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1. INTRODUCTION  

 

1.1. Rare monogenic skin diseases 

 

From ancient times to the present, the basic approach for diagnosing skin 

diseases has been to classify the diseases according to their visible signs and 

symptoms. This approach highlights that dermatology is still a highly morphology-

orientated specialty (Shelley et al., 1976; Nagy et al., 2015). Since that time, the 

desire to understand the nature of observed skin lesions constantly drives the 

development of dermatology and the incorporation of novel investigative methods 

into its everyday practice (Shelley et al., 1976; Nagy et al., 2015).  

Breeding agricultural plants and animals characterized the pre-Mendel era of 

genetics (Stern et al., 1950; Hansen et al., 2014). After Gregor Mendel established 

the basic rules of heredity in the nineteenth century (Mendel et al., 1993), several 

major discoveries, such as the identification of DNA as the material encoding 

inheritable information, of the genetic code and of the mechanisms of gene 

expression, have initiated the era of molecular genetics (Watson et al., 1953; Min Jou 

et al., 1972). Very recently, the enormous technical development of sequencing 

methods and platforms has resulted in large-scale genomic projects, which produce 

amounts of data that were unimaginable a few decades ago (Sanger et al., 1977; 

Stoneking et al., 2011).  

These discoveries and techniques have been used to identify several normal 

genetic variations, as well as candidate genes and their disease-causing mutations, 

accelerating the elucidation of the genetic background of several monogenic skin 

diseases (genodermatoses).  

Genodermatoses are defined as life-threatening or chronically debilitating 

skin conditions whose prevalence is less than 5 in 10 000 of the general population 

(Baldovino et al., 2016). In opposite with common diseases, which are considered as 

the consequence of multifactorial – life style, environmental and genetic – etiological 

factors; genodermatoses are usually monogenic disorders and they are mostly 

determined by the presence or the absence of any causative genetic alteration which 

can cause the consequential failure of the certain protein and can lead to the 

development of the disease (Aronson et al., 2006).  
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Although dermatology and genetics are considered separate disciplines, the 

combination of these two fields has already resulted in enormous improvement in the 

understanding of monogenic skin diseases (Nagy et al., 2015). Investigations on 

genodermatoses are essential for the development of the knowledge about the genetic 

background on these diseases and the research can help family planning in the 

affected families and can also provide a novel therapeutic modality for the affected 

patients in the future (Aymé et al., 2015). This latter one has also great importance, 

since currently, int he majority of the cases, only symptomatic treatment is available 

for patients with genodermatosis (Nagy et al., 2015). 

The following clinical entities are classified as genodermatoses: 

epidermolysis bullosa, keratotic disorders, disorders of skin color, ectodermal 

genodermatoses, genodermatoses associated with connective tissue, vascular 

genodermatoses and genodermatoses with skin manifestation and elevated cancer 

risk (Aymé et al., 2015).  

 

1.2. Genodermatoses with abnormal pigmentation 

 

One of the most clinically heterogenous group of genodermatoses, is the one 

with pigmentational abnormalities.  

The pigmentation of the skin is, except in rare pathological instances, the 

result of three pigments or chromophores: melanin, a brown/black (eumelanin) or 

red/yellow polymer (pheomelanin) produced by melanocytes; hemoglobin in red 

blood cells in the superficial vasculature; and dietary carotenoids (Rees et al., 2003; 

Chatzinasiou et al., 2015). Melanin, the most important, is formed from tyrosine, via 

the action of tyrosinase in the lysosome-related organelles of melanocytes, called 

melanosomes. Melanocytes are dendritic cells, arising from the neural crest during 

embryonic development and located in the basal layer of the epidermis. The 

melanosomes are transferred from a melanocyte to a group of 36 keratinocytes called 

the epidermal melanin unit, to which they provide melanin (Chatzinasiou et al., 

2015). 

Interest in the genetics of human pigmentation is longstanding. Variation in 

human pigmentary form - of skin, hair, and eyes - is one of the most striking 

polymorphic human traits (Rees et al., 2011; Chatzinasiou et al., 2015). More than 
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150 genes have now been identified that affect pigmentation of the skin, the hairs and 

the eyes (Chatzinasiou et al., 2015).  

The availability of largescale DNA analysis and genome-wide scans, together 

with our existing knowledge of the genes involved in pigmentation, have contributed 

to the interpretation of the mechanism of skin pigmentation (Yamaguchi et al., 2009; 

Rees et al., 2011). 

Disorders of pigmentation can result from migration abnormalities of 

melanocytes from the neural crest to the skin during embryogenesis (Plensdorf et al., 

2009; Fistarol et al., 2010). In addition, impairment of melanosome transfer to the 

surrounding keratinocytes, an alteration in melanin synthesis and a defective 

degradation or removal of melanin may lead to abnormal skin pigmentation 

(Plensdorf et al., 2009; Fistarol et al., 2010). Immunologic or toxic mediated 

destructions of melanocytes can also cause pigmentation abnormalities (Plensdorf et 

al., 2009; Fistarol et al., 2010).  

Disorders of pigmentation are can occur as a genetic or acquired disease 

(Plensdorf et al., 2009; Fistarol et al., 2010). In my thesis, I have focused on the ones 

with genetic background, which considered as genodermatoses with abnormal 

pigmentation.  

These pigmentational abnormalities can affect the whole body of the patient 

and therefore can be generalized, but can manifest only in one body part and 

considered as localized abnormality (Chatzinasiou et al., 2015). The previous one is 

usually the consequence of germline mutations of genes playing key role in the 

regulation of pigmentation, the latter ones can be the consequence of somatic 

mosaicizm. In these latter cases, the mutation is present in a mosaic form and only 

affect the body part with altered pigmentation. In my thesis, I have investigated the 

putative underlying germline mutations of the genes involved in the development of 

the pigmentation of the skin, the hairs and the eyes.  

Pigmentational abnormalities either can be associated with increased amount 

of pigments resulting in hyperpigmented lesions or with decreased or complete lack 

of pigments leading to the development of hypopigmented lesions (Chatzinasiou et 

al., 2015). 

In my thesis, I have summarized the results of my genetic investigations in 

very stigmatizing, rare monogenic skin disease characterized with decreased or 

complete lack of pigments, the oculocutaneous albinism. The complexity of this 
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genodermatoses is increased by the fact that the abnormalities of the color might not 

only affect the skin of the patients, but also the hairs and the eyes as well (Figure 1).  

 

 

 

Figure 1. The clinical spectrum of the albinism incudes partial and complete 

pigment loss and can affect the hairs, the skin and the eyes of the patients          

(Isabel et al., 2007).  

 

Reseach of this topic have great importance for the patients themselves either 

in helping family planning and also with contributing to the bases of future studies 

aming to the develop causative treatment modalities for the affected patients.  

 

1.3. The oculocutaneous albinism 

 

Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic 

group of rare monogenic diseases characterized by diffuse reduced melanin 

production in the skin, hair and/or eyes (Mártinez-García et al., 2013). OCA affects 

one in 20,000 individuals worldwide; however, the prevalence of its subtypes varies 
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among different populations (Gargiulo et al., 2011). To date, six genes have been 

implicated in the development of the isolated OCA forms, and an additional 24 genes 

have been associated with syndromic OCA variants (Simeonov et al., 2013). I have 

focused my scientific work to the investigation of the isolated (non-syndromic) OCA 

variants, in which besides the pigmentational abnormalities of the hairs, skin and 

eyes there is no further affected organ.  

Four genes have been implicated in the etiology of the most common isolated 

OCA forms (Table I.): the tyrosinase gene (TYR; OMIM 606933), which is 

responsible for the development of OCA type 1 (OCA1) (King et al., 2003; 

Ghodsinejad Kalahroudi et al., 2014), mutations of the oculocutaneous albinism two 

gene (OCA2; OMIM 611409), which are associated with OCA type 2 (OCA2) 

(Durham-Pierre et al., 1994), pathogenic variants of the tyrosinase-related protein 

gene (TYRP; OMIM 115501), which are linked with OCA type 3 (OCA3) (Rooryck 

et al., 2008), and mutations in a membrane-associated transporter gene (SLC45A2; 

OMIM 606202), which are implicated in OCA type 4 (OCA4) (Inagaki et al., 2004). 

Although OCA2 and OCA4 are present in Caucasian populations, OCA1 is the most 

common form and OCA3 is very rare (Rooryck et al., 2008). 

 

Gene  Gene product Disease name 

TYR Tyrosinase enzyme (TYR) OCA1 (Yellow albinism) 

OCA2  Oculocutaneous albinism type two 

protein (OCA2)  

OCA2 (Brown albinism) 

TYRP Tyrosinase-related protein (TYRP) OCA3 (Rufous albinism) 

SLC45A2 Solute carrier family 45 member 2 

protein (SLC45A2) 

OCA4 (Brown albinism, 

clinically similar to OCA2) 

Unknown Unknown OCA5 

SLC24A5 Solute carrier family 24 member 5 

protein (SLC24A5) 

OCA6 
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C10ORF11 Leucine-rich melanocyte 

differentiation-associated protein 

(LRMDA) 

OCA7 

Table I. Presentation of the subtypes of the isolated (non-syndromic) OCA variants.  

 

Rare isolated OCA variants listed in Table I. include OCA type 5 (OCA5), 

OCA type 6 (OCA6) and OCA type 7 (OCA7). In OCA5 the causative gene has not 

yet been elucidated, there is only one reported Pakistanian family affected with 

OCA5 (Kausar et al., 2013). OCA6 (OMIM 606574) results as the consequence of 

mutations in the solute carrier family 24 member 5 (SLC24A5) gene. OCA6 patients 

have been reported from the Faroe Islands (Gronskov et al., 2013). OCA7 (OMIM 

615179) develops as the results of mutations in the C10ORF11 gene encoding the 

leucine-rich melanocyte differentiation-associated protein (LRMDA), OCA7 has 

only been reported in one Faroese family so far (Gronskov et al., 2013).  

Since OCA3 common in South Africans and OCA5, OCA6 and OCA7 are 

extremely rare variants reported only in a few patients, I have focused my scientific 

work for the investigations of the OCA1, OCA2 and OCA4 non-syndromic variants.  

 

 

Figure 2. The scematic presentation of the interactions of the TYR, OCA2 and 

SLC45A2 proteins during pigmentation. The tyrosinase enzyme catalyzes the first 

and second steps in melanin synthesis: the hydroxylation of tyrosine to L-DOPA and 
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the oxidation of L-DOPA to DOPA-quinone. The OCA2 and SLC45A2 transporter 

proteins are implicated in the trafficking of tyrosinase to melanosomes. 

 

The TYR gene in OCA1 encodes the tyrosinase enzyme, which catalyzes the 

first and second steps in melanin synthesis: the hydroxylation of tyrosine to L-DOPA 

and the oxidation of L-DOPA to DOPA-quinone (King et al., 2003). The OCA2 and 

SLC45A2 genes in OCA2 and OCA4 encode transporter proteins, which are 

implicated in the trafficking of tyrosinase to melanosomes (Figure 2.). 

 

1.4. Aims 

 

Genodermatoses represent a major challenge for health care organizations due 

to the small number of patients and the lack of the relevant knowledge and expertise 

of the specific rare disease. Among genodermatoses, one of the most complex 

disease group is the genodematoses with pigmentational abnormalities. Therefore, 

my thesis focuses on the elucidation of the genetic background of genodermatoses 

with pigmentational abnormalities.  

Within the group of genodermatoses with pigmentational abnormalities, I 

have focused my scientific work for the investigation of OCA, which is characterized 

by variable hair, skin and ocular hypopigmentation. In order to identify the causative 

mutations in the investigated Hungarian OCA patients (n=12), I have performed the 

genetic screening of the TYR, OCA2 and SLC45A2 genes, which have been 

implicated in the etiology of the most common isolated OCA forms (OCA1, OCA2 

and OCA4).  

With the performed clinical workup and mutation screening of the TYR, 

OCA2 and SLC45A2 genes, the main aims of my scientific work were the followings:  

1. to promote the understanding of the heterogeneity of OCA,  

2. to assess the independent and cumulative contributions of the TYR, OCA2 

and SLC45A2 genes to the development of OCA, 

3. to compare relative and cumulative frequencies of the clinical variants of 

OCA in a representative Hungarian OCA population. 

My results revealed rare (mutation) and common (polymorphism), novel and 

recurrent genetic variants of the investigated genes and contributed to the 

understanding of the genotype-phenotype correlations in this clinically and 
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genetically heterogenic group of genodermatoses. My results also demonstrated that 

the concomitant analysis of OCA genes is critical, providing new insights to the 

phenotypic diversity of OCA and expanding the mutation spectrum of OCA genes in 

Hungarian patients.   

The proposed genetic, molecular biology investigations might also lead to the 

identification of novel therapeutic target molecules and, eventually, to the 

development of novel therapeutic modalities for patients with OCA.  

These investigations have been performed in accordance with the current 

trends of biomedical research of the European Union, which supports the 

investigation of rare, so-called “neglected” diseases, since the mechanisms revealed 

in rare monogenic skin diseases would also lead to the further understanding of the 

mechanisms of common diseases. As my investigation on OCA might provide 

further insights into mechanisms of common skin diseases with pigmentational 

abnormalities such as vitiligo or melasma.  
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2. PATIENTS AND METHODS 

 

2.1. Patients 

 

The individuals (n=12) participating in this study were recruited at the Mór 

Kaposi Teaching Hospital of the Somogy County (Kaposvár, Hungary), at the 

Hospital of Zala County (Zalaegerszeg, Hungary) and at the Department of 

Dermatology and Allergology, University of Szeged (Szeged, Hungary). The 

enrolled patients fulfilled the clinical criteria for OCA (Table II.).  

 

Patient Gender Age Skin Color Hair Color Iris pigmentation 

1 Female 3 White White Hypopigmented 

2 Female 31 White White Hypopigmented 

3 Female 28 White White Hypopigmented 

4 Male 4 White White Hypopigmented 

5 Female 57 White White Hypopigmented 

6 Female 60 White White Hypopigmented 

7 Male 6 White White Hypopigmented 

8 Male 21 White White Hypopigmented 

9 Male 7 White White Hypopigmented 

10 Male 11 White White Hypopigmented 

11 Male 15 White White Hypopigmented 

12 Male 48 White White Hypopigmented 

 

Table II. Clinical features of the investigated Hungarian OCA patients (n=12).  
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 The investigation was approved by the Internal Ethical Review Board of the 

University of Szeged. Written informed consent was obtained from the patients and 

the healthy controls, and the study was conducted according to the Principles of the 

Declaration of Helsinki. 

 

2.2. Methods 

 

2.2.1. DNA isolation  

 

The performed genetic investigations got ethical approved by the Hungarian 

National Public Health and Medical Officer Service. After written informed consent 

was obtained from all investigated individuals, peripheral blood samples were 

collected from the investigated patients (n=12) and from unrelated controls for 

genetic analysis (n=100). Genomic DNA was extracted from the whole blood 

samples by a BioRobot EZ1 DSP Workstation (QIAGEN, Hilden, Germany). 

Genomic DNA was dissolved in 100 μl distilled water. 

 

2.2.2. Polymerase chain reaction amplification 

 

The coding regions and flanking introns of the investigated TYR, OCA2 and 

SLC45A2 genes were amplified by polymerase chain reaction (PCR) with specific 

primers. Amplifications were carried out in 20 μl volumes containing 4 μl sample 

DNA, 9 μl Dream Taq Green PCR Master Mix (Fermentas), 4 μl distilled water and 

1,5 - 1,5 μl of each primers.  

The using primer sequences were obtained from the UCSC Genome Browser 

(www.genome.ucsc.edu) and Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/). Primer 

sequences used to amplify the coding regions of the TYR gene are represented in 

Table III, the ones of the OCA2 gene in Table IV and Table V, and the primers of the 

SLC45A2 gene in Table VI.  

 

 

 

 

http://www.genome.ucsc.edu/
http://bioinfo.ut.ee/primer3-0.4.0/
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 TYR gene primer sequence 5’ to 3’ 

Exon 1a Forward: CAAACTGAAATTCAATAACATATAAGG 

Exon 1a Reverse: GTGGACAGCATTCCTTCTCC 

Exon 1b Forward: TTCAGAGGATGAAAGCTTAAGATAAA 

Exon 1b Reverse: CGTCTCTCTGTGCAGTTTGG 

Exon 1c Forward: CTGGCCATTTCCCTAGAGC 

Exon 1c Reverse: CCACCGCAACAAGAAGAGTC 

Exon 1d Forward: CATCTTCGATTTGAGTGCCC 

Exon 1d Reverse: CCCTGCCTGAAGAAGTGATT 

Exon 2 Forward: CCAACATTTCTGCCTTCTCC  

Exon 2 Reverse: TCAGCTAGGGTCATTGTCGAT 

Exon 3 Forward: AGTTATAAATCAAATGGGATAATCA 

Exon 3 Reverse: ACATTTGATAGGCACCCTCT 

Exon 4 Forward: CTGTTTCCAATTTAGTTTTATAC 

Exon 4 Reverse: TACAAAATGGCCTATGTTAAGC 

Exon 5 Forward: TGTCTACTCCAAAGGACTGT 

Exon 5 Reverse: GGCACTTAGCTGGATGTGTT 

Table III. Primer sequences used to amplify the coding regions and the flanking 

introns of the TYR gene. 

 

The PCR conditions were the following: after an initial denaturation step at 

95 °C for 10 min, 40 cycles of amplification was performed consisting of 30 sec at 

95 °C (denaturation), 30 sec at the optimal annealing temperatures of  the primers 

(~59°C) and 45 sec at 72°C (synthesis). The annealing temperature and the number 

of the cycles were depended on the primers, the synthesis reaction time was 

determined according to the length of the reaction product.  
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OCA2 gene primer sequence 5’ to 3’ 

Exon 2 Forward: CAAACGTTAGTCTCAGTGTGCC 

Exon 2 Reverse: GGAAACCCAATCTGTGTGAAG 

Exon 3 Forward: CACCTGAGTGCTGGGAACAC 

Exon 3 Reverse: GCCAGGTGCAATGCTCAG 

Exon 4 Forward: AGAGGAAAGCTTGCTTTGTAGC 

Exon 4 Reverse: AGATGGAGGGGCCATGTAG 

Exon 5 Forward: GCTGTGGGTTTACTGGTCAC 

Exon 5 Reverse: ACAACCCTCAGCATCTCCTC 

Exon 6 Forward: CAGTAGCCCCATCATCACATC 

Exon 6 Reverse: GTCACAACCGTCTGCAAGTG 

Exon 7 Forward: CGCATTTCTTCACACACTGTC 

Exon 7 Reverse: GACTAAGAATGGTGTCCTCGC 

Exon 8 Forward: TACCTAGACCGAGCAGTGCC 

Exon 8 Reverse: TTAAACGCACGTGTCCCAG 

Exon 9 Forward: GCCATGGCTGATACAGAGG 

Exon 9 Reverse: TCAAGCCTCCCTGACTGTG 

Exon 10 Forward: TCATGTCCACACAGGCTTTC 

Exon 10 Reverse: TCTTTGAGCTGACATCCCAC 

Exon 11 Forward: AGGCAAGTGGATGGTGAGAT 

Exon 11 Reverse: ACACTTCTCAGTCAAGCCCT 

Exon 12 Forward: CAGAGGCCAGAGCTCAAATG 

Exon 12 Reverse: CTGCCCTGCAGAAGCAAC 

Table IV. Primer sequences used to amplify the coding regions and the flanking 

introns of the OCA2 gene (from exon 2 to exon 12). 
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OCA2 gene primer sequence 5’ to 3’ 

Exon 13 Forward: GAGGATCAGAGGGGTGACAG 

Exon 13 Reverse: AGGCAGTGCAGGCAGAG 

Exon 14 Forward: ATCTCTGGGTTGCATGTGG 

Exon 14 Reverse: TCTAACTAAGTGGAGGTGTGCG 

Exon 15 Forward: CGGAAAGTGCTGGGATTACA 

Exon 15 Reverse: CAGCAACCCATCAACAGATAC 

Exon 16 Forward: ATCGACTGTGTGGGGAACAG 

Exon 16 Reverse: AGGCCCATGGAATGTTCTG 

Exon 17 Forward: GAGTGAGCACCTTTTCCAGC 

Exon 17 Reverse: AGAAACGGCATTCAGTCACG 

Exon 18 Forward: CGTAGGTTATGACACGCTGC 

Exon 18 Reverse: GTCAGTGTCTGGGAACAGGC 

Exon 19 Forward: GGTTAAAGAAATGAATCGGTGTG 

Exon 19 Reverse: AGATGTAGGCTTTCTTCATTCACC 

Exon 20 Forward: CTCCATGAATCTTCGTTGTGCA 

Exon 20 Reverse: ATTAATGGGACCTGTTCTTACCAG 

Exon 21 Forward: GGCCCCTCTGAGTCTCG 

Exon 21 Reverse: TCCTCTACACCTGTGAGTGC 

Exon 22 Forward: CACAGTATGGCAGCTTCTCTG 

Exon 22 Reverse: CTAACTGTTGCTTTGGGCTG 

Exon 23 Forward: GAGAACAGAAGCTTACCACCAAG 

Exon 23 Reverse: ATCTCCCCTACACCACAGTCTC 

Exon 24 Forward: GGTGCTAAGGCCATGTTCTC 

Exon 24 Reverse: TTCTTCAAACAGTGGGGTCAG 

Table V. Primer sequences used to amplify the coding regions and the flanking 

introns of the OCA2 gene (from exon 13 to exon 24). 
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Finally a 10 min terminal elongation step was followed at 72°C in a 

MyCycler PCR machine (BioRad). 

 

SLC45A2 gene primer sequence 5’ to 3’ 

Exon 1 Forward: ACACAGACCCTAGGACCACG 

Exon 1 Reverse: TCCTCCTGCAGAGGTACACAC 

Exon 2 Forward: ACGCGGATGATTCTAAAACAGG 

Exon 2 Reverse: TGGAAGTGCCTCATTGTCTG 

Exon 3 Forward: ACTTGAACCCACATTGCCTG 

Exon 3 Reverse: TCTTCTCGTCAAACAGACAAAAC 

Exon 4 Forward: TGTCTGTGTGTTCTGGCTCC 

Exon 4 Reverse: AGGTGTTAATGGAGGAAATGATG 

Exon 5 Forward: CAGAGGTGGAGAAGCAGAGT 

Exon 5 Reverse: GAACCCACTGATTCCAAGAGC 

Exon 6 Forward: ACCAAGGCAATTTCAAGCTGT 

Exon 6 Reverse: GCAGTTGGTTGGGCATTTGA 

Exon 7 Forward: GCTGACCTGTGCCCTAAATG 

Exon 7 Reverse: TAACTTCCTGCCATGTGCTTC 

Table VI. Primer sequences used to amplify the coding regions and the flanking 

introns of the SLC45A2 gene. 

 

 

2.2.3. Gel electrophoresis and gel documentation 

 

 The PCR products were checked on 2% agarose gel (SeaKem LE agarose, 

Lonza) using TBE buffer (Lonza) and visualized by 2,5 μl GelRed (Biotium) 

staining. The gel was analyzed by BioRad Molecular Imager® GelDoc™ XR gel 

documentation system with QuantityOne software.  
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2.2.4. Sequencing 

 

After amplifying the coding regions and flanking introns of the investigated 

TYR, OCA2 and SLC45A2 genes, DNA sequencing was performed on the purified 

amplification products. The suitable PCR products were sequenced by a traditional 

capillary sequencer in an ABI Prism 3100 (Applied Biosystems) sequencing machine 

with Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Bio systems). The 

service of the sequencing was provided in scientific cooperation by the Delta Bio 

2000 company (Szeged, Hungary). 

 

2.2.5. Analysis of the sequencing results 

 

Sequencing data was compared with the wild-type gene sequences using the 

Ensemble Genome Browser (http://ensemble.org).  

In case of novel genetic variants, to predict their putative functional effects, 

they were assessed with in silico prediction programs, including SIFT 

(http://sift.bii.a-star.edu.sg/), Polyphen-2 (http://genetics.bwh.harvard.edu/pph2) and 

MutationTaster (http://mutationtaster.org). In case of novel variants, it was also 

determined whether they affect any known functional domain on the encoded 

protein. Moreover, it was investigated whether the identified novel variant is located 

in an evolutionary conserved region of the gene.  

Recurrent genetic variants were checked in the literature using Pubmed 

(https://www.ncbi.nlm.nih.gov/pubmed/).  

 

2.2.6. Summary of the applied methods 

 

The genetic workflow contained the following steps (Figure 3.): Blood 

samples were obtained from all enrolled individuals. Genomic DNA was isolated 

from the obtained samples. PCR reactions were prepared in order to amplify the 

coding regions and the flanking introns of the investigated TYR, OCA2 and SLC45A2 

genes. After PCR reactions were done, their successfullness were checked by gel 
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electrophoresis. All the PCR products gave specific bands on agarose gel running 

were sequenced. Sequencing data was analyzed using in silico softwares.  

 

 

Figure 3. Scematic representation of the applied workflow of the performed genetic 

investigations.  
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3. RESULTS 

 

3.1. Overview of the sequencing results of the investigated Hungarian OCA 

patients 

 

In order to identify the causative mutations in the investigated Hungarian 

OCA patients (n=12), I have performed the genetic screening of the TYR, OCA2 and 

SLC45A2 genes, which have been implicated in the etiology of the most common 

isolated OCA forms (OCA1, OCA2 and OCA4).  

 

Patient Mutation 1 Mutation 2 Polymorphisms 

Molecular 

diagnosis 

1 
TYR gene: p.Arg217Gln 

(hetero) 
– – OCA1 

2 
SLC45A2 gene: 

p.Gly411Asp (hetero) 
SLC45A2 gene: 

p.Gln487X (hetero) 
TYR gene: p.Ser192Tyr (homo) 

Global MAF: 0.1234 
OCA4 

3 
SLC45A2 gene: 

p.Gly411Asp (hetero) 
SLC45A2 gene: 

p.Gln487X (hetero) 
TYR gene: p.Ser192Tyr (hetero) 

Global MAF: 0.1234 
OCA4 

4 
TYR gene: p.Pro406Leu 

(hetero) 
– 

SLC45A2 gene: p.Leu374Phe 
(homo) 

Global MAF: 0.2750 

OCA1 

5 
TYR gene: p.Pro406Leu 

(hetero) 
– 

SLC45A2 gene: p.Leu374Phe 

(homo) 

Global MAF: 0.2750 

OCA1 

6 
TYR gene: p.Arg402X 

(hetero) 

TYR gene: p.Pro406Leu 

(hetero) 

SLC45A2 gene: p.Leu374Phe 

(homo) 

Global MAF: 0.2750 

OCA1 

7 
TYR gene: p.Pro406Leu 

(hetero) 
– 

TYR gene: p.Arg402Gln (hetero) 

Global MAF: 0.0813 
SLC45A2 gene: p.Leu374Phe 

(homo) 

Global MAF: 0.2750 

OCA1 

8 
SLC45A2 gene: p.Val367Ile 

(hetero) 
– 

TYR gene: p.Ser192Tyr (hetero) 

Global MAF: 0.1234 

SLC45A2 gene: p.Leu374Phe 
(homo) 

Global MAF: 0.2750 

OCA4 

9 
TYR gene: p.Pro406Leu 

(hetero) 
– 

SLC45A2 gene: p.Leu374Phe 

(homo) 

Global MAF: 0.2750 

OCA2 gene: p.Arg305Trp 
(hetero) 

Global MAF: 0.0790 

OCA1 

10 
TYR gene: p.Arg217Gln 

(hetero) 

TYR gene: p.Pro406Leu 

(hetero) 

SLC45A2 gene: p.Leu374Phe 

(homo) 

Global MAF: 0.2750 

OCA1 

11 
TYR gene: p.Arg217Gln 

(hetero) 

TYR gene: p.Pro406Leu 

(hetero) 

SLC45A2 gene: p.Leu374Phe 

(homo) 

Global MAF: 0.2750 

OCA1 

12 
TYR gene: p.Pro406Leu 

(hetero) 
– 

SLC45A2 gene: p.Leu374Phe 

(homo) 
Global MAF: 0.2750 

OCA1 

MAF = mutant allele frequency 

Table VII. Summary of the results of the genetic investigations in the OCA patients. 
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Molecular genetic investigation of Hungarian OCA patients identified 

pathogenic mutation in all of the patients (Table VII.): five patients carried a 

combination of two heterozygous pathogenic mutations, whereas only one 

heterozygous pathogenic mutation was identified in seven patients. In six of these 

patients, non-pathogenic variants of the TYR, OCA2 and SLC45A2 genes were also 

detected. None of these variants alone is expected to result in the development of 

OCA; however, these variants were also included in the subsequent analysis, as they 

might provide further insight into modifying mechanisms of disease development 

and might lead to the establishment of genotype–phenotype correlations in OCA. 

 

3.1.1. Recurrent pathogenic and recurrent non-pathogenic variants were 

identified on the TYR gene  

 

Direct sequencing of the TYR gene revealed pathogenic mutations in 75% 

(n=9) of the investigated patients (Figure 4.).  

 

 

 

Figure 4. Distribution of the detected TYR variants on the tyrosinase protein. 

 

The most frequently detected mutation was the p.Pro406Leu missense 

mutation, which was present in heterozygous form in 66% (n=8) of the patients. Two 

patients carried the p.Pro406Leu mutation in combination with the p.Arg217Gln 
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missense mutation, and one patient carried it with the p.Arg402X nonsense mutation. 

In five patients carrying the p.Pro406Leu mutation in heterozygous form, no further 

pathogenic mutation could be identified, and this was confirmed by screening the 

TYR, OCA2 and SLC45A2 genes. However, all five patients carrying the 

p.Pro406Leu pathogenic mutation also carried common polymorphisms, such as the 

p.Arg402Gln polymorphism of the TYR gene, the p.Arg305Trp variant of the OCA2 

gene, and the p.Leu374Phe polymorphism of the SLC45A2 gene. These 

polymorphisms are considered as benign variants, which are unable to cause OCA by 

themselves, but might contribute to the development of OCA in combination with 

other pathogenic mutations (Fukai et al., 1995; Simeonov et al., 2013). In one 

patient, only the p.Arg217Gln heterozygous pathogenic missense mutation was 

identified. No further pathogenic mutations or associated common polymorphism 

could be detected in this patient. The p.Ser192Tyr polymorphism of the TYR gene 

affects a copper-binding domain of the protein; all the other pathogenic and non-

pathogenic variants are located outside of the known functional domains of the 

enzyme. 

 

3.1.2. Only one recurrent non-pathogenic genetic variant was identified on the 

OCA2 gene  

 

No pathogenic OCA2 mutation was identified in the investigated OCA 

individuals (Figure 5.). However, one patient with the pathogenic p.Pro406Leu TYR 

mutation also carried the common p.Arg305Trp polymorphism of the OCA2 gene in 

heterozygous form (Figure 5.). This variant does not affect any known functional 

domains of the OCA2 protein.  

 

 

 



24 

 

Figure 5. Distribution of the detected OCA2 variant on the transporter protein. 

 

3.1.3. Two novel pathogenic mutations and recurrent non-pathogenic variants 

were identified on the SLC45A2 gene  

 

Based on our results, six of 12 patients carried SLC45A2 variations: two 

patients carried the combination of the newly identified p.Gly411Asp pathogenic 

missense mutation (Figure 6.) and also novel the p.Gln487X nonsense mutation 

(Figure 7.).  

 

 

 

Figure 6. Direct sequencing revealed a heterozygous missense mutation (c.1226G/A 

p.Gly411Asp) in the sixth exon of the SLC45A2 gene in Patient 2 and Patient 3. (a) 

DNA sequence of the patients (b) DNA sequence of the unrelated controls. 

 

These two mutations are novel mutations, which have not been reported in 

the literature previously, therefore here I gave detailed phenotypic descriptions of the 

patients and detailed genetic results.  

The two affected OCA patients (Patient 2 and Patient 3 in Table II 

summarizing clinical data and in Table VII summarizing the genetic investigations) 

have complete absence of pigment in their hair, pale skin, pink nevi and blue eyes 
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with nystagmus. Patient 2 has been suffering from Crohn’s disease for 9 years and 

hypothyreosis for 4 years. Regarding Patient 3, she is not aware of any known 

concomitant diseases. The parents of the affected siblings are clinically unaffected by 

OCA4.  

 

 

 

Figure 7. Direct sequencing revealed a heterozygous nonsense mutation (c.1459C/T 

p.Gln487X) in the seventh exon of the SLC45A2 gene in Patient 2 and Patient 3. (a) 

DNA sequence of the patients (b) DNA sequence of the unrelated controls. 

 

Both Patient 2 and Patient 3 carry both novel mutations: the c.1226G/A 

p.Gly411Asp missense and the c.1459C/T p.Gln487X nonsense ones.  

Regarding their location on the SLC45A2 protein (Uniprot: Q9UMX9), they 

are situated within transmembrane domains (Figure 8.). The c.1226G/A 

p.Gly411Asp missense mutation is located within the ninth and the c.1459C/T 

p.Gln437X nonsense mutation within the tenth transmembrane domains of the 

SLC45A2 protein. 
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SLC45A2 protein 

 

 

Figure 8. The identified novel mutations are located within the transmembrane 

domains of the SLC45A2 protein. 

 

Concerning the location of the identified mutations, it can be hypothesized 

that they impair the transport function of the SLC45A2 protein. The dysfunctional 

SLC45A2 might cause acidic melanosomal lumen, which leads to improper 

incorporation of copper into typrosinase and thus to reduced tyrosinase activity and 

the development of the OCA phenotype (Bin et al., 2015). The c.1226G/A 

p.Gly411Asp missense mutation affects an evolutionary conserved region of the 

MATP protein (Figure 9.) further emphasizing the putative pathogenic role of this 

mutation in the development of the observed pigmentation abnormalities of the 

affected patients. 
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Figure 9. The identified novel missense mutation (c.1226G/A p.Gly411Asp) is 

situated within an evolutionary conserved region of the SLC45A2 protein. 

 

In four patients, only the non-pathogenic p.Leu374Phe missense 

polymorphism was detected. All the detected pathogenic and non-pathogenic 

variants are located within trans-membrane domains of the encoded protein (Figure 

10.).  

 

 

 

Figure 10. Distribution of the detected SLC45A2 variants on the transporter protein. 

 

3.2. Summary of the results of the genetic investigations  

  

Concomitant analysis of OCA genes is critical, providing new insights to the 

phenotypic diversity of OCA and expanding the mutation spectrum of OCA genes in 

Hungarian patients. Molecular genetic investigation of Hungarian OCA patients 

(n=12) identified pathogenic mutation in all of the patients, however, six of these 

patients also carry non-pathogenic variants of the TYR, OCA2 and SLC45A2 genes. 

However, none of these variants alone is expected to result in the development of 

OCA; these variants might provide further insight into modifying mechanisms of 

disease development and might lead to the establishment of genotype–phenotype 

correlations in OCA.  
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4. DISCUSSION  

 

4.1. Delineating the genetic heterogeneity of OCA in Hungarian patients 

 

With the performed clinical and genetic workup, I have investgated clinical 

and genetic heterogenity of OCA1, OCA2 and OCA4 in Hungarian OCA patients 

(n=12) in order to promote the understanding of the heterogeneity of OCA, to assess 

the independent and cumulative contributions of the TYR, OCA2 and SLC45A2 genes 

to the development of OCA and to compare relative and cumulative frequencies of 

the clinical variants of OCA in a representative Hungarian OCA population. 

 

4.1.1. TYR mutations accounts for approximately 75% of the isolated OCA cases 

in the investigated Hungarian OCA population  

 

Pathogenic TYR mutations were present in 75% (n=9) of the patients. This 

result correlates well with previous findings that OCA1 is the most common isolated 

OCA subtype and TYR mutations account for approximately 50% of the isolated 

OCA cases worldwide (Rooryck et al., 2008; Simeonov et al., 2013). Among the 

approximately 320 TYR mutations identified to date, missense mutations are the most 

common (Ghodsinejad Kalahroudi et al., 2014). In our study, four missense and one 

nonsense variants were detected for the TYR gene. Two of these missense mutations 

are considered pathogenic and two are considered benign polymorphisms. In 

contrast, the protein carrying the p.Arg402Gln polymorphism exhibits reduced 

tyrosinase activity at physiological temperature and is considered a temperature-

sensitive variant (Berson et al., 2000; Halaban et al., 2000; Toyofuku et al., 2001; 

Tripanthi et al., 1992). The contribution of the p.Arg402Gln TYR polymorphism to 

the OCA phenotype is still unknown. By itself, this variant is unable to cause OCA; 

however, its increased frequency in OCA patients with one heterozygous pathogenic 

TYR mutation suggests that it can contribute to the development of OCA in 

combination with a pathogenic mutation (Hutton and Spritz, 2008; Chiang et al., 

2009). One Hungarian patient carried the p.Arg402Gln polymorphism in 

combination with the p.Pro406Leu pathogenic variant. Previous reports (Hutton and 

Spritz, 2008; Chiang et al., 2009) suggest this combination might contribute to the 

development of the OCA symptoms of the patient. It is important to emphasize that 
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certain variants might not cause a disease phenotype in isolation, but contribute to 

the development of the disease in combination with other pathogenic variants. The 

difficulty of assessing the impact of these variants highlights the importance of the 

databases providing information about OCA gene variants, detailed phenotypic 

descriptions and delineation of OCA genetic heterogeneity.  

Three of the nine Hungarian OCA patients with TYR mutations carry a 

combination of two pathogenic mutations. In six of the nine, only one heterozygous 

pathogenic mutation was identified. These results correlate well with the recently 

reported investigation of an Iranian OCA population: pathogenic TYR variants were 

identified in 19 of 30 patients (Ghodsinejad Kalahroudi et al., 2014). In this study, 

six patients carried only one pathogenic TYR mutation, and no pathogenic mutation 

was identified in five patients (Ghodsinejad Kalahroudi et al., 2014).  

All of the pathogenic TYR mutations detected in the Hungarian OCA patients 

have previously been identified in OCA patients of different ethnicity. The 

p.Pro406Leu mutation was detected in Caucasians from Iran, the p.Arg217Gln 

mutation in Caucasians from USA, Canada and Northern-Europe, and the p.Arg402X 

in Caucasians from Lebanon (Hutton and Spritz, 2008; Simeonov et al., 2013). The 

frequency of pathogenic mutations differs in different populations, and, therefore, 

these populations might vary in their genetic susceptibility to certain diseases. Based 

on our results and the results of previous studies, the identified pathogenic TYR 

mutations are not specific to the Hungarian population, as they have been detected 

worldwide in OCA patients (Hutton and Spritz, 2008; Simeonov et al., 2013).  

 

4.1.2. OCA2 mutation was not detected in the investigated Hungarian OCA 

population 

 

No pathogenic OCA2 mutation was identified in the investigated Hungarian 

individuals, although one patient carried the benign p.Arg305Trp polymorphism in 

heterozygous form. This variant has been associated with human eye color and might 

be an inherited biomarker of cutaneous cancer risk (Rebbeck et al., 2002; Jannot et 

al., 2005). This also suggest that the genetic screening of the TYR and SLC45A2 

genes should preceed the genetic investigation of the OCA2 gene, since based on my 

results, the mutations of this gene is probably less frequent than the mutations of the 

TYR and SLC45A2 genes among Hungarian OCA patients. 
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4.1.3. Two novel mutations in the SLC45A2 gene identified in two Hungarian 

OCA patients are associated with unusual OCA4 phenotype 

 

Among the investigated OCA patients, there were two patients who carry two 

novel heterozygous pathogenic variants of the SLC45A2 gene: the p.Gly411Asp 

missense and the p.Gln487X nonsense mutations. The OCA4 symptoms of the 

affected patients is highly possibly the consequence of the identified mutations of the 

SLC45A2 gene. However, it is still uncovered, whether the concomitant diseases of 

Patient 2 (Crohn’s disease for 9 years and hypothyreosis for 4 years) are related to 

the identified SLC45A2 mutations. Regarding Crohn’s disease, there is one previous 

study in the literature, which reports a Canadian patient affected by both OCA4 and 

Crohn’s diseases (Fernandez et al., 2012). High throughput genetic investigations of 

this Canadian patient identified two pathogenic homozygous mutations, one in the 

SLC45A2 gene and another in the G6PC3 gene encoding the third subunit of the 

glucose-6-phosphatase enzyme (Fernandez et al., 2012). The authors concluded that 

the patient suffers from two distinct diseases: OCA4 and severe congenital 

neutropenia type 4 (SCN4). The Crohn’s disease of the patient was concerned as a 

manifestation of the SCN4 (Fernandez et al., 2012). In case of the investigated 

Hungarian OCA patients the mutation screening of the SCN4 gene was not 

performed, since their clinical symptoms do not support this diagnosis. However, we 

hypothesize that the concomitant diseases (Crohn’s disease and hypothyreosis) of 

Patient 2 are not related to the identified SLC45A2 mutations.  

Mutations of the SLC45A2 gene can either cause complete or partial loss of 

pigmentation and thus contribute to the development of several different OCA 

phenotypes (Simeonov et al., 2013). However, with the comparison of the SLC45A2 

mutations and the patients’ clinical symptoms, genotype–phenotype correlations 

have not yet been established in OCA4 (Simeonov et al., 2013). Mutations of the 

SLC45A2 gene typically associated with the so called “brown OCA” phenotype 

referring to partial loss of pigmentation in the affected patients (Kamaraj et al., 

2014). In contrast with this, here we report two Hungarian OCA patients with 

unusual OCA4 phenotypes, since the investigated patients have developed complete 

absence of pigmentation, which is more common in OCA1 caused by mutations in 

the TYR gene. To rule out any other putative genetic modifier variant, which might 
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be responsible for the identified unusual phenotype, the mutation screening of the 

TYR and the OCA2 genes have also been performed, but mutation has not been 

identified, however both patients carry the p.Ser192Tyr common, non-pathogenic 

polymorphism of the TYR gene, which might have any phenotype modifying role if 

pathogenic SLC45A2 mutations are present. Our report further contributes not only to 

the mutation spectrum of the SLC45A2 gene but also to the spectrum of the observed 

unusual clinical symptoms and hopefully it will add novel data to future studies 

characterizing genotype-phenotype correlations in OCA4.    

OCA has been considered for many years as a group of monogenic rare 

diseases without cure. However, in case of OCA4, accumulating knowledge 

regarding the underlying mechanism of the disease might alter this viewpoint. It has 

been recently demonstrated in MNT-1 cell lysates that the reduced tyrosinase 

activity, induced by the knockdown of the SLC45A2 can be recovered by 

exogenously introduced copper treatment (Bin et al., 2015). 

In conclusion, two novel heterozygous mutations are detected, a missense and 

a nonsense one, in the SLC45A2 gene in two Hungarian patients affected by OCA4. 

The location of the mutations and the evolutionary conservation of the missense one 

suggest their putative pathogenic role in the development of OCA4 in the 

investigated patients. Our study provides new insights to the genetic background of 

OCA4 and might serve as a basis for future studies aiming to develop novel 

therapeutic approaches to OCA patients. 

 

4.1.4. European recurrent mutation of the SLC45A2 gene identified in the 

investgated Hungarian OCA population  

 

In addition to the pathogenic SLC45A2 mutations (the p.Gly411Asp missense 

and the p.Gln487X nonsense mutations) described above, the p.Leu374Phe 

polymorphism was detected in nine Hungarian OCA patients. This latter variant has 

a striking population distribution and exists almost exclusively in Europeans (Graf et 

al., 2005). Additionally, this variant has also been implicated in the development of 

different shades of hair, skin and eye color (Graf et al., 2005).  
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4.2. Clinical relevance of the concomitant investigations of the TYR, OCA2 and 

SLC45A2 genes in the investigated Hungarian OCA population 

 

My results emphasize the importance of the parallel investigation of multiple 

genes for studying disease phenotypes. The OCA cases presented in this study and 

many other cases reported in the literature call our attention to the fact that clinical 

symptoms — which may overlap in many cases — are not sufficient for a diagnosis 

of different OCA forms: the molecular genetic investigation of all OCA genes is 

required to determine the subtype of the disease. The Hungarian OCA patients in this 

study exhibited identical clinical features (Table II.); however, molecular genetic 

investigation identified the OCA1 subtype in nine cases and the OCA4 subtype in 

three cases (Table VII.). Even with this data, the genetic basis of the disease in seven 

patients carrying only one pathogenic TYR or SLC45A2 mutation is still not 

completely explained. Screening of the non-pathogenic variants, which alone could 

not lead to the development of OCA, should be carried out in association with 

pathogenic variants that might have clinical significance. Further targeted sequencing 

of the genes involved in the syndromic OCA variants, including the Hermansky-

Pudlak, Chediak-Higashi and Griscelli syndromes, as well as genes involved in 

human pigmentation, is hoped elucidate the underlying disease-causing variant(s) 

(Simeonov et al., 2013).  

Our results suggest that, among the investigated genes, the majority of the 

mutations are located within the TYR gene. This result correlates well with the results 

obtained with other populations, as TYR mutations are the most common for OCA 

worldwide (Martinez-Garcia et al., 2013). Screening of the TYR gene is, therefore, of 

primary importance for diagnostics. Mutations in the investigated Hungarian OCA 

patients were found most frequently in exons 1 and 4 of the TYR gene. In light of the 

fact that the majority of the identified TYR mutations are located within exon 1 and 4 

(Kalahroudi et al., 2014), we recommend screening these exons first. 

According to our current knowledge, 10–25% of the isolated and syndromic 

OCA cases are not explained by paired, trans-oriented mutations in known genes 

(Chaki et al., 2006; Gronskov et al., 2009; Wei et al., 2010). Based on our results 

and the results of previous studies, we suggest that screening non-Mendelian OCA-

associated genes might elucidate the causative genetic variant for these cases 

(Simeonov et al., 2013). The genetic heterogeneity of OCA is extremely complex: 
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both rare mutations of Mendelian genes and common variants of non-Mendelian 

genes can contribute to the development of the disease. Our multi-gene study 

provides novel data for the genetic diversity of OCA in Hungarians and indicates that 

approaches that take this complexity into account, including large-scale studies, are 

needed to complete our understanding of the genetic heterogeneity of this disease. 
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5. SUMMARY 

 

In my PhD dissertation, my aim was to elucidate the genetic background of a 

clinically and genetically heterogeneous group of genodermatoses, the OCA. OCA is 

characterized by decreased pigmentation or by complete loss of pigmentation in the 

skin, the hairs and the eyes. Here I have performed complete clinical and genetic 

workup and summarized the results of my investigations in OCA. Regarding its 

genetic heterogeneity, since all the patients were considered as having non-

syndromic OCA variants, I have performed the concomitant analysis of multiple 

genes - TYR, OCA2 and SLC45A2 -, which are implicated in the majority of the 

isolated OCA variants. After the study got ethical approval, I have enrolled and 

investigated a Hungarian OCA population, which involved 12 patients. The number 

of the enrolled patients might seem to be small, but considering that OCA is a rare 

disease, the enrollment of 12 individuals with similar clinical phenotype was already 

enormous work.  

During my investigations, I would like to highlight, that I have identified two 

novel SLC45A2 mutations in two Hungarian OCA patients with unusual phenotype 

of OCA4 (Tóth et al., 2017). These novel heterozygous mutations were the 

followings: a missense one (c.1226G/A p.Gly411Asp) and a nonsense one 

(c.1459C/T p.Gln437X). These mutations were present in both patients suggesting 

their compound heterozygous states. The identified novel mutations affect the 

transmembrane domains of the protein suggesting that they might impair its transport 

function leading to decreased melanosomal pH and decreased tyrosinase activity. My 

investigations provide new insights to the genetic background of OCA4 by reporting 

an unusual OCA4 phenotype and expanding the mutation spectrum of the SLC45A2 

gene.  

Besides the identification of novel mutations, the other significant results of 

my study are the followings: Although, the clinical features of the investigated 

Hungarian OCA patients (n=12) were identical, the molecular genetic data suggested 

an OCA1 subtype in nine cases and an OCA4 subtype in three cases (Fábos et al., 

2017). In five patients, two different heterozygous pathogenic mutations were 

present, whereas seven patients had only one pathogenic mutation and associated 

non-pathogenic variants (Fábos et al., 2017). Therefore, my results suggest that the 

concomitant screening of the non-pathogenic variants — which alone do not cause 



35 

 

the development of OCA, but might have clinical significance in association with a 

pathogenic variant — is important (Fábos et al., 2017).  

Based on the results of my scientific work, these investigations has promoted 

the understanding of the heterogeneity of OCA, assessed the independent and 

cumulative contributions of the TYR, OCA2 and SLC45A2 genes to the development 

of OCA, and compared relative and cumulative frequencies of the clinical variants of 

OCA in a representative Hungarian OCA population.  

My results confirm that the concomitant analysis of OCA genes is critical, 

providing new insights to the phenotypic diversity of OCA and expanding the 

mutation spectrum of OCA genes in Hungarian patients.  
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7. ELECTRONIC DATABASE INFORMATION 

 

Ensemble Genome Browser (for the wild type sequencing data of the human 

genome, for the gene variation database regarding disease-causing and non-causing 

alterations and for the taxonomy analysis of the identified mutation) 

www.ensemble.org 

 

Online Mendelian Inheritance in Man (for the detailed informations on the 

genetics, inheritance, clinical features and identified mutations in monogenic 

disorders) www.omim.org 

 

UCSC Genome Browser, Primer3 (for the design of specific primers used 

to amplify the sequenced regions of the genes) http://genome.ucsc.edu/; 

http://bioinfo.ut.ee/primer3-0.4.0/ 

 

PubMed (for the literature search to identify the previously published cases) 

http://www.ncbi.nlm.nih.gov/pubmed 

 

UniProt, SMART (for the detailed information of protein sequences and 

functional information) www.uniprot.org; smart.embl-heidelberg.de/ 

 

MutationTaster (for the pathogenicity prediction of the identified genetic 

variants) www.mutationtaster.org/ 

 

SIFT Home (for the pathogenicity prediction of the identified genetic 

variants) sift.jcvi.org 

 

PolyPhen-2: prediction of functional effects of human nsSNPs (for the 

pathogenicity prediction of the identified genetic variants) 

www.genetics.bwh.harvard.edu/pph2/ 
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9. APPENDIX 

 

Abbreviations  

C10ORF11 gene: chromosome 10 open reading frame 11 gene 

GPR143 gene: G protein-coupled receptor 143 gene 

MATP: membrane-associated transport protein 

OCA: oculocutaneous albinism 

OCA1: oculocutaneous albinism type 1 

OCA2 gene: oculocutaneous albinism two gene  

OCA2: oculocutaneous albinism type 2 

OCA3: oculocutaneous albinism type 3 

OCA4: oculocutaneous albinism type 4  

OCA5: oculocutaneous albinism type 5 

OCA6: oculocutaneous albinism type 6 

OCA7: oculocutaneous albinism type 7 

SLC24A5 gene: sodium/calcium/potassium exchanger 5 gene 

SLC45A2 gene: solute carrier family 45, member 2 gene 

TYR gene: tyrosinase gene 

TYRL gene: tyrosinase-like gene  

TYRP gene: tyrosinase-related protein gene 
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Abstract 

Background: Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation 
abnormalities characterized by variable hair, skin, and ocular hypopigmentation. Six known genes and a locus on 
human chromosome 4q24 have been implicated in the etiology of isolated OCA forms (OCA 1–7).

Methods: The most frequent OCA types among Caucasians are OCA1, OCA2, and OCA4. We aimed to investigate 
genes responsible for the development of these OCA forms in Hungarian OCA patients (n = 13). Mutation screening 
and polymorphism analysis were performed by direct sequencing on TYR, OCA2, SLC45A2 genes.

Results: Although the clinical features of the investigated Hungarian OCA patients were identical, the molecular 
genetic data suggested OCA1 subtype in eight cases and OCA4 subtype in two cases. The molecular diagnosis was 
not clearly identifiable in three cases. In four patients, two different heterozygous known pathogenic or predicted 
to be pathogenic mutations were present. Seven patients had only one pathogenic mutation, which was associated 
with non-pathogenic variants in six cases. In two patients no pathogenic mutation was identified.

Conclusions: Our results suggest that the concomitant screening of the non-pathogenic variants—which alone do 
not cause the development of OCA, but might have clinical significance in association with a pathogenic variant—is 
important. Our results also show significant variation in the disease spectrum compared to other populations. These 
data also confirm that the concomitant analysis of OCA genes is critical, providing new insights to the phenotypic 
diversity of OCA and expanding the mutation spectrum of OCA genes in Hungarian patients.
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Background
Oculocutaneous albinism (OCA) is a clinically and 
genetically heterogenic group of rare monogenic diseases 
characterized by diffuse reduced melanin production in 
the skin, hair, and/or eyes [1]. Eye symptoms including 
photophobia, nystagmus, strabismus, foveal hypoplasia, 
reduced iris, and retinal pigmentation and reduction in 
visual acuity are present in all types of albinism. To date, 
six genes and a locus on 4q24 human chromosomal 
region have been implicated in the development of the 
isolated OCA forms (OCA 1–7) [2]. Tyrosinase gene 

(TYR; OMIM 606933) is responsible for the development 
of OCA type 1 (OCA1) [3, 4]. Mutations of the oculocu-
taneous albinism two gene (OCA2; OMIM 611409) are 
associated with OCA type 2 (OCA2) [5]. Pathogenic 
variants of the tyrosinase-related protein gene (TYRP; 
OMIM 115501) are linked with OCA type 3 (OCA3) [6]. 
Mutations in a membrane-associated transporter gene 
(SLC45A2; OMIM 606202) are implicated in OCA type 
4 (OCA4) [7]. OCA5 phenotype is linked to an unknown 
gene on human chromosome 4q24 [8]. Mutations of the 
sodium/calcium/potassium exchanger 5 gene (SLC24A5; 
OMIM 609802) encoding a solute carrier protein are 
associated with a new form of OCA, named as OCA6 [9]. 
The mutations of chromosome 10 open reading frame 
11 gene (C10ORF11; OMIM 614537) are responsible for 
OCA7 type of albinism [10]. Furthermore, an additional 
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10 genes have been associated with syndromic OCA 
variants such as Hermansky–Pudlak syndrome (HPS) 
and Chediak–Higashi syndrome (CHS) [2]. Noted, there 
is a form of albinism, ocular albinism (OA1), affecting 
the eyes, but does not affect the hair and skin, which is 
caused by the mutation in G protein-coupled receptor 
143 gene (GPR143; OMIM 300808) [11].

Oculocutaneous albinism affects approximately one in 
20,000 individuals worldwide; however, the prevalence 
of its subtypes varies among different populations [12]. 
Although OCA1, OCA2, and OCA4 are present in Cau-
casian populations, the most common form is OCA1 [6]. 
OCA3 is present in mainly Africans and is rarely seen in 
other populations [6], OCA5 has been found in one Paki-
stani family to date [8], OCA6 is recently discovered in 
one Chinese family [9] and OCA7 has been explored in 
several Faroese families (Denmark) [10].

Since the most frequent forms of OCA in Caucasian 
population are OCA1, OCA2, and OCA4, we performed 
mutation screening of the TYR, OCA2, and SLC45A2 
genes to promote the understanding of disease heteroge-
neity, to assess the independent and cumulative contri-
butions of these three genes to the disease development, 
and to compare relative and cumulative frequencies of 
disease variants in a representative Hungarian OCA 
population.

Patients and methods
Examined individuals
The individuals (n = 13) participating in this study were 
recruited at the Mór Kaposi Teaching Hospital of the 
Somogy County (Kaposvár, Hungary), at the Hospi-
tal of Zala County (Zalaegerszeg, Hungary) and at the 
Department of Dermatology and Allergology, University 
of Szeged (Szeged, Hungary). In the enrolled patients, 
the diagnosis of OCA was established in the presence 
of skin and hair hypopigmentation and distinctive ocu-
lar changes such as nystagmus, reduced iris pigmenta-
tion, reduced retinal pigmentation, and foveal hypoplasia 
(Table 1). All investigated individuals were Hungarians.

The investigation was approved by the Internal Ethi-
cal Review Board of the University of Szeged. Written 
informed consent was obtained from the patients and the 
healthy controls, and the study was conducted according 
to the Principles of the Declaration of Helsinki.

Genetic investigation
Blood was drawn from the enrolled individuals, and 
genomic DNA was isolated using a BioRobot EZ1 DSP 
Workstation (QIAGEN; Godollo, Hungary). The entire 
coding regions and the flanking introns of the TYR, 
OCA2, and SLC45A2 genes were amplified (primer 
sequences used were taken from the UCSC Genome 

Browser). Since a pseudogene of TYR, tyrosinase-like 
gene (TYRL; OMIM 191270) is known, which shows 
98.55% identity with the 3′region of TYR (exon 4 and 
5), specific primers were used for amplification of these 
regions [13]. Direct sequencing of PCR products was 
performed on an ABI 3100 sequencer and compared 
with the wild-type gene sequences using the Ensemble 
Genome Browser.

Pathogenicity predictions
As in previous study [14], in silico tools were applied 
to identify the functional impact of the newly detected 
missense mutations. Here we used SIFT (Sorting Intol-
erant from Tolerant, PolyPhen 2.0 (Polymorphism 
Phenotyping), Mutation Taster, PROVEAN (Protein Var-
iation Effect Analyzer) and PANTHER (Protein ANalysis 
THrough Evolutionary Relationships) tools. SIFT is based 
on the evolutionary conservation and predicts whether 
an amino acid substitution affects protein function. SIFT 
prediction score ranges from 0 to 1, and the amino acid 
substitution is predicted damaging if the score is less 
than an equal to 0.05, and tolerated if the score is greater 
than 0.05 [15]. PolyPhen 2.0 is based on structural and 
comparative evolutionary considerations and predicts 
the possible impact of an amino acid substitution on the 

Table 1 Clinical features of the Hungarian OCA patients

Patient Gender Age Skin Hair color Iris color

1 Male 75 Hypopigmented, no 
tanning ability

Snow-white Blue

2 Male 7 Hypopigmented, no 
tanning ability

Snow-white Blue

3 Female 57 Hypopigmented, no 
tanning ability

Snow-white Blue

4 Male 48 Hypopigmented, no 
tanning ability

Snow-white Blue

5 Female 60 Hypopigmented, no 
tanning ability

Snow-white Blue

6 Male 11 Hypopigmented, no 
tanning ability

Snow-white Blue

7 Male 15 Hypopigmented, no 
tanning ability

Snow-white Blue

8 Female 3 Hypopigmented, no 
tanning ability

Snow-white Blue

9 Female 31 Hypopigmented, no 
tanning ability

Snow-white Blue

10 Female 28 Hypopigmented, no 
tanning ability

Snow-white Blue

11 Male 21 Hypopigmented, no 
tanning ability

Snow-white Blue

12 Male 6 Hypopigmented, no 
tanning ability

Snow-white Blue

13 Male 4 Hypopigmented, no 
tanning ability

Snow-white Blue
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stability and function of a protein. PolyPhen 2.0 uses the 
same range than SIFT (0–1) and the substitution is pre-
dicted to be possibly/probably damaging at greater than 
an equal to 0.5 value [16]. Mutation Taster is a predic-
tion software based on the physicochemical properties 
of amino acids and scores substitutions according to the 
degree of difference between the original and the new 
amino acid (0–215) [17]. PROVEAN prediction is based 
on the sequence homology. If the PROVEAN score is 
equal to or below the default score threshold (−2.5), the 
protein variant is predicted to be deleterious and if the 
score is above the threshold, the variant is predicted to be 
neutral [18]. PANTHER program is a library of protein 
family and subfamily, which predicts the occurrence fre-
quency of an amino acid in evolutionary conserved pro-
tein sequences. If the score is −3 or less, the variant is 
predicted has deleterious effect [19].

Results
During the investigation of TYR, OCA2, and SLC45A2 
genes, we have identified pathogenic mutations in 84% 
(n = 11) of the examined individuals (n = 13), as shown 
in Table 2. In 4 cases, two heterozygous mutations have 
been found, suggesting a compound heterozygous state. 
Seven patients carried only one disease-causing muta-
tion. Furthermore, in 11 cases out of 13, we have detected 
one or more common polymorphisms.

Direct sequencing of the TYR gene revealed pathogenic 
mutations in 69% (n  =  9) of the investigated patients. 
Only one patient carried two heterozygous mutations, 
a Thymin-base duplication (c.74dupT, p.Ser26Leufs*2) 
and a nonsense (c.346C>T, p.Arg116*) mutation in the 
first exon of TYR gene, suggesting a compound hete-
rozygous state. Three patients carried the c.1037−7T>A 
splice site mutation in homozygous form. Out of these 
three patients, two (Patient 2 and 3) are related to each 
other and one (Patient 4) is not aware of any relationship 
with the other two mutation carriers. We have detected 
the c.1204C>T p.Arg402* nonsense mutation heterozy-
gously in one case and the c.650G>A p.Arg217Gln mis-
sense mutation heterozygously in three patients. The 
heterozygous c.1366+4A>G splice site mutation has 
been detected in one patient. This patient was addi-
tionally heterozygous for the SLC45A2 c.1099G>A 
p.Val367Ile mutation. Considering the common poly-
morphisms of TYR gene, the c.575C>A p.Ser192Tyr, and 
c.1205G>A p.Arg402Gln were detected in seven patients. 
The p.Ser192Tyr variant affects a copper-binding domain 
of the protein; all the other exonic pathogenic and non-
pathogenic variants are located outside of the known 
functional domains of the enzyme (Fig. 1a).

No pathogenic OCA2 mutation was identified in the 
investigated OCA individuals. However, one patient with 

the pathogenic c.1037−7T>A TYR mutation carried the 
common c.913C>T p.Arg305Trp polymorphism of the 
OCA2 gene in heterozygous form. This variant does not 
affect any known functional domains of the OCA2 pro-
tein (Fig. 1b).

Based on our results, 3 of 13 patients carried SLC45A2 
pathogenic mutation. Two patients carried the combi-
nation of two novel mutation previously described by 
our workgroup: the c.1226G>A p.Gly409Asp missense 
mutation and the c.1459C>T p.Gln487* nonsense muta-
tion. These mutations are not present in any SNP data-
base (ExAC, 1000 Genome Project, ClinVar). Prediction 
analyses were performed to identify the functional role of 
the missense mutation. All prediction software suggested 
that the p.Gly409Asp mutation is deleterious (SIFT score: 
0.002, damaging; PolyPhen 2.0 score: 0.996, probably 
damaging; Mutation Taster score: 94, disease causing; 
PROVEAN score: −3.25, deleterious; PANTHER score: 
−4.26, deleterious). The nonsense mutation was deemed 
to be pathogenic. One patient carried the c.1099G>A 
p.Val367Ile missense mutation beside the c.1366+4A>G 
splice site mutation on the TYR gene. In eight patients, 
only the non-pathogenic c.1122G>C p.Leu374Phe mis-
sense polymorphism was detected. All the detected path-
ogenic and non-pathogenic variants are located within 
transmembrane domains of the encoded protein (Fig. 1c).

Discussion
This study reports the concomitant investigation of three 
genes (TYR, OCA2, and SLC45A2) in 13 Hungarian OCA 
patients, which have been implicated in the development 
of isolated OCA forms. The TYR gene encodes the tyrosi-
nase enzyme, which catalyzes the first and second steps 
in melanin synthesis: the hydroxylation of tyrosine to 
l-DOPA and the oxidation of l-DOPA to DOPA-quinone 
[3]. The OCA2 and SLC45A2 genes encode transporter 
proteins, which are implicated in the trafficking of tyrosi-
nase to melanosomes [20, 21].

Pathogenic TYR mutations were present in 69% (n = 9) 
of the patients. However, the sample size of this study is 
small, our results correlate well with previous findings 
that OCA1 is the most common isolated OCA subtype 
and TYR mutations account for approximately 25–50% of 
the isolated OCA cases worldwide [6, 22].

In our study, three missense variants were detected 
for the TYR gene. One of these variants is consid-
ered pathogenic (p.Arg217Gln) and two (p.Ser192Tyr, 
p.Arg402Gln) are considered common polymorphisms. 
The p.Arg217Gln mutation is located in a non-con-
servative region of tyrosinase protein, at this amino 
acid position two other known missense mutations are 
described (p.Arg217Gly, p.Arg217Trp) [23]. The poly-
morphisms of TYR gene were not directly related to 
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Table 2 Detected TYR, SLC45A2, and OCA2 mutations and polymorphisms

Patient Mutation 1 Mutation 2 Polymorphisms Molecular 
diagnosis

1 TYR gene: c.74dupT p.Ser26Leufs*2 
(hetero)

TYR gene: c.346C>T p.Arg116* 
(hetero)

– OCA1

2 TYR gene: c.1037−7T>A (homo) – SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616
OCA2 gene: c.913C>T p.Arg305Trp (hetero)
Global MAF: 0.0790
Caucasian MAF: 0.0650

OCA1

3 TYR gene: c.1037−7T>A (homo) – SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616

OCA1

4 TYR gene: c.1037−7T>A (homo) – SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616

OCA1

5 TYR gene: c.1204C>T p.Arg402* 
(hetero)

– TYR gene: c.575C>A p.Ser192Tyr (homo)
Global MAF: 0.1234
Caucasian MAF: 0.3718
SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616

OCA1

6 TYR gene: c.650G>A p.Arg217Gln 
(hetero)

– TYR gene: c.1205G>A p.Arg402Gln (hetero)
Global MAF: 0.0813
Caucasian MAF: 0.2525
SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616

OCA1

7 TYR gene: c.650G>A p.Arg217Gln 
(hetero)

– TYR gene: c.1205G>A p.Arg402Gln (hetero)
Global MAF: 0.0813
Caucasian MAF: 0.2525
SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616

OCA1

8 TYR gene: c.650G>A p.Arg217Gln 
(hetero)

– – OCA1

9 SLC45A2 gene: c.1226G>A 
p.Gly409Asp (hetero)

SLC45A2 gene: c.1459C>T 
p.Gln487* (hetero)

TYR gene: c.575C>A p.Ser192Tyr (homo)
Global MAF: 0.1234
Caucasian MAF: 0.3718
TYR gene: c.1205G>A p.Arg402Gln (hetero)
Global MAF: 0.0813
Caucasian MAF: 0.2525

OCA4

10 SLC45A2 gene: c.1226G>A 
p.Gly409Asp (hetero)

SLC45A2 gene: c.1459C>T 
p.Gln487* (hetero)

TYR gene: c.575C>A p.Ser192Tyr (hetero)
Global MAF: 0.1234
Caucasian MAF: 0.3718

OCA4

11 TYR gene: c.1366+4A>G (hetero) SLC45A2 gene: c.1099G>A 
p.Val367Ile (hetero)

TYR gene: c.575C>A p.Ser192Tyr (hetero)
Global MAF: 0.1234
Caucasian MAF: 0.3718
SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616

OCA1/
OCA4

12 – – TYR gene: c.575C>A p.Ser192Tyr (homo)
Global MAF: 0.1234
Caucasian MAF: 0.3718
TYR gene: c.1205G>A p.Arg402Gln (hetero)
Global MAF: 0.0813
Caucasian MAF: 0.2525
SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616

Unknown

13 – – SLC45A2 gene: c.1122G>C p.Leu374Phe (homo)
Global MAF: 0.2750
Caucasian MAF: 0.0616

Unknown

MAF minor allele frequency
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pigmentation phenotypes in normal Caucasians, but 
their impact should be taken into account as an impor-
tant modifier of human skin, hair, and eye color [24]. 
Functional studies reported that 192Tyr allele reduced 
tyrosinase activity, significant reduction in heterozy-
gous and consistent decrease in homozygous form were 
observed, and the presence of 402Gln allele resulted 
significantly less TYR protein, displayed altered traf-
ficking and glycosylation, with reduced DOPA oxidase 
[24]. The p.Arg402Gln polymorphism exhibits reduced 
tyrosinase activity at physiological temperature and is 
considered a temperature-sensitive variant [25–27]. 
This variant alone is unable to cause OCA; however, 
its increased frequency in OCA patients with one het-
erozygous pathogenic TYR mutation suggests that it 
can contribute to the development of OCA in combi-
nation with a pathogenic mutation [28]. Two Hungar-
ian patients carried the p.Arg402Gln polymorphism in 
combination with the p.Arg217Gln pathogenic variant. 

Previous report suggests this combination might con-
tribute to the development of the OCA symptoms of the 
patient [26].

In one case, compound heterozygosity for two muta-
tions was found. A heterozygous T-base duplication 
(c.74dupT p.Ser26Leufs*2) and a nonsense mutation 
(c.346C>T, p.Arg116*) were identified on TYR gene. 
Both mutations lead to the development of a premature 
termination codon. Due to these changes, the translated 
mutant TYR protein is highly truncated and we assume 
that these enormous truncations of the mutant TYR pro-
tein may lead to its dysfunction.

Two of the nine Hungarian OCA patients with TYR 
mutations carry a combination of two pathogenic muta-
tions. In three of nine, a splice site mutation was iden-
tified in homozygous form. In four of nine, only one 
heterozygous pathogenic mutation was identified. These 
results correlate well with the recently reported investi-
gation of an Iranian OCA population: pathogenic TYR 

Fig. 1 a Distribution of the detected TYR variants on the tyrosinase protein, b OCA2 variant on the transporter protein, and c SLC45A2 variants on 
the transporter protein (SP signal peptide, EGF-like domain epidermal-growth-factor-like domain, CuA copper-binding domain, CuB copper-binding 
domain, TM transmembrane domain)
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variants were identified in 19 of 30 patients, and in this 
study, six patients carried only one pathogenic TYR 
mutation, and any pathogenic mutation were not identi-
fied in five patients [4].

The pathogenic TYR mutations detected in the Hun-
garian OCA patients have been previously identified in 
OCA patients of different ethnicity. The p.Arg217Gln 
mutation was detected in Caucasians from USA, Canada, 
and Northern-Europe; the p.Arg402* in Caucasians from 
Lebanon; the c.1037−7T>A in Caucasians and Japanese; 
the c.1366+4A>G in Caucasians; and the c.346C>T in 
Caucasians, Japanese, and Germans [22, 29]. The fre-
quency of pathogenic mutations differs in different popu-
lations, and, therefore, these populations might vary in 
their genetic susceptibility to certain diseases. Based on 
our results and the results of previous studies, the iden-
tified pathogenic TYR mutations are not specific to the 
Hungarian population, as they have been detected world-
wide in OCA patients [22, 29].

No pathogenic OCA2 mutation was identified in the 
examined Hungarian individuals, although one patient 
carried the common p.Arg305Trp polymorphism in het-
erozygous form. This variant has been associated with 
human eye color and might be an inherited biomarker of 
cutaneous cancer risk [28, 30].

Three mutation and a common polymorphisms were 
detected on the SLC45A2 gene. Two patients carried two 
heterozygous variants of the SLC45A2 gene previously 
described by our workgroup: the p.Gly409Asp missense 
and the p.Gln487* nonsense mutations [31]. Both muta-
tions are situated in transmembrane domains of the MATP 
protein (Uniprot: Q9UMX9). The locations of the muta-
tions suggest that they impair the transport function of the 
MATP protein. MATP dysfunction might cause an acidic 
melanosomal lumen, leading to incorrect incorporation 
of copper into tyrosinase. The reduced tyrosinase activity 
could lead to the development of the OCA phenotype [32]. 
Besides, the p.Leu374Phe polymorphism was detected in 
nine Hungarian OCA patients. This variant has a striking 
population distribution, exists almost exclusively in Euro-
peans, and has also been implicated in the development of 
different shades of hair, skin, and eye color [33].

Our results emphasize the importance of the parallel 
analysis of multiple genes for studying disease phenotypes. 
The OCA cases presented in this study and many other 
cases reported in the literature call our attention to the 
fact that clinical symptoms—which may overlap in many 
cases—are not sufficient for a diagnosis of different OCA 
forms: the molecular genetic investigation of all OCA 
genes is required to determine the subtype of the disease. 
The Hungarian OCA patients in this study exhibited iden-
tical clinical features (Table 1); however, molecular genetic 
investigation identified the OCA1 subtype in eight cases, 

the OCA4 subtype in two cases, and the molecular diagno-
sis was not clearly defined in three patients (Table 2). Even 
with these data, the genetic basis of the disease in seven 
patients carrying only one pathogenic TYR or SLC45A2 
mutation is still not completely explained. We wish to 
emphasize the screening of the non-pathogenic variants, 
which alone could not lead to the development of OCA, 
should be carried out in association with pathogenic vari-
ants that might have clinical significance. Further targeted 
sequencing of the genes involved in the syndromic OCA 
variants, including HPS and CHS, as well as genes involved 
in human pigmentation, is hoped elucidate the underlying 
disease-causing variant(s) [22].

Our results and previously reported studies suggest 
that, among the investigated genes, the majority of the 
mutations are located within the TYR gene [3, 4]. This 
result correlates well with the results obtained in other 
populations, as TYR mutations are the most common for 
OCA worldwide [1]. Screening of the TYR gene is, there-
fore, of primary importance for diagnostics. Mutations 
in the investigated Hungarian and in other previously 
reported OCA patients were found most frequently in 
exons 1 and 4 of the TYR gene [4]. In light of the fact that 
the majority of the identified TYR mutations are located 
within exon 1 and 4, we recommend screening these 
exons first.

According to our current knowledge, 10–25% of the 
isolated and syndromic OCA cases are not explained by 
paired, trans-oriented mutations in known genes [34, 35]. 
Based on our results and the results of previous studies 
[22], we suggest that screening non-Mendelian OCA-
associated genes might elucidate the causative genetic 
variant for these cases.

Conclusions
The genetic heterogeneity of OCA is extremely com-
plex: both rare mutations of Mendelian genes and com-
mon variants of non-Mendelian genes can contribute to 
the development of the disease. Our multi-gene study 
provides novel data for the genetic diversity of OCA in 
Hungarians and indicates that approaches that take this 
complexity into account, including large-scale studies, 
are needed to complete our understanding of the genetic 
heterogeneity of this disease.
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Abstract

Background: Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation
abnormalities. OCA type IV (OCA4, OMIM 606574) develops due to homozygous or compound heterozygous
mutations in the solute carrier family 45, member 2 (SLC45A2) gene. This gene encodes a membrane-associated
transport protein, which regulates tyrosinase activity and, thus, melanin content by changing melanosomal pH and
disrupting the incorporation of copper into tyrosinase.

Methods: Here we report two Hungarian siblings affected by an unusual OCA4 phenotype. After genomic DNA
was isolated from peripheral blood of the patients, the coding regions of the SLC45A2 gene were sequenced. In
silico tools were applied to identify the functional impact of the newly detected mutations.

Results: Direct sequencing of the SLC45A2 gene revealed two novel, heterozygous mutations, one missense (c.1226G
> A, p.Gly409Asp) and one nonsense (c.1459C > T, p.Gln437*), which were present in both patients, suggesting the
mutations were compound heterozygous. In silico tools suggest that these variations are disease causing mutations.

Conclusions: The newly identified mutations may affect the transmembrane domains of the protein, and could impair
transport function, resulting in decreases in both melanosomal pH and tyrosinase activity. Our study provides expands on
the mutation spectrum of the SLC45A2 gene and the genetic background of OCA4.

Keywords: Oculocutaneous albinism type 4, Unusual phenotype, SLC45A2 gene, Compound heterozygous state,
Novel mutations

Background
Oculocutaneous albinism (OCA) is a clinically and
genetically heterogenic group of rare monogenic dis-
eases characterized by reduced melanin production in
the skin, hair and/or eyes [1]. OCA symptoms can
include poor visual acuity, nystagmus, iris transillu-
mination, strabismus, photophobia, foveal hypoplasia
and misrouting of optic nerve fibers at the chiasm
[2]. All OCA forms exhibit autosomal recessive
inheritance [1].

OCA type 4 (OCA4, OMIM 606574) is a rare form of
OCA caused by mutations in the solute carrier family 45,
member 2 (SLC45A2) gene on chromosome 5p13 [3]. The
SLC45A2 gene encodes a membrane-associated transport
protein (MATP), which is located in melanosomes and
shows high sequence and structural similarity to Drosophila
melanogaster and plant sucrose transporters containing an
RXGRR motif [4, 5]. SLC45A2 knockdown reduced mel-
anin content and tyrosinase activity by acidifying the pH of
melanosomes in a human melanoma cell line, MNT-1 [6].
It has been suggested that, as a proton/sugar symporter,
MATP transports sugars from the melanosomes to the
cytoplasm using a proton gradient generated by a proton
pump. Thus, normal protein function ensures elevated
melanosomal pH, allowing proper binding of copper to
tyrosinase and resulting in normal tyrosinase activity [6].
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To date, 78 of the mutations identified in the SLC45A2
gene are related to OCA4 [7]. In this study, we report a
Hungarian family with two members affected by OCA4.
Our genetic investigation identified that these members
carried two novel heterozygous mutations in a com-
pound heterozygous state, expanding the mutational
spectrum of OCA4.

Methods
Patients
A Hungarian family with two affected siblings was inves-
tigated (Fig. 1). The affected individuals were 30 (Patient
II/1) and 27 years (Patient II/2) old at the time of inves-
tigation. Both exhibited pale skin, complete absence of
hair pigment, pink nevi and blue eyes with nystagmus.
This complete absence of pigmentation is unusual for
OCA4. Patient II/1 has been suffering from Crohn’s dis-
ease for 9 years and hypothyreosis for 4 years. Patient II/
2 was not aware of any known concomitant diseases.
The parents (I/1 and I/2) of the affected siblings are
clinically unaffected by OCA4. The investigated patients
declined publication of their clinical pictures.

Genetic investigation
Blood was taken from the affected patients as well as
from unrelated, healthy Hungarian individuals without
pigmentation abnormality (n = 30), and genomic DNA
was isolated using a BioRobot EZ1 DSP Workstation
(QIAGEN; Godollo, Hungary). The entire coding region

of the SLC45A2 gene and the flanking introns were amp-
lified and sequenced (primer sequences used were taken
from the UCSC Genome Browser www.genome.ucs-
c.edu). The investigation was approved by the Internal
Review Board of the University of Szeged. Written in-
formed consent was obtained from the patient and the
study was conducted according to the Principles of the
Declaration of Helsinki. After identifying the causative
mutations in the patients, further genetic screening of
the parents was declined.

Pathogenicity predictions for missense variants
In silico tools were applied to identify the functional role of
the newly found variants. Here we used SIFT (Sorting In-
tolerant from Tolerant, http://sift.jcvi.org/), PolyPhen2
(Polymorphism Phenotyping, http://genetics.bwh.harvar-
d.edu/pph2), Mutation Taster (http://www.mutationtaste-
r.org/), PredictSNP (http://loschmidt.chemi.muni.cz/
predictsnp/) PROVEAN (Protein Variation Effect Analyzer,
http://provean.jcvi.org/index.php) and PANTHER (Protein
ANalysis THrough Evolutionary Relationships, http://
www.pantherdb.org/) tools.

Results
Direct sequencing of the coding regions and the flanking
introns of the SLC45A2 gene revealed two heterozygous
mutations, one missense mutation (c.1226G >A,
p.Gly409Asp) in the sixth exon (Fig. 2a) and one nonsense
mutation (c.1459C >T, p.Gln437*) in the seventh exon
(Fig. 2b). Both patients carried both mutations, suggesting a
compound heterozygous state. Unrelated healthy controls
carried the wild type sequence. To decide, whether the de-
tected missense mutation is pathogenic, we use in silico
analysis tools (SIFT, PolyPhen2, Mutation Taster, Pre-
dictSNP, PROVEAN and PANTHER). All prediction tools
suggested that the p.Gly409Asp mutation is deleterious.
The nonsense mutation was deemed to be pathogenic. It
causes the development of a premature termination codon
at 487 amino acid position thereby the MATP protein
truncated and it may lead to its dysfunction.

Discussion
Both mutations are situated in transmembrane domains of
the MATP protein (Uniprot: Q9UMX9): the p.Gly409Asp
missense mutation is located within the ninth domain and
the p.Gln437* nonsense mutation within the tenth (Fig. 2c).
The locations of the mutations suggest that they impair the
transport function of the MATP protein. MATP dysfunc-
tion might cause an acidic melanosomal lumen, leading to
improper incorporation of copper into typrosinase. The re-
duced tyrosinase activity could, in turn, lead to the develop-
ment of the OCA phenotype [6]. The p.Gly409Asp
missense mutation affects an evolutionary conserved region
of the MATP protein (Fig. 2d), further emphasizing the

Fig. 1 Pedigree of the patients. The investigated Hungarian pedigree
spans two generations and includes two affected siblings (II/1 and II/2)
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putative pathogenic role of this mutation in the develop-
ment of the observed pigmentation abnormalities of the af-
fected patients.
Mutations of the SLC45A2 gene have been reported to

cause complete or partial loss of pigmentation, thus con-
tributing to the development of several different OCA phe-
notypes. However, a genotype–phenotype correlation based
the SLC45A2 mutations and the patients’ clinical symptoms
has not yet been established for OCA4 [8]. Mutations of
the SLC45A2 gene are typically associated with partial loss
of pigmentation, referred to as the “brown OCA” pheno-
type [7]. The two siblings reported here exhibited an un-
usual OCA4 phenotype, as they developed the complete
absence of pigmentation. This phenotype is more common
in type 1 OCA, which is caused by mutations in the tyrosin-
ase (TYR) gene. To rule out the influence of other putative
genetic-modifier variants responsible for the unusual
phenotype, the mutation screening of the TYR and OCA2
genes was also performed. Common polymorphisms of
TYR gene were detected, neither pathogenic nor non-
pathogenic variants of the OCA2 gene were identified. Pa-
tient II/1 carried the p.Ser192Tyr variant homozigously and
the p.Arg402Gln variant heterozigously. Heterozygous
p.Ser192Tyr polymorphism was identified in Patient II/2.
These two common variants of TYR gene occur at high
frequency (p.Ser192Tyr: Global MAF: 0.1234, Caucasian
MAF: 0.3718; p.Arg402Gln: Global MAF: 0.0813,

Caucasian MAF: 0.2525) but were not directly related to
pigmentation phenotypes in normal Caucasians [9]. How-
ever, functional studies reported that 192Tyr and 402Gln
alleles have reduced TYR enzyme activity. Heterozygous
p.Ser192Tyr and p.Arg402Gln variants caused significant
reduction in TYR expression, and a consistent decrease in
TYR protein levels was observed in homozygous p.Ser192-
Tyr cells [9].
Since one of our investigated OCA4 patients (II/1) is also

affected by Chron’s disease, it is possible that the mutations
of the SLC45A2 gene could be susceptibility factors for the
development of Chron’s disease. This hypothesis is further
supported by the literature, since a previous study reporting
a sister and a brother affected by congenital neutropenia
and oculocutaneous albinism identified a nonsense muta-
tion in the G6PC3 gene (c.829C >T, p.Gln277*) responsible
for the development of congenital neutropenia and
frameshift mutation in the SLC45A2 gene (c.986delC,
p.T329Rfs*68), which could explain the OCA phenotype
[10]. In this previous study, the investigated brother is also
affected by Chron’s disease, suggesting a putative associ-
ation between the mutations of the SLC45A2 gene and
Chron’s disease [10].
OCA has been considered for many years as a group of

monogenic rare diseases without cure. Accumulating
knowledge regarding the underlying mechanism of the
OCA4 might alter this viewpoint: it has been recently

Fig. 2 Identification of two novel mutations of the SLC45A2 gene. a Direct sequencing revealed a heterozygous missense mutation (c.1226G > A,
p.Gly409Asp) in the sixth exon and b a heterozygous nonsense mutation (c.1459C > T, p.Gln437*) in the seventh exon of the gene. Both mutations
were present in both affected patients. Unrelated controls (n = 30) carried the wild type sequence. c The identified mutations are located within the
transmembrane domains of the MATP protein. d The identified missense mutation is situated within an evolutionary conserved region
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demonstrated in MNT-1 cell lysates that exogenously ap-
plied copper recovers reduced tyrosinase activity resulting
from SLC45A2 knockdown [6].

Conclusions
In conclusion, we report two novel heterozygous muta-
tions, one missense and one nonsense, of the SLC45A2
gene in two Hungarian sisters affected by OCA4. The
prediction analysis and the location of the mutations as
well as the evolutionary conservation of the missense
mutation suggest a pathogenic role in the development
of OCA4. Our report, which further contributes to the
mutation spectrum of the SLC45A2 gene as well as to
the spectrum of the observed unusual clinical symptoms,
will hopefully contribute to future studies characterizing
genotype-phenotype correlations in OCA4. This study
provides expands to the genetic background of OCA4
and might serve as a basis for future studies aiming to
develop novel therapeutic approaches for OCA patients.
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