability in equation (2.1.5)

In this section we study equation (2.1.5) under condition a € (0, 1), Hypothesis (H,), and
the assumption on p descibed below.

First we define a step function with (possibly) infinite number of steps. Let (¢,,)%°, be
a sequence of nonnegative numbers with >~ ¢, < 1, and let (r,)72, be a sequence in
[0, 7] such that ry = 0, and r,, > 0 for all n € N. Let H : [0,7] — R be given by H(0) =0,
H(s) =1 for s € (0,r]. Define o : [0,7] — R by

o(s) =coH(s) + Z Cn, s€[-T0].

n: rn<s
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Let a nondecreasing and absolutely continuous v : [0,7] — R be given with v(r) —
v(s) <1

Our hypothesis on p is that it is nondecreasing without a singular part, that is,

p:l0,r] > Ris given by u=v+o

(Hy)
g such that [ du=1, ie, v(r)—v(0)+ >0 e, =1

holds.
Define the set

v={vecrolm [ b0 =a [ i-s)auts) - atw0) .

and let
1/2

wm:(wwﬂa[wvmwﬁ

for 1p € Y. Set Y will be the phase space for equation (2.1.5).

A solution of equation (2.1.5) with initial function ¢» € Y is a continuously differen-
tiable function y = y¥ : [-r,t,) — R such that yy = ¢, and equation (2.1.5) holds for
all t € (0,t4). The solution y¥ is called a maximal solution if any other solution with the

same initial function is a restriction of y¥.

From ¢(0) = 0 it is clear that y = 0 is a solution of (2.1.5), and by (H,) it is the
only equilibrium solution. The solution y = 0 of equation (2.1.5) is called stable if for any
e > 0 there exists d(¢) > 0 such that, for each ¢ € Y with ||¢||y < d(¢), the solution
y¥ exists on [, 00) and ||y’ ||y < e for all + > 0. The solution y = 0 is called globally
asymptotically stable if it is stable and for each 1 € Y the solution y¥ exists on [—r, 00)
and ||y¥]ly — 0 as t — oc.

Theorem A states that for each 1 € Y, equation (2.1.5) has a unique maximal solution
y¥ : [-r,ty) — R, and in case t, < oo the finite limit lim,_,,,_ §¥(¢) does not exist. We

will use this result to show that for any ¢ € Y there exists a unique solution on [—r, 00).

Proposition 2.3.1. Assume Hypotheses (Hy), (H,) hold, and a € (0,1). Let ¢p € YV
and consider the unique mazimal solution y¥ : [—r,t,) — R of equation (2.1.5). If y¥ is
bounded on [—r,t,) then ty = oc.

Proof. Let v € Y, y=1y¥: [-r,ty) — R, and let y be bounded on [—r, ;).
Assume t,, < 0o. Then, by Theorem A, the finite limit lim,,;,_ y(¢) does not exist.

First we show that y is bounded on [—r, ;). If ¢ is unbounded from above on [—r,ty)
then we can choose a sequence (7,)7; in [0, t,) such that 7,, — ty, y(7,) — 00 as n — oo,
y(t) < y(r,) for all t € [—r,7,), n € N. For arbitrary n € N, by using Hypothesis (H,),



CHAPTER 2. GLOBAL STABILITY FOR PRICE MODELS WITH DELAY 12

we have
i) = [ 90 = ) duts) - o0(r)
< [ 9(m) duls) = aly(m) = i) ~ ou(r(t,).
Hence, from a € (0,1) and §(r,,) — oo, it follows that
—g(y(r) > (1= a)j(r) = 00 asn - oo.

As y is bounded, this is a contradiction. The case when ¢ is unbounded from below leads
similarly to a contradiction. Thus, ¢ is bounded on [—r, ;).
Define
a =liminfy(t), B = limsupy(t).
t—oty, t—t,
We know that —oo < a < f§ < oo. There are strictly increasing sequences (t,,)32 ;, (5,)5 4
in [0,%,) such that ¢, — ¢y, s,, — t, and
lim §(s,) = a, lim §(t,) = 5.

n—oo n—oo

Choose o < o < < [/ so that a(f’ — o) < f — a. There exists a § > 0 such that
y(t) € [o, p] for all t € [ty, — 20,ty). From (2.1.5) it follows that

)
J(t) — §(s0) = a / (9t — 5) — 950 — 5)) du(s)
ta / (5t — ) — (50 — 5)) dpa(s) — gy(ta)) + 9(y(sa)).

We have .
i o [ (3t ) = (s, = ) du(s) =0

n—oo

because y is uniformly continuous on [—r, ¢, — d]. In addition,

lim [g(y(tn)) — g(y(sn))] =0

n—o0

since the boundedness of y on [—r, ;) implies the uniform continuity of y and g o y, and
that ¢g(y(t)) has a finite limit at ¢,,. Combining these facts with y(¢,,) — y(s,) = f — a as
n — oo, one obtains

5= a= lim (3t) ~ i(s2)) = Jim a [ (3t = 5) = (5, = ) du(s)

0
< a/o (8" = o) du(s) < a(5" = o),

a contradiction. Therefore, ¢, = oo, and the proof is complete. O]
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Next we show the global asymptotic stability of the zero solution of equation (2.1.5).

Theorem 2.3.2. Assume Hypotheses (Hy), (H,) hold, and a € (0,1). Then for each
Y €Y the unique mazimal solution y¥ of equation (2.1.5) is defined on [—r, o), and the
zero solution of (2.1.5) is globally asymptotically stable.

Proof. Define the function
K :[0,r] 95&—)/ dp € [0,1].

According to Hypothesis (H,), let Ki(s) = [ dv and Ks(s) = [] do. Then K(s) =
Ki(s) + K»(s), and

Yo gcn fors=0,

Ki(s) =w(r) —v(s), Ky(s) = Y s Cn for s € (0,r7].

Let ¢ € Y and consider the unique solution y = y¥ : [-r,t;,) — R. For ¢t € [0,t,),
define

9 [y
/ K(t—s)(y(s))? ds+— g(u) du
0
y(t)

:[’uaa—$+4@@—ﬁﬂ<>>d&+3 gl du.

0

As y and K; are continuously differentiable functions, the map
0,2,) 9t|—>/ Ki(t—s)(y(s))*ds € R

is continuously differentiable, and

G K- 66 ds

= K O)(§(0)* ~ Ka(r)(g(t — )7 + [:%m@—@@@fw
= [v(r) —v(0) 2+/0 (t — s))2K!(s)ds

— [v(r) - (0) /0 (t — 5))% dv(s).

Observe that

/ Kot — s)( dS—ch/
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This series of functions is continuously differentiable, it can be differentiated term by

term, and

S Kol = )a(5) ds = 3 e [00)° — (it — 7))

dt t—r
- (Z Cn) ((6)* — /Or(y(t —s))*do(s).

The last term in w(t) is clearly continuously differentiable with

y(t)
42 O g(u) du = 25 (u(0))i).

Therefore, w is continuously differentiable on [0,,), and

2

w'(t) = [V(?”) —v(0)+ ) ea| (5(1)° - /Or(y(t —5))" d(v +0)(s) + —g(y(£))(t).

By Hypothesis (H,), we have v(r) —v(0)+>_° ¢, = 1, and 1 = v+0. Jensen’s inequality

(/OT y(t — s) dﬂ(8)>2 < /Dr(y(t — $))2du(s).

Combining the above relations, it follows that

implies

w0 < 0P - ([ ite- )+ S, (23.1)
From equation (2.1.5), the term [ §(t—s) dpu(s) is equal to (1/a)[§(t)+g(y(t))]. Therefore,
by (2.3.1),
W<~ (5 -1) GOF - S0 232
holds for all ¢ € [0, ).

From inequality (2.3.2), by a € (0,1), it follows that w is a nonincreasing function on
[0,t), and w(t) € [0,w(0)] for all ¢ € [0,%,). This fact and the definition of w gives

/0 " ) du € [0, %210(0)]

for all ¢ € [0,t,). By Hypothesis (H,) we obtain that y is bounded on [0, ¢,), and then on
[—r,ty). Proposition 2.3.1 can be applied to conclude ¢, = oo.

Thus, inequality (2.3.2) holds for all ¢ € [0,00). Then there exists w, > 0 such that
w(t) = w, as t — oo, and, for each 7" > 0,

w(0) — w, > w(0) — w(T) = —/0 W (1) dt
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Hence it follows that

00 2
. 2 a
/‘@@>ws1_ﬁw@, (233
/ )2dt < a®w(0). (2.3.4)
0
In particular, (2.3.3) implies
/ )2ds — 0 ast— oo.
t—r
Then, using K (s) € [0,1], s € [0, 7], one finds that
t
/K - 9fds < [ e—o2ds= [ )7 ds
0 t—r
and
/ Kt —s)( ds—/K y(t —s))*ds — 0 ast— oo.
Therefore,
Wy = hm w(t) = lim /
a2 t—
From Condition (H,), the map [0,00) 3 s — [ g(u) du € R strictly increases from 0 to oo,
and the map (—00,0] 2 s — fo u)du € R strlctly decreases from oo to 0. Consequently,
there exists y, € R so that y(t) — y. as t — oco. By (2.3.4), the integral [ (g(y(t)))* dt

converges. These facts combined yield y, = 0. Thus, y¥(t) — 0 as t — oo for all w €Y.

In order to show local stability of the zero solution, let € > be given. By Hypothesis
(Hg), there exists m > a? such that

lg(u)] < mlu| forall u € [—1,1].

Choose 6 = 6(¢) € (0,1) so that

2

m 19
1 2 < 2.3.
(+1_a2)5<2 (2.3.5)

In addition, by (Hg), 6 can be chosen so small that

/g(u)du<%(52 implies s* < (2.3.6)
0

€
5
Let ¢ € Y with |[¢]ly < 6, and let y = y¥ : [-r,00) — R be the corresponding

solution of (2.1.5). Then K(s) € [0,1], s € [0,7], [¢(0)| < ||[¢]ly < 6 < 1, and the choice
of m guarantee that

%(0) 0 m
/ K(— Vds + = 2 /0 g(u)dué/_ (¥(s))? d3+35(¢(0))2

s@(me>wﬂwmﬁ=§W%<g&
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This estimation for w(0) combined with inequality (2.3.3) yields

/Ooo(y(t»? it < (2.3.7)

The estimation w(0) < (m/a?)6?, the definition of w(t), and w(t) < w(0) combined give

y(t) 2 2
/ g(u) du < %w(t) < %w(O) < %52, t>0. (2.3.8)
0

From ||[¢|ly < ¢ and inequality (2.3.7) it follows that

0
/ (y(t+s))*ds < (1 +1 o > 6% forallt > 0. (2.3.9)

—q2
_r a

A combination of (2.3.9), (2.3.5), (2.3.6), (2.3.8) implies

lyelly = (/O(Q(t +5))*ds + (y(t))2>1/2 < (% + %2)1/2 .

for all ¢ > 0. This proves the local stability of y = 0.
The global attractivity of y = 0, that is ||y ||y — 0 as t — oo, for all ¢ € Y, follows

from fi(g)w(t—l—s))2 ds — 0,t — oo, implied by (2.3.3), and y¥(t) — 0, t — oc. Therefore,
y = 0 is globally asymptotically stable. O

2.4 Global stability in equation (2.1.3)

In this section, we consider equation (2.1.3) under Hypotheses (H,) and (H,)).
The natural phase space for equation (2.1.3) is C'([—r,0],R). A maximal solution of

(2.1.3) with initial function ¢ € C([—r,0],R) is a continuous function z = 2% : [-r,t,) —
R with t, > 0 so that z|_, o) = ¢, « is differentiable on (0,t,), equation (2.1.3) holds on
(0,t,), and any other solution with the same initial function is a restriction of z%.

Recall that the solution = 0 of equation (2.1.3) is stable if for any ¢ > 0 there exists
d(e) > 0 such that, for each ¢ € C([—r,0],R) with [|¢|| < d(¢), the solution x¥ exists on
[—r,00) and ||zf|| < € for all ¢ > 0. The solution x = 0 is globally asymptotically stable
if in addition to stability for each ¢ € C([—r,0],R) the solution x¥ exists on [—r, 00) and
|z7]| — 0 as t = oo.

First, for arbitrary a > 0, we show that the maximal solutions exist on [—7, c0).

Proposition 2.4.1. Assume that a > 0 and Conditions (Hg), (H,) hold. For each
¢ € C([-r,0],R) equation (2.1.3) has a unique mazimal solution x¥ which is defined

on [—r,00).
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Proof. The map

LﬂC@WﬂM@9@H@A%¢ﬂﬂﬂ$—gwmﬂeR

is continuous, it is also Lipschitzian in each compact subset of C'([—r,0],R), and f takes
bounded sets into bounded sets. Then, by Theorem [16, Chapter 2, Theorem 2.3|, for each
¢ € C([-r,0],R) there is a unique maximal solution ¥ : [—r,t,) — R of equation (2.1.3).
Moreover, by Theorem [16, Chapter 2, Theorem 3.2], in case ¢, < oo we have ||z7| — oo

ast —t,.
Let ¢ € C([—7,0],R), and let || denote the total variation of 7. Define

k(t) = (ol + 1) TVt € [0, 00).

We claim that
|z?(t)] < k(t) forallt e [0,t,). (2.4.1)

If inequality (2.4.1) does not hold then, by [2¥(0)] < [|¢| < k(0), there exists ¢, € (0,t,)
such that |z%(t)| < k(t) for all t € [0,19), |x¥(to)| = k(to), |2¥(to)| > K'(to) = (a|n] +
1)k(to). Assume x¥(tg) = k(to) (the case —x¥(tg) = k(to) is similar). Then equation
(2.1.3), k(t) < k(ty) for t € [0,y), and g(z¥(t)) > 0 combined yield the contradiction

#(to) < alnlk(to) — g(*(to)) < aln|k(to)-

Therefore, inequality (2.4.1) holds. Then, by Theorem [16, Chapter 2, Theorem 3.2],

t, = 00. O

Now we consider equation (2.1.3) for a € (0,1), and prove the global asymptotic

stability of the zero solution.

Theorem 2.4.2. Assume Hypotheses (Hg), (H,) hold, and a € (0,1). Then the zero
solution of equation (2.1.3) is globally asymptotically stable.

Proof. In order to show local stability, let € > 0 be given. By Theorem 2.3.2 there exists
v = v(g) > 0 such that for each v € Y with [[1]|y < 7, for the solution y¥ of equation
(2.1.5), the inequality ||y |y < e holds for all ¢ > 0.

Define
B 1

6 = :
1 Tir TV
Let |n| denote the total variation of n. By Condition (H,), we can find 5 € (0,6;) such
that

(1+ alads + masx g(w)] < &
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By continuous dependence on initial data of solutions of equation (2.1.3), see Theorem
[16, Chapter 2, Theorem 2.2], we can choose ¢ > 0 such that, for each ¢ € C([—r,0],R)
with ||¢|| < d, the unique solution z¥ of equation (2.1.3) satisfies

|z#(t)| < min{e,do} for allt € [—r,r].
Then for z¥ with ¢ € C([—r,0],R) and ||¢| < ¢, from equation (2.1.3) it follows that
|22 (t)] < a|n|oy + Ir?ggc lg(u)| < 61 forall t € (0,7]
U|x02

and
|z?(t)] < 9y < 0y forall t € [0,r].

By the uniform continuity of x¥|_,,j, there exists the limit

t—0t

i 87 = a | (=) dn(s) = 9((0).

It follows that z¥ is right differentiable at ¢ = 0, and z¥ € C*([-r,0],R). Then z¥ € Y

and
r 1/2
l=¢lly = ( / (9())* dt + <x“’<t>>2) < (ro?+83)" =10 =7

By (2.1.4), y(t) = x?(t+r), t € [-r,00), is a solution of equation (2.1.5) with u(s) = [Jn

and initial function yo = x¥ € Y. Then the choice of v guarantees that
lvelly = lzf . |ly <e forallt>0.

The definition of || - ||y and the choice of § imply that for each p € C([—r,0],R) with
lol| < 6, the inequality

|z?(t)| <e forallt>0
holds. Therefore the zero solution of equation (2.1.3) is locally stable.

Global attractivity of x = 0 also follows from Theorem 2.3.2 since ¥ € Y for all
o € C([—r,0,R). O

equation (2.1.1) is a particular case of (2.1.3) with » =1, g(u) = S|u|u and

1 ifs€(0,1),
0 ifs=0o0rs=1.

n(s) =

Therefore, Theorem 2.4.2 implies a solution to the global stability conjecture of [9, 8, 37].

Corollary 2.4.3. Ifa € (0,1) then the zero solution of equation (2.1.1) is globally asymp-
totically stable.
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Let the constants b; > 0,0 <s; <r; <1,7¢€ {1,...,n}, be given so that Y ", b;(r; —
s;) = 1 holds. Define the functions

bi if S € (Si,n'),

ni(s) = .
0 ifsel0,s]U][r,1],

for i € {1,...,n}, and let
n:00,1]3s— Zm(s) eR.
i=1
Then it is easy to see that n satisfies Condition (H,) with » = 1, and equation (2.1.2) is

a particular case of equation (2.1.3). Therefore the following result holds.

Corollary 2.4.4. Ifa € (0,1),b; > 0,0 <s; <r; <1,3 " bi(r;—s;) =1, and g satisfies
Condition (Hg), then the zero solution of equation (2.1.2) is globally asymptotically stable.

The equation
(t) = « Z Bilx(t — s;) — x(t — ry)] — g(x(t)), (2.4.2)

was studied in [14] under the conditions a > 0, 5; > 0,0 < s; <1; < 1,4 € {1,...,n},
Yoy Bi =1, and g satisfied a condition stronger than (Hy). Setting

Bi

- >y Bilri — s4) (i€ {l,....n}),

(I:Oéz/ﬁi(ﬁ'—si), b;
i=1

it is clear that equation (2.4.2) is equivalent to equation (2.1.2). Consequently, we obtain

the following result.

Corollary 2.4.5. Ifa >0, 5, >0,0<s; <r; <1,ie{l,...,n}, and g satisfies (Hy),
then

OéZﬁi(Ti _Si) <1
i=1
implies the global asymptotic stability of the zero solution of equation (2.4.2).

We remark that [14] proved global asymptotic stability of x = 0 for equation (2.4.2)
assuming a Y ., B;i(r; —s;) < 1, a condition on g that is stronger than (Hy), and the extra

condition )
o Z@-(Tf —s57) < (1 - aZﬁi(ri — sz)>
i=1 =1

was also used. By the local stability result for equation (2.4.2), and by the analogous
conjecture for equation (2.1.1), it was suspected in [14] that Corollary 2.4.5 holds.
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2.5 Discussion

In this section we show that the global stability result a < 1 for equation (2.1.3), and
then also for equations (2.1.1) and (2.1.2), is sharp in the sense that under the additional
condition ¢’(0) = 0 inequality a > 1 implies that the zero solution is unstable. Remark
that ¢’(0) = 0 holds for equation (2.1.1). Paper [14] also assumed ¢'(0) = 0 when studied
equation (2.4.2) or equivalenty equation (2.1.2).

Theorem 2.5.1. Suppose that Hypotheses (Hg), (H,) hold, and ¢'(0) = 0. If a > 1 then

the zero solution of equation (2.1.3) is unstable.

Proof. By ¢'(0) = 0, the linear variational equation of equation (2.1.3) is

x(t) = a/orx(t —s)dn(s). (2.5.1)

The characteristic function is A : C3 A XA —a [ e dn(s) € C.
Condition (H,) and integration by parts for Stieltjes integrals gives

[ty = )% - [t () =2 [ e

Hence, if A is real and tends to oo, then, using again (H,), it is clear that

AQ) = A— a/or e dn(s) = A {1 _ a/OT n(s)e ds} = oo,

Combining this fact with A(0) = —a [; dp=0and A'(0) =1—a [j n(s)ds=1—a <0,
it follows that A has a real positive zero. Therefore, a classical result, e.g. from [16], yields
that = = 0 is unstable. O

Equations (2.1.1), (2.1.2), (2.1.3) as price models are also important when the zero
solution is unstable. In this case there are results about the dynamics only for equation
(2.1.1) with a single delay, see [9, 8, 37, 36]. It is an interesting open problem to understand
the dynamics in the presence of multiple or distributed delays, that is, for equations (2.1.2)
and (2.1.3).

We have seen in the Introduction that the neutral differential equation (2.1.5) is also
interesting as a price model. Global asymptotic stability is obtained in this chapter for
a € (0,1) provided (Hg) and (H,) hold. However, the understanding of the dynamics is
completely open for a > 1. The simple-looking equation (2.1.6) is a particular case. There

are results only for a € (0, 1), and the case a > 1 is also an interesting open problem.



Chapter 3

A differential equation with a

state-dependent queueing delay

3.1 Introduction

We consider a system which is composed of a delay differential equation and auxiliary
equations defining the delay. The delay differential equation satisfies a negative feedback
condition analogously to earlier works by Mallet-Paret and Nussbaum [26, 27], Arino,
Hadeler, Hbid and Magal [2, 25], Krisztin and Arino [23], Walther [39, 41, 38, 35]. In [26,
35] the state-dependent delay was an explicitly given function (i.e., no auxiliary equation).
Walther [39, 38] studied problems where the state-dependent delay was defined by an
algebraic relation, and in a suitable phase space it was possible to eliminate this auxiliary
equation. Arino, Hadeler, Hbid, Magal [2, 25] and Hu, Wu [18] considered an equation
where the auxiliary equation for the delay was given by an ordinary differential equation.
Here we study a differential equation with a state-dependent delay where the delay is
defined by two auxiliary equations: an algebraic equation and a differential equation with
a discontinuous right hand side. The considered system is interesting from the theoretical
point of view since previous results do not seem to work here. On the other hand, the
system is a prototype of rate control problems with delays appearing naturally in queueing

processes.

The particular model, that motivated our study, was introduced by Ranjan, La and
Abed in [31, 30]. The problem is specified for a simple computer network, however, anal-
ogous models appear, e.g., in more general computer networks, in road networks, in bio-
logical networks, or in general in those processes where a bottleneck phenomenon slows
down the performance or capacity of a system, see, e.g., [32, 10, 15]. The model is a fluid
model of a network containing a single user and a single server. The user sends data by
rate x(t) to the server for procession. The user’s transmission rate satisfies the bound

0 < a < x(t) < b, where b is a user-specific physical limitation, and the lower bound a

21



CHAPTER 3. A DE WITH A STATE-DEPENDENT QUEUEING DELAY 22

is due to the fact that the user needs to probe the congestion level of the network by
continuously transmitting data. The server processes the incoming data by the capac-
ity ¢ € (a,b). Kelly [19] introduced the utility U(z) and the price p(x) per unit flow of
the procession, when the rate is x. Under natural conditions on the functions U(-) and
p(+), there is an optimal rate z,. € (a,c) (balancing between the utility and the price of
procession) as the unique maximum of the expression U(x) — fom p(y) dy subject to the
constraint 0 < z < ¢, see Kelly et al. [20]. In addition, [20] proposed an end user rate

control algorithm as the differential equation

#(t) = [0 (x(1)) — 2(O)p(a(2))] (3.1.1)

where xU’(z) is the price per unit time the user is willing to pay for the procession,
xp(z) is the price charged by the server for procession, £ > 0 is a gain parameter. The
solutions of equation (3.1.1) monotonically converge to z, as t — oo. On the other hand,
nonmonotone convergence and nonconvergent oscillation around =z, arise in some rate
control problems. Equation (3.1.1) neglects the feedback delays appearing naturally in
the system.

The rate control model of Ranjan, La and Abed [31, 30] takes the feedback delays
into account. As the rate x(t) can be larger than the capacity of the server, the data
arriving at the server may form a single waiting line (a queue) before procession. Let y(t)
denote the length of the queue at time ¢. Suppose that it is bounded from above by ¢ > 0,
and the units of data reaching the queue with length ¢ are lost. Then, assuming that the
transmission time from the user to the server is ro > 0, it is natural that for the length

y(t) of the queue the differential equation

z(t —rg) —c if 0 < y(t) < q,
y(t) = § [zt —ro) =™ ify(t) =0,
—lx(t —1r9) — |7 ify(t)=gq

(3.1.2)

is satisfied. Here, equation (3.1.2) is required to hold almost everywhere, and u® =
max{u,0}, v~ = max{—u, 0} denote the positive and negative parts of u, respectively.
Suppose that a unit of data, whose procession was completed and the user received an
acknowledgement about it at time ¢, arrived at the queue 7(¢) time earlier, i.e., at time
t — 7(t), and found a queue with length y(t — 7(¢)). As the capacity of the server is c,
the given unit of data spent waiting time z(¢) = (1/c)y(t — 7(¢)) in the queue before its
procession started. Let r; denote the sum of the procession time and the transmission time

from the server to the user. Then 7(t) = z(¢) + r1, and this gives the algebraic equation

A(t) = %y(t _ () =) (3.1.3)

between y and z.
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With the waiting time z(¢) and the transmission delays ro, 71, the user at time ¢
receives an acknowledgement from the server about the procession of that unit of data
which was sent at time ¢ — rg — z(t) — 1. The server determines a price for a unit rate
when it arrives at the server, i.e., at time ¢t — 2(¢) — ;. When the procession of a unit ends,
the server sends a signal to the user including the identification of the processed unit and
the price information p(z(t — z(t) — r1)). Then the user is able to estimate the price for
the rate of data sent at t —rg — 2(t) —ry as x(t —ro — z(t) — r1)p(x(t — z(t) — r1)). This
led Ranjan, La and Abed [31, 30] to the rate control equation

i(t) = k[z(t)U' (x(t)) — 2(t —ro — 2(t) — r1)p(z(t — 2(t) — r))] (3.1.4)

with a gain parameter k > 0. See Figure 3.1. For similar models we refer to [1, 6].

server
@ ! queue procession @
\ | Z( t) ) 8 )
t-1o-2(t)-r t-2(t)-r, -1 t time

Figure 3.1: The process in time.

In this chapter we consider rate control equations (like (3.1.4)) with delay, where the
delay is determined by two auxiliary equations, by (3.1.3) and (3.1.2), or only by (3.1.2).
The primary aim of this chapter is to find a suitable framework to study the above types
of rate control systems. We define a phase space where the corresponding initial value
problem has a unique maximal solution. The solutions define a continuous semiflow, and
the solution operators are Lipschitz continuous. We believe that this approach can be
extended to handle a wide class of systems modeling networks with queueing delays.
Observe that neither the classical results for equations with constant delay [12, 16] nor
the recently developed results for equations with state-dependent delay [17, 35] do not
work here.

The secondary aim is to apply the developed framework, and to show that the rate
control defined by system (3.1.4), (3.1.2), (3.1.3) may lead to a slowly oscillating periodic
rate around the optimal rate x,, provided that the stationary solution z = z,, y = 0,
z = 0 is unstable and ry = 0. This answers affirmatively a conjecture of Ranjan and his
coauthors [29, 28].

We give an overview on the main steps toward the results.

Set 7 = ro+1m1 +¢q/c > 0 as an upper bound for the delays. For a Lipschitz continuous
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w: I =R, let
t _
lip(p) = sup —SO() #(s) € [0,00) and
sel, tel, s<t t—s
t _
slope(p) = {M sel tel, s;«ét} CR.
-5

First we consider a slightly more general system than (3.1.4), (3.1.2), (3.1.3), that is,
in the equation we allow more general dependence on the length of the queue than that of
(3.1.4), (3.1.2), (3.1.3), and equation (3.1.3) may or may not hold. Consider the equation

@(t) = Flxe, y) (3.1.5)

together with (3.1.2) in the phase space X x Y where X, Y and F are defined as follows.
An upper bound K > 0 for the absolute value of the right hand side of equation (3.1.5)
comes from the nature of the problem. Then, by z(t) € [a, b] and the bound K, the subset

X = {90 € C[—r,O] ‘ 90([_r7 O]) C [a’v b]? hp(gp) < K}

of C[_, 0 will contain all possible segments z;. Analogously, by y(t) € [0,¢], z(t) € [a,b]

and equation (3.1.2), for the segments y;, it is natural to introduce the subset

Y = {@D € O[fr,O} ’ 90([_717 O]) c [OaQ]7 SlOpe(@D) - [a —¢b— C]}

of Ci_rg. On X C C_q, Y C Oy, X XY C Cl_q) x C_;q) we use the induced
subspace topologies and the corresponding norms. By the Arzela—Ascoli theorem, X, Y
and X X Y are compact subsets of C|_, o) and C_, g X C|_, ], respectively. Assume that
the map F': X XY — R has the following properties:

(H1) there exists L > 0 such that, for all o', ¢* € X, Y1, ¢? €Y,
P61 = P, 02)] < L([l6! = @ gy + 91 = 9% )

(H2) max(pp)eXxy |F(p,¢)| < K;

(H3) there exists 75 € (0,71] such that F(p, ') = F(p,?) provided ¢ € X, ¢! € Y,
V? €Y, and Y-y ) = V?||-r—ra)s

(H4) F(p,v) >0if p € X, 90 €Y, p(0) = a, and F(p,¢p) < 0if p € X, 9 € YV and
0(0) = b.

A solution of system (3.1.5), (3.1.2) in the phase space X x Y on [—r,w), w < oo, with

initial condition xg = p € X, yp = ¢» € Y is a pair of functions
r=1%Y:[-rw) =R and y=9y"":[-rw) =R

such that
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(i) 2, € X forall t € [0,w), zo = ¢;

(ii) « is differentiable on (0,w);

)

)
(iii) y, € Y for all t € [0,w), yo = ¥;
(iv) equation (3.1.5) holds on (0,w);
)

(v) equation (3.1.2) holds almost everywhere in (0, w).

The solution (z,y) = (z¥¥,y#¥) on [—r,w) is called maximal if any other solution (Z,7)
with Ty = ¢, o = 1 is a restriction of (z,y).

In Section 3.3 we show that, under Hypotheses (H1)-(H4), for each (p,9) € X x Y,
system (3.1.5), (3.1.2) has a unique maximal solution (z#¥,y??) : [-r,00) — R? The

solutions define the continuous semiflow
D :[0,00) x X XY 3 (t,p,0) — (xf’d’,yf’w) e X xY,

and, for each ¢ > 0, the solution operators ®(¢,-,) : X x Y — X x Y are Lipschitz
continuous (Theorem 3.3.5). In order to sketch the main steps of the proof, let (¢,1) €
X xY be given. As, by (H3), the value of F(p,1) does not depend on w‘[—m,o]’ a standard
contraction argument yields 7" € (0,73] and a unique z : [-r,T] — R so that equation
(3.1.5) holds on (0,7), for arbitrary extension of yo = ¢ to y : [-r,T] — R. Next we
redefine y : [—r,T] — R on (0, 7] such that y, € Y for all ¢ € [0, T], and equation (3.1.2)
holds almost everywhere on [0,7] with « : [-r,7] — R obtained in the first step. In
order to appropriately redefine y : [—r,T] — R on [0, T], we extend the right hand side of
(3.1.2) to an upper semicontinuous multivalued map, and apply a standard result from
[11] for differential inclusions. These two steps combined give a unique solution (z#¥, y#¥)
on [—r,T]. By the method of steps the solution can be uniquely extended to a maximal

solution on some [—r,w). Global existence, i.e., w = 0o, follows from (H4).

In order to see that system (3.1.4), (3.1.2), (3.1.3) is a particular case of system (3.1.5),
(3.1.2) introduce Z = [0, ¢/c] C R as a state space for the variable z(t). A cruical fact is
the existence of a unique Lipschitz continuous map (Proposition 3.3.6) ¢ : Y — Z such

that

o) = “U(-ol) ~n)  (PEV).
Then, for a solution (z,y) : [-r,00) — R? of system (3.1.5), (3.1.2) in the phase space
X x Y, defining z(t) = o(y;), t > 0, equation (3.1.3) is always satisfied for all ¢ > 0.

Assume that a map G : X x Z — R is given such that, with the particular choice
F: X xY 3 (p,9) = Glp,o(y)) €R,

Hypotheses (H1)—(H4) hold. In this case system (3.1.5), (3.1.2) is equivalent to the system
composed of the equations

i(t) = Gz, 2(1)), (3.1.6)
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(3.1.2) and (3.1.3). Then, in the phase space X x Y, for each (¢,1) € X x Y, system
(3.1.6), (3.1.2), (3.1.3) has the unique solution z#¥[—r,c0) — R, y#¥ : [-r,00) — R,
2#% 1 [0,00) — R where (z#%,y#¥) is the solution of system (3.1.5), (3.1.2) with the
above choice of F, and 2#%(t) = o (yP"), t > 0.

Defining the map G as

X xZ3 (¢,¢) = &[p(0)U'(0(0) = (—C—ro =) p(p(—¢ —r1))] €R,

system (3.1.4), (3.1.2), (3.1.3) will be a particular case of system (3.1.6), (3.1.2), (3.1.3),
see Section 3.5.

In Section 3.3 we show that system (3.1.6), (3.1.2), (3.1.3) can be studied not only in
the phase space X x Y, but also in X x Z with a different notion of solution. For given
(p,¢) € X x Z, the pair of functions z : [-7,00) = R, 2z : [0,00) — R is called a solution
of system (3.1.6), (3.1.2), (3.1.3) in the phase space X x Z if z; € X and z(t) € Z for all
t >0, 9 =, 2(0) = (, x is differentiable, equation (3.1.6) holds on (0, c0), moreover,
there exists a function y : [-r,00) — R with v, € Y, 2(t) = o(y,) for all ¢ > 0, and
equation (3.1.2) is satisfied almost everywhere on [—( — ry, 00).

The key technical result (see Section 3.3) to show that system (3.1.6), (3.1.2), (3.1.3)
is well posed in X x Z is that there is a unique Lipschitz continuous map v: X x Z - Y
so that ¥ = (¢, () satisfies ¥(s) = ¢( for s € [-r, —( — 1], and equation (3.1.2) holds
a.e. in [—C — r1,0]. In particular, ( = (1/¢)y(—¢ — r1). This means that the past of the
length of the queue (that is 1 € Y') can be recovered from the past of the rate (that is
¢ € X) and from the present waiting time (that is ( € Z). The maps

h:XxZ3(p,0)— (p,7(0,0) e X XY, k: X XY 3 (p,0)— (p,o)) € X xZ

are Lipschitz continuous, h is injective, and ko h = idxxyz, h o k’h(XXz) = idp(xxz2)-
Then (see Theorem 3.3.11), for each (¢,() € X x Z, there exists a unique solution
¢ 1 [—r,00) = R, 2#¢ : [0,00) — R of system (3.1.6), (3.1.2), (3.1.3) in the phase space
X x Z satisfying the initial condition 25 = ¢, z2#<(0) = ¢. Moreover,

U [0,00) x X X Z 3 (t,0,C) s <xf’c,z@’<(t)) eXxZ

is a continuous semiflow on X x Z, and V(t, , () = k(®(t, h(p,())) for all t > 0.
In Section 3.4 we assume ro = 0, ;1 = 1 and consider system (3.1.4), (3.1.2), (3.1.3).

Condition ry = 0 guarantees a single delay in equation (3.1.4), 7, = 1 can be achieved by

rescaling the time. Then for the new variable v = x — z,, by using U'(x,) = p(z.), the
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rate control system (3.1.4), (3.1.2), (3.1.3) can be written as

0(t) = —f(o(t) — g(v(t — 2(t) — 1)) (3.1.7)
v(t)—d if0<y(t) <q

y(t) = @) —dt ifyt)=0 (3.1.8)
—[o(t) —d]” ify(t) =q

2(t) = %y(t —z(t) - 1) (3.1.9)

where f(v) = —k[(v+ 2,)U' (v + z.) — 2.U'(2.)], g(v) = &[(v + z)p(v + z.) — z.p(2)],
and d = c—x, > 0. With A =a—2, <0, B=>b-—uz, > 0, the nonlinearities f,g
are assumed to be in C'([A, B],R) satisfying 0 < f(£)/€ < f1, 0 < g(£)/¢ < gy for all
¢ € [A, B]\ {0} for some f; >0, g; > 0. Setting

Ko = (fl T gl) maX{_A’ B}’ r=1+ Q/Ca K, = TKO)

Theorem 3.3.11 implies that system (3.1.7), (3.1.8), (3.1.9) is well posed in the phase
space X X Z with

X = {90 € C[—T,O] ‘ (p([—’f’, O]) - [A7B]7 hp(@) < Kl}'

A solution (v, z) of system (3.1.7), (3.1.8), (3.1.9) is called slowly oscillatory if for any
two zeros tq, ty of v with ¢; < t9 the inequality z(t9) + 1 < t5 — t; holds. This means that

the distance between consecutive zeros of v is larger than the delay.

Inspired by [26] and [25], introduce
W= {(gO,C) eXxZ ‘ g0|[_r =0, 57 ©(s)e/** is nondecreasing, (0) > 0}

and Wy = W U {(0,0)}. Then, for each (¢,¢) € W, the solution v = v%¢ : [-r, c0) — R,
z = 2%¢ 1 [0,00) — R is slowly oscillatory with infinite number of zeros. The second
zero to of v in (0,00) determines t5 > ¢y so that to = 5 — 2(¢5) — 1, and a return map
P : Wy — Wy can be defined by P(0,0) = (0,0) and

P(p,¢) = (vg,2(t3))

for (¢, () € W where v;; € &' is given by vy (s) = v(t3+s) for s € [ty—13,0], and vy (s) = 0
for s € [—r,ta—t3]. A nontrivial fixed point of P corresponds to a slowly oscillating periodic
solution. A classical tool, that we apply here as well, is Browder’s non-ejective fixed point
theorem. A large part of Section 3.4 is devoted to the construction of a suitable subset
of X x Z where Browder’s theorem is applicable. We remark that, although the papers
[26, 27, 2, 25, 39, 41, 38, 35] consider similar approach to get slowly oscillating periodic

solutions, none of them can be directly applied here, because of the particular definition
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of the state-dependent queueing delay. Some steps of the proof are analogous, and other

parts require new ideas.

It is a crucial result that P(¢p, () cannot decay too fast: there are constants 6 > 0, p > 0
with v#¢(t5) > 6 (¢(0))” for all (¢,¢) € W. This fact allows to construct a C*-function «
on [0, ¢/c] such that «(0) =0, &' > 0, &” > 0 on (0,¢/c|, a(g/c) is small enough, and the
delayed inequality

ale-a/ 2@y (c[49))

holds. Defining the compact subsets

Wa,rr = {(0,€) € Wo| 9(0) > a(Q)},

(3.1.10)
Wake = {(¢.C) € W | lip(¢ < Ko)}

of X x Z, the inclusion P(W, k,) € W, k, is satisfied. However, W, x, and W, f, are not

convex. Following [25], the subset

Vo = {(8,0) € Clag x Z| w([=1,0]) € [0, B, lip(¥) < K,

(3.1.11)
[—1,0] 3 s — ¥(s)e™ € R is nondecreasing, 1(—1) = 0, ¥(0) > &(C)}

of Ci_1,9 X R is compact and convex. Set V,, g, can be mapped into W, g, by the streching

map Q given by Q<wa C) = (907 C) with 90(8) = w(s/(g_'_l))? s € [_C_la 0]7 and (‘0‘[77’,7(71} =
0. The squeezing map R, defined by R(¢, () = (¥, () with ¥(s) = ¢(((+1)s), s € [-1,0],

maps Wy, k, into V, x,. Browder’s theorem can be applied for the map

IT: Vok, € (1, () = RoPoQ(¥,() € Vox,

to find a non-ejective fixed point of II in V,, g,. This yields a non-ejective fixed point of
P in W, k, as well. The non-ejective fixed point is nontrivial provided (0,0) € W, g,
is ejective. Ejectivity of (0,0) € W, g, follows in a standard way from that of the zero
solution of the constant delay equation 0(t) = —f(v(t)) — g(v(t — 1)).

Finally, Section 3.5 gives examples.

3.2 Preliminary results

In order to study the queue equation (3.1.2) we recall a basic result of [11] for differential

inclusions.

Let J = [ty,t1] C R for some fixed to,t; € R, ty < t;. Let D C R’ be closed. The
multivalued map

F:JxD — 2P\{0}={ACR, A#0}

is called upper semicontinuous if F~'(A) is closed in J x D whenever A C R/ is closed.
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Let p(y, D) = infcply — 2| for y € R7. For y € D define

- 1
Tp(y) = {z € R’ : liminf Xp(y+ Az, D) = O} .

A—=0+
The following existence result is Theorem 5.1 in [11]:

Theorem B. Suppose that the multivalued map F : J x D — 2% \ {0} is upper semicon-
tinuous, for all (t,y) € J x D the set F(t,y) is closed and convex in R/,

F(t,y)NTp(y) #0 for all (t,y) € J x D,

moreover, there is a Lebesque integrable ¢ : J — [0,00) such that, for all (t,y) € J x D,

sup{lz[ : z € F(t,y)} < c(t)(1+ |y|)

holds. Then, for each yy € D, there exists an absolutely continuous y : J — D such that

y(to) = yo and the inclusion

y(t) € F(t,y(t)) holds a.e. on [ty,t1].

Assume that £ is a Banach space, C C & is compact and convex in &, the map
F : C — C is continuous. A fixed point xq € C of F is said to be ejective if there exists
an open neighborhood U of zy in C such that for each x € U \ {z(} there exists a positive
integer k(z) such that for the iterate %@ (x) € C \ U holds. In Section 3.4 we will apply

the following result [7] of Browder on the existence of a non-ejective fixed point.

Theorem C. Assume that € is a Banach space, C C £ is an infinite dimensional compact
and convex subset of £, the map F : C — C is continuous. Then F has a non-ejective

fixed point.

For the application of the above result, we have to guarantee the ejectivity of the
trivial fixed point of a return map. The proof of the ejectivity uses properties of the linear

autonomous equation with constant delay
w(t) = —paw(t) — vw(t — 1) (3.2.1)

where pr > 0 and v > 0. We recall some basic results from [12, 16, 40]. It is well known
that every ¢ € Cj_1¢ uniquely determines a solution w? : [-1,00) — R of equation
(3.2.1) with w¥|_1,0) = %, and the solutions define the strongly continuous semigroup
(T(t))e=0 on [0,00) x Cj_1. The spectrum of the generator consists of the solutions
A € C of the characteristic equation X+ p+ve™ = 0. Assume v > e #~!. Then all points

in the spectrum form a sequence of complex conjugate pairs ()\j7>\_j)§i1 with Re A; >
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ReAjt1,ImA; € ((25 —2)7, (25 — D7) for all j € N, and Re\; - —o0 as j — oo. An

explicit criterion for Re Ay > 0 is

v >

S where 9 € (0, ) is the unique solution of p = — cot ¥J. (3.2.2)
in

Let £ and Q denote the realified generalized eigenspaces of the generator associated with
the spectral sets {A;, A1} and {\, \x : k > 2}, respectively. Then Cloig = LB Q. A

basis of L is given by the restrictions of the functions
t = efeMgin(Im \t), t > RN cog(Im A t)

to the interval [—1,0].

Let S C Ci_1 \ {0} be the set of functions with at most one sign change in [—1,0].
The set S is invariant, i.e., T'(¢)S C S for all ¢ > 0. Moreover,

SNQ=40.

Proposition 3.2.1. If u > 0 and v > 0 are given such that Re \; > 0, i.e., (3.2.2) holds,
and ¢ € S, then the solution w¥ of equation (3.2.1) is unbounded on [—1,00).

Proof. Let ¢ € S and w = w¥. From Cj_1g = L& Q, SN Q = 0 and ¢ # 0 it follows
that ¢ = % + ©2 with ¢¢ € £\ {0}, ¢2 € Q. Then w = w, + wg where w; = w?"
and wo = w?°. As ¢f € £\ {0}, there exist ky, ky € R with k2 + k2 # 0 so that, for all
t> 1,

wg(t) = RN [k sin(Im A\yt) + ko cos(Im Ait)] .

The estimate on the complementary space Q (see, e.g., [12] or [16]) implies that there are
0 >0 and M > 0 such that, for all t > —1,

wo(t)| < Melfteh=on,

Then, by Re A\; > 0, it easly follows that w is unbounded. O]

3.3 The solution semiflow

Assume that o, 71,79, ¢, a, b, ¢, K, L are given constants as in Section 3.1, and Hypotheses
(H1)-(H4) hold. First we consider system (3.1.5), (3.1.2). Condition (H3) means that
F(p,1) does not depend on |, o). Consequently, for given ¢ € X and ¢ € Y, we can
find x : [-r,T] — R with 2y = ¢ satisfying equation (3.1.5) on an interval [0,7] for
some T' € (0,72), no matter how y|_,o = 1 is extended to [—r,T|. This is done in the
next proposition by using a standard fixed point technique. After that = : [—r,T] — R is
obtained, we will be able to determine y : [—r, T] — R satisfying equation (3.1.2) on [0, T7].
These two results together give a solution of system (3.1.5), (3.1.2) on [—r, T'|. Repeating
this procedure by time-T" steps a global solution will be obtained.
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Proposition 3.3.1. Let T' € (0,13 be fized such that TL < 1. For every (p,¢) € X xY
there ezists a unique function x = x(p,v) : [=r,T] — R such that xy = ¢, x; € X for
all t € [0, T, z is differentiable on (0,T], and, for each y : [—r,T| — R with yo = ¢ and
y €Y forallt € [0,T], x satisfies equation (3.1.5) on (0,T]. Moreover, the Lipschitz

continuity property

lo' = D[l + TL " =92,
1 1 2 2 T, )
||$(S07¢)_$(90’1/’)H[_T,T]§ 1-TIL

holds for all (o, ¥, (¢*,4?) in X x Y.

Proof. Let (p,v) € X x Y be given. Define @, 1}\ € Ci_,1) by

. p(t) ift <0, -~ Y(t) ift <O,
p(t) = , o(t) = ,
©(0) ift >0, ¥(0) ift > 0.
The set
M ={u € Cpz :u(0)=0, lip(u) < K},
is a complete metric space with distance d(u,v) = ||u — v|/p. Introduce the map m :

M x [a,b] — C[fr,T} by

0 if t € [—r,0],
m(u,&)(t) =
(1w, £)(¢) min{max{u(t),a — &£}, 0 — &} if t € [0,T].

Function m(u, §) is a trivial extension of u to [—r,0], and it cuts the values of u on [0, 7]
so that m(u,&)(t) € [a — &, b — £] is satisfied. Then it is clear that

Br+mu(u, (0)) € X, €Y forall t € [0,T],

and [0, T] — @ +my(u, (0)) € X, [0,T] — 1y € Y are continuous maps. It is easy to see
that

o (u,€) = m (02, €) | < [l =2y 0 € M, € M € € [0t

Define the map N : X x Y x M — M as follows:

t
Npbu)® = [ F(fo+mwp©).6.) ds. 1€ 0.T)
0
By (H1) and (H2), F'is continuous and |F| < K. Therefore, it is obvious that N'(p, ¥, u) €
M.

Now, fix (p,v) € X x Y. For functions u!, u> € M, by the definition of A/, m, and by
(H1) and the Lipschitz property of m, we have

IV (s ') = N (v, w) [
[ 17 (om0, 000) 82) = F (5 ma (2,000)) )] s

= max
t€[0,T

T
< /0 L Hm (ula W(O)) —-m (uzv 90(0)) H[_r,T} ds <TL Hul - “2||[0,T} :
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Since T'L < 1, for all (p,v) € X XY, the map M > u +— N (¢, 1, u) € M is a contraction.
Therefore, as M is a complete metric space, there is a unique fixed point u*(p,¢) € M.

Let (¢, ¢") € X x Y and u} = u* (¢*,¢"), i = 1,2. From the obvious inequality
|7 +m (u,91(0)) = &% —m (u, ¢*(0)) H[_T,T] < |le' - 902“[_7’,01 ;
it follows that
[ut = w3l m = HN (e ¥hu7) = N (9?92, u3) ’[O,T]
t
[P (8 m (ut 6100)) 52) = F (82 m 3, 20)) 52) | s
0

< max
t€[0,T]

< /0 L( 18" +m (ui, 0'(0) = &% = m (ui, &*(0)) || .1y

+ [Jm (ui, ¢%(0)) —m (us,%(0)) H[_,,,T] + } Wy — 222“[—@}) ds

< TL ([|¢" = @ gy + i = w3l g + [ = 02 )

Consequently,

We claim that, for all (p,1) € X xY, t € (0,T],

TL

u (01 6") =" (009 o < 77 (19" = ¥l + 1 =l )

©(0) +u*(p,¥)(t) € (a,b).

If to € [0,7] and ¢(0) + u*(¢, ¥)(ty) = a, we have @(tg) + m(u*(p,¥), ¢(0))(to) = a.
Then by (H4), F(@r, + me, (u* (@, 1), ¢(0)),¢y,) > 0. By continuity, it follows that there
is ad > 0so that F(3, + me(u* (0, 1), 9(0)),4) > 0 for all t € (tg — 6, to + 6) N [0, T).
The fixed point equation for u*(¢p,v) implies that ¢ — u*(p,1)(t) strictly increases in
(to — 6,to + 6) N[0, T]. Hence it is easy to see that

©(0) + u*(p,¥)(t) > a for all t € (0,T].

Analogously, ¢(0) + u*(p,%)(t) < b holds for all ¢t € (0,T]. So the claim is true.

A consequence of the claim is that

m(u” (e, ), 0(0))(t) = u*(p,)(t) for all ¢ € [0,T],

and the function

o(t) if t € [-r,0],
z(t) = x(p, ¥)(t) =
(t) (o, ¥)(1) 0(0) + u* (o, ) () ifte[0,T]

satisfies g = ¢, z; € X for t € [0,T], « is differentiable on (0,7, and equation (3.1.5)
holds on (0, 7] with the particular choice y = 12 Observe that, by Hypothesis (H3), the
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above construction gives the same z(p,1) for any y : [—r,T] — R so that yo = ¢ and
y €Y fort €0,7T).

Finally, it is straightforward to get the estimate

lz (o' 01) = (& ) |y < Ml = ¥l gy + ™ (' 01) =™ (0% 0%) [
o
S1-TL

TL
lo! =l + 777 1 =%l g
This completes the proof. n

In the next step we study equation (3.1.2). Since we need the same type of result in
another situation as well, a slightly more general version is considered.

Let t9,t1 € R with 5 < ¢;. Assume that a function £ € C([to, 1], [a,b]) is given. Let
y° € [0, g be fixed. We consider the equation

E(t)—c if 0 < y(t) <q,
y(t) =< [€(t) =t ify(t) =0, (3.3.1)
—[&(t) =~ ify(t)=q

on the interval [to, t;] with initial condition y(ty) = ¢°.

Proposition 3.3.2. For each £ € C([to,t1],[a,b]) and each y° € [0,q] there exists a
unique Lipschitz continuous function y = y(&,9y°) @ [to,t1] — [0,q] such that y(to) =
y°, slope(y) C [a — ¢,b — ¢|, and equation (3.3.1) holds almost everywhere in [to,t1]. In
addition, y(&,y°) is Lipschitz continuous in &,y°, namely, for all &',&* € C([to, 1], [a,b])
and y*',y** € [0, ql,

(&', y™) = y(€, 9" ||y < 71 =922+ (e —to) € = €], 0y

Proof. Let € € C([to, t1], [a,b]) and y° € [0, ¢ be fixed. Define the map h : [tg, t1] x [0, ¢] —
R by
) —c ifo<y<g,
h(t,y) = [€(t) — ] ify=0,
—[Et) =~ ity =gq.

Then equation (3.3.1) with y(ty) = y° on [tg, 1] can be written as an initial value problem

y(t) = h(t,y(t)) a.e. fort € [ty,t1], (3.3.2)

y(to) = y°.

The remaining part of the proof is divided into three steps. In Steps 1-2 we show

existence, in Step 3 uniqueness and the Lipschitz property are obtained.
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Step 1. We extend h to a multivalued function & : [to, t1] x [0, g] — 2%\ {0} as follows:

(&0~} ifye(00)
or y =0 and &(t)
h(t,y) = or y = ¢ and &(¢)
[£(t) —¢,0] ify=0and(t) <c,
([0,&(t) —c] ify=qand&(t)>c

> ¢,
<cg,

It is easy to check that I is an upper semicontinuous function. We apply Theorem B
by choosing j = 1, D = [0,q], J = [to,t1], F = h. Clearly, Tp(y) = R for y € (0,q),
Tp(0) = [0,00) and Th(q) = (—o0,0]. It is obvious that the conditions of Theorem B
are satisfied with ¢(t) = max{c — a,b — ¢}. Therefore, there is an absolutely continuous
y=1y(&y°) : [to, t1] — [0, g] such that

g(t) € h(t,y(t)) a.e. for t € [to,ti] (3.3.3)

and y(to) = ¢°.

Step 2. We show that for the function y = y(&,4°), obtained in Step 1, equation (3.3.1)
holds almost everywhere, and y(t,) = y°.

Assume that ¢ € (to, ;) is given such that g(¢) exists and (t) € h(t, y(t)).

If y(t) € (0,q) then h(t,y(t)) = {£(t) — ¢}, and consequently () = h(t,y(t)). If
y(t) = 0 then necessarily g(t) = 0. From 5(t) = 0 € h(t,0) it follows that £() < ¢, and
thus 0 = g(t) = [£(t) — ] = h(t,y(t)). The case y(t) = ¢ is analogous.

Therefore, y = y(&,y°) satisfies equation (3.3.2). Then, by the definition of h(t,y) and
&([to, t1]) C [a,b], it is clear that (3.3.1) holds almost everywhere for y, y(ty) = ", and
slope(y) C [a — ¢, b — ¢].

Step 3. Let ¢',6% € C([to,t1]. R), y*', 9% € 0,4, y' = y(&",y™), v* = y(&%.y™?).
Then the map [to, 1] 3 t — |y'(t) — y*(t)| € R is absolutely continuous.

Claim 3.3.3. For &', &% € C([to, 1], R), y*',4** € [0,q], y" = w(&",4™"), v* = y(€%,y™?)
51 (s) — 57 (s)| < |€'(s) — €(s)|  holds a.e. in [to, t1].

For almost all s € (tg,;) the derivative 5'(s) exists with g'(s) = h'(s, y'(s)), where h’
is the map constructed as h above with £ replaced by &, i = 1,2. Fix such an s € (to, t1).
We distinguish 4 cases.

Case 1. y'(s) € (0,q), i € {1,2}. Then, by the definition of h',h?, |y'(s) — ¥*(s)| =
€1 (s) = &(s)I-

Case 2. y'(s) € {0,q}, i € {1,2}. In this case ¢'(s) = ¢*(s) = 0, and hence |g'(s) —
PPs)l =0 < g4 (s) = &2(s)]-



CHAPTER 3. A DE WITH A STATE-DEPENDENT QUEUEING DELAY 35

Case 3. y*(s) = 0, y*(s) € (0,q). Then y'(s) = 0 and consequently ¢*(s) < c. In
addition,
[9'(s) = 57(s)] = | = (c = €(5)) | = [€%(5) — | < |€%(s) — €' ()]
Case 4. y*(s) € (0,q), y*(s) = ¢. Then 72(s) = 0 and €2(s) > ¢ follows. Hence
[9'(s) = 9*(s)] = [ (€'(s) = ) | = |e = &} (s)] < [€2(s) = €'(5)]|-

The remaining cases can be obtained by changing the indices. This completes the proof
of the claim.

Since

V0 =320 =M =2 [ S A elds for e fon]

we have
t1
9" =57l < 2 =92+ [ 136 = 5706)| s
0

= [y =+ (= to) [|€! = €|,

This implies the uniqueness of (&, 3°), and the Lipschitz continuity of y(&, y°) with respect
to &€ and y°. The proof is complete. O

The following corollary is immediate from Proposition 3.3.2.

Corollary 3.3.4. Let T > 0. For all € € C(|—r,T),[a,b]) and ) € Y there exists a unique
Lipschitz continuous function y = y(g, ) [=r,T] = [0,q| such that yo = 1, slope(y) C
[a—c,b—c], and equation (3.3.1) with £(t) = E(t—1o) holds almost everywhere in [0,T]. In
addition, y(g, W) is Lipschitz continuous in E, Y, namely, for all 51,52 € C([-r,T],[a,b])
and Yt Y? €Y,

vt vt -y, v? \

< o' = ¢l

[=r,T] ’

Now we are in a position to prove existence, uniqueness, and continuous dependence
of the solutions of system (3.1.5), (3.1.2).

Theorem 3.3.5. For each (¢,v) € X x Y there exists a unique solution
9V [—r,00) = R, y?V  [=r,00) = R

of system (3.1.5), (3.1.2) on [—r,00) satisfying the initial condition xi* = ¢, ?Jo = 1.
The mapping

O :[0,00) x X XY 2 (t,p,¢) — (xf’w,yf’w) e X xY

defines a continuous semiflow on X X Y. In addition, ® has the following Lipschitz con-

tinuity property
(80" 0) = @ (1% 07) [y < (001 = (£%0) |y 17
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Proof. Let T € (0,75], TL < 1 and (p,1) € X x Y. By Proposition 3.3.1 there exists a
unique function x = z(p, ) : [-r,T] — R such that o = ¢, x; € X for all t € [0, 7],
x is differentiable on (0,77, = satisfies equation (3.1.5) on (0,77, and the function y :
[—r,T] — R in (3.1.5) is arbitrary with yo = ¢ and y; € Y for all ¢ € [0, T]. By Corollary
3.3.4, with S': x(¢p, 1), we can choose a unique y = y(z(p,¥),v) : [-r,T] — R such that
Yo =1, y € Y for all t € [0,T], and equation (3.1.2) holds almost everywhere in [0, 7.

The functions z¥% : [—r,00) — R and y#¥ : [0,00) — R are defined as follows.
Set z#¥(t) = z(o,¥)(t), y?¥(t) = y(x(p,¥),¥)(t) for t € [—r,T]. Hence we can define
=12 e X and ¢ = y&¥ € Y. For (3,4) € X x Y, the functions z(@, 1) and y(Z, 1)
can be constructed as above. Set 2#¥(t) = z(3, 1) (t — T), y#¥(t) = y(x(3,¥), ) (t — T)
for t € [T,2T). This procedure can be repeated to define x#¥ and ¥ on the interval
[—r,00). The differentiability of %% on (0,00) follows from the continuity of the map
[0,00) 3t — F(a£’,y??) € R. It is not difficult to see that ¥ and y*¥ will be the
unique solution of system (3.1.5), (3.1.2) on [—r,c0) with initial condition z£% = ¢,
y&¥ = 1. Defining

D(t.pv) = (s£7, %) (420, pe X, veY),

the uniqueness clearly guarantees the semigroup property. Continuity of [0,00) > ¢
O(t,p,1) € X XY is a consequence of the Lipschitz property of X and Y. Combining
these properties with the stated Lipschitz continuity property of ® it is easy to conclude
the continuity of ®.

So, it remains to prove that ® is Lipschitz continuous in ¢, as claimed in the The-
orem. Before the proof, we remark that the unique pair 9%, y#¥ does not depend on T
used in Proposition 3.3.1 and later. Hence, the construction works for all 7" € (0, ro] with
TL < 1.

Let (¢',0)) € X x Y, o' = 2" ¢ = ¥ 4§ = 1,2 For each t > 0 with T €
(0,75] and TL < 1, by using Proposition 3.3.1 and Corollary 3.3.4, we have the following

estimate:
2" = 22|y + 18 = 9l
<|lz' =2yt =27y T Tl ==

= (1 + T) Hl’l — $2H[t—7“,t+T} + Hyl - yQH[t—’nt]

g [

1+T

S1-71 <Hx1 B sz[Ht] +TL|y" - @/2||[tfr,t1> + v’ - yQH{H,t]
1+T 14+ T2L

=1 1P =g+ T 1 vy

1+T
ST-7L (Hxl B x2H[t—m] +y" - y2||[t—r,t]> '
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Hence, we get an estimate for the right-hand upper Dini derivative:

D* (Jlat = 2 gy + 1t =92 1)

. 1
= lim sup =(lleter = 2l g + b = verll

ot =y = Nt = 92l o)
. 1 1+T
~tmsun (7257 (ot = a2l + k=520

ot = 2y It = )

: 1+ L
< timsup 7 (ot = a2l + 1t = 920 o)

< @+ 2) (ot =2l oy + 1 = )

Then the inequality

D [0 (et = a2l g+ ot~ 321 o)] 0

easily follows for all ¢ > 0. By Zygmund’s inequality (see e.g., [34, p. 10] or [24, p. 9]) the
function
0,00) 3 ¢ 0 (flaf = | + [k = w2l ) € R

is monotone nonincreasing. Consequently,
et = 2l + ot = 921l < €0 (s = Bll gy + 195 = 931 )
for all ¢ > 0. This completes the proof. O

Now, we turn to the study of system (3.1.6), (3.1.2), (3.1.3), and show that it can be

considered in the phase space X x Z as well.

First we show that equation (3.1.3) can be solved uniquely provided y; € Y.

Proposition 3.3.6. There is a unique map o : Y — Z satisfying

1
o(¢) = —v(=o () — ). (3.3.4)
The map o : Y — Z is Lipschitz continuous, namely, for all ! ¢? € Y the inequality
1
o (') —o (W] < = max L(s) —42(s
| (¢ ) (w )| T a s€[—max{o(¥1),0(¥2)}—r1,—71] ‘w ( ) w ( )‘ (335)

1 2
<t -

holds.
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Proof. Let ¢ € Y be given. Define ¢ : [0,q/c| > s — s —1p(—s —r1)/c. For 0 < s1 < 59 <
q/c, by using slope(¢)) C [a — ¢,b— ¢] and 0 < a < ¢, it follows that

o(s1) —o(s2) 81— (=81 —11)/c— sy +p(—=s9 —11)/C

S1 — 89 S1 — 82
_ 1_11/1(—51—7’1)—1?(—32—7’1)
C S1 — S9
:1+1¢(—81—T1)—¢(—32—T1) >4 972y
¢ (=s1—11)— (=89 —11) c c

Hence, function g is strictly increasing in [0, ¢/c]. Observe that

¢(—T1)

Cc

p(0) =t e 1

C C Cc C

<0 and

0(0) = —

So, o has a unique zero, denoted by o(v), in [0, g/c|. Clearly, o(¢) is unique with (3.3.4).

In order to prove the Lipschitz continuity of o, let ¥!,%? be given. If o(¢') = o(¢?)
then inequality (3.3.5) trivially holds. Without loss of generality assume o (') > o(¢)?).
By slope(¢?) C [a — ¢,b — ¢] we obtain

PH—o@!) —r) — (=0 (¥?) — 1)

o (W) o ()| = (¥1) —o (%) =
Wi =o@) —r) —¢A(=o(®) =) | ¥A(o@h) =) — (o) — )

= +
c c
< ! max }wl(s)—¢2(s)\+6_a |0 (wl) —0(1/12)}.
T C s€[—a(ypl)—r1,—r1] C
Hence
_c—a N 9 1 10y )2
(1 C ) |J (¢ ) g (¢ )} = C SE[—max{a(wr{l)?gin)}—rl,—rl] |¢ (S) ¢ (S)l ’
from which inequality (3.3.5) easily holds. O

The next proposition is a key technical result. It shows that, for given ¢ € X and
¢ € Z, we can find uniquely an element 1) € Y such that 1 satisfies equation (3.1.2), with
r=pand y = ¢ ae. in [-¢ —11,0], and ¢ = o(¢) holds as well. In order to guarantee

the uniqueness of v we choose it to have the constant value ¢¢ on [—r, —( — r].
Proposition 3.3.7. There is a unique map

VXX Z =Y

so that ¥ = v(p, () satisfies
(U(s) = ¢ fors € [-r.—C—ri,

p(s —ry) —c if 0 <9(s) <gq,
@/J(S) =9 [p(s —ro) — ]t if ¥(s) =0, a.e. in [—C —ry,0].
—[p(s —ro) =7 ifv(s)=4q
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In addition, ¢ = o(v(p,()) for all (p,() € X x Z, and

7 (0, ¢") =7 (@ Mg S7llet = @7l g + max{2e —a, b} | = 7|
for all *, ¢* € X and (*,¢% € Z.

Proof. Let (¢,() € X X Z be given. Define a function ¢ : [—r,0] — R as follows. Let
P(s) = ¢ for s € [—r,( — r1]. Applying Proposition 3.3.2 with [ty, 1] = [—¢ — 71, 0],
&(s) = ¢(s —rg) for s € [—C —r1,0], y° = ¢, we can uniquely define ¥(s) = y(&, y°)(s)
for s € [-=¢ —r1,0]. It is clear that v(p, () = 1 is the unique element of Y satisfying the
stated properties.

By the definition of v(¢, ), we have { = (1/¢)v(¢,()(—=( —r1), that is = o(y(¢, ())-

In order to show the Lipschitz continuity of v, let (%, (*) € X x Z and ¢* = v(¢*, (*),
i = 1,2. Without loss of generality, assume that ¢t > (2. If —r < 5 < —(! — r; then

[0 (s) = ¥*(s)| = [e¢’ —e¢®] = c|¢" = ¢*. (3.3.6)

If —¢t' —r; <5< —(%—r; then, by using that ! is absolutely continuous (because it is
Lipschitz continuous) and thus ¢!(s) — ¢ = [* g (W) du,

9! (s) —v*(s)] =

[ P

e
—(?-r1
< |CC1—CC2|—|—/ !gol(u—ro)—c‘ du
_Cl_,’,,l
<c ‘Cl — CZ‘ + max{c—a,b—c} |C1 — C2| = max{2c — a, b} ‘Cl - CQ‘ ) (3.3.7)

If —¢? — 7, < s <0 then, similarly to the above case, and applying Claim 3.3.3,

c<1+/5 ¢1<u>du_c¢2_/5 0P () du

—¢ler "

' (s) —¥*(s)| =

¢?-r1

< |c(1—cC2|+/ | (u— 7o) — | du

—r1

—l—/ " (u—10) — ©*(u — 7o) du

2y
< max{2c —a, b} [¢" = [+ 70" =& _ - (3.3.8)
Combining (3.3.6), (3.3.7), (3.3.8), we get the stated Lipschitz continuity. ]

Proposition 3.3.8. Let y € C([—r,00),[0,q]) be a Lipschitz continuous function with
slope(y) C [a —¢,b—c]. Then the function z : [0,00) 3t — o(y;) € R satisfies slope(z) C
[1—c/a,1—c/b].
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Proof. Clearly, z(t) = o(y) = (1/c)y(t —o(y:) —r1) = (1/c)y(t — z(t) —r1), t > 0. Choose
t1 >0, ty > 0 with t; # t5. Then, clearly t; — z(t1) # to — 2(t2), and

2(t) — 2(ta) _ 1y(ts — 2(t) —m) —y(ta — 2(t2) — 1)

th—ta ¢ t —to
_ Ly(h —2(t) — ) —y(be — 2(t2) — 1) (B —2(0) —711) — (b2 — 2(ta) — 1)
C (tl — Z(t1> — 7’1) — (tQ — Z(tg) — 7"1) tl — tQ

_ Ly(s1) — y(s) (1 2(t) - z<t2>)

c 51— Sy t1 —to
with s; = t; — 2(t;) — 1, j = 1, 2. Rearranging terms and multiplying by ¢ we obtain

<C+ y(s1) — ?J(SQ)) 2(t1) — z2(t2)  y(s1) — y(SQ)'

$1 — Sg t1 — 1o $1 — Sa

Using slope(y) C [a —¢,b—¢], and £/(c+ &) € [(a — ¢)/a,(b—c)/b] for £ € [a — ¢,b— ],
it follows that

z(tl)—z(tg) % [a—c b—c}_[l_cl c]

t1 — ty - —f-—y(sl) y(s2) < a b b

§1—82

and the proof is complete. O]

Proposition 3.3.9. Let y € C([—r,00),[0,q]) be a Lipschitz continuous function with
slope(y) C [a — ¢, b — ¢, and define z : [0,00) 2 t — o(y;) € R. Then the map

n:0,00)3t—t—2z(t)—rm eR

is Lipschitz continuous with slope(n) C [c/b,c/al. In particular, n is a strictly increasing

function, and, for its inverse n=t, slope(n™') C [a/c,b/c] holds.

Proof. From Proposition 3.3.8, with ¢; > 0, t5 > 0 and t; # t5 we have

n(t) —nlta) _ (= 2(t) —m) = (t2—2(te) =) _ | z(t) —2(t2) _ [f E]

tl—tg tl—tg tl—tg b’a )
Let t; = n(s;), j = 1,2, with t; # t5. Then, for the inverse
N (t) =0t (te) _ nt(s)) —nt(n(sy)) . si—se {g é]
ty — 1o n(s1) —n(s1) n(s1) —n(s1) ~ Le'e]’
that completes the proof. O

In the remaining part of this section we consider a map G : X x Z — R such that for
F:X xY — R given by

Flp, ) = G(p,0(¢))
Hypotheses (H1), (H2), (H4) hold. We remark that (H3) also holds with 7o = r; > 0

because (1)) is determined by t|(_, _,;. We consider the system composed of equations

i(t) = G(zt, 0(yt)) (3.3.9)
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and (3.1.2) in the phase space X X Y as it is a particular case of system (3.1.5), (3.1.2).
Define the mappings

h: X xZ53 (g, ()= (p,7(p, () € X XY,

(3.3.10)
k:XxY 3 (p9Y)— (p,0)) e X xZ

Note that both of them are Lipschitz continuous, h is injective, but k is not. For their
compositions, we have
koh=idxxz and hok|, . =idyxxz).
Proposition 3.3.10. If o€ X, ' €Y, ¢? €Y, ( € Z with ( = c(¥') = o(¢?) and
P(s) = *(s) for all s € [~ — 11,0,
then, for the semiflow ® generated by system (3.3.9), (3.1.2), we have
k (<I> (t, gp,wl)) =k (@ (t, Lp,wQ)) for all t > 0.

Proof. From Theorem 3.3.5 we know that ® exists. Let (z%,4") : [-r,00) — R? be given
such that @ (t,¢",¥") = (24, y;), t > 0).

First we show that
o' (t) = 2°(t) for all t € [—r,00), y'(t) = y*(t) for all t € [~C — 71, 00). (3.3.11)
If (3.3.11) does not hold, then there exists a maximal ¢, € [0, c0) such that
ot (t) = 2°(t) for all t € [—r,to), y'(t) = y>(t) for all t € [~ — 71, t0]. (3.3.12)

We claim that o (y}) = o (y?) for all t € [0,y + 71].
Proposition 3.3.9 implies, for ¢ = 1, 2, that

t_a(?/r?)_7”12_0(96)—7"12—C—7"1 for all t € [0, 00).

From this inequality and from Proposition 3.3.6, it follows for each ¢ € [0,tq + 1] that

1
o tl —0 tQ < - max Yt +s)— %t +s
() = W)l = ¢ e[ ma{o(uh) o (42) }ri ] it + ) =yt +3)]
1 1
= — max L) —%(s)| < = max Ls) = o2(s)| = 0.
(1,sE[tfmax{a(ytl),J(y?)}frl,tfm] |y ( ) 4 ( )| Q s€[—(—71,to] ‘y ( ) Y ( )’

Therefore the claim holds.

Set m(t) = o (y}) = o (y?), t € [0,to+71]. Clearly, for both z! and 22 the same equation
@(t) = G(xy,m(t)) holds for all t € (0,%p + r1). By (3.3.12), x} = 2? for all ¢ € [0,¢,].
Since G : X x Z — R is Lipschitz continuous, a standard uniqueness technique yields the
existence of a § € (0,7;) so that z'(t) = 2%(¢t) for all t € [—r,ty + 6]. Now we can apply
Proposition 3.3.2 to conclude y*(t) = y*(¢) for all t € [~( — ry,to + d]. This contradicts
the definition of ¢,. It follows that (3.3.11) is satisfied, and also k(z},v}) = k(2?,y?) for
all t > 0. This proves our statement. O
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Now we have all tools to show that for system (3.1.6), (3.1.2), (3.1.3) the space X x Z

is a suitable phase space.

Theorem 3.3.11. For each (¢,() € X X Z there exists a unique pair of functions
29 : [-r,00) = R, 2#¢:]0,00) = R

such that (x, z) is a solution of system (3.1.6), (3.1.2), (3.1.3) in the phase space X x Z
satisfying the initial condition xé”c =, 27¢(0) = ¢. The mapping

U [0,00) X X X Z 3 (t,0,C) — <$f’<,z“9’<(t)> e X xZ

defines a continuous semiflow on X X Z. In addition, there exists a constant M > 0 such
that

H\Il (t,wljgl) - (t, ¢27C2)H <M H@l’gl) _ (¢27C2)“ ot (14L)
forallt >0, o', p? € X, (', (% € Z. Moreover, for allt >0, p€ X, ( € Z,

U(t,,¢) = k(®(t, h(p,())).

Proof. Let (p,() € X x Z be given.

1. Ezistence. By Theorem 3.3.5, system (3.3.9), (3.1.2) has a unique solution in the
phase space X x Y, denoted by (z,y) : [~r,00) — R?, with z¢y = ¢, yo = Y(¢, ¢). Defining
2(t) =o(y) € Z,t € [0,00), (x, 2) is a solution of system (3.1.6), (3.1.2), (3.1.3) in X x Z
with 2o = ¢, 2(0) = (.

2. Uniqueness. Assume that the pair of functions 7 : [—-r,w) = R, Z: [0,w) — R is
a also solution of system (3.1.6), (3.1.2), (3.1.3) in X x Z with initial condition Zy = ¢,
Z(0) = ¢. Then, by definition, there exists a Lipschitz continuous function y : [—r,w) — R
sothat g € Y, Z(t) = () for all t € [0,w), and equation (3.1.2) holds a.e. in [—( —71,w).
From Z(0) = ¢ = o(yo) = (1/¢)y(—¢ — r1) and (3.1.2), it easily follows that

y(s) =7, ¢)(s) forall s € [=¢—ry,0].
Proposition 3.3.10 implies that

(w1, 2(1)) = K(2(L, ,7(, Q) = k(®(L, 0, 40)) = (1, 2(1))  for all ¢ € [0,w).

It is clear that the pair (7,7) : [-7,w) — R? is also a solution of system (3.3.9), (3.1.2) in
X x Y. Moreover ®(t,, 7o) can be uniquely extended to [0, 00) with ®(t, p,yo) = (T4, Ut)
for all ¢ € [0,w).

Now we see that the function ¥ is well defined.

3. Properties of . We have to show that ¥ is a semiflow on X x Z, i.e.,

\I’(tl + tQ, gO,C) = \I/(tg, \I[(tl,QO,C)) for all ty > O, to > 0. (3313)
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Let x : [-r,00) = R, z: [-( — 1,00) — R be the solution of system (3.1.6), (3.1.2),
(3.1.3), y : [-r,00) = R be such that (3.1.2) holds a.e. in [—7,00), and t; > 0, t5 > 0.

Since ¥(t, v, () = (x4, 2(t)) for t > 0, (3.3.13) is equivalent to
(T4 4y, 2(t1 + t2)) = V(o (24, 2(1))). (3.3.14)
Using functions h and k defined in (3.3.10), it is easy to see that
W(t,6,¢) = K(B(t, h(,C))) for all £ >0,
so (3.3.14) can be written as
(@4y 41y, 2(t1 + t2)) = k(D (Lo, 4y, Y(x4y, 2(81)))). (3.3.15)

The assumptions of Proposition 3.3.10 clearly hold with x;,, y(zy,, 2(t1)), Ys,, 24, in-
stead of o, ¥, 9?2, (, so we have

k<q)(t27 xt1?7<xt17 z(t1)>>> = k(q)(t%xtl?ytl)) = k<xt1+t27 yt1+t2)

= (Tt 4105 O Wiy 412)) = (Tty 44y, 2(E1 + T2)).

Thus, (3.3.15) holds, and ¥ is a semiflow on X x Z.
From the Lipschitz property of ® in Theorem 3.3.5, and the Lipschitz continuity of h

and k, our lasts statement also holds, where M is the product of the Lipschitz constants
of h and k. [

3.4 Slowly oscillating periodic solutions

In this section it is shown that, for a class of rate control problems, like the system
composed of equations (3.1.4), (3.1.3), (3.1.2), it is possible to have slowly oscillatory
periodic solutions.

We need the simplifying assumption ry = 0. This condition is important technically.
Equation (3.1.4) with rqg = 0 becomes an equation with a single delay, while in case 1y > 0
there are two different delays. By rescaling the time, without loss of generality we may
suppose 11 = 1.

Recall from Section 3.1 the constants a,b,c,q, with 0 < a < ¢ < b, ¢ > 0. For the
rate x(t), z(t) € [a,b] is assumed, ¢ is the maximal capacity of the server, ¢ is an upper
bound for the length of the queue y(t). We suppose that there exists x, € (a,c) serving
as a stationary solution of the rate control equation.

As we are interested in the oscillatory behaviour of z(¢) around z, we introduce v(t) =
x(t) — x4, and write the rate control equation for v instead of z. Defining d = ¢ — z, > 0,
we obtain system (3.1.7), (3.1.8), (3.1.9), which will be studied in this section.

Set A =a—x,, B=>b—x,, and assume the following conditions for f and ¢:
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(S1) f.g € C'([A, B],R);
(52) f(£)€ >0 and g(§)¢ > 0 for all ¢ € [4, B]\ {0}, ¢'(0) > 0;

(S3) 9([A, B]) € (=f(B), = f(A));

(S4) the map C > XA +— A+ f/(0) + ¢’(0)e=* € C has a zero with positive real part.

Define the functions f,§ : [A, B] — R as follows:

= 8 ifg0, 99 ife 0,
flo={ o HEPD gy te e
f(0) if€=0, g'(0) if&=0.

From (S1) and (S2) it follows that f and § are continuous, and there are constants f; > 0,
g1 > go > 0 such that

f([A7B]) - [val}v 5([A, B]) - [g()agl]'

Let
Ko=(fi+g)max{—A,B}, r=1+ %7 K, =rK,.

Since a, b, c,q,r are given, by setting K = K, we can define the sets X and Y as in
Section 3.1. It is easy to verify that system (3.1.7), (3.1.8), (3.1.9) is a particular case of
system (3.1.6), (3.1.2), (3.1.3) when ro =0, r, =1,

G(p,¢) = —f(p(0) = z,) —glp(=¢(—1) —z.) ((p,¢) € X x Z),

and z(t) = v(t) + z.. Moreover, under Hypotheses (S1)—(S3), with F(p,v) = G(p,0(v)),
(H1)—(H4) hold. Therefore, by Theorem 3.3.11, for all (¢,{) € X x Z, there exists a
unique solution z#¢ : [—r,00) — R, 2#< : [0,00) = R with 25 = ¢, 2#¢(0) = ¢, and
U(t,0,) = (a7, 224(1)).

For ¢ € C_.g and k € R define ¢ + k € Cj_, ) as [-7,0] 3 s —= ¢(s) +k € R.

Introduce the set
X ={peCL.g|e(-r0)CIA B liplp) <K} = {p € Clpg | p+ 2. € X}.

Now, for each (p,¢) € X x Z, the unique solution v = v¥¢ : [—r,00) — R, 2 = 2%¢ :
[0,00) — R of system (3.1.7), (3.1.8), (3.1.9) with vy = ¢, 2(0) = ¢ can be determined as

(va<  29¢ (t)) —U(t, 0+ 2., C) — (2.,0). (3.4.1)

In addition to v and z, there exists y = 4% : [-r,00) — R with 3, € Y for all t > 0, and
y is uniquely determined on [—( — 1,00) such that equation (3.1.7) holds for all ¢ > 0,
(3.1.9) holds for all ¢ > 0, and (3.1.8) holds almost everywhere on [—( — 1, 00). Therefore,

we obtain
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Proposition 3.4.1. Under Conditions (S1)-(S3), the solutions of system (3.1.7), (3.1.8),
(3.1.9) define a continuous semiflow by (3.4.1) on X X Z, and the same Lipschitz continuity
holds for the semiflow as for ¥ in Theorem 3.53.11.

In the sequel, when we write (v, z,y), we always mean that v = v9¢, z = 29¢, y = y¥¢
for some (¢,() € X x Z.

Define Ty = 2¢/d.
Proposition 3.4.2. If 1 > —(—1, 75 > 11 + Tpp, and v(t) < d/2 for allt € [1, T2, then
y(t) =0 for all t € |1y + Ty, 7). If, in addition, 7o > 1 + Ty + 1, then z(t) = 0 for all
ten+To+ 1,7

Proof. From equation (3.1.8) and from v(t) < d/2, t € [r, 7], it follows that, if there
is 7. € [m,m) with y(r.) = 0, then §(t) < 0 almost everywhere in [7., 72|, and thus,
y(t) = 0 for all t € [r., 7). Consequently, either y(t) = 0 for all t € [y, 7], or there
exists a maximal 7., € (7, 72] with y(t) > 0 for all ¢ € [y, Tw.). In the first case the
statements of the proposition trivially hold. In the second case, by equation (3.1.8), y(t) =
v(t) — d < —d/2 almost everywhere in [11, T.]. As y(11) € [0,¢], it easily follows that
0 < y(1s) < ¢ —(d/2)(Tux — 71), and hence Ty, < 7 + Ty. Therefore, y(t) = 0 for all
t € [11 + To, 72). The statement for z can be obtained by using equation (3.1.9). O

Observe that (0,0) € X’ x Z is a stationary point of the semiflow generated by system
(3.1.7), (3.1.8), (3.1.9). Under Conditions (S1)—(S3), and assuming that (S4) does not
hold, and slightly more, that is

(S5) Rez < 0 for all zeros of the map C 3 A+ A+ f/(0) + ¢'(0)e ™ € C,

it is expected that (0,0) is stable. In fact, combining Theorem 3.3.11 and Proposition
3.4.2, local stability is straightforward.

Theorem 3.4.3. Assume that Conditions (S1)-(S3), (S5) hold. Then the stationary point
(0,0) € X x Z of the semiflow generated by system (3.1.7), (3.1.8), (3.1.9) is locally
asymptotically stable.

Proof. By Theorem 3.3.11 there exists L > 1 such that, for each (p,¢) € X x Z the
unique solution v = v, z = 29¢ of system (3.1.7), (3.1.8), (3.1.9) satisfies
[(or, 2(8)) = (0,0)[ = [[W(t, 0 + 2+, C) = (2, 0)
= [[¥(t, ¢ + ., ¢) = U(t, 2., 0)[| < Lil(g, O
for all t € [0, Ty + 1].

As Proposition 3.4.2 holds with 7y = —1 and arbitrarily large 7, if v(t) < d/2 for all
t > —r, then z(t) =0 for all t > —1 4+ Ty + 1 = T}, and, consequently,

0(t) = —f(v(t)) — glv(t —1)) forallt >T,+ 1.
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A classical result for equations with constant delay (see e.g. [12, 16]) is that, under Con-
ditions (S1)—(S3), (S5), for each ¢ € (0,d/2) there exists 6 = §(¢) € (0,¢) such that

max v(To +1+s)] < implies |v(t)] <e forall ¢t > Ty.

—1<s<

Now, for given € € (0,d/2) choosing (¢,¢) € X x Z with ||(¢,¢)|| < 8()/L, it should
be clear that ||(vs, 2(t))|| < € follows for all t > 0. That is, (0,0) is locally stable.

Asymptotic stability follows in the same way by using again the constant delay result
from [12]. O

From this point throughout this section, we assume that Conditions (S1)—(S4) are
satisfied. Then instability of (0,0) € X x Z can be easily obtained. We show after a series
of technical results that there exists a nontrivial slowly oscillating periodic solution (v, z)
of system (3.1.7), (3.1.8), (3.1.9). Here slow oscillation of (v, z) means that

t1 <t2—2(t2) —1

holds for any two zeros t; < ty of v.

Observe that equation (3.1.7) can be written as

8(t) = — Fo(t))olt) — Golt — =(8) — D)ot — =(8) — 1), (3.4.2)
For (,¢) € X x Z consider v = v#<, » — 27 Define
=< (1 00) 5t s v(t) exp (/Ot Fo(s)) ds> €R  and
€1 [0,00) 5t G(u(t — 2() — 1)) exp (/t:@l Fw(s)) ds) €R
where z = 2¥¢. Setting ¢y = gy, c1 = g1e/17, for all (p,() € X x Z we have

C(t) € [co,c1] forallt > 0.

Proposition 3.4.4. For each (p,() € X X Z, the function u = u¥* : [-r,00) — R is

continuous, it is continuously differentiable on (0,00), and
u(t) = =C(t)u(t — z(t) — 1) (t >0) (3.4.3)
holds with z = 2%¥<. In addition,

u(®)] < Ju(t)] < [u®)|e"" for all t € [-r,0],
lo(t)] < |u(t)| < |v(t)]e™ for all t > 0.
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Proof. Differentiating u and using equation (3.4.2) for ¢ > 0, we get

att) = (340) + Fo0)) s [ Foto) as)

=—g(v(t—z(t) = D)ot —=z(t) — 1)

e ( / T F) ds) o ([ ;m_l Fots) ds)

= —C(t)u(t — z(t) — 1),

so equation (3.4.3) holds. The continuity and differentiability property of u is immediate
from the definition. The stated inequalities between |u(t)| and |v(t)| are easy consequences
of the definition and the bounds on f. m

Let

W:{(SO,OEXXZ gp(s):()for all s € [—T,—l_C]a

[—¢ — 1] 3 5+ p(s)e’* € R is nondecreasing, (0) > O}

and Wy = W U {(0,0)}. Our plan is to define a return map on W, and to show that it

has a nontrivial fixed point on W, corresponding to a slowly oscillating periodic orbit.

Proposition 3.4.5. There exists a constant Ty > 1 such that for all (p,{) € W, v = v#¢

has at least two zeros in [0, T3).

Proof. As v = v%¢ and u = u¥¢ have the same zeros, it suffices to show the statement for
u = us.

Let A be a zero of A + f/(0) + ¢’(0)e™* with Re A > 0 guaranteed by Hypothesis (54).
Setting 11 = A + f(0), we have Rep > 0 and p + ¢'(0)e/ e = 0. This is possible only
if

g'(0)e”® > g

(see [12, Ch. XL]). As f, § are continuous and f(0) = f'(0), §(0) = ¢'(0), there exists
d € (0,d/2) such that

g(&)e J@) > 5 for [ <0, |&] < 6.

Observe that B/d > 1. Define

1 Bflr
80:T+—10g E;S s 81:SO+T0+1, T1:Sl+7.
Co

First, we prove that for all (p,{) € W, u = u®¢ has at least one zero in [0,7}].
Indirectly, assume that there exists a (¢, () € W such that u(¢) > 0 for all ¢ € [0,7}]. By
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the definition of W and our assumption, u is nonnegative on [—r, T}]. From Proposition
3.4.4 and equation (3.4.3) it follows that @(t) < 0 for all ¢ € (0,77]. Thus, u is monotone
nonincreasing on [0, 71]. In particular, u(t) < u(t — z(t) — 1) for t € [r, T1]. Then, again
by Proposition 3.4.4,

u(t) < —cou(t) for all t € [r,T1]. (3.4.4)
As v(r) < B, u(r) < Be'" | from inequality (3.4.4) we get
u(t) < Befme=0t=") for all t € [r, T1].

Then, since Be/1"e=(0=7) = §_for all t € [sg, T1],
d

v(t) < u(t) < Befime=0(=1) < Befirg=clsom) — 5 < 7

Applying Proposition 3.4.2 with 7y = s, 72 = T, we find z(¢) = 0 for all ¢ € [sy,T}]. This

means that equation (3.4.3) becomes
u(t) = —C(t)u(t — 1) for all t € [s1,T}]

where, by v(t) < § for all t € [sg,T1], and by the choice of 4,

C(t) = Flo(t — 1)) exp ( / Fo(s)) ds) > Gu(t — 1)) exp ( wmin f<v<s>>) >

s€[—1,0]

Do

There exists a minimal integer N > 1 with 4N > s; + 1. Clearly, 4N < s; +
5 and 4N +2 < T} = s; + 7. The function sin(7/2)t is positive on (4N,4N + 2),
has zero at 4N and 4N + 2. Define

w.(t) = esin <gt> , €>0,teR

As u is positive on [AN,4N + 2], there are a minimal ¢ = ¢y > 0 such that w(t) =
we, (t) < u(t) for all t € [AN,4N + 2], and a minimal ¢ € (4N, 4N + 2), denoted by ¢ with

w(t) = u(f). Now it is clear that

W (t) =u(t), and w(t) <u(t) forallt € [4N,t).
From the monotonicity of u on [0, T1], it follows that () = (f) < 0. Consequently,
t€[AN +1,4N +2) and t—1€[4N,4N +1).

Hence we obtain 0 < w(f — 1) < u(f — 1).
Therefore, by using C(t) > 7/2, w(t) = —(7/2)w(t — 1) and 0 < w(t — 1) < u(t — 1),
we get
i(f)=-C(u(f-1) <—Fuw(i-1)=a(),
a contradiction to (#) = w(f). Thus, u has a zero t* in [0,7}]. By similar argument, we
can show that there exists a constant sy > 0 such u has another zero in (t*,t* 4 s2 + 7].
Thus the statement is true with 75 = s; + so + 14. O
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Let (p,() € W, v = v9¢, 2z = 29¢ u = u®S. Proposition 3.4.5 allows us to define
ty € [—7”, —1], tl,tg S (O,T2} as

to =to(¢) = —C— 1,
ty = t(p, () = min{t > 0 | v(t) = 0},
ty = ta(p, () = min{t > ¢, | v(t) = 0}.

Recall the function n = ¢ : [0,00) 3 t — t — 2(t) — 1 € R from Proposition 3.3.9 and
its properties slope(n) C [c¢/b,c/a] , n~! exists and slope(n™!) C [a/c,b/c]. Then we can
define
th=n""(t) =0, ] =1i(p,Q)=n""(t), t;="15(p.C) =n""(t2).

Clearly, t3 € [0,Ty 4 r] for j € {0,1,2}. From equation (3.1.7), Conditions (S1)-(S4) and
the above definitions it easily follows that the map [—r,0] > s — v(s)e/1* € R is monotone
nondecreasing, v|j_,_¢—1] = 0, v is positive on [0,%;) and on (5, %3], and it is negative on
(t1,t2), see Figure 3.2. The function u is nonnegative on [—r, 0], it is positive on [0,¢;) and
on (tq,t3], and it is negative on (1, %), moreover it is monotone nonincreasing on [0, 1],

and monotone increasing on [t3,¢5]. In particular, we have
—r<ty=—C—-1<ti=0<t; <t] <ta <ty <Th+r.
Proposition 3.4.6. The functions
W3 (p,Q) = ti(p, Q) € [=rTa], W (p,¢) = t5(p,¢) € [0, T3 +7]
are continuous for j € {0,1,2}.

Proof. The statement is evident for j = 0. Let (¢,() € W and a sequence (¢", ("), in
W be given with (¢",(") = (¢,() as n — oo in the norm of C[_, x R. Theorem 3.3.11

implies, with the notation v = v#¢, z = 29¢, ™ = ¥ <" 27 = 2#"<"  that

v"(t) — v(t) as n — oo uniformly in t € [—r, Ty + 7],

2"(t) — z(t) as n — oo uniformly in ¢t € [0, 75 + r]. (3.4.5)

Then the right hand side of equation (3.1.7) with v = v, z = 2" tends to the right hand
side of (3.1.7) as n — oo uniformly in ¢ € [0, ¢, + 7]. Consequently,

0" (t) = 0(t) as n — oo uniformly in ¢ € (0,75 + 7].

It is elementary to show that these uniform convergences guarantee the continuity of
t1(p, ¢) and to(¢, ) in (v, ) provided that ¢, and ty are simple zeros.

It is clear that ©(t;) < 0. If 0(t;) = 0 then, by equation (3.1.7) and v(t;) = 0,
g(v(ty — z(t1) — 1)) = 0 and v(t; — 2(t1) — 1) = 0 follow. The minimality of the zero ¢; in
[0, T3] yields ¢ — z(t;) — 1 < 0. Hence, by the definition of W and (¢,() € W, vy = ¢,
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one finds v(t) = 0 for all t € [—r,t; — z(t1) — 1]. Using the monotone increasing property
= —f(v(t)) for all t € (0,t;]. This is an ordinary
differential equation, so it is uniquely solvable backwards. As v(t;) = 0, f(0) = 0, it gives

of t — t — z(t) — 1, we conclude 0(t)

v(t) =0 for t € (0,t;]. By continuity, we get a contradiction. Therefore, 0(t;) < 0, and ¢,
is a simple zero of v.
For ty we have to — z(t3) — 1 € (t1,t2), and thus v(ty — z(t2) — 1) < 0. Hence 0(t3) =
—g(v(ta — 2(tg) — 1)) > 0. Therefore, t1(p, () and t2(p, () are continuous in (¢, () € W.
It also follows from (3.4.5) that

n"(t) — n(t) as n — oo uniformly in ¢ € [0, T, + 7], (3.4.6)

where 1y = 7#<, " = 1?"<". Define ] = t1 (¢",¢") and #7" = (") (7). From t; = (t}),
t7 = n™(t]"") and the Lipschitz property of 7, one obtains

[ty =21 = (&) — 0" (&) > n (&) —n (&) = In (€)= 0" (7))
C * n,* n
> I_) |t1 -1 - ||77 -1 ||[0,T2+r} :
Hence b
6 =177 < p; (‘tl — 4|+ n— 77nH[o,T2+r}> .

This shows " — }, n — oo, since {§ — {; by the first part of the proof, and [ —
77”||[0,T2+7~] — 0 by (3.4.6).

The proof for ty”" — t3 is analogous. O

The existence of ¢35 allows us to define a return map P : Wy = X x Z by

(07 O) if (907 C) = <O7 O),

(U3, 2(t3))  otherwise,

P(p,¢) =

where vy; € X is determined by vy (s) = v(t5 + s) for s € [t — ¢5,0], and vy (s) = 0 for
s € [—r,ty — B3]

7) AU
/\/—\ | her /\/_i
T E=-1-6 [0 £ £ t, t

Figure 3.2: The return map P.

Proposition 3.4.7. P is continuous, and P(Wy) C Wy, P(W) C W.
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Proof. P(0,0) = (0,0) € W, trivially. Let (¢,¢) € W and v = v¥¢, 2 = 2#S.

First we prove P(p,() = (17;2, z(t%)) € W. By the discussion at the beginning of this
section, Theorem 3.3.11 can be applied to get (vg, 2(t5)) € X x Z. It is obvious that then
(U3, 2(t3)) € X x Z. As —z(t3) — 1 =t — 3, it remains to show that

[—2(t3) —1,0] 2 s = v (t5 + 5) e/*® € R is monotone nondecreasing.
If s € (—2(t5) — 1,0] then v(t; 4+ s) > 0, v(n(t; +s)) <0, and
d
o (U(t; + s)efls) = 0(t5 + 5)el* + fiu(ts + s)e*s
e | (= T(olts + ) ot + 5) = Gt + )t +5)| > 0.

Thus, P(¢,¢) = (4,2(t5)) € W whenever (p,¢) € W.
A combination of results in Theorem 3.3.11 and Proposition 3.4.5, 3.4.6 can be used

to verify the continuity of P at elements of W.
Continuity of P at (0,0) € W, is an easy consequence of Theorem 3.3.11 since for
(p,¢) € W and t5 = t5(p, () we have

1P(p,¢) — P0,0)]| = ¥ (3, ¢ + 24, C) — (24,0) — (0,0)]]
- ||\I/(t§,g0+]}*,g> (t27x*7 )H
< M||( + 2., C) = (2, 0)[| 20 < M| (i, ) |l THD0HD.

O

Let (¢,¢) € X x Z and u = u®¢. Combining the definition of u, X, fi, using equation
(3.4.3) and applying Proposition 3.4.4 we obtain

lp(ul iz 40) < max {lip(uli_p.o), lip(u|poz540) }
< max {lip(vo) + |voll-ro.fr; crllll-r401 }
< max {K; + fymax{—A, B}, c1e" ™+ max{—A, B}}
< Ky + (14 ¢)e"™®F ) max{—A, B}.

Choose L; > 0 such that

Ly > K+ (1+¢)e"™ ™ max{—A, B} and L > max{1,—A, B}.

CoQ
Then, clearly, ip(u|—y1,4r) < L1. Define
o 26L1

Y

CoQ

=20H and 0 = e TeANipge,

Proposition 3.4.8. For all (p,() € W,

v(t) = 0(£(0))".
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Proof. Let (p,¢) € W, u = u®S, n=mn?°. Recall that u is monotone decreasing on [0, ],
monotone increasing on [t},t3], positive on [0,t1) U (t,t5], and negative on (t,t3). In
addition, u(n(t)) < 0 for all ¢t € (3, 3).

Define s_y =t} and s; = n(s;_1) for j € {0,...,k}, where k is the unique integer such
that sg € (t1,t7]. Let

m; = max |u(t)], je{0,... .k}
te[Sj,S]'_l]
Au
e =
t, sk O Sk, - 8 Si Sg e S, t,=s,

Figure 3.3: The times used in the proof.

Then, by Proposition 3.3.9,

my 2 ulsyn) —ulsy) = [ awde=— [ coutnv)ar

J J

Sj—1 Sj Sj

> ¢y / u(n(®)) dt = —c / w(t) d L) > —ep” / ult) dt
Sj Sj+1 ¢ Sj+1

for j € {0,...,k — 1}. The last integral can be estimated with the area of a rectangular

triangle with height m;.; and slope Ly. So, for j € {0,...,k — 1}, we have

a 2 m?

% amiq +1
;> co— )| dt > co— -2+ = L
mzay [ ez T =

As u is decreasing on [t1, t]] and increasing on [t], t5], by induction, we have

) m?' m > uE)

Similarly, define s’ ; = ¢ and s} = n(s}_,) for j € {0,...,k'}, where £’ is the unique
integer such that s, € (o, 0]. Let

my = max |u(t)], j€{0,... . K}

te[s;.,s;.il]

Analogously to the above estimations, we have

: me Y (O]
el =mp 2 e () 2 (M)
e 5 g
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and thus

k

u(t)] > (@) . ((%)) (o

We have k + k' < T, +r and |u(0)| < S by the choice of 8. Using Proposition 3.4.4, our

statement follows. O]

ok+k

Let N be the minimal integer with N > T + r, and define

de_flr

% = S+ e

Proposition 3.4.9. If (p,() € X X Z with |¢|/-rg < doe/" then |v(t)] < d/2 for all
te|-rTy+r].

Proof. Let (¢,() € X x Z and suppose [|¢]|—r0] < doe/".

As vy = ¢, Proposition 3.4.4 implies ||ugl/[—ro < doel'". Assume that, for some j €
{0, N — 1}, we have

lu(t)] < e (14 ¢;)? forall t € [, j].

Then, for t € [j,j + 1], from equation (3.4.3) it can be obtained that

u(t)] <

t j+1
u(j) + / a(s) ds| < |u(7)| + / C(s)us — =(s) — 1| ds

S (Sgeflr(l + Cl>j + 01506}(”(1 + Cl)j = (Soef”(l + Cl)j+1.

So, by induction, we get |u(t)| < dpe/1"(1+¢;)Y. Hence, by Proposition 3.4.4 we conclude

d
[o(t)] < Goe” (1 4+ )V = 3

for all t € [—r, Ty + 7] C [-r, N]. O
Proposition 3.4.10. If (¢, () € W with ¢(0) < &y, then z(t5) < [¢ —d/d™.

Proof. Let (¢,¢) € W with (0) < &g, and let v = v, z = 296, y = y?<,

From (¢,¢) € W it follows that 0 < ¢(s) < ¢(0)e/1” < §oe/17, s € [—r,0]. Proposition
3.4.9 can be applied to get |v(t)| < d/2 for all t € [—7r, T, +1].

Recall that to = —¢ — 1, y(ty) = ¢(, and y satisfies equation (3.1.8) a.e. in [ty, 00).
Moreover, z(t5) = (1/c)y(ts — z(t5) — 1) = (1/c)y(t2).

Observe that if y(t) > 0 on an interval I C [ty,T> + 7] then, by |v(¢)] < d/2 on
[—7, Ty + 7], we have y(t) < (d/2) —d = —(d/2) a.e. in I. It follows that either y(t5) = 0,
or y(t) > 0 for all t € [ty, ts]. In case y(t3) = 0 the statement trivially holds since z(t}) =
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(1/c)y(ta) = 0. Assume that y(t) > 0 for all t € [to, t2]. Using to —tog >t} —t1 +t5—to > 2,
we find

()= Syt = - (utt) + [ u0dt) <3 (- S —t)) ¢ -2

to

This is a contradiction if { < d/c since z(t) > 0.
Therefore, either ¢ € [0,d/c] and z(t5) =0, or { > d/c and z(t5) < ( —d/c. O

We need a function a € C?([0, ¢/c], R) with the properties
(al) a(0) =0,
(a2) /() >0, (&) > 0 for all € (0,q/d],
(a3) alg/c) < 6(b)”,
(ad) a(&—(d/c)) < 0(a(§))” for all € € [d/c,q/d].
Proposition 3.4.11. There exists a € C*([0, q/c],R) such that (al)-(cf) are satisfied.

Proof. We look for « in the form

a(é) = ajexp (—Gg exp (%)) for € € (O, %}

with some a; > 0, ay > 0, a3 > 0 determined later. For £ € (0, ¢/c|, we have

=2 (3 (%)),

(&) = algiag (a2a3 exp (%) —as — 25) exp (% — ag exp (%)) .

It is elementary to see that

al) =0, (&) =0, a"(§) 20 as&—0+.

Then, by setting a(0) = 0, it follows that o € C?([0,¢/c],R). Condition (al) holds by
definition. The property for o/ in (@2) is obvious from the above form of o/(£). From the
above expression for o (¢) it is clear that o//(£) > 0 for all £ € (0, q/c] if

G203 €XP (%) > a3z + 26 for all € € (O, %} )

which is guaranteed by

a
Q203 exXp (ﬁ) > a3+ 2%,
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that is,

0> (1 n zi) exp (__) | (3.4.7)
asc q

a; < 05§ exp (aQ exp <ic>) : (3.4.8)
q
Inequality (a4) is valid if

o () £t (o (2)

for all £ € (d/c, q/c]. This inequality holds if both

a; < 9@’1) and exp (%) > pexp (%) for all 5 c (g7 (_]:|

Property («3) holds if

are satisfied, that is, by p > 1,
1
a 2 o1 (3.4.9)
and

a32§<§§—1) log p for all £ € (c_l,g] .

¢ c
Since & — £((¢/d)¢ — 1) log p is increasing on (d/c, ¢/c], the last inequality is guaranteed
by

az > 4 (% - 1) log p. (3.4.10)

We have to find a; > 0, as > 0, ag > 0 so that all Inequalities (3.4.7), (3.4.8), (3.4.9)
and (3.4.10) are true.

First, fix a; > 0 so that (3.4.9) is satisfied. Now, choose a} > 0 such that (3.4.10)
holds for all as > aj. In the next step, using that the expression on the right hand side
of (3.4.7) is monotone decreasing in a3, we can fix as > 0 such that (3.4.7) is valid for all

as > aj. Finally, as a; and as are fixed, on can find a sufficiently large as > aj so that
(3.4.8) holds as well. This completes the proof. O

With the a given in Proposition 3.4.11, recall that Ky = (f1 + ¢1) max{—A, B},
K, = rKj, and the sets W, k,, Wa.k,, Vai, are defined by Formulas (3.1.10), (3.1.11).

Proposition 3.4.12. The set V, i, is a compact and convex subset of Ci_i g X R.

Proof. Compactness of V,, g, follows in a straighforward way from the definition of V, f,

and from the Arzela—Ascoli theorem.



CHAPTER 3. A DE WITH A STATE-DEPENDENT QUEUEING DELAY o6

In order to show the convexity of V, g, let (¢', (1) and (%, ¢?) be in V, g, and set
(¥, ¢) = M@, 1) + (1= X)) (w?, ¢?) with some A € [0, 1]. Proposition 3.4.11 guarantees the

convexity of a. Hence

$(0) = MH0) + (1= Ne*(0) = Aa (¢1) + (1= Nar (¢?)
> a (A + (1= N)¢) = a().

All other properties of V,, k, are obviously preserved by the convex combination. O]

It is easy to see that W, x, C Wy. Therefore, the map P is well defined on W, k.
We know that W, and W are invariant under P. The next result shows the invariance of
Wa, k., and slighlty more since, by Ko < K1, Wy x, € Wk, -

Proposition 3.4.13. P (W, k,) € W k,-

Proof. We have P(0,0) = (0,0) € W, k,. Suppose (¢,() € Waxk, \ {(0,0)}. Then the
inequality ¢(0) > «(¢) and the nondecreasing property of [—r,0] 3 s — ¢(s)e’* € R
combined imply that (o, () € W. By Proposition 3.4.7, P(y, () = (vs, 2(t5)) € W. Thus,
two facts remain to show: lip(vy;) < Ko, and that P preserves the property ¢(0) > a((),
Le., v(ty) > a(z(t3)).

From equation (3.4.2) and from v, € X' it follows that |0(t)| < K, for all ¢ > 0. Hence
the definition of vy and 0 < t, < t5 imply lip(vy;) < K.

By (¢,¢) € Wor, \ {(0,0)} € W we have ¢(0) > «((¢), and want to prove v(t}) >
a(z(t})). There are two cases.

Case 1. p(0) > do. Then, by Proposition 3.4.8, properties (a2), (a3) of a, and z(t}) €
[0, ¢/c], one obtains

o(t5) > 0 (0)" > 6(30)" > a (1) > ala(t)).

Case 2. p(0) < &. Proposition 3.4.10 gives z(t5) < [¢ — (d/c)]". If ¢ < d/c then
z(t5) = 0, and, by (al), trivially v(t5) > 0 = «(0) = a(z(t})). If { > d/c then applying
Proposition 3.4.8, ¢(0) > «((), (a4) and (a2), we conclude

zﬁpzmmeszQVza@>§)=a<k—ﬂ+)zmamy

This completes the proof. O
Define the subsets

Hy ={(,0) € Clig x Z | ¥(~1) =0} C Clu19 xR
H, = {(90,(’) € Clrg X Z ‘ p(s)=0forall s € [-r,—( — 1]} C Clrg xR
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with the induced subspace topologies.
Introduce the streching map @ : H; — H, by Q(¢,() = (¢, () so that

¢<(j—1> if s € [_6_170]7
0 if s € [—r,—( — 1],

p(s) =
and the squeezing map R : H, — H; by R(¢, () = (1, () so that
W(s) =p((C+1)s) forall se[-1,0].
Proposition 3.4.14. The maps Q : Hy — H,, R: H., — Hy are continuous, and
QVar,) SWark,, RWak,) C Vak,-
Proof. In order to see the continuity of @, let (¢, () € Hy,

(W™, ¢(")atg € Hy with  [|(¥",¢") = (¢, Q) = 0 asn — oo,

and let Q(¢,¢) = (¢,¢) € Hy, Q" (") = (¢",¢") € Hy, n € N. By definition, ¢(s) =
©"(s) for all s € [—r, —max{(,("} — 1]. For s € [-min{(, ("} — 1, 0] we have

o) =6 = [o ()~ o (1)
<[ (5 % )l k() - (75)

<|o (2 w(cnﬂ)\ﬂw Wl

If s € [-max{(,("} — 1, —min{¢, ("} — 1], then in case { > (", one can get

o) =6 = o () —o| = [o () - v

and in case ¢ < (", we obtain

o) = "0 = o - v (57 )|

<le(as) - (a5l e ()]

<o = vl + o (5 ) — ol

For fixed (v,() € Hy, by using the uniform continuity of v, the above estimations yield
that ||(¢, ) —(¢™, ¢™)|| tends to zero as n tends to infinity. Since the choice of the sequence
(™, ™) was arbitrary, this shows the continuity of @ at (¢, () € H;y. The continuity of R

can be obtained analogously.
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The inclusion @ (Vax,) € W, k, is obvious from the definitions of V, x,, W, k, and

from the fact that the streching does not increase the Lipschitz constant.

Similarly, to prove the inclusion R (W, k,) € Vi k, we have to check how the squeezing
changes the Lipschitz constant and the exponential property. From the definition of R it
is clear that the Lipschitz constant of 1) € C[_1 ), given by 9(s) = ¢(((+1)s), s € [-1,0],
can be at most ¢ + 1 < r times lip(¢) < Kj. The facts that

[—¢ —1,0] 3 s = ©(s)e/** € R is nondecreasing and r > (¢ + 1
imply that the map
[—1,0] 3 s = h(s)el1™ = (¢ + 1)s)e1EFVse1=¢=Ds i nondecreasing

because it is the product of two nondecreasing functions.

This completes the proof. n

Now we can define a new return map
II: Vo, € (®,0) = RoPoQ¥,() € Var,.

In order to get the ejectivity of the fixed point (0, 0), we prove the following proposition.

Proposition 3.4.15. There exists a constant v, > 0 with

v;p,C

sup ‘ > forall (p,() € W. (3.4.11)

t>0

Proof. Suppose that there is no 7, with inequality (3.4.11). Then there exists a sequence
(™, (™), in W such that
. {d 1 }
<min<{ —,— /.
[=7,0] 2'n

By Proposition 3.4.2, we can assume without loss of generality, that z#"¢"(t) =0, t > 0,
n € N. Setting v = v¥" <", n € N, we have

n n
sup ||vf"¢
>0

() = —f((1) — gt — 1)) (t > 0). (3.4.12)

Considering the iterates P7(¢", ("), j € N, n € N, and taking into account the definition
of t1, t5, ta, 3, and P, for each n € N there is a sequence (£})%2, such that

v"(t) >0 forte (t’ﬁk,t%“) ;

to=—1, th +1 <ty v"(t;) =0,
v"(t) <0 fort € (th,q, o) -

(3.4.13)

for all integers k > 0.
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We claim that

<eh

forall k e N (3.4.14)
[7170]

n n
Ugn 11 Ugn 11

where f; is an upper bound for ]7

Recalling functions f, §, equation (3.4.12) can be written in the form (3.4.2) with
z(t) = 0. Then, for k € N, by using condition (3.4.13), we obtain

d
ds[

- [(fl - f(vn(t;k + S))) v (th, +8) — g (v (ty, + s — 1)) 0" (5, + s — 1)] ef15 >

(toy + 5) fls] = 0" (U, + 5) e/ + 0" (15, + 5) frel?

for all s € [0,1] because v™(t%, 4+ s) > 0, 0 < f(u™(t2 + ) < f1, G (% + s —1)) > 0
and v™(t%, + s — 1) < 0. Thus,

0 < o™ (ty +5) S 0" (8, +1) e <ot (5 + e (s €[0,1)).
Analogously, for each nonnegative integer k,
0> 0" (thy + ) = 0" (thyy +1) e11=s) >y (th41 + 1) el (s € [0,1]).

This proves the claim.

By (S2), (3.4.12) and (3.4.13), we find that t — |v"(¢)] is a decreasing function on
[ty +1,t;,,] for all k € N. This fact, combined with (3.4.14) and the choice of (¢", (")5,
yields, for all n € N, the existence of an integer k(n) > n such that

1 " (am 1
3 Ssgg v (trom + s)| < Hvtn<n)+1H < (3.4.15)

For each n € N, defining

" (k(n)+1+t>

v <t2(n) +1)

w":[—1,00) 3t —

)

it satisfies |w™(0)| = 1 and, by (3.4.14),

n

1 ‘ s
sup [w"(t)] < sup |v" (tk +s5)| <2 e
21 n (t;g(n) + 1) 520 n (t;;(n) + 1)(
Moreover, equation (3.4.12), the definition of f, G and w" imply
W) = —f (V" (o + 1+ ) w"(8) = G (V" (Ey + 1)) w(t — 1) (3.4.16)

for all ¢t > 0. Hence |i™(t)] < 2(f1 + g1)et for all £ > 0.
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We can apply the Arzela—Ascoli theorem and the Cantor diagonalization process for
the sequence (w”|[0’oo)):j:1 of continuous functions to find a subsequence (n;)72; of N and

a continuous function w : [0,00) — R so that

w"™(t) — w(t) as | — oo uniformly in ¢ on compact subsets of [0, c0).

From (3.4.15) and the definitions of f, § it follows that

f(v"l <tZém) +1+ t)) — f'(0) and g (v’” (t:ém) + t)) —¢'(0) asl— co.
Hence the right-hand side of equation (3.4.16) converges to —f'(0)w(t) — ¢'(0)w(t — 1)
uniformly on compact subsets of [1,00). Consequently, w is differentiable on (1, 00), and
satisfies

W(t) = —f(Owt) — ¢ (0wt —1)  (t> 1), (3.4.17)

So, we obtained a continuous w : [0, 00) — R so that |w(0)] = 1, Jw(t)| < 2e/* for all
t > 0, the restriction w|(1,.0) is differentiable and equation (3.4.17) holds. From (3.4.13)
observe that w™ has at most one sign change on [0, 1], n € N. Then w can have at most
one sign change on [0, 1] as well. By Proposition 3.2.1 it follows that w is unbounded on

[0,00). This is a contradiction, and the proof is complete. ]
Proposition 3.4.16. (0,0) € V,, , is an ejective fized point of 1.

Proof. As the maps @ and R act on (¢,() € C-1,0) x R and (¢,() € Cj—, 0] X R, respec-
tively, such that the norms of ¢y and ¢ are preserved, it suffices to show the ejectivity of
the map of the fixed pont (0,0) of P on W, g, .

By Propositions 3.4.1, 3.4.15, and by the fact that (0,0) is an equilibrium point, there
exists 7, > 0 such that if (¢, () € W and ||(p, ¢)|| = ||¢ll[=r0 + ¢ < 72 then

| (7<) = v

Indirectly, suppose that there exists (¢, () € W so that

»,¢
t

‘[ ] + 275(t) <y for all t € [0, Ty + 7).
—7,0

|P*(¢,Q)|| <72 forall ke {0,1,2,...}. (3.4.18)

For k € {3,4,...}, define t; = min{t > tx_; | v(t) = 0}. Observe that, by the choice of
7o, for each fixed k € {0,1,2,...}, the inequality ||P*(¢,¢)|| < 72 and the fact that the
solutions of system (3.1.7), (3.1.8), (3.1.9) generate a semiflow imply that

|7 <) =

Recall that t5 < Ty + r in the definition of P. Thus, from (3.4.18), it can be obtained by
induction that

oS O < forallt € it + Tkl
—7,0

»,¢
t

o <]
[_7‘70}

Hv Uf’CH +295(t) <y forall t > 0.

[_T70]
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This inequality contradicts the existence of v; > 0 with inequality (3.4.11).

Therefore, ejectivity of the trivial fixed point (0,0) of P on W, g, follows with the
open set W, x, N U, where

U={(¢,¢) € Crorgy x R : [[(0, Ol <2}
The proof is complete. O

Now we are able to show the main result.

Theorem 3.4.17. Assume that Conditions (S1)-(S4) hold. Then system (3.1.7), (3.1.8),

(3.1.9) has a slowly oscillatory periodic solution.

Proof. By Proposition 3.4.12 the set V, g, is a compact and convex subset subset of the
Banach space C|_;,q) x R. Propositions 3.4.13, 3.4.7, 3.4.14 combined show that the map
IT: V, k, = Vak, is continuous. According to Proposition 3.4.16 the fixed point (0,0) of
IT is ejective. Then Theorem C guarantees that IT has a nonejective fixed point (¢*, (*)
in V,, k,. By the ejectivity of (0,0), we have (¢*,(*) # (0,0), in particular ¢* # 0.
Define ¢* € Ci_,q so that (¢*,(*) = Q(¥*,(*). Let (¢**, (™) = P(¢*,(*). From
R(p™, (™) = (¢*,(*) one obtains (** = (*. Therefore, p**(s) = 0 = *(s) for all s €
[—r, —C* — 1]. Moreover, @ streches ¥* with the same factor (* + 1 as R squeezes p**.

Then necessarily

v =v () —e (€0 ) =e

for all s € [-C* — 1,0]. Therefore, (¢**,(*) = (¢*, (*), that is, (¢*, (") = QW*, (") is a
nontrivial fixed point of P.

The solution (v¥"¢" 297¢7) of system (3.1.7), (3.1.8), (3.1.9) defines a slowly oscillatory
periodic solution (v, z) : R — R in the following way. As (¢*, (*) is a fixed point of P, the

restriction v¥ ¢ [jg o) of v¥7¢" and 2#"¢" are t3-periodic functions with ¢ = ¢3(*, ¢*) > 0.
A t3-periodic extension of v¥" ¢ |[g o) and z#¢" from [0, 00) to R give the slowly oscillating
periodic solution (v, z) : R — R. O

3.5 Examples

1. Consider system (3.1.4), (3.1.2), (3.1.3) with U € C?((0,00),R) and p € C*((0,0), R)
satisfying
U'(§) >0, U"(§) <0p(&) >0, p'(§) >0 forall{>0.

Then U” — p' < 0, so U’ — p has at most one zero. Assume that there exists z, € (0, ¢)
with U'(z,) — p(z«) = 0. Then z, is the optimal rate.
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For fixed constants k,a,b,q,rg,71 with kK > 0,0 < a < x, <c<b, qg>0,1r9>0,
r1 > 0 set K = k[maxee(qp EU'(§) + maxee(qy Ep(E)]. Define X, Y, Z and G: X x Z = R
as in Section 3.1. Then, for F(p,v) = G(p,0(v)), (¢,¥) € X x Y, Hypothesis (H2)
holds. The Lipschitz continuity in (H1) can be obtained easily from the smoothness of
U,p and the Lipschitz properties for X, Y, 0. (H3) is valid with ro = 7, by the definition
of 0. Hypothesis (H4) requires the additional condition

al'(a) > mnax p(§), bU'(b) < [oin, &p(§). (3.5.1)

Under the above assumptions, Theorems 3.3.5, 3.3.11 yield that system (3.1.4), (3.1.2),
(3.1.3) is well posed both in X x Y and X x Z, and all solutions can be extended to the
right half line.

2. In system (3.1.4), (3.1.2), (3.1.3) choose 1o = 0, 1 = 1, and U(§) = =& “/a,
p(€) = &P with some positive a and 3. Then U’'(§) = €971, £U'(€) = €72, Ep(€) = £°FL,
and x, = 1. It is straightforward that with a fixed ¢ > 1 all conditions of Section 3.1
are satisfied provided there are constants a,b so that 0 < a < 1 < ¢ < b and condition
(3.5.1) holds. In our particular case condition (3.5.1) holds if a=® > b°*! and b= < a®*,
or equivalently a®b®*t! < 1 < a®+t1b®. This can be true only if 3 + 1 < «, and even with

b+ 1 < a we cannot choose a > 0 arbitrarily small, b > 1 arbitrarily large.

In order to satisfy condition (3.5.1) we modify function U close to zero. For ¢ € (0, 1)
define
1 ex <l+%> if0<¢<e,
€)= e~ ValE), where V)= { TP\ TE) MO
ag 0 if ¢ > e.
Cleary, V. and U, are in C*((0,00),R), and EUL(§) = £+ [ + /(€ — €)% V(&) for all
€ > 0. We want to find a, b such that 0 < a < 1 < b, and aU!(a) > b’ and b= < aPFL.
For given a > 0 choose b > 0 such that b=® = a?*1/2, ie., b = 2V~ (#+D/@ Then
b= < a?*1 holds. Inequality aU!(a) > bPT1 is satisfied if

aU!(a) > Q%CL’@,
which is valid if & > 0 is small enough since alU’(a) — oo faster than a~F+D*/* ag a — 0F.
Consequently, for each fixed € € (0, 1), there exists a = a. € (0,¢) so that, by choosing
a € (0,a.) and b = 2Y/%q=B+D/e condition (3.5.1) is valid with U, instead of U. Clearly,
b — 0o as a — 0T. In particular, we may assume that b > c¢).

Therefore, for each ¢ € (0,1), Theorem 3.3.11 is applicable for system (3.1.4), (3.1.2),
(3.1.3) with rg = 0, r; = 1, p(&) = & and U, instead of U. For the new variable v =
x — 1 we obtain system (3.1.7), (3.1.8), (3.1.9) with f(v) = —k[(v + )U.(v+ 1) = U'(1)],
g(v) =k [(v+ 1) —1],and d =c— 1> 0.

It is easy to see that Conditions (S1)—(S3) hold with A =a — 1, B =b— 1. We have
f(0) = ka and ¢'(0) = k(B + 1).
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If @« > 5+ 1 then (S5) holds. Indeed, let A € C with ReA > 0, and suppose A +
ka + k(B +1)e ™ = 0. Then ka < |A+ ka| = |k(B+ 1)e | < k(B + 1), a contradiction
to o > B + 1. Therefore, by Theorem 3.4.3, the (0,0) solution of system (3.1.7), (3.1.8),
(3.1.9) is locally asymptotically stable.

Assume a < f+1. Then there exists ¥y € (7/2,7) so that — cosvy = a/(8+1). Define
ko = —(1/a)t cot ¥g. For each k > kg there exists ¥, € (g, 7) such that ka = —1 cot ¥,
since [7/2,m) 3 ¥ — —t cot ¥ € R increases from 0 to co. Then

ﬁ+1/{(1/: _ 1 (_191(:013191) _ —COSQ91 191 191

K(B+1) =

cos g —cosVpsinty ~ sindy’

and condition (3.2.2) is satisfied implying (S4) for all k > k¢. Thus, Theorem 3.4.17
implies that, with the above particular choice of f, g, system (3.1.7), (3.1.8), (3.1.9) has
a slowly oscillatory periodic solution provided k > kg and a < [ + 1. Equivalently, if
a < B+ 1and k > kg then system (3.1.4), (3.1.2), (3.1.3) with ro =0, r; = 1, p(§) = &°
and U, instead of U has a periodic solution (z, z) oscillating slowly around x, = 1. For

this periodic solution x, we claim that
x(t) € [(1 +rr) S L+ k| forall t € R (3.5.2)

Let t; > 0 be such that z(¢;) > 1 and z has a local maximum at ¢;. Then @(¢;) = 0. If
x(t) > 1 for all t € [t; — r,t1] then, by x(t1)Ul(x(t1)) < 1 and x(t; — z(t;) — 1) > 1, one
obtains

#(t) = & [a(t)Ul(x(t)) = [2(t — 2(t) — 1)]77] <0,

a contradiction. Therefore, there is a maximal ¢ty € [t; — 7, ;) such that z(¢y) = 1. An

integration gives

t1

z(t) =1 +/ K [x(OUL(x(t)) — [z(t — 2(t;) = 1))PT] dt <1+ &,
to

the upper bound in (3.5.2). If ¢, € R is such that z(t2) < 1 and z has a local minimum at

ty, then @(ty) = 0 and z(t2)Ul(x(ts)) = [x(ta — 2(t2) — 1)]°TL. Hence, using U. > U, the

inequality
[2()] 7 = 2()U(x(t)) < 2()U(z(t)) < [L + k)P forallt € R

follows, yielding the lower bound in (3.5.2).

Consequently, if, for a fixed x > 0, we choose € > 0 so that ¢ < (1 + xr)~(3+D/e and
a,b such that condition (3.5.1) and a € (0,¢), b > max{c, 1 + xr} are satisfied, then all
possible periodic solutions (oscillating around z, = 1) of system (3.1.4), (3.1.2), (3.1.3),
with ro = 0, r; = 1, p(§) = £° and U. instead of U, satisfy the system with the original

U as well.
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(a) For k = 1, the solution tends to the globally asymptotically stable equilibrium, the queue

disappears and the delay becomes constant.
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(b) For k = 4, the solution is asymptotically periodic, there is no queue, so the delay is constant.
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(c) For k = 10, the solution is asymptotically periodic, the length of the queue and the waiting

time are not identically zero. In this case the delay of our system is state-dependent indeed.

Figure 3.4: Numerical solutions with a =3, =1, ¢q=C =101, 2z, =1,10=0,r, = 1.



Summary

The thesis summarizes the results of Baldzs and Krisztin [4, 3]. It has three chapthers.
Chapter 1 is the introduction, it shows the sketch of the thesis.

The aim of Chapter 2 is to prove the global stability conjecture for the price model of
Erdélyi, Brunovsky and Walther [9, 8, 37],

() = alz(t) — x(t — 1)] — Bla(t)|z(?). (2.1.1)

Garab, Kovécs and Krisztin [14] obtained global asymptotic stability of z = 0 for equation
(2.1.1) provided a € (0,0.61). The technique of [14] worked for the more general price
model

Mﬂ:ai:@M@—sQ—m@—nﬂ—gWG». (2.1.2)

[14] proved global asymptotic stability for equation (2.1.2) when a € (0,1) and an addi-
tional condition was assumed, but it remained open to prove global asymptotic stability
without the additional condition, i.e., for a € (0, 1).

By using Stieltjes integrals, equations (2.1.1) and (2.1.2) can be written as
i) =a [ ot~ s)dn(s) - g(a(), (2.13)
0
i) = [ it = )duls) ~ g(u(0) 2.15)
0

assuming Hypotheses (Hy), (H,) and (H,).

In Section 2.3, we consider equation (2.1.5), formulate the hypotheses on p, and intro-
duce a suitable phase space. First it is shown that all solutions can be globally extended
to [—r,00). In Theorem 2.3.2 a sufficient condition is given for the global asymptotic sta-
bility of the zero solution of equation (2.1.5). The proof is based on a Lyapunov functional

which has been inspired by the one employed for the equation

() = ai(t — 1) — gz(t)) (2.1.6)

in the book of Kolmanovskii and Myshkis [21, Chapter 9, p. 374].

In Section 2.4, we consider equation (2.1.3) under Hypotheses (H,) and (H,). Com-
bining the global stability result of Section 2.3 for equation (2.1.5) and the continuous
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dependence on initial data for equation (2.1.3), the main result, stated in Theorem 2.4.2,
is that the zero solution of equation (2.1.3) is globally asymptotically stable provided
a € (0,1). As a consequence, global asymptotic stability is obtained for the zero solution
of the Erdélyi-Brunovsky—Walther equation (2.1.1) and also for equation (2.1.2) for the
full conjectured region a € (0, 1), see Corollaries 2.4.3, 2.4.4.

Finally in Section 2.5 we show that the global stability result for equation (2.1.3) is
optimal in the sense that for ¢ > 1 under the additional condition ¢’(0) = 0 the zero

solution is unstable. In addition, some open problems are mentioned.

In Chapter 3 we consider a network model that was introduced by Ranjan, La and
Abed in [31, 30]. It contains a single user and a single server. The user sends data by rate
x(t) to the server for procession. The server processes the incoming data by the capacity
c. Kelly [19] introduced the utility U(z) and the price p(x) per unit flow of the procession,

and proposed an end user rate control algorithm as a differential equation.

As the rate z(t) can be larger than the capacity of the server, the data arriving at
the server may form a single waiting line (a queue) with length y(t) before procession.
Suppose that a unit of data, whose procession was completed and the user received an
acknowledgement about it at time ¢, arrived at the queue 7(¢) time earlier, found a queue
with length y(t —7(t)), and spent waiting time z(¢) = (1/¢)y(t — 7(t)) in the queue before

its procession started. Then the model can be described by the system of equations

i(t) = k[z()U" (2(t) — x(t — ro — 2(t) — ri)p(z(t — 2(t) — m1))], (3.1.4)
x(t —rg) —c if 0 < y(t) < g,

y(t) = [zt —r) =t if y(t) =0, (3.1.2)
—[e(t—ro) =~ ifyt) = ¢,

A(t) = %y(t — () — ). (3.1.3)

First we consider a slightly more general system of equations
@(t) = Flae, y1) (3.1.5)

and (3.1.2) in X x Y. The phase space X x Y contains all possible segments (z, y¢).

In order to see that system (3.1.4), (3.1.2), (3.1.3) is a particular case of system (3.1.5),
(3.1.2) introduce Z = [0, ¢/c] C R as a state space for the variable z(t). A cruical fact is

the existence of a unique Lipschitz continuous map o : Y — Z such that

o) = b(-oly) ~r) (V)

Then, for a solution (z,y) : [-r,00) — R? of system (3.1.5), (3.1.2) in the phase space
X x Y, defining 2(t) = o(y:), t > 0, equation (3.1.3) is always satisfied for all ¢ > 0.
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Assume that a map G : X x Z — R is given such that, with the particular choice
F: X XY 3 (p,¢) = Glp,0(¥)) €R,

Hypotheses (H1)—(H4) hold. In this case system (3.1.5), (3.1.2) is equivalent to the system
composed of the equations
(t) = G(xy, 2(1)), (3.1.6)

(3.1.2) and (3.1.3). Then, in the phase space X x Y, for each (¢,%) € X X Y, system
(3.1.6), (3.1.2), (3.1.3) has the unique solution z#¥[—r c0) — R, y¥¥ : [-r,c0) — R,
29 [0, 00) = R where (2%, y#¥) is the solution of system (3.1.5), (3.1.2), and 27 (t) =
a(yf™), t >0,

In Section 3.3 we show that, under Hypotheses (H1)-(H4), for each (p,9) € X x Y,
system (3.1.5), (3.1.2) has a unique maximal solution (z#¥,y??) : [-r,00) — R?, see

Theorem 3.3.5. The solutions define the continuous semiflow
O :[0,00) x X XY 3 (t,p,0) — <$f’¢,yf’w> e X xY,

and, for each t > 0, the solution operators ®(¢,-,-) : X x Y — X x Y are Lipschitz

continuous.

In Theorem 3.3.11, we also show that system (3.1.6), (3.1.2), (3.1.3) can be studied not
only in the phase space X x Y, but also in X x Z with a different notion of solution. The
key technical result is that there is a unique Lipschitz continuous map v: X x Z — Y so
that ¥ = (¢, () satisfies ¢(s) = ¢( for s € [-r, —=( —r;], and equation (3.1.2) holds a.e. in
[—¢ —r1,0]. In particular, ¢ = (1/¢)y)(—C —r1). This means that the past of the length of
the queue can be recovered from the past of the rate (that is ¢ € X) and from the present
waiting time. The maps h and k between the two different phase spaces are Lipschitz
continuous, h is injective, but k is not, k o h = idxxz, and h o k{h(XXZ) = idp(xxz)-
Then, for each (¢,{) € X x Z, there exists a unique solution z#¢ : [-r,00) — R,
2#¢ 1 [0,00) — R of system (3.1.6), (3.1.2), (3.1.3) in the phase space X x Z satisfying

the initial condition £ = ¢, 2#<(0) = ¢. Moreover,
U [0,00) X X X Z 5 (t,0,C) — <va<,z%<<t)) eXxZ

is a continuous semiflow on X x Z, and V(t, ¢, () = k(P(t, h(p,())) for all t > 0.
In Section 3.4 we assume ro = 0, 7, = 1 and consider system (3.1.4), (3.1.2), (3.1.3).

Condition ry = 0 guarantees a single delay in equation (3.1.4), r; = 1 can be achieved
by rescaling the time. Then for the new variable v = x — x, we can rewrite our system.
Theorem 3.3.11 implies that system (3.1.7), (3.1.8), (3.1.9) is well posed in the phase
space X X Z.

A solution (v, z) of system (3.1.7), (3.1.8), (3.1.9) is called slowly oscillatory if for any
two zeros tq, ty of v with ¢; < t9 the inequality z(t5) + 1 < t5 — t; holds. This means that

the distance between consecutive zeros of v is larger than the delay.
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We introduce the sets W and W, = W U {(0,0)}. Then, for each (¢,() € W, the
solution v = v#¢ : [-r,00) = R, z = 2%¢ : [0,00) — R is slowly oscillatory with
infinite number of zeros. The second zero ty of v in (0,00) determines t5 > ¢y so that
toy = t5 — 2(t5) — 1, and a return map P : Wy — Wy can be defined. A nontrivial fixed
point of P corresponds to a slowly oscillating periodic solution. A classical tool, that we
apply here as well, is Browder’s non-ejective fixed point theorem. A large part of Section
3.4 is devoted to the construction of a suitable subset of X x Z where Browder’s theorem

is applicable.

It is a crucial result that P(p, () cannot decay too fast: there are constants 6 > 0,
p > 0 with v2¢(t5) > 0 (¢(0))” for all (p,¢) € W. This fact allows to construct a proper
C?-function «. Defining the compact subsets W, g, and W, g, of X X Z, the inclusion
PWak,) € Wyk, is satisfied. However, W, k, and W, g, are not convex. Following
[25], the subset V,, k, of Cj_10 x R is compact and convex. Set V, g, can be mapped
into W, i, by the streching map @ given by Q(v,¢) = (¢, ¢) with p(s) = ¢ (s/(¢ + 1)),
s € [-¢—1,0], and gph_r’_c_l] = 0. The squeezing map R, defined by R(p,() = (¢,()
with ¢¥(s) = ¢((( + 1)s), s € [-1,0], maps W, g, into V, k,. Browder’s theorem can be
applied for finding a non-ejective fixed point of the map II = RoPo() in V, k,. This yields
a non-ejective fixed point of P in W, k, as well. The non-ejective fixed point is nontrivial
provided (0,0) € W, g, is ejective. Ejectivity of (0,0) € W, g, follows in a standard way
from that of the zero solution of the constant delay equation ©(t) = — f(v(t)) —g(v(t—1)).

So we can state our main result in Theorem 3.4.17.

Finally, Section 3.5 gives examples.



(")sszefoglalé

A disszertaci6 osszefoglalja Balazs és Krisztin [4, 3] eredményeit. Harom fejezete van.
Az 1. Fejezet a bevezetés, ez bemutatja a disszertacio vazlatat.

A 2. Fejezet célja bebizonyitani Erdélyi, Brunovsky és Walther [9, 8, 37] globélis sta-

bilitasra vonatkozo sejtését az
#(t) = ala(t) - w(t — 1)] - Blo()|o(t) (2.1.1)

armodellre. Garab, Kovacs és Krisztin [14] az x = 0 globdlis stabilitdsat mutatta meg az
(2.1.1) egyenletre, feltéve, hogy a € (0,0.61). [14] technikdja az &ltaldanosabb

i(t) = a Z bilx(t — ;) — a(t — ;)] — g(x(t)). (2.1.2)

armodellre is mikodott. [14] globdlis aszimptotikus stabilitdst bizonyitott az (2.1.2) egyen-
letre, ha a € (0,1), és egy tovabbi feltételt tesziink, de nyitott maradt a globélis stabilitas

bizonyitdsa ezen plusz feltétel nélkiil, azaz a € (0, 1)-re.

Stieltjes-integralokat hasznélva, a (2.1.1) és (2.1.2) egyenletek
z(t) = a/or z(t — s)dn(s) — g(z(t)), (2.1.3)
i) =a [ it = s)duls) = u(v), 2.15)

alakban irhatdk, feltéve a (Hg), (H,) és (H,) Hipotéziseket.

A 2.3. Szakaszban a (2.1.5) egyenletet tekintjiik, megfogalmazzuk a hipotéziseket u-
re, és bevezetjiik a megfelelo fazisteret. Eloszor megmutatjuk, hogy minden megoldas
globalisan kiterjeszthetd [—r, 00)-re. A 2.3.2 Tételben elégséges feltételt adunk a (2.1.5)
zéré megoldasanak globdlis aszimptotikus stabilitasara. A bizonyitas egy olyan Ljapunov-
funkciondlon alapszik, amilyet Kolmanovskii és Myshkis kényve, [21, 9. Fejezet, 374. oldal]

alkalmaz az
#(t) =ax(t — 1) — g(z(t)) (2.1.6)

egyenletre.

A 2.4. Szakaszban a (2.1.3) egyenletet tekintjikk a (Hy) és (H,) hipotézisek mellett.
A 2.3. Szakasz (2.1.5) egyenletre vonatkozé globdlis stabilitdsi eredményét és a (2.1.3)
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egyenlet megoldasainak kezdeti értékétdl vett folytonos fiiggését kombinalva adédik a fo
eredmény, melyet a 2.4.2 Tételben mondunk ki, hogy a (2.1.3) egyenlet zéré megoldasa
globélisan aszimptotikusan stabil, feltéve, hogy a € (0,1). Kovetkezésképpen kapjuk
a zéré megoldéas globalis aszimptotikus stabilitdsat Erdélyi-Brunovsky—Walther (2.1.1)
egyenletében és a (2.1.2) egyenletben az a € (0,1) paraméterre, amire a sejtés vonatko-
zott, lasd a 2.4.3, 2.4.4 Kovetkezményeket.

Végiil, a 2.5. Szakaszban megmutatjuk, hogy a (2.1.3) egyenletre kapott globélis sta-
bilitasi eredmény optimadlis abban az értelemben, hogy a > 1-re a ¢’(0) = 0 feltétel mellett

a zéro megoldas intstabil. Tovabba, megemlitiink néhany nyitott problémat.

A 3. Fejezetben egy halozat-modellt tekintiink, amelyet eredetileg Ranjan, La és Abed
vezetett be a [31, 30] cikkekben. Ez egyetlen felhasznélot és egyetlen szervert tartalmaz.
A felhaszndl6 z(t) ratéaval kiild adatokat feldolgozésra a szervernek. A szerver a bejové
adatokat ¢ kapacitdssal dolgozza fel. Kelly [19] bevezette a feldolgozéds U(x) hasznossagat
és p(x) egységarat, illetve javasolt egy végfelhasznéléi rataszabdlyzési algoritmust egy
differencialegyenlet formajaban.

Amint az z(t) rata a szerver kapacitdsa f6lé né, a szerverhez beérkez6 adatok a fel-
dolgozés elott egy y(t) hosszu sort alkotnak. Tegytik fel, hogy azon adategység, amely fel
lett dolgozva, és amelyrél a felhaszndld a t idoben egy visszajelzést, 7(t) id6vel korabban
ért a sorhoz, y(t — 7(t)) hosszi sort talalt, és z(t) = (1/c)y(t — 7(t)) idét t6ltott sorban

allassal, miel6tt megkezdodott a feldolgozasa. Ekkor a modell a

i(t) = k[z()U" (2(t) — x(t — ro — 2(t) — ri)p(z(t — 2(t) — )], (3.1.4)
x(t—19) —c if 0 < y(t) <q,
y(t) = [x(t —r) — ]t if y(t) =0, (3.1.2)
—le(t —ro) =~ ify(t) =g,
dﬂz%ﬁt—dﬂ—m) (3.1.3)
egyenletrendszerrel irhaté le.
El6bb egy valamivel altaldanosabb, az
@(t) = Flxe, y) (3.1.5)

és (3.1.2) egyenletekbdl all6 rendszert tekintjilk X x Y-ban. Az X x Y fazistér az Gsszes

lehetséges (zy,y;) szegmenst tartalmazza.

Azért, hogy lassuk, hogy a (3.1.4), (3.1.2), (3.1.3) rendszer a (3.1.5), (3.1.2) egy
specidlis esete, bevezetjiik a Z = [0,¢/c] C R halmazt mint a z(t) valtozé allapotterét.
Egy donto tény az, hogy a o : Y — Z Lipschitz-folytonos leképezés létezik és egyértelmi

a

o) = sb(-olW) =) (V).
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feltétellel. Ekkor a X x Y fdzistéren a (3.1.5), (3.1.2) rendszer egy (x,y) : [—r,00) — R?
megoldédséara z(t) = o(y;)-t definidlva ¢ > O-ra, a (3.1.3) egyenlet mindig teljesiil minden
t > O-ra.

Tegytik fel, hogy adott egy G : X x Z — R leképezés ugy, hogy a specidlis
F: X xY 3 (p,¢) = G(p,o(y)) €R,

vélasztassal a (H1)-(H4) hipotézisek teljesiilnek. Ebben az esetben a (3.1.5), (3.1.2) rend-
szer ekvivalens a

i(t) = Gz, 2(1)), (3.1.6)

(3.1.2) és (3.1.3) egyenletekbdl Osszedllitott rendszerrel. Ekkor, az X x Y fazistérben,
minden (p,1)) € X x Y-ra a (3.1.6), (3.1.2), (3.1.3) rendszernek létezik és egyértelmi az
2?Y[—r,00) = R, y#¥ : [-r,00) = R, 2#¥ : [0,00) = R megolddsa, ahol (z#¥,y#¥) a
(3.1.5), (3.1.2) rendszer megoldésa, és z#¥(t) = a(y?"), t > 0.

A 3.3. Szakaszban megmutatjuk, hogy a (H1)-(H4) hipotézisek mellett barmely
(p,) € X x Y-ra a (3.1.5), (3.1.2) rendszernek létezik és egyértelmii a maximalis
(a:'“"’w, y“w) . [=7, 00) = R? megoldésa, ldsd a 3.3.5 Tételt. A megolddsok egy folytonos

@ﬂumxXxY9awww+@NwﬂjeXxx

félfolyamot definidlnak, és a ®(¢,-,-) : X x Y — X x Y megolddsoperatorok Lipschitz-
folytonosak minden ¢ > 0-ra.

A 3.3.11 Tételben azt is megmutatjuk, hogy a (3.1.6), (3.1.2), (3.1.3) rendszer nem csak
az X X Y, hanem az X x Z fazistéren is vizsgalhaté a megoldéds egy masik fogalméaval.
A legfontosabb technikai eredmény az, hogy létezik és egyértelmi az v : X x Z — Y
Lipschitz-folytonos leképezés gy, hogy v = v(p, () teljesiti a 1(s) = c( egyenléséget
s € [—r, —C —11]-re, és a (3.1.2) teljesiil majdnem mindenhol a [—( — ry, 0] intervallumon.
S6t, ¢ = (1/¢)(—C¢ —r1). Ez azt jelenti, hogy a sorhossz rekonstrudlhaté a rata multjabol
(ami ¢ € X) és a jelenlegi varakozasi idébol. A két kiilonboz6 fazistér kozott hatd h és k
leképezések Lipschitz-folytonosak, h injektiv, de k nem, ko h = idxxz, és ho k‘h( Xxz) =
idp(x xz). Ekkor minden (¢, () € X x Z-re létezik és egyértelmi a (3.1.6), (3.1.2), (3.1.3)

rendszer z2¢ = ¢, 2#¢(0) = ( kezdeti feltételt teljesité megoldasa. Tovabba
U:[0,00) x X X Z 5 (t,p,() — <xf’<,z(p’<(t)) eXxZ

folytonos félfolyam X x Z-n, és U(t, ¢, () = k(®(t,h(p,())) minden ¢ > O-ra.

A 3.4. Szakaszban feltessziik, hogy ro = 0, 71 = 1, és tekintjik a (3.1.4), (3.1.2), (3.1.3)
rendszert. Az rqg = 0 feltétel garantélja, hogy a (3.1.4) egyenletnek egyetlen késletetése
van, r; = 1 elérhet6 az ido6 tjraskélazasaval. Ekkor az 1j v = ¢ — x, valtozéra atirhatjuk
a rendszeriinket. A 3.3.11. tételbdl kivetkezik, hogy a (3.1.7), (3.1.8), (3.1.9) rendszer jol

definidlt az X x Z fazistéren.
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A (3.1.7), (3.1.8), (3.1.9) rendszer egy (v, z) megoldasat lassan oszcilldlonak nevezziik,
ha v barmely két t;, to zéréhelyére t; < ty esetén a z(ty) + 1 < ty — t; egyenlStlenség
teljesiil. Ez azt jelenti, hogy v egymast kovetd zérohelyei kozt a tavolsag nagyobb, mint

a késleltetés.

Bevezetjilk a W és Wy, = W U {(0,0)} halmazokat. Ekkor minden (p,() € W-ra a
v = 9% [-r,00) = R, 2 = 29¢ : [0,00) — R megoldés lassan oszcillalé végtelen
sok zéréhellyel. A v mésodik zérdhelye (0, 00)-en, t, meghatérozza t5 > to-t 1igy, hogy
ty = t5 — 2(t5) — 1, és egy P : Wy — W)y visszatérési leképezést tudunk definidlni. P
egy nemtrivialis fixpontja egy lassan oszcillalé periodikus megoldésnak felel meg. Egy
klasszikus eszkoz, amit itt alkalmazunk, Browder nem-taszité fixpont-tétele. A 3.4. Sza-
kasz egy nagy része X x Z egy megfelel6 részhalmazénak konstrukcidjarél szol, ahol Brow-

der tétele alkalmazhaté.

Az egy donté eredmény, hogy P(ip, () nem csokkenhet til gyorsan: vannak olyan 6 > 0,
p > 0 konstansok, hogy v?¢(t3) > 6 (¢(0))” minden (p,() € W-re. Ez a tény lehet6vé
teszi, hogy konstrualjunk egy megfeleld C?-sima « fliggvényt. A X' x Z kompakt W, k, és
W Kk, részhalmazait definidlva, teljesiil a P(W,, k,) C W, k, tartalmazas. Azonban W, f,
és Wa, k, nem konvex. [25]-t kovetve, a Cj_1 g xR tér V,, g, részhalmaza kompakt és konvex.
A V, i, halmaz W, k,-be képezheté a @ nyujté leképezéssel, amit a Q(v,¢) = (¢, (),
o(s) =1v(s/(C+1)), s € [-¢—1,0], és SO‘[—n—C—l} = 0 képletek adnak meg. Az R zsugorité
leképezés, melyet a R(p, () = (¢, (), ¥(s) = ¢(((+1)s), s € [—1, 0] képletek adnak, W, r,-
t Vo k,-ba képezi. Browder tétele alkalmazhaté a II = R o P o () leképezés nem-taszitd
fixpontjanak megtaldldsara V,, ,-ben. Ez egyben a P egy nem-taszit6 fixpontjat is adja
Wa .k, A nem-taszité fixpont nemtrividlis, feltéve, hogy (0,0) € W, g, taszité. A (0,0) €
Wa K, taszité tulajdonsiga szokasos médon jon az 0(t) = —f(v(t)) — g(v(t — 1)) egyenlet
zér6 megoldasanak taszito tulajdonsagabol. fgy kimondhatjuk a f6 eredményiinket a 3.4.17
Tételben.

Végiil, a 3.5. Szakasz példakat ad.
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