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1. Introduction 

 

Oxygenated volatile organic compounds (OVOCs) are important constituents of the 

atmosphere. They include, e.g., aliphatic alcohols, aldehydes, ketones, and organic acids. In 

the free troposphere, the abundance of OVOCs is higher than that of the non-methane 

hydrocarbons and their overall reactivity with OH is comparable with that of methane, in 

contrast that methane is present in much higher concentration. Degradation of OVOCs in the 

atmosphere takes place via the reaction with OH radicals and, in the case of photochemically 

active molecules, via photolysis. Free radicals are formed in the photooxidative degradations 

of the oxygen-containing organics which basically determine the oxidative capacity of the 

atmosphere, the transformation of nitrogen oxides and the concentration of OH radicals and 

tropospheric ozone. Ozone is the third most important greenhouse gas in the atmosphere, it is 

one of the toxic components of urban smog and so it is related to such grave environmental 

problems as global warming and the quality of air. OVOCs have both natural and 

anthropogenic sources (vegetation, industry, traffic) and are formed in a great part via the 

oxidation of hydrocarbons in the atmosphere. 

All organics that I have selected for reaction kinetics and photochemical studies 

contain the carbonyl, C=O, group. The presence of a carbonyl group significantly affects the 

reactivity leading to reduced or even increased reactivity toward OH radicals depending on 

the position of the carbonyl group and other substituents in the molecules. Characteristic for 

several of the carbonyl molecules is that they absorb light and undergo photochemical 

reactions at relatively long wavelengths, already in the actinic region (λ > 290 nm), thus they 

are photochemically active in the troposphere. 

The following reactions are subjects of my PhD work: 
 

OH + CH3C(O)OH (d0-AA) → products   k1   (1) 

OH + CH3C(O)OD (d1-AA) → products   k2   (2) 

OH + CD3C(O)OH (d3-AA) → products   k3   (3) 

OH + CD3C(O)OD (d4-AA) → products   k4   (4) 

OH + CH3C(O)CH2CH3 (MEK) → products   k5   (5) 

CH3C(O)C(O)CH2CH3 (2,3PD) + hν → products σ2,3PD, J2,3PD, Φ2,3PD  (6) 

OH + CH3C(O)C(O)CH2CH3 (2,3PD) → products  k7   (7) 

HOCH2CHO (GA) + hν → products    JGA   (8) 
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Reaction rate constants, k1-k5 and k7, photolysis quantum yields, Φ2,3PD, and photolysis 

rate constants, J2,3PD and JGA were determined. Absorption cross sections of 2,3PD, σ2,3PD, as a 

function of wavelength (λ) were also measured. Determination of rate constants for the OH 

reactions allowed to assess reactivity – molecular structure relationships and to estimate the 

atmospheric lifetimes of the studied OVOCs with respect to their OH reactions. The 

determined photochemical parameters have provided insight into the photochemistry of 

carbonyl molecules in general, and allowed to estimate the photolysis lifetime of the studied 

photochemically active organics. Both the determined reaction kinetic and photochemical data 

can be used as input parameters for atmospheric modelling studies. 

I have done my PhD research in the framework of a French-Hungarian “Agreement 

Pursuant to a Co-Tutorial Thesis” signed between the University of Lille and the University 

of Szeged. The experiments were carried out both in France (Ecole des Mines de Douai) and 

in Hungary (Chemical Research Center, Budapest) by making use of the different 

experimental techniques that are available at the two research sites. 

 

 

2. Experimental 

 

I have carried out reaction kinetic and photochemical investigations applying several 

experimental techniques and procedures that are essentially complementary to each other. 

The relative rate (RR) method was used to determine rate constants, for reaction       

(1) - (4) and (7). Application of the RR method involves the measurement of the rate of 

consumption of the studied reactant simultaneously with that of a reference compound, the 

rate constant for which is accurately known. In this way, rate constant ratios are obtained that 

are converted to absolute values by taking rate constants for the reference reactions from the 

literature. The experiments were carried out both in a ~ 250 L Teflon-bag reactor and a 10 L 

Pyrex bulb at atmospheric pressure in air using the photooxidation of methyl nitrite 

(CH3ONO) as the source of OH radicals. The concentration depletion of the reactants and 

reference compounds were measured by gas-chromatographic (GC) analysis using flame 

ionisation detection (FID). 

The direct discharge flow (DF) method was applied to determine absolute rate 

constant for reactions (5) and (7). This technique allows the investigation of elementary 

reactions at the ms time scale by direct observation of atoms and free radicals. The main part 
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of the kinetic apparatus is a flow reactor equipped with a movable injector. The OH radicals 

were produced inside the injector by reacting H atoms with NO2; H atoms were obtained by 

microwave discharge. The reactants were highly diluted in He and were introduced through a 

side arm at the upper end of the reactor. The reaction time is set by the linear flow rate and the 

distance between the tip of the injector and the detection block. OH radicals were monitored 

at the end of the flow tube by using the sensitive and selective detection method of resonance 

fluorescence (RF). The RF lamp used for OH detection was a quartz tube operated by 

microwave discharge of flowing H2O vapour in argon. The experiments were carried out 

under pseudo-first-order condition, that is, in high excess of the reactants over [OH]. 

The absorption spectrum of 2,3PD, was determined by using a home-built single-path 

UV / Vis spectrophotometer. The measured absorbencies were converted to absorption cross 

section, σ2,3PD(λ), by employing the Beer-Lambert law. 

The photolysis rate constants, (‘photolysis frequencies’) of 2,3PD, J2,3PD, were 

determined in air, at 254 and 312 nm wavelengths in the Teflon-bag reactor using fluorescent 

lamps for irradiation. The consumption of 2,3PD was measured as a function of reaction time 

using GC-FID. The photolysis frequencies of 2,3PD were made independent of the photon 

fluxes by means of NO2- and acetone actinometry. In this way, effective quantum yields, 

Φ
eff

2,3PD, could be derived for the non-monochromatic light sources. 

Determination of Φ2,3PD with pulsed laser photolysis (PLP) was achieved by 

performing the irradiations with a XeF exciplex laser (λ = 351 nm) in a cylindrical quartz cell 

(QR). The reaction mixture, beside 2,3PD, contained a GC internal standard and air. Samples 

were taken at regular time intervals with a gas-tight syringe and the concentrations measured 

by the GC. The number of laser shots (the reaction time) was recorded and the laser energy 

per pulse was measured. The quantum yield was calculated by the concentration depletion of 

2,3PD and the absorbed laser energy. 

The error limits given in this Summary and throughout my Thesis designate 1σ 

statistical uncertainty, unless otherwise stated.  
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3. Results 

 

3.1. OH reaction kinetics of acetic acid and deuterated acetic acids 

 

Rate constant for the reactions of OH radicals with acetic acid (1) and its deuterated 

variants (2, 3, 4) have been determined by using the relative rate (RR) kinetic method. The 

experiments were performed in the Teflon-bag reactor (RR-TR experiments) at T = 300 ± 2 K 

in atmospheric pressure air. In the relative-rate measurements rate constant ratios are 

determined by comparing the rate of loss of the substrate studied to that of the reference 

compounds, the rate constant of which is known or determined by independent direct kinetic 

studies. Specifically for the reaction of OH with acetic acid, the following reaction 

competition was applied:  

 

OH + CH3C(O)OH (d0-AA) → products (1) (studied reaction) 

OH + CH3OH            → products (22) (reference reaction) 

 

Provided that neither the substrate d0-AA, nor the reference CH3OH are lost by reactions 

other than (1) and (22) and they are not reformed in the reaction system, the following 

expression is obtained by integration: 

 

ln{[ d0-AA] 0 / [d0-AA] t} = (k1 / k22) × ln{[CH3OH]0 / [CH3OH]t}  (Eq. 1) 

 

where [d0-AA] 0, [d0-AA] t, [CH3OH]0, and [CH3OH]t are the concentrations at time zero and  

t, respectively. The following reference reactants were used for the other acetic acid reactions: 

OH + d1-AA (2): CD3OD, OH + d3-AA (3): CH3OH, OH + d4-AA (4): CD3OD.  
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Figure 1: Typical relative rate plots. Squares: d0-AA (CH3C(O)OH), circles: d3-AA 
(CD3C(O)OH). The data for CH3C(O)OH have been shifted by 0.2 for clarity. The rate 
constant ratios k1 / k22 and k3 / k22 have been obtained as the slopes of the straight lines. 
 

The determined rate constant ratios have been converted to absolute values by taking the rate 

constant of the reference reactions from the literature. The following results have been 

obtained: k1(OH + d0-AA) = (6.3 ± 0.9), k2(OH + d1-AA) = (1.5 ± 0.3), k3(OH + d3-AA) = (6.3 

± 0.9) and k4(OH + d4-AA) = (0.90 ± 0.1) all given in 10-13 cm3 molecule-1 s-1 (T = 300 ± 2 K).  

 

 

3.2. OH reaction kinetics of methyl-ethyl-ketone 

 

The reaction OH + MEK (5) was studied by using the direct DF-RF method (T = 297 

± 3 K, p = 3.17 ± 0.08 mbar He). The experiments were carried out under pseudo-first-order 

conditions with high excess of methyl-ethyl-ketone concentration over that of OH,        

[MEK] >> [OH] 0. In this way, due to the high sensitivity and selectivity of OH detection, 

reaction (5) could be studied essentially in isolation from the interferring parallel and 

consecutive reactions. Under the plug-flow conditions of the fast DF technique, the reaction 

time is given simply as the ratio of the varied reaction distance and the linear flow rate,           

t = z / v . Accordingly, the experimental observables were evaluated by equations (2 - 4): 
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) / (   ln w
OH
off νzkS =−        (Eq. 4) 

 

where OH
on S  and OH

offS  are the amplitudes of the OH RF signals in the presence and absence of 

MEK, respectively. k5’ is the pseudo-first-order rate constant. Even under the applied pseudo-

first-order conditions the heterogeneous loss of OH took place, the rate constant of which, kw, 

could be determined in the absence of MEK according to Eq. 4.  

 

Figure 2: DF-RF kinetic plots used to obtain rate constant for the reaction OH + MEK (5). On 
the left hand side, typical semi-logarithmic OH decays are presented (cf. Eq. 2). The pseudo-
first-order plot on the right hand side provides k5, as slope of the straight line (cf. Eq. 3).  
 

The following rate constant has been proposed by the DF-RF investigation:  

 

k5 (297 K) = (1.09 ± 0.09) × 10-12 cm3 molecule-1 s-1. 

 

The reaction of MEK with OH, together with the rate constant that I have determined by the 

direct DF method, have been utilized in relative-rate studies of the OH + 2,3PD (7) reaction 

(see below). 

 

 

3.3. Reaction kinetic and photochemical study of 2,3-pentanedione 

 

The most detailed investigations have been performed with 2,3PD, which belongs to 

the important family of α-dicarbonyls. OH reaction rate constants (k7), absorption cross 

sections (σ2,3PD), photolysis frequencies (J2,3PD) and quantum yields (Φ2,3PD) were determined.  
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OH reaction kinetics. Both direct (DF-RF) and relative rate (RR) experimental 

techniques were used to determine the rate constant for the overall reaction OH + 2,3 PD (7). 

The DF-RF experiments were carried out at T = 300 ± 3 K reaction temperature and   

p = 2.49 ± 0.03 mbar He pressure. The experiments were conducted and the evaluations were 

carried out by using the usual pseudo-first-order conditions and evaluation scheme (Section 

3.2). Consumption of OH on the walls of the reactor was somewhat higher than usual in DF 

experiments, but the pseudo-first-order plots provided good straight lines. The following rate 

constant was determined in the DF-RF study: k7(300 K) = (2.25 ± 0.12) × 10-12 cm3 

molecule-1 s-1, given with 1σ statistical uncertainty. 

The RR studies were carried out both in the collapsible Teflon-bag reactor (RR-TR 

experiments) and the Pyrex reactor (RR-PR experiments) at T = 300 ± 2 K, and T = 302 ± 4 

K, respectively, in atmospheric pressure synthetic air. 2,3PD was found to photolyse slowly at 

the wavelengths used to produce the OH radicals (362 and 365 nm). The significance of 

photolysis was quantified by separate experiments in the absence of the OH radical source, 

methyl nitrite, and was taken into account as minor correction in the RR kinetic equations 

(Eq. 1). The following reference reactions were used: RR-TR, OH + MEK (5) and OH + 

C2H5OH (24); RR-PR, OH + MEK (5). The RR plots, similar to those shown in Figure 1, 

have obeyed straight lines providing rate constants relative to the reference reactions.         

The k-ratios were put on the absolute scale by taking evaluated kinetic data form the literature 

with the results of k7 = (1.95 ± 0.17), (2.50 ± 0.23) (RR-TR) and (2.06 ± 0.17) (RR-PR) given 

in 10-12 cm3 molecule-1 s-1.  

The good agreement lends credence to the reliability of the results that were obtained from 

independent measurements using different experimental techniques. The recommended rate 

constant for the reaction of OH radicals with 2,3PD is the non-weighted average of the k7 

determinations (the error is the estimated overall uncertainty proposed as 1σ):  

 

k7(300 K) = (2.19 ± 0.22) × 10-12 cm3 molecule-1 s-1. 
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Photochemical study of 2,3PD. As a first step, the absorption spectrum of 2,3PD was 

determined: the wavelength dependent cross sections, σ2,3PD(λ), were obtained from 

absorption measurements using the home-constructed gas spectrophotometer and evaluating 

the data by the Beer-Lambert law.  

 

Figure 3: Absorption spectrum of 2,3PD in the gas phase. Designated are also the 
wavelengths where the photochemical and kinetic experiments were carried out. 

 

Photolysis studies of 2,3PD were carried out by employing pulsed laser photolysis 

(PLP-QR) at λ = 351 nm and also stationer photolysis (SP-TR) with fluorescent lamps 

emitting at λ = 254 and 312 nm wavelengths, in a quartz cylindrical cell and the collapsible 

Teflon chamber, respectively.  

In the PLP-QR experiments the photolysis quantum yield (QY), Φ2,3PD(351 nm), was 

determined (T = 300 ± 2 K, p = 1000 mbar air). The concentration of 2,3PD was measured by 

GC analysis before photolysis, [2,3PD]0, and after n laser shots, [2,3PD]n. QY was obtained 

by applying equation 5: 

 

ln([2,3PD]n / [2,3PD]0) =  –  C × Φ2,3PD(351 nm) × (n × E)    (Eq. 5) 

 

where E is the laser energy per pulse and C is a constant containing known parameters such as 

the optical path length, σ2,3PD(λ), etc. A plot of ln([2,3PD]n / [2,3PD]0) versus n × E has 

provided a straight line, and the photolysis quantum yield of Φ2,3PD(351 nm) = 0.11 ± 0.01 

was obtained from the slope (Eq. 5).  
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In the SP-TR continuous-photolysis experiments performed with fluorescent lamps, 

the photolysis rate constants (“photolysis frequencies”) were determined. The concentration 

depletion of 2,3PD was found of single-exponential by GC measurements providing the 

photolysis rate constants as decay constants: J2,3PD (254 nm) = 4.60 ± 0.09 and J2,3PD (312 nm) 

= 1.40 ± 0.03, all in 10-5 s-1. The photolysis rate constants have been normalized for the 

different photon fluxes by using NO2- or acetone actinometry. The J2,3PD values normalized to 

the actinometry photolysis frequencies were used to determine an “integral” or “effective” 

quantum yield, Φ2,3PD
eff, for the photolysis of 2,3PD by taking into account the emission 

spectra of the fluorescent lamps. 

 

Table 1. Summary of photolysis quantum yields for 2,3-pentanedione 

Φ2,3PD
eff (254 nm)a 

Φ2,3PD
eff (312 nm)b 

Φ2,3PD (351 nm) 

0.29 ± 0.01 0.41 ± 0.02 0.11 ± 0.01 
a Acetone actinometry. b NO2 actinometry.  

 

 

3.4. Photolysis study of glycolaldehyde 

 

These experiments were performed in the Teflon-bag reactor at T = 300 ± 2 K, in 

atmospheric pressure air using 312 nm fluorescent tubes for irradiation; only a few 

experiments were carried out. 

The consumption of glycolaldehyde, (GA), was monitored as a function of reaction 

time using HPLC analysis. Single-exponential time behaviour was observed with the 

photolysis rate constant of JGA(300K) = (1.48 ± 0.05) × 10-4 s-1.  

Formaldehyde and methanol were indentified as primary photolysis products, but their 

yields (ΓHCHO and ΓCH3OH) could be determined only with large uncertainty: ΓHCHO = 10.4 – 

26.7 % and ΓCH3OH = 1.8 – 8.7 %.  
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4. New scientific results 

 

1. The rate constant of k5(297 K) = (1.09 ± 0.09) × 10-12 cm3 molecule-1 s-1 has been 

determined for the reaction of OH radicals with methyl-ethyl-ketone (MEK) by using the 

direct, low-pressure, fast discharge flow (DF) technique coupled with resonance fluorescence 

(RF) detection of OH [1]. This is the first rate constant for reaction (5) determined with the 

thermal DF-RF method: previous experiments applied photolytic techniques. Conversely, the 

obtained k5 value is in good agreement with the literature recommendations, thus it has 

become one of the best known kinetic parameters. 

 

2. Relative rate (RR) experiments were carried out in a Teflon chamber to determine rate 

constants for the reactions: OH + CH3C(O)OH (d0-AA) (1), OH + CH3C(O)OD (d1-AA) (2), 

OH + CD3C(O)OH (d3-AA) (3), and OH + CD3C(O)OD (d4-AA) (4) [2]. While, the rate 

constants k1, k3, and k4 agree well with most of the literature data, the measured k2(OH + d1-

AA) = (1.5 ± 0.3) × 10-13 cm3 molecule-1 s-1 is the first kinetic result for reaction (2). The rate 

constants display characteristic differences depending on the site of the D-substitution in the 

molecules: k1 ≈ k3 >> k4 and k2 ≥ k4 (T = 300 K). These results show a significant primary 

deuterium isotope effect, and confirm that it is the acidic H-atom which is abstracted 

preferentially in the reaction of OH with acetic acid. It is contrary that the O-H bond has 

higher dissociation energy compared with that of the (H2)C-H bond. By the kinetic results of 

the current work, the group rate constant of kCD3 = 1.13 × 10-13 cm3 molecule-1 s-1 is proposed 

for use in the estimations of OH reaction rate constants.  

 

3. Rate constant for the reaction OH + CH3C(O)C(O)CH2CH3 (2,3PD) (7) has been 

determined the first time. Both relative and direct kinetic measurements of k7 were carried 

out. Altogether 4 types of experiments were performed at two research sites, comprising the 

wide pressure range of ~ 2 mbar and ~ 1000 mbar. The RR and DF kinetic studies have 

provided rate constants in good agreement with each other: the proposed average value is 

k7(300 K) = (2.19 ± 0.22) × 10-12 cm3 molecule-1 s-1. The determined k7 implies significant 

enhanced reactivity. The relatively high rate constant is attributed to the presence of the CH2 

group in β-position to one of the carbonyl groups in the 2,3PD molecule. To account for the 

activating effect of vicinal carbonyl groups, the F(–C(O)C(O)-) = 1.55 value is recommended 

for use in group additivity estimations of OH reaction rate constants [4]. 
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4. The gas phase absorption spectrum of 2,3PD has been determined to extend well into the 

visible region. It is characterized by two wide absorption bands resembling the spectrum of 

the lower homolog α-diketone, 2,3-butanedione (biacetyl) [4]. 

 

5. Pulsed laser photolysis (PLP, 351 nm) and continuous photolysis (SP, 254, 312 nm) were 

applied to determine quantum yields (QY), (Φ2,3PD) for 2,3-pentanedione. Surprisingly high 

QYs were obtained at the longer wavelengths, but only in poor agreement with each other [4]. 

The average value of Φ2,3PD ≈ 0.3 is proposed over the wavelength range ~ 310 – 360 nm. All 

three wavelengths represent sufficient energy to initiate photodissociation processes via C-C 

bond rupture: the formation of acyl radicals have been validated by product studies. No gas-

phase photochemical study of 2,3PD has been reported previously.  

 

6. The determined reaction rate constants and photochemical parameters allow the estimation 

of the tropospheric lifetimes of the studied molecules. The following lifetimes are estimated 

with respect to the OH reactions: τOH(acetic acid) = 18 days, τOH(MEK) = 11 days, and 

τOH(2,3PD) = 5.3 days. Although the exact value is still quite uncertain, it is proposed that 

atmospheric removal of 2,3PD occurs predominantly through photolysis with the short 

tropospheric lifetime of τphot(2,3PD) < 1 hour [4]. 
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