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INTRODUCTION 

 

In this study we investigate models of network evolution. The network 

evolution models we propose are based on the rearrangement of links (‘‘rewiring’’) 

and follow the traditions of evolutionary modeling, i.e. optimizes a fitness function 

that combines various factors into one numerical index. Naturally, there are many 

ways to formulate and combine the components of the fitness function and testing 

the possibilities makes the process computationally expensive. 

 

We start by defining the main computational measures by which most biological 

networks are analyzed and also present the main classes of network topologies. 

Next we describe the concepts of network efficiency and robustness and their 

application, and present the main results of the efforts done so far in the study of 

network evolution. The global efficiency of a network is defined as the average of 

the shortest paths inverses: 
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1 , where n is the number of nodes, and ijd  is the shortest 

path length between nodes i and j. It is known that complex networks are more 

vulnerable to targeted attack and less vulnerable to random attack compared to 

random graph models. We define robustness as the capacity of a network to 

survive attacks. To measure robustness we extend the notion of robustness to 

multiple attacks: we attack a number of k most vital nodes of a network and then 

measure the efficiency kE  of the remaining network. We will define robustness as: 
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, where kV is the vitality of the k most vital nodes.  
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The concept of network evolution has several meanings considering the field of 

study. If network physics are studied, the evolution means the dynamics of network 

transformation due to growth and internal change. If the evolution of a network is 

viewed biologically, it is usually defined as the optimization of a network-

dependent fitness, across a landscape of network structures. 

 

The biological details for network evolution were studied more extensively on 

protein-protein interaction networks and gene regulatory networks. There are two 

major processes of evolution involved: duplication and divergence. The first 

process called duplication is based on the mutations suffered by a gene which will 

cause the proteins to duplicate and in time to interact differently by having new 

connections to other proteins or loosing some of the existing connections (link 

attachment and detachment or divergence) 

 

The natural constraints that evolve a biological network are various and any model 

is only a simplification of an evolutionary process. The simple assumption is that 

there are two ways in which a network evolves: growth and rewiring. The growth 

will add or remove nodes and links so that the overall network structure is more 

fitted to the environment pressure. Rewiring is the process of deleting a link and 

placing it between another pair of nodes. 

 

We next study the network evolution of a graph of interacting bacterial agents. We 

present the swarming colonies of environmental Pseudomonas aeruginosa PUPa3, 

present the quorum sensing network of this species, the process of swarming, and 

detail the main models that were used to study the colony dynamics. We present 

the bacterial colonies as an interspecies and intraspecies communication networks, 

releasing and consuming various signals and external substances to modulate their 

metabolism. We will present the basic morphology and behavior of a bacterial 
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colony, describe the phenomenon of quorum sensing and make an inventory of the 

in silico models available so far for simulating the behavior of a bacterial colony. 

 

The available models of bacterial colony fall into two main classes: continuous 

models and discrete models. Continuum models treat bacterial colonies as a 

continuous material that diffuses and expands in an environment of other 

continuous materials in a process described by several coupled reaction-diffusion 

equations. Hybrid models use a continuum description for the growth medium as 

well as for the solutes, and individual descriptions of bacteria. The usual way 

bacteria are modeled using the hybrid method models is based on autonomous 

agents. Individual bacteria or sometimes groups of bacteria are moving 

independently according to simple principles. These rules of movement can be 

diverse, from a simple random motion to general laws of attraction, repulsion and 

alignment. 

 

In Pseudomonas aeruginosa, as in most other gram negative bacteria, the agent for 

cell communication is a small diffusible molecule called N-acylated homoserine 

lactone (acyl-HSL). These signals are produced by the LuxI type signal synthases 

and accumulate as the population density increases. At reaching a threshold 

concentration they will bind to LuxR receptors that will activate the expression of 

different genes.  

 

In Pseudomonas aeruginosa there are two signaling systems using acyl-HSL, 

called las and rhl. The las system contains the signal synthasse LasI producing N-

3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and the signal receptor LasR. 

The second system called rhl consists of the signal synthase RhlI, generating N-

butanoyl-homoserine lactone (C4-HSL), and the signal receptor RhlR, inducing 

gene expression when complexed with C4-HSL. LasR and RhlR also induce the 

transcription of their cognate synthase genes, thus a positive feedback loop is 
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created. The two quorum sensing systems are arranged in a hierarchical fashion as 

the LasR–LasI system activates the RhlR–RhlI system. Specifically, LasR-3OC12-

HSL activates transcription of rhlR and rhlI. The genes responsible either for the 

synthesis (lasI, rhlI) or the sensing (lasR, rhlR) of AHL signals are important in 

our studies, as they will be inactivated both experimentally and computationally to 

test several hypotheses regarding quorum sensing. 

 

One of the main results of the process of quorum sensing is an increase in the 

metabolic activity of the cells, which translates into a changing pattern of 

movement for large groups of bacteria. This physical process of synchronized 

motion due to collective or individual forces is called swarming. While swarming, 

bacteria form veritable communication networks based on cell signaling. The 

adaptive power of such network is apparent in experiments where a change in 

external conditions favors rapid adaptive mutation in bacteria. The fast response to 

selective pressure is suggesting that the colony behaves as a network, not just as 

randomly mutating bacteria. 

 

One of the main results of the process of quorum sensing is an increase in the 

metabolic activity of the cells, which translates into a changing pattern of 

movement for large groups of bacteria. This physical process of synchronized 

motion due to collective or individual forces is called swarming. While swarming, 

bacteria form veritable communication networks based on cell signaling. The 

adaptive power of such network is apparent in experiments where a change in 

external conditions favors rapid adaptive mutation in bacteria. The fast response to 

selective pressure is suggesting that the colony behaves as a network, not just as 

randomly mutating bacteria. 

 

The way the phenomenon of swarming and adaptive communication among 

bacteria is usually analyzed is by using the theory of evolutionary game dynamics. 
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We try to offer a different method for the study of bacterial cooperation, by means 

of network theory. If two bacteria are close enough to signal to each other, we say 

the two are linked. Linking together bacteria based on a proximity threshold to the 

scale of the entire colony will form a graph of bacterial communication. Network 

theory does not assume a priori principles of bacterial ethics, there are not cheaters 

and altruists, while the dynamics of a colony stem from the continuously evolving 

network of communicating bacteria.   

 

 

AIMS OF THE STUDY 

 

In our work we wanted to investigate the effect of rewiring on the global 

communication fitness of a network. Our first goal was to study the evolution of 

robust yet efficient network topologies and to see if selecting mutations only for 

efficiency or only for attack tolerance (robustness) will influence network topology. 

We also wanted to study how efficient and robust biological network behave, and 

if multiple attack has an outcome on the overall topology. We wanted to model the 

onset of swarming in Pseudomonas aeruginosa by a simplified agent-based model 

that could allow us to study the properties of the emergent behavior of the colony. 

We wanted to predict the experimental behavior of genomic knockout mutants in 

which the QS genes responsible either for the synthesis (lasI, rhlI) or the sensing 

(lasR, rhlR) of AHL signals were inactivated. We next wanted to study the 

interaction of bacteria by modeling their spatial dynamics as an evolving graph of 

interacting bacterial agents. 
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METHODS 

 

Our previous studies on the attack tolerance of the sparse regulatory networks of E. 

coli and S. cerevisiae found that partially weakening a few central nodes has the 

same effect with knocking out the most central node. The natural questions that 

arise is how have the networks evolved mechanisms of protection to single and 

multiple attacks and what are the structural differences between a network that is 

evolving under single attack compared to the networks evolved under multiple 

attacks? 

 

To answer these questions we developed two evolution strategies and investigated 

the outcome and dynamics of evolution starting from random graphs. In our 

algorithms we imposed several constraints. We use undirected graphs with no 

growth. Thus the evolving graphs have a specified number of nodes and edges. The 

graphs are sparse, the number of edges is only slightly higher than the number of 

nodes, and by this we mimic most biological and other naturally occurring 

networks. The first method is a random evolution, in which a rewiring (mutation) 

is accepted only if it has the same or slightly higher fitness. This approach is 

computationally efficient so it allows one to study a wide range of phenomena.  

 

 

Figure 1 A simple model of network evolution. At each step an edge is rewired at 

random. If the new topology is more fitted according to the selected fitness criteria, 

the new network is used for the next step. 
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A second method used to develop optimal solutions was based on a genetic 

algorithm. Given the fact that the number of nodes and edges is fixed, the graphs 

were encoded as lists of pairs of nodes describing the graph’s edges. A mutation 

means choosing an edge with uniform probability across the list of edges and 

rewiring it. Crossover is done by choosing a crossover point and exchanging the 

graph edges. The crossover cut is usually small to ensure that the graph population 

is diverse enough. Also, the mutation and crossover rate are slow, as slow 

convergence is recommended for genetic algorithms. Due to the fact that mutations 

are added to the beginning of the list, we can establish the evolutionary history of a 

graph.  

 

Figure 2 Crossover example on a graph of 5 nodes and 7 edges. The edges 

marked by red under the crossover cut line included in the crossover as well 

because some of the edges above the cut already belong to the original graph. 

 

Next we propose a model for bacterial colony dynamics that is used to explain 

experimental data related to the onset of swarming in environmental Pseudomonas 

aeruginosa PUPa3. The process was described with a simplified computational 

model in which cells in random motion communicate via a diffusible signal S 

(representing N-acyl homoserine lactones, AHL) as well as a diffusible, secreted 

factors F (enzymes, biosurfactans, i.e. “public goods”) that regulate the intensity of 

movement and metabolism in a threshold-dependent manner. As a result, an 
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“activation zone” emerges in which nutrients and other public goods are present in 

sufficient quantities, and swarming is the spontaneous displacement of this high 

cell-density zone towards nutrients and/or exogenous signals. 

 

We designed an agent-based model for representing the cells of P. aeruginosa. In 

this model, each cell is an autonomous agent that regulates its own behavior 

depending on the concentration of nutrients as well as AHL signals (S, F) found in 

its environment. The cells perform random movements on the 2D plane, and 

interact with each other via AHL diffusible signals. 

 

 

Figure 3 Model outline. The model describes the movement of cells on a 

longitudinal segment of the plane, discretized into squares (A). On the longitudinal 

sides, the track has periodic boundary conditions with respect to cell movement 

and diffusion. At the beginning (t = 0), the cells are placed at the starting point at 

random positions. At each time point, the cells carry out the algorithm prescribed. 

As a result, the cells form an advancing front, and at each time T, the distribution 

of cell density as well as signal concentration is determined. The distributions 

found are irregular and asymmetrical and were scaled to the same upper value 

(inset C). 
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Initially, the environment is represented in terms of a single diffusible material N, 

denoting all nutrients. In the process of the simulation, cells will produce other 

diffusible materials, such as signal S and factor F. The concentration of such a 

component u is described by the reaction-diffusion equation: 

RuuD
dt

du
−∇=

2 , where D and R are the uniform diffusion and decay 

constants, respectively. 
 

We next study the interaction of the bacteria based on inter-species distances and 

study the evolution dynamics of the graph of interacting bacterial agents. To 

compute the global communication network is computationally expensive, if done 

for many time-steps. Each individual agent position is stored for certain times steps. 

To compute the communication network, the distances from each bacterium to all 

the other bacteria are computed and those bacteria falling under a proximity 

threshold are linked to the bacterium. Thus a very large network can develop, with 

a number of nodes equal to the number of bacteria agents present at the specific 

timestep and with a number of links dependent on the distance threshold being 

used. 

 

Figure 4 Example of the bacterial communication network, computed from 
simulation data, for a small distance threshold. The network is formed by many 

non-connected subgraphs (connected components). If the threshold is sufficiently 

increased the number of connected components becomes smaller, and eventually 

the network becomes fully connected. 
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RESULTS AND DISCUSSION 

 

We explain how the choice of network size influences the resulting 

topologies; we describe the result of the random selection algorithm by measuring 

several network parameters. We examine how multiple node attacks changes the 

dynamics of the network evolution and its outcome. We show there are correlations 

between several node properties and the degree and explain why that happens. We 

make motifs and path correlation analysis and study the convergence to highly 

optimized structures.  

 

Figure 5 Example of a 400 nodes / 480 edges evolution experiment. Networks 

that keep node/edge proportionality have the same outcome in our evolution 

experiments. For computational purposes we favored smaller networks. 

The main result in this section concerns the core-periphery scale of the evolved 

networks. Networks evolved with larger emphasis on robustness to multiple attacks 

will develop a larger core while efficiency favors a larger periphery. Since the two 

concepts are opposed, complex networks are usually a trade-off between a large 

core and a large periphery. 
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Figure 6 Schematics of the core-periphery trade-off. Left, selection for robustness 

favors larger core while selection for both robustness and efficiency (right) 

increases the periphery. 

Next we discuss the basic properties of the in silico agent-based model we have 

proposed for the bacterial colony of P. aeruginosa and compare its swarming in 

vivo and in silico. We make several dynamic measurements to demonstrate the 

capabilities of our model, and then we address the issue of competition among 

different mutants in which the QS genes responsible either for the synthesis (lasI, 

rhlI) or the sensing (lasR, rhlR) of AHL signals were inactivated, and we compare 

our results to laboratory results. We also discuss the agreement with other 

continuum or hybrid models and the avoidance of chemotaxis in studying the 

colonial dynamics.  

 

The definition of QS is that cells respond to cell density, the model-population in 

fact acting as a density switch. At a given cell density the cells get activated i.e. 

they start to produce factors and subsequently the cells also start to swarm. The 

model assumes a threshold signal concentration to activate the quorum sensing 

response, then another threshold for the level of factors for the onset of swarming. 

The genetic networks underlying QS are considered to act as a two-state switch. It 

is worth to note that the starting population is random (both in terms of locations 

and in terms of metabolic states). Nevertheless, this random population shows a 

coordinated behavior as it switches from solitary to swarming state. 
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Figure 7 Dependence of the cell’s state on cell’s density. Note that beyond a 

certain cell’s density level, nearly all cells switch to the swarming state, i.e. the 

model acts as a density switch. The panel shows the first steps of a simulation 

starting from a very small population. 

The behavior of wild-type P. aeruginosa PUPa3 as well as its mutants is compared 

in vivo and in silico. In the absence of exogenous AHL signal, only the wild-type 

cells swarm. If the exogenous AHL signal is added to the plates, the SN mutants 

will also swarm, both in vivo and in silico, yet the SB mutants will not. These 

results show that i) the genetic modifications produced the expected phenotypes, 

and ii) the simplified regulatory scheme built into the agent-based model provides 

a qualitatively adequate description of the events. 

 

 

Figure 8 Example of comparing the simulation model with the wet lab 
experiments. Mutants that cannot activate the swarming abilities are inhibited 

from growth. 
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In our model system the cells are maintained by a flux of nutrients provided by 

diffusion. In other terms, their survival depends on a balance between nutrient 

consumption and diffusion. We can break this balance in two different ways: a) by 

decreasing the flux of nutrients (i.e. decreasing the nutrient concentration or 

decreasing the diffusion constant of the nutrients), or b) making the cells over-

consume nutrients. A model of the latter strategy will lead to a collapse of the 

swarming population. 

 

Figure 9 The effect of overconsumption on the relative size of the swarming 

population (compared to that of the wild type) A common effect in ecology, over-

consumption causes over-division and leads to a large variation in the population 

number. 

We present the distance based communication bacterial graph constructed from our 

simulation model and study its evolution and dynamics. We show how deprived 

but essential bacteria are enforcing their communication network by forming 

powerful local groups while being sufficiently spread in order to survive, and 

discuss the implications of studying altruists and cheaters for the evolutionary 

game dynamics. 
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Figure 10 Connected components vs threshold plot for wild-type compared to a 

co-swarming population of signal-negative and wild-type bacteria. Left, in red, is 

the combined WT + SN while right, also in red, only the WT from the mixed 

experiment. The WT alone experiment is in blue. 

The number of wt components in the mixed case is greater for higher thresholds, 

while if we take into account both the mutant and the wild-type, it follows the same 

distribution with the wt only. This suggests that the wild-type sub-network 

becomes more efficient, while being at the same time more sparse, to allow the 

development of the mutant. 
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CONCLUSIONS 

 

We show that concomitant selection for efficiency and robustness influences the 

fundamental topological properties of the network, and that evolution under 

multiple attacks leads to distinct topologies. 

 

The model correctly predicts the behavior of genomic knockout mutants in which 

the QS genes responsible either for the synthesis (lasI, rhlI) or the sensing (lasR, 

rhlR) of AHL signals were inactivated. 

 

An agent based model makes it possible to study how the signaling network 

kinetics influences the dynamic of a colony, while also allowing for the study of 

the evolving communication network of the spatial conformation of individual 

bacteria. 
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