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VE  Minute ventilation 

MVV  Maximal voluntary ventilation 

FEV1  Forced expiratory volume in one second 

ATS  American Thoracic Society 

ERS  European Respiratory Society 

W  Watt 

rpm  Rate per minute 

EV&   Pulmonary ventilation 

2VO&   Oxygen uptake 

2VCO&   Carbon-dioxide output  

LAT  Lactic acidosis threshold 

SpO2  Oxygen saturation 

EV& / 2VCO&  Ventilatory equivalent for CO2 

f  Respiratory rate  

HR  Heart rate 

ECG   Elektrocardiogram 

GE  General Eletric 

C group Supervised continuous training group 

I group  Supervised interval training group 

S group Self-paced training group 

A/D converter Analog/digital converter 

RAR  Rectangular area ratio 

maxV&   Maximum spontaneous expiratory flow 

EEV&   End-expiratory flow 



 

 

7 

2peakVO&  Maximal oxygen uptake 

SD  Standard deviation 

BMI  Body mass index 

FVC  Forced vital capacity 

TLC  Total lung capacity 

FRC  Functional residual capacity 

RV  Residual volume 

DLCO  Diffusion capacity of carbon monoxide 

PaO2  Arterial partial oxygen pressure 

PaCO2  Arterial partial carbon-dioxide pressure 

SE  Standard error 

PWR  Peak work rate 

ANOVA Analysis of Variance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

8 

 

Introduction 

 

Pulmonary rehabilitation is an integrative part of management of patients with chronic 

obstructive pulmonary disease (COPD).  Randomized, controlled trials showed as an 

evidence that exercise training improves exercise capacity and quality of life in COPD (1).  

Breathlessness and peripheral muscle dysfunction are the pri mary reasons for decreased 

ability to perform normal activities and reduce quality of life (1).  Exercise training has 

favorable effects on breathing, circulation and metabolism (2).  These physiologic effects 

depend on training frequency, intensity, modality, and duration (3-9). 

The aim of several research groups was to determine the relative effectiveness of 

interval training (higher intensity alternated with lower intensity periods) compared to 

constant work rate (continuous) exercise training.  In healthy subjects some (10, 11), but not 

all (12-14), studies have showed superior effect in selected physiologic parameters in interval 

vs. continuous training.  In COPD, two studies have not found differences between these 

training strategies (4, 8).  Ambrosino reviewed studies about interval training and has found 

that it leads to higher physiologic benefit in peak oxygen consumption and peak work rate, a 

greater improvement in lactate threshold, and this type of training is more easily accepted, 

especially in elderly people (15).  It was concluded that in COPD patients, there were no 

exact results about the superiority of high intensity bilevel interval training (15).  There might 

be some controversy in the effectiveness of self-paced training programs.  While these 

programs have favourable effects, like improved exercise capacity, reduced breathlessness 

and improved quality of life (9), the relative influence of this training modality compared to 

supervised training programs remains unclear (6, 7). 

Exercise intolerance is one of the principal determining factor in quality of life, 

especially in advanced stages of COPD (16).  Reduced ventilatory capacity can have large 

impact in exercise intolerance in patients with severe COPD, mainly affected by expiratory 

flow limitation (EFL) related to elevated airway resistance and decreased elastic recoil (17-

20).   

The main element of EFL is increased airway resistance as it leads a series of changes 

in other modulators of airflow (21).  Increased intrathoracic pressure is generated because the 

rise in resistance leads to prolonged time constants of the airways, and higher pressure is 

needed to drive flow (22).  Higher pressure results in increased gas compression and dynamic 
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airway compression in the airways (23-25).  All of these components result in intrabreath 

reduction of flow (17, 19, 23-25) presenting in a concave shape on the expiratory flow-

volume curve – as an indication of flow falling quickly after expiration starts.   

Several methods have sought to evaluate EFL during exercise (26-30).  One method 

has the advantage of the fact that EFL achieves the point when expiratory flow turns to 

independent of driving pressure, i.e. the flow does not increase when negative expiratory 

pressure (NEP) is applied at the mouth (28).  Forced oscillation technique is another way to 

detect EFL, which is based on the concept that oscillatory pressure cannot pass through flow-

limiting airway segments, the consequences of this phenomenon are reduced apparent 

compliance and respiratory system input reactance (29).  Although both NEP and forced 

oscillation techniques offer a reliable method to quantify EFL during spontaneous breathing, 

the implementation of either method is a methodical challenge and even if successful has 

limitations because both methods require cooperation from the subject that can be difficult to 

achieve during exercise. The forced oscillation technique requires complex instrumentation 

with a breathing technique that allows a free passage through the oropharynx and glottis (30) 

and the measurement takes about 20 seconds. The NEP method can only be applied 

intermittently and the necessitates comparison of expiratory flow profiles with and without 

the application of NEP (28).   

The expiratory limb of the maximal flow-volume loop in a classic forced expiratory 

spirometry shows concavity in patients with obstructive airway disease and that concavity 

becomes more prominent with the more seve airflow obstruction. Therefore, we hypothesized 

that EFL can be assessed quantitatively by detecting the configuration of spontaneous 

expiratory flow-volume (SEFV) curves during rest and exercise on a breath-by-breath basis.  

This method does not require any change in physiologic breathing pattern or alteration of the 

usual procedures used in cardiopulmonary exercise testing (31, 32).  Relevant information of 

EFL may be gained from the shape of SEFV curves because, as stated above, changes in the 

variables related to EFL (i.e. dynamic airway compression, gas compression and the time 

constants of involved lung compartments) are predictably reflected in intrabreath changes of 

flow.  Moreover, in presence of EFL, flow rates of spontaneous expirations are based on 

mechanisms similar to those influencing forced expirations (25, 33), which have been 

considered to be valuable methods to characterize EFL (34-37).  This implies that the shape 

of SEFV curves, especially the degree of its concavity, might be useful to quantify the 



 

 

10

augmentation of EFL as exercise gathers and the minute ventilation approaches breathing 

capacity.   

In this methodological part of the thesis our goal was to develop computerized 

analysis to quantify the configuration of the spontaneous flow-volume profile on a breath-by-

breath basis throughout during exercise, with special detection of the development of EFL in 

moderate to severe COPD patients.  To gain a preliminary appreciation of the potential of this 

technique, and before comparing it with the previously mentioned known methods, we also 

made a comparison between the spontaneous expiratory flow-volume responses in COPD 

patients and age-matched healthy individuals.  In addition, the relation between the degree of 

SEFV curve concavity and measures of ventilatory limitation during exercise (i.e. VE/MVV) 

was also investigated.   

 

Aims of the study 

Study I. 

In Study I we sought determining the relative effectiveness of supervised continuouos, 

interval and home-based training in COPD.  We intended that it would have great practical 

importance   

• to determine whether there were differences in the improvements in exercise tolerance 

or perceived activity levels between these three training modalities,  

• to compare maximal work rate, metabolic profile (gas exchange, lactate threshold), 

ventilatory and circulatory differences between these groups 

• to assess and follow-up symptoms related to quality of life after different 

rehabilitation programs. 

The results of this study might help to develop practical guidance for rehabilitation 

professionals seeking to institute effective rehabilitative interventions for patients with 

COPD. 
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Study II. 

With the intention of continuous, breath by breath monitoring we aimed to develop 

computerized procedures to quantify the configuration changes of the spontaneous flow-

volume curve during exercise in severe COPD patients. Our specific aims were: 

• to gain a preliminary appreciation of the accuracy of this technique according to the 

spontaneous expiratory flow-volume responses in a group of COPD patients and a 

group of age-matched healthy individuals, 

• to detect EFL by investigation of the spontanouos flow-volume loops in moderate to 

severe COPD patients,  

• to analyze the comparison of detecting EFL and exercise intolerance of COPD 

patients. 
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Materials and Methods 

Study subjects 

Study I 

Seventy-one stable patients with very severe to moderate COPD ((forced expired 

volume in one second (FEV1) range: 21-94% pred)) (38) participated in study I; none of them 

qualified for long-term oxygen therapy.   The study was approved by the local ethical 

committee and the patients gave their written consent to their participation.  Subjects were 

screened for severe cardiovascular, neurological or exercise-limiting joint disorders that 

would have precluded full participation in the training protocol.  Eight subjects were 

excluded from 79 screened patients: 1 with psychiatric disease, 4 with ischemic heart disease 

and 3 had exercise-limiting joint disease. 

 Study II 

Seventeen men and women with the diagnosis of moderate to severe COPD 

participated in the study.  COPD individuals with (FEV1) ≤60% of predicted were included 

(38).  Individuals with acute respiratory exacerbation, with the diagnosis or symptoms of a 

significant cardiac disease, requiring chronic supplemental oxygen, having resting oxygen 

saturation <89% measured by pulse oximetry, and who were exercise-limited by orthopedic 

or joint related diseases were excluded.  Twelve healthy age-matched men and women were 

also involved.  All subjects were informed and they signed the written informed consent for 

their participation.  The study was approved by the Institutional Review Board of the Los 

Angeles Biomedical Research Institute at Harbor-UCLA Medical Center. 

 

Pulmonary function and exercise test 

Each subject performed a series of pulmonary function test (Vmax 229 and Autobox 

6200, VIASYS Sensormedics, Yorba Linda, California, USA) including spirometry, body 

plethysmography and diffusion capacity measurement. COPD patients took 400 µg of 

salbutamol (in study I) and 400 µg of albuterol (in study II) by inhalation via a spacer 20 

minutes before testing in order to maximize bronchodilation.  All pulmonary function tests 
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fulfilled the ATS/ERS guidelines (38).  Normal values for spirometry were calculating using 

the NHANES III standard (38).   

An incremental symptom-limited exercise test was performed on an electrically 

braked cycle ergometer (Ergoline 800, VIASYS SensorMedics) with a pedaling rate of 60 

revolutions per minute.  After 3 minutes of rest and 3 minutes of loadless pedaling, the work 

rate was increased by 5-15 watts (W) per minute in a ramp fashion (increment was 5 W/min 

if FEV1<1.0 L, 10 W/min if FEV1 >1.0 L for the COPD patients; increment rate was 15 

W/min for the healthy subjects).  Pedaling rate was kept constant at approximately 60 rpm.  

Pulmonary ventilation ( EV& ) and gas exchange ((oxygen uptake (2VO& ) and carbon-dioxide 

output ( 2VCO& )) were measured breath-by-breath by a mass flow-sensor and exercise 

metabolic measurement system (Vmax Spectra, SensorMedics).  The system was calibrated 

before each test.  Lactic acidosis threshold (LAT) was identified by the modified V-slope 

method (39).  Heart rate, 12-lead ECG (Cardiosoft, GE Electric/SensorMedics) and oxygen 

saturation by pulse oximetry (Radical 7, Masimo) was monitored.  Blood gas analysis was 

done from capillary blood taken from a hyperemic earlobe at rest and peak exercise (AVL 

Omni7, Ramsey, Minnesota) in study I.  Maximal voluntary ventilation was estimated as 

40xFEV1 (40).  Shortness of breath and leg fatigue was assessed by the Borg category ratio 

scale every two minutes during exercise (41).  Isotime response, defined as response at the 

time the shorter of the pre- and post-training incremental exercise test ended, was calculated 

for several physiological variables. 

Study design for Study I 

Patients were divided into three groups: C, supervised continuous, n=22; I, supervised 

interval, n=17; and S, home-based and self-paced, n=32 (Table 1).  Patients who lived in the 

vicinity of the training center and could attend outpatient training sessions were randomized 

(without stratification) to C or I; those unable to attend supervised training due to 

unreasonable travel distances were assigned to self-paced training.  C and I groups performed 

exercise training 3 times/week for 45 minutes during an 8-week period.  Group C exercise 

intensity was 80% of peak work rate achieved in an incremental exercise test.  Interval 

training involved a 30 min period of cycling for 2 minutes at 90% followed by 1 minute at 

50% peak work rate.  This 30 min period was preceded and followed by approximately 7.5 

min of exercise at 50% peak work rate (warm-up and cool-down phase).  The S group was 
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instructed to cycle, climb stairs and walk in their natural environment with the same weekly 

periodicity and time interval as used in in-center programs for 8 weeks.  Some patients 

(10/32) were called monthly and were asked about their condition and training regimen.  

Subjects in S completed logs reporting date and duration of training sessions. 

 

Activity scale for Study I 

Activity was assessed by a questionnaire previously used in this laboratory (42), 

which includes questions evaluating difficulty in walking, climbing stairs, dressing, cleaning, 

shopping, housekeeping, working and hobbies.  Daily activity was scored on a 0-3 scale (0-

not limited, 1-moderately limited, 2-severely limited, 3-not able to do) for 8 items before and 

after training with a total score of 0 to 24 (≤5: good activity, 5-8: moderately reduced activity, 

8-16: severely reduced activity, >16: homebound). 

 

Data collection for Study II 

A 16-bit A/D converter digitized (WinDaq Acquisition Version 2.68, Dataq 

Instruments, Akron, Ohio, USA) at 100 Hz the analog flow signal from the exercise system, 

and then it was stored on a personal computer for futher analysis.  The flow signal was 

integrated to volume and the volume was calibrated subsequently.  The system calibration 

was succesful for linearity and to have zero intercept; that is why a scalar multiplicative 

calibration factor was used to adjust the computed expired volume from the flow signal.  

 

Breath-cycle detection for Study II 

 Because flow towards the end of expiration often fluctuates around zero, it was 

unsatisfactory to apply a “crossing zero flow” criterion to distinguish the start and the end of 

a breath cycle.  To overcome this, we moved the trigger-threshold to a small negative flow (-

0.15 L/s).  The start of expiration was defined as the point at which flow exceeded this 

threshold and remained in a clear positive trend in the next 140 ms.  Similarly, the start of 

inspiration was defined, as the point at which flow achieved this negative threshold, and was 

followed by clear negative trend in the next 140 ms. After the computerized analysis, each 
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data set was visually inspected for accuracy and validity of breathing phase change and if 

necessary it was manually corrected, as a validation procedure for breath cycle detection.  

 

Computing the tidal volume during spontaneous respiration for Study II 

 Tidal volume calculation was defined by resetting the volume integration with the 

Riemann Sums method at the start of each expiration (43).  The resetting integration 

compensated for predictable inequalities in inspiratory and expiratory integrated volumes 

when the respiratory quotient differs from unity.  

 

Computing the rectangular area ratio (RAR) for Study II 

Spontaneous expiratory flow-volume curves were analyzed breath-by-breath, and a 

geometric quantification was performed by custom-made Sigma Plot 10.0 transform 

functions (SPSS Science, Chicago, IL).  The geometric analysis was based on the changes in 

the shape of the descending phase of the expiratory limb of the SEFV curves.  The geometric 

analysis was defined as an identification of the intra-breath coordinates of two critical 

anchoring points: (A) the maximum spontaneous expiratory flow (
maxV& ) and (B) the point at 

which the expiratory flow takes a sharp decline signaling the beginning of inspiration (
EEV& , 

‘end-expiratory flow’) (Fig. 4). 
EEV& was defined as the point associated with the greatest 

difference between the slopes of adjacent 20 ms segments of the flow-volume curve during 

the last 0.25 seconds of expiration.  These two points were used to make a rectangle from 

which the breath-by-breath rectangular area ratio (RAR) in the following way was calculated 

as a measure of concavity defined: 
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are the volumes at 
maxV& and EEV& , respectively and VT is tidal 

volume. Values of RAR below 0.5 define concavity while values above 0.5 show convexity.  
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This quantification makes comparisons of curvatures between different loops possible (Fig. 

4).  

All computer algorithms were developed for breath detection and for the breath-by-

breath determination of the parameters of the geometric analysis (RAR, maxV& , EEV&  and the 

relative position of maxV& ) using SigmaPlot transform functions (SPSS Science, Chicago, IL, 

USA). We calculated the 30-second bin average values. 

 

Statistical analysis 

The results are presented as mean±SD in the text and tables and plotted as 

mean±SEM in the figures, unless signaled otherwise. Group means were analized by 

unpaired two-tailed Student’s t-tests.  To compare means between groups before and after 

rehabilitation (study I) or at different levels of exercise (study II), we used two-way repeated 

measures ANOVA with Holm-Sidak post hoc analysis of variance to define any individual 

significance.  The statistical analyses were performed in SigmaStat 3.5 (SPSS Science).  

Statistical significance was accepted at P<0.05.  Distribution around the mean was expressed 

±SD, except in figures, where ±SE was used.   Distributions were tested for normality by 

Kolmogorov-Smirnov test and significance was accepted if P<0.05.  We targeted in study I 

the study sample size based on discerning differences in the change in peak oxygen uptake in 

the incremental test among groups as the primary outcome.  We used ANOVA statistics for 

the 3 groups and asserted that the minimum clinically important difference (44) between 

groups was 0.1 L/min, the expected standard deviation of change in peak oxygen uptake 

among subjects was 0.1 L/min, and utilized a power of 0.8 and α=0.05.  This analysis 

indicated that 20 subjects in each group would be required. 
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Results 

 

Study I 

In the supervised groups, 31 of 39 subjects were trained 3 times/week (total 24 

sessions) (Figure 1).  Five of 22 continuous training patients performed fewer sessions than 

the target, averaging 20 sessions (Figure 1). In the interval group 3 of 17 patients performed 

fewer sessions than the target, also averaging 20 sessions (Figure 1).  Training work rate of 

supervised continuous training was 74±28W (80% peak work rate).  In the interval group 

work rate fluctuated between 79±25W (90% peak work rate) and 44±14W (50% peak work 

rate).    Therefore over the course of a session, the average work rate was 80% of peak work 

rate in the C group and 77% in the I group.  The actual mean work in the two groups were 

161.6±50.6 kJ and 199.8±74.8 kJ in the I and C groups, respectively.  The activity logs in 

self-paced groups revealed average daily training duration was 30±6 minutes and average 

sessions/week was 3.5±0.2.  All subjects completed the training protocol. There were no 

adverse events according to the study protocol. 

There were no significant differences in demographics for study participants among 

the three groups (Table 1).  Lung function showed moderate obstruction and hyperinflation at 

baseline without significant differences among groups.  There were no significant changes 

after training (Table 2).   

Percent predicted peak work rate (45) was 67%, 67%, 68% in C, I and S groups, 

respectively, before training.  Peak EV&  and EV& /MVV ratio before training did not differ 

significantly among groups (Table 3), suggesting similar ventilatory limitation.  Further 

supporting this, peak exercise Borg dyspnea scores did not differ among groups.  Peak work 

rate increased significantly in C and I in response to exercise training, but not in S (Figure 2) 

with increases in C and I groups (12±9 and 14±12W, respectively, p<0.05 for each) that were 

greater than in S (3 ± 12W, NS).  A similar tendency was detectable in peak 2VO& , increased 

significantly in C and I groups, but not in S; however, differences among groups were not 

statistically significant (Figure 2).  LAT increased significantly in supervised groups, 

averaging 0.08±0.10 and 0.10±0.15L/min in C and I, but not in S (0.04±0.21L/min), while 

these differences did not achieve the statistical significance.  Peak EV& , heart rate, blood 

gases, oxygen saturation (SpO2) and Borg dyspnea, and leg effort scores did not change 
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significantly as a result of training in any group, showing that exercise led to similar 

physiologic limitations. 

Isotime responses are presented in Table 3 and Figure 3.  There were significant 

reductions in isotime ventilatory equivalent for CO2 ( EV& / 2VCO& ) and respiratory rate (f) and 

non-significant reduction tendencies in isotime EV& and heart rate (HR) in the supervised 

constant intensity group (by an average of 3 units, 3 breaths/min, 2 Liter/min and 9 

beats/min, respectively).  In contrast, in isotime changes in the I and S groups were small, 

and did not achieve statistical significance.   

The activity questionnaire showed reduced activity (average score: 11) at baseline in 

all groups.  After training, there was a significant improvement (i.e., decrease) in activity 

score in each group (C: 11.5±0.7 vs. 9.0±2.8, I: 10.4±2.4 vs. 7.2±2.1, S:  11.6±2.3 vs. 

7.0±1.9; in C, I and S groups; each p<0.01 before vs. after training) but differences in 

improvement among groups did not achieve a statistical significance. 

Study II 

Subject characteristics and exercise tolerance 

The demographic and resting spirometric values of the study population are presented 

in Table 4. The obstruction was moderate to severe showed by resting pulmonary function in 

the COPD patients. There were no statistically significant differences in age, height, and 

weight between the healthy and COPD groups in study II.  

COPD patients had a severely impaired exercise tolerance with marked ventilatory 

limitation as characterized by high end-exercise minute ventilation ( E peakV& ) to MVV ratio 

( E peakV& /MVV; 95±21% vs. 54±8% in the COPD patients vs. healthy individuals, respectively; 

P<0.05) whilst healthy individuals suffered from no such difficulties (Table 5).  

Breath detection 

Each data set was visually inspected for accuracy and validity of breathing phase 

change and if necessary it was manually corrected, as a validation procedure for breath cycle 

detection. We count the number of false positive and false negative detections, and calculate 

the sensitivity for detecting the start of expirations and inspirations. Among the 29 performed 

test, the false positive detection rate for inspiration and expiration was 1.2±1.1% and 
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1.9±1.3%, respectively. The false negative rate was 4.2±4.4% for inspirations and 5.0±4.5% 

for expirations. The data analysis was calculated after manual correction of all these errors in 

breath detection.  

Progressive change in the shape of the spontaneous flow-volume curve during exercise 

Figure 4 shows the expiratory loop of the flow-volume curve in a typical healthy 

individual (upper row) and in a COPD patient (lower row) at rest and at 25%, 75%, and 

100% of peak work rate.  The shape of the expiratory limb of the SEFV curve at rest and 

during exercise in the healthy individual, which is reflected by an RAR ≥0.5 (Fig.4, upper 

row).  But in the COPD patient, the expiratory limb of the SEFV curve becomes concave at 

75% peak work rate (RAR=0.4) and shows more concavity at peak exercise (RAR=0.34) 

(Fig.4, lower row).  Note that both the normal individual and the COPD patient increase 

intrabreath maxV&  and EEV&  with progression of exercise, and that the position of maxV&  stays in 

the middle segment of the tidal volume in the healthy subject even at peak exercise, while 

within the first quarter of expiration in the COPD patient from early stages of exercise. 

Figure 5 illustrates the breath-by-breath analysis of the RAR, maxV&  and EEV&  during the 

time course of unloaded cycling and incremental exercise in a healthy individual (upper 

panel) and a COPD patient (lower panel).  Superimposed on these plots are smoothed curves 

calculated by a negative exponential smoothing method (46).  The RAR smoothed curve of a 

healthy individual was above the 0.5 line (in the upper panel of Figure 5) at rest and 

throughout the exercise, reflecting the convexity of the SEFV curve during the whole test. In 

the lower panel of Figure 5 it is shown that during unloaded cycling and early into the ramp 

exercise the RAR smoothed curve in the COPD patient was at or above the 0.5 line, reflecting 

the convex shape of the expiratory limb of the SEFV curve.  At about 5 minutes before peak 

exercise, the RAR smooth curve fell below 0.5, showing that the SEFV curve became 

concave.  The RAR finally reached a nadir of 0.37 at peak exercise in this COPD patient.  It 

can be seen in this figure, at the time when the RAR smoothed curve fell below 0.5, maxV&  

reached about 1.5 L/sec and EEV&  was appreciably above the resting level.  

            Figure 6 shows the mean RAR plotted as a function of VE max/MVV at rest and during 

exercise: at 6, 4, and 2 minutes before end-exercise and at end-exercise, in both healthy and 

COPD individuals. In healthy individuals (empty circles), RAR at 6 minutes before end-
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exercise dropped below the RAR at rest but then progressively increased during the rest of 

the test; RAR remained significantly above 0.5 in the whole duration of exercise. In marked 

contrast, average RAR of COPD patients at rest was slightly higher than 0.5 but showed a 

continuous fall throughout the exercise (average peak exercise value 0.46±0.06). On average, 

the COPD patients achieved more than 90% of their respiratory reserve (i.e. they are 

ventilatory limited) at peak exercise (Figure 6).  

The number of COPD patients who showed average RAR during the last 30 seconds 

before exercise end of <0.5 was analysed.  Fourteen of seventeen COPD patients manifested 

averaged RAR<0.5 at end exercise, while in two of the 14 patients the nadir value was only 

slightly below 0.5 (approximately 0.49). We try to find responsible factors for the failure to 

develop substantial concavity in these five COPD patients.  These patients have a wider range 

of disease severity (i.e. FEV1% predicted of 33, 34, 45, 52 and 56); hence, resting lung 

function does not seem to be a principal determination factor of concavity in the SEFV curve 

during exercise.  Two of the five subjects presented ventilatory limitation (peak 

VE/MVV%=103 and 109) and three had substantial ventilatory reserve (mean 

VE/MVV%=70±8) at peak exercise.  Despite to the other 12 COPD patients who developed 

definite concavity during exercise, these five patients indicated less dyspnea (Borg dyspnea 

score: 4.8±1.5 vs. 5.5±1.9) and more leg fatigue (Borg leg score: 5.8±1.6 vs. 4.8±2.0) at peak 

exercise, while these differences did not reach a statistical significance.  All healthy 

individuals generated RAR smoothed curve remained above 0.5 during the whole exercise. 
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Discussion 

Investigating strategies to improve exercise tolerance in COPD, we compared three 

rehabilitative training strategies in study I and defined their effectiveness in increasing peak 

exercise tolerance and in different physiological training variables.  The effect of two types of 

supervised training modalities, like continuous and interval training; were compared to a self-

paced, home-based program.  Peak work rate in an incremental exercise test showed 

significant imporvement in the supervised groups, with little difference between C and I 

groups.  Both supervised groups exhibited similar significant increases in 2peakVO& and LAT.  

Self-paced training yielded only small and insignificant improvements in these measures.  

Analysis of variance revealed that the difference in increase in peak work rate, but not 

2peakVO& and LAT between the supervised groups, and the self-paced groups achieved 

statistical significance.  

Related to exercise intolerance in study II we have shown that our novel, 

computerized method allows characterization of the genesis and development of progressive 

expiratory flow limitation that occurs during exercise in COPD patients in a non-invasive and 

unobtrusive way.  To the best of our knowledge, this is the first approach on a breath-by-

breath basis that allows quantification of EFL by characterizing the profile of the SEFV 

curve.  Our method does not require additional instrumentation beyond the flow sensor and 

digitizing equipment for the analog output of the flow sensor, in opposite of NEP 

measurement and the forced oscillation technique.  The algorithm for this analysis might be 

implemented as a software module, and easily can be used in preexisting computerized 

cardiopulmonary exercise systems.  Furthermore, it does not require invasive maneuvers and 

provides a fully quantitative, objective and dynamic measurement of developing flow 

limitation during exercise on a breath-by-breath basis. 

Activity becomes progressively reduced by shortness of breath, and it can lead to 

deconditioning in COPD patients (1, 2).  Aerobic enzyme concentrations, mitochondrial 

density, muscle fiber-to-capillary ratio decrease, and there is reduction of muscle mass and 

type I fiber fraction in these type of COPD patient (47).  
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According to previous studies, COPD patients could achieve a physiological training 

effect; it has now been clearly shown that high intensity endurance training yields increases 

in 2peakVO&  (3) and the ability to sustain a given work rate (3).  Training can result in an 

increase in the muscle capillary-to-fiber ratio leading to a reduction in capillary to 

mitochondria diffusion distance (48) and increasing oxidative enzyme content and myoglobin 

levels (48), which was detected by muscle biopsy.  

 Optimal strategies to increase exercise tolerance through rehabilitative exercise 

were sought.  A key finding was that high intensity training achieved greater physiologic  

effect than low intensity training (3).  Recent studies have focused on strategies allowing 

COPD patients to exercise at higher training work rates; in randomized double-blind trials 

oxygen administration (49,50) and bronchodilator therapy (51) have been shown to increase 

rehabilitative exercise training effectiveness (52).   

Home-based exercise programs have been found effective in increasing exercise 

tolerance and quality of life (5), but the relative effectiveness compared to supervised 

programs can be questionable.  Home-based programs have discernable disadvantages.  

Frequent encouragement and instruction by trained rehabilitation personnel can be crucial  

adjunct to rehabilitation.  Ongoing interaction with patients similarly afflicted is posited to 

assist in motivating patients to comply with rehabilitative therapy.  It has clinical importance 

to compare effectiveness of home-based programs with supervised group programs; 

previously only two studies have been reported in this field (6, 7).   

COPD patients have been compared in a 12-week program with twice-weekly 

sessions of either home-based (15 patients) or in-center exercise (15 patients) by Strijbos et 

al. (7).   Equal improvements in exercise capacity and reduction in breathlessness and leg 

fatigue have been found at the program’s end and 3 months later in the two groups.  

However, some benefits (exercise capacity and Borg dyspnea score) persisted to a greater 

extent in the home-based program after 18 months. It has been an important study feature that 

therapists visited the home for each exercise session; this is not practical in many settings and 

is not a general set-up of most home-based programs that have been reported.  Puente-Maestu 

et al. have compared responses of 41 COPD patients to 8 weeks of in-center rehabilitation 4 

times/week vs. a home-based program with weekly in-center visits to maintain adherence (6).  

Estimated mean training work rate has definitely been higher in the in-center rehabilitation 

group and exercise tolerance measures (exercise duration, 2peakVO& , heart rate, isotime EV& , 
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2VCO&  and lactate accumulation) have also shown greater improvement in the in-center 

program.  

 In our study, the self-paced program employed was more similar to that of Puente-

Maestu et al. (6) than to that of Strijbos et al. (7) in that in home rehabilitation there were no 

personnel visits.  Like Puente-Maestu, we found only small non-significant trends in 

physiological training measures.  While home-based training may indicate of improvement 

the patient’s perception of activity level (as indicated by our activity questionnaire), it seems 

inferior to supervised training in improving exercise endurance.  Only small, non-significant 

improvement in peak exercise capacity, ventilatory, cardiovascular and metabolic responses 

was detected; improvement in peak exercise tolerance was significantly less than in the 

supervised groups.  We suspect that supervised training in a supportive environment in the 

presence of others similarly afflicted results in superior training results.  

Training intensity is determined by the effectivity of interval training as well as its 

effectiveness in inducing training effects in the exercising muscles.  Traditionally, it has been 

shown that below “critical training intensity” there is no achieved training effect, no matter 

how long the training proceeds (53).  Above this threshold, progressively higher intensities 

achieve progressively greater training effects, and exercise training can reduce dynamic 

hyperinflation of COPD patients (54), although it is not certain that this relationship is linear.  

If, for example, continuous training intensity performed at the critical training intensity is 

compared with interval training where intensity fluctuates below and substantially above the 

critical intensity, it is reasonable to expect that interval training will be more effective.  

Alternately, if continuous training set at a work rate above the critical training intensity, and 

it is compared to interval training with work rate fluctuating around this mean but always 

remaining above the critical intensity, it is difficult to predict which will be more effective 

(possibility the continuous training will be more effective than the interval training).  It is 

difficult to predict which regimen will be better tolerated in the sense that the total tolerable 

work may be greater with one or the other strategy.    

Coppoolse et al. have studied 21 COPD patients randomized to a continuous or 

interval training profile with the same total work per session performing an 8-week 5-

session/week, 30-minute/session exercise program (4).  Exercise testing has demonstrated 
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that, for most response measures, physiologic changes have been more marked in the 

continuous training group.  

Vogiatzis et al. have studied 36 COPD patients who performed in endurance training 

with 40-minute sessions held twice weekly.  Subjects have been randomized into two groups, 

a constant work rate group (50% of peak work rate) or an interval group (30 seconds at 100% 

of peak work rate alternating with 30 seconds of rest) (8).  Physiologic benefits have been 

detected in both groups with no clinically important difference.   

 Puhan et al. (55) has recently found no significant difference in the improvement of 

exercise capacity and quality of life of COPD patients performing interval or constant work 

rate training.  However, the work intensities set in this study have been somewhat lower than 

the ones used in previous studies (4, 8) or in the present study: training work rate in the 

constant work rate group was only 57% of peak work rate achieved in an incremental test, 

and the total work per session of those performing interval training was only 76% of that 

performed by the constant work rate training group.  In addition, the duration of the training 

sessions was only 20 minutes in either group.      

 In the present study both supervised training groups had high intensity work rate 

profiles.  The continuous training group exercised at 80% peak work rate in an incremental 

exercise test.  This is similar to the strategy employed previously (3) and is a near-maximal 

target (56).  Interval training changed to a substantial fraction of the time (2/3) to be spent at 

an even higher training intensity: 90% peak work rate, and another 1/3 spent at lower 

intensity (50% peak work rate) phase.  The average exercise intensity was therefore 77% of 

peak work rate and similar to that of the continuous work rate group.  Interval and continuous 

work rate profiles yielded similar physiologic response changes, and therefore, similar 

training effects as it can be seen in in Figure 1 and 2. 

  An additional information was that in both supervised groups, exercise intensity was 

held constant during the training program in order to make a strict comparison between the 

two strategies.  It differs from the most previous reports of exercise training in COPD, in 

which training intensity has been increased as tolerated during the intervention.  Substantially 

higher training work rates can be set in the latter strategy as the program proceeds (e.g., 

patients are able to exercise for the entire session at work rates approximating the peak in pre-

training incremental exercise testing) (56).  It can be a reason why training-induced increases 
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in the supervised groups in, for example, 2peakVO& are somewhat less in our study compared to 

some other COPD training studies (4, 57). 

Previous analyses compared to our new quantitative method have been mainly limited 

by the shape of spontaneous flow-volume curve to qualitative inspection.  A non-sinusoidal 

expiratory flow pattern was characteristic of obstruction, and pointed out that as EFL 

progresses the maxV&  is reached earlier in the tidal breath reported by Morris and Lane (58).  

Spontaneous flow-volume profiles of anaesthetized patients has been  monitored by 

Bardoczky and d’Hollander, pointing out the “bowing configuration” in the expiratory limb 

as an indication of diffuse obstruction (59).  Previous analysis found relation between the 

flow limitation and the presence of concavity of the expiratory limb of the flow-volume loops 

(60).  Baydur and Milic-Emili could detect the flow-volume shape in association with the 

NEP method qualitatively (60) and SEFV curve concavity in patients with a high percentage 

of tidal volume exhibiting flow-limitation monitored according to NEP; two-thirds of the 

patients with SEFV curve concavity have been reported with >50% of tidal volume 

exhibiting flow-limitation, and half of the patients showing concavity had >70% of tidal 

volume exhibiting flow limitation. 

In our study, 14 of 17 COPD patients performed a value of RAR <0.5 before peak 

exercise.  Althought, five subjects with low FEV1 did not show substantial concavity in their 

SEFV curve.  None of the normal subjects had the RAR smoothed curve drop below 0.5 at 

any point of exercise.  Comparing an age-matched control group, we demonstrated the real 

difference considering the possibility that the normally occurring decrease in elastic recoil 

with ageing might be associated with these configuration changes.  

There is, however, a wide range of subjects who achieved ‘minimal’ RAR at peak exercise in 

the COPD group, and it is worthwhile to consider possible mechanisms of concavity that 

might lead to this variability.  Several factors might be crucial to lead to concavity of the 

SEFV curve.  Rapid drop in expiratory flow rate can cause concavity in the flow-volume loop 

demonstrating dynamic airway compression (23,29,33).  Rapid and shallow breathing 

adopted by COPD patients augments the drop in expiratory flow rate, which is at a frequency 

that limits effective ventilation to lung compartments with short time constants.  Our data 

support the observation of Morris et al. (58), that as maxV&  rises during exercise, there is a shift 

of the position of the maxV&  to move in earlier position in the expired volume.  High 
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intrathoracic pressures achieved during expiration might lead to gas compression and a result 

of dynamic airway compression (24).  Futhermore, gas compression might occur in the 

presence of expiratory flow limitation (24, 28).  An increasing role of active expiration in 

moderate to severe COPD patients and the configurational changes might also be consistent.  

Further studies are warranted to determine the relative contribution of these potential 

mechanisms. 

One of the critical development tasks for this analysis was the “breath cycle 

determination” algorithm.  Using a slightly negative threshold is valuable to eliminate the 

influence of noisy flow signal toward the end of expiration.  Post-detection visual inspection 

of approximately 14,000 flow-volume loops demonstrated that using a slightly negative flow 

threshold to detect the beginning and end of expiration we achieved a low false positive and 

false negative rate in determining both inspirations and expirations.  This finding suggests 

that in subsequent studies, visual confirmation of accuracy of breath detection by this 

algorithm will not be needed.  

Accurate determination of the anchoring points (maxV&  and EEV& ) has a potential 

limitation of RAR measurement technique because of noise in the expiratory flow signal.  

Breath-by-breath physiologic changes in the exhalation can be other possible reasons for the 

variability in RAR, which results inaccuracy of concavity or convexity of the expiratory limb 

of SEFV curve.   Furthermore, we observed that the configuration of SEFV curve sometimes 

varies considerably between subsequent breaths that might lead to errors in determining the 

critical anchoring points for the calculation of RAR.  Interestingly, the breath-to-breath 

variability was generally greater in healthy subjects than in COPD patients.  We suppose that 

part of this variability might come from random changes in compliance or vibrations within 

the airways that is less characteristic in COPD.  Additionally, the SEFV curve adopts more 

convex configuration in healthy subjects (58), from which it is more difficult to separate the 

intrabreath peak- and end-expiratory flow, leading to variability in RAR calculations. In order 

to minimize the effect of breath-by-breath variability, we smoothed the breath-by-breath data 

using a single component exponential smoothing method (61) which allowed characterization 

of trends. Another way of diminishing the effect of breath-to-breath configuration changes of 

the SEFV curve would be to average several consecutive breaths and calculate the RAR 

based on the averaged curves. A third way of dealing with this variability would be to 

exclude from further analysis RAR values that were outliers from the general trend.  These 

methods might be explored in future studies. 
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In summary, the training study supports the concept that in-center high intensity 

supervised rehabilitation programs can be more effective as shown by physiologic evidence 

of improved exercise tolerance than home-based unsupervised programs, while some of the 

measured physiologic variables did not achieve statistical significance.  We could not 

demonstrate difference in effectiveness of interval training as compared with constant work 

rate training with similar total work per session. The interval training might have a greater 

training effect presumably because of the higher muscle tension during the exercise periods. 

In future studies other interval work rate strategies might be found, which might be more 

effective.  In theory interval training has less load for the pulmonary vasculature (especially 

important in pulmonary hypertension), and patients can tolerate more easally this training 

modality (62). 

According to exercise intolerance, flow limitation, the quantification of concavity of 

the expiratory limb of the SEFV curve by means of calculation of the RAR breath-by-breath 

seems to be a valuable method for assessing development of EFL in COPD patients.  The 

shape change of the loops develops as a consquence of progressively active expiration and 

dynamic airway compression.  Hence, the measurement of RAR seems to have clinical 

importance in routine assessment of progressive flow limitation in COPD and may show a 

factor to critical ventilatory limitation and dyspnea.  Further studies are needed to compare 

the results of this breath-by-breath quantification with other methods of EFL determination 

such as the NEP method and the forced oscillation technique.   Further research is also 

needed to explore the validity and reliability of this method in stratification of COPD patients 

across the total range of disease severity.  There might be an association between dynamic 

hyperinflation measurement and the observed SEFV configuration changes.   
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Tables 

Table 1. Demographic characteristics of Study I participants 

 

 Supervised 

continuous (C) group 

(n=22) 

Supervised interval (I) 

group 

(n=17) 

Self-paced (S) group 

(n=32) 

Age (year) 61 ± 12 67 ± 10 60 ± 12 

Height (cm) 167 ± 7 166 ± 7 168 ± 6 

Body weight (kg) 73 ± 12 67 ±10 71 ± 12 

BMI (kg/m2) 26 ± 4 25 ± 4 25 ± 4 

Male:Female 19:3 11:6 25:7 

Mean±SD;  BMI: body mass index 
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Table 2. Resting lung function and blood gases before and after rehabilitation in Study I 

 

Mean±SD; FEV1: forced expiratory volume in one second; FVC: forced vital capacity; TLC: 
total lung capacity; FRC: functional residual capacity; RV: residual volume; DLCO: diffusion 
capacity of carbon monoxide; PaO2: arterial partial O2 pressure; PaCO2: arterial partial CO2 
pressure. 

 

 

 

Supervised continuous 

(C) group (n=22) 

Supervised interval (I) 

group (n=17) 

Self-paced (S) group 

(n=32) 

Lung function 

Before 

training 

After 

training 

Before 

training 

After 

training 

Before 

training 

After 

training 

FEV1 (liter)   1.5 ± 0.5   1.5 ± 0.5   1.7 ± 0.7   1.8 ± 0.7   1.5 ± 0.5   1.5 ± 0.5 

FEV1 (%pred)   51 ± 16   52 ± 17   64 ± 29   66 ± 23   52 ± 16   52 ± 17 

FVC (liter)   2.9  0.8   3.0 ± 0.8   3.0 ± 0.7   3.1 ± 0.8   3.0 ± 0.7   3.0 ± 0.7 

FVC (%pred)   82 ± 17   82 ± 15   90 ± 23   93 ± 22   84 ± 17   86 ± 19 

FEV1/FVC (%)   50 ± 12   49 ± 12   57 ± 17   57 ± 16   50 ± 13   49 ± 12 

TLC (%pred) 110 ± 16 110 ± 17 116 ± 13 111 ± 21 119 ± 16 117 ± 21 

FRC (%pred) 136 ± 33 139 ± 34 147 ± 33 140 ± 39 157 ± 30 153 ± 40 

RV (%pred) 164 ± 48 160 ± 42 171 ± 53 149 ± 46 179 ± 44 176 ± 52 

RV/TLC (%)   54 ± 10   52 ± 10   54 ± 13 48 ± 7   56 ± 11   55 ± 10 

DLCO (%pred)   67 ± 17   69 ± 20   67 ± 26   65 ± 13   62 ± 26   63 ± 21 

PaO2rest (mmHg)      65 ± 8      64 ± 6      67 ± 7   73 ± 15 66 ± 7 65 ± 7 

PaCO2rest (mmHg) 43 ± 4      42 ± 4      42 ± 7 39 ± 5 42 ± 5 43 ± 6 
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Table 3. Exercise testing results before and after rehabilitation in Study I 

  Supervised continuous (C) group Supervised Interval (I) group Self-paced (S) group 

  Before training After training Before training After training Before training After training 

2VO&  (Liter/min) 1.17±0.40 1.27±0.40*  1.10±0.31 1.18±0.36* 1.12±0.37 1.17±0.35 

EV&  (Liter/min)   51 ± 17   51 ± 16   46 ± 11   49 ± 14   48 ± 12    47 ± 11 

f (breath/min)   45 ± 7   41 ± 7*   44 ± 6   42 ± 7   44 ± 6   41 ± 7* 

HR (beat/min) 138 ± 26 133 ± 22 130 ± 17 129 ± 36 139 ± 24 138 ± 22 

SpO2 (%)   93 ± 2   94 ± 2   92 ± 6   94 ± 2   92 ± 2   92 ± 4 

EV& / 2VCO&    40 ± 5   37 ± 4   39 ± 5   38 ± 4   43 ± 10   41 ± 7 

EV& /MVV (%)   90 ± 24   89 ± 22   68 ± 29   76 ± 24   85 ± 19   83 ± 22 

PaO2 (mmHg)   71 ± 10   70 ± 10   67 ± 7   70 ± 10   68 ± 8   68 ± 8 

PaCO2 (mmHg)   43 ± 6   44 ± 7   42 ± 7   42 ± 5   44 ± 5   43 ± 6 

Borg (dyspnoea)  6.4 ± 2.5  5.7 ± 2.7  6.6 ± 2.2   6.0 ± 2.1  7.4 ± 1.8 6.7 ± 2.5 

 

 

 

Peak 

Borg (leg fatigue)  6.2 ± 2.9  5.9 ± 3.1  6.9 ± 2.2  6.1 ± 2.5  6.6 ± 2.3 6.3 ± 2.6 

2VO&  (Liter/min) 0.82±0.22 0.92±0.24* 0.83±0.29 0.96±0.28* 0.84±0.25 0.91±0.25 

EV&  (Liter/min)   32 ± 7   36 ± 7   32 ± 8   35 ± 9   33 ± 7   36 ± 7 

f (breath/min)   27 ± 5   27 ± 6   29 ± 6   30 ± 5   26 ± 4   27 ± 4 

HR (beat/min) 119 ± 23 111 ± 23 110 ± 19 114 ± 18 120 ± 20 121 ± 19 

SpO2 (%)   93 ± 2   94 ± 2   94 ± 2   93 ± 6   93 ± 2   93 ± 4 

 

 

LAT 

EV& / 2VCO&    41 ± 6   38 ± 11   41 ± 5   40 ± 6   43 ± 10   43 ± 8 

2VO&  (Liter/min) 1.14±0.37  1.15±0.35 1.07±0.26 1.06±0.34 1.10±0.35 1.11±0.33 

EV&  (Liter/min)   48 ± 16   46 ± 16   42 ± 10   42 ± 14   45 ± 10   44 ± 10 

f (breath/min)  33 ± 6   30 ± 6*   33 ± 7   31 ± 7   31 ± 6   31 ± 7 

HR (beat/min) 139 ± 24 130 ± 19 127 ± 17 125 ± 20 136 ± 23 133 ± 21 

SpO2 (%)   93 ± 3   93 ± 3   93 ± 3   92 ± 5   92 ± 3   92 ± 4 

 

 

Isotime 

EV& / 2VCO&    41 ± 6   38 ± 5*   38 ± 7   41 ± 8   41 ± 8   41 ± 7  

Mean±SD, *p<0.05; 2VO& : oxygen uptake; EV& : minute ventilation; f: breathing rate; HR: heart rate; SpO2: oxygen saturation; EV& / 2VCO& : 

ventilatory equivalent; MVV= FEV1x40: maximal voluntary ventilation; LAT: lactate anaerobic threshold. 
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Table 4. Demographic and pulmonary function characteristics of Study II subjects 

 Healthy  

(n=12) 

COPD  

(n=17) 

Age (years) 60± 9 63±10 

Height (cm) 169±9 169±10 

Weight (kg) 74±15 77±12 

FEV1 (L) 3.1±0.8 1.1±0.5* 

FEV1 %pred. 104±13 39±12* 

FVC (L) 4.0±1.0 2.8±1.1* 

FVC  %pred. 103±14 77±20* 

FEV1/FVC% 77±4 40±7* 

MVV (L) 123.5±31.1 43.7±18.9* 

PEF (L/s) 7.6±1.9 3.3±0.9* 

TLC (L) 6.3±1.3 7.1±2.1 

TLC %Pred. 108±12.9 113±17.8 

FRC (L) 3.2±0.7 4.8±1.5* 

FRC %Pred. 104±23.1 146±29.4* 

RV (L) 2.3±0.5 3.8±1.4* 

RV %Pred. 107±16.8 163±46.8* 

Mean±SD, * P<0.05; %pred values in pulmonary function were calculated according to 

NHANES III standard38. FEV1: forced expiratory volume in the 1st second; FVC: forced vital 

capacity; MVV: maximum voluntary ventilation (FEV1 X 40)40; PEF: peak expiratory flow; 

TLC: total lung capacity; FRC: functional residual capacity; RV: residual volume.  
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Table 5. Exercise tolerance and end-exercise ventilatory characterization (Mean ± SD) in 

Study II. 

 

 Healthy  

(n=12) 

COPD  

(n=17) 

Peak WR (Watts) 145±38 68±35* 

2peakVO&  (L/min) 1.75±0.49 1.14±0.37* 

EV& peak (L/min) 66±19 40±14* 

EV& peak/MVV (%) 54±8 95±21* 

VT (L) at end-exercise 2.1±0.54 1.2±0.38* 

RAR at end-exercise 0.61±0.05 0.46±0.06* 

 

Mean±SD; * P<0.05; Peak WR: peak work rate in the incremental test; 2peakVO& : peak oxygen 

uptake at end exercise; EV& peak : peak minute ventilation; EV& /MVV : ratio of peak minute 

ventilation and maximal voluntary ventilation (MVV=FEV1*40) 40; RAR: rectangular area 

ratio; VT: tidal volume.  
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Figure legends for Study I 

 

Figure 1: Flow of participants through each study stage. 

 

Figure 2: Change in peak oxygen uptake (2VO& ), the lactic acidosis threshold (LAT) and 

peak work rate as a result of training in the three training groups.  

*p<0.05 vs. self-paced training, errors bars represent ±SE  

 

Figure 3: Change in isotime responses as a result of training during an incremental 

exercise test in the three training groups. EV& , minute ventilation; f, respiratory rate; HR, 

heart rate; EV& / 2VCO& , ventilatory equivalent for carbon dioxide.  

*:p<0.05 vs. supervised continuous training, #:p<0.05 vs. self-paced training, error bars 

represents ±SE. 
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Figure 1.   

 

 

 

79 screened patients: 

8 excluded: - 1 psychiatric disease  
      - 4 ischemic heart disease       
      - 3 exercise limiting joint disease 

Unsupervised training 
group (n=32) 

Supervised training 
group (n=39) 

Home-based, self 
paced training 

High intensity, 
continuous training 

(n=22) 

Interval training 

(n=17) 

 30 minutes period of cycling for 2 minutes 
at 90% followed by 1 minute at 50% peak 
work rate, with 7.5 min warm-up and cool-
down phase at 50 % of peak work rate, 3 
times/week, 4 out of 17 patients for the 
first 9 sessions performed 70% intensity 

and 40% intensity phase then followed the 
protocol 

 
45 minutes walking or cycling or 

climbing on stairs, target 
duration was 30 minutes at start 
and it increased to 45 minutes 

Average duration: 30 ± 
6 minutes and average 
sessions/week: 3.5 ± 

0.2 

45 min cycling of 80 % peak work 
rate, 3 times/week, 7 out of 22 

patients allowed break sessions in 
every 10 minutes for 9 sessions 
(these patients started 65%peak 

work rate) then followed the 
protocol 

3 of 17 performed 
fewer sessions than 

the target (20 
instead of 24) 

5 of 22 performed 
fewer sessions than 

the target (20 
instead of 24) 
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Figure 2. 

 



 

 

44

 

Figure 3. 
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Figure legends for Study II: 

 

Figure 4.   Progression of the spontaneous flow-volume (SEFV) curve configuration during 

incremental exercise.  Top row: a healthy individual (FEV1=3.7 L, 81% predicted). Bottom 

row: a severe COPD patient (FEV1=1.0 L, 29% predicted). The shaded portion is the area 

used to calculate the rectangular area ratio (RAR); the triangle bounded by the dotted line, 

using the peak expiratory flow (maxV& ) and the end expiratory flow (EEV& ) as anchor points, 

represents a RAR of 0.5, demonstrating no curvature. The healthy individual has a RAR that 

remains above 0.5, indicating SEFV curves with consistently convex profiles at all exercise 

levels. The COPD patient displays a declining RAR that achieves a minimum of 0.34 at peak 

exercise, indicating a markedly concave SEFV curve configuration as exercise progresses. 

Note that both the normal individual and the COPD patient increase intrabreath maxV&  and  

EEV&  with progression of exercise and that the position of maxV&  stays in the middle segment of 

the tidal volume in the healthy subject, while remaining within the first quarter of expiration 

in the COPD patient.  PWR: peak work rate, WR: work rate, VE: minute ventilation, MVV: 

maximal voluntary ventilation calculated as FEV1*40. 

Figure 5.  Breath by breath time course (open circles) of rectangular area ratio (RAR), peak 

expiratory flow ( maxV& ) and end-expiratory flow (EEV& ) during an incremental exercise test. The 

boldface lines represent smoothed data (exponential method 61). Note that the ordinate scales 

for maxV&  and EEV&  are different in order to better represent the changes.  Panel A: a healthy 

person (51 yrs, female, FEV1: 2.72 L (98% predicted)).  Panel B: a COPD patient (66 yrs, 

male, FEV1: 1.02 L (29% predicted)).  
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Figure 6.  Rectangular area ratio (RAR) responses occurring at rest and as exercise limitation 

is approached during incremental exercise in healthy individuals (n=12, open circles) and 

COPD patients (n=17, closed circles).  The abscissa presents mean VE/MVV at rest and at 6, 

4, 2 and 0 minutes prior to end-exercise from left to right, respectively. RAR values of COPD 

patients are lower at rest and at all phases of exercise as compared to normal, non-obstructed 

subjects (repeated measures ANOVA P<0.01). The RAR is significantly less than at rest 

starting 4 minutes before end-exercise (repeated measures ANOVA P<0.01). In normal 

subjects, RAR is significantly higher than at rest starting two minutes prior to end of exercise 

(repeated measures ANOVA P<0.01). The index of ventilatory limitation (VE/MVV x 100) 

approaches a value of 100% in the COPD patients but not in the healthy individuals.  
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Figure 4  
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Figure 5/A 
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Figure 5/B 
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