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1. Bevezetés

A disszertacioban fiiggetlen és azonos eloszlasu valtozok segitségével felirt bizonyos
empirikus folyamatok aszimptotikus viselkedését vizsgaljuk. A legtobb esetben az app-
roximéacios modszert fogjuk alkalmazni. Ez azt jelenti, a vizsgélt empirikus folyamatot
és egy alkalmas Gauss folyamat reprezentansait egy kényelmes valasztott valdszintiségi
mezén konstrualjuk meg, méghozz4 oly médon, hogy az empirikus folyamat és a Gauss
folyamatok tavolsaga nullahoz konvergaljon, amint a mintaméret megy a végtelenbe.
Ezaltal az alkalmazott Gauss folyamat segitségével tanulmanyozhatjuk a vizsgalt em-
pirikus folyamat aszimptotikus viselkedését.

A disszertacioban empirikus folyamatoknak két tipusat vizsgaljuk. A 3. fejezetben a
paraméteres eloszlédscsaladokon definialt becsiilt paraméteres empirikus folyamat para-
méteres bootstrap és nemparaméteres bootstrap valtozatat tanulméanyozzuk. A fejezet
{6 célja gyenge approximaciot bizonyitani a folyamatokra, és azaltal belatni, hogy azok
konvergalnak eloszlasban. Ezutan ismertetiink egy algoritmust, melynek segitségével
Osszetett illeszkedési hipotéziseket tesztelhetiink. A modszer gyakorlati alkalmazasat
egy szimuléciés tanulményon mutatjuk be.

A 4. fejezetben a nemnegativ értéki valosziniiségi valtozok valoszintiségi genera-
torfiiggvényével definidlt empirikus folyamatokat tanulmanyozunk. Célunk egy olyan
elméleti hattér kidolgozasa, melynek segitségével hatékonyan vizsgalhatjuk ezen folya-
matokat. Ennek segitségével bebizonyitunk egy erGs approximacios tételt és egy iteralt
logaritmustételt az empirikus generator folyamatra és derivaltjaira. Tovabba, definialni
fogjuk a valosziniiségi generator folyamat bootstrap és becsiilt paraméteres valtozatait,
melyek alkalmazasaval konfidencia sdvot szerkeszthetiink az ismeretlen valdsziniiségi
generatorfiiggvényhez, illetve Osszetett illeszkedési hipotéziseket tesztelhetiink.

A 2. fejezetben néhany sziikséges technikai eszkozt vezetiink be. Ismertetjiik a
KMT approximacio6 legfontosabb eredményeit, bebizonyitunk egy elméleti hattértételt
a bootstrap moddszerre, valamint kiterjesztjiik a véges intervallumon tekintett szto-
chasztikus integral fogalméat a valos egyenesen értelmezett sztochasztikus integralra.

A szerz6 harom cikket jegyez a disszertacio téméjaban. Sziics (2008) tartalmazza a
becsiilt paraméteres empirikus folyamat paraméteres bootstrap valtozatanak konver-
genciajat. A kapcsolatos tétel a nemparaméteres bootstrap folyamatra és a bemutatott
szimulacios tanulmany a téméaja egy elfogadott dolgozatnak, hivatkozasért lasd Sziics
(2077). Végiil, Sziics (2005) tartalmazza a valoszintségi generator folyamatokra vonat-
koz6 eredményeket arra az esetre, amikor a hattérvaltozdé nemnegativ egész értéki. Az
eredmények altalanositasa tetszdéleges nemnegativ értéki valtozora még nem publikalt.

2. Néhany alapvet6 fogalom

A fejezetben harom elméleti fogalmat mutatunk be. Az els§ a fiiggetlen és a [0,1]
intervallumon egyenletes eloszlasu Uy, . . ., U, valtozok alapjan felirt 5,(u), 0 <u <1,
egyenletes empirikus folyamatra vonatkozd6 KMT approximaci6. Eszerint egy alkalma-
san valasztott valészintiségi mezén a valtozok definidlhatoak olyan moédon, hogy Brown



hidaknak egy alkalmas By, By, ... sorozatara

sup | By (u) — By (u)| = (’)(n’l/2 logn) , n— oo, m.b. (1)
0<u<1
A konstrukcié Komlos Janostol, Major Pétertsl és Tusnady Gabortol szarmazik, és
alapvets lesz a munkink sorén.

A masodik eszktz Efron bootstrap modszere, melynek segitségével megbecsiilhetjiik
egy n elemi mintéara felirt 7, statisztika eloszlasat. Vegyiik észre, hogy ilyen becslés a
szokasos statisztikai technikdkkal nem adhato, ugyanis egyetlen minta birtokdban a 7,
valtozora csupan egy megfigyelés 4ll rendekésiinkre. A bootstrap alapotlete az, hogy
ha a mintaclemek ismeretlen F(z) eloszlasfiiggvényét egy F,(x), = € R, fiiggvénnyel

becsiiljiik, és tekintiink az eredeti mintara nézve feltételesen fiiggetlen X7,,..., X
valtozokat, melyek feltételes eloszlasfiiggvénye F),, akkor Tonn = T (XS oo, X0 )

eloszlasa ,hasonlit” 7, eloszlasdhoz. Elméleti szamitasok vagy Monte Carlo szimulacio
réven 7, . eloszlasa tetszGleges pontossaggal megkaphato, és ezaltal egy jobb vagy
rosszabb becslést nyerhetiink 7,, eloszlasara.

Munkank soran a bootstrap technika két valtozatat alkalmazzuk, a paraméteres és
a nemparameéteres bootstrapet. A nemparaméteres esetben F, az X1,..., X, valtozok
empirikus eloszlasfiiggvénye, tehat a bootstrap mintat visszatevéses mintavételezéssel
kapjuk az eredeti megfigyelésekbdl. A paraméteres bootstrap csak akkor alkalmazhato,
ha az X; megfigyelések eloszlasfiiggvénye egy F'(x,0), 0 € ©, paraméteres eloszlascsalad
F(z,0y) eleme, z € R. Ekkor, a 6, paraméter egy 0,, becslését tekintve, a paraméteres
bootstrap mintat tgy definidljuk, mint feltételesen fiiggetlen véletlen valtozokat kdzos
F(z, én) feltételes eloszlasfiiggvénnyel.

Végiil, ki kell terjeszteniink a véges intervallumon értelmezett lokalisan négyzetesen
integralhaté martingalokra vett sztochasztikus integralt az egész valds egyenesen vett
sztochasztikus integralra. Bizonyitunk egy allitast az integral létezésére, és leirjuk az
olyan folyamatok eloszlasat, melyek bizonyos kétvaltozos fliggvényeknek a standard
Wiener folyamatra vett integraljaként allnak eld.

3. Bootstrap paraméterbecsiilt empirikus folyamatok

Bevezetés és el6zmények

Tekintsiik eloszlasoknak egy F = {F(z,0):x € R, € © C R} csaladjat, valamint
X1, Xo, ... fliggetlen valtozokat kozos F'(x, 0y), x€R, eloszlasfiiggvénnyel, ,€0. Jellje
F,.(z), z€R, a sorozat elsé n elemének, mint mintanak az empirikus eloszlasfiiggvényét,
és legyen 6, a 0, paraméter becslése. Ekkor a becsiilt paraméteres empirikus folyamat

n(z) =n'?[F,(2) — F(x,0,)], z€R. (2)

Mi6ta Durbin (1973) bebizonyitotta, hogy &, (x) gyengén konvergal egy G(z), = € R,
Gauss folyamathoz, amint a mintaméret tart a végtelenbe, a becsiilt paraméteres empi-
rikus folyamat széles kdrben hasznélt eszkz Osszetett illeszkedési hipotézisek tesztelé-
sére. Sajnos a folyamatra épiil§ statisztikai modszerek altaladban nem eloszlasmentesek,



és a kapcsolatos kritikus értékeket nem lehet elméleti iton meghatarozni. Szerencsére
ezen nehézségek kikiiszobolhetGek bootstrap modszer alkalmazasaval.
Tekintsiink X7, ,..., X} . bootstrap mintaelemeket az X, ..., X,, megfigyelések-
re nézve. Legyen F;  (7), x €R, a bootstrap valtozok empirikus eloszlasfiiggvénye, és
legyen 0 paraméterbecslés a bootstrap mintaelemek segitségével. A bootstrap becsiilt
paraméteres empirikus folyamat a bootstrap mintaelemekre felirt becsiilt paraméteres
empirikus folyamat, tehat

Q@) =02 [Fy (@)= F(2,607)],  wz€R.
A folyamatra a &;, , jelolést hasznaljuk a paraméteres és a a;, , jelolést a nempara-
méteres bootstrap esetben. A bootstrap alkalmazasdnak motivacioja az az otlet, hogy
ha &y, . és/vagy a;, . eloszlasban konvergdl ugyanazon hatarfolyamathoz, mint d,
akkor egy 9(d,) statisztika kritikus értékei becsiilhetéek, mint a kapcsolatos ¢(4y, )
és/vagy ¥(a;,, ) funkciondl empirikus kvantilisei. Stute et al. (1993), és ett6l az ered-
ménytdl fiiggetleniil, Babu és Rao (2004) bizonyitotta &, , gyenge konvergencidjat
az m, = n esetben folytonos eloszlascsaladokra, tehat ekkor a paraméteres bootstrap
alkalmazhato. Ezzel szemben Babu és Rao ramutatott, hogy az &;, ,, folyamat nem
konvergal eloszlasban, ugyanis bias korrekciora van sziikség

Feltevések és eredmények

Tekintsiik az F = {F(z,0) : 7 € R,0 € © C R} eloszlascsalddot, és legyen 6, egy
rogzitett és 0=(01), ..., 0\D) egy tetszoleges vektor a © halmazban. Legyen X, X, . ..
és Y7, Ys, ... fiiggetlen és azonos eloszlasu valtozoknak sorozatai rendre F'(x,6)) és
F(x,0) eloszlasfiiggvénnyel, = € R. Tekintsiink egy

statisztikat, mint az altalanos 6 paraméter becslését, és legyen énzﬁn(Xl, o X)) a by
paraméter becslése a Xq,..., X, minta alapjan. Legyen m,, a bootstrap mintaméret,
és legyen éj; és 02*; paraméterbecslés a parameéteres illetve a nemparaméteres bootstrap
minta alapjan. A vektorokat sorvektorként értelmezziik, tovabba rendre V7 és V(*)
jeloli a V' vektor transzponaltjat és k. komponensét.

Feltevések. A {6 eredményekben a kovetkezd feltevéseket fogjuk alkalmazni.
(al) A parcialis derivaltak

0 0
VQF(Z',G) = <WF<I,9), Cey WF(.I’,Q))

vektora létezik minden (z,0) €R x A pontban, ahol AC© a 6, pont egy megfelels
kornyezete.

(a2) VoF(z,0) egyenletesen konvergal a VoF'(z,6y), v €R, fiiggvényhez, amint 6 — 6.
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(al0)
(all)

(al2)

(al3)

(al4)
(alb)

(al6)

VoF(x,00), x € R, korlatos.

Létezik 1(0y) : R — R? és ¢, (6p) : R® — R? Borel mérhets fiiggvény, melyre
. 1 <&
en—eo = E;l(XZ,e(])—Fnl/Q&“n(eo) m.b.,

ahol ,(0p) = e, (X1, ..., Xy, 00).

Létezik [:Rx A —R? és ¢, : R" x A—R? Borel mérheté fiiggvény, hogy tetszéleges
0 € A esetén

1 n
— _ — . 71/2 . .
0, ein E 1(Y;,0)4+n""<,(0) m.b.,

i=1

ahol €,(0) =¢,(Y1,...,Y,,0).

Létezik Borel mérhetd fiiggvény €,,.,(6) : R™™ — RY, melyre

B R 1 m 1 n
Or— 0, =— > UX],.00)— - ; I(Xi,600)+m Y2e,.(00)  as.

m“
=1
ahol [ az (a4) pontban definialt fiiggvény, X7 ,..., X  anemparaméteres boot-
strap minta, és €,,,(00) = emn (X1, Xo, X700y, X0, 00).
El(X;,00) = 0.
E(Y;,0) =0 tetszoleges 6 € A esetén.

M(0y) = E1(X;,00)T1(X;,00) véges pozitiv szemidefinit matrix.
M(0)=E(Y;,0)T1(Y;,0) véges pozitiv szemidefinit matrix minden 6 € A esetén.
Az M(0), 0 € A, fiiggvény folytonos a 6§, pontban.

Az l(z,0y), z€R, vektorfiiggvény komponensei korlatos valtozasuak minden véges
intervallumon.

l[(x,0) egyenletesen konvergal az I(x,0y), x € R, fliggvényhez minden véges inter-
vallumon, amint 6 — 6.

en(bo) = 0.
em (0,) -5 0.

Emn(00) — 0.



Jegyezziik meg, hogy Burke, Csorgd, Csorgs és Révész (1979) bizonyitott egy gyen-
ge approximacios tételt az &, folyamatra. Megmutattak, hogy ha az (al)—(ad), (a7),
(a9), (al2) és (ald) feltetelek teljesiilnek, akkor létezik az X, Xo, ... valtozoknak olyan
reprezentacidja, valamint a G folyamatnak olyan G4, G,, ... masolatai, hogy

sup‘dn(x)—Gn(w)}LO, n—o0. (3)
z€R

Ebbél az eredménybdl azonnal kévetkezik az &, folyamat gyenge konvergencidja a G
folyamathoz. A hatarfolyamat Gauss és

G(z) = B(F(z,600)) — [/Rl(x, 00) dB(F(x,00)) | VoF (z,60)" reR, (4

alakban irhato fel, ahol B(u), 0 < u <1, egy Brown hid. A bootstrappelt empirikus
folyamatok teriiletén elért fontosabb eredményinket az aldbbi tételek a tartalmazzak.
A 3.2. Tétel foglalkozik a paraméteres bootstrap esettel, és a 3.3. Tétel sz6l a nempa-
raméteres valtozatrol.

3.2. Tétel. Teqyiik fel, hogy a bootstrap mintaméretre m,, — oo, tovdbbd teqyiik fel,
hogy az F eloszliscsaldd, a 0y régzitett paraméter és az alkalmazott paraméterbecsld
eljdrds kielégiti az (al)-(a3), (a5), (a8), (a10)-(al5) feltevéseket. Ekkor, eqy alkalmas
valdsziniségi mezdn, konstrudlhatoak X; és X, 9, 0 € ©, 1 =1,2,..., vdltozok rendre
F(x,00) illetve F(x,0) eloszldsfiggvénnyel, valamint definidlhaté Brown hidaknak egy
By, By, ... sorozata gy, hogy az X1, X1 9, X2, Xoyg, ... vdltozok figgetlenek minden 0
esetén, és az

(X7

1,no

X)) = (Xg e X6, n=12,...

) Mn,0n )

paraméteres bootstrap minta alapjdn felirt &, ., paraméteres bootstrap becsilt paramé-
teres empirikus folyamat teljesiti a

sup |as, (2) = G, (2)] 0, n— oo,
zeR
approzimdciot, ahol a G1,Gs, ... sorozatot a (4) formuldval definidljuk a By, Bs, . ..

hidak alkalmazdsdval.

3.3. Tétel. Teqyiik fel, hogy a bootstrap mintaméretre m,, — oo, €és teqyiik fel, hogy
az F eloszldscsaldd, a 0y rogzitett paraméter és az alkalmazott paraméterbecsld eljdards
kielégiti az (al)-(a4), (a6), (a7), (a9), (a12), (al4) és (al6) feltevéseket. Egy alkal-

mas valdszintségi mezdn definidlhatdak figgetlen X1, Xo, ... vdltozok F(x,0y) eloszlds-
figguénnyel, tovdabbd ezekhez kapcsolddo X7, ..., X}, ., n=12,..., nemparaméteres
bootstrap mintaelemek, valamint Brown hidaknak eqy By, Bs, ... sorozata olyan maodon,
hogy az &y, nemparaméteres bootstrap becsiilt paraméteres empirikus folyamatra
mp\ /2

sup | &, ,(7) — (—) () — G, () LO, n— oo,

zeR ’ n
ahol &, a becsilt paraméteres empirikus folyamat, és a G1,Gs,... sorozatot a (4)
formulaval definidljuk a By, B, ... hidak alkalmazdsdval.



Mivel a GG,,,, folyamat eloszlasa minden n esetén megegyezik G eloszlasaval, azonnal
adodik a 3.2. és a 3.3. Tétel alabbi kovetkezménye.

3.4. Kovetkezmény. A 3.2. és a 3.3. Tétel feltételei mellett

1/2
& (z) & & (x)—(%> an(z), z€R,

Mp,N My N n

gyengén konvergdl a G(x), v € R, folyamathoz a D[—o0, o0] térben.

A tételek bizonyitasahoz két dolgozatbol meritettiink otleteket. A véletlen elemek
konstrukcioja Csorgs és Mason (1989) modszerére épiil, t6liikk szarmazik az 6tlet, hogy
az eredeti és a bootstrap mintaelemeket két KMT mez6 szorzatan reprezentaljuk. Sze-
rencsére ez a megoldés nem igényel semmilyen regularitési feltételt. Emellett alkalmaz-
tuk a Burke, Csorgs, Csorgs és Révész (1979) altal a nem bootstrappelt &, folyamatra
kidolgozott approximécios technikat, ahonnan megorokoltiik a (3) eredmény feltételeit
is a modszerrel egyiitt. Nevezetesen, meg kell kévetelniink a VyF(z,0) fliiggvény léte-
zését és simasigat a 6y pont egy kérnyezetében, valamint feltevéseket kell tenniink az
alkalmazott paraméterbecsld eljarés regularitasdra a ¢y pontban. A nemparaméteres
bootstrap esetben nincs is sziikség sokkal tobb feltevésre, csupan a é;; bootstrap becs-
lésre kell egy olyan Osszeg reprezentaciot adnunk, mint ami mér a rendelkezéstinkre
all a nem bootstrappelt esetben. Ezzel szemben a paraméteres bootstrap esetben a
bootstrappelt minta az F(x,én), r € R, eloszlasbol jon, és emiatt a paraméterbecsld
eljarasra tett feltevéseket ki kell terjeszteniink a 6y pont egy kornyezetére. Végigtekint-
ve a témaval foglalkozo korabbi cikkeket azt latjuk, hogy Stute et al. (1993) és Babu
és Rao (2004) hasonlo feltevésekkel dolgozott.

A bootstrap algoritmus

Tekintsiink X1, ..., X, fiiggetlen és azonos eloszlasu véletlen valtozokat ismeretlen
F(z), z € R, eloszlasfiiggvénnyel, és tekintsiik az

F={F(z,0):z€R,0 €0 CR’}

eloszlascsaladot egy 6, : R™ — © paraméterbecsld statisztikaval. Ebben a kdrnyezetben
a minta illeszkedése az F csalddhoz, tehat a Hg : F' € F null-hipotézis tesztelhetd egy
n = (&) teszt statisztika alkalmazasaval. Ttt &, a becsiilt paraméteres empirikus
folyamat, és 1) a D[—o0, c0] fiiggvénytéren értelmezett valos értéki funkcional, mely
kielégit bizonyos tovabbi feltételeket. Mivel &, eloszlasban konvergél a G folyamathoz,
a ¢ = 1(G) valtozod elméleti kvantilisei alkalmazhatoak, mint aszimptotikusan helyes
kritikus értékek a 1), statisztikara.

Ahogyan azt mar lattuk a fejezet bevezetésében, a legfébb nehézség az, hogy a
limeszvaltozd kvantiliseit nem tudjuk elméleti iton meghatirozni. Szerencsére, ha az
F eloszlascsalad és a 6, becslé modszer kielégiti a 3.2. és/vagy a 3.3. Tétel feltevéseit,
tovabba a 1) funkcional teljesit bizonyos tovabbi feltételeket, amiket nem részleteziink,
akkor a

@ijrﬁ“n = w(d;knn,n) éS ¢:r?f,n = ¢ <d:(nn,n - (mn/n)l/Qd/n>



paraméteres és nemparaméteres funkcional eloszlasban konvergdal a ¢ véltozohoz, és a
limeszvaltozo (1 —«) kvantilise becsiilhets a

c;p(a):inf{xER:P(w*p <z|Xiy,...,X,) Zl—a}

My, N —

kvantilissel a paraméteres bootstrap, és a

(o) = inf {m eR: PP <wx|Xiy,...,X,)> 1—&}
kvantilissel a nemparaméteres bootstrap esetben. A gondolatmenet eredményeként az
alabbi bootstrap tesztel6 algoritmus kapjuk.

1. Hatarozzuk meg a én becslést az X, ..., X,, mintaelemek alapjan.
2. Hatarozzuk meg a 1), teszt statisztika értékét.

3. Generaljunk X7, ..., X},  fliggetlen paraméteres vagy nemparaméteres boot-

strap megfigyeléseket rendre F'(z, én) vagy F,(z) eloszlasfiiggvénnyel.

4. Hatéarozzuk meg a é; vagy a 5; becslést a bootstrap minta alapjan.

5. Hatérozzuk meg a ;P . vagy a ¢'? bootstrap statisztika értékét.

6. Ismételjiik meg a 3.-5. 1épést R alkalommal, és legyen ¢ | <--- <) pa ¢pP

mMn,MN
vagy a ¢, valtozo megfigyelt értékeibdl képzett rendezett minta.

7. Legyen ¢, , a ¢  vagy a ;" valtozd (1—«) rendid empirikus kvantilise,

mn,n mn,n

tehat, az [R(1 —«)]-dik legnagyobb elem a rendezett mintédban.

8. Vessiik el a Hy null-hipotézist, ha 1, nagyobb, mint c;, .

A 3.4. fejezetben megmutatjuk, hogy a bootstrap alkalmazhato a vizsgalt empirikus
folyamatok Kolmogorov—-Szmirnov tipusi szuprémum funkcionéljaira. A 3.5. fejezetben
megvizsgiljuk a tételek regularitéasi feltételeit, és bebizonyitjuk, hogy ezen feltételek
teljesiilnek a Poisson és a normalis eloszlasra és a maximum likelihood becslésre. Hogy
bemutassuk a bootstrap technikat egy gyakorlati alkalmazéason keresztiil, az utolsod
fejezetben ismertetjiik egy szimulacioés tanulmany eredményeit. A paraméteres és a
nemparaméteres bootstrap alkalmazéasaval teszteljiik negativ binomiélis mintak illesz-
kedését a Poisson csaladhoz, valamint lokacié és skala kontaminalt normalis valtozok
illeszkedését a normalis eloszlashoz.



4. Empirikus val6szintiségi generator folyamatok

Bevezetés és el6zmények

Legyen X, X1, X5, ... nemnegativ értéki fiiggetlen és azonos eloszlasi valoszintiségi
valtozo F(x), x € R, eloszlasfiiggvénnyel, és legyen

g(t) = Bt = /

n
t*dF(z)  és gn(t):thXj, 0<t<l1,
R N
az els6 n elem valoszintiségi generatorfiiggvénye és a generatorfiiggvény empirikus val-
tozata. A fejezetben a 0° szimbo6lum 1-nek van definidlva, ugyanis sziikségiink lesz a t®
fiiggvénynek az x valtozoban vald folytonossagéra. Ekkor az empirikus valdszintiségi
generator folyamat

T(t) =n'?[g.(t) —g®)], 0<t<1.

A generatorfiiggvények hasznalata statisztikai problémak megoldésara nem 1j otlet,
a karakterisztikus és a momentumgeneral6 fiiggvényen alapulé hasonlo transzformalt
folyamatok ismertek. (Példaul, Csorgs (1981) és Csorgd, Csorgs, Horvath és Mason
(1986).) Ezen modszerek elméleti alapja az, hogy bizonyos feltételek teljesiilése esetén
a transzformalt folyamatok eloszlasban konvergalnak valamilyen fiiggvénytéren. A va-
l6szintiségi generator folyamat esetében Rémillard és Theodorescu (2000) mondta ki,
hogy 7, eloszlasban konvergal a C0,1] téren a

Y(t):/Rt”dB(F(x)), 0<t<1,

folyamathoz tetszéleges nemnegativ egész értékid X valtozora. Sajnos a bizonyitasukba
belecstszott egy hiba, de az alapétlet jo, és a bizonyitas javithato.

A fejezet célja kidolgozni egy olyan altalanos és rugalmas eszkoztarat, melynek
segitségével vizsgalhatjuk az empirikus generator folyamat és derivaltjai, valamint a
bootstrap és/vagy becsiilt paraméteres valtozatok aszimptotikus viselkedését. Az ered-
mények abban az értelemben is altalanosak, hogy nem csak az egész értékd esetben
alkalmazhatoak, hanem tetszéleges nemnegativ értéki valtozora.

Altalanositott valészintiségi generator folyamatok

A 4.2. fejezetben olyan folyamatokat vizsgalunk, melyeket az

[r(t):/Rx(a:—l)---(x—r#—l)tm_rdK(x)

integral definial, ahol a K(x) fiiggvény elGall egy lokalisan négyzetesen integralhato
M (z) martingal és egy A(x) korlatos valtozasu folyamat Osszegeként, x € R. Emellett
feltessziik, hogy M és A eltlinik a (—o00,0) negativ félegyenesen, és a folyamatoknak
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cadlag trajektoriai vannak. A 4.2., 4.3. és 4.8. Allitasban megmutatjuk, hogy bizonyos
feltételek mellett az I, folyamat definialt a (—1,1] intervallum valamely [a, b] részhal-
mazain. Az altalanos rész f6 eredménye a 4.7. és a 4.9. Tétel. Ezekben az I, folyamatra
vonatkozo egyenlGtlenségeket bizonyitunk

sup [Y;(t)] < C'sup [K(z)] (5)

a<t<b Tz€R

alakban, ahol C'=C(r,a,b) a K folyamattol fiiggetlen konstans.

Ezen altalanos eredmények alkalmazasaiban a K folyamat az X, ..., X, valtozok
altal meghatéarozott valamilyen empirikus tipusi folyamatot (empirikus vagy elméleti
eloszlasfiiggvényt, bootstrappelt és/vagy becsiilt paraméteres empirikus folyamatot)
fog jelolni. Mivel a feltevések szerint a minta egy nemnegativ értékd eloszlasbol jon,
a kapcsolatos empirikus tipust folyamatok kielégitik a K folyamatra tett feltevéseket.
Ezaltal a K folyamatra meglevs eredményeket alkalmazva a (5) egyenl6tlenség felhasz-
nalasaval képesek lesziink konvergenciat és approximéacioét bizonyitani az I, folyamatra.

Az empirikus generator folyamat elemi tulajdonsagai

A 4.3. fejezetben megmutatjuk, hogy a -, generator folyamat r. derivéiltja

A (t) = nt/? [gg') (t)—g" (t)} = /Rx(x —1) - (z—r+Dt* " day(x)

alakban irhato fel, r=0,1, ..., ahol gr(f) és ') az empirikus és az elméleti valoszintségi
generatorfiiggvény r. derivaltja, tovabba «a,(x), x € R, az Xi,..., X,, minta alapjan

felirt empirikus folyamat. Emellett definialjuk az
Y, (t) = / z(x—1)--(x—r+1)t""dB(F(z))
R

folyamatot, ahol B a Brown hid. A 4.10. Allitasban megmutatjuk, hogy ”yr(f) folytonos
és az Y, folyamatnak létezik mintafolytonos modifikacioja az [a, b] intervallumain, ahol
[a, b] valaszthato gy, mint

o [e,1—¢] tetszileges 0 < e < 1/2 értékkel barmely nemnegativ értékd X valtozora;
o [—7,7] tetszbleges 0 < 7 < 1 értékkel, ha X nemnegativ egész értékd valtozo;
e [0,1], ha X nemmnegativ egész értéki és r = 0.

A 4.11. fejezetben belatjuk, hogy Y.(t), a<t<b, Gauss folyamat nulla varhato érték-
kel és folytonos kovariancia fliggvénnyel. Tsirel’son egy, a normalis eloszlasi valtozok
szuprémumara vonatkozo tételének alkalmazasaval bizonyitjuk, hogy a folyamat

S, = sup |Y,(¢)], St=sup Y,(t) & S =— inf Y,(¢) (6)

r
a<z<b a<x<b a<z<b
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Kolmogorov—-Szmirnov tipusi funkcionéljainak eloszlasfiiggvénye abszolat folytonos a
(0, 00) porzitiv félegyenesen, és a kapcsolatos stirtiségfiiggvény korlatos minden [s, 0o),
s>0, részintervallumon. Emellett az Y, folyamat Karhunen-Loéve sorfejtését hasznalva
megmutatjuk, hogy az

[ vewa %

Cramér-von Mises tipusiu integralfunkciondl abszolit folytonos, és stiriiségfiiggvénye
korlatos a valds egyenesen.

Aszimptotikus eredmények az empirikus generator folyamatra

Mint azt kordbban méar emlitettiik, Rémillard és Theodorescu (2000) megmutatta,
hogy 7, eloszlasban konvergal az Y folyamathoz tetsz6leges nemnegativ egész értéki
valtozo esetén, de van egy kisebb hiba a bizonyitdsban. Mindazonéltal az alapotletiik
érdekes, és a 4.5. fejezetben sikeriil kijavitanunk a bizonyitast. Ehez tekintiink egy W
fiiggvényt, mely a D[0,1] tér egy Dy alterén van definidlva, és a C[0,1] téren veszi fel
értékeit olyan modon, hogy teljesiil a v, =V (5,) és a Y =V(B) azonossag, ahol 5, egy
egyenletes empirikus folyamat és B egy Brown hid. Megmutatjuk, hogy ¥ mérhets a
Szkorohod topologiara nézve, és folytonos a DyNC0,1] halmaz elemein a szuprémum
metrikiban. Mivel 3, eloszlasban konvergal a B folyamathoz, és a Brown hid egy
valosziniiséggel a DoNC[0,1] halmazba esik, kapjuk ¥(/3,) gyenge konvergenciajat a
U(B) folyamathoz, amint n tart a végtelenbe.

Az empirikus valoszintiségi generator folyamattal kapcsolatban a {6 eredményiink a
kovetkezd erds approximacio. Megjegyezziik, hogy ez a tétel és a kovetkez6 eredmények
nem csak egész értékd, hanem tetszéleges nemnegativ értéki valtozora teljesiilnek.

4.18. Tétel. Tekintsik egqy tetszdleges nemnegativ értékd X véletlen vdltozo F(x),
r € R, eloszldsfiigguényét. Eqy alkalmas valdsziniségr mezdn definidlhato X1, X, ...
figgetlen vdltozo F' eloszldsfigguénnyel, valamint az Y, folyamat Y, 1,Y, o, ... mdsolatai
olyan maodon, hogy

sup ‘%Y) (t) —Ym(t)’ = (’)(n_l/2 logn)

a<t<b
teljesil majdnem biztosan, amint n — oo.

A tételben szerepld véletlen elemeket a 2. fejezetben ismertetett KMT mez6 egyen-
letes eloszlasi véletlen valtozoinak és Brown hidjainak segitségével definidljuk. Ezutan
az approximaciot az (1) konvergencia és az (5) egyenlStlenség segitségével bizonyit-
juk. Ehhez hasonl6 médon, Chung iteralt logaritmustételébdl kapjuk meg a kovetkezd
iteralt logaritmustételt a generdtor folyamat derivaltjaira.

4.23. Tétel. Tetszdleges nemnegativ értéki X valtozo esetén

I SUPg<i<b ‘%g) ()] C
im sup

b,
s (loglogn)i2 — 212

ahol a C'=C(a,b,r) pozitiv konstans nem figg X eloszldsdtol.
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A 4.23. Tétel kdvetkezményeként kapjuk, hogy a g, empirikus generatorfiiggvény
r. derivaltja egyenletesen konvergal az elméleti generatorfiiggvény r. derivaltjahoz,
tovabba konvergenciasebességet is tudunk bizonyitani. Kapjuk, hogy

sup |90 (t)— g (1) = O ( —1/2( 10glogn)1/2>

a<t<b

majdnem biztosan, amint n — oc.

A KMT approximacionak van egy fontos kovetkezménye a 3, empirikus folyamat
bizonyos funkcionaljaira. Komlos, Major és Tusnady (1975) megmutatta, hogy ha a 1)
funkcional a D[0,1] téren van értelmezve, rendelkezik a Lipschitz tulajdonsaggal, vala-
mint ¢ (B) abszolut folytonos korlatos stirtiségfiiggvénnyel, akkor ¢(3,,) eloszlasfiiggve-
nye egyenletesen és O(n~"/?logn) sebességgel konvergal 1)(B) eloszlasfiiggvényéhez. A
bizonyitasuk Otleteit és az (5) egyenlétlenséget felhasznélva kapjuk a kovetkezs tételt
az empirikus valdszintiségi generator folyamat funkcionaljaira.

4.20. Tétel. Tekintsiink tetszdleges nemnegativ értékd X wdltozot, és legyen ¢ olyan
funkciondl a Cla,b] téren, mely rendelkezik a Lipschitz tulajdonsdggal, tehdt

|[(h1) —p(ha)| < M sup |hy(u)—ho(u)|, hi, hy € Cla,b],

a<u<b

egy M pozitiv konstanssal. Ha az ¥ (Y,) vdltozo eloszldsfiggvénye abszolit folytonos
korldtos sdriségfiggvénnyel egy [s,00), s € R, intervallumon, akkor

sup
r>s

P(zp(fyff)) <xz)—P(p(Y;) gx)‘ :C’)(n’l/Qlogn) , n— o0o.

Jegyezziik meg, hogy (6) szerint ez az eredmény alkalmazhaté a generator folyamat
szuprémum funkcionaljaira. Tovabbé, néhany ponton valtoztatva a bizonyitas menetén
megmutatjuk, hogy a 77(17") (), a<t<b, folyamat négyzetintegraljanak eloszlasfiiggvénye
konvergal a (7) valtozo eloszlasfiiggvényéhez.

Finkelstein (1971) egyik ismert és szép eredménye, hogy a 3, empirikus folyamat
legfeljebb 0 valoszintiséggel konvergal a D][0,1] térben, amint n tart a végtelenbe. Ez
azért van, mert a folyamat relativ kompakt Cg limeszhalmazzal, ahol C's azon he DJ[0,1]
fiiggvények halmaza, melyek abszolit folytonosak, elttinnek a 0 és az 1 pontban, és a
Lebesgue mértékre vett A'(u), 0 <u <1, Radon-Nikodym derivéltjukra

/01 (R (u))* du<1.

A kovetkezd eredmény az allitja, hogy az empirikus valosziniiségi generator folyamat-
nak hasonlé az aszimptotikus viselkedése.

4(2)5. Tétel. Tetszdleges nemnegativ értékid X wvdltozo és r = 0,1,... egész esetén a

' (t), a <t <b, folyamat relativ kompakt a Cla,b] térben, és a limeszpontok halmaza

Cla,b] :{/R:z:(w—l)---(x—r+1)tx_rdh(F($)) ,aStSb:hECB}.
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A bootstrap generator folyamat és konfidenciasavok

A 4.8. fejezetben az empirikus valoszintiségi generator folyamat bootstrap valtoza-
tat vizsgaljuk. Tekintsiink fiiggetlen nemnegativ értékid X, Xs, ... valtozokat F(x),
z € R, eloszlasfiiggvénnyel, tovabba Xy, ,..., X Efron tipusi, tehat nemparamé-
teres bootstrap mintat az Xy, ..., X,, megfigyelésekre nézve. Definidljuk az empirikus
valoszintiségi generatorfiiggvény bootstrap valtozatat a

1 o= x:
A ==) i <t<b
gmn,n<) TL; ) a1 )

formulaval, és tekintsiik a

Yem®) =n"[gr () —ga(t)], a<t<b,

bootstrap empirikus valészintiségi generator folyamatot. Alkalmazva Csorgs és Mason
(1989) a klasszikus bootstrap empirikus folyamatra vonatkozd approximécios tételét a
kovetkezd eredményt kapjuk.

4.26. Tétel. Tekintsik egy tetszdleges nemnegativ értéki véletlen vdltozd F(x), x €R,
eloszldsfiigguényét, és tegyiik fel, hogy létezik Cy és Cy pozitiv konstans, hogy

C1 <my/n<Cy, n=12,...
Ekkor eqy megfelelden gazdag valdsziniségi mezdn definidlhatunk X1, Xo, ... fiiggetlen
véletlen wvdltozdkat F eloszldsfiggvénnyel, és X7 ,,..., X}, ., n=12,..., bootstrap
mintaelemeket, és az Y, folyamat Y'Y, ... reprezentdsait olyan mddon, hogy
sup (77,00 (8) = ¥, (8)] = O (max{i(my), 1(m)})

ahol 1(n) = n~"*(logn)'/?(loglog n)/*.

A tétel egy érdekes alkalmazésa, hogy egy Xy, ..., X, minta alapjan aszimptotiku-
san korrekt konfidenciasavot konstrudlhatunk az ismeretlen g valdszintiségi generator
fiiggvényre. Ez azt jelenti, hogy egy adott 0 < o < 1 mellett definidlhatunk egy ¢, («),
n=1,2,..., sorozatot olyan médon, hogy

P(gn(t) —en(a) < g(t) < gult) +enla),a <t < b) Sl-a

teljesiiljon, amint az n mintaméret tart a végtelenbe.

Becsiilt paraméteres valészintiségi generator folyamatok

A 2. fejezetben ismertettiink egy bootstrap algoritmus, mellyel tesztelhetjiik fiig-
getlen és azonos eloszlésti valtozok illeszkedését egy F = {F(x,0),x € R,0 € © C RY}
paraméteres eloszlascsaladhoz. Sajnos léteznek olyan csaladok, melyek F'(z, 0) paramé-
teres eloszlésfiiggvénye nem irhato fel egyszert alakban, és ematt nehéz az &, becsiilt
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paraméteres empirikus folyamatot és a kapcsolatos bootstrap folyamatokat alkalmazni.
Ezzel szemben, sok esetben a valdsziniiségi generatorfiiggvény kezelhets. Ez az észre-
vétel vezérel minket arra, hogy definidljuk a valoszintiségi generator folyamat becsiilt
paraméteres valtozatat.

Tegyiik fel, hogy F csak nemnegativ értéki eloszlasokat tartalmaz, és tekintsiik a

g(t,&):/tzdF(x,Q), ad<t<lt, 0€0O,
R

paraméteres generatorfiiggvényt, ahol a’ és b’ alkalmas konstans. Tovabba, tekintsiink
fiiggetlen Xy, Xo, ... valtozokat kozos F(z,6y), © € R, eloszlasfiiggvénnyel, ahol 6§, € O,
és legyen 0, a paraméter becslése az els§ n megfigyelést alapul véve. Ha g, jeldli
az empirikus generatorfiiggvényt, akkor a becsiilt paraméteres empirikus valészintiségi
generator folyamat a

An(t) = nl/? [gn(t) —g(t, 9n)} = / t* dév, (), a <t<V,
R

formulaval definidlhato. Emellett, a (4) formula G(z), x €R, Gauss folyamataval legyen

Y(t):/t“dG(:c), o <t<U.
R

P

paraméteres empirikus folyamatra, melyet a (3) formuldban ismertettiink. Ennek al-
kalmazasaval megkonstrualhatjuk az X, sorozat egy reprezentansat, valamint az Y

folyamat Vi, Ys, ... masolatait olyan moédon, hogy teljesiiljon a
sup Hn(t)—f/n(t)‘ i)O, n— oo,
0<t<l1

gyenge approximaci6. Ez az eredmény a 4.29. Tétel, mely a (3) approximéacio felté-
telei, valamint bizonyos, a VyF(z,0) fiiggvény aszimptotikus viselkedésére vonatkozo
tovabbi feltevések teljesiilése esetén &ll fenn.

Fontos észrevenni, hogy a 4, folyamat gyakorlati alkalmazasa egy tjabb nehézség-
hez vezethet. Mint azt mar korabban elmondtuk, a legtobb esetben egy (&) teszt
statisztika kritikus értékeit nem lehet elméleti szamitésok utjan meghatarozni, és ezen
statisztikak altalaban nem is eloszlasmentesek. Mivel az ¥ folyamatot egy G szerinti
integrallal definialjuk, ugyanez a probléma (%, ) alaka funkcionalokra is felléphet. Egy
lehetséges megoldasként bevezetjiik a ¥, becsiilt paraméteres empirikus valészintiségi
generator folyamat bootstrappelt valtozatait, és a 3.2. és a 3.3. Tétel approximacioit
hasznalva belatjuk, hogy a folyamatok konvergalnak eloszldsban. Kévetkezményként
kapjuk, hogy egy nemnegativ megfigyelésekbdl all6 X7, ..., X, minta illeszkedése az F
csaladhoz tesztelhetd a korabban ismertetett bootstrap algoritmussal azzal a modosi-
téssal, hogy az &, empirikus folyamat és bootstrap valtozatai helyett a 4, folyamatot
és bootstrap valtozatait kell alkalmazni.
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