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1. Bevezetés

A disszertációban független és azonos eloszlású változók segítségével felírt bizonyos
empirikus folyamatok aszimptotikus viselkedését vizsgáljuk. A legtöbb esetben az app-
roximációs módszert fogjuk alkalmazni. Ez azt jelenti, a vizsgált empirikus folyamatot
és egy alkalmas Gauss folyamat reprezentánsait egy kényelmes választott valószín¶ségi
mez®n konstruáljuk meg, méghozzá oly módon, hogy az empirikus folyamat és a Gauss
folyamatok távolsága nullához konvergáljon, amint a mintaméret megy a végtelenbe.
Ezáltal az alkalmazott Gauss folyamat segítségével tanulmányozhatjuk a vizsgált em-
pirikus folyamat aszimptotikus viselkedését.

A disszertációban empirikus folyamatoknak két típusát vizsgáljuk. A 3. fejezetben a
paraméteres eloszláscsaládokon de�niált becsült paraméteres empirikus folyamat para-
méteres bootstrap és nemparaméteres bootstrap változatát tanulmányozzuk. A fejezet
f® célja gyenge approximációt bizonyítani a folyamatokra, és azáltal belátni, hogy azok
konvergálnak eloszlásban. Ezután ismertetünk egy algoritmust, melynek segítségével
összetett illeszkedési hipotéziseket tesztelhetünk. A módszer gyakorlati alkalmazását
egy szimulációs tanulmányon mutatjuk be.

A 4. fejezetben a nemnegatív érték¶ valószín¶ségi változók valószín¶ségi generá-
torfüggvényével de�niált empirikus folyamatokat tanulmányozunk. Célunk egy olyan
elméleti háttér kidolgozása, melynek segítségével hatékonyan vizsgálhatjuk ezen folya-
matokat. Ennek segítségével bebizonyítunk egy er®s approximációs tételt és egy iterált
logaritmustételt az empirikus generátor folyamatra és deriváltjaira. Továbbá, de�niálni
fogjuk a valószín¶ségi generátor folyamat bootstrap és becsült paraméteres változatait,
melyek alkalmazásával kon�dencia sávot szerkeszthetünk az ismeretlen valószín¶ségi
generátorfüggvényhez, illetve összetett illeszkedési hipotéziseket tesztelhetünk.

A 2. fejezetben néhány szükséges technikai eszközt vezetünk be. Ismertetjük a
KMT approximáció legfontosabb eredményeit, bebizonyítunk egy elméleti háttértételt
a bootstrap módszerre, valamint kiterjesztjük a véges intervallumon tekintett szto-
chasztikus integrál fogalmát a valós egyenesen értelmezett sztochasztikus integrálra.

A szerz® három cikket jegyez a disszertáció témájában. Sz¶cs (2008) tartalmazza a
becsült paraméteres empirikus folyamat paraméteres bootstrap változatának konver-
genciáját. A kapcsolatos tétel a nemparaméteres bootstrap folyamatra és a bemutatott
szimulációs tanulmány a témája egy elfogadott dolgozatnak, hivatkozásért lásd Sz¶cs
(20??). Végül, Sz¶cs (2005) tartalmazza a valószín¶ségi generátor folyamatokra vonat-
kozó eredményeket arra az esetre, amikor a háttérváltozó nemnegatív egész érték¶. Az
eredmények általánosítása tetsz®leges nemnegatív érték¶ változóra még nem publikált.

2. Néhány alapvet® fogalom

A fejezetben három elméleti fogalmat mutatunk be. Az els® a független és a [0,1]
intervallumon egyenletes eloszlású U1, . . . , Un változók alapján felírt βn(u), 0≤ u≤ 1,
egyenletes empirikus folyamatra vonatkozó KMT approximáció. Eszerint egy alkalma-
san választott valószín¶ségi mez®n a változók de�niálhatóak olyan módon, hogy Brown
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hidaknak egy alkalmas B1, B2, . . . sorozatára

sup
0≤u≤1

∣∣βn(u)−Bn(u)
∣∣=O

(
n−1/2 log n

)
, n→∞ , m.b. (1)

A konstrukció Komlós Jánostól, Major Pétert®l és Tusnády Gábortól származik, és
alapvet® lesz a munkánk során.

A második eszköz Efron bootstrap módszere, melynek segítségével megbecsülhetjük
egy n elem¶ mintára felírt τn statisztika eloszlását. Vegyük észre, hogy ilyen becslés a
szokásos statisztikai technikákkal nem adható, ugyanis egyetlen minta birtokában a τn
változóra csupán egy meg�gyelés áll rendekésünkre. A bootstrap alapötlete az, hogy
ha a mintaelemek ismeretlen F (x) eloszlásfüggvényét egy F̂n(x), x ∈ R, függvénnyel
becsüljük, és tekintünk az eredeti mintára nézve feltételesen független X∗1,n, . . . , X

∗
mn,n

változókat, melyek feltételes eloszlásfüggvénye F̂n, akkor τ ∗mn,n = τmn(X∗1,n, . . . , X
∗
mn,n)

eloszlása �hasonlít� τn eloszlásához. Elméleti számítások vagy Monte Carlo szimuláció
révén τ ∗mn,n eloszlása tetsz®leges pontossággal megkapható, és ezáltal egy jobb vagy
rosszabb becslést nyerhetünk τn eloszlására.

Munkánk során a bootstrap technika két változatát alkalmazzuk, a paraméteres és
a nemparaméteres bootstrapet. A nemparaméteres esetben F̂n az X1, . . . , Xn változók
empirikus eloszlásfüggvénye, tehát a bootstrap mintát visszatevéses mintavételezéssel
kapjuk az eredeti meg�gyelésekb®l. A paraméteres bootstrap csak akkor alkalmazható,
ha az Xi meg�gyelések eloszlásfüggvénye egy F (x, θ), θ∈Θ, paraméteres eloszláscsalád
F (x, θ0) eleme, x ∈R. Ekkor, a θ0 paraméter egy θ̂n becslését tekintve, a paraméteres
bootstrap mintát úgy de�niáljuk, mint feltételesen független véletlen változókat közös
F (x, θ̂n) feltételes eloszlásfüggvénnyel.

Végül, ki kell terjesztenünk a véges intervallumon értelmezett lokálisan négyzetesen
integrálható martingálokra vett sztochasztikus integrált az egész valós egyenesen vett
sztochasztikus integrálra. Bizonyítunk egy állítást az integrál létezésére, és leírjuk az
olyan folyamatok eloszlását, melyek bizonyos kétváltozós függvényeknek a standard
Wiener folyamatra vett integráljaként állnak el®.

3. Bootstrap paraméterbecsült empirikus folyamatok

Bevezetés és el®zmények

Tekintsük eloszlásoknak egy F = {F (x, θ) : x ∈ R, θ ∈Θ⊆ Rd} családját, valamint
X1, X2, . . . független változókat közös F (x, θ0), x∈R, eloszlásfüggvénnyel, θ0∈Θ. Jelölje
Fn(x), x∈R, a sorozat els® n elemének, mint mintának az empirikus eloszlásfüggvényét,
és legyen θ̂n a θ0 paraméter becslése. Ekkor a becsült paraméteres empirikus folyamat

α̂n(x) = n1/2
[
Fn(x)−F (x, θ̂n)

]
, x ∈ R . (2)

Mióta Durbin (1973) bebizonyította, hogy α̂n(x) gyengén konvergál egy G(x), x ∈ R,
Gauss folyamathoz, amint a mintaméret tart a végtelenbe, a becsült paraméteres empi-
rikus folyamat széles körben használt eszköz összetett illeszkedési hipotézisek tesztelé-
sére. Sajnos a folyamatra épül® statisztikai módszerek általában nem eloszlásmentesek,
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és a kapcsolatos kritikus értékeket nem lehet elméleti úton meghatározni. Szerencsére
ezen nehézségek kiküszöbölhet®ek bootstrap módszer alkalmazásával.

Tekintsünk X∗1,n, . . . , X
∗
mn,n bootstrap mintaelemeket az X1, . . . , Xn meg�gyelések-

re nézve. Legyen F ∗mn,n(x), x∈R, a bootstrap változók empirikus eloszlásfüggvénye, és
legyen θ∗n paraméterbecslés a bootstrap mintaelemek segítségével. A bootstrap becsült
paraméteres empirikus folyamat a bootstrap mintaelemekre felírt becsült paraméteres
empirikus folyamat, tehát

ᾱ∗mn,n(x) = n1/2
[
F ∗mn,n(x)−F (x, θ∗n)

]
, x ∈ R .

A folyamatra a α̂∗mn,n jelölést használjuk a paraméteres és a α̃∗mn,n jelölést a nempara-
méteres bootstrap esetben. A bootstrap alkalmazásának motivációja az az ötlet, hogy
ha α̂∗mn,n és/vagy α̂∗mn,n eloszlásban konvergál ugyanazon határfolyamathoz, mint α̂n,
akkor egy ψ(α̂n) statisztika kritikus értékei becsülhet®ek, mint a kapcsolatos ψ(α̂∗mn,n)
és/vagy ψ(α̃∗mn,n) funkcionál empirikus kvantilisei. Stute et al. (1993), és ett®l az ered-
ményt®l függetlenül, Babu és Rao (2004) bizonyította α̂∗mn,n gyenge konvergenciáját
az mn = n esetben folytonos eloszláscsaládokra, tehát ekkor a paraméteres bootstrap
alkalmazható. Ezzel szemben Babu és Rao rámutatott, hogy az α̃∗mn,n folyamat nem
konvergál eloszlásban, ugyanis bias korrekcióra van szükség

Feltevések és eredmények

Tekintsük az F = {F (x, θ) : x ∈ R, θ ∈ Θ ⊆ Rd} eloszláscsaládot, és legyen θ0 egy
rögzített és θ=(θ(1), . . . , θ(d)) egy tetsz®leges vektor a Θ halmazban. Legyen X1, X2, . . .
és Y1, Y2, . . . független és azonos eloszlású változóknak sorozatai rendre F (x, θ0) és
F (x, θ) eloszlásfüggvénnyel, x ∈ R. Tekintsünk egy

θn = θn(Y1, . . . , Yn)

statisztikát, mint az általános θ paraméter becslését, és legyen θ̂n=θn(X1, . . . , Xn) a θ0
paraméter becslése a X1, . . . , Xn minta alapján. Legyen mn a bootstrap mintaméret,
és legyen θ̂∗n és θ̃∗n paraméterbecslés a paraméteres illetve a nemparaméteres bootstrap
minta alapján. A vektorokat sorvektorként értelmezzük, továbbá rendre V T és V (k)

jelöli a V vektor transzponáltját és k. komponensét.

Feltevések. A f® eredményekben a következ® feltevéseket fogjuk alkalmazni.

(a1) A parciális deriváltak

∇θF (x, θ) =

(
∂

∂θ(1)
F (x, θ), . . . ,

∂

∂θ(d)
F (x, θ)

)
vektora létezik minden (x, θ)∈R×Λ pontban, ahol Λ⊆Θ a θ0 pont egy megfelel®
környezete.

(a2) ∇θF (x, θ) egyenletesen konvergál a ∇θF (x, θ0), x∈R, függvényhez, amint θ→θ0.
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(a3) ∇θF (x, θ0), x ∈ R, korlátos.

(a4) Létezik l(θ0) : R→ Rd és εn(θ0) : Rn→ Rd Borel mérhet® függvény, melyre

θ̂n−θ0 =
1

n

n∑
i=1

l(Xi, θ0)+n−1/2εn(θ0) m.b.,

ahol εn(θ0) = εn(X1, . . . , Xn, θ0).

(a5) Létezik l :R×Λ→Rd és εn :Rn×Λ→Rd Borel mérhet® függvény, hogy tetsz®leges
θ ∈ Λ esetén

θn−θ =
1

n

n∑
i=1

l(Yi, θ)+n−1/2εn(θ) m.b.,

ahol εn(θ) = εn(Y1, . . . , Yn, θ).

(a6) Létezik Borel mérhet® függvény εm,n(θ0) : Rn+m→ Rd, melyre

θ̃∗n− θ̂n =
1

m

m∑
i=1

l(X∗i,n, θ0)−
1

n

n∑
i=1

l(Xi, θ0)+m−1/2εm,n(θ0) a.s.

ahol l az (a4) pontban de�niált függvény, X∗1,n, . . . , X
∗
m,n a nemparaméteres boot-

strap minta, és εm,n(θ0) = εm,n(X1, . . . , Xn, X
∗
1,n, . . . , X

∗
m,n, θ0).

(a7) E l(Xi, θ0) = 0.

(a8) E l(Yi, θ) = 0 tetsz®leges θ ∈ Λ esetén.

(a9) M(θ0) = E l(Xi, θ0)
T l(Xi, θ0) véges pozitív szemide�nit mátrix.

(a10) M(θ) =E l(Yi, θ)
T l(Yi, θ) véges pozitív szemide�nit mátrix minden θ ∈Λ esetén.

(a11) Az M(θ), θ ∈ Λ, függvény folytonos a θ0 pontban.

(a12) Az l(x, θ0), x∈R, vektorfüggvény komponensei korlátos változásúak minden véges
intervallumon.

(a13) l(x, θ) egyenletesen konvergál az l(x, θ0), x∈R, függvényhez minden véges inter-
vallumon, amint θ→ θ0.

(a14) εn(θ0)
P−→ 0.

(a15) εmn(θ̂n)
P−→ 0.

(a16) εmn,n(θ0)
P−→ 0.
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Jegyezzük meg, hogy Burke, Csörg®, Csörg® és Révész (1979) bizonyított egy gyen-
ge approximációs tételt az α̂n folyamatra. Megmutatták, hogy ha az (a1)�(a4), (a7),
(a9), (a12) és (a14) feltételek teljesülnek, akkor létezik azX1, X2, . . . változóknak olyan
reprezentációja, valamint a G folyamatnak olyan G1, G2, . . . másolatai, hogy

sup
x∈R

∣∣α̂n(x)−Gn(x)
∣∣ P−→ 0 , n→∞ . (3)

Ebb®l az eredményb®l azonnal következik az α̂n folyamat gyenge konvergenciája a G
folyamathoz. A határfolyamat Gauss és

G(x) =B
(
F (x, θ0)

)
−
[ ∫

R
l(x, θ0) dB

(
F (x, θ0)

)]
∇θF (x, θ0)

T , x ∈ R , (4)

alakban írható fel, ahol B(u), 0 ≤ u ≤ 1, egy Brown híd. A bootstrappelt empirikus
folyamatok területén elért fontosabb eredményinket az alábbi tételek a tartalmazzák.
A 3.2. Tétel foglalkozik a paraméteres bootstrap esettel, és a 3.3. Tétel szól a nempa-
raméteres változatról.

3.2. Tétel. Tegyük fel, hogy a bootstrap mintaméretre mn →∞, továbbá tegyük fel,
hogy az F eloszláscsalád, a θ0 rögzített paraméter és az alkalmazott paraméterbecsl®
eljárás kielégíti az (a1)�(a3), (a5), (a8), (a10)�(a15) feltevéseket. Ekkor, egy alkalmas
valószín¶ségi mez®n, konstruálhatóak Xi és Xi,θ, θ ∈ Θ, i = 1,2, . . . , változók rendre
F (x, θ0) illetve F (x, θ) eloszlásfüggvénnyel, valamint de�niálható Brown hidaknak egy
B1, B2, . . . sorozata úgy, hogy az X1, X1,θ, X2, X2,θ, . . . változók függetlenek minden θ
esetén, és az (

X∗1,n, . . . , X
∗
mn,n

)
=
(
X1,θ̂n

, . . . , Xmn,θ̂n

)
, n= 1,2, . . . ,

paraméteres bootstrap minta alapján felírt α̂∗mn,n paraméteres bootstrap becsült paramé-
teres empirikus folyamat teljesíti a

sup
x∈R

∣∣α̂∗mn,n(x)−Gmn(x)
∣∣ P−→ 0 , n→∞ ,

approximációt, ahol a G1, G2, . . . sorozatot a (4) formulával de�niáljuk a B1, B2, . . .
hidak alkalmazásával.

3.3. Tétel. Tegyük fel, hogy a bootstrap mintaméretre mn →∞, és tegyük fel, hogy
az F eloszláscsalád, a θ0 rögzített paraméter és az alkalmazott paraméterbecsl® eljárás
kielégíti az (a1)�(a4), (a6), (a7), (a9), (a12), (a14) és (a16) feltevéseket. Egy alkal-
mas valószín¶ségi mez®n de�niálhatóak független X1, X2, . . . változók F (x, θ0) eloszlás-
függvénnyel, továbbá ezekhez kapcsolódó X∗1,n, . . . , X

∗
mn,n, n= 1,2, . . . , nemparaméteres

bootstrap mintaelemek, valamint Brown hidaknak egy B1, B2, . . . sorozata olyan módon,
hogy az α̃∗mn,n nemparaméteres bootstrap becsült paraméteres empirikus folyamatra

sup
x∈R

∣∣∣α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x)−Gmn(x)

∣∣∣ P−→ 0 , n→∞ ,

ahol α̂n a becsült paraméteres empirikus folyamat, és a G1, G2, . . . sorozatot a (4)
formulával de�niáljuk a B1, B2, . . . hidak alkalmazásával.
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Mivel a Gmn folyamat eloszlása minden n esetén megegyezik G eloszlásával, azonnal
adódik a 3.2. és a 3.3. Tétel alábbi következménye.

3.4. Következmény. A 3.2. és a 3.3. Tétel feltételei mellett

α̂∗mn,n(x) és α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x) , x ∈ R ,

gyengén konvergál a G(x), x ∈ R, folyamathoz a D[−∞,∞] térben.

A tételek bizonyításához két dolgozatból merítettünk ötleteket. A véletlen elemek
konstrukciója Csörg® és Mason (1989) módszerére épül, t®lük származik az ötlet, hogy
az eredeti és a bootstrap mintaelemeket két KMT mez® szorzatán reprezentáljuk. Sze-
rencsére ez a megoldás nem igényel semmilyen regularitási feltételt. Emellett alkalmaz-
tuk a Burke, Csörg®, Csörg® és Révész (1979) által a nem bootstrappelt α̂n folyamatra
kidolgozott approximációs technikát, ahonnan megörököltük a (3) eredmény feltételeit
is a módszerrel együtt. Nevezetesen, meg kell követelnünk a ∇θF (x, θ) függvény léte-
zését és simaságát a θ0 pont egy környezetében, valamint feltevéseket kell tennünk az
alkalmazott paraméterbecsl® eljárás regularitására a θ0 pontban. A nemparaméteres
bootstrap esetben nincs is szükség sokkal több feltevésre, csupán a θ̃∗n bootstrap becs-
lésre kell egy olyan összeg reprezentációt adnunk, mint ami már a rendelkezésünkre
áll a nem bootstrappelt esetben. Ezzel szemben a paraméteres bootstrap esetben a
bootstrappelt minta az F (x, θ̂n), x ∈ R, eloszlásból jön, és emiatt a paraméterbecsl®
eljárásra tett feltevéseket ki kell terjesztenünk a θ0 pont egy környezetére. Végigtekint-
ve a témával foglalkozó korábbi cikkeket azt látjuk, hogy Stute et al. (1993) és Babu
és Rao (2004) hasonló feltevésekkel dolgozott.

A bootstrap algoritmus

Tekintsünk X1, . . . , Xn független és azonos eloszlású véletlen változókat ismeretlen
F (x), x ∈ R, eloszlásfüggvénnyel, és tekintsük az

F =
{
F (x, θ) : x ∈ R, θ ∈Θ⊆ Rd

}
eloszláscsaládot egy θn :Rn→Θ paraméterbecsl® statisztikával. Ebben a környezetben
a minta illeszkedése az F családhoz, tehát a H0 : F ∈ F null-hipotézis tesztelhet® egy
ψn = ψ(α̂n) teszt statisztika alkalmazásával. Itt α̂n a becsült paraméteres empirikus
folyamat, és ψ a D[−∞,∞] függvénytéren értelmezett valós érték¶ funkcionál, mely
kielégít bizonyos további feltételeket. Mivel α̂n eloszlásban konvergál a G folyamathoz,
a ϕ = ψ(G) változó elméleti kvantilisei alkalmazhatóak, mint aszimptotikusan helyes
kritikus értékek a ψn statisztikára.

Ahogyan azt már láttuk a fejezet bevezetésében, a legf®bb nehézség az, hogy a ϕ
limeszváltozó kvantiliseit nem tudjuk elméleti úton meghatározni. Szerencsére, ha az
F eloszláscsalád és a θn becsl® módszer kielégíti a 3.2. és/vagy a 3.3. Tétel feltevéseit,
továbbá a ψ funkcionál teljesít bizonyos további feltételeket, amiket nem részletezünk,
akkor a

ψ∗pmn,n = ψ
(
α̂∗mn,n

)
és ψ∗npmn,n = ψ

(
α̃∗mn,n−(mn/n)1/2α̂n

)
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paraméteres és nemparaméteres funkcionál eloszlásban konvergál a ϕ változóhoz, és a
limeszváltozó (1−α) kvantilise becsülhet® a

c∗pn (α) = inf
{
x ∈ R : P

(
ψ∗pmn,n ≤ x |X1, . . . , Xn

)
≥ 1−α

}
kvantilissel a paraméteres bootstrap, és a

c∗npn (α) = inf
{
x ∈ R : P

(
ψ∗npmn,n ≤ x |X1, . . . , Xn

)
≥ 1−α

}
kvantilissel a nemparaméteres bootstrap esetben. A gondolatmenet eredményeként az
alábbi bootstrap tesztel® algoritmus kapjuk.

1. Határozzuk meg a θ̂n becslést az X1, . . . , Xn mintaelemek alapján.

2. Határozzuk meg a ψn teszt statisztika értékét.

3. Generáljunk X∗1,n, . . . , X
∗
mn,n független paraméteres vagy nemparaméteres boot-

strap meg�gyeléseket rendre F (x, θ̂n) vagy Fn(x) eloszlásfüggvénnyel.

4. Határozzuk meg a θ̂∗n vagy a θ̃∗n becslést a bootstrap minta alapján.

5. Határozzuk meg a ψ∗pmn,n vagy a ψ∗npmn,n bootstrap statisztika értékét.

6. Ismételjük meg a 3.�5. lépést R alkalommal, és legyen ψ∗n,1 ≤ · · · ≤ ψ∗n,R a ψ∗pmn,n

vagy a ψ∗npmn,n változó meg�gyelt értékeib®l képzett rendezett minta.

7. Legyen c∗n,α a ψ∗pmn,n vagy a ψ∗npmn,n változó (1−α) rend¶ empirikus kvantilise,
tehát, az dR(1−α)e-dik legnagyobb elem a rendezett mintában.

8. Vessük el a H0 null-hipotézist, ha ψn nagyobb, mint c∗n,α.

A 3.4. fejezetben megmutatjuk, hogy a bootstrap alkalmazható a vizsgált empirikus
folyamatok Kolmogorov�Szmirnov típusú szuprémum funkcionáljaira. A 3.5. fejezetben
megvizsgáljuk a tételek regularitási feltételeit, és bebizonyítjuk, hogy ezen feltételek
teljesülnek a Poisson és a normális eloszlásra és a maximum likelihood becslésre. Hogy
bemutassuk a bootstrap technikát egy gyakorlati alkalmazáson keresztül, az utolsó
fejezetben ismertetjük egy szimulációs tanulmány eredményeit. A paraméteres és a
nemparaméteres bootstrap alkalmazásával teszteljük negatív binomiális minták illesz-
kedését a Poisson családhoz, valamint lokáció és skála kontaminált normális változók
illeszkedését a normális eloszláshoz.
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4. Empirikus valószín¶ségi generátor folyamatok

Bevezetés és el®zmények

LegyenX,X1, X2, . . . nemnegatív érték¶ független és azonos eloszlású valószín¶ségi
változó F (x), x ∈ R, eloszlásfüggvénnyel, és legyen

g(t) = EtX =

∫
R
txdF (x) és gn(t) =

1

n

n∑
j=1

tXj , 0≤ t≤ 1 ,

az els® n elem valószín¶ségi generátorfüggvénye és a generátorfüggvény empirikus vál-
tozata. A fejezetben a 00 szimbólum 1-nek van de�niálva, ugyanis szükségünk lesz a tx

függvénynek az x változóban való folytonosságára. Ekkor az empirikus valószín¶ségi
generátor folyamat

γn(t) = n1/2
[
gn(t)−g(t)

]
, 0≤ t≤ 1 .

A generátorfüggvények használata statisztikai problémák megoldására nem új ötlet,
a karakterisztikus és a momentumgeneráló függvényen alapuló hasonló transzformált
folyamatok ismertek. (Például, Csörg® (1981) és Csörg®, Csörg®, Horváth és Mason
(1986).) Ezen módszerek elméleti alapja az, hogy bizonyos feltételek teljesülése esetén
a transzformált folyamatok eloszlásban konvergálnak valamilyen függvénytéren. A va-
lószín¶ségi generátor folyamat esetében Rémillard és Theodorescu (2000) mondta ki,
hogy γn eloszlásban konvergál a C[0,1] téren a

Y (t) =

∫
R
tx dB

(
F (x)

)
, 0≤ t≤ 1 ,

folyamathoz tetsz®leges nemnegatív egész érték¶ X változóra. Sajnos a bizonyításukba
belecsúszott egy hiba, de az alapötlet jó, és a bizonyítás javítható.

A fejezet célja kidolgozni egy olyan általános és rugalmas eszköztárat, melynek
segítségével vizsgálhatjuk az empirikus generátor folyamat és deriváltjai, valamint a
bootstrap és/vagy becsült paraméteres változatok aszimptotikus viselkedését. Az ered-
mények abban az értelemben is általánosak, hogy nem csak az egész érték¶ esetben
alkalmazhatóak, hanem tetsz®leges nemnegatív érték¶ változóra.

Általánosított valószín¶ségi generátor folyamatok

A 4.2. fejezetben olyan folyamatokat vizsgálunk, melyeket az

Ir(t) =

∫
R
x(x−1) · · · (x−r+1)tx−r dK(x)

integrál de�niál, ahol a K(x) függvény el®áll egy lokálisan négyzetesen integrálható
M(x) martingál és egy A(x) korlátos változású folyamat összegeként, x ∈R. Emellett
feltesszük, hogy M és A elt¶nik a (−∞,0) negatív félegyenesen, és a folyamatoknak
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càdlàg trajektóriái vannak. A 4.2., 4.3. és 4.8. Állításban megmutatjuk, hogy bizonyos
feltételek mellett az Ir folyamat de�niált a (−1,1] intervallum valamely [a, b] részhal-
mazain. Az általános rész f® eredménye a 4.7. és a 4.9. Tétel. Ezekben az Ir folyamatra
vonatkozó egyenl®tlenségeket bizonyítunk

sup
a≤t≤b

|Yr(t)| ≤ C sup
x∈R
|K(x)| (5)

alakban, ahol C = C(r, a, b) a K folyamattól független konstans.
Ezen általános eredmények alkalmazásaiban a K folyamat az X1, . . . , Xn változók

által meghatározott valamilyen empirikus típusú folyamatot (empirikus vagy elméleti
eloszlásfüggvényt, bootstrappelt és/vagy becsült paraméteres empirikus folyamatot)
fog jelölni. Mivel a feltevések szerint a minta egy nemnegatív érték¶ eloszlásból jön,
a kapcsolatos empirikus típusú folyamatok kielégítik a K folyamatra tett feltevéseket.
Ezáltal a K folyamatra meglev® eredményeket alkalmazva a (5) egyenl®tlenség felhasz-
nálásával képesek leszünk konvergenciát és approximációt bizonyítani az Ir folyamatra.

Az empirikus generátor folyamat elemi tulajdonságai

A 4.3. fejezetben megmutatjuk, hogy a γn generátor folyamat r. deriváltja

γ(r)n (t) = n1/2
[
g(r)n (t)−g(r)(t)

]
=

∫
R
x(x−1) · · · (x−r+1)tx−r dαn(x)

alakban írható fel, r=0,1, . . . , ahol g(r)n és g(r) az empirikus és az elméleti valószín¶ségi
generátorfüggvény r. deriváltja, továbbá αn(x), x ∈ R, az X1, . . . , Xn minta alapján
felírt empirikus folyamat. Emellett de�niáljuk az

Yr(t) =

∫
R
x(x−1) · · · (x−r+1)tx−r dB

(
F (x)

)
folyamatot, ahol B a Brown híd. A 4.10. Állításban megmutatjuk, hogy γ(r)n folytonos
és az Yr folyamatnak létezik mintafolytonos modi�kációja az [a, b] intervallumain, ahol
[a, b] választható úgy, mint

• [ε,1−ε] tetsz®leges 0<ε< 1/2 értékkel bármely nemnegatív érték¶ X változóra;

• [−τ, τ ] tetsz®leges 0< τ < 1 értékkel, ha X nemnegatív egész érték¶ változó;

• [0,1], ha X nemnegatív egész érték¶ és r = 0.

A 4.11. fejezetben belátjuk, hogy Yr(t), a≤t≤b, Gauss folyamat nulla várható érték-
kel és folytonos kovariancia függvénnyel. Tsirel'son egy, a normális eloszlású változók
szuprémumára vonatkozó tételének alkalmazásával bizonyítjuk, hogy a folyamat

Sr = sup
a≤x≤b

|Yr(t)| , S+
r = sup

a≤x≤b
Yr(t) és S−r =− inf

a≤x≤b
Yr(t) (6)
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Kolmogorov�Szmirnov típusú funkcionáljainak eloszlásfüggvénye abszolút folytonos a
(0,∞) pozitív félegyenesen, és a kapcsolatos s¶r¶ségfüggvény korlátos minden [s,∞),
s>0, részintervallumon. Emellett az Yr folyamat Karhunen�Loève sorfejtését használva
megmutatjuk, hogy az ∫ b

a

Y 2
r (t) dt (7)

Cramér�von Mises típusú integrálfunkcionál abszolút folytonos, és s¶r¶ségfüggvénye
korlátos a valós egyenesen.

Aszimptotikus eredmények az empirikus generátor folyamatra

Mint azt korábban már említettük, Rémillard és Theodorescu (2000) megmutatta,
hogy γn eloszlásban konvergál az Y folyamathoz tetsz®leges nemnegatív egész érték¶
változó esetén, de van egy kisebb hiba a bizonyításban. Mindazonáltal az alapötletük
érdekes, és a 4.5. fejezetben sikerül kijavítanunk a bizonyítást. Ehez tekintünk egy Ψ
függvényt, mely a D[0,1] tér egy D0 alterén van de�niálva, és a C[0,1] téren veszi fel
értékeit olyan módon, hogy teljesül a γn=Ψ(βn) és a Y =Ψ(B) azonosság, ahol βn egy
egyenletes empirikus folyamat és B egy Brown híd. Megmutatjuk, hogy Ψ mérhet® a
Szkorohod topológiára nézve, és folytonos a D0∩C[0,1] halmaz elemein a szuprémum
metrikában. Mivel βn eloszlásban konvergál a B folyamathoz, és a Brown híd egy
valószín¶séggel a D0∩C[0,1] halmazba esik, kapjuk Ψ(βn) gyenge konvergenciáját a
Ψ(B) folyamathoz, amint n tart a végtelenbe.

Az empirikus valószín¶ségi generátor folyamattal kapcsolatban a f® eredményünk a
következ® er®s approximáció. Megjegyezzük, hogy ez a tétel és a következ® eredmények
nem csak egész érték¶, hanem tetsz®leges nemnegatív érték¶ változóra teljesülnek.

4.18. Tétel. Tekintsük egy tetsz®leges nemnegatív érték¶ X véletlen változó F (x),
x ∈ R, eloszlásfüggvényét. Egy alkalmas valószín¶ségi mez®n de�niálható X1, X2, . . .
független változó F eloszlásfüggvénnyel, valamint az Yr folyamat Yr,1, Yr,2, . . . másolatai
olyan módon, hogy

sup
a≤t≤b

∣∣γ(r)n (t)−Yr,n(t)
∣∣=O

(
n−1/2 log n

)
teljesül majdnem biztosan, amint n→∞.

A tételben szerepl® véletlen elemeket a 2. fejezetben ismertetett KMT mez® egyen-
letes eloszlású véletlen változóinak és Brown hídjainak segítségével de�niáljuk. Ezután
az approximációt az (1) konvergencia és az (5) egyenl®tlenség segítségével bizonyít-
juk. Ehhez hasonló módon, Chung iterált logaritmustételéb®l kapjuk meg a következ®
iterált logaritmustételt a generátor folyamat deriváltjaira.

4.23. Tétel. Tetsz®leges nemnegatív érték¶ X változó esetén

lim sup
n→∞

supa≤t≤b |γ
(r)
n (t)|

(log log n)1/2
≤ C

21/2
m.b.,

ahol a C = C(a, b, r) pozitív konstans nem függ X eloszlásától.
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A 4.23. Tétel következményeként kapjuk, hogy a gn empirikus generátorfüggvény
r. deriváltja egyenletesen konvergál az elméleti generátorfüggvény r. deriváltjához,
továbbá konvergenciasebességet is tudunk bizonyítani. Kapjuk, hogy

sup
a≤t≤b

∣∣g(r)n (t)−g(r)(t)
∣∣=O

(
n−1/2(log log n)1/2

)
majdnem biztosan, amint n→∞.

A KMT approximációnak van egy fontos következménye a βn empirikus folyamat
bizonyos funkcionáljaira. Komlós, Major és Tusnády (1975) megmutatta, hogy ha a ψ
funkcionál a D[0,1] téren van értelmezve, rendelkezik a Lipschitz tulajdonsággal, vala-
mint ψ(B) abszolút folytonos korlátos s¶r¶ségfüggvénnyel, akkor ψ(βn) eloszlásfüggvé-
nye egyenletesen és O(n−1/2 log n) sebességgel konvergál ψ(B) eloszlásfüggvényéhez. A
bizonyításuk ötleteit és az (5) egyenl®tlenséget felhasználva kapjuk a következ® tételt
az empirikus valószín¶ségi generátor folyamat funkcionáljaira.

4.20. Tétel. Tekintsünk tetsz®leges nemnegatív érték¶ X változót, és legyen ψ olyan
funkcionál a C[a, b] téren, mely rendelkezik a Lipschitz tulajdonsággal, tehát∣∣ψ(h1)−ψ(h2)

∣∣≤M sup
a≤u≤b

∣∣h1(u)−h2(u)
∣∣ , h1, h2 ∈ C[a, b] ,

egy M pozitív konstanssal. Ha az ψ(Yr) változó eloszlásfüggvénye abszolút folytonos
korlátos s¶r¶ségfüggvénnyel egy [s,∞), s ∈ R, intervallumon, akkor

sup
x≥s

∣∣∣P(ψ(γ(r)n )≤ x
)
−P

(
ψ(Yr)≤ x

)∣∣∣=O
(
n−1/2 log n

)
, n→∞ .

Jegyezzük meg, hogy (6) szerint ez az eredmény alkalmazható a generátor folyamat
szuprémum funkcionáljaira. Továbbá, néhány ponton változtatva a bizonyítás menetén
megmutatjuk, hogy a γ(r)n (t), a≤t≤b, folyamat négyzetintegráljának eloszlásfüggvénye
konvergál a (7) változó eloszlásfüggvényéhez.

Finkelstein (1971) egyik ismert és szép eredménye, hogy a βn empirikus folyamat
legfeljebb 0 valószín¶séggel konvergál a D[0,1] térben, amint n tart a végtelenbe. Ez
azért van, mert a folyamat relatív kompakt Cβ limeszhalmazzal, ahol Cβ azon h∈D[0,1]
függvények halmaza, melyek abszolút folytonosak, elt¶nnek a 0 és az 1 pontban, és a
Lebesgue mértékre vett h′(u), 0≤ u≤ 1, Radon�Nikodym deriváltjukra∫ 1

0

(
h′(u)

)2
du≤ 1 .

A következ® eredmény az állítja, hogy az empirikus valószín¶ségi generátor folyamat-
nak hasonló az aszimptotikus viselkedése.

4.25. Tétel. Tetsz®leges nemnegatív érték¶ X változó és r = 0,1, . . . egész esetén a
γ
(r)
n (t), a≤ t≤ b, folyamat relatív kompakt a C[a, b] térben, és a limeszpontok halmaza

Cr[a, b] =

{∫
R
x(x−1) · · · (x−r+1)tx−r dh

(
F (x)

)
, a≤ t≤ b : h ∈ Cβ

}
.
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A bootstrap generátor folyamat és kon�denciasávok

A 4.8. fejezetben az empirikus valószín¶ségi generátor folyamat bootstrap változa-
tát vizsgáljuk. Tekintsünk független nemnegatív érték¶ X1, X2, . . . változókat F (x),
x ∈ R, eloszlásfüggvénnyel, továbbá X∗1,n, . . . , X∗mn,n Efron típusú, tehát nemparamé-
teres bootstrap mintát az X1, . . . , Xn meg�gyelésekre nézve. De�niáljuk az empirikus
valószín¶ségi generátorfüggvény bootstrap változatát a

g∗mn,n(t) =
1

n

mn∑
i=1

tX
∗
i,n , a≤ t≤ b ,

formulával, és tekintsük a

γ∗mn,n(t) = n1/2
[
g∗mn,n(t)−gn(t)

]
, a≤ t≤ b ,

bootstrap empirikus valószín¶ségi generátor folyamatot. Alkalmazva Csörg® és Mason
(1989) a klasszikus bootstrap empirikus folyamatra vonatkozó approximációs tételét a
következ® eredményt kapjuk.

4.26. Tétel. Tekintsük egy tetsz®leges nemnegatív érték¶ véletlen változó F (x), x∈R,
eloszlásfüggvényét, és tegyük fel, hogy létezik C1 és C2 pozitív konstans, hogy

C1 <mn/n < C2 , n= 1,2, . . .

Ekkor egy megfelel®en gazdag valószín¶ségi mez®n de�niálhatunk X1, X2, . . . független
véletlen változókat F eloszlásfüggvénnyel, és X∗1,n, . . . , X

∗
mn,n, n = 1,2, . . . , bootstrap

mintaelemeket, és az Yr folyamat Y ∗r,1, Y
∗
r,2, . . . reprezentásait olyan módon, hogy

sup
a≤t≤b

∣∣γ∗(r)mn,n(t)−Y ∗r,mn
(t)
∣∣=O

(
max{l(mn), l(n)}

)
,

ahol l(n) = n−1/4(log n)1/2(log log n)1/4.

A tétel egy érdekes alkalmazása, hogy egy X1, . . . , Xn minta alapján aszimptotiku-
san korrekt kon�denciasávot konstruálhatunk az ismeretlen g valószín¶ségi generátor
függvényre. Ez azt jelenti, hogy egy adott 0< α < 1 mellett de�niálhatunk egy cn(α),
n= 1,2, . . . , sorozatot olyan módon, hogy

P
(
gn(t)−cn(α)≤ g(t)≤ gn(t)+cn(α), a≤ t≤ b

)
→ 1−α

teljesüljön, amint az n mintaméret tart a végtelenbe.

Becsült paraméteres valószín¶ségi generátor folyamatok

A 2. fejezetben ismertettünk egy bootstrap algoritmus, mellyel tesztelhetjük füg-
getlen és azonos eloszlású változók illeszkedését egy F = {F (x, θ), x ∈ R, θ ∈ Θ⊆ Rd}
paraméteres eloszláscsaládhoz. Sajnos léteznek olyan családok, melyek F (x, θ) paramé-
teres eloszlásfüggvénye nem írható fel egyszer¶ alakban, és ematt nehéz az α̂n becsült
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paraméteres empirikus folyamatot és a kapcsolatos bootstrap folyamatokat alkalmazni.
Ezzel szemben, sok esetben a valószín¶ségi generátorfüggvény kezelhet®. Ez az észre-
vétel vezérel minket arra, hogy de�niáljuk a valószín¶ségi generátor folyamat becsült
paraméteres változatát.

Tegyük fel, hogy F csak nemnegatív érték¶ eloszlásokat tartalmaz, és tekintsük a

g(t, θ) =

∫
R
tx dF (x, θ) , a′ ≤ t≤ b′ , θ ∈Θ ,

paraméteres generátorfüggvényt, ahol a′ és b′ alkalmas konstans. Továbbá, tekintsünk
független X1, X2, . . . változókat közös F (x, θ0), x∈R, eloszlásfüggvénnyel, ahol θ0∈Θ,
és legyen θ̂n a θ0 paraméter becslése az els® n meg�gyelést alapul véve. Ha gn jelöli
az empirikus generátorfüggvényt, akkor a becsült paraméteres empirikus valószín¶ségi
generátor folyamat a

γ̂n(t) = n1/2
[
gn(t)−g(t, θ̂n)

]
=

∫
R
tx dα̂n(x) , a′ ≤ t≤ b′ ,

formulával de�niálható. Emellett, a (4) formula G(x), x∈R, Gauss folyamatával legyen

Ŷ (t) =

∫
R
tx dG(x) , a′ ≤ t≤ b′ .

Tekintsük Burke, Csörg®, Csörg® és Révész (1979) approximációját az α̂n becsült
paraméteres empirikus folyamatra, melyet a (3) formulában ismertettünk. Ennek al-
kalmazásával megkonstruálhatjuk az Xi sorozat egy reprezentánsát, valamint az Ŷ
folyamat Ŷ1, Ŷ2, . . . másolatait olyan módon, hogy teljesüljön a

sup
0≤t<1

∣∣γ̂n(t)− Ŷn(t)
∣∣ P−→ 0 , n→∞ ,

gyenge approximáció. Ez az eredmény a 4.29. Tétel, mely a (3) approximáció felté-
telei, valamint bizonyos, a ∇θF (x, θ) függvény aszimptotikus viselkedésére vonatkozó
további feltevések teljesülése esetén áll fenn.

Fontos észrevenni, hogy a γ̂n folyamat gyakorlati alkalmazása egy újabb nehézség-
hez vezethet. Mint azt már korábban elmondtuk, a legtöbb esetben egy ψ(α̂n) teszt
statisztika kritikus értékeit nem lehet elméleti számítások útján meghatározni, és ezen
statisztikák általában nem is eloszlásmentesek. Mivel az Ŷ folyamatot egy G szerinti
integrállal de�niáljuk, ugyanez a probléma ψ(γ̂n) alakú funkcionálokra is felléphet. Egy
lehetséges megoldásként bevezetjük a γ̂n becsült paraméteres empirikus valószín¶ségi
generátor folyamat bootstrappelt változatait, és a 3.2. és a 3.3. Tétel approximációit
használva belátjuk, hogy a folyamatok konvergálnak eloszlásban. Következményként
kapjuk, hogy egy nemnegatív meg�gyelésekb®l álló X1, . . . , Xn minta illeszkedése az F
családhoz tesztelhet® a korábban ismertetett bootstrap algoritmussal azzal a módosí-
tással, hogy az α̂n empirikus folyamat és bootstrap változatai helyett a γ̂n folyamatot
és bootstrap változatait kell alkalmazni.
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