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1 Introduction
Unprecedented advances in gathering and storing digital information have fuelled 
the need for computer-based, fast and reliable processing of digital images to explore 
meaningful information from these complicated and heterogeneous image data. For 
example, in life sciences, advancements in microscopy offer novel opportunities for a 
never-seen in-depth and detailed analysis of biological systems, however, exploring 
this plethora of information requires an automated processing of tens of thousands 
of images. Image segmentation is a key first step of image processing, during which 
visual objects (regions, shapes) are extracted from the images. However, efficient 
and precise image segmentation often requires prior knowledge on the objects in the 
images. Our research has focused on the development of novel image segmentation 
algorithms that exploit the objects’ shape characteristics as a priori knowledge. 
During the development of these new segmentation algorithms, we aimed to preserve 
the original morphologies of the objects present in the images, as morphology often 
carries key information on the object itself. Taking these criteria into consideration, 
we have developed several variational methods which are suitable to segment an 
unknown number of objects with well-defined morphological characteristics present 
in the image. We focused on analysing images where the objects are densely packed.

2 Prelim inaries: higher-order active contours and  
phase field m odels for shape m odelling

Variational methods are widely used in computer vision applications. Active contour 
models are an important family of this variational approach. They can yield closed 
object boundaries as a result of segmentation. In this approach the representation 
of the boundary of the object of interest is a chain of points over the image space. 
The points of this chain, or the curve, are forced to move during the optimization 
process driven by internal and external forces. The internal energy comes from the 
curve itself, while the external energy is derived from the image.

A fast numerical algorithm has been proposed for active contours, but for closed 
curves it does not allow changes of topology, since the final curve has the same 
topology as the initial one. To overcome the limitation of the changes of topology, 
Osher and Sethian [1] proposed the level set method, where the curve is implicitly 
represented by a higher dimensional function (see also in [2, 3]). This level set 
function 0 represents the closed curve r as a zero-level set of 0: r =  {(x, y)\0(x, y) = 
0}.

Phase field model is a mathematical model for solving interfacial problems. In 
image processing applications, it can be utilized as a special level set modelling 
technique that has advantages over classical level set models. No special initial 
configuration is required for the optimization process; no reinitialization or regular­
ization steps are needed, and thus the process of finding the solution is faster.

Higher-order active contour (HOAC) models [4] provide a templateless approach 
to express shape information. HOAC models can describe shape priors using long- 
range dependencies between region boundary points. The long-range interaction is 
expressed by a multiple integral over the boundary contour. In the simplest case of 
a HOAC model, the contour energy is composed of area and perimeter minimizer
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terms, and extended by a double integral over the boundary points. This higher­
order term competes with the minimizer terms resulting in various preferred shapes, 
such as network-like structures [4]. To extract tree crowns in aerial images, Horvath 
et al. [5] have proposed a special parametrization of the HOAC model, the ‘gas of 
near-circles’ (GOC) model which prefers circular objects.

Rochery et al. [6] have introduced a phase field model that is equivalent to the 
HOAC models (i.e. sophisticated prior geometric knowledge can be included while 
maintaining the advantages of the phase field models). The simple higher-order 
phase field energy is be formulated as:

Ef,g M

Ef,0

L {  > < ■ + . 4 ,  -  , ( ¿  -  ? )
^  '  V '

V

Í Í  G(x,x') ,
J JqxW2 (1)

where (un)primed functions are evaluated at (x E Q) x' E Q' =  Q. The interaction 
function G(x,x') =  T (|x — x '| )I, where I is the 2 x 2 unit matrix.

Horvath et al. [7] have described the conversion of the parameters of the HOAC 
GOC model to the phase field GOC model.

3 M ulti-layered  ‘gas o f near-circles’ phase field  
m odel

The GOC model, whether in its active contour or phase field formulation, has two 
main limitations. The first one comes from the representation: like most segmenta­
tion methods, it cannot represent overlapping objects since the solution is given as a 
partitioning of the image domain into disjoint regions. The second limitation arises 
from the geometric model itself: the non-local energy term, which causes the model 
to favour near-circular shapes, also results in a repulsive force between neighbouring 
objects separated by a distance comparable to the desired object size. To overcome 
these limitations, we have introduced an extension of the presented GOC method 
in which we have successfully eliminated all the above-mentioned weaknesses.

We have extended the single-layered phase field model of Eq. (1) to a multi­
layered GOC phase field model (MLGOC) [8]. Using multiple instances of the clas­
sical models enables the representation of not only disjoint subsets, but also sets 
of subsets of the image domain possibly having non-empty intersection, which can 
now be represented on separate layers (see Fig. 1). Formally it means that the def­
inition of segmentation needs to be changed slightly: the condition which prevents 
two different regions from having common pixels, can be omitted. As a result, the 
new model is able to represent objects that touch and overlap in the image.

Moreover, the long-range interaction of the GOC model creates a repulsion be­
tween connected components. This repulsive force favours configurations in which 
the objects are separated by a distance comparable to their size. While it is appro­
priate for some tasks, e.g. tree crowns in regular plantations [7], it fails in solving
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Figure 1: Multi-layered ’gas of near-circles‘ (MLGOC) phase field model. Three surfaces 
illustrate a stable configuration of the MLGOC model. Under the surfaces there is the 
corresponding segmentation. Positive overlap penalty forces the segmented regions to 
move in positions where they overlap with no regions from other layers.

problems in which objects are touching or overlapping. To avoid this limitation, 
in the new model the long-range interactions act intra-layer but not inter-layer [8]. 
This has two effects. First, the low-energy configurations in each layer are still 
‘gas of near-circles’ configurations, as required. Second, the repulsive interaction is 
eliminated, because repulsively interacting regions can exist on separate layers. The 
result is that overlapping ‘gas of near-circles’ configurations on separate layers can 
now be combined without penalty (Fig. 2). However, to avoid degenerate configu­
rations, in which a given object is duplicated across all layers, an inter-layer area 
overlap penalty was introduced [8].

To proceed, we redefined the phase field as a multi-component object: $  = 
: [1--1] x ^  ^  R, where 1 is the number of layers. The total energy Ef 

of the new multi-layered model then takes the form

= £  E fg«><•>) +  f  £
i=1 i=j

where E fg is defined in Eq. (1), and KO is a new parameter controlling the strength 
of the overlap penalty.

Here are some observations about the effect of overlap penalty:

• As expected, KO =  0 yields overlapping objects, while KO > 0 prevents overlaps 
(see Fig. 2).

• From Eq. (2), ‘background’ points, with £i) ~  —1, do not generate overlap 
penalty.

• If they do not overlap, objects in the range of the repulsive interaction will 
tend to lie in different layers.

• If they do overlap, there is competition between the repulsive interaction and 
the overlap penalty.

(1 +  # ) ( 1  +  j  , (2)
ft
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• If KO is not too large, they will exist on separate layers; if KO is large enough, 
they will exist on the same layer, perhaps merging to one object.

• If KO is too high, then either an empty configuration or unstable circles are 
produced.

1 = 1  1 = 2  1 = 3  1 =  5

Figure 2: Typical configurations of the prior model (r0 = 10, negative circle energy) using 
different number of layers (l). The weight of overlap penalty KO = 0 in the top row and 
KO = 0.02 in the bottom row.

Fig. 2 shows some minimum energy configurations of the prior model.

3.1 C om b in ation  w ith  im age d a ta
In our tests we have used a likelihood energy with the following assumptions: first, 
the foreground and background pixel intensities follow two different normal distri­
butions which can be calculated by maximum likelihood estimation; second, high 
image gradient can be measured between the foreground and background intensi­
ties. This is the case when the resolution is not high enough to resolve the texture 
of foreground of the objects [5] (e.g. some types of lipid droplets of the size of a 
few microns with resolution ~0.4 ^m). We used the following phase field data term 
paired with each layer:

E j(I ) =  y -iV I  - V ^  + Y2 (I ^ir
2°fn

2 + (I hout)2 ,(i)
+ 2n2 P-2°out

} , (3)

where: V0(i), and =  (1 ±  0)/2 are approximately the normal vector to the 
boundary, and the characteristic functions of the region (+) and its complement (—), 
respectively [7]; I  : Q ^  R is the image data; hin,out and a in>out are the parameters 
of pixel-wise Gaussian distributions modelling the image in the interior (in) and 
exterior (out) regions, learned from samples; and yi;2 are positive weights.

3.2  C om p u ta tion a l co m p lex ity
A significant advantage of using level sets or phase fields for representation of active 
contour models is that the density of the information in the image (i.e. the number
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of objects) does not increase the computational complexity of the model. Since 
the segmented regions are uniquely defined by the level set and a given threshold 
at any point of its evolution, the increasing number of segmented objects have no 
unwanted effects on the computing costs of evolution. Of course in our new model we 
use the term multi-layered model, and therefore the amount of operations required 
is multiple compared to the single-layered model. The computational time increases 
linearly with the number of phase field layers used. Experience has shown that a 
maximum of 4 layers is usually enough to properly handle configurations of even the 
highest density.

4 A d d itive  data  m odel for fluorescent m icroscopy
Recently, both the academic and the industrial sectors have been increasingly inter­
ested in developing more complex three-dimensional cell culture models. These can 
better capture the complexity of the tissue, and have the potential to provide more 
relevant biological information compared to the traditional two-dimensional mod­
els [9, 10, 11]. Upon transforming the imaging of such models into simple 2D images, 
several situations may arise when the objects (cells) of interest overlap (Fig. 3).

Original image b Adaptive threshold Adaptive threshold+ d ‘Multi-layered
watershed

Ï1

1

0.8 - 

0.6 

0.4 

0.2 - 

0
Adaptive Adaptive threshold+ MLGOC
threshold watershed

gas of circles’ model

* #

I Precision (o)
I Recall (o)
I Jaccard index (p)

a c

e
1.00 1.00 1.00 1.00

Figure 3: Comparison of different methods on microscopic images containing overlapping 
cells. Top row from left to right: (a) Original image; (b) Results (Region of Interest) 
obtained by adaptive Otsu thresholding (c) Results of the standard watershed segmen­
tation method; (d) Results with the proposed ‘multi-layered gas of near-circles’ method; 
(e) Precision, recall and Jaccard index of segmented objects (‘o’ and ‘p’ indicate that the 
metrics are computed at the object and pixel level, respectively).

The point spread function (PSF) plays an important role in the image formation 
theory of the (fluorescent) microscope. The PSF of an optical device is the image of 
a single point object (rescaled to make its integral all over the space equal 1). This 
is mathematically represented by a convolution equation:

I(x ,y )  =  O * P SF 11O(u, v)P SF  (x u,y v)dudv , (4)
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where O(u,v) is the intensity of the emitted light of the particle at position (u,v); 
P SF  : R3 ^  R is the point spread function of the microscope. It gives that the 
measured intensities of the acquired image are proportional to the number of the 
fluorophores in the range of PSF.

4.1 Im age form ation  m od el and im age d a ta  m od el for over­
lap p ing  cell nuclei

The image formation model we used is /observed /background + /original- /background is
a nearly flat non-zero surface with noise, so-called ‘dark noise’. Let and a— be
the mean and variance of the background intensity, and ¡i+ and a+ be the mean 
and variance of the measured intensity of a single cell. Let A^ =  ¡i 2+ — ¡j—_, and 
A a2 =  a+ — a—. Then, according to the model, the mean of the intensity of multiple 
(n) cells is given by + nA ^  , and its variance by a-  + nA a2. The parameters
H_, a2—, A^, and A a2 were estimated from the corrected images using maximum 
likelihood estimation.

We have introduced a new data model which is adapted to the image formation 
process in fluorescent imaging. The new model is constructed by using the assump­
tion that overlapping cells additively contribute to pixel intensities of the acquired 
image, so that multiple cells on top of each other produce an intensity contribution 
which is a multiple of that of a single cell.

Let 0+ =  ^ =1 (tanh(/( h+i) (Fig. 4), where 0(i) is the phase field in the ith layer; 
this quantity ‘counts’ the number of cells at each point. Let Yd be the (positive) 
weight of the data term; and let /  be the intensity of the input image. Using the 
image formation model described earlier, and a Gaussian model for the image noise, 
the new data term becomes [12]:

întensity ( / ? 0+) — Yd f  (/ — V- — A h0+ ) 2 
n 2(a — +  A a 20+ )

(5)

Since a phase field takes the values -1 and 1 in its two stable phases of the energy 
potential (background and foreground), with a smooth transition between them, the 
integrand in Eq. (5), which is the energy density, takes a low value when 0+ =  0 
over regions with background intensity; 0+ =  1 over regions of single-cell intensity; 
and generally, when 0+ =  n over regions with n cell intensity.

4.2  V erification

In order to measure the robustness of the proposed method, we have generated data 
sets of synthetic images with different values for the noise variance, the extent of 
overlap, as well as with varying object ellipticity and size, to create variability similar 
to that seen in real world observations [13]. The proposed model was able to select 
circles with the desired radius and correctly separate overlapping objects, while at 
the same time eliminated the circles with smaller radius (see Fig. 4c). The proposed 
method was able to segment overlapping circles up to 0 dB with minimal error, 
with the first errors appearing at SNR =  -5 dB. We have to note that the optimal 
data weight Yd depends on the level of the noise we have artificially added to the 
raw synthetic images. This dependency should come from the weighting role of the 
denominator in Eq. (5). The proposed method is suited to most conventional cell
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Figure 4: Illustration of the proposed data model and behaviour of the geometric model. 
(a) Noisy synthetic image. (b) Phase field representation of the cell configuration in the 
image (a), showing the two layers, and the combined 0+ function that ‘counts’ cells. 
(c) Size selectivity of the MLGOC model: using proper settings of the prior and data 
parameters, it is possible to achieve size-selective segmentation. No initial object seeds 
were used.

nuclei types, but we do not recommend its use when the major/minor (rmax/ rmin) 
axis ratio exceeds 1.75. The segmentation results show that the accuracy is inde­
pendent of the extent of the overlap, and that the method is capable of segmenting 
circles successfully.

5 Selective active contours
The main concept behind the construction of ‘selective active contours’ is to describe 
a wide family of shapes such as circles, ellipses or plasma-like shapes by simple 
descriptors such as area or/and perimeter, which can be effectively calculated by 
line integrals over the contour.

Here we give a novel geometric active contour representation of commonly used 
shape descriptors. From the huge number of shape descriptors we can select a 
few ones which cost a linear number of operations, e.g. circularity or some of the 
moments. We defined some very simple energy functionals as internal forces of 
curves, which functionals can model contours of specific shapes such as ellipsoids or 
plasma-like shapes. To keep our optimization numerically and topologically stable 
we have built smoothness terms into our shape functional.

5.1 P arts o f  co m p o site  fun ction al
Next we will give a few possible options for the terms that prefer certain object size 
and shape. To promote a given perimeter we can give the error functional as

Ss- l (r) =  f s ^j> ds -  L0̂  , (6)

where L0 is the preferred length of the object boundary, ds = |r \dt and f S is the 
function having inflection at zero; a simple, practical choice with horizontal tangent 
line at the inflection point can be f S (x) =  1 x3. Similarly, characterizing objects 
with preferred internal area, the error functional is
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E s - a  (r, r  ) =  f s ^ j >  d A  —  A q ^J (7)

where A0 is the preferred internal area of the object, dA =  1 k • (r x r) dt is the 
Euclidean area element, k is the normal of the plane of the (planar) curve r (t).

Note that using these functions, the inflection point can be easily extended to 
‘inflection range’ to select objects with sizes falling between two threshold limit 
values.

Further selectivity can be achieved by adding shape prior to the functional. 
Various features have been designed to represent shapes that are based either on 
information about shape boundary or on boundary plus interior region. Any con­
tour or region based global shape descriptor can be incorporated into the energy 
minimization methods [14]. Here we present two contour based priors inflicting the 
least possible computation load. The ratio of the square of the object’s perimeter

and the enclosed area qC =  ^  dA is being used as the simplest global shape descrip­
tor to distinguish objects with elongated parts from compact ones. The simplest 
functional penalizes the deviation from the ratio qC is defined by the function f SH
as

Esh- c (r, r ) fsH{fdA — ¿(/ds) ) (8)

with minimum at zero.
The central moments of the enclosed area or contour itself are often used as well. 

The normalized second central moment of the contour  ̂d ds (where M2 =
f  |r0t |2 ds, r0t =  r — r0 and r0 is the center of gravity of the contour: r0 =  j^dSS ) has 
strong shape discrimination effect and can also be calculated along the contour with 
line integral. The functional penalizing the deviation from a preferred normalized 
second moment is:

dA j) ds — qM M2

Similarly to the size prior, the minimum point can be extended to a minimum 
range to select minimizer shapes falling between threshold limit values.

To get a stable solution, the combination of the size and shape priors require a 
smoothness term to be added.

For the smoothness term we use k2 (k =  -p2), which has a well defined meaning 
originating from the mechanics of the flexible rods: the bending energy of the curve 
called ‘Euler elastica’ [15]. The smoothness based on this quantity is:

) (9)Esh- m (V r) =  f SH (j>

Esm- ee (r, r)
1
2 n2ds (10)

This smoothness term has minimal interference with the other terms, however, 
for contours with small size, it predisposes to display over-smoothing effect, prefer­
ring circles over elongated objects.

The use of integral terms with different dimensions would require different weights 
between the terms in both the internal and external forces depending on the size of
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the objects. From a theoretical point of view, using dimensionless terms in the com­
posite functional would be the most appropriate solution, however, this can rarely 
be achieved without compromising the overall performance of the methods. Fortu­
nately, in most cases, a simpler approach (normalizing by a function of the targeted 
area and/or length) provides an acceptable result. The three component function­
als, including the size, the shape and the smoothness terms, can be combined such 
that their internal weights are fixed once and for all.

5.2 R eg ion  based  d a ta  term
To complete the classical active contour framework, we give a region based image 
model as the external part of the energy. Region based image models [16, 17, 18] 
have advantages over gradient- or edge-based data terms: a) they are proved to 
be very efficient in dealing with noisy images, and b) they are less sensitive to the 
initialization of the contours.

In our data model we define two local regions along the contour given by the 
Cartesian products of the local coordinates (see Fig. 5): R+ : £ E [—p,p] x n E [0,q], 
R -  : £ E [—p,p] x n E [—q, 0]. The segmentation problem is then represented by the 
intensity mean difference function expressed with local integrals

s ( r -n ) = m  R+7 (p) ^ —£7 (p) d£ (11)
where dA = d£dn, and ||R|| =  2pq.

Figure 5: The local coordinate system. Its abscissa is aligned with the tangent 
vector of the contour.

6 O bject sp littin g  active contours
In many biological applications cells have a non-uniform spacial distribution. From 
the practical (image processing) point of view, it means that upon exceeding a cer­
tain density of cells, the classical segmentation methods do not give single, separated 
cells, but rather groups of touching objects/cells. To analyze individual objects, fur­
ther processing is required, which can separate the clumped objects.

We introduce the ‘cutting arms’ higher-order active contour model for splitting 
aggregated objects which are not distinguishable based on image information only.
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The assumption behind the idea is that it is possible to identify dents on the ob­
ject groups’ boundary when two adjacent cells are touching. Thus, by connecting 
opposite dents, i.e. the concave points of the boundary of object groups, one can 
designate the border line between two adjacent cells. To ‘connect’ the elements of 
these opposite point pairs we have developed a higher-order active contour model 
(HOAC).

As it was presented previously, HOAC models are able to describe nonlocal 
interactions between distant points of the object boundary. This ability makes it 
possible to add shape information to the classical energy of the active contour models 
without using any template shapes of the target objects. It can also provide a tool 
for object splitting in the form of an attractive force between the contour points 
which satisfy certain properties, namely (1) they are not too far from each other,
(2) they are aligned, and (3) they are concave points of the contour.

First, we assume that the set of objects that compose the clump of nuclei cannot 
be further segmented by using the method of presegmentation due to missing edge 
information between the parts. The splitting functional should therefore be based 
on purely geometric information. Second, we reduce the set of contour points to a 
subset satisfying certain concavity and alignment criteria. We call it ‘feasible subset’. 
The complement set of the ‘feasible subset’ remains intact during the process. The 
feasible contour points are handled as a weighted, oriented particle set.

The associated orientation is defined by their normal vector n, and the weights 
are defined by their concavity as shown in Fig. 6. Within an energy minimization 
framework for curve evolution, concavity is indicated by the negative curvature of the 
curve (k < 0). The alignment of two oriented points (indexed by 1, 2) is defined by 
the relation of their orientations and relative position such that a12 =  n i -e12+ n 2-e21, 
where e12 is the unit normal vector pointing from point 1 to 2, and e21 =  —e12. Note 
that this definition of the alignment is symmetric, i.e. a12 =  a21. Now one can define 
the ‘anisotropic energy’ for a pair of points as U12 =  f c (k1) f c (k2) ga (a12) l (d12) with 
d12 being the Euclidean distance between the points and f c, ga, l are appropriately 
chosen functions.

K(s)

Figure 6: Illustration of the object cutting method. Contour points connected by 
the continuous line are well aligned, whilst points connected by the dashed line are 
not.

Taking f c (k (s)) as the density of the potential source along the contour, the 
second-order functional
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Eca =  -  f c (k (s)) f c (k (s')) gy (a (s, s')) l (d (s,s')) dads' (12)
*FS xr'FS

represents the total energy of the contour. The integral is evaluated only on the 
feasible subset, defined as:

rFS =  {r (s) | k (s) < — £ A a (s, s') > £} (13)

We demonstrate the behaviour of the geometric model on different initial group 
of shapes (Fig. 7).

Initial group of 
clumped objects

evolution Final configuration 
after splitting

t t t t t t t t t
muun

Figure 7: Behaviour of the geometric splitting model on different initial shapes.

7 A pplications
The developed variational shape models were designed to solve segmentation tasks 
in challenging scenarios of high-throughput screening applications [19]. The mod­
els have been successfully used as a starting step of several real high-throughput 
experiments [19, 20, 21].

Our current understanding of biology is built upon population-averaged measure­
ments. However, a growing number of studies indicate that heterogeneities of small 
subpopulations may carry important consequences for the entire population. For ex­
ample, genetic heterogeneity plays a crucial role in drug resistance and the survival 
of tumours. To better understand biological systems with cellular heterogeneity, 
we increasingly rely on single-cell molecular analysis methods. However, single-cell 
isolation, the process by which we target and collect individual cells for further anal­
ysis is still technically challenging and lacks a perfect solution. We have developed 
a technique to increase the accuracy and throughput of microscopy-based single-cell 
isolation by automating the target selection and isolation process [20]. Computer- 
assisted microscopy isolation (CAMI) combines image analysis algorithms, machine 
learning, and high-throughput microscopy to recognize individual cells in suspen­
sions or tissue, and automatically guide extraction through laser capture microdis­
section or micromanipulation. The MLGOC model combined with the new additive
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model have had an important role in the elaboration of this single cell isolation sys­
tem. To avoid contamination for further single-cell molecular analysis, the MLGOC 
model was used to filter out overlapping cells different from the target cell types. 
The CAMI system is capable of the isolation of thousands of single cells targeted 
upon phenotype and location characteristics.

Sum m ary and th esis points
In the following a listing of the key results of this dissertation are given. Table 1. 
summarizes the connection between the thesis points, their applications and the 
corresponding publications. The main findings of this research can be divided into 
three thesis groups.

In the first thesis group, I have presented a multi-layered variational model for 
segmentation of touching or overlapping objects in highly dense scenarios. The re­
sults were published in two conference proceedings [8, 12] and one journal paper [13].

I/1. I have created a synthetic image database containing images with circular 
objects of varying size and varying degree of additive noise. I have experimen­
tally confirmed that the multi-layered ‘gas of near-circles’ phase field model 
(MLGOC), supplemented with a suitable data term, is capable of efficiently 
extracting touching or overlapping near-circular objects, described by the geo­
metric model. In addition, I have experimentally demonstrated that the model 
is able to provide correct segmentation with several model parameter settings, 
even when starting from random initial conditions. This model has since been 
successfully applied for the segmentation of different types of biological im­
ages (microscopy images containing a large number of touching or partially 
overlapping cells or lipid droplets).

I/2. I have investigated and described how the new inter-layer phase field energy 
term, which controls the interaction between the independent layers, affects 
the behaviour of the geometric model. This term penalizes the overlap of ob­
jects from different layers, and therefore, helps to avoid degenerate solutions 
containing fully overlapping objects. Through simulations, I have analyzed the 
geometric model by sweeping through the layer number and penalty weight pa­
rameter spaces. Through these simulations, I have successfully demonstrated 
that the multi-layered model allows for better coverage of the image space 
compared to the original single-layer model, and thereby, it is capable to seg­
ment configurations of higher density. I have tested the model on large-scale 
synthetic data sets and I have demonstrated that an ideal weight of the overlap 
penalty term can be selected for a fixed data weight, such that the optimal 
segmentation can be achieved.

I/3. I have introduced an additive data model for the MLGOC phase field model, 
which is suitable for the segmentation of overlapping objects in fluorescent 
microscopy images. This new data model is capable of analyzing overlapping 
objects in fluorescent microscopy images, in which the measured intensity of 
overlapping objects is an additive function of the intensities of single objects. 
In order to measure the robustness of the proposed method, I have generated 
datasets of synthetic images to create a variability similar to that seen in real
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world observations. I have experimentally verified that the combination of the 
MLGOC model and the additive data model shows high robustness against 
noise, shape deformations, initialization and the level of overlap of the objects. 
I have elaborated an algorithm for the effective initialization of the phase field 
layers in the multi-layered phase field model to improve segmentation results, 
as well as to reduce the number of layers and the iterations required.

In the second thesis group, I have presented a new family of active contours for 
an effective, size- and shape-selective segmentation. The results were published in 
a conference proceedings [22].
II/1. I have implemented an effective level set representation of the selective active 

contour model. All of the suggested shape descriptors have been given using 
simple line integrals over the objects’ boundary. By simulations, I have verified 
that the combination of the proposed size, shape and smoothness terms is 
suitable for modelling objects of desired shapes. Using the second central 
moment based shape term, I have shown that the model prefers the formation 
of elliptical shapes, while the area and perimeter based shape descriptor is 
more general, and allows us to capture amoeba-like objects.

II/2. I have combined the selective active contour framework with an anisotropic 
region-based data term. By testing the selective active contour model com­
bined with the region-based data models on a large-scale synthetic data set, I 
have shown that they are suitable for the size and shape selective segmentation 
of visual objects. I have tested and demonstrated that the combination of the 
geometric model and region-based data model is highly robust against image 
noise.

II/3. By normalizing the components of the energy functional, I have elaborated a 
more general composite functional. I have approximated the most appropriate 
theoretical solution, i.e. the summation of dimensionless quantities, by nor­
malizing each energy term with a proper function of the desired object size. 
By testing it on a synthetic data set, I have verified that once the optimal 
internal weights of the normalized terms are identified, they remain fixed for 
any object size, whilst maintaining stability. I have successfully applied the 
selective active contour framework in real biological images for size selective 
extraction of neuron cells and shape selective segmentation of bacteria.

In the third thesis group, I have presented a new higher-order active contour 
model for object splitting, called the ‘cutting arms’ model. The results were pub­
lished in a conference proceedings [23].

III/1. I have investigated and characterized the desired properties and the shape of 
the ‘cutting arms’ higher order active contour model’s energy terms, includ­
ing the functions of curvature, distance and alignment. In order to reduce the 
necessary calculations, the interactions between point pairs are calculated on a 
small subset of contour points during the optimization process. Through simu­
lations, I have confirmed that the ‘cutting arms’ model can efficiently separate 
single compact objects in object groups. Using a simple pre-segmentation as 
initialization, I have applied the model on synthetic and real images. I have 
shown that the general functional of the ‘cutting arms’ model with special 
member functions can also provide an object’s convex hull.
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A pplications The models of the first thesis group have been successfully used 
as a starting step of several high-throughput screening related technologies and 
experiments. The applications of these models were published in three journal pa­
pers [19, 20, 21].

Publications
[8] [12] [13] [22] [23] [19] [20] [21]

I/1. •
I/2. •
I/3. • •
II/1. •
II/2. •
II/3. •
III/1. •

Applications • • •

Table 1: The connection between the thesis points, their applications and the 
Author’s publications.
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