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BEVEZETES

Jelenleg is a legérdekesebb kutatdsi teriiletek
egyike a nagy molekuldk és komplex szildrd testek k5 té-
sének kvantitativ leirdsa. Olyan anyagokra gondolunk, mint
amilyenek a sokatomos molekuldk gdzfédzisban, kristélyos
kdrnyezetben vagy éppen oldatban; "molekula"-kristdlyok,
ahol t0bb atom van elemi celldnként; szennyezések és hibdk
egyébként tokéletes kristdlyban; rendezetlen vagy amorf
anyagok; a biolégidban jelentSs makromolekuldk, polimerek,
stb. Ha a kvantumkémidt hatdsosan akarjuk alkalmazni ilyen
rendszerekre, akkor, szem el8tt tartva a wai nagy szdmité-
gépek adta lehetdségeket, uj és pontos szémitdsi médszere-

ket kell kidolgozni.

A hagyoményos ab initio Hartree-Fock self-consis-
tent-field médszerek, melyek az atomi pédlydk linedris kom-
bindciéjén, wint molekulapdlydn alapulnak /SCF=LCAO méd=-
szerek/, nehezek, és sokatomos rendszerre valdé alkalmazé-
suk kSltséges is, mert az ardnylag nagy bédzis haszndlata
és a nagyszdmu t6bbcentrumu integrdl ill. ekvivalens
Hartree-Fock matrixelem kiszémitdsa sok gépidSt vesz igény-
be.

Az egyszerilbb kozelit8 és félempirikus mddszerek,
olyanok, mint amelyek a CNDO /Complete Neglect of Differen-
tial Overlap/ médszeren [1] alapulnak, a tobbcentrumu in-
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tegrédlok killonféle kozelitését8l vagy a matrix elemek
paranétereitdl fliggnek. Ezek a médszerek jél1 hasznélha-
ték akdr kicsi, akdr nagy molekuldk szemikvantitativ le-
irédséra, de csak akkor, ha a molekula alacsony rendgzému
atomokat tartalmaz. Azonban a magasabb rendszédmu atomokat
/pl. dtmeneti vagy ritka foldfémet/ tartalmazd molekuldk
vagy kristdlyok kezelésére nem alkalmas.

A hagyoményos sdvelméletet hasonléképpen nehéz
alkalmazni olyan kristdlyokra, amelyekben t&bb mint egj
atom van elemi celldnként, ezenkivill ez a médszer fligg a

réceperiodicitési feltételtdl is.

Az elektron-dllapotok "mély nivé"-inak hagyoményos
elméletei, melyek a kristdlyok bizonyos tipusu szennyezé-
seivel 4l1lnak kapcsolatban /példdul dtmeneti-fém szennye-
zések félvezetlkben/, elvileg megkivédnjék, hogy ismerjik
a killnben tokéletes rédcs egy~-elektron hullédmfiiggvényei-
nek teljes rendszerét [2]. ‘

J. C. Slater [3] javaslatdt kovetfen K. H. Johnson
[4-9] kidolgozott egy uj elméleti kGZelitést,elsﬁsorbén a
sokatomos molekuldk és szildrdtestek elektrondllapotainak
szémitdsdra, Ez a technika sok olyan nehézséget elkeriil,
amelyek a kvantumkémia és a kristdlyok sédvelméletének ha=-
gyomdnyosabb médszereiben eldfordulnak. A médszerrel a na-
gyobb sztereokémiai komplexitdsu molekuldk és szildrd tes-
tek kémiai kotése pontosan leirhatd kiiloéndsebb szdmitdsi -
nehézség és gépid8 felhaszndlds nélkiil.



A médszer alapvetfen a vizsgdlt rendszernek sok-
atomos klaszter /cluster/-komponensekbe valé folosztdsd-
ra éplil. Minden klasztiert, amely lehet véges sokatomos mo-
lekula, makromolekula része, vagy sokatomos komplex egy
rendezett vagy rendezetlen szildrd testbdl, geometéiailag
folytonos atomi, atomktzi és molekuldn kiviili térre osz-
tunk. Az egy-elektron Schrodinger-egyenletet numerikusan
integrdljuk minden tartomédnyban a szférikus és térfogati
4tlagolt potencidlokra, melyek a kicserélddésre az X« |
gtatisztikus kozelitést tartalmazzdk. A hullédmfliggvények
és elsl derivdltjaik folytonosan kapcsolédnak 6sszé a
klaszter kiilonboz8 tartomdnyein keresztiil, éppugy mint a
tobbszdrdsos elméletben, amelyet eredetileg Korringa fej=-
lesztett ki [10, 11]. Egy partikuldris kdrnyezet hatédsa a
klaszterra hatdrfeltételekkel irhaté le, példdul egy
szimmetrikus sokatomos molekula esetében a molekuldn kivii-
1i tartomanyban a Schrddinger-egyenlet megolddsdt illesz=-
teni kell az egész molekulédt koriilvevl mesterséges gombha-
tdrhoz. Az eljdrds gyorsan konvergdld szekuldris egyenlet-
rendszerhez vezet, amelyek numerikus megoldédsdval a mole-‘
kula-pdlya energidk és fiiggvények adddnak. Ezen egyenletek
mdtrix elemeit, Osszehasonlitva az ab initio LCAO médsze~
rekre jellemzlkkel, egyszeri szdmitani. Nagy elfnylik,
hogy nem tartalmaznak tobbecentrumu integrdlokat. Az egész
numerikus eljdrdst addig kell ismételni, minden iterdcid-
ban a kapott fiiggvénybll toltéssiiriiséget és uj potencidlt
generdlva, amig & self-consistent-field feltételt elérjik.
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Az SCF tobbszdrdsos technika csak kis tdredékét
haszndlja annak a gépidbnek, ami egy ab initio Hartree-
~Fock LCAO médszerhez kell. Ezenkivill az alkalmazdsok azt
mutatjdk /pl. [7],[9] /, hogy ez a mdédszer a kisérletekkel
kvantitative igen jol egyezl eredményekre vezet. Példdaul
az optikal gerjesztések "dtmeneti dllapot" elméletét hasz~
ndlva, a t6bbszdrdsos modell a molekula és kristdly op=-
tikail tulajdonsdgainak pontos leirdsédt adja, amely még a
pdlyarelaxdcidk hatésdt is magdban foglalja [6,7]. A méd-
szert ezenkiviil olyan kristdlyokra és molekuldkra is le-
het alkalmazni, ahol az ab initio LCAO médszerekkel a
szdmnitdsi nehézségek és gépidb-koltség miatt nem érhetd
el eredmény. Tovdbbd, kiinduldsul az X« statisztikus to-
tdlie energidt hasznélva; meghatdrozhaté a totdlis ener-

gia, mint a sztereo-kémiai geometria fiiggvénye.

Az elméleti formalizmust ki lehet terjeszteni a
komplex kristdlyok elektronstrukturdjédnak leirdsdra, vagy
ol&an'problémékra, mint a szennyezések és hibdk kristdly-
beli kétésének, tovdbbd rendezetlen vagy amorf anyagok
strukturdja vizsgdlatéra. [5. fejezet}.

A disszertdcié célja a mdédszer, és & médszer alap=-
jén készitett programok részletes leirésa, & program fut-
tatdsdhoz szilkséges tudnivaldk ismertetése, valamint a prog-

ram futdsal kozben szerzett tapasztalatok bemutatésa.

Az 1. és 2, fejezet a mbédszer elméleti alapjait
tdrja £61, a haszndlt egy-elektron kdzelitd médszert (Xm)



és az egy-elektron egyenletek megolddsénak médjat /tobb=-

s8zdrdsos médszer/.

A 3. fejezet ismerteti a mdédszer alapjém irt.
programokat. A szllkeéges numerikus részleteket a PFilggelék

tartalmazza.

A 4., fejezet a programoi az R~40-es s8zémitégép~
re tortént Atirdsdt, valamint a futdsok kozben szerzett
tapasztalatainkat tartalmazza. Ebben a fejezetben taldlha-~
ték a viz, a metdn és a kénhexafluorid molekulédra kapott

eredményeink is, Osszehasonlitva az irodalmi értékekkel.

Az 5, fejezet b6 Attekintést nyujt a médszer ed-
digi alkalmazdsairél. A cikkbibliogrédfia 1977. 4prilisé-
| ig bezéardan tartalmazza az alkalmazds jellemz§ adatait.
/Milyen anysgon, mit szdmoltak, & szerzd/k/ nevét, a meg=-
Jelenés helyét és idejét/.

A Flggelék, a mér emlitett numerikus eljardsok le-
irdsdn kivil, a futtatdsok eredeti, szdmitdégépes listéit
is magaban foglalja.

A disszertdcié végén kapott helyet az elasd négy
fejezethez és a Filggelékhez tartozd irodalmi hivatkozdsok
jegyzéke.



1. AZ Xo - MODSZER

1.1. A Hartree-Fock egyenletek

Induljunk ki egy n elektront és N magot, tar=
talmazd molekula Schrodinger-egyenletébdl

H(# R)w(# R)=

41 2,2' Z;(e‘z-
= -5 A\, = =1 >3
{;24( ZMQ )+ \.Li ’lr‘-'r’l ¢ l'ﬁ'—RAI ¥
s M - “‘P\é"‘-ﬁ@‘ Sy -

ahOl a \V(i‘-, ﬁ) = Y(fl’ oec oy Fn’ ﬁl, cevy ?%) mOIQkLIla-fﬁgg-
vény az Osszes elektron és Usszes mag koordindt4jdtdél fiigg.

Mivel a magok az elektronokndl jéval lassabban mo=-
zognak, az elektrondllapotok kiszdmitdsdndl a magok j6
kbzelitéssel nyugvénak tekinthetSk. /Adiabatikus kozelités
[1] /.

Vezessiink be atomi egységeket, azaz legyen e=l,

h=1, menl . Ekkor a hosszusdg egysége lesz a bohr /jele
ﬁl
me®*

= 0.529177.10
/Ry/: ARy == =

[+

= 2,1799.10°

ay/t Qo =

-8 cm; az energia egysége a Rydberg

11 erg=13.106 eV, Ezentul mindig atomi

egységeket haszndlunk.
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A Schrodinger-egyenletet dtirva atomi egységekre,
az elektronok staciondrius 4llapotait leiré (p(l,...,n)
antiszimmetrikus fiiggvényt a

[:Z( A - Zl *l)+§__.|- = ]CPM

R N B e e S L (1-2)

egyenletbSl hatdrozhatjuk meg, ahol a ¢ argumentumdban
szerepld 1,...,n 8zdmok az elektronok hely- és spin-koor=-
dinatdit jelolik, tovdbbd az egy-elektron operdtort roviden
$. -vel, a két-elektron operdtorokat Q5 -vel Jeldltiik,
/A magkoordindtdkat paraméterként kezeljiik; az‘egyszerﬁség
kedvéért nem irjuk ki/. -

Ha ismerjlik az &ﬂ*k(4)}h=?gy-elektron spinpdlydk ‘
teljes rendszerét, akkor az elektronok sajdtfiiggvénye fol~-
irhaté, mint

cp(ﬂ,,,,,n):%Ck A GY (1.3)

ahol

u () L)
A, (n) = f—: ‘

u 1), .. wan)
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a Kz(kl""'kn)i(kl<~"'<~kn) rendezett konfigurdcié-
hoz tartozd Slater-determindns. Elsd§ kozelitésként olyan
{u} rendszert keressiink, hogy a

u.‘(4) .:.uﬂ(ﬂ)
} A
‘-FOH,...*\)-AO(n)—W

Gal1) .. Ua(n)

egyetlen Slater-determindnssal a lehetS legjobb energidt
kapjuk. Mésszdval gy wilasszuk meg az W. fiiggvényeket,

hogy a rendszer

CEHFY =K A (M| H] A (n)7 | (1.4)

totdlis energidja minimdlis legyen. Részletesen kiirva

CEHFY =Y_n; Su’s(ﬂfqut(ﬂdm +
+ %n;nésutm ) UT(Z‘) [U.; (D u,(2) - (1’5)

—Jms;"‘s&- u, (1) W, (L)] Gz dv, d\)',_

lesz a rendszer totdlis energiaja, ahol n; az i«hkspiﬁpélya
betoltési szdma /O vagy 1/, az integrdl pedig & spinre va-
16 osszegzést is jelenti. Az i 4 jJ kikotés elhagyhatd,
az utolsé tagot pedig a spin szerint szétvdlasztva kapjuk,

hogy
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CEHFD =Zniguf(4)f4ut(4)olv4 +
L (1.6)
+ %S?(ﬂg(Z)qmolu,olu1 + |

¥ %S[?f‘(“UXHHM) ¥ 90(”Uxuw (4)]dU, /

Itt g¢(4)=z:~wdu:(4)u¢(4) a * spinii elektronok sii-
r

riisége az 51 helyen és

U (= -2 nin Yulu} @y (g, du, g

XHF + 4
i Z:h" Uy, (A u, (4)
1

- L4dthatdé, hogy a totdlis energia (1.6) kifejezésében az elsl

tag a kinetikus energia és az elektronoknak a magok terében

vett energidjdnak Gsszege. A mdsodik tag a Coulomb-kdlcsdn-

hatdasi energia, amely magédba foglalja az elektron sajdte

kolcsdnhatdsat is. Az utolsd tag a kicserélfdési energia,
ani viszont az elfbbi sajdt-kdlcsonhatdst éppen megseumi-

siti.

A totdlis energia minimumit az uy spinpdlydk varid-

lasdval kell megkeresni, mikozben figyelembe vessziik, hogy
a spinpilyék ortonormiltak [12]. Ebb6l adédik az u; spin-

palydk meghatdrozdséra szolgdléd

[.{4 +§;"‘,‘ Su;(L)uJ-(Z.)q“o\ul + \/xHFc(/”] w, (1) =

Hartree=~Fock egyenlet, ahol

W\ oy

(1.8) .

.
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2om yul ] @uWui2) g, dv. (1,9
ul () u ()

\/XHF\: (4) =

a kicserélddés potencidlja. Az egyenletben szereplé
Eigp (1.8) és (1.5) alapjdn felirhaté, mint

CEHF(n;=4)) =K EHF (n;=0))
(1.10)

azaz a molekula totdlis energidja, ha az i-edik spinpdlya
be van toltve, minusz a molekula totdlis energidja, ha
az i-edik spinpalya iires. Ez megfelel a Koopnans-tétel-
nek [13], amely szerint a Hartree~Fock-egyenlet sajdtérté-

kének minusz egyszerese az ionizécids energia.

1.2. A kicserél8dés statisztikus kﬁzelitése

Az (1.8) egy-elektron egyenlet megoldéséban az
egylk nehézséget a kicserélSdés szdmitdsa jelenti. Slatef
az (1.9) kicserél8dési potencidlt egy sulyozott dtlaggal
helyettesitette [14], majd az &tlagot szabad elektrongdz-
ra kiszdmolta [12]. Igy a kicserélddésre a

- o]

kozelitd formuldt kapta /ahol ¢, mér & 2_n.u; (4)u;(4)
()
aktudlis tdltéssiiriiséget jelenti/. Ha még bevezetiink egy

AS‘T‘

o paramétert (d(SIater)a 1), megkapjuk az X« kicseréll-
dést:
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XA+

13
VARG E *Go\[j’%%(“] ‘ (1.11)

Igy az egy-elektron egyenlet:

[~v}+\/c(4)+\/x&¢(1)]u(,(4)=ccuwu) ;(1.12)

Géspar R. [15], W. Kohn és L. J. Sham [16] megfor-
ditotta az eljdrds 1épéseinek - a varidlds és a kicseré-
15dés statisztikus kozelitése - sorrendjét. Ok a totdlis
energia kicserél8dési tagjdt helyettesitették statisztikus
dtlaggal és ezutdn varidltak az W spinpdlya szerint. A
kapott egy-elektron egyenlet (l.l2)-nek felel meg, ha.&zg
értéket vesziink,

A totdlis energia az

CEXa)=2_n, Sw'et, ucirdo, +;—_SS?“)?(U9M.O‘W du, +
L (1.13)

+4 S (- 9x) (%,—c )‘l3 Lo, " 4 gv(ﬂ“’] o,

alakban irhaté, és konnyen beldthaté [14], hogy a sajét-

értékek most az

€= 2 <8Enx.°‘> (1.14)

osszefliggést elégitik ki az (1.10)-beli véges differencia
helyett. Az E&.x, sajatértékek ennélfogva nem azonosak az

€:ne Hartree-Fock sajdtértékekkel.
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Hédtre van még az a kérdés, hogyan vdlasszuk meg
az A szorzd értékét. A totdlis energia o -val linedrisan
vdltozik, tehdt minimalizdldsi eljdrds nem johet széba..
KézenfekvS megoldds o -t ugy vdlasztani, hogy az (1.13)
X ~totdlis energia egzaktul megegyezzék az (1.6) Hartree-
-Fock energidval. Ezzel a foltétellel K. Schwarz [;7] ki~
szdmitotta a konnyil atomokra.(z=i,...,“4) az A értékeket.
Ilyen A -kkal végrehajtva egy self-consistent-field széd~
moldst, azt taldlték [;8], hogy az Xa& spinpdlydk jo1
egyeznek a Hartree-Fock atomi pédlyédkkal.

Egy mdsik eljdrés o -t ugy védlasztje meg, hogy az
(1.8)~beli 41, spinpdlydkkal szdmolt Hartree~Fock ener-
gia a lehetl legkisebb legyen. Az igy vAlasztott K «kat
Lindgren [19] javaslata alapjén E. Kmetko [20] szdmoltaki

az egész periddusos rendszerre.

Bizonyithaté [14}, hogy az u, X«&- spinpdlydkkal,
egzaktul teljeslil a viridl-tétel bdrmilyen A& -ra. Eszerint
egy szabad atomra a kinetikus energia '‘pontosan egyenl$ a
totdlis energia (-1~szeresével. De a Hartree-Fock megoldéds
is egzaktul teljesiti a viridl-tételt. Igy abbdl a £olté-
telbdl, hogy az X« - totdlis-energia legyen egyenld a
Hartree-Fock energidval, az kdvetkezik, hogy a két médszer
kinetikus energidil is egzaktul egyenldk. Ez igen érzékeny
tesztje a padlydk egyezésének., Tovdbbd, a potencidlis ener-
glék is meg fognak egyezni. Ha a két médszerrel szdmitott
spinpdlydk kozel vannak, & Coulomb-energidk kozel egyenlé-

ek lesznek, mert azonos formula szolgdltatja Sket. Ennél-
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fogva az Xo - médszer kicserélSdési energidja kozel egyen~
16 lesz a Hartree~Fock kicserél8dési energidval. Ne felejt=
silk el azonban, hogy az &y, B8ajdtértékek jelentdsen kii-
lonboznek a Hartree-=Fock spinpdlya energidktdl.
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2. A TOBBSZORASOS MODSZER

Az el6z0 fejezetben kapott

[~V + V() v, ) = ey, () (2.1)

egy~elektron egyenletet tbbbféleképpen lehet megoldani.
Pé1d4ul Roothaan médszerével Y?I], a megoldds ugy addédik,
hogy a 1y, filggvényeket az atomi spinpdlydk szerint ki~
fejtik és a kifejtési egylitthatdkra kapott egyenletrendszert
megold jdk. Ektzben elkeriilhetetlen a tSbbcentrumu integré-
lok szdmitdsa, ami nehéz és id8igényes feladat., Ezt a ne~
hézséget keriili el a tobbszbérdsos mddszer, melyet J. C.
“Slater [3] javaslatéra elészor K. H. Johnson dolgozott

ki [4-6]. Ez a médszer nem mds, wint & szildrdtestfizikd-
ban haszndlt KKR /azaz Korringa [ld]-Kohn~Rostocker [11]—
médszer /Green-fiiggvényes mdédszernek is nevezikﬂ'alkalmé-

zdsa molekuldra illetve klaszterra.

2.1. A KKR-médszer

A (2.1) egyenlet megolddsa bdrmilyen V/(#) poten-
cidl mellett a

- 4 '
YR ==L __—____el_ V(&) np 7'y ol (2.2)
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integrélegyenlet formdjdban irhaté, ahol w =£ é8 4
valds vagy imagindrius aszerint, hogy £70 vagy £€<o0.
Ha mér elértikk a self-consistent field-et, akkor a (2.2)
egyenlet szerint azt‘mondhatjuk: A figgvény a potencidlon
onmagdba szérddott, mdsszéval az Osszes killsnboz8 T pontbdl
jové \/(&')\y(&f) erSsségll "hulldmocekdk" egyesiilése
adja a VY(+) hulldmflggvényt.

Tekintsiink egy egyféle atombbl 4116 kristédlyt.
Haszndljunk muffin-tin potencidlokat: az atomok kdriil a

potencidl szférikus, a kozti térben konstans /példdul 0/:

V(#)=2 V,(#-) (2.3)
t
ahol { & tramszldcids vektor. Behelyettesitve (2.2) =be
kapjuk:
) ik b7 ) 4'
V“*)=“5: ¢ \L(F- DRyl - (2-4)
A Py !

ahol az integrédlds csak az { kortili celldra vonatkozik,
mivel V., (+-1) kilonben eltiinik, Legyen T’’=3’-F
és haszndljuk £81, hogy (2.1) wmegoldédsa kristdlyban
Bloch-fiiggvény:
ki -
Y(F)=e w(F-2L),

ahol k & hulldmvektor, igy



Szemléletesen azt lehet mondani, hogy r-nél a hullim-
fliggvény az Osszes celldktdl szdrddd "hulldmocskdk" Osz-
szege [22]. Mivel minden cella azonos, be lehet vezetni
a struktura-Green-fliggvényt:

el Eeiw il o

Gk, 7-7")=7_ C‘_ Tr— ] (2.6)
z -

o+ L J

amely r-nél az T=t51 és az Osszes tobbi cella ekvivalens

pontjédtdl szdérddé hulldm hatdsdt adja. /2.1. dbra/

2.1. ébra
A struktura Green-filiggvény, mely
egyesiti a rdcsbeli Usszes ekvi=

valens pontbdl jové hullémot

[22].

Igy elegendd lesz egyetlen elemi celldra integrdlni,

hogy az egész hullédmfiiggvényt kapjuk. Az eljdrds kivet-
kez8 lépése megalkotni egy olyan funkcionélt, melynek va-
ridldsa a (2.5} integrdlegyenletet adja. Konnyen beldtha-
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t6, hogy ez

A NS‘Y: (¥ V, () ¥, (#) br +

+ﬁ£ gg\yk'(ﬁ-)\/o (E)G (x.\: ,;_,;,")\/a (,;_n).\_rk(,;“)x (2.7)
« w7’

lesz. Az integrdléds csak egy elemi celldra vonatkozik, és
mivel & potencidl az atomi gdmbon kiviil eltiinik, fonndll,
hogy r,r'’ { R . /Ry az atomi gbmb sugara/

Valamely atomi gdmb belsejében viszont a hullédm-

fliggvény a gombfilggvények szerint sorba fejthetd:

(3= Con R Ve, (0.0) (2-8)

Behelyettesitve (2.7)-be,J\.a (:st egylitthatdk kvadratikus
fliggvénye lesz

*
AN =Q§L'u' Alm;t’w Cgh Cruw (2.9)
A varidcids feltétel homogén linedris egyenletrendszerhez
vezet /szekuldris egyenletek/, amelynek \'f&LM;LWJ\
determindnsa el kell, hogy tiinjon. A determindns a k hul=-
lémvektor és az E=4&" energlia fliggvénye, igy a determi-
néns gyokei az €(k) ©sszefilggést adjék. A determindns

elemei



£M !

P ne - nele (2-10)

! }U - 1" L{

alakuak, ahol m,, 4, szférikus Bessel-fiiggvény és L,

az R& radidlis filggvény logaritmikus derivédltja. Az

Aoi 10w
t6k, mert k és x~n kivill csak a -rdcsstrukturdtél fiiggenek.

egylitthaték struktura-konstansoknak tekinthe-

A pontos formuldk Clebsch-Gordan egyiitthatékat és szféri-
kus Bessel-figgvényeket tartalmaznak, amelyek & Green-
~fliggvény T és T'' irdnyu gombfiiggvényekbe vald kifej-
tése kovetkeztében addédnak. Az atomi potencidl az ht radi-
4lis fiiggvénynek a gombhatdrndl vett  logaritmikus deri-

valtjan keresztlil jelenik meg a determindmsban.

A t8bbszdrédsos mddszer klaszterra

A t0bbszdérdsos médszer klaszterra elvileg azonos
a KKR.médezerrel, csak a megolddsfiiggvények a kristélyoé-
ban eléirt periddicitéds helyett exponencidlisan csSkkennek
a klasztertdl tdvol /kotott dllapot/. A szekuldris egyen~
let levezetésében varidlds helyett a hulldmfiiggvényeknek
a killnb6z6 gombhatdrokndl vald egyidejii illeszkedésébdl
indulunk ki.

2.2 Muffin-tin potencidlok

A SCF tobbszdrdsos formalizmust legegyszeriibben
egy atomokbdél 4116 szimmetrikus klaszteren szemléltethet-
Jik. A 2.2 abran l4athaté egy ilyen négyatomos "molekula"
kétdimenziés képe.
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2.2, 4bra
Négy atombdl 4116 szimmet-

rikus klaszter kétdimenzids
képe.

0

A klaszter terét geometriailag hdrom alaptartomdnyra
osztjuk. El8sz0r is minden atomot nem-dtfedS gombbel ve=
szilnk koriil, melyeken beliil legyen a potencidl szférikus.

A p-edik gombben:

\ / A : 2.11
\/P(/r‘,ﬁ’—‘—;—;r Sg\/(nr) su\@Pol@po‘CPP ( )

T =- - R _é ﬁ - o .
ahol rp r Rp y O rp._ bp , ha bp a p-edik gomb

sugarsa, Rp a p-edik gomb kdzéppontjdnak az origdtdl

vald tdvolsdga. Megjegyezzilkk, hogy az I. tartomanybeli
(2.11) potencidl nemcsak az ide lokalizdlt atomtél szdrma=-
zik, hanem az ©sszes t0bbi atomi potencidlnak az erre a
tartomdnyra vett, szférikusan dtlagolt jdruléka is. Igy az
4tfedS potencidlok hatdsa elsd rendben figyelembe van véve.
Ugyanez érvényes a II. és III. tartomdnyra is. Mint azt az
alkalmazdsok szemléltetik [7-9}, ez a médszer a (2.2) dbré-

hoz hasonld szimmetrikus sokatomos molekuldk és szimmetri-



kus kristdlykdrnyezetben lev{ sokatomok klaszterek eseté-
ben pontos molekulapdlya energidkhoz és fliggvényekhez ve-
zet, anélkiil, hogy a potencidlban nem-szférikus tagokat fi-
gyelembe kellene venni. Kisebdb szimmetridju komplex sokato=
mos molekuldkra a pontossdgot a nem~szférikus tagok'pertur-

bdcidként valé figyelembevételével lehet ndvelni. [23]

Az atomi gombokon beliil a megoldds a gdmbfilggvé-
nyek szerint sorba fejthet6:

wp(ﬂ'r,,)r-%Cf R:(e,rr,,)YL(f?rP) , .(2.12)
o L
ahol 2_ =2 7 , 68 R: a megfeleld
. | Lzo mr»-28
2 (L+ 4 -
[FAdrd cHED Gy Cg]R] (6,7)=0 (2.13)

radidlis egyenlet megolddsa valamilyen & energiaértékre
és L  xvantumezdmra. A racidlis fiiggvényeknek az atomok
kozéppontjdban végesnek kell lennie, igy R, (2.13) ~b6l

numerikus kifelé /outward/ integrédldssal hatdrozhaté meg.

Az atoml gbmbdk kozti tartomdnyban a potencidl kons-

tans, dltaldban az osszes potencidl térfogati dtlaga:

%=%§ymﬁj - (2.14.)
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ahol U, =" (L — Z ¥) az atomktzi tarto-
mdny térfogata. Célszerii az atomi gomboket ugy védlaszta-
ni, hogy az atomok kozti tér a lehetd legkisebb legyen

és a gombok érintsék egymédst, bdr még mds fizikai paremé=-
terek, mint példdul az empirikus atomi- vagy ion-rddiuszok

is befolydssal vannak a gombdk méretére.

Az egész molekuldt koriil szokds venni egy nagy
gdmbbel, amelyen kivill /III. tartomdny/ a potencidl ismét

gzférikus:

Vo (7)) = f}igg\/(&)ou\,@oo‘god(po) (2.15)

ahol T =7 ~-R,, b,<r oo, ha b, a kills§ gomb
sugara. Az eldzdekhez hasonldan a megoldds itt is sorba=-
fejthetos:

Nry = DIRS (e)ve) Vo (7)) (2.16) -

ahol RZ a (2.13) -mal mnalég radidlis egyenlet megoldd-
sa. Lokalizdlt elektrondllapotok esetén a fliggvénynek

a molekuldtél nagy tdvolsdgban exponencidlisan kell csdkken=
nie, ezért a megoldds adott & és 1 paraméterek mellett
numerikus befelé /inward/ integrdlédssal adédik az egyenlet-

b61.

Mivel a potencidlok a kicserélédést az X« statisz-
tikus kicserélSdéssel kozelitik, gondoskodni kell az o
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paraméter kiilonbozd tartomdnybeli értékeinek megfeleld
megvédlasztdsdrdl. Szokdsos vdlasztéds: az atomi gdmbokben
az atomhoz tartozé /Schwarz-féle/ érték, a kivzti tarto-
ményban pedig az atomi értékek sulyozott 4tlaga. A moleku-
14n kiviil az emlitettek koziil valamelyik. :

2.3. Az egy-elektron egyenlet megolddsa az atomktzi térben

A konstans potencidlu atomkézi térben a Schridin-
ger-egyenlet a kozbonséges sajdtértékegyenletre redukdlé-
dik:

(v-+e “er)‘!’m(*):O ) (2.i7)

Ennek megolddsa Green-fiiggvény :

[Vi*ﬁ—\/u]G('?ﬁ')=cf(f?-«-—') (2.18)

/A Green~fiiggvénynek a tovdbbi szdmoldshoz szilkséges
kifejtéseit a Fiiggelék 4.§-a tartalmazza/

Szorozzuk be (2.17)-et G (T,F)-rel, (2.18)-at
\+3L(f') vel, a két egyenletet vonjuk ki egymédsbdl és

integrdljuk az atomkdzi tartomdnyra:
Mel(®)= (Ga,#) 7 g 8 -
— M (A (5, 7) ] Ay (2.19)

A jobb oldalon alkalmazva a Green-tételt, fontos kiindu=-
16 egyenlethez jutunk [4]:



~G(&,&')§;.“¥K(&‘)jdi' (2.20)

Integrdlni az atomkozi tartomdny feliiletére kell, ami
a killsbé gomb és atomi gombdk felfileteibdl 811, megfele=-

16 irdnyitdssal. /2.3. &bra/.

2.3, éabra
A (2.21) egyenlet integ-
raldsi felilletei

Ennek alapjén (2.20} igy irhaté:
_ Al o ey
%("):YF; [C’(*p»*p)a¢; Vo (&)
—wn(«‘f‘)ga;,@(’?p.fp')]oli; - (2.21)
P

-y [Ger 702, e (B = M (7) 2=, G (7o 7Y |l
= o, o,

Vezesslink még be poldrkoordindtdkat, akkor (2.21) ilyen
alaku lesz:
_ 2 - iy O v
«%n(qv):lv_{r‘, SLG(’FPITP) My (F)
P ﬂ—P B’T'

P

—%(@W%% 1dy — & e %} — Mp %:Cj ]O‘Ro , (2-22)
2,



ahol df] = ein@deq}.

Megkivdnjuk, hogy a hullédmfiiggvény és els8 derivédlt-
jal folytonosan menjenek &t a gombok hatarén Igy (2 22)
jobb oldaldn 7y, helyébe lyP y 1lletve 1Y irhaté. Hasz-
ndljuk még £ol a Green-fiiggvény (F4.1) és (F4.3) kifej-
téseit, skkor (2.22) ~ben a p-edik gombdn vett integrél
igy irhaté:

S[K ( '\) 1 (dr)'i (K’T‘)\/ (,1—)‘7’ (,‘-‘),

ZCPO{"’ R (E»'Tp')cp YL' (’TP\) -

LA . ,
— ZC: R:. (E,(r,)yL. (7o) w Y{_(—A) a—?r:‘%(m") § X

(‘){K¢)y ('\'3\/ (&‘)]dﬂ_ ,

(
ahol az 1!/, kZ Bessel=fiiggvényeket a Fiiggelék 1l.§-a
tartalmazza, A kifejtést arra az esetre irtuk f8l, amikor
\/ )
E,/\\/IL , 68 rp7r’p= bp . Ha E? T vagy rp >rp , 8k~
kor a Green-fiiggvény (F4.2) és (F4.4) kifejtéseit kell

haszndlni (F4.1) és (F4.3) helyett.

Vezeasiik még be az

[{’URQIE v, Re _ R 2L (2.23)

Lo L onr
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jelslést és haszndljuk ki, hogy SYL*(,;‘)YL. ()5 =d,.

K03
akkor VW, tbbbcentrumu kifejtését kapjuk:

L o 244 ) > Ch] A
o (3)= '; Wb }L_(_/w [retkmiRe Ye, C by (kmpy Y (2,)-

, (2.24)
1 ‘2 o [+ Q44 . y (4 )
kb 2 [ wem Ry, D 0 g emd (Ao
L

Legyen
P
AL = K&: (-A)zM [(c(kfr),RQP-)g,P : ;
to B =il [W ke, RE), DY (2-25)

igy ha ¢< \/II , akkor

Wy ()= 2 L AT Gy Y (7)) +
(2.26)

+ ‘L[_ B: (—4)“4 Ty (k) Y, (#o)

illetve ha €3>V, , akkor

P
W (7)) = \L: Z,:_ AL h&(kq—p)y,. (wp) + .

+ ZL Bf ];e (K,’Tg)yk ( """o)

Az egyltthatékra vonatkozé (2.25) formuldban, ha &>V ,
(%)

akkor (_4)“‘ v, helyett 4, , Kk, helyett pedig n,

{rands.



2.4. A megolddsok illesztése: a szekuldris egyenlet

Az atomi gombokon bellili, illetve a kiilsé tarto=
mdnybeli megolddsnak egyidejiileg kell illeszkednie a kozti
tartomdny megolddséhoz. Ez a feltétel szolgdltatja a sze-
kuldris egyenletet. Ehhez ugy jutunk, hogy a (2.21) kiindu-
16 egyenletben a Green-fﬁggvénytlaz egyes atomi centrumokra

kifejtjik.

Legyen a q~adik atomil gomb centruma az, amire
kifejtjlik a Green~filggvényt. Két eset lehetséges: q vagy

(X
egybeesik a p centrummal és akkor ((—4)* te ™2 ic)

G(x,

4

V=G (. % ) = k2 ek wr )Y GV (40)  (2.28)
vagy nem, és akkor

G(#3) =6, 7)) =6 (5-R,,. 7 )=
= K? L'Q (k) fv.(;) (KW‘G‘_-— R_‘\—r\ )YL (ﬂrqr- R‘H') x (2.29)
"YL*("'pl)

Az Osszes kifejtést &\ esetre végezzilk el. R._ & p-

qp
edik és g-adik centrum tdvolsdge és foltettilk, hogy rp'> ri

qu‘> Ty (2.29) +tovdbb alakithaté, ha folhaszndljuk az
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(F4.7 - F4.12) kifejtési Osszefliggéseket. A felirt eset-
ben (F4.7) ~et felhasznédlva:

“ — -
&L (kIrFq_-Rwl)yL(&—,r~Rq,‘,)= |
(2.30)

umZ(—ﬂ Y5 I, (L L)kl.. (KRQ,,JYL.. (Ryp) g kg Yo (7))

Lll

Az 1itt eldforduld

T. (LU= Ydo

mennyiség & Gaunt-integrdl, hérom valés gbmbfiiggvény

2 0d0 Yo (0,0 YL (0,4, Yo (6,0)

Ow_—¢gl

szorzatdnak integrdlja. Ez csak akkor nem zérus, ha telje=-

siil, hogy

|L-U)4 L et és g+ U +4'= pdros szénm.
A Gaunt integrédlok kiszdmitdsa a Fiiggelék 2.§-4dban taldl~
haté.

Vezesslik be a

L+
G¥ev= (4 =d, Yu (-1) =«
o ) ( ap) ) (2.31)

2T, L791y(KR-g)XJ(R

L-“
jeldlést /G-mdtrix/, ezzel(2.29) a kovetkezS alakban irhatd:

G(#,-R * )= KZZ G (&) 1 ey » (2.32)

& Rap — T

x YL" (4".) ‘;Q'QK’“’)Y"‘ (';'q’)
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Teljesen hasonlé kifejtést kell végrehajtani a (2.21)
egyenlet mésodik felére /ahol a kiils§ gombre kell integrél-

ni/. Itt az
8% (oy= hen™ L T,(LL):
- v (" (2.33)
(% Rq,o D) L ( Rqro)

i

x Ly

jelolést vezetjilk be, és igy

L
(2.34)
) .
vy ) YR L tem Y Y (7))

Ha a gq-dik centrum egybeesik a killef gdmb centrumdval,
a kifejtés (2.28)-hoz hasonld, vagy ami ugyanaz, (2.34)-

Q0 .
ben SL‘L = JL.L -t kell irnmi.

Irjuk be ezen sorfejtéseket a (2.21) kiinduld
egyenletbe és a baloldalon is tartassuk Tet rg-hoz. Ekkor
vh(4h$5;)==q¥“(;%3 és a q-adik atomi gdmbon beliili sor-

: fejtést be lehet irni. Folhaszndlva még a

[_(c(dr), k(:(d,—sj = T}@-l ,
(2.35)
[ 4oty ny et] = 2.

Wronsky-reldcidékat, valamint a (2.25) egylutthaték kozti

S



- 3] =

osszefiiggést, a szekuldris egyenlet egyik felét kapjuk:

;75{5 d [Rv m]& G:Z}AP_Z—S:: B:FO. %.36

Py WL \
\ [5 U ]% )

Szokds még bevezetni a

. [ R:]LL
¢ p w
[RL !kL]L,

mennyiséget, melyet t-matrixnak neveznek.

(2.37)

A szekuldris egyenlet mdsik felét ugy kapjuk, hégy
a Green-fiiggvényeket a O-adik /kills§ gomb/ centrumdra
fejtjik ki. A (2.2I) kiinduldé egyenlet baloldala most
°(#,) ~hoz tart, és a megfeleld sorfejtést beirva
adédik, hogy

L]

—. op . P N ,R°
ZF‘_i\; S|.‘ L A\-' - [Y;n Re ;(\Q' 13) =0 (2'38>

ahol az S-métrix (2.33)-mal van definidlva. Legyen

[k(: ¢ RZ _szo (2.39)
[‘;c . Rll&o

akkor eredményeinket igy foglalhatjuk Gssze:

i

q, ()
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Osszefoglalds:

A II. tartomdnyban a hulldmfliggvény kifejtési egyiitt-
hatdéira a '

é: % [T"@]" AL - Z St B (2.40)

Lt

Z SOP A Z LL [-Q';(C)]—' B: =

azekuléris egyenlet 411 fenn, ahol, ha £{ Vg ,

h_ (E)]L T JP% d. [-.-{LP ]—1 - G:: (e .
P ((}] (2.41)
£P= [:{,Rt]‘p ) %o [kL ,R(]z%
YTk R:](,P © Lo Ryl

G::(e) = (4‘(:;\%?)“1(("4) ZI (L L ) U' kRWP)yL" (Rﬂo”,)

L"

M lmt@4futi:.IUXLﬂ:)tu(K Rao) Vi (Rgo) .

UL n

A molekula pdlya energidkat a

r—

- dd °
&T 4(@ ]LL, - S:(u (e)
(2.42)
o4 ° -1
EbLE (e) - AlL'EQQ(E§]

determindns zérushelyei adjédk. Mivel mindeniitt valds

gombfiiggvényeket hasznédlunk, ezért a mdtrixok valés, on=-
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adjungdlt /tehdt szimmetrikus/ mdtrixok:

(LN
SHER RN
UL L L

A szekuldris médtrix nem-diagondlis elemeit a Gtz

ndtrix elemek adjdk. A G -mdtrixot "struktura-konstans"-

P Pa Pe *
- CLL' :CLL‘ )

(2.43)

{

nak lehet tekinteni, mivel az energiédn kivill csak a mole-
kula geometriai adataitél fligg. A szekuldris métrix dia-
gonélis elemeit a t-mdtrix adja, amely a radidlis fligg-
vényen keresztiil a potencidltél is fiigg. ElSfordulhat,

hogy a t-métrix inverze szinguldris, azaz

[(z - RQP]Q,,,:O (2.44)

Ha ez igy van, akkor (2.25) szerint az A: egyutthatdk
zérusok, a C: -k hatdrozatlanok lesznek. Tové&bbd (2.44)-
b6l egyszeri dtrendezéssel adddik, hogy a radidlis fiigg-
vény és a szférikus Bessel-fiiggvény logaritmikus derivdli-
ja folytonosan megy 4t a gbmbhatdron. Ugyanez a jelenség
figyelhet6 meg elektronok atomon vald s8z6réddsakor /Ramn=-
sauer-effektus [@,24]/.

Bdr a wmdtrix elemek bonyolulinak tiinhetnek, kiszé-
mitdsuk viszonylag nem nehéz. Ez annak koszonhetd, hogy
csak a radidlis figgvényektdl /pl. R:(a@,) és kr(k%p)/
és elsd derivdltjaiktél, illetve a "stiruktura-faktorok"t5l



- 34 -

/pl. &:’(k FZ,,QVL(QA,,J / figgnek. Az £-tél és {-t81
fiuggd radidlis Schrodinger-egyenlet megoldédsdra a Numerov-
-médszert [és,zé] j61 lehet haszndlni. A rekurzidés for-
mulédk alapjdn /Fiiggelék 1. §/ nem nehéz szdmitdgép-progra-
mot irni az osszes eléforduld szférikus Bessel=-fiiggvény és
gonbfiggvény kiszdmitdsdra. Itt nem szerepelnek az LCAO=-MO
nédszerre jellemz§ tobbcentrumu integrdlok. A Gaunt-integ-
rdlok is konnyen kiszdmithatdk, akdr koézvetleniil, akdr mint
Clebsch-Gordon egyiitthaték szorzatkifejezémel /Filggelék 2.§/.

Az energia paraméterként minden métrix elemben szere-
pel, ezért a sajdtértékeket interpoldciéval kell megkeres-
ni: A matrix elemeket kiszdmitjuk egy energiatartomédny
/ahol a sajdtértékeket sejtjiik/ t6bb pontjdban, amig a de=-
termindns zérushelyét kelld pontossédggal meg nem kdzelitet-
tik.

2.5. A szekuldris egyenlet megoldésa; szimmetria

A szekuldris egyenlet megoldéasdt olyan prébafiigg-
vénnyel kezdhetjilkk, melyek egy vagy két parcidlis hullédm-
b6l 41lnak. Altaldban azt tapasztalték E4,21], hogy atomon-
ként /ha alacsony rendszdmu/ két vagy hdrom parcidlis hule-
1dm /0 =0,1,2/ elegendd a legttbb sokatomos molekuldra,
hogy & sajdtértékeket ¥ 0.001 Ry-es hib4val érjék el.

A megoldandd determindns méretét jelentSsen csbkker-
teni lehet, ha figyelembe vesszilk a molekula szimmetria=

tulajdonsagait.
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Bizonyithaté, hogy valamely sajdtértékhez tarto-
z6 sajétfiiggvények az adott szimmetriacsoport egy irredu-
cibilis el641l1itdsdnak bazisdt alkotjdk. Ilyen filggvények-
kel az eredeti médtrix blokkos formdba rendezhetd &t [27].
Olyan prébafiiggvényeket kell tehdt folvenni, melyek az
egyes irreducibilis eldfdllitdsok bézisfiiggvényel is egy-
uttal. A csoportelmélet mdédszereivel az adott irreducibi-
lishez tartozd fiiggvényeket meg lehet keresni [},2;] .
Az uj figgvények a régiek linedris kombindcidéi lesznek:

(1" P e e ,
=2 Ci .0, (2.45)

.aka mp

By :
ahol K }k ¢ a (¥) irreducibilis A-dik elfforduldsé-

b6l a k-dik fiiggvény, mindig egyetlen {-hez és valamely

p atomtipushoz tartozik. Itt ($: = R: l:, azaz
P==E:C:kp: , ahogy az (2.12)-ben szerepel., Fejtsiik sor-

ba \y;- ~t az uj bdzisfliggvények szerint:

4

G P

w? ZZE__Z_‘XGk‘K*kC , (2.46)

g ek

Beirva ide a K-fiiggvények (2.45) sorfejtését az uj /szim-
metrizdlt/ és a régi sorfejtési egylitthaték kozti Ossze=-
fiiggést kapjuk:

C=C x4 Ch. (2.47)

L ak )

Mivel a szekuldris egyenlet C: -re vonatkozik, (2.47)
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felhaszndldsdval megkaphatjuk a szekuldris egyenlet szim-
metrizdlt alakjét:

!
( )

.) 'v :
ol k (1)
1
0> 4
ahol ﬂdk ‘Ikl )
(2.45)-ben szereplf kifejtési egyUtthatdkkal vald szorzés-

a szimmetrizdlt mdtrix elem a régibdl a

sal 4llithaté eld:

‘3)(‘)) /)) P C(d) P' .
Z d\,_ L L L' dl L. (2'49)

1
e W

A madtrixelemek kozlil csak az nem zérus, amelyik azonos
irreducibilis egyes eléfordulasainak azonos sordhoz tare
tozik [28]. Valamely két eléfordulds kizti mitrix elem
viszont azonos, akdrmelyik sorral is szdmoltuk. Ez a mdtrix

4

nagységédnak tovabbi csdkkentését teszi lehet8vé.

A (2.11) szuperpondlt-atomi potencidlokkal gene-
rdlt betoltott.molekula-pdlya energidk és filggvények a ki~
indulé mennyiségei egy teljes self-consistent-field szé-
molésnak. A kezdd filiggvényekbSl képzett toltéssiiriiség lesz
az alapja az uj potencidl generdldsénak. Ez a potencidl
szférikusan 4tlagolt a kitlonbozd atomi gombokben és a mo-
lekulédn kiviili tartomdnyban. Térfogati dtlagolt potencidlt
hasznédlunk a gombdk kdzti térben. /A potencidlok kiszémi-
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tdsa: Fliggelék 3. §/. Ennek és a kezd8 potencidlnak egy

alkalmas dtlaga szolgdl a kovetkezd iterdcidé szédmdra po-
tencidlként. Ezzel uj sorozat pidlyaenergidt és fﬁggvén&t
kapunk, és az eljdrdst addig kell ismételni, amig & po=-

tencidl és toltéssiliriiség self-consistent field-jét elér~
J ik, |

A tobbszdrdsos Xo médszer sokatomos molekuldkra
és kristdlyokra valé alkalmazédsdndl azt taldltdk, hogy -

8 leguélyebb "tdrzs" palydk toltéssliriiségét fixen lehet
tartani /befagyasztds/ és a végal "kémiailag eltolddott™
tdrzs pdlya energidkat ujra szdmoljdk a megmaradé valen-
cla elektronok self consistent field-jével, anélkiil, hogy
felbecsiilhet§ hibAt okoznénak. Kiildnben is mivel az SCF=Xy«
eljdréds nagyon gyors /mnéhdny perc IBM 360/65=6n, 10 perc
az R40-en/ az Usszes torzs elektron hozzdvétele mér nem
volna gazdaségos.

Az SCF szémolds kdnnyen elvégezhet§ spin-fiiggd foé-
médban is /azaz k{i1lonbdz8 spinhez kiilonbozd pédlydk tartoz-
nak/ ha a kiceseréldédés IXa kozelitésének (l.li)-beli spin-
fliggsé formdjdt haszndljuk:

4
V. (#)= ~Go&(q—3ﬁgr(ﬂ) 3,

Xo ¢
11a
3
i11etve V()= —Ca(7% 9, () "

Ezekben a kifejezésekben ¢r és O, a "spin-up" és "spin-
~down" elektronok t6ltéesiiriiségét jelenti, killon-kilon.
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Az SCF tObbszérdsos Xo médszer spinfilggd vdltozata
kiilontsen értékes az olyan "nyitott-héju" molekuldk

és kristdlyok elektronszerkezetének és a hozzd kapcsoll-
dé jelenségeinek megértésében, mint példdul az dtmeneti-~
fém~komplexek. [S. fejezetJ |

2.6, A médszer lehetdségei és korlital

J61 ismert, hogy az ab initio LCAO médszerek alkal-
mazdsdnak komplex molekuldkra és '8zildrd testekre a bé-
zis mérete ésatobbcentrumu integrélok vagy az ekvivalens
Hartree-Fock mdtrixelemek széma szab hatdrt. Az SCF t&bb-
szérdsos Xo modellban nincsen bdzisprobléma, mert egysze-
riien numerikusan integrdljuk a Schrddinger-egyenletet egy
Xo. potencidlra. Nincsenek benne tébbcentrumu integrdlok és
a médszer killonosen jé, mind spin-filggetlen, mint spin-
-figgd formdban a jelentls sztereokémiai bonyolultségga}
rendelkez$ sokatomos rendszerekre. A médszer kiterjedt al-
kalmazdsdt a komplex molekuldkra és szildrd testekre az 5.

fejezet ismerteti.

A médszerrel elsésorban az egy-elektron-energidk
és fliggvények hatdrozhaték meg. Bdr egy SCF tobbszdbrésos
X« egy-elektron analizis sok kémiai és fizikai tulajdon=-
sdg pontos leirdsdhoz vezet /példdul toliéssiiriiségek, mig-
neses és optikai tulajdonsdgok/, az is nagyon fontos, hogy
ismerjiikk a teljes sok-elektron energidt. Az alapdllapotu
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totdlis energia, mint a sztereokémiai geometria fliggvé-

nye, lényeges a molekuldris és kristdlyos kohézids tulaj=-
donsdgok /pl. kotési energia, erdSkonstans/ kvantitativ:
megértéséhez. A tObbszdérdsos X« médszerrel ki lehet szé=-
mitani a totdlis energidt [29] alapjédn. /Fliggelék 3. §/.
Megemlitjilk még, hogy mwind a viridl mind a Hellmann~Feynman=
~-tétel nagy pontossdggal teljesiil az SCF t5bbszbérédsos X«
formalizmusban ‘}4] . Tovdbb4, ellentétben a Hartree-Fock-
-médszerrelez a technika helyes szepardlt atom limithez

vezet, ha a magok kozotti tdvolsig a végtelenbe tart.

Mivel a jelen mddszer a pdlya filiggvények gyors kone-
vergencidju numerikus reprezentacidéjdt adja, az elméle ti
modell pontossdgdt perturbdcid szdmitéssal lehet ndvelni,
ha sziikséges. Vannak esetek, amikor a muffin-tin potencidl
haszndlata nem ad kielégitd eredményt. /példdul alacsony
szimmetridju klaszterek, erfsen irdnyfilggé jelenségek
esetében /5. fejezet a/ pont./. Ilyen esetben a nem-nuffine-
tin tagokat perturbdcibéként figyelembe véve hasznédlhaté
lesz a médszer. Egy mésik korrekciés lehetbség az 4tfeds
szférikus potencidlok hasznédlata /5. fejezet a/ Rosch/.
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3, A MODSZER SZAMITOGEPRE IRT PROGRAMJAI

A tobbszérdsos Xx médszer alkalmazdsdhoz harom,
FORTRAN IV nyelven megirt program tartozik. Valamennyi
program a JATE Kibernetikai ILaboratérium R=40 /ESz-1040/
sz4mitégépén milkddik is.

A vizsgdland$é molekula vagy klészter legfeljebb 18
atombdl dllhat /beleértve a killes gombst is/, amelyek hé-
rom killonbdz8 fajtédhoz tartoshatnak. A szekuldris deter=
mindns maximdlisen 11 x 11 -es méretli lehet. A r;diélis
fuggvények sorfejtésében l=6-ig lehet elmenni. A program
a szdmitédsokat spin-fligg6 és spin-fiiggetlen formédban
egyardnt el tudja végezni.

3.1. A kiinduld adatokat el8d4llité programok

Az els§ program, az un. Herman-~Skillman program °
fﬁggétlen a mdsik kett8t61 és mdsfajta szédmoldsokra is
alkalmas, A Herman-Skillman program szférikus kozelités-
ben megoldja az atom Schrddinger-egyenletét, és eredmé-
nyiil a sajdtértékeket, a radidlis fliggvényeket és a self~-
-consistent atomi potencidlokat szolgdltatja [36]. Az ato-
mi potencidlok az Xo kicserélfédést is tartalmazzdk.

Ezeket az atomi potencidlokat haszndlja & tobb-
8zérédsos Xo médszer kezd8 potencidlnak. A mdsodik prog-
ram, a MOLPOT, végzi el a potencidl és a tbltéssiiriiség
szférikus és térfogati dtlagoldedt a molekula geometri-

éjénak megfelelden [31] .
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Részletesen csak a harmadik programmal foglalko-
zunk, ez jelenti a tobbszdérasos Xo mdédszert. Az eredeti,
K. H. Johnson és F. C. Smith Jr. 4ltal irt vdltozatot hasz~-
naljuk, D. Liberman és P. Batra médositdsaibdl ceak az el-

¥

engedhetetleniil sziikeégeseket vettiik 4at.

3.2. A nem=-gelf=consistent-field program

He csak a sajdtértékekre van szﬁkség, akkor a nem
self-consistent field vdltozatot célszerili haszndlni. A
programhoz sziikséges potencidlok szdrmazhatnak a MOLPOT-
bél. Nagy elénye, hogy & sajédtértékeket nem kell elSzete-
sen megbecsiilni, hanem a program egy energiaintervallﬁmban
megkeresil a8z Usszes sajdtértéket. Ezt a programot lehet
haszndlni SCF potencidllal a radidlis fiiggvények el84lli~
tdsdra is. |

A 3.1, abrédn 1évé folyamatédbrdn jé1 lédtszik a proge
ram szerkezete. Az egyes szubrutinok részletes leirdsa

a 3.2. &brdn taldlhatd.
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CALL INPUT

beolvassa a kezdd poten=
cidlt és a molekula geo=-
metriai adatait

CALL SETUP

beolvassa a soron 1évé
irreducibilis el84llitéds
fliggvényeit

[

CALL EIGEN

ID=3. Az ehhez az irredu=-
cibilis eld4llitdshoz tarto-
z6 sajdtértékeket megkeresi
egy adott energiaintervallum-
ban

igen ///fan-e még irreducibilis

3.1, dbra,

\ el6411itds?

nem

CALL OUTPUT

kiirja az eredményeket
a szélesnyomtatora

A nem=SCF program folyamatédbrija
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3.3. A self consistent field program

Az SCF program a szekuldris egyenlet mindenkori
megolddsa mellett a self consistent iterdcidét tartalmaz-
za, Miikodése és az egyes szubrutinok szerepe tovdbbi ma-
gyardzat helyett a 3.2. édbrdbdl leolvashatd.

NSTS az dllapotok szémét, NITER az iterdcidk szémat,
TOL a self consistent field kritériumot jelenti.

CALL INPUT

beolvassa a molekula geometriai
adatait, a MOLPOT outputjédbdl az
elsé iterdcid szdmdra elkésziti a
muffin tin potencidlt (V).

-
—————N = 1,NSTS

CALL SYMM

a SETUP szubrutin elsé fele, amely
beolvassa és tdrolja az irreduci-
bilis elddllitédsok adatait; kiszd-
molja és tdrolja a Clebsch-Gordan
egylitthatdk /FUNCTION CGC/ segitsé-
gével a Gaunt-integrdlokat.
/Flgg. 2.7./

—

CALL STRUCT

a SETUP szubrutin mdsik fele, amely
kiszémolja és tdrolja az Usszes ell~
forduldé gombfiiggvényt /CALL YLM1/

I

= N= 1,NITER

>~ M= 1,NSTS
(f) (i) 3.2. &bra
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?

CALL EIGEN

Linedris és kvadratikus inierpoldcidéval meg-
keresi a szekuldris determindns zérdhelyét és
igy a sajédtértéket szolgdltatja. Az dltala hi-
vott SMTX szubrutin szémolja ki a szekulédris
determindnst adott energidra. A TMAT szubrutin
numerikusan integrdlja a radidlis Schrtdinger-
egyenletet, megadjé a radidlis fiiggvényeket
és a t-médtrixot. A GMAT szubrutin a -mdtrix
elemeit szdmolja, az OSBF szubrutin a kiilon-
féle Bessel=-fiiggvényeket PFiigg.l.§. . A LINEQ
szubrutin szdmitja ki a determindns értékét.

l

CALL NRMLIZ

Kiszdmitja €és normdlja a toltéssiiriisé-
geket és a kifejtési egylitthatdkat.

Kiszdmolja a teljes toltéssiirilséget

|

CALL VGEN

A t01ltéssiirliségbll kiszdmolja az uj
potencidlt ( Vi;) ée a totdlis ener-

giét (Fiigg. 3.%.).

\ﬁy-\/‘c

{ EPS
Vregi

igen

nem

3.2. dbra /folytatéds/




-

® ?

Va=2p Vg * (l -p)Vrégi lesz a
kovetkez6 iterdcid potencidlja,
ahol 3 O és 1 kozotti szdm.

Perturbdcidszdmitdssal médositja a
préba sajdtértékeket a kovetkezd
iterdcié széméra

CALL OUTPUT

kiirja a végeredményt, az SCF poten=-
cidlt és a sajdtértéket a szélesnyom-
tatdra

lSTOPl

3.2. abra

A tCbbszdérdsos Xo SCF program folyamat-
dbréja
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4. A PROGRAMOK FUTTATASA: EREDMENYEK ES TAPASZTALATOK

4.1. Alkalwmazds a JATE R-40 /ESZ-~1040/ szamitdégépére

A Herman~-Skillman és a MOLPOT program futtatédsa -

nem jelentett kiilonosebb nehézséget.

A tobbszdrdsos Xo médszer programjéndl a £5 gond
a nagy méret volt, Mig a Herman-Skillman program kb. 76 K,
a MOLPOT program 100 K, a SCF brogram a tobbfdzisu szer-
kesztés ellenére is 150 K helyet foglal el a meméridban
(1 K=1024 byte). A felhaszndlhaté memériatertilet kb, 180 K,
de ez jérom particidéba van osztva, igy a program futtatésa
csak a particidhatdrok ujrakijelolésével lehetségeé. Na-

gyobb meméridju gépen természetesen nincs ilyen probléha.

A futtatdshoz még egy mégnesszalag sziikséges, amely
a hdrom program kozti adatdtvitelt biztositja. Kényelme=-
sebb és megbizhatébb, mint kértydra lyukasztani az eredmé-
nyeket.

‘A Herman-Skillman és a MOLPOT program koriilbeliil
3-3 percet kivan, mig egy SCF futds ideje 10 perc koril
van. Altaléban azonban az eljdrés nem lesz rogton self
consistent. A program nagyon érzékeny bizonyos numerikus
paraméterek értékeire, ezek kicesiny vdltoztatdsdval kell
az eljdrdst konvergenssé tenni. Ilyen paraméter az uj és
régl potencidl, vagy toltéssiiriiség ardnya a kovetkez§ ite-
rédcié potencidljdban vagy toltéssiiriiségében. Fontos a

kezdS sajdtértékek minél pontosabb becslése, mert a szeku-
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ldris egyenlet megolddsa igen sok id8t kovetel.

4.2. Eredménxek

A programot a viz, a metdn és a kénhexafluorid mo-

lekuléra prébdltuk ki. Az aldbbi eredmények mindegyike

az eredeti futdsi listdkon is megtekinthetd.

a/ H20 molekula

A 3.3, édbra szerinti elrendezésben a molekula az

b3

e

3.3. abra

A H20 molekula ato-
mi gombjei

y-z-8ikon helyezkedik el. A koor-
dindtarendszer origdéja az oxigén
gomb kozéppontja.

A bemend paraméterek a kovetkezdk
voltak: kotéstédvolség

Tog = 1.84 a.e., az atomi gdmbdk
s%u@uaﬁma%=34a&q
ebbél adédéen a H gomb sugeara
rH=O.4181818 a.e., az O gomb

sugara ro=1.4218182 8.8..

A kiilsé gombdt a lehetd legkisebbre véve /mindhdrom atomi

gombot kiviilrél érinti/ T or

=1.9800774 a.e., és kozéppont-

jénak tdvolsdga az U gomb kozéppontjdtél 0.5582592 a.e.

A H-0-H ko&tési szog 104.5°.

Az o paraméter értékei:

H 0

atomkdzi tér  kiilsé tart.

0.97804 0.74367

0.86086 0.86086
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A vizmolekula a C

2v

szimmetriacsoportba tarto=-

zik. Kiinduld fiiggvényekiil a hidrogénatomndl (=0, az

oxigénatomndl és a kiilsé gombnél az L =0,1 fiiggvénye-

ket vettilk figyelembe. Kiredukdlds utdn hdrom egydimen-

ziés irreducibilis elddllitdst kaptunk, melyek rendre

5-820r (Al), 2-8zer (Bl) és 3-gzor (BZ) fordulnak eld.

Igy a legnagyobb megoldandé determindns 5x5-0s.

A megkivént self-consistent-field-hez /0.001 pon-

tossdg/ 8 iterdcid szilkeéges, a gépidd 6 perc. A kapott

sajdtértékeket az I, tdbldzat tartalmazza. Befagyasztott

dllapot nincs.

Allapot| sajdtérték /Ry/

Irodalom T
b1 - 0.7145 - 0.683
8y - 0.7671 - 0.737
b2 - 0.8026 - 0.778
1 - 1.7957 - 1.776
a, -37.502 -3T7.498

I. tdblézat

MS-Xon sajdtértékek H,0-ra

A molekula totélis energidja

¥ U.Mitzdorf, Theor. Chim.Acta 37, 129 /1975/
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(Mitzdorf: - 152.230 Ry), & kinetikus energia 152.39 Ry
(Mitzdorf: 152.223Ry),igy & viridltétel 0.001 pontossig-
gal teljesiil.

Lathatdé, hogy mind a sajdtértékek, mind a totdlis ener-

gla az irodalomban kozolttel jél egyezik.
b/ Metdn molekula

A tetraéderes /Td csoport/ szimmetridju metdn
molekuldban a hidrogénre £=O, a szénre és kfllad tar=-
tomdnyra az ¢ =0,1 gombfliggvényeket vettilkk figyelembe.
A kiredukdlas utdn egy egydimenzids /Al/ és egy hérom-
dimenzids /7:/ irreducibilis eldédallitdst kaptunk, melyek
mindegyike hdromszor fordult eld.
A tOobbszdérdsos Xa paraméterek a kovetkezBk voltak:
a C gbmb sugara 1.485 a.e, a H gomb sugara 0.626 a.e.,
a kiilsé gomb sugara 2.737 a.e, & C-H kotési tdvolsédg
2.109 sa.e..

Az Xo kicserélédési paraméter értékei:

& H atomkdzi kilsed tart
0.7547 0.97804 0.93413 0.97804

A self consistent field-et 3 perc alatt 6 iterdcidban
érte el /0.001 pontossdg/, hdrom alapdllapot van, a megfe=
lel6 sajdtértékek:
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dllapot sajdtérték /Ry/
|
2, -19.95

II. téblézat

A CH4 molekula MS-Xo& 8sajdtértékei

A totdlis energia -=79.999 Ry, ugyanilyen paraméterek-

kel kapott irodalmi érték =-80.24 Ry '+

, 82 egyezés igen
jé. A kinetikus energia 80.33 Ry, a viridl tétel 4 ezred

pontossdgra teljesiil.

c/ SF6 molekula

Ezzel a molekuldval volt a legtobb nehézség. Nézzik
elészor a paramétereket.

Az SF; wmolekula oktaéderes (0,) szimmetridju. A fluor
atomokra €-0,1 a kén atomra és a kiilsé gbmbre Q=O,l,2
gombfliggvényeket vettiink figyelembe. A kiredukdléds a kovet-
kezG irreducibilis elSdllitdsokat adta: négyszer fordul eld

az egydimenzids A, ugyancsak négyszer a kétdimenzids Eg,

** J. B. Danese, Int. J. Quantum Chem. 6§, 209 /1972/
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a hdromdimenzidésokbdl egyszer fordul eld a: Tlg és Touo
hdromszor a ng, és 0t8zdr a T, A legnagyobb szekularis
determindns igy 5x5=0s.

A tObbszdérdsos Xe. paraméterek:
A fluor gomb sugara 1.224 a.e, a kén gdmb sugara 1.762 a.e,
a kiils§ gomb sugara 4.211 a.e, a fluor kén kotési tdvolsdg

2.987 a.e, Az Xo kicserélddési paraméterek:

8 F atomkozi kiilsé tart.
tér
0.72426 0.73651 0.73476 0.734T6

A valenciaelektronoknak alapdllapotban tiz betoltott
nivéja van. Ha a torzselektronokat /fluor l1ls, kén 1ls, 2s,
2p elektronok/ az atomi értékeken befagyasztva tartjuk,a
ITI. tédblédzat elsd oszlopa szerinti eredményeket kapjuk az
alapdllapotok sajdtértékeire. Itt a potencidl 8 iterdcid,
alatt teljesiti a self consistent field feltételt. /Gépidd
kb. 12 perc/. A kénre és killsS gombre { =4-ig mentiink el a
parcidlis hulldmokban, de ez az eredményt nem befolydsolta.
Lathaté, hogy a totdlis energidra nagyon rossz értéket kae-
punk.

Ha az iterdcidés eljdrdsban a potencidl dtlaga helyett
a régi és uj toltéssiiriiségek dtlagdt vessziik, akkor mér 4
iterdcidéban self consistent field-et ériink el, az eredmény

pedig ldthatdan nagyon hasonldé az eldzbekhez /2. oszlop/.
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Ha egyetlen dllapotot sem fagyasztunk be, akkor a
totdlis energia mar sokkal jobb, a sajdtértékek nem sokat
vdltoznak /3. oszlop/, a torzsdllapotok energidi kismérték-
ben eltolddnak. Ekkor viszont az eljdrds nem lett konver-
gens, hanem oszcilldlt. A 3. oszlopbeli sajatértékek a 3.
iterdcidé végeredményei, ahol a potencidl eltérése 0.26,
de a kovetkez6 iterdcidéban sokkal nagyobb lesz.

A kGvetkezd lépés volna, & torzselektronokat nem az
atomi, hanem immdr ezen eltolt értékeknél befagyasztani és

a self consistent eljdrdst igy elkezdeni.

dllapot sajétérték‘(Ry)
g, 2, 3 4.
Yy - 0.96 - 1.01 - 0.977 - 0.890
t,, - 1,02 - 1,04 - 1,00 - 0.958
- 1,03 - 1.075 - 1.04 - 0.962
ey - 1.08 - 1.09 - 1.044 = 1,012
gy - 177 ~ 1,17 - 1.15 - 1.106
L, - 1.37 - 1.37 - 1,92 - 1.330
Clag - 1.7 - 1.70 - 1.61 - 1.688
¢y - Zodl - g, 40 - 2,37 - 2.336
Ly, - 2,47 - 2.48 - 2,43 - 2,41
aug - 2.66 - 2.66 - 2.59 - 2.61
S Zp 11,573 -11.82
S s -15.469 -15.52
F 1s -48.68 -48.95
S 1»s -176.171 ~178+49
totdlis |-1974.8 -1975.0  =1987.09 =1987.92 ~
energia
kinetikus| 2016.0 2016.0 2005.0
energia

III. téblézat
Az SF( molekuldra kapott eredmények
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Az oszlopok jelentése:

1. Ha a tOrzselektronokat atomi értéken tartjuk,
kénre, kiils6 gombre { =4-ig vett gombfiiggvények.

2. Torzselektronok az atomi értéken, az iterdcidban
toltéssiiriiség dtlagoldst haszndlva.

3. Nincs befagyasztott dllapot,

4, J. W. D. Connolly, K. H. Johngon, Chem. Phys. Lett.
10, 616 /1971/ eredményei.

Megjegyzések:

a/ Nem self=-consistent eredmény.

b/ Herman-Skillman atomi értékek.

c/ Ez a Hartree-Fock hatdr a szepardlt atomokra, a mole=-
kula energidjanak ennél kisebbnek /abszolut értékben
nagyobbnak/. A Connolly-Johnson cikkben emlitett szd-
moldsokndl a totdlis energia mindeniitt nagyobb a H=F
hatdrndl. Hogy & tobbszdérédsos X« szdmoldsndl a szer-
z0k mekkora totdlis energidt kaptak, & cikkb8l sajnos
nem deriil ki.

A III. t4dbldzatbdél ldtszik, hogy az eredmények igen
jék, mdr ami a sajdtértékeket illeti. Szerencsétlenséglinkre
a program tesztjének védlasztott cikkbdl lényeges koriilmények
nem deriilnek ki, pl. az, hogy a totdlis energidra a szerzlk
mit kaptak, és hogyan fagyasztottdk be a tdrzs-elektrono-
kat.

Az SF¢ molekuldra valé alkalmazds kimutatta, hogy a

program numerikus eljdrdsai, és konvergencidja mennyire bi=-
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zonytalan., Bdr ha egyszer mdr konvergenssé vélt, akkor
az eredmények reprodukélhatdk /a tdbldzat els8 és mdsodik

oszlopa./ *

A programmal spin fiiggl szdmoldsokat is lehet végez=-
ni, bédr ezt még nem prdbaltuk ki.

Tovdbbi lehetdségeket adna az, ha a szdmithaté klasz=
ter méretét 18 atomndl meg lehetne ndvelni. Ez egyediil a

sz4mitégép memdria nagysdgénak fiiggvénye.

Végeredményben a kitiizott célt teljesitettilk. A tobb=-
8zérdsos X« mdédszer hozzdférhetd és milkodSképes a tovédbbi
kutatémunkék szdmdra.

* A viz és metdn esetén ilyen gondok nem jottek eld, de

ezek a mulekuldk voltaképpen nagyon egyszeriiek, kevés és

alacsony rendszdmu atomot tartalmaznak.
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5. A TOBBSZORASOS Xoo MODSZER ALKALMAZASAI /CIKKBIBLIOGRAFIA/

A cikkeket témdjuk szerint az aldbbi csoportokba .
osztottuk:

a/ Elméleti tdrgyu cikkek: a t&bbszdérdsos Xo mddszer
tovdbbfejlesztésével, kiegészitésével foglalkoznak.

b/ Szabad atomokra és molekulékré valé alkalmazés.

c/ Nagyobb molekulék, fdleg fémkomplexek részeire, gyokdk=
re vald alkalmazédsa.

d/ Szildrd testekre /kristdlyos anyagok klaszterjei/ valéd
alkalmazds: szennyezések, fellileti jelenségek vizsgdla=
ta.

e/ Szerves molekulédk, bioldgiai makromolekuldk részeinek
vizegdlatai.

Az egyes csoportokon bellil az elsl szerzd szerinti abc
sorrendben kovetkeznek a cikkek. A szerz8 neve utdni utalés
a csoporton beliili azon cikkekre vonatkozik, ahol a szerzé

neve el8fordul.

A csoportban egy cim tartalmazza a szerzlk nevét, a
megjelenés helyét és idejét, és nagyon roviden ntal a cikk
tdrgydra,

Ha egy cikk t6bb csoportba sorolhatd témdju, akkor
a megfeleld helyeken mindenlitt £61 van sorolva.

A bibliogréfia a t8bbszdérasos médszer elsé alkalmazd-
saitél /1971/ 1977. dprilisdig foglalja magdba a tdrgyrél

82016 irodalmat.
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a/ A médszer tovdbbfejlesztése, médositéds

Andersen, O. K., R. G. Woolley, Mol. Phys. 26, 905 /1973/;
SW Xo és L.C.MTO kapcsolat
Averill, F., wW., 7. E. H. Walker, J. T.Waber, J. Chem. Phys.
60i 2907 /1974/; molekula Rydberg-dllapo-
ok.
Bagus, P. S., B. I. Bennett, Int. J. Quantum Chem. 9,
143 /1975/; szinglett-triplett folhasadds
Cartling, B. G., J. Phys. C.8, 3174/1975/; kovalens fél=~
vezet5, valenciasdy struktura
y D. M. Whitwmore, Chem. Phys. Lett. 35, 51
/1975/; relativisztikus
, D. M. Whitmore, Int. J. Quantum Chem. TS
279 /1973/; non-muffin-tin korrekcidk
; Chem. Phys. Lett. 45, 150 /1977/; non=
-nuffin-tin korrekcidk .
Danese, J. B., J. W. Connolly, Int. J. Quantum Chem.
279 /1973/, non-muffin~-tin korrekci
s, Jo. W. Connolly, J. Chem. Phys. 61, 3063 -
/1974/; totdlis energia funkcIondl
Dehwer, J. L., D. Dill, Phys. Rev. Lett., 35, 213 /1975/;
shapp rezonances
De Sigueira, M, L., S, Larsson, J. W, D. Connolly, J. Phys.
and Chem. Solids, 36, 1419 /1975/;
Mossbauer-izomer el%0ldédds
Diamond, J. B., Chem. Phys. Lett. 20,63 /1973/; szimmetria
Grant, I. P., M. A, Whitehead, Mol. Phys. /GB/, 32,
1181 /1976/; muffin~-tin ktzelitéarél
Gyémént, I. K., M. G. Benedict, Gy. Papp, B. Vasvdri, .
Acta Phys. et. Chem. Szeged, 22 , 1
- /1976/; s8zért dllapotok
Herman, F., A. R. Williams, K. H. Johnson, J. Chem. Phys.
61, 3508 /1974/; dtfedd§ gdmbdk
Johnson, K. H., Imt. J. Quantum Chem. le, 347 /1973/; uj
alkalmazdsi lehet8sége
» R. P. Messner, J. Vac. Sci. and Technol. 11,
236 /1974/; kemiszorpcié, katalizis
, l48d még F. Herman, N. Résch, C. Y, Yang
Kaufwan, J.J., Int. J. Quantum. Chem. 75, 369 /1973/;
gombsugdr vdlasztdsa
Keller, J., Int. J. §uantum Chem. 9. 583 /1975/; cellular
MS X -
Kjellander, R., Chem. Phys. Lett. 29, 270 /1974/; egyszerii-
sitett modell.
» Chem. Phys. 12, 469 /1976/; egyszeriisitett
modell.
Konowalow, D.D., M. E. Rosenkrautz, Chem. Phys. Lett. 44 ,
321 /1976/; félempirikus o vélasztéds
Larssm S., Chem. Phys. Lett. 32, 401 /1975/; satellite
excitations
1484 még: M. L. De Sigueira




Machado, W. V.M., L. G. Perreire, Chem. Phys. Lett. 37,
51 /1976/; relativisztikus
Marshall, R. F., R. J. Blint, A. B. Kunz, Phys. Rev. B 13,
3333 /1976/; H~-F médszer X =-val
Neto, A. A., L. G. Ferreira, Phys. Rev. B 14, 4390 /1976/;
relativisztikus )
Noodleman, L. J. Chem. Phys. 64, 2343 /1976/; abszorpcids
intenzitas )
Norman, J. G., J. Chem. Phys. 61, 4630 /1974/; &tfedd gbmb
Quinn, C. M., N. V.Richardson, J. Phys. C 8, L 236
/1975/; adszorpcié ,
Rosch, N, W. G. Klemperer, K., H. Johnson, Chem. Phys. Lett.
23, 149 /1973/; &4tfedS gimbik
Rosicky F., P. WeInberger, F. Mark, J. Phys. B.9, 2971
/1976/; relativisztikus
Scheire L., P. Phariseau, Int. J. Quantum Chem. §§g1109
/1974/; éltaldnos molekulapotenc
y P. Phariseau, Int. J. Quantum Chemn. g%, 887
/1975/; tetsz8leges formdju molekula
Schwarz, K., P. Weinberger, Chem. Phys. Lett. 27, 415
/1974/; totélis energia-ol kapcsolat
Slater, J.C., Int. J. Quantum Chem. 98, 7 /1975/; Ysszeha-
sonlitds a Thomas~Fermi~-Dirac modellel
Tomasek, M., V. Mikolas, Czech. J. Phys. B 24, 878 /1974/;
Green~fliggvényes tdrgyalds
, V. Mikolas, Physica, 1%, 185 /1974/; MS-X
gzdrmaztatdsa mds uton
Weinstein H., Int. J. Quantum Chem. 85, 123 /1974/; anali~
tikus potencidl
Yang C. Y., K. H. Johnson, Int. J. Quantum Chem. 108, 159
/1976/; é&tfedd gombok levégéssal
» S. Rabii, Phys. Rev. A 12, 365 /1975/; relati-
visztikus

b/ Szabad atomok és molekuldk

Antoci S., L. Michich, G. F. Nardelli, J. Chem. Phys. él,
1245 /1974/; H,O egyensulyi geometria

Averill, F. W., T. H. Walker, J. T. Waber, J. Chem. Phys.

60, 2907 /1974/; Z £36 atomok, BF,, HF

molekula Rydberg dllapotok

, ld4sd még Waber, J. T.

Boring M., J. H. Wood, J. W. Moskowitz, J. W. D. Comnolly,
J. Chem. Phys. 58, 5163 /1973/; H,0 Rydberg
dllapotai.

,» J. W, Moskowitz, Chem. Phys. Lett. 38, 185
/1976/; UF

Case D. A., M. Karplus, Chgm. Phys. Lett. 39, 33 /1976/;

NO2 hiperfinom k&lcs.hat.

Connolly, J. W. D.y Int. J. Quant.Chem. 6§ , 201 /1972/;

N,, CO, NO, CF
, K.°H. Johnson, 8hem. Phys. Lett 10, 616
/1971/; SF6
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J. R. Sabin, J. Chem. Phys. 56, 5529
/1972/; H,0 totdlis energia

, H. Siegbanf , U, Gelius, C. Nordling,
J. Chem. Phys. 58, 4265 /1973/

C- és N-oxidok, CF,, NH,.

, ldsd még Boring M., ﬁaneaé J. B., Johmnson
K. H., Konowalow D, D., Phillips E. W.,
Preston H. J. T.

Danese, J. B., Int. J. Quantum Chem. 6§, 209 /1972/;

CH

y Jo fhen. Phys. 61, 3071 /1974/; C,, N

2= 2* 72

potencidl

» Chem. Phys. Lett. 45, 150 /1977/; H,, Cyp,
N,, CO NMT korrekcidk

y Jo W, D. Connolly, Int. J. Quantum Chemn.
78, 279 /1973/; C,, N,, CH, NMT~korrek-
Tk 2 72 4

, l4ad még Preston, H. J. T.
Edelstein N., D. Karraker, J. Chem. Phys. 63, 2269 /1975/;
kommentdr UF ~hoz. -
Johnson K. H., Solid State Commun., 12, 313 /1973/; RiO
, lésd még Connolly J. W. D., Rdsch N., Tossell
J

. A.
Keller J., Int. J. Quantum Cheum. 95, 583 /1975/; SFg,’
H;, H, cellular =X
Konowalow D. D., ﬁ. E. Rosenkrantz, Chem. Phys. Lett. 44,
321 /1976/; Li, félempirikus o
s P. Weinberger, J. L. Calais, J. W. D.
Connolly, Chem. Phys. Lett., 16, 81 /1972/
Ne
, P2 Weinberger, Int. J. Qéantum Chem. 7S,
353 /1973/; Ny, 05, F
Maylotte D. H., R. L. St. Petérs,°R. $. Messmer, Chem.
Phys. Lett. 38, 181 /1976/; UF., UF.
Messner R. P., D. R. Salahubs J. Chem, Phys. Q%, 179
T /1976/; O, gerjesztett dllapotok
, 148d még Mdylotte D. H., Salahub, D. R.,
Mitzdorf U., Theor. Chim. Acte 37, 129 /1975/; H,0
Norman J.G ., J. Chem. Phys. 61, 4630 /1974/; PH
Phillips E. W., J. W. Comnnolly, S. B. Trickey, Chem. Phys.
Lett. 17, 203 /1972/; XeF
Preston H, J. T., J. J. Kaufman, J. Kelleg, J. B, Danese,
J. W, D, Connolly, Chem. Phys. Lett. 37,
55 /1976/; bérhaloidok
Richardson N, V., P. Weinberger, J. Electron Spectr. and
Relat. Phenom. 6, 109 /1975/; S
Résch N., K. H. Johnson, Chem. Phys. Lett 24, 199 /1974/;
ferrocéne.
s V. H, Smith Jr, M. H. Whangbo, J. Am. Chem.
Soc. 96, 5984 /1974/; SF, T&F., SeF,
Salabub D. R., R.< PS Wessuwer, Phys. Rev, B 14,° 2592°/1976/;
SN
, R. P.' Messmer, J. Chem. Phys.64, 2039
/1976/; (SN), WO, NO,
, 1l48d még MesSmer R. P:
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Schwarz K., P. Weinberger, Chem. Phys. Lett. 27, 415
/1974/; C képzési energia
Sommer, C., R. De Groot, D. Kaplan, A. ZylberszteJjn,
J. Phys. Lett. 36, L 157 /1975/; VO,
d-elektron dllapotok
Tossell J. A., J. Electron Spectr. and Relat. Phenom. 8,
1 /1976/; dtmeneti- és fold-fém oxidok .
, D. J. Vaughan, K. H. Johnson, Chem. Phys.
Lett, 20, 329 /1973/ Sio,, 31o;f
Waber J. T., F. W. AverIil, J. Chem. PhyB. 60,% 4466 /1974/;
PtF., E 110 F
, ldsd mgg Averill™F. W,
Wahlgren, U., Chem. Phys. Lett. 20, 246 /1973/; H,0,
Weber J., Chem. Phys. Lett. 45, 26l /1977/, 080,
- . H, Berthon, C. K. .Jorgensen, Chem. Phys.
Lett. 45, 1 /1977/; lentén -trifluoridok
Woodruff S. B., M. WolTsberg, J. Chem. Phys. 65, 3687
/1976/; LiH dipol.kvadrupol-~ momentum,

¢/ Gybtkok, fémkomplexek

Boring M., J. H. Wood, J. W. Moskowitz, J. Chem., Phys. 63,
638 /1975/; UOJ"
Boudreaux I., T. S. La France,sg. Phys. Chem. Solids 35,
897 /1974/5 VO~ , Cr0,~
Cotton, F. A., R. M. Hedges, J+ B. Harmén, J. Am. Chem.
Soc. 98, 1417 /1976/; S, 4 S5
Bllis D. E., F. W. kvewil, J."Chen. Phfs. 68, 2856 /1974/;
FeCl .
Gubanov V. A., J. Webdr, J. W. D. Conmnolly, J. Chem. Bhys.
63, 1455 /1975/; VO, CrO,3~
Interrante L. V., R. P. Messmer, Chém, Phyé. Lett. 26,
225 /1974/; Pt(CNO*"
Jesinski J. P., S. I. Holt, J. Ch8m. Soc. Faraday Trans.
II. 72, 1304 /1976/; MnO}", Mnoz~ ‘
Johnson K. H., F. C. Smith Jr, Chem. Phyd. Lett*7, 541
/1970/; So. , Clo, ,
y F. C. Smith Jr, Int. J. Quantum Chem. 5S,
249 /1971/; SO,
, F. C. Smith Jr, Chem. Phys. Lett. 10, 219
/1971/; MnO;
, F}hg: Smith Jr, Phys. Rev. B 5, 831 /1972/;
)
, U. Wahlgren, Int. J. Quantum Chem, é§,
243 /1972/; MnO; , Ni (CO),, , OnC1T
Larsson S., J. W. D, Connolly, Chem. Phys. Lett. 20, 323
/1973/; Atmeneti - fém-fluoridok
Larsson S, E. K, Viinikka, M. L. De Sigueira, J. W. Connolly,
Int. J, Quantum Chem. 85, 145 /1974/;
dtmeneti-fém-haloidok
y Jo W, D, Connolly, J. Chem. Phys. 60,
1514 /1974/; 4tmeneti-fém-haloidok




Messmer R. P., Int, J. Quantum Chem. J§, 371 /1973/;
PtCl,
, Chem. Phys. Lett. 18, 7 f1973/, PtCll
s D. R, Salahub, Int. J. Quantum Chem. 10S,
183 /1976/; (SW), O
, l4sd még Interrante L. V.,
Mortola A. P., J. W. Moskowitz, N. Rosch, Int. J. Quantum
Chem. 85, 161 /1974/, ReCly
, J. W, Moskowitz, N. Rdsch, C. D. Cowman, H.
B. Gray, Chem. Phys. Lett. 32, 283:/1975/;
ReCl}
Norman J. G., J. Am. Chem. Soc. 96, 3327 /1974/; Pt (PH,).(0,)
, H. J. Kotari, J. Am. Chem. Soc. 97, 33
/1975/; MO, (C1,)" -
Onopko K. E., S. A. Titov, Sov.. Phys. Solid State, 18, -
817 /1976/ vagy Fiz. Tverdogo Tela 18,1413,
/1976/; NiF¢'~
Preston H. J. T., J. J. Kaufman, W. S. Koski, Int. J.
Quan;um Chem. 95, 137 /1975/; bér=vegyii-
lete
Sink M. L., G. E. Juras, Chem. Phys. Lett. 20, 474 /1973/;
Si, Ge hidridek .
Tossell J. A., J. Phys. and Chem. Solids 36, 1273 /1975/;
Mg, Al, Si oxidok
s, Chem. Phys. 25, 303 /1976/; Cu, Zn oxidok
s J. Bhys. and Chem. Solids 37, 1043 /1976/;
C, Si, Ge oxidok _
Weber, J., Chem. Phys. Lett. 40, 275 /1976/; PO.

d/ Szildrdtestfizikai alkalmazésok

Albugquerque E. L., B. Maffeo, H. S. Branchi, M. L. De
Siqueira, Solid State Commun. 18, 1381
/1976/; CoF.  klaszter LiF-ben
Batra I. P., C. R. Brundle, Surf. Sci. 57, 12 /1976/;
- Ni-n adszorbedlt No.

y 3. Ciraci, B, Ortenmburger, Solid State Comm.
18, 563 /1976/; H chemiszorpcidés S1(100)
Teliileten

Brunn W., L. Fritsche, K. Hermann, Int. J. Quantum Chemn.

85, 483 /1974/, H adszorpcidja Cr és Mo
eliileten

Cartling B. G., J. Ph%s. C. 8, 3171 /1975/; kovalens fél-

vezet

» B. Roos, U. Wahlgren, Chem. Phys. Lett. 21,

320 /1973/: Si kristdly S és Fe szennyé~

: zéssel

De Hasson, J. Th. M., Phys. Status Solidi B 78, 791 /1976/;

Mo klaszter
De Siquelira M, J., S. Larsson,Chem. Phys. Lett. 2%, 359
/1975/; Zns, CdS-ban Cu, Ni, Co, Fe szeny-
nyezések, Tt
, 148d még Albuquerque E. L., Hsi=Ling Yu, .
Oliveira L. E. . |

i
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Gubanov V. A., J. W. D. Connolly, Chem. Phys. Lett. 44, 139
/1976/; TiCe°" . 2e

Hamera M., Phys. Status Solidi B 69, K 45 /1975/; Mn
ion ZnSe~ben

Harris J., G. S. Pointer, Phys. Rev. Lett. 36, 151 /1976/;
0 kemiszorpcidéja Al feliileten

Hemstreet L. A., Jr, Phys. Rev. B 11, 2260 /1975/;:

vakancia PbS kristdlyban

Hsi-Ling Yu, M. J. De Siqueira, J. W. D. Connolly, Phys.

Rev. B 14, 772 /1976/; szincentrumok
KCl=ben

Johnson, K. H., A. I. P. Conf. Prec. /USA/, 34, 97 /1976/;

dtmenetl és nemesfém klaszterek

, ld4ad még Messmer R. P.

Jones R, 0., P. J. Jennings, G. S, Pointer, Surf., Seci.

gg, 409 /1975/; Pe, Ni, C fellilet

, l4s Wég Pointer G. S.

Measmer R. P., C. ". TuckerJr, K. H. Johnson, Surf. Sci.
42, 341 /1974/; O kemiszorpciéja NiL felfi=
Teten.

s S. K. Knudson, K. H. Johnson, J. B. Diamond,
C. Y. Yang, Phys. Rev. B 13, 1396-/1976/;
4tmeneti-és Bemesfém— klaszterok

s 1lésd még G. Y, Watkins ‘

Moskowitz J. M., M. Boring, J. H. Wood, J. Chem. Phys.

62, 2254 /1975/; vizben oldott elektron

Niemczyk S. J., J. Vac. Sci. and Technol. 12, 246 /1975/;

kalcogének kemiszorpcidéja NI feliileten

Oliveira L. E., B. Maffeo, H. S. Brandi, M. L. De Siqueira,

Phys. Rev. B 13, 2848 /1976/; H alkA4li-
£61ldfém fluorIdokban
Pointer G. S., P, J. Jennings, R. O. Jones, J. Phys. C 8,
L199 /1975/; &tmeneti fém felliletek
- , ld4ed még Jones R. O.
Paulson ¥, H., T. N. Rhodin, Surf. Sci. §gi 61 /1976/, halo-
\ gének adszorpciéja Ni felllleten
Rosch N., T. N. Rhodin, Phys. Rev. Lett. 32, 1189 /1974/;
etilén kemiszorpciéja Ni FTellileten.
, lésd még Schwarz K.,
Schwarz K., N. Résch, J. Phys. C 9, 1433 /1976/; C vekancia
NbC kristédlyban.

Watkins G. D., R. P. Messmer, Phys. Rev. Lett. 32, 1244
/1974/; vakancia gyémédntban

Wood R. F., T. M. Wilson, Solid State Commun. 16, 545 /1975/;
F~centrum Ca0- €és MgO-ban

e/ Szerves molekulédk

Batra I. P., O. Robaux: Chem. Phys. Lett. 28, 259 /1974/;
formaldehid

s» B. I. Bennett, F. Herman, Phys. Rev. B 11,
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FUGGELEK

1. §. Szférikus Bessel-fliggvények

Az a4 x4 KoL =0

differencidlegyenlet lineé.risa.nlfuggetlen megoldédsai '

a jctx\ elséfaju szférikus Bessel~fliggvény és az 1, (x)
mdsodfaju szférikus Besselifiiggvény /vagy szférikus
Neumann~-filggvény/ ill. a hﬁk*’ és 4312*3 harmadfa-
ju szférikus Bessel-fliggvények /vagy els8 és mdsodfaju
szférikus Hankel-fiiggvények/. f

E18411itési formuldk [32]:

(XY = {1 + (1) }
p7) 135 (2“ 5 11(1(43) 21(2043)(2855)

__ 4.3 (2€-4) (%x’)l .
ﬂ((x)"“ 144 {1 1‘(4 2£)+ 21 (1-20)(3-2¢) ~ }

K-J” . .
¢ (X) = }c(x) + an(x)

ﬁm(x) }a(x) - 1,r\ (x)

Ha f{ (x) valamelyik szférikus Bessel-fliggvény, akkor

érvényes a
20+1
ii-« x) + ££+4 (x) = J%—:{Z(”

rekurziés formula.
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Algebrai alakjuk:

.}o(mz_.'l'“_"_x_
'5’4 (x)= M;\Lx - CO:X ,
Moy = =4 (X)) =~ w;(x P
o _ LR X _ mlnx'
n (0= -4, (x)= ~ o "
Aszimptotikus formuldk:
L
Lim 1,W0) = X
ART 135,28+ 4)
: 4.2.5 ...Q¢+4)
[)-m ﬂ((x7=—' oY)
x>0 X
Um 4,002 4 onlx— L)
Y, 30 sl - 5

) -X
Limn ne(x)zi-/stn(x—i;i—iTO ’ 'um &Q(X)=3=x—- '
X0 X o0

Az
X+ 2xaw' = [x*+ L+ D) =0

differencidlegyenlet linedrisan filiggetlen megolddsai
az alébbi fiiggvények, melyeket | =0, l-re algebrai
alakjukban adunk meg:

Médositott szférikus Bessel-fiiggvény:

{O(X)=.§i‘_"_ )
X
, (x)“_ﬂhxz:_ y <hx

A S .
1 "c(")=}&(lx) , (i=F7) .

AN
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Médositott szférikus Neumann-fliggvény:

h

me(x) = S5

= ohx chx
my (x) = 'QT—-—)-(—i
Hédesitott szférikus Hankel-fiiggvény:
- X
n
&o (’()c X

-X
h1)(><)=(4 + ";) &

A rekurziés formula azonos az eldzlvel,.

2. §. A Gaunt-integrélok

Hérom gdémbfiiggvény szorzatintegrdlja, az

Lim,

[ttty momm) = YA, Y, Y
4™y M2

Gaunt-integrdl kifejezhet8§ a Clebsch-Gordan egyiittha=
tékkal [26]:

I(‘!q {g_{g)mamz ms)z,

(22, 024, +1
b (24,+1)

1,1
)} C(LL%,-MMLMQC(‘* $.4,,000) .

A Gaunt-integrdl csak akkor nem nulla, ha

(’4*'{2.*'('3" pdros szém és ‘{4"'{1‘2{5?—'(4"(1] ,

A Clebsch-Gordan egyiitthatdk elddllitdsdra jd1 haszndl-
haté a Wigner-formula [33]:

Cl Aty mom,my )=

= (( -1 )(‘*'{ )l({*( (s)' ‘(“'ms)l(e Mb)]
S [(2(5+4 (G + L+ (s+")!(’14-m.)'.(’14+m4)'. Lo (Lamy )

3)"4""

Z'(..'ﬂwt‘mx (€ + rm-v ) (L =m,+0)!
(=0 o+ 8, o) (rm =) (ol k.~ )
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ahol olyan Vv egész szémokra kell Osszegezni, hogy a

nevez8 pozitiv legyen.
Ezek a formuldk a komplex gombfiiggvények szorzatdra vo=-

natkoznak. Ha valdés gombfiiggvényeket haszndlunk, akkor

JObtymmms) = §d Yy, Yy, Yom, -

= %(4144 Mzms)l(& 61233 ‘M‘HM"I) \MI")

ahol % az aldbbi értékeket veszi fel :

me | O F | Al p =g A
m, @) -~ 0 v -v | -V

7 1
¥ 1 212w |- Z | vz

M>0, VY>O, [My|=Im,|+Imy] .

3. §. A totdlis energia és a muffin-tin potencidl kiszd-

nitdsa a muffin-tin t6ltéssiiriiségekb8l [29]:

A rendszer totdlis energidja

(ETOT) = Sg(ﬂﬁqclu‘ + SS 2'(4—,:131(—2)—d\r4c\\r1 +

(F 3.1)
+ 2 (ot Vi (M d,
ahol
- 2 ZZo(
"‘4 - V4 ~§— ¥ _Q‘\
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Az utolsé tag a kicserél8dési energia

Foo=3§C06) 6 av, = .

(P 3.2)
= _‘-%_ S 9“)\/:(.\(4)du4 ) '

ahol

) |
de('l):-Ca[%;c?] * a kicserélédési potencidl, . (F 3.3)

A mésodik tag az elektron-elektron counlomb energia

4 Q(2 1
E = SS_‘Q%—’dU‘d% = g\ thdyy,  (F 3.4)
ahol

V(_ N =2 89_(1‘2 du, az elektron coulomb-potenciél,(l? 3. 5)

T

Az els6 tagban a kinetikus energia mellett van a mag-

elektron energia is:

E.. =gt Ven (Ddv, (P 3.6)
ahol

2%,
Ven (4) = ~§ \—'F—:-_ﬁ“\ (F 3-77

a mag-elektron potencidl.
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Hozzd kell még adni az eddig figyelmen kiviil hagyott
nag-mag energidt:
7,72 &)
nn ok (5' ,L'ﬁ@,\ ' .

1

Maradt még a kinetikus energia:

T--% Sufmvju;(ﬂd% .
L

Az egy-elektron egyenletb6l kiindulva

T=2¢ — Sg(ﬂV(ﬂ du, - (7 3.9)

ahol V(1) az Osszes potenciédl.
Mivel a potencidl muffin-tin, (3.3),(3.5) és (3.7) min-
dig szétbonthatd a

V(r)= g\/"‘m + V) + VO (F 3.10)

formdban, ahol V* , V° szférikus, v" konstans poten~
cidl. A szdmitéshoz £61 kell tételezni, hogy a toltés-
siirliség is muffin-tin.

Ennek alapjdn elvégezve a szférikus és térfogati 4tlago-
ldsokat, az aldbbl eredmények adédnak az F 3.1, dbra
jelslései szerint ( 6(v)= g () , 82 &
index az A -dik centrumbdl mért mennyiségre vonatkozik,

oA

b az A -dik gémb sugara, q, 8z d -dik gombben le-
v6 tbltés.) '
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F 3.1. &bra

A potencidl kifejezések
jeloléseinek magyardzata

PER LU o - 2_gr RE <28
™ = Rup batsvw(%o-(’,__ét~23?:;
° A+
= | g A By c s
VAROTE OACPIE L R Ebal - AL NN
N
b

\

, . -

o 2. \:y\q)-:,‘ Y ’Y‘ \

\/(_ ('7’)=2,§9§r$ + _ST‘*' %560("")d'\' +236<:: ) dn
%

° - v
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A mageelektron potencidl:

.’2.

en("ﬁ

A kicserélddési potencidl:

V., =LECa)|ox %) "~ G L7 ) "

- G do [_8;2{ 90]“1

A potencidlokat szorozva a toltéssilriiséggel és integ-
rélva az energidkat kapjuk:
Az elektron-elektron energia:
00 o0
4 Golr)
E-&..Q =7 SG,(T‘)VOO dr '+§ “S —d~
b b
00 2
(%} (n—‘) &e&
+ %hS o”, dn + :‘2: { Ssuvda.d"'l + R 2 +
a Bix 9B
Ty )
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ahol
- 00
. 65(+')
\/oo('?‘)z %:'éso(q-‘)dﬂ' —+ Z'S_:T—_d¢| )
o
T, b,
& (
VARZR =%.Ssomnh;+156“" dr, + zSJLﬂd¢,
o Ta o

. ,
\V, a 3.12 -beli kifejezés.

A meg-elektron energia

&,
_le {S%m +5—9@d +}___3§f— +

p#u

3ot
Ezek a kifejezések mdr csak egyvaltozdés integrdlokat
tartalmaznak, igy kiszédmitdsuk nem mehéz,

4., §. A Green-fiiggvények kifejtési tételei

Valés gombfiiggéseket haszndlunk /Fiigg.2.§/

Ha « valds:

CK"E—’E'
i el (F 4.1)
(v ) R
= {,KZ {"'t (kn)}e(KrrL)yL('ﬁ)yL(wz) ) v,
L

A LR

“y
= 'Lkz_'}:e(K’Y.‘){\{ (k) yL (’;4)\4_(41) ) Ty LMy
L
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Ha . X iwmagindrius XK ->(K helyettesitést végezve

(F4.1) -ben
AL
1 “ . . a A v
ll—’—r e]_ — | = _’KZ &L (¢K¢4)}Q(&k¢L)VL(KA)YL (""_)
1 = s L

(1)

= &( (K’ra)/\"Q (K'fl) Y\_ (’;4\)\/;.(’;,_)
L

] 4—17”2
(F 4.2)
= m‘z(wmh(:(wm\/d'?ﬂ\/ﬁ*ﬁ y Tl
(F4.1)-et f6lhasznélva adédik, hogy
4 wkir, -7, | : Y- (o
Lt Cm[’ﬁ—’?‘d b = _KZL MI(K”?)}:(“"'L)\/L(”‘)YL(”73 ) (F 4'3)
TS My
= —kZL-,‘iz(K'Tq)'V\((K’Y’z)\/L(’;ABVL(';',_\ ) 4’44’1.7.
A Ankld, - Tl KT g tkmagetemn Y @Y, (3,) (F 4.4)
Llﬂt' 1’}_4 "?1‘ L Q ‘ ( z " - * '
Az
__ (F 4.5
R LY, ®RROY(RY (R )
e = - 1 }l L L

sikhulldm kifejtési tétel; a

L
RIS ACTOMCAIR Lf’;r_“_ P, (or®) (% 4.6)
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addiciés tétel, /ahol O a (+h¢) &8 (0.¢) irényok
41tal bez&rt szbg/, valamint az (F4.1 =F4.4) kifejtési
formuldk segitségével igazolhatdk [17] az aldbbi for
muldk:

1.2
b g -2 Y 7oy = e L L (L)
tf L
oy k) Yo B GV (£) w5 (B 47)

)

(€))

L
R, (id -7 )Y (7,- 7)) = Mc%(-") > T. (L)

L“ Lll

(F 4.8)

' T, <My

X {Q"(k'rn)yl_n (":4) k:')(‘(”!.) yL' (,‘:1.)
. o Lt
{’2(“‘4'1-74')YL(’F1';4) =h7c§-(-1) %IL"(LIL')" (F 4'9)
oo (em ) Yo (8 (k) Y (4)

)

e -t ‘
~«\((KI'\; AV, (4, -7 ) - L”(ZL:- 9 T{T { IL"( L.L')x (¢ 4.10)

’(hvl(“’r‘)yL"(’;‘)}t'(le)yL' ('Fq_) ) ,T4>’r1 }

(S R
n (k7 -7 Y, (7 -7 )=kl 20 1L (L L)«
v (P 4.1))

X }Q" (K'T',‘)yLu (ﬂ:‘)n('(K’Tl)Y| (’F‘L)) ”, L, ;

ll-( nL
ACILA N ACAE AR T A L (D (F 4.12)
Ll

Lll

X ‘}Q"( KT yLu (';"4) 3.{, (K’r’.)\/l_l (’;‘1)
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SZAMITOGEPI LISTAK

Jelmagyardzat:

A bemend adatok:

A molekula geometriai adatai utéan az éllapoték
folsoroldsa kovetkezik €és az dllapothoz tartozd irre-
ducibilis reprezentécid.

A kimenl adatok:

EPS: Az elért self-consistent field.

E: A sajatérték /Ry/ az illetd iterdcidban

Q(I): Az I. centrum t&ltése

H: A radidlis beosztds /R/ 1léptéke

CHANGE POINTS: A radidlis beosztédsban a blokkhatdrok
indexe.

V: A self consistent field potenciidl.
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c/ SFg molekula

1/ Parcidlis hullédmok a kiilsd gombre és kénre ¢ =4-ig.
Kén 1ls , 28, 2p ; fluor 1s dllapot befmgyasztva.

GUNMRBER OF CENTERS= 8. QUTER SPHERE AT CENTER 1

ATUR NO » POSITION RADIUS d
s 1 QuTR I Jed 00 240 442110 0
& SULF 16 040 0.V Qs 0 147629 0
o FLu ¥ 249670 040 040 142240 0
“  FLug ? “219800 00 0s0 112240 3
5 Fuuj3 k4 010 29870 ) 16226V 3
o FLUb Y 040 2:9870 040 102240 3
f o Fuub 9 040 0.0 2,087V 14224V 5
¢ Fulo Y 040 0.0 2,987V 146224V 5
CONSTANT ROTENTIAL® =041158576E 01
VURE ENERGIES READ IN
ENERGY oceyp
“17601772766 2+00uQUOU
“15,4095272 240000000
1145731268 6+,00UQ00V
. "‘08.060(098 ]2200@0000
15 3 ¢ 0 U 0 5 1 4 0450000
2:00 =2,37000 0220000 1 1 50 0
ODIMENSTON OF YECULAR MATRIX= 4 DEGENERACY= 2
8A516 FuihlTlon nie 1 Le O NOs OF TERMS= 1
‘Ma I2 1 ATUY Nu«a 71 (NE 1400V00600000
BASIS FLHNCTIUN nUw 2 Le Y NOy OF TERMG= 1
Ma 0 I2 1 ATUM Nuyms ¢ (N= 1,0000000000
BASIS FPUNCTION wUL 8 ke U NOoy OF TERMS= & .
) Ms 0 I= 1 ATU! Nu,e 3 (e Ueb0o2682457
' Me 0 Is 1 ATOM Nu.m & N v, 4082482457
/\ Me 0 I= 1 ATUM Nuss 5 CNE 0,4082682457
A Ma I= 1 ATUM NUsm 6 (N® Usb0B2482457
Ma 0 I= 1 ATUI NOse 7 CN® U, 40826482457
Me 0 I® 1 ATUN Nusm 8 (Ne U, k0826482457
B4SIS FUNCTION 10s 4 b= 1 NOs OF TERNS= O
Me 1 I= 1  ATUIl Nuse 5 (N= U, a0B24826457
Me 1 I2 1 ATUN Nusa & (N8 =0, 40826482457
Ma 1 e a1 ATUY NuUsa 5 CNw 044002482457
Ma 4 le w1 ATOUM Nuse & CNE  =0U,4082482457
Me 0 12 1 ATV Nu.e 7 (Nd® =0,4052481801
Ma () T2 1 ATOM NU.e 8 CN# UekOr2481801

NO UF InEWUIVALENT ATuMSE= 3

NOs OF COEFFICIE TSH 11 FAXYSUBSCRIPT2 7

2,00 w«1,07000 0e10U00 1 1 50 0



NO

NUQ s

-. 19 -

4300 =2,17000 Ge20V00 5 1 50 0
DIMENSIO . OF SECULAR MATRIXs 4 DEGENERACYa 4
BASTIS FuUNCTION W3 1 ke 2 NOs OF TER16= 2
Ma 3 = 1 ATOM NU,e 1 (N® V86060253882
M 0 1 1 ATUM NO.m 1 (NS “0,50V00L000O
BASTS FulGTION nOw 2 he ¢ HOs OF TERMS= 2
Mg 2 I= 1 ATUM NuUss 2 C(CNa ves6OUR253882
M2 0 [= 1 ATUM Nus= 2 CN® “y,50v0000000
BASTS PulNeTIUN (Oe 3 ke U NOy OF TER!ISe ©
F Me g = 1 ATOM Nuy= 3 (N\® 0,5?7735025¢68
g M2 0 t®= 1 ATUYM Nu.® 4 CNE  0,3773502588
e 0 [e 1 ATOM Nus,e 5 (Nd =0 ,2886751294
Me 0 Is 1 ATUM Nu,e 6 CNe  “U,2886751294
Ma [= 1 ATUN Nuss [ CNa  ®U,2886751294
Ma I= 1 ATUN NUya 8 (Nso f0.28667§]296
SASIS PUNLTION #De 4 k= 1 NOs OF TERNMs®E ©
Me 1 I= 1 ATU Nuss 5 (N# Wed773502588
Ma 1 Is 1 ATU Nuse & (N8 %0,5773502588
Me 1 I= =17  ATOA NU,s 5 (N& &0,2886751294
Me 1 fa a1 ATON NUsa © CN# V2886751294
ME 0 I= 1 ATV Nu,2 [ (N# U 2886750698
M () I® 1 ATU NU,= 3 (e Sy, 2886750698
NO UP IHEWUIVALENT ATuUMS= 3
OF COEpfFICIENTS= 30 CAXeSYBSCRIpT= 25
400 «0,95000 Va050L00 3 1 50 0
600  @9,030000 01050600 5 1 50 v
DIMEuSEON UF SECULAR MATKIX= 3 DEGENEKACYa O
BASIS FUNCTION 0 1 L= &4 NOy OF TERMS= 2
M2 3 I= 1 ATU! Nu.2 1  Cne Ve3535533547
Ma 1 12 1 ATO Nuss 1 CnE =U49334143739
7‘ BASIS PUNSTION wls & ke & NOs OF TERMS=2 2
19 Me 3 I= 1 ATUM Nus= 2 (N4 Us3535533547
Ma 1 I= 1 ATUN Nuys 2 (Na  *U,9334143739
BASIS FUNCTION WOy 8 be 1 NOs OF TERMs® 4
" Me 0 I#= 1 ATUI Nu,= 3 (N® V,5000000000
Ma () 12 1 ATUN NU.s8 & (Ne® ®0,50W0000000
Me I= 1 ATUN Nu,= ? che We50000000V0
ME 1 I2 1 ATUIl Nusm 8 (N4 1u.50u0u00000
NO OF INEWQUIVALENT ATuUMS= 3
UF COFFFICIENTSE [ 4 HAXeSUBSCRIPT2 124



6400 #2,40000 0420000 o 1 5 0
DIMENSIO UF SECJULAR MATRIX= §
BASIS FunCTIUN O« 1 Le 1 NOs OF
Ma 4 I=2 9  ATU1 NU.m= 1
BASIS PUNETION nO, ¢ b= NOs OF
M2 1 I= 1 ATOA NUy= 2
£EASIS FunCTIONn 1O, 5 L= J NO, OF
ME () I 9 ATO!l NUu,sn 3
Ma 0 Ie 1 ATUIl NUs &
-nu 514818 FUNLTION nOs 4 ke 1 NOs OF
Ma 9 I=° 1 ATOUd NU,=2 8
Ma 1 I= 1 ATUN Nu,=s &
bnSIS FU“LT{ON HU. : L. 1 NU. OP
Ms Ie 1 ATUM NJU,=z 5
Ma 1 12 1 ATUN NU, @ &
Mz 1 I= 1 ATU Nu,s f
Ma 1 I= 1 ATull NU,= 8
NO UF InEwJIVALENT
NOs OF COERFICIETS® re TAXSSyUBSCRIPTE 124
0300  =2,10000 Ce20000 s 1 50 0
000 @0,80000  0VeT0VO0 © 1 >0 0
000 =0, 79000 04100V00 9 1 50 0
DIMENSTON OF SECULAR MATRIA= 3
BASIS FunblTlon wls 1 L 2 NOs OF
M= 4 I= 1 ATUM NJy.2 1
T BASIS FUNCTION wWOs & Le 7 NOW OF
g Ms I= 1 ATUI Nu,= 2
BASIS FUNCTION 0o 5 L2 ] NOs OF
Mg 0 1= ATUN NJIys 5
Me "0 Is 1 ATul NJsa &
Mas 1 I= 1 ATUY Nuws  f
Ma 1 I®= 1 ATUM NuU,a &
: NO UF 1uEQUIVALENT
NO» OF COFRFICIENTS=® 80  UaxeSyBSCRIpTa 124
G400 =n,82000 UeU50U00 14 1 50 0
OIMEWSTON OF SECULAR MATRIX= 3
BASES FUNETION nLs 1 Lka 3 NO« OF
M= 2 s 1 ATON Nuse 1
Ty B8ASIS FUNCTION 404 2 La 5 Ko, OF
Ma 2 I= 1 ATJUl NO.m2 2
BASIS FunLTION wOs 8 be 7 NOs OF
M2 0 I= 1 ATul Nusym 8
M= I 1 ATUM NU.& 4
Ma (O [= 1 ATUM Nu,m 5
me () 12 ATUM Nusa 6
MO UF IWEWUIVALENT
NOs OF COFpRFICIENTS® "o MAXeSyUBSCRINTE 124

I (B, [

DEGENERACY= o

TERMNS=

CN® - 7,00v0000000
TERMS= 1

Cne 140000000000
TEAM§= 2

(L 07071067691
Chm =u,r071067691
TERMs= 2

ChNe Uy 7071067691
cNe 0, 7071067691
TERASs 4 '

CNe 0,%5000000000
CNi U,50v00000V0
CNe V,5090000000
CNE U, 500W000U0V0

ATuMSa §

DEGENERACY2 ©

TERMIS=2 :
O 140000600000
TERMS= 1

N ].UOUUUUUOUO
TER1Ss &

ChNe 0,5000000000
CNe =0,5000000000
CN# “u,50w00000Qu0
CNe  u,50U00V0000

ATUMS= 3

DEGENERACYR o

TERMSe 1

CNs 1¢00v0000000
TERMS®

CNs 1,0000000000
TERMS= 4 '

Cha Ue5000000000
CNeE V5000000000
ChNe =0,5090000000
ChNE S0, 5000000000
ATuMS= 3



[#TERSPHERE CHARGE®
3¢ 1)a T.06300942¢ 00
10 70 ?,09645304E°00

STATE 1 OCyrea
1¢ T)yms 1.0255273g=0¢2
1( 7)E 9,3629241€=0¢
IWTEKSPHERE CHARGE=

STATE 2 wQcyps
10 108 24273005280
708 0e9436659E%02
I"TEKRSPHERE CHARGE=

STATE 3 Ocyps
1¢ 1)= 24322707 7Ea02
1¢ ?)m 1,2756333E=01
INTEKSPHERE CHARGE®

STATE 4 Ocuyrs<
10 108 404353153 4Eu02
I 7)= 1-15945435'01
[WTERSPHERE CHARGE=
'5 Tys 247879344gw02
{ 7)m= 142043737g=01
[WTERSPHEGRE CHARGE®

STATE 5 0Ucyprs

STATE ¢ O0Cyp=
¢ 102 143755130Em02
C7)= 141064209E%01
1 TERSPHERE CHARGE®

STATE 7 ocypa
1)2 647590103Eu03
Yo 7,5823545E«02

(
(7
INTEKSPHERE CcHARGES

ITLRATIUN 3 ERPSE
1,2014U55E 01 '
QC €)= 11372¢006978 01 Q( $)=
QC &)= 7409048048 00 Q(

2400 EB= %2 00uB553¢ Qu  HEXT
Q¢ c)= 1417035621601 G 3)=
Q( ol= 7336292616402 A

2:57J800..:E.D1

2+00 E= =1.7158420E Qu  NEXT
QC «3® 3163751558407 QC 3)=
QC ©i® ui945006YE=0  Q(

11960964 5E2(1

4100 E= %2,4112489E Qu  HEXT
Q( €)= 200477465rEa0c Q¢ 5)w
QC vim 1427505830801 Q¢

149071%60E=Q

4100 E= 29.0%04545E Qu HEXT
QC &% P1o655039Em0e Q¢ 3)3
QC S)= 1115946245E%01 Q¢

1.8332958E2)

Cy00 E= =9, 0387749E=01 LEXT
Q¢ €)= 114345429Ea05 Q( 3)=a
Q¢ )% 1,2643737E401  a(

2,12U06188E=01

0100 E= ®2,47885428 Qu IEXT
Q¢ 2)% 4t6RU4535Ea02 a( 3)=
QC 6)= 118,624 7E801 Q¢

2,2753484E%01 -

0,00 E= *1,3751297€ Q0 HEXT
Q¢ 2)2 213060992Ea07 Q( 3)=
Q¢ 8)3 7.5823545Ea02 Q¢

3,0763054E=01

B 08222396403

7.0966304E 00 Qg
Ez *2,06651297¢ 0U
915089&91E‘Oﬁ u‘
E=z «147141095E 00
619436069Em02  Q(
k= f2|h21ﬁHZDE du
14756545601 Gy
Ez =1410890282€ QU
101594243807 qf

Ee =9,6045295E201
1,26637376=01 Qg

Es =2,4878520E 00
111864269E6=07 Q¢

Ee =1,3770542E OV
745823545602 Qg

4)= 109bbyUsE VU

SPIN= 1T SYMMETRY
k)2 9436€9241E%0¢

SPlis SYMMETRY
4)2 619456069E4Q2

SPIN= 1 SYWMETKY
a)e 142726585E401

SPINe 1  SYMMETRY
4)% 141864245E01

SPIn= 1 SYMMETKY
b)s 142643(57E=0T

SPLiig 1 SYMMETKRY
402 141864269E=01

SPINS 1 SYMMETRY
4)8 7.58¢3345E=02

d(
Qc

Qq
Qf

Q@
Qs

G
Qe

@l
Ql

a(
Q<

wl
atl

@
at

)=
Cy=

5)=

n)=

5)e
6y=

5)=
&)=

S5)m
6y =

S)’

o)=

5)=
£

7+3904804E 00
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