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1 Introduction

Since Newton and Leibniz invented differential and integral calculus in the seventeenth
century, numerous problems in physics, biology and economics have been analyzed using
ordinary differential equations. Ordinary differential equations are adequate models
for systems that satisfy the principle of causality, meaning that the rate of change of
the state of the system depends solely on the present state and not on the past one.
However, in many processes time delays are not negligible: a signal needs time to travel
to the controlled object, a driver needs time to react or animals need time to mature
before reproducing. In these examples, the effect of any change is not necessarily
instantaneous, hence the future of the system depends on past states as well. Such
systems are modeled by functional differential equations or delay differential equations.

In the eighteenth century, Euler, Lagrange and Laplace already studied delay differ-
ential equations in relation to various geometrical problems. At the 1908 International
Congress of Mathematicians, Picard highlighted the importance of hereditary effects in
physical systems. In the late 1920s and early 1930s, Volterra, during his research on
predator-prey models and viscoelasticity, proposed some general differential equations
with delay, and he was the first one to study such equations systematically. Approx-
imately ten years later, Minorsky, who investigated ship stabilization and automatic
steering, showed the importance of delays in feedback mechanism. The lack of sufficient
theoretical tools, however, limited the study of functional differential equations until
the 1950’s. Since then, the theoretical background of this field has been vigorously
developing.

There are many similarities between the theory of ordinary differential equations and
functional differential equations. The analytical tools developed for ordinary differential
equations have been extended to the latter class of equations when possible. There
are important differences as well: while the phase space for an ordinary differential
equation is always finite dimensional, a functional differential equation generates an
infinite dimensional dynamical system. This feature results from the fact that instead
of an initial value, an initial function has to be given to determine a solution.

Delay differential equations, in particular equations of the form

i (t) = —pa (t) + f (¢ (t - 1)) (L1)

play an essential role in the study of artificial neural networks. Wu gives a general



1 Introduction

overview of this field in [50]. The present thesis focuses on Eq.(1.1) with parameter
# > 0 and monotone continuous nonlinearity f : R — R, and is motivated by the

following examples:

o Eq.(1.1) with f (z) = atanh (Bz) or f(z) = atan™! (8x), a # 0,8 > 0, models
the voltage of a single, self-excitatory neuron [18, 39]. A complete picture is
available for such nonlinearities (see the results of Krisztin, Walther and Wu in
[22, 25, 26, 27]).

» A model of artificial neural networks introduced by Hopfield [19] in 1984 assumes
that voltage amplifiers (or neurons) communicate and respond instantaneously.
If such a network is connected symmetrically and consists of analogous neurons,
then there is no oscillation in the system. Marcus and Westervelt [35] improved
the Hopfield model in 1989 by adding time delays due to the finite switching
speeds of the amplifiers. They found that delays can induce sustained oscillation
for certain connection topologies. The general form of their model of N identical

saturating voltage amplifiers is
Ci; = ——a:z +Z if(zjt—1), i=1,.,N,

where z; (t) represents the voltage on the input of the jth neuron at time ¢, C
is the input capacitance of the neuron, R is the resistance of the neuron, and 7
is the delay. Transfer function f is sigmoidal, saturating at +1 with maximum

slope at = 0. If for the connection matrix T' = (T};),
N N
> Ty =2 Ty
j=1 j=1

holds for all 4,k in {1,.., N}, then there exist synchronized solutions, that is
solutions with z1 (t) = z2 (t) = ... = zx (t). It is easy to see that synchronized

solutions are characterized by Eq. (1.1) with suitable g and monotone f.

e The system

8-
(=)
—
o~
N~—
I

i (t) + f (' (1))

N (1) = N () + 1 (N (1)
i (1) = —pa™ () + £ (2 (¢ 1))

with N > 1, 4 > 0 and feedback function f models a unidirectional ring of in-

teracting neurons (see [31] and the references therein). It is verified in [6, 9] that



the periodic solutions of the above system and the periodic solutions of Eq. (1.1)
correspond to each other in case f is strictly increasing, odd, continuously differ-

entiable and satisfies some convexity property.

e The scalar equation,
Cift) =~ afa(t) + Bt =) + T

introduced in [17], models a single neuron or the averaged potential of a popu-
lation of neurons coupled by mutual inhibitory synapses. Here C > 0, R > 0
and I are the capacitance, resistance and external current input constants; x(t)
denotes the voltage of the neuron, and f is the Hopfield activation function
f: Rz~ 05(z+1—|z—1]) € [-1,1]. Time delay appears due to finite

conduction velocities or synaptic transmission.

o Equations of the form (1.1) with unimodal feedback functions (f has exactly one
extremum and changes the monotonicity only at one point) appear in biolog-
ical applications. Two examples are the Mackey—Glass equation with f(xz) =
a-x/(1+2z") modeling the production of red blood cells and the Nicholson’s
blowflies equation with f (z) = aze™®, a > 0, b > 0. Liz, Rost and Wu showed
in [29, 41] that certain choices of parameters imply that all solutions enter the do-
main where f’ is negative, so the results for Eq. (1.1) with monotone nonlinearity

can be applied to describe the long-term behavior of solutions.

The aim of this work is to describe the global attractor as thoroughly as possible for
special feedback functions, as this is the subset of the phase space C' = C ([-1,0],R)
that determines the asymptotic behavior of all bounded solutions. The investigation of
the global attractor includes the study of equilibria, identification of the exact number
and the stability properties of periodic orbits, and, if possible, characterization of the
so-called connecting orbits. Efficient analytical methods are available to explore the
stability properties of equilibrium points, but the problem of detecting periodic orbits,
their hyperbolicity and stability features is far from trivial.

The present thesis considers a wide variety of monotone nonlinear maps: step func-
tions, the piecewise linear Hopfield activation function and continuously differentiable
functions as well. Step feedback functions are easy to handle as Eq. (1.1) with a step
function f is reduced to ordinary differential equations, hence specific infinite dimen-
sional problems related to the equation (e.g. the construction of periodic orbits) can
be simplified to finite dimensional ones. It is expected that many dynamical properties
found for step nonlinearities can be carried over to smooth nonlinearities close to the
step functions. A goal of the present thesis is to show that the existence of periodic
orbits for equations with smooth nonlinear maps can be proved by considering step

feedback functions first, and then by using perturbation theorems. This is a highly
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nontrivial task as several important technical tools (the theory of invariant manifolds,
discrete Lyapunov functionals, Floquet multipliers, etc.) are not available for equations
with step nonlinearities because of the lack of smoothness. A key technical property
in the carry-over procedure is the hyperbolicity of periodic orbits in question. This
feature can be verified in a straightforward way for equations with step functions, and
the perturbation techniques preserve the hyperbolicity for smooth nonlinearities. We
remark that confirming hyperbolicity of periodic orbits of delay differential equations
is still an infinite dimensional problem, which is solved only in some particular cases
like our one.

The thesis discusses the following new results in detail.

Firstly, Eq. (1.1) may have several equilibria determined by the fixed points of & —
f (&) /. In case f strictly increases and is continuously differentiable, Krisztin, Walther
and Wu have described spindle-like structures between consecutive stable equilibria in
terms of pointwise ordering. Chapter 3 shows that the structure of the global attractor
can be more complex than the union of spindles. For a special class of strictly increasing
and continuously differentiable feedback functions, exactly two large-amplitude periodic
orbits are given in the sense that the orbits are not between consecutive stable equilibria.
Verifying the existence of such large-amplitude periodic orbits poses a challenge as they
cannot arise via local bifurcation. In the course of the proof, step nonlinearities are
considered first. The problem of finding periodic solutions for step functions is reduced
to the finite dimensional problem of solving systems of algebraic equations. Thereby two
periodic solutions can be determined explicitly. As a second step, the implicit function
theorem is applied in order to extend the result for smoothened step functions. Finally,
perturbations of Poincaré maps guarantee the existence of periodic solutions for all
strictly increasing and smooth nonlinearities close to the smoothened step function
in C'-norm. Hyperbolicity of the periodic orbits gained in the second step is of key
importance.

The global attractor is described entirely only for special infinite dimensional sys-
tems, for example for gradient systems of parabolic equations [14]. By examining the
unstable sets of the previous large-amplitude periodic orbits, Chapter 4 offers complete
picture of the global attractor outside the spindles. Techniques developed for monotone
nonlinearities are of great use in this chapter: the monotone property of the semiflow,
a discrete Lyapunov functional, the Poincaré—Bendixson theorem and the theory of
invariant manifolds are all necessary to arrive at the desired result.

The result in Chapter 3 implies the question whether we can guarantee the existence
of more large-amplitude periodic orbits oscillating around the same equilibria. An
analogous problem is solved for the negative feedback case in Chapter 5: for all u > 0,
a locally Lipschitz continuous map f with xf (z) < 0 for z € R\ {0} is constructed
such that Eq.(1.1) has an infinite sequence of periodic orbits. All periodic solutions

defining these orbits oscillate slowly around 0 in the sense that they admit at most one

4



sign change in each interval of length 1. In this example, f is close to an unbounded
step function. Based on this property, an infinite sequence of contracting return maps
is given, their fixed points being the initial segments of the periodic solutions. If
f is continuously differentiable, then all periodic orbits are hyperbolic and orbitally
asymptotically stable with asymptotic phase.

It is also an interesting task to extend theorems given for continuously differentiable
and strictly monotone nonlinear maps to nonlinearities with weaker properties. Such
feedback functions come up in several applications. Chapter 6 considers Eq. (1.1) with
the piecewise linear Hopfield activation function f: R 3>z +— 0.5 (jJz + 1] — |z —1]) €
[—1,1] and analyzes the truth of a conjecture given by Gy6ri and Hartung in [11].
The fact that the Hopfield activation function is neither strictly monotone nor smooth
gives rise to nontrivial technical problems. In this case, the solution operator is neither
injective nor differentiable everywhere. It is shown in this work that although most
of the solutions converge to an equilibrium as ¢ — oo, there is a periodic solution
for certain choices of parameters. The proof projects the unstable set of the unstable
equilibrium together with its closure to the two-dimensional plane and studies it with
the help of the discrete Lyapunov functional. The periodic orbit is determined by the

fixed point of a Poincaré return map defined on a subset of the two-dimensional plane.
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2 Delay Differential Equations: Theoretical
Background

2.1 Basic theory

This chapter gives an overview of the basic theory applied in the dissertation. For
more information, see the two monographs on functional-differential equations written
by Diekmann, van Gils, Verduyn Lunel and Walther [7] and Hale, Verduyn Lunel [16].

Phase space, solution.

The natural phase space for

i (t) = —pa () + f (z(t = 1)) (1.1)

is the space C' = C ([-1,0],R) of continuous real functions defined on [—1, 0] equipped
with the supremum norm ||| = sup_;<s<o ¢ (s)].

If I C Ris an interval, u : I — R is continuous, then for [t — 1,t] C I, segment u; is
the element of C' given by wu;(s) = u(t + s) for =1 < s <0.

In the sequel we consider Eq. (1.1) with smooth and non-continuous (e. g. step func-
tion) nonlinearities and linear variational equations as well. This requires a slightly
more general form of equation and a more general definition of solutions.

Consider the equation
y(t) =gt u) (2.1)

assuming that g : R x C — R satisfies the condition: for each interval I C R and
each continuous function w : I + [-1,0] — R, the map I > ¢t — g(t,u;) € R is
locally integrable (i. e., integrable on compact subintervals of I'). Then for given ¢y € R
and 0 < a < oo, a function y : [top — 1,tp +a) — R is called a solution of (2.1) on
[to — 1,t0 + a) if y is continuous and

y(®) =y (to) + [ g(s.ys)ds

to

holds for all ¢ € [tg,to 4+ a). A function y : R — R is a solution of Eq. (2.1) on R if it is
a solution of (2.1) on [ty — 1,00) for all ¢y € R.
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If y : [to—1,to+a) — R is a solution of (2.1) on [ty — 1,tp + a) and for some
(o, B) C (to,to+ a), the map (a,3) ot — ¢g(t,y:) € R is continuous, then it is clear
that y is continuously differentiable on (v, 3), moreover, (2.1) holds for all ¢ € (a, 3).

Ify:[to—1,to +a) — R is a solution of (2.1), then obviously y is absolutely contin-
uous on [tg,to + a), and (2.1) holds almost everywhere on [tg, ty + a).

If

gt,p)=—pp0)+h(t,p(-1)), (t)eRxC,

with some © € R and h : R x R — R so that g satisfies the above local integrability
condition, then for each ¢ € C' a unique solution y : [-1,00) — R with y9 = ¢ can
be given by the method of steps. Set y(t) = ¢ (¢t) for —1 < t < 0. Suppose that a
continuous y : [—1,n] — R is already given for some n > 0. Then for ¢ € [n,n + 1],
define

t
y (1) = e =y (n) + / M=) ] (5, (s — 1)) ds,

Then y|[ n+1] is absolutely continuous and (2.1) holds almost everywhere on [n,n + 1].

It is easy to see that this construction gives the unique solution y¥ : [—1,00) — R with

Yy = .

Semiflow.

Suppose p € R and f : R — R is continuous. Then the solutions of Eq. (1.1) define the
continuous semiflow
O : Rt xC>(tp)—af €C. (2.2)

All maps @ (¢,-) : C — C, t > 1, are compact. If in addition, f is strictly increasing,
then all maps ®(¢,-) : C — C, t > 0, are injective. It follows that if f is strictly
increasing, then for every ¢ € C' there is at most one solution x : R — R of Eq. (1.1)
with zo = ¢. Whenever such solution exists, we denote it also by z¥.

A function € € C is an equilibrium point (or stationary point) of @ if £ (s) = ¢ for all
—1 < 5 <0 with £ € R satisfying —u& + f (£) = 0.

A set M C C is called positively invariant under ® if ® (¢, M) C M for all t > 0. A
set M C C is said to be invariant if for any ¢ € M there exists a solution z¥ : R — R
with 2§ = ¢ and z7 € M for all ¢ € R.

Limit sets, convergence.

If p € C and 2% : [-1,00) — R is a bounded solution of Eq. (1.1), then the w-limit set

w (¢) ={¢ € C : there exists a sequence (t,)g" in [0, 00)

with ¢, — oo and @ (t,,p) — 1 as n — oo}
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is nonempty, compact, connected and invariant. For a solution x : R — R such that

T|(—o0,0) 18 bounded, the a-limit set

a(xz) ={¢ € C : there exists a sequence (t,);° in R

with t, — —oo and x4, — 1 as n — oo}

is nonempty, compact, connected and invariant. If for some ¢ € C| there is a unique
solution x : R — R such that x|(_0070] is bounded and xy = ¢, then we may use notation
a(x) = a(p). This is the case if f is strictly increasing and ¢ € w (¢)) for some ¢ € C.

In Chapter 6 of [43] Smith introduces the partial order <, on C: ¢ <, 9 if and
only if ¢ (s) < (s) for all s € [-1,0] and (¢(s) — ¢(s)) €”® is nondecreasing on [—1,0].
Whenever ¢ <, ¢ and ¢ # 1, write ¢ <, 1. We intend to use the following theorem
stated also in Chapter 6 of [43].

Theorem 2.1.1. Consider the equation

&(t) = g(ar), (2.3)

where g : C' = R is continuous and satisfies a Lipschitz condition on each compact
subset of C. Suppose x¥(t) is defined for all t > 0, and the following conditions hold
for Eq.(2.3):

(T) Functional g maps bounded subsets of C to bounded subsets of R. For each
p € C, x¥ is bounded for t > 0. For each compact subset A C C, there exists a closed
and bounded subset B C C' such that for each ¢ € A, x¥(t) € B for all large t.

(SM) There exists v > 0 such that whenever ¢, € C satisfy ¢ <, 1, then

v(¥(0) — ¢(0)) + g(¥) — g(v) > 0.

Then the set of convergent points (namely those ¢ € C for which lim;_,oo ¥ (t) exists
and finite) contains an open and dense subset in C. In addition, if Eq. (2.3) has ezactly

two equilibrium points, then all solutions converge to one of these.

Boundedness.

It is a direct consequence of the next proposition that if u > 0, f : R - R is a
continuous and bounded map with sup,cp [f(z)] < M, in addition p : R — R is a
periodic solution of (1.1) so that 0 is in the range of p, then maxcr |p(t)| < M/ p.

Proposition 2.1.2.  If u > 0, f : R = R is continuous, sup,cg |f(z)] < M and
x: [to—1,00) = R is a solution of (1.1) with x (to) = 0, then |x (t)| < M/u for all
t > tp.
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Proof. Let u : R — R be the solution of the initial value problem

{u(t) — —pu(t)+ M, teR,
u (tp) = 0.

Then u(t) = M (1 - e‘”(t_to)) /p for t € R. Clearly, if  : [tp —1,00) — R is a
solution of (1.1), then & (t) < —px(t) + M for all t € R. In consequence, Corollary 6.2
of Chapter I in [15] implies that for ¢ > tg, x (¢) < u(t) < M/u. The lower bound can
be verified analogously. O

The global attractor.

Assume p > 0 and f is continuously differentiable. If the global attractor A of the
semiflow ® exists, it is a nonempty, compact set in C, it is positively invariant in
the sense that ® (¢,.,A) = A for all t > 0, and it attracts bounded sets in the sense
that for every bounded set B C C and for every open set U DO A, there exists ¢t > 0
with @ ([t,00) x B) C U. Global attractors are uniquely determined [14]. We know
several sufficient conditions for the existence of the global attractor, for example p > 0
and imsup|,|_,q |f (z) /2| < p. In case A exists, its structure contains all relevant

information about the long term behavior of solutions. It can be shown that

A={p € C: there is a bounded solution z: R — R
of Eq. (1.1) so that ¢ = x¢},

see [25, 31, 40].

If in addition to smoothness, f is strictly increasing, the compactness of A, its in-
variance property and the injectivity of the maps @ (¢,-) : C — C, t > 0, combined
permit to verify that the map

[0,00) X A3 (t,p) — P (t,p) € A

extends to a continuous flow ® 4 : Rx A — A; for every ¢ € A and for all £ € R we have
D4 (t,) = x; with a uniquely determined solution = : R — R of Eq. (1.1) satisfying
o = .

Note that we have A = @ (1, A) C C'; A is a closed subset of C'!. Using the flow ® 4

and the continuity of the map
C3p—d(lp) el
one obtains that C and C'! define the same topology on A.

10



2.1 Basic theory

Linearization and unstable manifolds [7, 16].

Set p > 0. If f is continuously differentiable, then @ (,-) is continuously differentiable
for t > 0. Suppose é € C is an equilibrium. For each ¢ € C, we have Dy® (t, é) 0 =1y7,

where y# : [—1,00) — R is the solution of the linear variational equation

y(t)=—py )+ f(yt-1)

with initial function y§ = . The operators Dy® (t, é) :C — C,t >0, form a strongly
continuous semigroup. One gets information about the stability of the equilibrium and
the oscillation frequencies in the stable and unstable sets of the equilibrium from the
spectrum of the generator of the semigroup. The spectrum of the generator consists of

eigenvalues given by the zeros of the characteristic function

Cod=A+pu—f(&e?eC.

If f/(€) > 0, then there is exactly one real eigenvalue )\, and the rest of the spectrum

appears as a sequence of complex conjugate pairs (Aj,rj)jo with
Ao > ReA; > Redg > ... > Re), > ...,

Relj = —oc0  j — o0,
and

(2 —1)m <Im); <2jmfor 1 <jeN,

see [7]. All the eigenvalues are simple. If 0 < f/(€) < p, then Ao < 0 and ¢ is stable
and hyperbolic. If f'(§) > p > 0, then \g > 0 and ¢ is unstable. If 4 > 0 and

£ > ﬁ for 0, € (37/2,27) with 6, = —ptan,,, (2.4)
o

then ReA; > 0.

In case (2.4) let P be the 3-dimensional realified generalized eigenspace of the gen-
erator of the semigroup Dy® (t,é) :C — C, t >0, associated with the spectral set

{)\0, A1, )\71}, and let @) be the realified generalized eigenspace of the generator associated
with the remaining spectrum. Then C = P® Q. Choose > 1 with ef** < g < eledr,
According to Theorem I.4. in monograph [26], there is an open neighborhood N of ¢
such that

Wi e (é) = {@ € {é} + N : ®(1,-) has a trajectory (¢n)° o, with ¢o = ¢,
(@n—é)ﬁ_"el\ffor all n <0, and ((pn—é)ﬂ_”—>0asn% —oo}

11
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is a 3-dimensional C''-smooth local manifold with tangent space {é }+P at é - Wi loe (é)
is called the leading or fast unstable manifold of é, and contains segments of those
solutions that are defined on (—o0,0] and approach £ as t — —oo faster than t s 3

approaches 0. The forward extension
Wi (€) = @ (10,50) x Wiee (€))

is called the leading unstable set of é For all o € W} (é), - f has at most two sign
changes on [—1, 0], see [26].

As we need it later, we also note that if (2.4) holds, and ¢ € A\ {é} belongs to the
stable set

~

48 (é) - {‘P : w(yp) exists and w () = §}

of €, then ¢ — £ has at least three sign changes on [—1,0], see Lemma 3.9 in [40] for a
proof.

More generally, if for some k > 1,

f1(&) >

cos0, for 0, € <2k7r — g, 2k7r> with 6, = —ptané,, (2.5)
then Re); > 0. Choose Py to be the (2k + 1)-dimensional realified generalized eigenspace
of the generator associated with the spectral set {Ao, A, A, Ak,Tk}, and let Qi be
the realified generalized eigenspace of the generator associated with the remaining spec-
trum. Then C = P, & Q. Set § such that ef*M+1 < 5 < eReM . Then there exists a
(2k + 1)-dimensional C'-smooth local unstable manifold Wi loc (é) of € with tangent

space {é } + Py, at € [26]. It consists of segments of solutions that are defined on (—co, 0]
and approach £ as t — —oo faster than t — 3% approaches 0.
For f/(£) < 0, there is a sequence of complex conjugate pairs of simple eigenvalues
(o), with
Rel1 > Rely > ... > ReA, > ...,

ReAj = —o0, j — o0,

and
2jm <ImX; < (2j+1)7for 1 <jeN.

In addition, there are exactly two eigenvalues in strip {z € C: —7 < Imz < 7}; two
reals Agg > Ao > Re); for —e #~1 < f/(€) < 0, and a complex conjugate pair ()\0,)\70)
with ReXg > Re\p for f/(€) < —e #71 [7].

Suppose f'(¢) < —e #~! and Re\;, > 0 with some k > 0. Similarly to the positive
feedback case, C' can be decomposed as C = P, & @ into the closed subspaces P
and Q, where Py is the (2k + 2)-dimensional realified generalized eigenspace of the

generator corresponding to eigenvalues Ao, Ao, - . ., A\, Ak, and @ is the realified gener-
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2.2 Results for monotone feedback

alized eigenspace corresponding to the rest of the spectrum. Choose eRM+1 < g <
eRe* . Then the local unstable manifold, that contains segments of solutions defined
on (—oo, 0] approaching ¢ as t — —oo faster than t — (¢ approaches 0, is a (2k + 2)-
dimensional C'-smooth manifold with tangent space {é } + P at f . It is also denoted
by Witi,e (€).

In both cases we use notation W;! (é) for the forward extension

® ([0,00) x Wiioe (€)) -

If the global attractor A exists, then W}' (f), the closure of Wy (f), belongs to A.

2.2 Results for monotone feedback

Although the form of Eq. (1.1) is quite simple, the dynamics generated by it can be very
rich. This section focuses on the structure of solutions in case of monotone feedback.

We talk about positive feedback if the nonlinear map f is continuous, f (0) = 0 and
xf (x) > 0 for all  # 0. In the negative feedback case f is continuous, f(0) = 0 and
xf (z) <0 for all z # 0.

Mallet-Paret and Sell has given a Poincaré—Bendixson type result in [33] for both
cases. Assume f is continuously differentiable and strictly increasing. If for some
¢ € C, solution z¥ : [-1,00) — R is bounded, then w(y) is either a single non-
constant periodic orbit, or for each ¢ € w(y), a(¢) Uw (¢) is a subset of the set
of equilibrium points. The proof of this widely cited theorem is based on a discrete
Lyapunov functional introduced by the same authors and also presented in the next
section.

Krisztin, Walther and Wu, among others, have given more detailed results.

Positive feedback [20, 22, 23, 25, 26, 27].

Assume p > 0, f is continuously differentiable and f’(z) > 0 for all x € R. Suppose
&, 0, & are three consecutive zeros of & — —ué+ f (€) so that f'(£-) < u, (2.4) holds
for £ =0, and f’(£4) < p. Then equilibria é,, ér defined by &_, &, respectively, are
stable and hyperbolic. Equilibrium point 0 given by the 0 solution of —ué + f (¢ )=0
is unstable. In addition, assume that f (z) /x < p outside a bounded neighborhood of
0.

The monograph [26] of Krisztin, Walther and Wu gives a clear picture of W} (0),

the closure of unstable set WY (0) of equilibrium 0. It contains the three equilibria

é_, 0, é’+, a unique periodic orbit @7 and connecting orbits among them. The periodic

solution p defining O oscillates slowly, that is each segment of p has at most two sign

changes. Set WY (@) is homeomorphic to the closed unit ball in R3, and its boundary

13



2 Delay Differential Equations: Theoretical Background

is homeomorphic to the unit sphere in R3. Also, there is a 2-dimensional smooth disk
in WY (@) with boundary O;. This disk contains 0, the orbit O; and heteroclinic

connections from 0 to @;. It separates Wi (0) into two halves, which subsets belong

to the domain of attraction of é_ and of é+. In the literature W} (O) is called a spindle.

Under further conditions (f is odd, and (0,00) 3 & — £f/(€) / f (€) strictly decreases),
the set WY (O) is the global attractor of restriction ®|(p o)x g, where

B={peC: ¢ <p(s) <& forall se[—1,0]},
see papers [23, 25] of Krisztin and Walther. Well-known examples are
f(xz) =atanh (bz) and f(x)=atan™! (bx)

with a # 0 and b > 0. In other cases we cannot exclude the existence of further periodic

solutions oscillating around 0.

If (2.5) holds with £ = 0 and k£ > 2, then W} (O) exists. The structure of W} (0) is
characterized by Krisztin and Wu [27]. It contains k periodic orbits Oy, ..., Oy so that
for all j € {1,...,k}, segments of the periodic solution defining O; have 2j — 1 or 2j
sign changes. For each j and [ in {1,...,k}, set

CJQ —{ga e Wy (0) : there is a solution z : R — R of Eq. (1.1)

with 2 = i, (a) = {0}, () = 0,1,

(o1 :{w e wy (0) : there is a solution = : R — R of Eq. (1.1)

with 29 = p,a (z) = {0}, w(p) = {&}}»

C’lj :{90 e Wy (f)) : there is a solution = : R — R of Eq. (1.1)

with 2o = ¢, a (z) = O, w(p) = Oz},

cl :{go e Wy (ﬁ) : there is a solution = : R — R of Eq. (1.1)

with 2o = ¢, a (z) = Oj, w(p) = {éﬂ:}}

14



2.2 Results for monotone feedback

Then

u( U C{)u(OCi)u(OCﬁ).

Negative feedback [27, 45, 46, 47, 48, 49].

Suppose > 0, f is continuously differentiable, f(0) = 0, f'(x) < 0 for all z € R,
f'(0) < —e#~! and f is either bounded from above or bounded from below. Then 0

is the unique equilibrium.

In [45] Walther has verified that if ReAg > 0, then W§ (O) is a 2-dimensional C'-

smooth submanifold of C' with boundary, and it is homeomorphic to the 2-dimensional

closed unit disk. The boundary of Wj (0) is a slowly oscillatory periodic orbit (i.e. an
orbit defined by a periodic solution having at most one sign change on each interval of
length 1).

Under the above conditions Walther and Yebdri [47, 49] has confirmed that the set
Wso = {20 : z: R — R is a bounded, slowly oscillatory solution of (1.1)} U {@}

is the graph of a C'-map defined on a subset D of P,, moreover D is homeomorphic
to the closed unit disk in R?, provided Wi, # {O} The manifold boundary of Wy, is
a slowly oscillatory periodic orbit. Further slowly oscillatory periodic orbits may exist
in Ws,. The nonperiodic orbits in Wy, \ {0} oscillate around 0 and make heteroclinic
connections between periodic orbits or between 0 and a periodic orbit. These results
are of high importance as Ws, attracts all solutions starting from an open dense subset
of C [34].

There is a Morse-decomposition similarly to the positive feedback case. For k > 0,

Wi (0) = {o}u (; oj) U (JQJDC?) U (O<ZL<J]-<1<C;> :

where O;, j € {0,...,k}, is a periodic orbit with segments having 2j or 2j + 1 sign

changes, and connecting sets C’]Q, Clj, J,1 €{0,...,k}, are defined as above [27].

Open questions related to this field are drawn up in work [20] of Krisztin. For

information about nonmonotone feedback, see papers cited within [20].

15



2 Delay Differential Equations: Theoretical Background

2.3 Key technical tools

2.3.1 A discrete Lyapunov functional

Mallet-Paret and Sell introduced discrete Lyapunov functionals in [32] for both positive
and negative feedback case. These functionals proved to be fundamental technical tools.
Combined with several other dynamical system methods, they permit to obtain a lot
of information about the structure of the global attractor (e.g. a Poincaré—Bendixson
type result [33]). Here we restrict attention to the positive feedback case.

For ¢ € C'\ {0}, set sc(¢) =0if ¢ > 0 or ¢ <0, otherwise define

sc(p) = sup{k‘ € N\ {0} : there exists a strictly increasing sequence

(si)§ € [~1,0] with ¢ (si1) ¢ (s1) < 0 for i € {1,2, ..k} | .

Then set V : C'\ {0} — 2N U {oco} by

V(g) = sc (), if sc(y) is even or oo,
e sc(p) +1, if sc(p) is odd.

Also define

R = {pecC:p0)#00rp(0)p(-1)>0,
p(=1) # 0 or ¢(—1) ¢ (0) <0,

all zeros of ¢ are simple} .

V has the following lower semi-continuity and continuity property (for a proof, see
[26, 33]).

Lemma 2.3.1. For each ¢ € C'\ {0} and (v,);” € C\ {0} with ¢, — ¢ as n — oo,
V (¢) <liminf, e V (). For each ¢ € R and (¢,)g° C CT\ {0} with ||on — ¢l cn —
0 asn — o0, V(p) =lim, 00 V (o) < 00.

The next result explains why V is called a Lyapunov functional.

Lemma 2.3.2. Assume that J C R is an interval, o : J — R is locally Lebesgue
integrable, B : J — R is nonnegative, z : J + [-1,0] — R is continuous, and z is

differentiable on J. Suppose that
2t)=—at)z(t)+8(t)z(t—1) (2.6)

holds for allt > inf J in J. Then the following statements hold.
(i) If t1,te € J with t1 < ta and zt, # 0, then V (z¢,) >V (21,).
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(i) If t,(t —2 € J, z(t—1) = z(t) = 0 but z # 0, then either V (z) = oo or
V(zi—2) >V (2).

(iii) If 8 is positive on J, t € J, t —3 € J, z(t) # 0 for some t € J + [—1,0] and
V (zt—3) = V (2t) < o0, then z; € R.

() If J =R, a=peR, [ is bounded and measurable, z is bounded and z; # 0 for
allt € R, then V (z) < oo for allt € R.

Proof. For a positive and continuous  and constant «, assertions (i), (ii) and (iii)
are shown in [26] and [32]. The proof of Lemma VI.2 in [26] can be modified in a
straightforward manner to cover our slightly more general case. Therefore the details
are omitted here.

Statement (iv) is a corollary of Theorem 2.4 in [32] with §* =1, N =0, f° (t,u,v) =
—pu ~+ 5 (t)v. Property I of Theorem 2.4 in [32] holds as /3 is bounded. O

Remark 2.3.3. Notice that if 8 is positive and z : J + [—1, 0] — R satisfies (2.6) for all
t € J, t > infJ, moreover z(t) # 0 for some t € J + [—1,0], then z; # 0 for all ¢ € J.

If f is a C'—smooth, nondecreasing function and z, % : J +[—1,0] — R are solutions
of Eq. (1.1), then Lemma 2.3.2 (i) and Lemma 2.3.2 (ii) can be applied for z = z — &

with the constant function v : J 3 ¢ — 1 € R and the nonnegative continuous function
1
8: JSt*—)/ Flsa(t—1)+(1— )2 (t—1))ds € [0,00).
0

If f'(z) > 0 for all z € R, then S is positive, which condition is needed in Lemma 2.3.2
(ii).
We introduce the linear map 7 : C — R? by 7 () = (¢ (0),¢ (—1)). The following

proposition holds.

Proposition 2.3.4. Assume p € R, f : R = R is nondecreasing, bounded, and either
it is continuously differentiable on R, or there exist u; < us < ... < uy with N > 1 so
that the restrictions of f to the intervals (—oo,uq], [u1,usl,.., [un—1,un], [un,o0) are
continuously differentiable. Let x : R — R and Z : R — R be different periodic solutions
of (1.1). Thent— V (z; — Z4) is finite and constant. Furthermore, w (xy — %) # (0,0)
for allt € R.

Proof. The difference z = = — ¥ satisfies equation (2.6) with « () = p and

flzt=1)—f(@(t—1 . -

sy | P i 3o,
DY f(z(t—1)) otherwise,

where DT f denotes the right hand side derivative of f. Then 3 is bounded, measurable

and nonnegative. Clearly, z; # 0 for all t € R. Lemma 2.3.2 (iv) implies V' (z;) < oo

for all t € R.

17



2 Delay Differential Equations: Theoretical Background

Let w and @ denote the minimal periods of = and Z, respectively. If © = 0 or w/@ is
rational, then z is periodic. Thus Lemma 2.3.2 (i) yields that ¢ — V (z;) is constant.
If w/@ is irrational, then one may choose sequences (n;)}° C Z and (k;)]° C Z with
n; — oo and k; — oo as | — oo so that mw/w —k; — 0 as I — oo. Fix t € R arbitrarily.
As for all s € [-1,0],

tngw (s) = Tt4njw (5) — Ttynyw (5) = x4 (s) — Tt nyw—ky@ (s)
:x(t—i—s)—a?(t-i-o? (nloj—kl> —|—$>,
W

we see that 2z, (5) tends to z (s) = x(t+s) — Z(t+s) as I — oo uniformly in
s € [-1,0]. So Lemma 2.3.1 implies V (2;) < liminf; oo V (2¢4n,w) for all I > 0. As
R > u+— V(z,) € 2NU {oo} is monotone nonincreasing by Lemma 2.3.2 (i), we obtain
that V (2;) = V (zt44) for all w > 0. As t is arbitrary, we conclude that ¢t — V' (z;) is
constant.

The second statement now follows from Lemma 2.3.2 (ii). O

We mention that in the negative feedback case V (¢) counts the sign changes of
¢ € C\ {0} if it is an odd number or infinity, otherwise V (¢) is the number of sign
changes plus one. Then V (¢) € {1,3,...} U{oo}. The analogue of Lemma 2.3.2 holds,
in particular the map ¢t — V (z;) is monotone nonincreasing along the solutions of
Eq. (1.1).

2.3.2 Poincaré return maps

Assume that ¢ € R and f : R — R in Eq. (1.1) is continuously differentiable. Let
p: R — R be a periodic solution of Eq.(1.1), and w > 1 be the minimal period of p.
Let a closed linear subspace H C C' of codimension 1 be given so that pg € H and
po ¢ H. An application of the implicit function theorem yields a convex bounded open
neighborhood N of 0 in H, v € (0,w) and a C*-map 7 : {po} + N — (w — v,w + ) with
v (po) = w so that for each (¢,¢) € (w —v,w+1v) X ({po} + N), segment z;{ belongs to
H if and only if ¢t = vy(¢) ([7], Appendix I in [26], [28]). The Poincaré return map is set

P:{po} + N2 2 (v(p)¢) € H.

Then P is continuously differentiable and has fixed point pg. In addition, P depends
smoothly on the right hand side of Eq. (1.1) [28].

Map DP (po) : H — H is a compact operator. The spectrum o of DP (py) is
countable with one possible accumulation point at 0. All the nonzero points in ¢ are
eigenvalues of finite multiplicity. The periodic orbit determined by solution p is said to
be hyperbolic if py is a hyperbolic fixed point of P, that is DP (pg) has no eigenvalues on
the unit circle in C. This hyperbolicity is the same as the one defined by the spectrum
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of the monodromy operator [7, 26]. The nonzero points of o and 1 are called Floquet
multipliers.

The following proposition is a particular case of a more general result of Lani-Wayda
[28]. Tt states that if Eq.(1.1) admits a hyperbolic periodic solution with minimal

period greater than the delay, then small perturbations preserve the periodic solution.

Theorem 2.3.5. Assume that f € C' (R,R), and p is a hyperbolic periodic solution of
FEq.(1.1) with minimal period w > 1. Let D C R be open with {p(t):t € [0,w)} C D.
Then there exist an open ball B C C{(D,R) centered at f, an open neighborhood V.C N
of 0 in H and a C'-function x : B — {po} + V C H with x (f) = po such that for
g € B, the solution < of Eq.(1.1) with initial value x (g) is periodic (and therefore
2 s in (w—rvyw+v). Ifpe{p}t+V
is the initial segment of any periodic solution of ©(t) = —px(t) + g (z(t — 1)) for some

can be defined on R). The minimal period of 2

g € B with minimal period in (w — v,w +v), then ¢ = x(g). If ||g — f”cvbl — 0, then
x(9) = x(f) =po in C.

We apply this theorem in Chapter 3 with D = R.

There are other standard techniques applying Poincaré return maps to detect periodic
orbits. For example suppose that f in Eq. (1.1) is continuous, A is a nonempty, closed,
convex subset of C, and a map P : A — C is defined so that for all ¢ € C, P(p) =
® (g, p) with some ¢ = q(p) > 0. If P(A) C A and P is a strict contraction, then
P has a fixed point, the initial segment of a periodic solution. If f is continuously
differentiable, then the periodic orbit is necessarily hyperbolic and stable [46]. This
argument is used in Chapter 5.

A third type of reasoning is presented in Chapter 6. To verify the existence of a
periodic orbit in the closure WY of the leading unstable set of an equilibrium, we
project Wi to the 2-dimensional plane and define a suitable Poincaré return map on
the image of W{. Using the discrete Lyapunov functional and elementary topological
arguments, we confirm that this Poincaré map has a fixed point, which implies the

existence of a periodic orbit.

2.4 Notions and notations

Symbols R and R stand for the set of reals and nonnegative reals, respectively. Z and
N denote the set of integers and positive integers, respectively.

C' is the Banach space of all real valued continuous functions defined on [—1, 0]
with supremum norm ||-||. In addition, C! is the space of all real valued continuously
differentiable functions on [—1,0] with norm [[¢||o1 = |l¢| + [|¢/] -

For D C R open, C}(D,R) denotes the space of bounded continuously differ-
entiable functions ¢ : D — R with bounded first derivative together with norm

lglloz = supsep l9(x)] + sup,ep |g'(2)]-
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For Banach spaces E and F' over R, the space of bounded linear operators is denoted
by L (E, F).
For ¢, € C, we define

« < tif p(s) <¢(s) for all s € [-1,0],
e p<¥Yif o <Y and p # Y,

o p =1 ifp <y and p(0) < (0),

e o< if p(s) <(s) for all s € [—1,0].

Relations “>7  “>7 “»=" and “>>” are defined analogously.

For a simple closed curve ¢ : [a,b] — R2, int (¢) and ext (c) stand for the interior and
exterior, i.e., the bounded and unbounded component of R? \ ¢ ([a, b]), respectively.

If U is a subset of a topological space, then bdU is for the boundary of U, intU is
for the interior of U, and U is for the closure of U.

For an interval I C R, we define
I+[-1,0)={teR:t=t+ty witht; €I, t2 € [-1,0]}.

If¢eRisazeroof R & —ps+ f(§) € R, then a solution z : [—1,00) — R of
Eq. (1.1) oscillates around & if the set of zeros of x — £ is not bounded from above.

In the positive feedback case (i.e. when f is continuous and zf (x) > 0 for = # 0) a
solution z : R — R is called slowly oscillatory around £ if V (xt — é) = 2foreacht € R,
where é(s) = ¢ for s € [—1,0]. A solution = : R — R is rapidly oscillatory around
Eif v (act — é) > 4 for all t € R. Note that slow oscillation in the positive feedback
case is different from the usual one used for equations with negative feedback condition
[7, 47]. In the negative feedback case (i.e. when f is continuous and zf (z) < 0 for
x # 0) a solution z : R — R is called slowly oscillatory around ¢ if the successive
sign changes of © — & are spaced at distances larger than the delay 1. In both cases a
slowly oscillatory solution is defined to be slowly oscillatory around 0. Slowly oscillatory
periodic solutions are abbreviated as SOP solutions.

Assume z : R — R is a periodic solution of (1.1) with minimal period w. We
say x is of special symmetry if relation z (t + w/2) = —z (t) holds for all ¢ € R. Set
to < t1 < to + w so that x (tp) = miner 2(t) and z (£1) = maxser (t). Solution x
is said to be of monotone type if x is nondecreasing on [to,?;] and nonincreasing on
[t1,to + w].

Assume that 0 is in the range of a periodic solution z : R — R of (1.1). Then z is
normalized if x(—1) = 0 and x(s) > 0 for all s € (=1, —1 4 n) with some n > 0.
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3 Large-Amplitude Periodic Solutions for
Monotone Positive Feedback

3.1 Introduction to the problem
In this chapter we consider the equation
i (t) = —px (t) + f (z (£ — 1)) (1.1)

and assume that the following hypothesis holds (see Fig. 3.1):
(H1) p>0, feC(R,R) with f/(£) > 0 for all £ € R, and

§2<1<H=0<8 <&

are five consecutive zeros of R 3 £ — —ué + f(£) € R with f/ (§;) < p for
j€{-2,0,2} and f' (&) > p for k € {—1,1}.

A

1S
f(&)

S S,

S g,

Figure 3.1: A feedback function satisfying condition (H1)

Under hypothesis (H1), éj € C defined by éj (s) =&, =1 < s <0, is an equilibrium
point of ® for j € {—2,-1,0,1,2}. In addition, & 5., & are stable and €1, & are

unstable.
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By the monotone property of f, the subsets
Coo={peC:&9<p(s)<&forall se[-1,0]},

Cooo={peC: & 2<¢(s)<0forall se[-1,0]},
Coa={peC:0<p(s)<&forall se[-1,0]}

of the phase space C are positively invariant under the semiflow ®. The structures of
the global attractors A_s o and Ag2 of the restrictions ®|g oo)xc_,, a0d P[[0.00)xCp 05
respectively, are (at least partially) well understood, see [20, 22, 23, 25, 26, 27| and
Section 2.2. In particular cases, A_s o and A have spindle-like structures described
in [20, 25, 26, 27]: Agz is the closure of the unstable set of ¢1 containing the equilib-
rium points éo, fl, ég, periodic orbits in Cp2 and heteroclinic orbits among them; and
analogously for A_s .

Let A denote the global attractor of the restriction <I>|[07OO)X072,2. It is easy to see
that if (H1) holds and £_9,£_1,0,&;, &2 are the only zeros of —u& + f (§), then A is the
global attractor of ®. The problem, whether under hypothesis (H1) the equality

A= ./472,0 U ./40,2 (3.1)

holds or not, arose in [26], see Fig. 3.2.

Figure 3.2: A_o9 U Ag2

The main result of this chapter is that A can be more complicated than given by
(3.1). We construct examples so that Eq. (1.1) with assumption (H1) has periodic orbits
in A\ (A—2,0 U Ap2).

A periodic solution z : R — R of Eq. (1.1) with nonlinearity satisfying (H1) is called
a large amplitude periodic solution if z(R) D (£-1,&1). As we have defined before, a

solution z : R — R is slowly oscillatory if for each ¢, the restriction :c][t,l,t] has one or
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two sign changes. A large-amplitude slowly oscillatory periodic solution x : R — R will
be abbreviated as an LSOP solution. An LSOP solution x : R — R is normalized if
z(—1) =0, and for some n > 0, z(s) > 0 for all s € (=1, -1+ 7).

Theorem 3.1.1. There exist u and f satisfying (H1) such that Eq.(1.1) has exactly
two normalized LSOP solutions p : R — R and ¢ : R — R. For the ranges of p and q,
p(R) € q(R) holds. The corresponding periodic orbits

Op={pt:teR} and Oy ={q : t € R}

are hyperbolic and unstable with 2 and 1 Floquet multipliers outside the unit circle,

respectively.

In Theorem 3.1.1 the nonlinear map f is close to the step function f%:° parametrized
by K > 0 and given by 50 (z) = 0 for |z| < 1, and f%0 (z) = Ksgn () for |z| > 1, see
Fig 3.3. Equations with such nonlinearity model neural networks of identical neurons
that do not react upon small feedback; the feedback has to reach a certain threshold
value to have a considerable effect [12]. Our result may have interesting consequences
for the dynamics of neural networks with the above property. See [3, 4, 5, 6, 50] for a
bistable situation.

Suppose f is odd and satisfies (H1). It follows from results in [33] that if z : R — R is
an LSOP solution of Eq. (1.1) with minimal period w > 0, then the following statements
hold.

(i) The minimal period w belongs to interval (1,2).

(ii) Solution z is of special symmetry meaning that relation z (¢t +w/2) = —z (t)
holds for all £ € R.

(iii) Solution x is of monotone type in the following sense: if ty < t1 < tp+w is set so
that x (tp) = minger (t) and x (t1) = maxser x(t), then x is nondecreasing on [to, t1]
and nonincreasing on [t, o + w].

This motivates the next definition. We say a periodic solution = : R — R of Eq. (1.1)
with feedback function f%° K > 0, is an LSOP solution if properties (i), (ii) and (iii)
hold for z.

For Eq. (1.1) with = 1 and f = f%°, the LSOP solutions are described in Theorem
3.5.5: there is no such solution if K < K* = 6.8653 and there are exactly two for
K > K* (up to time translation). It can be also verified that there is exactly one
LSOP solution for K = K*. This is the starting point of our construction. The
implicit function theorem and perturbations of Poincaré maps from [28] can be applied
to find exactly two LSOP orbits of Eq.(1.1) for 4 = 1 and nonlinearities that satisfy
(H1) and are close to %0 with K > K*. We verify only the case K = 7, which suffices
for the proof of Theorem 3.1.1. Our results and numerical examples suggest that the

LSOP orbits appear in a saddle-node-like bifurcation. However, it remains an open
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problem to understand this phenomenon.

The chapter is organized as follows.

Section 3.2 introduces a smooth approximation f%¢ ¢ € [0,1), of the step func-
tion &9 The notion of LSOP solutions is extended for a slightly wider range of
feedback functions including f%<, ¢ € [0,1). Fix K > 3. We define an open set
U in (0,1)® x [0,1) and a continuous map ¥ : U' — C so that for ¢ > 0 small,
Ulsawr Y(a,e) € C is smooth and injective (see Proposition 3.2.7), where Ul de-
notes the set {a € (0,1)%: (a,¢) € Ul}. Consequently, 3 (U} x {e}) is a 3-dimensional
C'-submanifold of C. There exists an open subset U? of U! such that if 4 = 1 and
f = f%, then for all (a,e) € U®, the solution z>(%%) : [~1,00) — R of Eq.(1.1)
returns into ¥ (U} x {e}), i.e., there exists ¢t > 0 with 29 ey (U} x {e}). This in-
duces a smooth map F : U3 — R3 so that for all (a,e) € U3, we have F (a,e) = b
if xtz(a’a) = Y (b,e) for some t > 0. If F(a,e) = a holds for some (a,e) € U3,
then the solution z>(*%) of Eq.(1.1) with 4 = 1 and f = f&¢ is an LSOP solu-
tion. Therefore the problem of finding LSOP solutions is reduced to a 3-dimensional
fixed point equation depending on parameter €. Proposition 3.2.8 shows that there
is K* ~ 6.8653 so that for K > K*, equation F'(a,0) = a has a unique solution a*
in U§ = {a € (0,1)%: (a,0) € U3}. The fixed point a* is hyperbolic; it is rigorously
checked for K = 7. Then the implicit function theorem gives that if K = 7, then
equation F (a,¢) = a has a solution a* (¢) in U3 = {a € (0,1)°: (a,¢) € U3} for small
e > 0 so that D, F (a* (g),¢) is hyperbolic. Analogously to the above construction,
Subsection 3.2.2 gives another LSOP solution of (1.1) with 4 = 1 and f = f7¢ for
€ > 0 small.

Other examples, in which the problem of finding periodic solutions is reduced to
a finite dimensional fixed point problem, are found e.g in [28, 44, 46]. However, the
corresponding return maps in [44, 46] are contractions, and the obtained periodic orbits
are stable. This is not the case here, thus we cannot apply any contraction mapping
theorem.

Section 3.3 shows that the hyperbolicity of the fixed points of the 3-dimensional
maps of Section 3.2 guarantees the hyperbolicity of the corresponding LSOP orbits
of Eq.(1.1) with g = 1 and f = f7¢, ¢ > 0 small, see Proposition 3.3.3. The key
fact toward the proof is that a small neighborhood of the fixed point X (a* (¢),¢) in
a hyperplane of C' is mapped into the 3-dimensional submanifold (U2 x {¢}) by a
suitable Poincaré return map (Proposition 3.3.1). The hyperbolicity of these LSOP
orbits together with a result in [28] guarantee the existence of LSOP solutions for all
nonlinearities f satisfying (H1) that are close to "¢, ¢ > 0 small, in C*-norm. Thereby
the existence of the two LSOP solutions in Theorem 3.1.1 is verified.

Section 3.4 contains preparatory results toward the exact number of LSOP solutions.
Propositions 3.4.1 and 3.4.2 prove monotone and symmetry properties of periodic so-

lutions of (1.1). The C'-smoothness and strict monotonicity from [33] is weakened
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3.2 LSOP solutions for special nonlinearities

slightly. The technical result of Proposition 3.4.3 shows that all LSOP solutions of
(1.1) with =1 and f = f7¢, € > 0 small, have nice regulatory properties.

Section 3.5 studies the exact number of LSOP solutions for the step function f%:°
with K > 0, then for f7¢ with € > 0 small, and finally for functions f close to f"¢.
Summarizing the above results, Theorem 3.1.1 is obtained.

All numerical approximations presented in this chapter are generated with the aid
of the CAPD program [1] using rigorous numerics. The author thanks Ferenc Bartha

for giving these numerical results.

3.2 LSOP solutions for special nonlinearities

In the remaining part of the chapter we fix 4 = 1. The results can be easily modified
for different values of u > 0.

Let p: R — [0, 1] be a C*°-smooth function such that p (t) = 0 for t <0, p(t) =1 for
t>1and p' (t) >0 for t € (0,1). For given K > 0 and ¢ € (0,1), define f5¢: R — R

(Fig. 3.3) by
|z —1

715 ) = K

The function f59:R — R (Fig. 3.3) is given by

) sgn ().

-K ifxr<-—1,
K,0 _1; K, _ .
P() = dim f25 () =90 if |2 <1,
K if x> 1.

Figure 3.3: Plot of f%¢ for ¢ > 0 small and for ¢ = 0

Consider the delay differential equation
()= —z(t)+ fE (x(t—1)). (3.2)

-1
Set Jf = (f¢) (i) for i € {~K,0,K}.
If to < t1 and z : [tg — 1,t1] — R is a solution of Eq.(3.2) such that for some
i€ {—K,0,K}, we have z (t — 1) € J{ for all t € (to,t1), then Eq. (3.2) reduces to the
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

ordinary differential equation
T(t)=—x(t)+1

on the interval (tg,¢1), and thus
w(t) =i+ (x(to) —i)e 0, tefto,ta]. (3.3)

We say that a function x : [tg,t1] — R is of type (i) on [to,t1] for some i € {—K,0, K}
if (3.3) holds. If x : [to — 1,¢;1] — R is a solution of Eq. (3.2) so that z is of type (i) on
[to — 1,t1 — 1] for some i € {—K,0, K}, then with j = x (tp — 1) the equality

t—t
() = x (tg) e (10 1 / " mt=t0=9) K (1 (j — i) e ) ds (3.4)
0

holds for all ¢ € [to,t1]. This motivates the next definition. A function z : [to, 1] — R
is of type (i,7) on [to,t1] with i € {—K,0, K} and j € R if (3.4) holds for all t € [to, 1]
In the rest of the section assume that K > 3.

Let
K—-1 7 K+1+¢

= —1
Ko1_o TE) ==

denote the times that a function of type (0) needs to decrease from 1+ to 1 or to

T(e)=In(1+¢),T(c)=In

increase from —1 — ¢ to —1, a function of type (—K) needs to decrease from —1 to
—(1+4¢), a function of type (—K) needs to decrease from 1+ ¢ to 1, respectively.
Clearly, T (0) =T (0) =T (0) =0 .

We extend the notion of LSOP solutions to feedback functions that are not strictly
monotone, in particular for f%¢ & > 0. In case f € C' (R,R) with f’ (&) > 0 for all
e R and €2 < €1 <& =0 < & < & are five consecutive zeros of R 5 & —
—pé + f (&) € R, a periodic solution z : R — R of Eq. (1.1) is called a large amplitude
periodic solution if z(R) D (£-1,&1). A large-amplitude slowly oscillatory periodic
solution = : R — R is abbreviated as an LSOP solution.

Recall that this definition is modified for the step function f%:0 in the following way.
Solution z : R — R of Eq. (1.1) with nonlinearity f = f%9 K > 0, is a large-amplitude
slowly oscillatory periodic (LSOP) solution if x is of monotone type, special symmetry,

and the minimal period of z is in the open interval (1, 2).

3.2.1 The first construction
Define

U' = {(a,2) € (0,1)* x [0,1) : @ = (a1,a3,a3), a1 +as+a3+2T () + T (e) <1}.
It is easy to see that U' is open in (0,1)* x [0,1).
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3.2 LSOP solutions for special nonlinearities

For given (a,¢) € U!, set

so = —1,

s1 =580 +a =—1+ay,
si=s1+T()=-14+a1+T(e),
so =587 +ay=—-14+a+T(e)+ aq,

shb=s0+T(e)=—14+a1 +T () +ax+T(e),
ss=s54+a3=—1+a+T(c)+ag+T(e)+as,

sh=s3+T(e)=—14+a1+T () +ax+T () +az+T(e).

Clearly s; = sf, 1 € {1,2,3}, for e = 0.
Define h = h (a,e) : R — R (Fig.3.4) by

K if t < sq,
fKe ((1 +¢) e—(t—81)) if s1 <t <57,
0 if s7 <t < s9,
h(t) = f58 (<K + (K = 1)e ) i s, <t < s,
-K if s5 <t < s3,
fHKe (_ (I+¢) 67(#53)) if s3 <t < s3,
0 it s3 <t.
K
1 55 S\ 85 0
+-K

Figure 3.4: Function h (a,¢)

Define the map ¥ : U' — C by

(-1<t<0).

We look for initial segments of LSOP solutions in the set ¥ (U') C C.
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

Notice that ¥ (a,¢) is the unique solution of the initial value problem

{y<t>=—y<t>+h<a,e><t> (-1<t<0)
y(=1)=0.

Proposition 3.2.1. ¥ : U — C is continuous.

Proof. The continuity of the map U! > (a,e) — h(a,e¢) 1,0 € L' (0,1) follows in a
straightforward way from the definition of h (a,€). Applying formula (3.5), the conti-

nuity of X is obvious. O

For each fixed (a,e) € U' N (0,1)® x (0,1), the map [—1,0] 3 t — h(a,e) (t) € R is
Cl-smooth with derivative b’ (a,¢) (t).
For given ¢ € [0,1), define

Ul ={ac(01)®: (a,e)cU'}.

Proposition 3.2.1 implies that UE1 is open.
If a € U} and |6] < 1 min {a1, a2, a3}, then

h(ay + 0,a2,a3,¢) (t) = h(a,e) (t —6) fort e [-1,0],

h(a,e) (¢ for t € [—1,st + 2],
h(ai,a2 + 6,as,¢) (t) = (a,€) (1) [ 5 2]
h(a,e)(t—06) forte [si+%,0],
h ) t f te _17 *-‘-%7
h(a‘lva27a3 +5,5) (t) = { (CL 6)( ) or [ So 2]

h(a,e)(t—0) forte [s5+%,0].

Now it is clear that we have

0 for t € [—1, s4]
h(a,e =
Oa; (@) () {—h’ (a,e) (t) fort e [s;,0]

for i € {1,2,3}. Define ¢; € C, i € {1,2,3}, by

Vi (t) = s (a,€) (t) = e ! /_tl esaiih(a,a) (s)ds (t € [-1,0]).

Obviously 11, ¥ and 3 are linearly independent elements of C. With the above

notation, we obtain the following C'-smoothness property of 3.

Proposition 3.2.2. For each fized ¢ € (0,1), the map Ul 3 a — X (a,e) € C is C*-
smooth with DX (a,€) (b) = bty +bathg +b3thz for alla € UL and b = (b1, ba, b3) € R3.
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3.2 LSOP solutions for special nonlinearities

Proof. 3 (a,¢) is the unique solution of the initial value problem (3.6). Hence the claim

of the proposition follows from the differentiability of solutions of ordinary differential

equations with respect to the parameters. ]

Let

U? = {(a,e) e U : X (a,e)(s) > 1+« for s € [s1,5]],
|X (a,e) (s)| < 1 for s € [s2,s5],

Y (a,e)(s) < —1 —¢ for s € [s3, 53]} .

Proposition 3.2.1 and the definition of U? imply that U? is open in (0, 1)3 x [0,1).

For (a,e) € U?, consider the solution z = 2 = g¥ee) [—1,00) — R of Eq. (3.2).

t+1

Figure 3.5: Solution 2" of Eq. (3.2)
By the definition of U?, there exist t1, s, ..., g in [—1, 0] such that
—1<t1§t2<81SST<t3§t4<82§8;<t5§t6<83§8§

and
x(t1) =1, z(te) =1+¢, z(ts) =1+e, x(tsa) =1, x(t5) = -1, z(tg) = -1 —¢,

see Fig. 3.5.
For ¢ € (0, 1), introduce
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

These integrals appear in the explicit evaluation of a return map. Observe that

[t e(l+e) -
01(8)—/0 (o apied rec),

and

! 5
02(5):/0 mK(K—l)p(u)du for e € (0,1).

From the last two equalities it is elementary to show that with the extension ¢; (0) = 0,
c2(0) = 0 of ¢1, ¢ from (0, 1) to [0,1), the functions ¢; and ¢y are C''-smooth on [0, 1).

We also need the following integrals:

I, = /_811 e’h(a,e)(s)ds = K (651 - 6_1) =—(e"—-1),

Ly = / " e*h (a,e)(s)ds =11 + / ' s fIe ((1 +€) e—(s—sl)) ds
51

-1
1
= L +e%c(e) == [K(e™ —1)+ e (6)],
e

s2

I, = / e’h(a,e) (s)ds = I 4,
-1

L, = / " eth (a,e) (s)ds = Iy +/ ’ e fIe (—K +(K-1) 67(8782)) ds
-1 S92
= IQ - 68202 (8)
1

_ - [K (e —1) + e™ ey () — ed1taz (1+¢)e (5)} ’

s3 S3 *
Is = / e’h(a,e) (s)ds = I —i—/ e’ (—K)ds = I, + Ke® — Ke®
1 85

- - [K (e — 1) + %y (2) — €™ (14 ) 3 (e)

etz (1 — %)

(14¢) K (K —1)
K—-1-¢ ] ’
Is, = /f e*h(a,e) (s)ds = I3 + /53 e (— (14 e) e 7)) ds
_ o
= I3—e%c(e)
1

= - [K (€™ — 1)+ eey (g) — e T2 (1 + &) ea (e)

4o taz (1 —e" —e%cy (€))

(1+e)K(K-1)
K—-1-¢ ]

Notice that Iy, I1 «, ..., I3, I3 « are C'-smooth functions from U? into R.
For tl and t2,
t1 to
e / Ke®ds =1 and e_t2/ Kefds=1+¢
-1 -1
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3.2 LSOP solutions for special nonlinearities

hold, respectively. Hence

K K K-1 .
t1 =1 -1, to=ln————-1landts—t;=ln—--—=T(¢).
1=m 2= and t2 — 11 Rl 7 R (e). (3.7)
Proposition 3.2.3. The maps
K-1
U? 3 (a,e) — 2% (1 4+ 1) = I3+ €R,
K-1-c¢ K—-1-¢
2 (‘175) 1 —
U® >3 (a,e) —x (ta+1) K I3 . + K1 e (e) €R,
K(1+¢)

U? 3 (a,e) = 2% (13 4+1) = K +

(a.0) _
TR —I—oTn (2 (ta+1) - K) € R

are continuously differentiable.

Proof. Since I3, c2, I+ are Cl-smooth functions on U2, one has to show only the
stated equalities for (%9) (t; 4+ 1), i € {1,2,3}. Set x = 2>(®),

From x (s) € [0,1], —1 < s < ¢, it follows that x is of type (0) on [0,¢; + 1]. The
definition of X (a,¢) gives that x is of type (0) on [s], 0] as well. Then

ct)=e (Ts8)p(sh)  (sh<t<t+1), (3.8)

and using (3.5), (3.7) and the definitions of I3, and c3 (¢), we get

K-1

z(ty+1)=e e (s3) = =13,
K ’
and
to—tq
r(ta+1) = e 2x(ty+1)+ etl_tz/ e I (K — (K —1)e*)ds
0
K-1-¢ K-1—-¢
= ———— 3, +— .
O )
As x is of type (K) on [t + 1,t3 + 1], we find that
r(tz+1)=e2B (x(ty +1) - K) + K. (3.9)

From s} < t3 < s2, (3.5) and h(a,e) (t) = 0 for t € [s},t3], x (t3) = e 311, follows.

Since x (t3) = 1 4 €, one concludes that

Il *
ty =1 —. 3.10
5T +e (3.10)
Substituting ¢ and ¢z from (3.7) and (3.10) into (3.9), the proof is complete. O
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

Now we are in a position to define a further proper subset of U'. Let
Ut = {(CW) cU?: 21 (t; +1) > —1, 2% (5 + 1) <0, 249 (t3+1) > 0} :

At this stage we do not know whether U? # 0. However, Proposition 3.2.3 and the
definition of U® imply that U? is open in (0,1)* x [0,1). A typical element of 3 (U?) is
presented in Fig. 3.5.

The next remark plays a prominent role in proving Theorem 3.1.1, as well as Remark
3.2.14 of the next subsection.

Remark 3.2.4. Observe that any ¢ € X (U?) can be characterized as follows: there exist
e €[0,1) and

—1<s51<8]<s2<55;<83<53<0
with

A

si—s1=T(e), s5—s520=T(e), s3—s3="1T (¢)

so that ¢ € C satisfies
(i) p(~1) =0,
ii) ¢ is of type (K) on [—1, s1],
iii) ¢ is of type (0,1 +¢) on [s1, si],
iv) ¢ is of type (0) on [s}, s2],
v) ¢ is of type (—K,—1) on [sg, s3],
vi) ¢ is of type (—K) on [s3, s3],
vii) ¢ is of type (0, —1 —¢) on [s3, s3],

ix) ¢ (s) > 1+¢ for s € [s1, s7],

x) | (s)] < 1 for s € [sa, s3],

xi) ¢ (s) < —1 —¢ for s € [s3, s3],

xii) if —1 <#; < s1 with ¢ (¢1) =1, then z¥ (t; +1) > —1,

xiii) if 1 <9 < 51 with ¢ (t2) =1+¢, then 2% (2 + 1) <0,

xiv) if s7 < t3 < so with ¢ (t3) =1+ ¢, then 2% (t3+1) > 0.

Notice that (i)-(viii) characterize ¢ € X (U'), and (i)-(xi) characterize ¢ € ¥ (U?).

(
(
(
(
(
(
(viii) ¢ is of type (0) on [s3,0],
(
(
(
(
(
(

If (a,e) € U3, then for 2 = 2(*%) we have z (s5) < —1 — ¢, x is of type (0) on
[s5,t1 + 1] and = ({3 + 1) > —1. So t7 and tg can be uniquely defined by

sy<tr<ts<ti+1, wx(tr)=-1-¢, a(ls)=-1

In addition, from (a,¢) € U? it follows that 2 has a zero in (t3 4+ 1,3 + 1). Since z is
of type (K) on [ty + 1,3 + 1], there is a unique zero. Let 7 denote the zero of (%) in
(ta+1,t3+ 1) (Fig.3.5).
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3.2 LSOP solutions for special nonlinearities

Proposition 3.2.5. Suppose (a,e) € U3 and define t1,ts,...,ts and T for x = 2(2€) gg
above. Then z,41 € ¥ (U') and

Trp1 =X (t3 +1—7,t5 — ta,l7 — lg, ).

Proof. Notice that 7 is the first positive zero of x. Indeed, we know that function x
strictly increases on [s3,t1 + 1] from z (s5) < —1—e to x (t; + 1) € (—1,0) and strictly
increases on [ty + 1,t3 + 1] from z (t2 + 1) < 0 to x (t3 + 1) > 0. It remains to consider
x on [t} + 1,t9 + 1], where it is of type (K, 1), that is

t—t1—1
T (t) — 6_(t_t1_1)$ (tl + 1) +/ 1 e_(t—tl—l—s)fK,a (K + (1 o K) e—s) ds (311)
0

fort; +1 <t <tg+ 1. The case ¢ =0 is evident. If ¢ > 0 and z € (t; + 1,t2 + 1) is

any zero of x, then
i(z) = X5 (2 (2= 1)) = f5° (K — Ke %) > fK= (K - Ke—tl—l) = fEe(1)=0

Hence it is easy to see that the existence of a zero of x in (¢t; + 1,t3 + 1) implies
x (t2 + 1) > 0, a contradiction. Thus z (¢) < 0 follows for all [0, 7).

From (3.11) one easily obtains that = (t1 + 1) < z (t) for ¢t € [t1 + 1,t2 + 1].

Now it should be clear that

x (1) =0,

x is of type (K) on [1,t3+ 1],
,14¢€)on [ts+ 1,84+ 1],
0) on [ts + 1,5 + 1],

x is of type EO
(

x is of type (=K, —1) on [t5 + 1,t + 1],
(=
(

x is of type

K) on [t + 1,t7 + 1],
x is of type (0,—1 —¢) on [t7 + 1,3 + 1],
x is of type (0) on [ts + 1,7+ 1].

It remains to show that

x is of type

ty—ts=T(), te—ts=T(c), tg—ty="TI(e),

which relations are consequences of the definitions of t3, t4, t5, t¢, t7, ts, T (), T (¢) and
the facts that x is of type (0) on [ts,t4] and on [t7,ts] and that x is of type (—K) on
[t5, ts]. The proof is complete. O

We remark that if :cicfﬂ) = Y (a,¢) holds for some (a,c) € U3, i.e.,
ap =t3+1—7, ag =15 — t4, ag =t7 — g,
then z is a periodic solution of Eq. (3.2) with minimal period 7 4+ 1. The dependence
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

of ts+ 1 — 7, t5 —t4 and t; — tg on (a,¢) is considered in the next result.

Proposition 3.2.6. Suppose (a,e) € U and define t3,t4,t5,t6,t7 and T as in Propo-
sition 8.2.5. Then

I . K I3 . C2(€)>
t 1-— = 141 G| e N
sti-T TR n(K—l—s K K-1)°
I, + Ke®
ts —t4 = ln————
—I3.(K—1-—
tr—tg = In 3’( E)

(14 2) (Lo + Ket)
In particular, if € = 0, that is (a,0) € U3, then

K(K-1)(1—e ™)
K+ (K — 1) e~ 1 (1 + emtaztaz _ par ea1+a2)’
e (1l—e"™)+1
(K—-1)(1—e )’

ea1+a2 as
(K—-1) o pemta_1 € .

Proof. Applying that z is of type (K) on [ta + 1, 7], an integration gives

ts+1—7 = a1 +1n

t5—t4 = (12+1n

tr —t¢ = ag+1n

O=¢z(r) =2ty +1) + K (eT — etQH) .

Hence, using also Proposition 3.2.3,

K I3 2(e) ) . (3.12)

TZIH(K—l—e_K_K—l
This formula combined with (3.10) yields the result for t3 + 1 — 7.

Obviously, t4 = In I 4. Since s5 < t5 < tg < s3,

ts

1 = (Ig* + [ e (-K) ds) = ¢ (b + Ke) - K,

So%

te .
—l—g = 7% (1'2,* + / ¢* (—K) ds) =" (L. + Ke) - K.
So*

So

I, K I, K S*>
= 2 2 = 2 2
ts ln<K_1+K_1e ) and tg ln(K_1_€+K_1_Ee .

Using that z is of type (0) on [s3,¢1 + 1] and s§ < t7 < t; + 1, we obtain that
1 =e (%), (s3) = e I3,
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3.2 LSOP solutions for special nonlinearities

and I
—43,%
tr =1 :
T nl—i-e
follow. Therefore
I, + Ke®
ts —ty = In—2———
—I3. (K —-1-—
tr —tg = In 3’( )

(1+¢) (I + Kei)
The case € = 0 is an elementary exercise. O

The above results allow us to define the map F : U3 — R3 by
F(a,e) = (t3+ 1 —T,t5 —t4,t7 —tﬁ),

where ts, ty, t5, tg, t7 and 7 are uniquely determined by the solution (%) = z>(a:2) of
Eq.(3.2). An immediate consequence of the explicit representation of F'(a,¢) in term

of (a,¢) and the C'-smoothness of the involved functions:
Proposition 3.2.7. F is C'-smooth.

If (a,e) € U3 and F(a,e) = a, then 2(*4) is a periodic solution of Eq.(3.2) with
minimal period 7+ 1. A first step to find a solution of F(a,e) = a in U3 is to consider
the case ¢ = 0. Set

U = {a€R3 : (a,0) € U3}.

Let K* be the unique solution of w (K) = 1/e on (3, 00), where

(K2 — 2K — 1)
(K —1) (K +1)%

w(K) =

Then K* is well-defined. Indeed, w(3) = 1/32, limg_oow (K) = 1, and as K
2K/ (K? —1) and K + (4K +2) / (K + 1)? are strictly decreasing functions on (3, c0),

2K 4K + 2
K= -1 (K+1)
is strictly increasing on (3,00). Evaluating w (6) and w (7), one sees that K* € (6,7).

We have the approximation K* ~ 6.8653. Note that w (K) > 1/e for K > K*.

Proposition 3.2.8. For K € (3, K*], equation F (a,0) = a admits no solution in UJ.
For K > K*, there is a unique a* € Uj with F (a*,0) = a*.

Proof. Set K > 3. First assume that a € R? is a solution of F (a,0) = a. Using

Proposition 3.2.6, it is a straightforward calculation to show that this is equivalent to

35
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the following:

aa = —1In (K_1_1_1€—al>’ (3.13)
a3 = In((K—-1)(e"™—-1)), (3.14)

and g (a1, K) = 1/e, where

B -1 (1 —e) -1
(K —1)*(1—eu)®

g9(u,K)=Ke

Recall that by definition, a € Uy if and only if
a1 >0, a3 >0, a3>0, a1 +as+az <1,

200 (1) > 1, ‘:1;(“’0) (32)‘ <1, 299 (s3) < —1,
1 <29 (t; +1) = 29 (1,4 1) < 0 and 2% (t34+ 1) > 0.

Not only as and as can be expressed as a function of K and aq, but also a1 + as + as,
249 (s;) and 29 (t; +1),i=1,2,3.

First of all, (3.13), (3.14) and g (a1, K) = e~ ! imply

a1+a2+a3:1+ln(K—(K_l)—g_e_al)). (315)

By (3.5) and the definition of Iy, we get (%9 (1) = e™*1I} = K (1 — e~®). Relations
(3.5), (3.13), (3.14) and the definitions of Iy and I3 yield

x(a,()) (82) = e 2L =K [(K — 1) (1 — e_al) - 1] )
200 (35) = eIy = K (1— e ) = a0 (s,). (3.16)

Also, (3.13), (3.14), g (a1, K) = e !, Proposition 3.2.3 and the definitions of I . and
I3, give

K-1

Ot + 1) = (g +1) = D =K1 (K =1) (1-e™)]
= _x(a,()) (52) )
K
(a,0) _ o (a,e) o
2@ (5 4+ 1) K+6(K—1)117* (x (1 +1) K)

= K(1-e ) =29 (s).

As one can check by elementary calculations, these relations imply that a € R3
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3.2 LSOP solutions for special nonlinearities

satisfying F (a,0) = a belongs to U if and only if

( K—1 K2 - K )
a1 € Jg = .

1 1

"K' KP 2K 1

Hence we get a unique solution a* = (a},a},a}) of F(a,0) = a in UJ if there exist a
unique a} € Jx with g (af, K) = e~ ! and a3 and a} are defined by (3.13) and (3.14).

We claim that g (-, K) is strictly increasing on Jy for K > 3. Note that

dg (u, K)
ou

24+ (K-1)(1—-e™e ™ =2(K-1)(1—-e™)
(K =1 (1 —e)—1(1—-e) '

- g(u7K)

If w e Jg, then (K —1)(1—e™™)—1 € (0,1/K). Hence it suffices to show that for
K >3 and u € Jg,

24 e+ (K-1)(1—-e™)e " =2(K-1)(1—-€e") >0,
which inequality is equivalent to the second order inequality
(2K —4)22 — (3K —2) 2+ (K —1) <0

with z = e%. The solution formula gives that we have show that for K > 3, Jx C

(In z1,1n z9), where

3K —2— /K2 +12(K —1) d 3K —2+K?+12(K —1)
g 11 = .
9K — 4 and =2 9K — 4

<1

As /K?2+12(K —1) > K for all K > 1, we see that

K-1
lnz1<an 5 = inf Jk.

The same estimate yields zo > (2K — 1) / (K — 2), and it is easy to see that

2K — 1 . K2-K
K—2  K2—-2K-—1

that is 5 )
K>24 ———
> 24 K K2

holds for K > 3. Hence In 29 > sup Jx and ¢,, (u, K) > 0 for K > 3 and u € Jg.

In addition, g (u, K) — 0 as u — inf Jx + 0. Also,

<1 3<K<Kr
lim g¢guK)=w(K){ =1 K=K*
u—ssup Jg—0 ‘;
> K>K*
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

Therefore the continuity and monotonicity of g implies that for K > 3, there exists
at € Jg with g (a}, K) = e7! if and only if K > K*, and the solution is unique if it

exists. O

Using a construction similar to the one given above, One may verify that for K = K*,
F (-,0) has a fixed point on the boundary of Ug.

Proposition 3.2.9. For K > K*, z>"9) : R — R is an LSOP solution in the sense
defined on page 23.

Proof. Consider solution z = 229 : R — R. Tt follows from the construction
introduced above that the minimal period of x is 7 + 1 with 7 > 0, and x is monotone

nonincreasing on [s1, s3]. Therefore is suffices to prove that 7 < 1,

2(83—81) =741 (3.17)
and )
. <t+ = > — (3.18)

for t € [s1, s3]
By (3.12), (3.16) and I3 = I3 = x (s3) €3,

B K z(s3)e™\ K “ar\ s
T—ln(K_l— % )—ln<K_1+<1—e 1)6)

Substituting result (3.15) into the right hand side, we get

r=In (K (1-e)). (3.19)

Sor < lifandonlyif af <In K —In (K —e). As a} € Jk (see the proof of Proposition
3.2.8), this bound holds.
Relations (3.13) and (3.14) imply

e (K- (1—ei)!
(K= 1) (1 eat) — 1}2

2(s3—s1) 2(a3+a3) _

e =€

Using relation g (a1, K) = e~! from the proof of Proposition 3.2.8,
2(s3—s1)=1In (Ke (1 - e_aT» .

This result together with (3.19) give (3.17).

As z (s1) = —x (s3) by (3.16) and z is of type (0) on [s1, s2] and on [s3,t1 + 1], the
special symmetry follows for ¢ € [s1, so] if s —s1 = t1 + 1 — s3 holds. This equation is
the direct consequence of (3.7), (3.13) and (3.15). In particular, z (s2) = —z (t; + 1).
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3.2 LSOP solutions for special nonlinearities

As z is of type (—K) on [s2, s3] and of type (K) on [ty + 1,t3 + 1], special symmetry
holds for ¢ € [so, s3] if ag = s3 — so = t3 — t1. This result comes from (3.7), (3.10), the
definition of I; , and (3.14). So (3.18) follows.

The proof is complete. O

Remark 3.2.10. A numerical study executed with the aid of the CAPD program [1]
gives that for K =7,

a* € [0.2108,0.2109] x [0.3003,0.3004] x [0.3426, 0.3427].

It is shown that the eigenvalues A1, Ao, A3 of D, F (a*,0) € L (R3,R3) are real with
A1 € [0.7933,0.7934], Ao € [3.9187,3.9188] and A3 € [6.8362,6.8363].

Now we are capable of verifying the existence of an LSOP solution defined on page
26 for Eq. (3.2) with small € > 0. In the sequel we fix K = 7, but the results below can
be easily modified for any K > K*. Since we look for an example with large amplitude

periodic orbits, a particular K is sufficient.

Proposition 3.2.11. Set K = 7. There exits ¢g > 0 such that for all ¢ € [0,¢e0),
F (a,e) = a has a solution a* (¢) in U2 = {a € R?: (a,¢) € U3}, and x¥@" )2 . R — R
is an LSOP solution of Eq.(3.2) with nonlinearity f*<.

Proof. As U? is open in R? x [0, 1),

U ={(a,e) : (a, |e]) € U*}

is open in R*. We extend the definition of F' for e < 0 because we intend to use the

implicit function theorem. Let G : U — R? be given by

Gla.o) F (a,e) if e >0,
a,e) =
2F (a,0) — F'(a,—¢) ife <O.

Then G is C'-smooth and G (a*,0) —a* = 0. As 1 is not an eigenvalue of D,G (a*,0) by
Remark 3.2.10, the implicit function theorem yields the existence of g > 0, a convex
bounded open neighborhood N of a* in R3 and a C! function a* : (—gg, &) — R? so that
N x (—¢eg,e0) C U, a* ((—e0,€0)) C N, a*(0) = a* and for every (a,e) € N x (—&g, o),
G (a,e) —a =0 if and only if a = a* (¢). That is F (a* (¢),e) = a* (¢) for all € € [0, &¢).

Clearly, 2>(@"(€)) . [—=1,00) — R is a periodic solution of Eq.(3.2) with feedback

3(a*(€)€) can be extended to R.

function f7¢ for all ¢ € [0,0), hence the solution z
According to Proposition 3.2.9, ("9 is an LSOP solution. For ¢ € (0,£0), Lemma
2.3.2 (i) and the periodicity of z>(¢"(5):£) gives V (th(a*(s),e)) is the same constant

for all t € R. It follows from the construction that V (X (a*(¢),e)) = 2. Thus
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

Vv (:ctz(a*(s)’e) = 2 for all ¢ € R. In addition, it is clear that >4 ()2) (R) D (£_1,&).
Hence 2>(@"(€)#) is an LSOP solution also for all € € (0,¢q). O

Remark 3.2.12. D,F (a* (¢),¢) has at most three distinct (possibly partly complex)
eigenvalues. As F' is smooth (see Proposition 3.2.7), they are close to the eigenvalues of
D,F (a*,0) in C for all € > 0 small. Because of Remark 3.2.10, we may choose g9 > 0
sufficiently small such that for ¢ € [0,e), the eigenvalues A1, A2, A3 of D, F (a* (¢),¢)

are real, simple and satisfy
0< A <09, 3<A<bH<As.

Consider the case ¢ = 0. As equation @(¢) = —z(t) admits no nontrivial periodic
solution, any periodic solution = of Eq. (3.2) with initial function in ¥ (U(}) necessarily
satisfies z (s1) > 1 or = (s3) < —1. However, condition x (s2) < 1 is not self-evident.
This recognition leads to an alternative construction yielding a second LSOP solution
of Eq.(3.2) for K > K* and ¢ = 0, then for K = 7 and ¢ > 0 small. Next we
introduce this construction but omit the detailed calculations as they are analogous to

the previous ones.

3.2.2 The second construction

For K > 3, define

0" ={(a,) € (0,1)* x [0,1) : @1+ ap + a5+ 2T (e) + T'(e) < 1}

and
ﬁgz{aeR?’:(a,s)E(}l}, e€[0,1).

Note that U} = U}.
For given (a,e) € U, set

sop = —1,

s1=s8y+a; =—1+a,

si=s1+T()=—1+a +T(e),
52:51‘+a2:—1+a1+f(6)+a2,
ss=sg+T(e)=—1+a1+T () +aa+T(e),
ss=s54+a3=—1+a+T () +ag+T(e)+as,
sh=s3+T(e)=—14+a1+T () +ax+T(e)+az+T(e).

Define the continuous map S:U' > C by

EW£HO:e4/i§EM£H@dS (-1<t<0),
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3.2 LSOP solutions for special nonlinearities

where h = h(a,e) : R — R is defined by

K if t < s1,

e (—K +(K+1+4+¢) e*(t*51)> if 51 <t <57,

0 if 57 <t < s9,
h(t) = e (—K + (K = 1) e~(t=52) if s <t < s,

-K if s5 <1t < s3,

fioe (K —(K+1+¢) e_(t_si”)) if s3 <t < s3,

0 it s3 <t.

Note that for a € U} = U},  (a,0) = % (a,0).

Proposition 3.2.13. For each fized e € (0,1), the map U} 3 a — X (a,¢) € C is
Cl-smooth with
Do¥(a,€) (b) = biv1 + bavpz + bsiis

forae ﬁel and b = (by, by, b3) € R, where

h(a,e)(s)ds e R, ie{l,2,3},

~ t
i [—1,0] ot *t/ s
(N |ot—e _168%

are linearly independent elements of C.

Now let

U? = {(a,s) e U :S(a,e)(s) > 1+4¢ for s € [s1, 5] U [s2, 53],

Y (a,e)(s) < —1—eforse [83,33]}.

If (a,¢) € U? and z : [-1,00) — R is the solution of Eq.(3.2) with initial function
by (a,€), then there exist t1, 19, ..., tg in [—1,0] such that

—1<t1§t2<$1SST<82§8§<t3§t4<t5§t6<8338§
and
x(t) =1, z(ta) =1+e¢, z(ts)=1+4¢, x(ts) =1, z(t5) = -1, x(tg) = —1 — ¢,

see Fig.3.6. A second subset of Ul is

U® = {(a,e) e02: 259 (1 +1) < —1—¢, 2@ (t3+1) > o}.

One may show that U3 is open in (0,1)% x [0,1).
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

Fig. 3.6 shows a typical element of set ) (ﬁ 3).

A
X ti+1
: B et
t, \ﬂ& /"“M t+1
e i % - 1 - - - o
t f,
T t
-1 S, S, S8, s.s; |0
777777 ts ] tgﬂ
,,,,,, R ,,,,,,t,7, PR
tﬁ\ /dftzﬂ T+l
]t 1 tetl

E(a,s)

Figure 3.6: Solution x of Eq. (3.2)

The following remark resembles Remark 3.2.4, and we are going to refer to this

observation throughout the chapter.

Remark 3.2.14. Observe that any ¢ € ¥ ([7 3) can be characterized as follows: there
exist € € [0,1) and

—1<s51<8]<s2<55<83<553<0
with

~ A ~

si—s1=T(e), ss—sa=T(g), s3—s3=T(¢)

so that ¢ € C' and
(i) p(=1) =0,
ii) ¢ is of type (K) on [—1, s1],
iii) ¢ is of type (—K,1+¢€) on [s1, s}],
iv) ¢ is of type (0) on [s}, s2],
v) ¢ is of type (—K,—1) on [s2, s3],
vi) ¢ is of type (—K) on [s3, s3],

viii) ¢ is of type (0) on [s3,0],

ix) ¢ (s) > 1+¢ for s € [s1,s]] U [s2, s3],

x) ¢ (s) < —1—¢ for s € [s3, s3],

xi) if =1 <ty < s1 with ¢ (t2) =1+ ¢, then 2% (t2 + 1) <0,

xii) if s7 < t3 < sg with ¢ (t3) =1+¢, then z¥ (t3+1) > 0.

Note that (i)-(viii) characterize ¢ € ¥ (Ul) and (i)-(x) characterize ¢ € ((72)

(
(
(
(
(
(vii) ¢ is of type (K, —1 —¢) on [s3, s3],
(
(
(
(
(

For (a,e) € U3, let 7 be the (unique) zero of 2209 on [to + 1,t3+1]. If (a,e) € U3
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3.2 LSOP solutions for special nonlinearities

and ty, s, ..., ts,7 are defined as in this subsection, then z, 1 € ) ((71) and

Tr41 :Z(t3+1—T,t5—t4,t7—t6,6).

As in the previous subsection, 7 and t;, i € {1,..,6}, are C'-smooth functions of
(a,€). Therefore we may introduce the C'-smooth map F : U3 — R3 F(a,e) =
(ts+1—7,t5 — tg,t7 — tg). In case F (a,e) = afor (a,e) € U3, then 25(@) ig g periodic
solution of Eq. (3.2).

Introduce notation
U3 = {a eR?: (a,e) € ﬁ?’}, e€0,1),

and recall the definition of K* from the previous subsection. We obtain the following

results analogously to Proposition 3.2.8 and Proposition 3.2.11.

Proposition 3.2.15. For K > K*, there exits a unique a € U$ with F (a,0) = a. For
K € (3,K*], F (a,0) = a has no solution in U3.

It can be shown that for K = K*, F (-,0) has a fixed point on the boundary of U3,
and it equals the fixed point of F (-,0).

Proposition 3.2.16. For K > K*, 229 . R 5 R is an LSOP solution.

Remark 3.2.17. For K = 7, a numerical study executed with the aid of the CAPD
program [1] gives that

a € [0.2202,0.2203] x [0.2876,0.2877] x [0.3585, 0.3586).

In addition, it is shown that the eigenvalues A1, Ao, A3 of Do F (@,0) € L (]R3,]R3) are
real with A; = 0, Ay € [—0.2415,0.2347] and A3 € [2.3226,2.3227).

Proposition 3.2.18. For K = 7, there exits &g > 0 such that for all € € [0,&o),
F (a,e) = a has a solution a () in U3, and 22(@©)) . R 5 R is an LSOP solution.

Remark 3.2.19. Tt follows from the smoothness of F' and Remark 3.2.17, that one may
set 9 > 0 so small that for & € [0,&), the eigenvalues Aj, Ao and Az of D, F (a(e) ,e)
satisfy

0 <M< || <5, 2<As.

Note that A3 is necessarily real. Either both A\; and \g is real, or Ay = \1.

We can summarize our results regarding case ¢ = 0 as follows. For K € (3, K*),
Eq. (3.2) admits no periodic solutions with initial function in X (U3, 0) U ) (l}g’, 0). For
K > K*, Eq. (3.2) has a unique periodic solution with initial segment in ¥ (Ug, 0) and a
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

unique periodic solution with initial segment in v (ﬁg’, 0). It can be shown that for K =
K™, there is a single periodic solution with initial function in bd (Ug, 0) Nbdx <I7§‘, 0).

To give a more detailed picture of case ¢ = 0, we are going to show the following
results in Section 3.5. For K > K* and ¢ = 0, 229 : R — R and xi(’g,o) "R—=>R
are the only normalized LSOP solutions of Eq. (3.2) (see Proposition 3.5.4). For 0 <
K < K* and € = 0, Eq. (3.2) has no such nontrivial periodic solutions (see Corollary
3.5.2 and Proposition 3.5.4).

3.3 LSOP solutions for a monotone nonlinearity

Theorem 3.1.1 states that one may give a strictly increasing feedback function f so
that (1.1) has exactly two LSOP solutions. In this section we discuss the existence of
these LSOP solutions.

Let K = 7and ¢ € (0, min (g9, &p)) be fixed, where € and &y are given by Propositions
3.2.11 and 3.2.18, respectively. Proposition 3.2.11 implies that Eq. (3.2) has an LSOP
solution with initial function ¥ (a* (¢),¢) and with minimal period w € (1,2).

Observe that 2>(@"(£):€) is a normalized LSOP solution of (3.2) with

d

Y(a"(e),e) e H={p e C: p(—-1) =0}, "

Y (a*(e),e) ¢ H.

Then a Poincaré return map can be defined on {X (a* (¢),¢)} + N, where N is a convex
bounded open neighborhood of 0 in H, see Subsection 2.3.2. As P is C''-smooth and
has fixed point ¥ (a* (g),€), there exits a convex open neighborhood N CNof0in H
so that P2 = Po P is defined on {X (a* (¢),,£)} + N. We have the following observation
regarding the range of P?.

Proposition 3.3.1. There exists an open netghborhood V C N of 0 in H so that if
o €{X(a*(g),e)} +V, then P?(p) € ¥ (U3 x {e}).

Proof. 1f ¢ € {¥(a* (¢),¢€)} + V, with an appropriate open ball V' centered at 0 in H,

Y(a*(e),e . .
then ¢ and x] (@99 are close in C'-norm, and there exist

—l<thi<tbha<lza<ti<ts <tg <ty <ty <0< T,
such that
et) =1, p(t) =14¢, p(t3) =1+¢, ¢ (ts) =1,

¢(ts) = —1, p(te) = —1—¢, p(tr)=—1—¢, p(ts) = —1, 2¥(1,) =0,

p(t) e (—1,1) forte[-1,),
p((t)>14¢e fort e (l2,t3),
p(t) e (—1,1) forte (t,t5),
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3.3 LSOP solutions for a monotone nonlinearity

p(t)<—-1—¢e forte (tst7),
xz?(t) € (—1,1) fort e (&3, 7y],

and the smallest positive zero 7, of x¥ is simple and belongs to (f2 + 1,3+ 1). In
consequence, P (¢) = q:fw 41, and we have

P(p)(-1) =0,

P () is of type (7) on [—1,t3 — 7],

P (y) is of type (0) on [t4 — 7y, t5 — 7],

P () is of type (=7) on [te — 7, t7 — Ty),

P () is of type (0) on [tg — 7, 0].

If the radius of V is small enough, then also

P(p)(t)>1+eforte [tz —1,,ts — Ty,

|P (o) (t)] <1fort e [ts — 7y, te — 7]

and P (p) (t) < =1 —¢efort € [t7 — 7y, t8 — 7).

In this case it also follows that whenever P () maps the disjoint subintervals Jp,
Ja, J3, Jy of [—1,0] onto the intervals [1,1+¢], [1,1+¢], [-1—¢,—1], [-1 —¢,—1],
respectively, then P () is of type (7), (0), (=7), (0) on J1, J2, J3, Jy, respectively, and
therefore 2(#) is of type (7,1), (0,1 4¢€), (=7,-1), (0,—1 —e) on J1 +1, Jo+1, J3+1,
J4 + 1, respectively. Using an argument similar to the one given above, now it is easy
to see that if we take neighborhood V small enough, then P? () satisfies conditions
(i)-(viii) of Remark 3.2.4 with some

—1 <351 <35] <52<3;<383<35;<0,

where

A

s1—-51=T1(e), 55—S2=T(e), 55—33="T (e).

Using the smooth dependence of solutions on initial data and decreasing the radius of
V further, we can achieve that P2 (y) satisfies conditions (ix)-(xiv) of Remark 3.2.4
and thus P? (¢) € ¥ (U3 x {e}). O

Note that for any small neighborhood V of 0 in H, there is ¢ € {:UZ(“*(E)’E)} +V so
that P(y) does not satisfy conditions (iii), (v) and (vii) of Remark 3.2.4. So we cannot
state that P(yp) € ¥ (U2 x {e}).

Proposition 3.2.18 yields that Eq. (3.2) has another LSOP solution with initial seg-
ment 3 (@ (¢) ,&). Then one may define a Poincaré return map P in a neighborhood of

S (a(e),e) in H in an analogous fashion. The analogue of Proposition 3.3.1 holds.

Proposition 3.3.2. There is an open neighborhood 1% of 0 in H such that
: ST ” 2 s (773
if p€ {E(a (e) ,E)} +V, then P*(p) € X (UE X {5}) .
We omit the proof.
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The hyperbolicity of the LSOP orbits is confirmed with the aid of the next proposi-

tion.

Proposition 3.3.3. Suppose that X is a real Banach space, Vo, V1 and Uy, U1 are open
subsets of X and R™, respectively, V1 C Vo, Uy C Uy , x¢ € V1, ug € Uy, the maps

Q:U —R™ R:Uy— X, S:Vy— X

are Ct—smooth, Q (ug) = ug, R(ug) = g, S(x0) = w0, Q (U1) C Uy, R(UL) C Vo,
S (V1) C R (Uyr), moreover, DR (ug) € L (R™, X) is injective and S (R (u)) = R (Q (u))
for allu e Uy. Then

7 (DS (20)) = {0} U (DQ (u0))

and for each A\ € o (DS (z9))\{0}, the corresponding generalized eigenspaces of DS ()

and DQ (ug) have the same dimension.

Proof. By introducing the maps
u— Q(u+wuo) — Q(up), ur R(u+up) — R(uo), xS (x+mz0) — 5 (20),

we may assume that zg = 0 and ug = 0.
By the injectivity of DR (0), the set Y = {DR(0)u: v € R™} is an m-dimensional
subspace of X and
A:R">u— DR(0)ueY

is a linear isomorphism. Let A~! denote the inverse of A. Since Y is finite dimensional,
there is a closed complementary subspace Z of Y in X, i.e., X =Y & Z. The set
Yy = A (Up) is an open neighborhood of 0 € Y. Define the map

T:%—l—ZBy—&-zHR(A*l(y))—i-zeX.

Clearly T is C'—smooth, T'(0) = 0, DT (0) = idx and T (Yy) = R (Up). The inverse
mapping theorem shows that 7" is a local C''-isomorphism at 0 € X.

If z is in a small neighborhood of 0 € X and x € R (U;), then there exist y € Yp
and u € Uj so that * = R(u), y = T~ ' (x), u = A~'y. Then by applying S (R (u)) =
R(Q (u)), we find

:T(A(Q(A—ly))) =ToAoQoA ' oT  (2).

In a sufficiently small open neighborhood of 0 € X define the C'-smooth map s into
X by
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If = is in the domain of s and 7" (z) € Vi, then by the assumption S (V1) C R (U;) there
exists u € U; so that

Hence for such an = we obtain that s(z) = Au € Y. Therefore s maps a small
neighborhood of 0 € X into Y. Consequently, Ds(0) (y+2) = By+ Cz forall y € Y
and z € Z, where B € L(Y,Y) is the derivative of s restricted to a neighborhood of
0€Y and C € L(Z,Y) is the derivative of s restricted to a neighborhood of 0 € Z.
If y € Y is in a sufficiently small neighborhood of 0 € Y, then there is u € U; with
y = Au,
T(y) =T (A(w) =R (A (A() = R(u) € R(U),

and consequently, by applying (3.20),
s(yY) =T 1oSoT(y) =T 'oToAocQoA ' oT 1oT(y)=A0QoA 1 (y).

Therefore B = Ao DQ (0)o A~'. From DT (0) = DT~'(0) = idx one gets DS (0) =
Ds (0). Thus
DS (0) (y + 2) = (AODQ(O) oA_1>y—i—Cz

forally € Y, z € Z, with range (C') C Y , and the statements of the proposition follow

in a straightforward way. O

Proposition 3.3.4. The orbits defined by LSOP solutions x> ()€ gnd 22(@0)) gre

hyperbolic with 2 and 1 Floquet multipliers outside the unit circle, respectively.

Proof. First we prove that DP? (X (a* () ,¢)) has real eigenvalues p1, po, pg of multi-
plicity 1 with
0<pr <081, 9<pus <25 < pus.

For po =X (a* (¢),¢e),set X = H, m = 3, xo = po and ug to be the fixed point a* (¢)
of F (-,€) in U3 given by Proposition 3.2.11. Choose Vo = {po} + V, where open set V'
is given by Proposition 3.3.1. Set Uy to be the open set on which F?(-,¢) is defined,
that is Uy = {a € U2 : F(a,e) € U2}. Let

U = {aEL{O: F?(a,e) € Uy and X (a,¢) EVO}.

Clearly U; C Uy is open and ug € U;. Let Vi C Vy be an open ball with pg € V;
and P2 (V1) C X (U; x {e}). The latter set exists because py € 3 (U x {e}), P? is
continuous and maps V into ¥ (U3 x {e}) by Proposition 3.3.1.

Define Q = F? : Uy - R3, R=%(-,¢) : Uy — H and S = P? : Vy — H. Proposition
3.2.7 yields that @ is C'-smooth, Proposition 3.2.2 gives that R is C'-smooth and
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

DR (up) is injective. Map S is also smooth [28]. Clearly Q (uo) = uo, R (up) = xo and
S (xzg) = xg, moreover Uy and V; are chosen so that Q (Uy) C Uy, R(U1) C Vy and
S (V1) C R(Uy) hold. It is easy to see that S (R (u)) = R(Q (u)) for all u € U;.

Remark 3.2.12 implies that the eigenvalues of D@ (ug) are u;, i € {1,2,3}, with
0 < pp < 081 and 9 < py < 25 < ug. It follows from Proposition 3.3.3 that the
eigenvalues of DP? (pg) are 0, ju1, jt2, u3 with the above bounds, and s, i € {1,2,3},
are simple.

If p is an eigenvalue of DP (pg), then p? is an eigenvalue of DP? (pg) = DP (pg) o
DP (po), and the generalized eigenspace of DP (pg) associated to p is clearly a subset of
the generalized eigenspace of D P2 (pg) associated to u2. Consequently, DP (po) has two
simple real eigenvalues outside the unit circle, and it has no eigenvalue with absolute
value 1.

The statement for 2=(%)}€) can be verified in a similar way. O

Choose D = R and the consider the Banach space C} (D,R) = C} (R,R). Clearly
7 e O} (R,R) for all £ € [0, 1).

Proposition 3.3.5. Set p = 1, K = 7. Then for each ¢ € (0, min (eq,&p)), where
eo and gy are given by Propositions 3.2.11 and 3.2.18, respectively, there exists dg =
8o () > 0 so that if f € C} (R,R) satisfies (H1), and | f — f7’5||Cg < 09, then Eq.(1.1)
admits two normalized LSOP solutions p : R — R and ¢ : R — R with p(R) € ¢ (R).

The corresponding periodic orbits
Op={pt: teR} and Oy ={q:: t e R}
are hyperbolic, and have 2 and 1 Floquet multipliers outside the unit circle, respectively.

Proof. Consider nonlinearities f € C} (R, R) satisfying hypothesis (H1). Then Theo-
rem 2.3.5 and Proposition 3.3.4 imply that there exists dop = dp (¢) > 0 such that if

If = £72
with po — X (a* (¢) ) and qo — X (@ (¢),¢) in C as Hf — fKe

o < dp, then Eq. (1.1) has two periodic solutions p: R - R and ¢: R - R

— 0. As the initial
Cy

segments po and qp are arbitrarily close to X (a* (¢),¢) and by (a(e),e), respectively,
and the periodic solutions are of monotone type, we get V (pg) = V (qo) = 2 if Jp is
small enough. In this case the periodicity of p and ¢ and the monotonicity of V' gives
that V (pt) = V() = 2 for all ¢ € R. In addition, it is easy to see that one may
choose 9§y so small that p(R) D (£-1,&1) and ¢ (R) D (£-1,&1). Hence p and ¢ are
LSOP solutions of Eq. (1.1). Obviously we may assume that p and ¢ are normalized.
As 2@ (€)2) (R) C PSICIORY) (R), we have p (R) € ¢ (R).

As we have seen in Subsection 2.3.2, one may define a C'-smooth Poincaré return
map P in a small neighborhood of py in H = {¢ € C: ¢ (—1) = 0} with fixed point

po. As the Poincaré return map depends smoothly on the right side of the equation
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3.4 Properties of periodic solutions

and as f is close to f7 in Cl}—norm, we may suppose using Proposition 3.3.4 that
DP (pg) has exactly two eigenvalues A\; > Ay > 1 with absolute value not smaller than
1. So O, is hyperbolic with two Floquet multipliers outside the unit circle. Similarly,
Proposition 3.3.4 implies O, is hyperbolic with exactly one Floquet multiplier outside

the unit circle. O

The statement of the previous proposition holds even if we consider functions in

CL(D,R), where D is chosen to be any open set containing
{xz(“*(s)’e) (t) : t e R} U {xg(g(a)’s) (t):te ]R} :

To verify Theorem 3.1.1, we have to exclude the existence of more normalized LSOP

solutions. The proof of Theorem 3.1.1 is completed at the end of Section 3.5.

3.4 Properties of periodic solutions

This section describes some useful properties of periodic solutions of Eq.(1.1). The
next two results are well-known for the case when f is smooth and strictly increasing,
see [26],[32] and [33]. The first proposition is analogous to Theorem 7.1 in [33] and the
proof presented here is a slight modification of the proof of Theorem 7.1 in [33].

Proposition 3.4.1. (Monotonicity) Assume that f : R — R is nondecreasing and
bounded, f is either continuously differentiable or there exist uy < us < ... < uy
with N > 1 so that f|(—cou]s flur,us) -+ fluy,00) are continuously differentiable. If
p: R —= R is a nontrivial periodic solution of Eq.(1.1), then p is of monotone type.

Proof. Set points tg < t; < to+w so that p (tg) = minger p(t) and p (t1) = maxier p(t),
where w is the minimal period of p. We have to verify that p(t) > 0 for ¢ € (to,¢1) and
p(t) <0 for t € (t1,t0 +w).

To prove the lemma indirectly, assume that p(t) < 0 for some t € (to,t1).

Recall that £ is a regular value of p, if for each ¢ € R with p(t) = &, p(t) # 0
holds. According to Sard’s Lemma [42], we may choose £ € (p (tg),p(t1)) so that & is
a regular value of p and p (t*) = &, p(t*) < 0 for some t* € (to,t1). Fix such £ and ¢*.
Since p is continuously differentiable, one may give to € (to,t*) and t3 € (t*,¢1) so that
p(t2) =p(ts) =&, p(te) >0, p(t3) > 0 and for ¢t € (t2,t3) \ {t*}, p(t) # &.

Define the curve

L:[to,to+w] >t aps= (p(t),p(t—1)) € R?

and
L:[0,1] s (&sp(ta— 1)+ (1 —s)p(tz3 — 1)) € R2.
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

We claim that I' is a simple closed curve. If not, then there exist t4, t5 with tg <
ty < ts < to+w so that T'(t4) =T (t5). With z(¢) :=p(t +t4) and Z (¢t) := p (t + t5),
Proposition 2.3.4 implies wxg # 7o, a contradiction. Thus curve I' is simple.

Next we claim that if ¢ € [to,¢1] with p(t) = & and p (t) <0, then I' () ¢ L. Indeed,
for such t we have f(p(t —1)) =p(t)+ & <& while f(p(ti —1)) =p(t;) +& > € for
i € {2,3}. As f is monotone nondecreasing, the claim follows.

As a result, J = F‘(tQ,tB) U L is a simple closed curve.

Since p(t2) > 0, p(ts) > 0 and I (t2) # I'(t3), there exist ¢ > 0, C'-maps v, :
[€ — e, + €] — R, constants 5;7 >0,06; >0forje {2,3} so that

{(wy ) uelg—ec+ely =T ([t; o7, +61]), je{23},
and sets R~, R defined as
{(u,v) 1w € (§ —€,£),v is in the open interval defined by 2 (u) and 73 (u)},

{(u,v) :u € (€ +¢),v is in the open interval defined by 2 (u) and 73 (u)},

respectively, belong to different connected components of R? \ J (since I'(t) ¢ L for
all t € (ts,t3)). We have I'(to—d; ) ¢ J, T (ts+64) ¢ Jand I (t2 =05 ) € R,
T (tg —1—5; ) € RT. Combining the above facts, we conclude that T (tg — 0y ) and
r (tg + 65 ) belong to different connected components of R?\ J. Clearly, I (tg) and
I'(t1) belong to the exterior of J. Then in case T (tg - 55) € int (J) there exists
t** € (to,t2) such that ' enters from ext (J) into int (J) through I' (¢**) € L. In this
case Rt Cext(J), R~ Cint(J) and p (**) < 0 follows. This is a contradiction to the
fact that if ¢ € [tg, t1] with p(¢) = £ and p(t) < 0, then T'(¢) ¢ L.

Iftr (tg + 5;) € intJ, then there is t** € (t3,t1) so that I' enters from int (J) into
ext (J) through I' (t**) € L. We also have R C int (J), R~ C ext (J) in this case and
again p (t**) < 0 follows, a contradiction.

The assumption that p(t) > 0 for some t € (t1,tgp+ w) leads to a contradiction

analogously. O

The following statement resembles Theorem 7.2 in [33]. As we consider only scalar

equations, the proof is elementary in our case.

Proposition 3.4.2. (Symmetry) Assume the hypotheses of Proposition 3.4.1 and in
addition suppose that f(0) =0, f is odd and 0 belongs to the range of p. Then p is of

special symmetry.

Proof. Let w denote the minimal period of p. Set points ty < t1 < tg + w as in the
previous proof, that is so that p (tp) = miner p(t) < 0 and p (t1) = maxer p(t) > 0.
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3.4 Properties of periodic solutions

According to Proposition 3.4.1, the set of zeros of p in (fo,t1) is an interval:
[2’07,2’1] = {t S (to,tl) :p(t) = 0}

with ¢y < z0 < z1 < t;. Similarly, one may set zo and z3 so that [z9, 23] C (¢1,t0 + w),
p(t) =0 for t € [z, 23] and p(t) # 0 for ¢t € (t1,t0 +w) \ [22,, 23]. Of course, 29 = 2z or
29 = z3 is possible.

Consider the curve I : [tg,tg +w] 3 t — mp; € R%2. As we have verified in the proof
of Proposition 3.4.1, I' is a simple closed curve. Setting = p and & = 0, Proposition
2.3.4 yields that T'(t) # (0,0)" for t € [to, to + w)].

Next we verify that (0,0)" € int(I'). For t € (z1,t1], p(t) > 0, p(t) > 0, hence
f(pt—1))=p)+p(t) >0 and necessarily p(t — 1) > 0. We claim that p(t —1) >0
holds also for t € 29, 21]. If not, then there exists z* € [2g, z1] so that p (2* —1) =0,
which contradicts T' (2*) # (0,0)". Therefore

I'(t) € {(u,v) eR?:u>0,v >0} for t € [z0,t1] .

If t € (z3,t0 + w], then p(t) < 0, p(t) < 0, hence f(p(t—1)) = p(t) + p(t) < 0 and
p(t—1) < 0. It can be verified in a similar manner that p(t—1) < 0 holds for ¢ € [z9, 23]
and thus

I'(t) e {(u,’u) eR?:u<0,v< O} for t € [2z2,t0 + w].

Since I is a simple closed curve and there exists no
t e [to,to + w] \ ([Z(),tl] @] [Zg,to + w])

such that T'(t) is on the ordinate-axis, we obtain that (0,0)" € int ().

Now take periodic function ¢ : R 5 ¢t — —p(t) € R with minimal period w and
consider curve I : [tg,tg+w] D t — mg € R2. Since f is odd, ¢ is a solution of
Eq.(1.1). Clearly IV (t) = —I'(¢) for all t € [to,to +w]. Because (0,0)" € int (I,
curves I and I" intersect, that is t* € [to,tp + w] and t** € [ty,to + w]| can be given
with T (t*) = TV (t**). Set ¢ : R >t — p(t+t*—t**) € R. If ¢ and ¢ are different
periodic solutions of Eq.(1.1), then Proposition 2.3.4 implies mq+ # m@+, that is
L (t*) # IV (t**), a contradiction. So p(t+t*—t**) = —p(t) for all t. Necessarily
=t =w/2. O

Note that we have an analogous result for special nonlinearity f#°; it is shown in
Section 3.2 that for K > K*, periodic solutions 2>("9 : R — R and @) R SR
of Eq. (3.2) are of monotone type and special symmetry. We conjecture that for case

e = 0, all nontrivial periodic solutions of Eq. (3.2) are in possession of these properties.
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

Let Ko > 3 and K1 > Ky be fixed. Choose

/K 1

R a——
KoSK<Ky 2 (K + 1)

> 0.
The next result is slightly more general than necessary in this chapter. The stated

property uniformly holds for K in a compact interval.

Proposition 3.4.3. Assume pp = 1, K € [Ko,Ki|, € € (0,0) and p : R — R 1s
a normalized LSOP solution of Eq.(3.2) with minimal period w > 0. Then p is of
monotone type and special symmetry, and the following assertions hold.

(i) The zeros of p are simple.

(i) we (1+ 4,2 - 7).

(i) max,cr p (t) > e/

(iv) Choose tmax € (—1,0) with p (tmax) = maxicr p(t). Let t1 be the largest t €
(=1, tmax) with p (t) = 1, and let t4 be the smallest t € (tmax,00) with p(t) = 1. Then

p(t) > K —2 forallte (t1 —9d,t1 +9),

1
p(t) < —3 forallt € (tg — 0,t4 +9).

Let to be the largest t € (t1,tmax) with p(t) = 1 + &, and let t3 be the smallest
t € (tmaxs ta) with p(t) = 1 +¢.
(v) Ifta+2 <w and ty —t; < 1 —w/2, then py € X (UZ2,¢) with

Pozz(t3+2wﬂf1t4+;},t3t2,€>-
(Vi) If ty+2 < w and t3 —ty > 1 — w/2, then py € ([752,5) with

po =3 (t3+2—w,t1 —ty+ %,t?, —t2,5> .
Proof. Assume p : R — R is a normalized LSOP solution of Eq. (3.2). By definition,
V (pt) = 2 for all t € R. Proposition 3.4.1 and Proposition 3.4.2 imply p is of monotone
type and special symmetry. Setting tmin = tmax + w/2, we have —p (tmax) = P (tmin) =
mingeg p (t), and p is monotone nondecreasing on intervals [tmin + kw, tmax + (K + 1) w],
monotone nonincreasing on intervals [tmax + kw, tmin + kw|, k& € Z. By Proposition
234, (p(t—1),p(t)) # (0,0) for all t € R.

We claim w € (1,2). If w > 2, then tpmin = tmax + w/2 > —1 +w/2 > 0. By the
special symmetry, p (—1 4+ w/2) = p(—1) = 0. The monotone property yields p(s) > 0
for s € [-1,—1+w/2]. Consequently V (py) = 0, a contradiction. Suppose w < 1.
Then —1 < tpax < tmin < —1+w < 0, and p(—14+w) =0, p(-1+w+s) >0
for all s € (0,n) for some n > 0. Clearly there is an arbitrarily small s > 0 with
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3.4 Properties of periodic solutions

p(—1+w+s) > 0. Then from Eq. (3.2)
e (-1+w+s—1)=p(-1+w+s)+p(-1+w+s)>0

and p (—1+w+ s — 1) > 1 follow. By continuity, p (—2 + w) > 1. Hence, by using —2+
w < —1, p(—1) = 0 and the monotone property of p, one obtains y € (=2 + w, —1) with
p (1) < 0. Then p has at least three sign changes on [—2 4+ w, —1 + w], a contradiction.
Therefore 1 < w < 2.

We claim p(0) < 0. The equality p(0) = 0 contradicts Proposition 2.3.4 since
p(—1) = 0. If p(0) > 0, then by (3.2) and p(—1) = 0, p(0) < 0. The monotone
property of p yields either p(s) > 0 for all s € [-1,0] or w < 1, a contradiction. Thus
p(0) <O.

From p (0) < 0, by (3.2) and p(—1) =0, p(0) > 0 follows. Hence tmyin < 0.

Set 7T=w —1¢€ (0,1). Tt is easy to see that p(¢t) <0 for all ¢t € [0, 7], and p(t) > 0
for all t € (7,7 +n) for some n > 0.

Define t5 = t] +w/2, ts = t4 +w/2, tg = t; + w and t12 = t4 +w, see Fig. 3.7. Clearly

tg > 7 . Note that z = —1 + w/2 = 51 € (t4,t5) is also a negative zero of p.

tmin

Figure 3.7: Plot of p in the proof of Proposition 3.4.3

Observe that 0 < € < ¢ implies

<1 d <e%
3 Kans 2K.

Claim (i). 7 € (t1 + 1,t4 + 1).
Proof. As p(0) < 0 and p is of type (0) on [0,¢; + 1],

p(t) = p(0)e™ < 0 for all t € [0,¢, + 1]. (3.21)
SoT >t +1. If p(ty +1) <0, then on the one hand p () < 0 forall t € [ty + 1,z + 1]
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

(as p is of type (0) on [t4 + 1,z + 1]), on the other hand

+1=2¢(rr+2
z —2 T, T 9

and p(t) > 0 for all t € [7,7 +w/2], a contradiction. If p(t4 4+ 1) = 0, then p(t) =0
for all t € [ty + 1,z + 1]. By (7 + 1)-periodicity, p (t) = 0 follows for ¢t € [ty — 7,2 — 7].
By the definitions of t;,t4 and z, the minimal zero of p in (—1,2] is in (t4,2]. As
z=(r—1)/2 > 7 —1 and thus z — 7 > —1, this a contradiction. Consequently,
p(ta+1)>0and 7 € (t1 + 1,84 + 1). O

Assertion (i) is a direct consequence of Claim (i). Note that if ¢ € (¢; + 1,24+ 1)

with p (t) = 0, then

p(t)=—pt)+ 5 (p(t—1)) = 5 (p(t-1)) >0.

Hence 7 is a simple zero of p, and it is the only zero in (¢ + 1,4 + 1). By the special

symmetry of p, all zeros of p are simple, and —1, z, 7 are the only zeros in [—1, 7].

Assertion (ii) also follows from Claim (i). Indeed, for t € [r, 9],

p(t)=—pt)+ @ -1) < pE-1) <K
Hence
to—7T=t1+w—7>1/K. (3.22)
Applying (3.22) and 7 > t; + 1, we get

1 1 1
>7—t —=7—(t 1 1+ =>14 —.
W2T—ti =T (t1+1)+ +t > 1t

For t € R, [p(t)| < K by Proposition 2.1.2 and thus p (¢) > —2K by Eq. (3.2). Hence

ty < L1
L=2T 5K S oK

and by Claim (i),
1
= 1<ty 4+2<2— —.
w=T7T4+1<i+2< 5K
Claim (ii). max;cpp (t) > e'/%.

Proof. We have already shown that p(t4 +1) > 0. For t € [ta+ 1,t5+ 1], p(t) =
p(ts+1)e 1D thus p strictly decreases on [ty +1,t5+1]. So tg < t4 + 1. As
ty+ (K +1)/K <ty +w = t12, we derive that [ts + 1,t4+ (K + 1) /K] C [to, t12] and
thus p (t4 + (K +1) /K) > 1.

From (3.22), t5 — t4 > 1/K follows by special symmetry. So p is of type (0) on
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3.4 Properties of periodic solutions

[ta +1,t4+ 1+ 1/K], and thus

==
2l

K+1
maXP(t)Zp(t4+1):p(t4++)e >ek. [0

teR K
As a consequence of Claim (ii), max;er p (t) > 1+¢ and one may set t2 and t3 so that
to is the maximal ¢ € (t1,tmax) With p(t) = 1 + ¢ and t3 is the minimal ¢ € (tyax, t4)
with p(t) = 1+ e. Define tg = to + w/2, t7 = t35 + w/2, t190 = t2 + w and t11 = t3 + w,
see Fig. 3.7.
Note that it is also verified in the proof of the previous claim that

1
t1a — <t4 + 1) >1+ ? (3.23)

Claim (iii). P (t) < -1lforte [t4 + l,tlg], and thus t4 —t3 = t10 — t11 < e.
Proof. First note that t;2 < 7+ w/2 < 7+ 1. Hence for ¢t € [ty + 1,t12], p(t) > 1,
p(t—1) <1, and

p(t)=—pt)+ 5 (p(t—1)) < —p(t) < -1,

which is our first assertion. In addition, using p (t12) = 1 and estimation (3.23), we
obtain that p(t12 —s) > 1+ s for all 0 < s < 1/K, hence t13 — t1; < e. O

Claim (iv). 1+ t2 < t9 and t19 < t3 + 1. In consequence, to —t; < ¢/ (K — 2).

Proof. It follows from the previous claim that p(¢) > 0 for ¢ € [ts+ 1,t4 + 1].
Indeed, p(t) > p(ts +1) — 2Ke > e/K — 2Ke > 0 by the choice of § and ¢ € (0, ).
Hence p (t) < K for t € [t3 + 1,t4 + 1].

Suppose that t3+1 < t19, that is p (t3 + 1) < 1+e. Applying the facts that ¢, —t3 < e
and p strictly decreases on [t4 + 1,%12] (see Claim (iii)), we obtain that

%aﬂgcp(t) = te[t;ﬁ?ﬁ:{ﬁl]p(t) <l4+e+Ke=14+(K+1e< X

by ¢ € (0,6), a contradiction to Claim (ii). Thus t19 < t3 + 1.

If tg <to + 1, then

K+1
tg <to+1<ts+ <tr+tw=tig<ts+1

and hence for ¢t € [to + 1,12 + (K + 1) /K],
pt)=-pt)+K>—-(1+e)+ K.

Thus

K+1 K—-1-—¢ K—-1-¢
1+5:P(t10)2p<t2+K)Zp(t2+1)+K21+,
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

which contradicts € < §. So 1 + to < tg.

As a result, p(t) = —p(t) + K > K — 2 for all ¢t € [tg, t10], and € = t’;“’p(s) ds >
(K —2)(t10 — tg). As to —t1 = t19 — tg, the third statement follows. O

A lower bound for tg—(ta + 1). Applying p (t1 + 1) < 0 by (3.21), ta—t1 < &/ (K — 2)
by Claim (iv) and p (t) < 2K for allt € R, we find p (t2 + 1) < 2K¢e/ (K — 2). Therefore

tg

5<p(t9)—p(t2+1):/ B (s)ds < 2K (tg — t — 1),
to+1

1

K -2

and we obtain that

1 €
_ 1) > —
tg (t2+)>2K K _9

> 0. (3.24)

A lower bound for t3 + 1 —tg. Claim (ii) implies maxp (t) > e'/K. Claim (iv) gives
that tg <ts+1<t4+1<tg. Forte [tg,t4+ 1],

pt)=-p®)+ S @E-1)<-pt)+ K<K-1.

In addition, p strictly decreases on [t4 + 1,t12] by Claim (iii), that is maxicr p () =

maXye(ty ¢,41] P (t). So, by using Claim (iii) again,

e%gmaxp(t): max p(t) < 1+ (K —1)(ts+1—19)

teR t€(tg,ta+1]
= 1+ (K—-1)(ts+1—tg+1t4—t3)
< 1+ (K=1)(ts+1—tg) + (K —1)e,
from which
1oty > e =L it 3.25
AR S (3:25)

follows.

Also note that if t > t12, then p(t) > —2K and
p(t) 2 1—2K<t—t12).

Thus

1
p(t)>1/2forall t € [t12,t12 + 4](} : (3.26)

Then (3.24) and (3.25) imply that for ¢ € (tg —d,t9+9), t —1 € (t2,t3). Also,
p(t) <p(tg) +dmaxp(t) <1+4+2K06 <2 fort e (tg — d,tg + ). Hence

pt)=—pt)+ S (p(t—1)) > -2+ K for t € (tg — 5,9 + 0) .

Astig—(ta+1) =ts+w—(ta+1) > 1/K > 0, Claim (iii) clearly implies p () > 1
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3.5 There are two LSOP solutions

and p (t) < —% for t € (t12 — d,t12]. At last note that as t4 + 1/K < t5 <0,
t12—|—5—1:(t4+1+7’)+(5—1:7'+t4+(5§7'+t5<T

that is ¢t — 1 € (t4,7) for all ¢ € [t12,t12 + J). Thus using (3.26) we conclude that

PO = O+ —1) S —5+0=—3, t€[tintn+0),

Statement (iv) follows by periodicity.
It remains to prove assertions (v) and (vi). Suppose to+2 < w and t4 < t; +1—w/2.
Thento+1<w—1=7,1t10<tg+ 6 <t3+1, and

t4—|—1<t11<t12:t4+w<t1+1+w/2:t5+1.

It follows that p is of type (K) on [r,t3 + 1], it is of type (0) on [t4 + 1,¢5 4+ 1]. The
periodicity of p and the fact that p is of type (0) on [t3,¢4] imply p is of type (0,1 + ¢)
on [ts + 1,t4 + 1]. By periodicity and special symmetry, p is of type (—K) on [ts, tg],
and it is of type (—K, —1) on [t5 + 1,t + 1]. The special symmetry and monotonicity
yield po = p, € ¥ (U2, ) with

pozz(t3+2—w,t1—t4+;},t3—t2,5>.

The case to + 2 < w and t3 — to > 1 — w/2 is analogous. O

3.5 There are two LSOP solutions

Set p = 1. We study the exact number of LSOP solutions of Eq.(1.1) first for non-
linearity f%0 with K > 0, then for f7¢ with ¢ > 0 small, finally for those feedback
functions, that are close to f7¢ in C’bl—norm. As a consequence, we prove Theorem
3.1.1. For simplicity, we use notations introduced in Section 3.2 - without repeating

definitions.

The number of periodic solutions for the step function

As a preliminary result, we show that K has to be sufficiently large so that Eq. (3.2)

has periodic solutions of monotone type and special symmetry.

Proposition 3.5.1. Suppose K > 0, ¢ € [0,1), p : R — R is a nontrivial periodic
solution of Eq.(3.2), and p is of monotone type and special symmetry. Then K > 1
and K Kol

w +

—>21 1

2 =K 1T TR

where w > 0 denotes the minimal period of p.
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

Proof. Let p: R — R be a periodic solution of Eq. (3.2) of monotone type and special
symmetry and with minimal period w > 0. It is no restriction to assume that p is
normalized. Clearly, max;er p (t) > 1 as & (t) = —x (¢) has no periodic solutions. Then
there exists (c1,¢2,¢3) € (0,1)° with ¢; + ¢2 4+ ¢3 = w/2 so that p is nondecreasing
on [—1,—1+ ¢1] with range in [0,1], p(t) > 1 for t € (=1 +¢1,—14+c1 +¢2) and p is
nonincreasing on [—1 + ¢1 + c2, —1 4+ w/2] with range in [0, 1].

As p(t) > 0 almost everywhere on [—1,—1 + ¢1],
S pt—1)=p@t)+p(t) >0fort € (—1,—1+ci],

that is p(t) > 1 for t € (—=2,—2+ ¢1]. Using special symmetry, we conclude that
co > Cq.

Obviously, (e'p(t))" = e'f%¢ (p(t — 1)) almost everywhere on R. Integrating on
[—1, -1+ c1], we get

—14¢; —14c1
e 1ter = / e (p(s—1))ds < K/ e’ds =K [e_Hcl — 6_1} ,

-1 -1
therefore 1 < K (1 —e™“). As1—e™“ < 1, necessarily K > land ¢; > In (K/(K —1)).
Integrating on [—1 4+ ¢; + c2, —1 + ¢1 + ¢2 + 3], we obtain that

1 —1+citeatcs 1 1
—e~ +c1+c2 > —K/ eSds = - K [6_ +c1+c2+c3 e~ +61+62} ,
—14c1+c2

hence 1 < K (e®* —1) and ¢3 > In ((K + 1) /K).

Therefore X ol
%:cl+02+03221nK_1+ln ;

Corollary 3.5.2. For K € (0,3] and ¢ =0, Eq.(3.2) admits no LSOP solutions.

Proof. 1t is excluded by the previous proposition that we have LSOP solutions for
K € (0,1] and £ = 0. Suppose K € (1,3],e =0 and p: R — R is an LSOP solution of
Eq. (3.2). Assumption w/2 < 1 and Proposition 3.5.1 give that

w K K+1 K(K+1)
>2 c1+c+c3 > nK_l—i—n K H(K—l)z’

that is

K(K+1) 3 2
K17 K-1'(xk_1F

This is a second order inequality for z = 1/ (K — 1), hence the solution formula gives

that
_ —3—v8e+1 1 =3+ V8e+1

= 1 SK-o1°*® A
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3.5 There are two LSOP solutions

The first inequality is clearly satisfied as K > 1 and z; < 0. The second inequality
implies K > 1+ 1/z9 > 3, a contradiction. O

Recall from Remarks 3.2.4 and 3.2.14 that ¢ € C is in X (Uj,0) = ) (ﬁ&, 0) if and
only if ¢ (—1) = 0 and there there exist —1 < 51 < s3 < s3 < 0 so that z¥ is of type
(K) on [—1, s1], of type (0) on [s1, s2], of type (—K) on [s2, s3] and of type (0) on [ss3,0].

Proposition 3.5.3. Assume K > 3, ¢ =0 and z : R — R is a nontrivial periodic
solution of Fq.(3.2), x is of special symmetry and xy € ¥ (Uol,O) =3 (U&,O). Then
x (s2) = 1 implies K = K*.

Proof. Assume that x satisfies the conditions of the proposition with z (s2) = 1.

Then using (3.5) and the definitions of I; and I, we get
z(s1)=e L[ =K(1—e ) (3.27)

and
e =e®x (s9) = e 2L =K (1—e ™). (3.28)

From (3.5), the definition of I3 and relation (3.28) it follows that
r(s3)=e Bh=K(l—e™)e @ BLK((e®-1)=e®+K(e *-1). (3.29)

Let —1 < t; =t9 < t3 =14 < ... be the consecutive times for which = (¢;) € {—1,1}.
As z strictly increases on [—1, s1], strictly decreases on [si, s3], maxser x (¢) > 1 and
x (s2) = 1, we obtain that —1 < t; < s and t3 = so. Similarly, so < t5 < s3. By
special symmetry, z (s3) = —x (s1), and z (s2) = —z (t; + 1) = 1. So combining (3.27)

and (3.29), we get
K+1
=———e¢

K

As in the proof of Proposition 3.2.3, we can show that

e

a1, (3.30)

K-1
K

m(tlJrl) = I3.

Using z (1 + 1) = —1, the definition of I3, relations (3.28) and (3.30), it follows that

K-1
e

-1
e

1=

e — 14 etz (1— )] (K2 =1) (e — 1) (3.31)

As z is periodic, ag = t5 — t4 (see the remark preceding Proposition 3.2.6). One may

show analogously to the proof of Proposition 3.2.6 that

I + Ke* e — 14 etrtaz
K- “(K-1)(em —1)

as =t5 —t4 =1n
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback
Combining this relation with (3.28), we get that a; is the following function of K:

L K(K-1)
ap =In ————F——.
PV K? 2K -1

Substituting the last result to (3.31), we obtain that equation

(K2 —1) (K +1)>
(K2 —2K —1)*

holds for K, which equation has a unique solution on (3,00) and that is K* (see the
definition of K* before Proposition 3.2.8). So K = K*. O

Proposition 3.5.4. Assume K € (3,00) \{K*}, e =0 and z : R — R is a normalized

LSOP solution of Eq.(3.2). Then K > K*, and either xo = X (a*,0), or zy = X (a,0),
where X (a*,0) and X (@,0) are given in Section 3.2.

Proof. Let T denote the smallest zero of x on [0, 00) with the property that = > 0 on
(1,7 +n) with some n > 0 small. Since z is normalized periodic solution with minimal
period in (1,2), and as it is of special symmetry and of monotone type, the minimal
period is w =7+ 1 and 2(0) <0 .

Set tmax € (—1,0) so that = (tmax) = maxyer « (t) and choose tmin = tmax + w/2.
Clearly z (tmin) = minger x (t). As equation @ (t) = —x (¢) has no periodic solution,
T (tmax) = —2 (tmin) > 1.

As x is of monotone type and « (tmax) = —2 (tmin) > 1, there exists t; € (=1, tmax)
maximal with x (¢) = 1 and ¢3 € (tmax, tmin) minimal with = (¢) = 1. Then t5 = t; +w/2
is the maximal ¢ € (fmax,tmin) With z(¢) = —1 and t7 = t3 + w/2 is the minimal
t € (tmin, 7) With x (t) = —1.

Solution x must be piecewise of type (i) with i € {—K,0, K}. To be more precise,
x is of type (0) on interval [0, + 1], of type (K) on [t + 1,t3 + 1], of type (0) on
[ts + 1,t5 + 1], of type (—K) on [ts + 1,t7 4+ 1] and of type (0) on [t7 + 1,7+ 1]. If
t1+1<7<t3+ 1, then

(ts+1—7,t5 — t3, 17 — t5,0) € (0,1)% x {0}
is in U! = U! because t3 +1—7+t5 —ts+tr —ts =1tr+1—7 <1, and

20 =Tr41 =L (tz3+1—7,t5 —t3,t7 — t5,0) =X (t3 + 1 — 7,t5 — t3,t7 — t5,0)

by Remarks 3.2.4 and 3.2.14.
So we claim that 7 € [t; +1,t3+1). As x is of type (0) on [0,¢1 + 1], x(t) =
2(0)e~t < 0fort € [0,t; + 1]. So 7 > t;+1. Suppose for contradiction that = (t3 + 1) <
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3.5 There are two LSOP solutions

0. Proposition 2.1.2 implies |z (¢)| < K, t € R. Then as
t(t)=—xz(t)+ K >0, ti+1<t<ts+]1, (3.32)

and as
s(t)=a(ts+1) e BN 11 <t <t5+1, (3.33)

we get that z is nondecreasing and nonpositive on [t; + 1,t5 +1]. So z(t) < 0 on
[ts,t5 + 1]. On the other hand, for t5 + w/2 € [t5,t5 + 1] we have x (t5 +w/2) =
x (t1 +w) = 1, a contradiction. Thus z(t3+1) >0, 7 € [t;1 + 1,43+ 1) and z.4; €
s (U3,0) = % (U4,0).

Equations (3.32) and (3.33) now imply that x strictly increases on [t; + 1,¢3 + 1] and
strictly decreases on [tz + 1,t5 + 1]. Thus x (t3 + 1) is a local maximum of z. As z is
of monotone type and max;cr x (t) > 1, z (t3+1) > 1 follows. Also, z(t5 +1) > 0
by (3.33). By special symmetry, z(t7+1) = z(t3+w/2+1) = —z(ts+1) < —1.
Remarks 3.2.4 and 3.2.14 yield that if z (t5 +1) < 1, then 29 = 2,41 € ¥ (U§,0);
if z(ts+1) > 1, then 29 = z,41 € by (ﬁg,()). Case z(t5 +1) = 1 is excluded by
Proposition 3.5.3.

We have already verified that x (t; +1) < 0 and x (t3+1) > 0. If 29 € ¥ (U3, 0),
then z (t; +1) = —z (t5 + 1) > —1, so Remark 3.2.4 yields that zo € ¥ (U§,0) and
thus (t3 + 1 —7,t5 —t3,t7 — t5) is a fixed point of F'(-,0). Proposition 3.2.8 implies
K > K* and xg = ¥ (a*,0). Similarly, if zg € ) (ﬁg,O), then zg € % ((75’,0). By
Proposition 3.2.18, K > K* and ¢ = % (a,0). O

As a direct consequence of Corollary 3.5.2 and Proposition 3.5.4, we get the following.

Theorem 3.5.5. Eq.(3.2) has no LSOP solutions for K € (0, K*) and € = 0, and it
admits exactly two normalized LSOP solutions for K > K* and € = 0.

It can be also shown that in case K = K* and ¢ = 0, there is exactly one normalized
LSOP solution.

There are two LSOP solutions for %< with ¢ > 0, and for close
nonlinearities

Recall that if K = 7 and € € (0, min (g9, £9)), where ¢y and &y are given by Propositions
3.2.11 and 3.2.18, respectively, then Eq. (3.2) admits two LSOP solutions with initial
functions ¥ (a* (¢) ,¢) and ¥ (@ (), €).

Proposition 3.5.6. Let K = 7. A threshold number e, € (0, min (9, &0)) can be given
so that fore € (0,e,), 2@ : R — R and 22(@€)€) | R - R are the only normalized
LSOP solutions of Eq.(3.2).
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

Proof. Suppose for contradiction that there is a sequence ()7 in (0, min (eg, o))
converging to 0 as n — oo and a sequence of functions (z™);” so that for n > 0,

" : R+ R is a normalized LSOP solution of (3.2) with K =7 and ¢ = ¢", and

xy ¢ {E (a* (™) ,e"), X (a(e™) ,5")} .

Let w, > 0 denote the minimal period of z". According to Proposition 3.4.3 (ii),
wp, € (8/7,27/14) for all sufficiently large n.

For all t € R and n € N, Proposition 2.1.2 implies |2"(¢)| < 7, therefore Eq. (3.2)
gives |2"(t)| < 14. Applying the Arzela—Ascoli theorem and changing to a subsequence
if necessary, we may assume that there are w € [8/7,27/14] and a continuous function
z : R — R such that w, — w as n — oo, and z" (t) — z () as n — oo uniformly on all
compact subsets of the real line. It is easy to see that x is periodic with minimal period
w, it is of monotone type and special symmetry. In addition, z (—1) =z (-1 + w/2) =0
and z (t) > 0 for t € [-1,—1 + w/2]. By Proposition 3.4.3 (iii),

=

max z (t) > liminf max 2" (t) > e7.
teR n—oo teR

Proposition 3.4.3 (iv) gives that if ¢y € R and |z (¢9)| = 1, then

lim inf | 2 (t+h) -z
h—0

1
> 5 for all t € (to—(;,to—f-(S)
with dy > 0 defined before Proposition 3.4.3. Therefore there exist unique
t1,t4 € [—1,—1 —|—w/2] with 1 <t1 <ty < -1 +w/2

such that x (t1) = = (t4) = 1. In addition, for all v € (0,6/2) fixed, |z (t) — 1| > « for
all t € [-1,—1 4+ w/2] with |t — 1| > 2y and |t — t4] > 2. Set

Sy ={se[-1,0: z(s)e(-1—v,-1+7) U1 —7,14+7)}.

As x is the limit of LSOP solutions, S is the union of at most 4 intervals. Our previous
observations and the special symmetry of 2 imply that for the Lebesgue measure 1 (.S5)

of Sy, we have estimation p (S,) < 4 -4y = 167. Similarly, the measure of
St={se[-1,0]: a"(s)e (-1 =7, -1+ U1 -71+7)}

is not larger than 16+ for all sufficiently large n by Proposition 3.4.3 (iv).

We claim that for ¢ € [0, 1],

t t
lim [ e =T (4" (s — 1)) ds = / e fT0 (3 (s — 1)) ds,
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3.5 There are two LSOP solutions

that is to each n > 0 small, there corresponds n, > 1 so that for n > n., we have

<

[ [0 s - 1) - £ @ s - 1)) s

0

[ e[l = 1) = 770 G (s - 1) as

+f )
0

for all t € [0,1]. Set 0 < v < min{6/2,n/224} . There exists n; = ny () > 1 so that

for n > nq, we have

7O (@ (s = 1)) = f7" (@ (s = 1)| ds <

fro (x(s—1)) — fro (2" (s—1))=0 fors—1¢5,,

and
’f?,O ($ (_1 + S)) _ f7,0 (xn (_1 + 5))‘ <7 fors—1¢€¢ S,y,

Therefore the first term is not larger than 7- 16yt < 112y < n/2 for n > ny. Also there
is ng = ng () > 1 so that for n > ny, we have €” < . Then for s — 1 ¢ SV,

FHO@" (=1 +45)) = 7" (a" (-1 +5)) =0,
and for s —1 € S,
0@ (<14 8) = 7" (@ (<14 5)| < 7.

So the second term is is not larger than 7 - 169t < 112y < n/2 if n > ng. Set

n, = min {ny, ng}. The claim is verified.

It follows that for all ¢ € [0, 1],

n—o0 n—o0

x (t) = lim 2" (t) = lim (etx” (0) + /Ot e =9 fTE" (27 (s — 1)) ds)
=e 'z (0) + /Ot e fT0 (2 (s — 1)) ds,

that is, = satisfies Eq. (3.2) with K = 7 and € = 0 for all ¢ € [0, 1]. It is analogous to
show that x satisfies the equation on [1,2]. As z, = xo, we gain that x is a solution on
R.

Proposition 3.5.4 yields zg = X (a*,0) or 29 = % (a,0). Suppose zy = X (a*,0) for
example. Note that as x is of special symmetry, the construction of ¥ (a*,0) gives
a* = (t4—|—2—w,t1 —t4—|—w/2,t4—t1).

Proposition 3.4.3 gives that if n is large enough, then there exist uniquely defined
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

—1 <t} <ty <ty <t} <0 with
" () =1,2" (t5) =1+, 2" (t5) =1+, 2" (t}) = 1.

Also, limy, 00 t7 = limy, 00 ty = t1 and lim, o0 t5 = limy, o0 t) = t4.

It follows from the definition of Ug, that t; +2 < w and t4 < t; + 1 — w/2. Thus
there exists n.. > 1 so that for n > n.,, we have t§ + 2 < w™ and t} <t} +1 —w"/2.
By Proposition 3.4.3 (v), zj = X (a™,&") for n > n.., where

W
o = <t§f—i—2—w",t’f it + —tg)
is a fixed point of F (-,€™). According to the proof of Proposition 3.2.11, there is a
neighborhood N of a* in (0, 1)3 so that the fixed point of F'(+,¢) is unique in N for
e € [0,e09). As a™ is arbitrary close to a*, we may suppose that " € N and thus
a™ = a* (¢"), a contradiction to our initial assumption.

At last suppose 29 = % (a,0). Then with the aid of Proposition (3.4.3) (vi), one

can verify the existence of 7 > 1 so that zf} = X (a(e"),&") for n > @1, which is a

contradiction again. O

Consider K = 7 and ¢ € (0, min (g9,&0)). Proposition 3.3.5 implies that there exists
§o = 6o () > 0 so that if f € C} (R,R) with ||f — f7’€||cg < dp, and (H1) holds for
f, then Eq.(1.1) with © = 1 and nonlinearity f has two normalized LSOP solutions
p=p(f):R—>Rand ¢=¢q(f) : R—R.

Proposition 3.5.7. Set u = 1. To each ¢ € (0,e,), where €, € (0, min (g9,&p))

is given by Proposition 3.5.6, there corresponds 61 = 01 (g) € (0,80 (€)) such that if

f € Cf (R,R) satisfies (H1), and || f — f*¢||o1 < 61, then Eq.(1.1) admits at most two
b

normalized LSOP solutions.

Proof. Suppose for contradiction that a sequence (f)>, exists in C} (R, R) with

i

o <1/nforneN
so that for n € N, f™ satisfies (H1), and the equation
z(t)=—x(@t)+ f"(z(t—1)) (3.34)

has a normalized LSOP solution z™ : R — R with = ¢ {po (f™),qo0 (™)}, where LSOP
solutions p (f™) and ¢ (f™) are given by Proposition 3.3.5. Note that || /™ — f7’5||Cg < dy
for all large n, hence it is no restriction to assume that p (f™) and ¢ (f™) exist for all
n > 1. Let w" € (1,2) denote the minimal period of 2™, n € N. Since

sup| f" ()| < I1f" Iy < ||£7¢
zeR

,t1<oo, neN,
C117
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3.6 Open questions

Proposition 2.1.2 yields that [|z'|| < ||f"¢]|o2 + 1 and thus [|#}]] < 2| f"¢|| o + 2 for
b b
all n € N and t € R. Applying the Arzela—Ascoli theorem, we may suppose that

w" — w € [1,2] as n — oo, and 2™ converges to a continuous function x : R — R
uniformly on each compact subset of R. Then it is easy to see that x is a solution
of Eq. (3.2) with minimal period w € [1,2]. Proposition 2.3.4 excludes the possibility
that the period is 1, Proposition 2.3.4 and Proposition 3.4.2 exclude the possibility
that the period is 2. So w € (1,2). As z is necessary of monotone type, this yields
V(e = V(rg) = 2forallt € R. As 2™, n € N, is an LSOP solution, it is also
easy to see that x is of large amplitude. We conclude that x is an LSOP solution of
(3.2). Hence Proposition 3.5.6 implies we may assume that xg is either X (a* (¢),¢)
or ¥ (a(e),e). If nis chosen large enough, then f™ is arbitrarily close to f7¢ in C}
norm, zg € {xo} +V and w" € (w — v,w + v), where V and v are given by Theorem
2.3.5. So Theorem 2.3.5 gives z™ equals p (f™) or ¢ (f™), a contradiction to our initial

assumption. ]

The proof of Theorem 3.1.1. Fix p =1, K = 7 and € € (0,e,). Choose a

nonlinearity f € Cf (R, R) satisfying (H1) so that || f — f"¢|| o1 < 61 (€) < do (¢). Then
b

Theorem 3.1.1 follows from Propositions 3.3.5 and 3.5.7. O

3.6 Open questions

By Theorem 3.5.5, Eq. (3.2) has no LSOP solutions for K € (0, K*) and ¢ = 0. For
K > K* and ¢ = 0, there are exactly two normalized LSOP solutions of Eq. (3.2), and
they are determined by the fixed point of F (-,0) in U$ and by the fixed point of F (+,0)
in ﬁg Fig. 3.8 shows the graphs of the first components of the fixed points for K > K*

(as functions of K).

Figure 3.8: Plot of a] and a; vs. K > K*
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3 Large-Amplitude Periodic Solutions for Monotone Positive Feedback

This suggests the following conjecture: for each fixed small € > 0 there exists K* (¢)
so that Eq.(3.2) undergoes a saddle-node-like bifurcation of periodic orbits at K =
K* (¢).

Theorem 3.1.1 brings up a second question: for an arbitrary integer n > 1, is there a
feedback function f with f(0) = 0 and xf (z) > 0 for = # 0, for which Eq. (1.1) admits
2n slowly oscillatory periodic orbits? We conjecture that the answer is affirmative. To
verify the conjecture (or at least a part of it), one could try to generalize the construction
presented in this chapter. However, any generalization would be accompanied by several

technical difficulties. The problem is solved in Chapter 5 for the negative feedback case.
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4 The Global Attractor

4.1 Introduction

Under hypothesis (H1), the maps ®(¢,-) : C — C, t > 0, induced by Eq.(1.1) are
monotone with respect to the pointwise ordering on C' (see Proposition 4.4.1 in this

chapter). Therefore the sets
Ci;j = {90 eC: gl < ()0(8) < fj for all s € [_170]}7 (S {_270}aj € {072}7

are positively invariant under the semiflow ®.
There exists a global attractor A C C_g2 of the restriction ®[jgc)xc_,,, i.€., a
nonempty, compact, positively invariant set, that attracts bounded sets in C_29. It

comes from general theory that

A={p € C_35: thereis a solution z : R — R of Eq. (1.1)
with z (R) C [§-2,&2] and ¢ = 20} .

The map [0,00) X A > (t,¢) — D (t,¢) € A extends to a continuous flow ® 4 : Rx A —
A; for every ¢ € A and for all t € R we have ® 4 (¢, ) = x; with a uniquely determined
solution z : R — [£_9,&s] of Eq. (1.1) satisfying xo = ¢.

In Chapter 3 we have shown that there exists nonlinearities for which A contains
A_29 U Ag2 as a proper subset, where A_o9 C C_39 and Ago C Cp2 are the global
attractors of the restrictions ®|g oo)xc_y, and Pljg,00)xcy o, respectively. In the situ-
ation of Theorem 3.1.1, Eq. (1.1) has two normalized LSOP solutions p : R — R and
q : R — R with max;cg ¢ (t) > maxycr p (t). We shall show in this chapter, that under
further restriction on f, the dynamics in A\ (A_20U.Ag2) can be completely described.

By hypothesis (H1), é,g,é,l, 6,51,52 are the only equilibrium points of ® in C_5 .
In addition, é_g, 0 and ég are stable, é_l and 51 are unstable. Note that there is no
homoclinic orbit to éj, j € {—2,0,2} as they are stable. It follows from Proposition 3.1
in [23], that there exit no homoclinic orbits to &, i € {—1,1}.

The Poincaré-Bendixson theorem of Mallet-Paret and Sell [33] applied to this equa-
tion yields that if ¢ € C_g3, then w (¢) is either a single nonconstant periodic orbit or
for each ¥ € w (p), a () Uw (¢) C {é,g, 1.6, &1, ég} . An analogous result holds for
a (z) in case x is defined on R and {z;: ¢t <0} C C_qs.
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4 The Global Attractor

The nonlinearity f and the constant p in Theorem 3.1.1 are given so that there exist
periodic solutions oscillating slowly around & and around £_; with ranges in (0, &)
and in (£_9,0), respectively [26]. Among these periodic solutions there are x! and x~*
so that the ranges ' (R) and 7 !(R) are maximal in the sense that z!(R) D z(R) for
all periodic solutions z oscillating slowly around &; with range in (0,&2), analogously

for 271 (see Proposition 4.2.1). Set
(91:{56%:256]1%} and(’),lz{xflztER}.

Also, let W* (0,,) and W*" (O,) denote the unstable sets of O, = {p;: t € R} and
Oy = {q : t € R}, respectively. By definition,

W (O,) ={xo: x: R — Ris a solution of (1.1), a(x) exists and o (z) = O}

for * € {p, ¢} [7, 26].

We are going to prove the next theorem.

Theorem 4.1.1. One may set u and f satisfying (H1) such that the statement of
Theorem 3.1.1 holds, and for the global attractor A we have the equality

A=A_30UAg2 UW"(O,) UW"(O,).

Moreover, the dynamics on W* (Op) and W* (Oy) is as follows.

For each ¢ € W*(Oq) \ Oy, the omega limit set w(p) is either {5_2} or {ég}, and
there exist heteroclinic connections from Og to {f_g} and to {52}

For each ¢ € W* (Op) \ Op, w () is one of the sets {é,g}, {0}, {52}, Oy, 01, O_;.
There are heteroclinic connections from O, to {512}, {f)}, {52}, Oy, O1 and O_;.

The system of connecting orbits is represented in Fig. 4.1. The dashed arrows repre-
sent heteroclinic connections in A_s o and in Ag 2, the solid ones represent connecting
orbits given by Theorem 4.1.1.

The chapter is organized as follows.

The next section verifies our statement that there are maximal periodic solutions
among the periodic solutions oscillating slowly around &; and {_; with ranges in (0, &2)
and in (£_2,0), respectively. It is also confirmed that the difference of p and any of
these periodic solutions has at most two sign changes on each interval of length 1.

Section 4.3 excludes the existence of rapidly oscillatory periodic solutions.

W (O,) is the forward extension of W* (py), the local unstable manifold of a Poincaré
return map at its fixed point pg. Similarly, W* (O,) is the forward extension of W* (qo),
the local unstable manifold of a second Poincaré return map at fixed point qg. Sec-
tion 4.4 gives the characterizations of W" (pg) and W" (qp), furthermore it shows that

solutions with initial segments in W* (py) have nice oscillatory properties.
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4.2 Periodic solutions oscillating around éil

Figure 4.1: Connecting orbits

Section 4.5 completes the proof of Theorem 4.1.1. The existence of heteroclinic orbits
from O, is based on the fact that the local unstable manifold W* (pg) is 2-dimensional,
and it is separated into two parts by the 1-dimensional leading unstable manifold
Wi (po). Discrete Lyapunov functionals around ¢_1, 0, &1, the Poincaré—Bendixson the-
orem, the theory of invariant manifolds, the monotone property of the semiflow and

elementary topological arguments yield the result.

4.2 Periodic solutions oscillating around fﬂ

Set u = 1. We are going to use the following additional hypothesis.

(H2) For j € {—1,1} and 0 € (37/2,27) with § = —tan 6, the inequality
J'(&5) > 1/ cos 6 holds.

Note that (H2) is simply condition (2.4) for £ = &; and £ = &_;.

It is shown in [26] that if (H1) and (H2) hold, then at least one periodic solution
appears with the following two properties: it has range in (0,&2), and it is slowly
oscillatory around &;. Analogously, there is at least one periodic solution, that is slowly
oscillatory around £_; and has range in ({_2,0). We emphasize that the existence of
more solutions with the above properties is not excluded. It follows from Proposition
3.4.1 that the minimal periods of the slowly oscillatory solutions are in (1,2). The

following proposition holds.

Proposition 4.2.1. If conditions (H1) and (H2) are satisfied by f, then there exist
periodic solutions ' : R — R and 27! : R — R of Eq.(1.1) oscillating slowly around
& and £_1 with ranges in (0,&) and (£_2,0), respectively, so that the ranges z'(R)
and = Y(R) are maximal in the sense that z*(R) D x(R) for all periodic solutions x

oscillating slowly around &1 with ranges in (0,&2); and analogously for x=1.
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4 The Global Attractor

Proof. Lemma 2.3.2 (ii) and Proposition 2.3.4 easily imply that for two periodic solu-
tions # and & of Eq. (1.1) oscillating around &3, either & (R) 2 Z (R) or & (R) C & (R)
holds. Suppose for contradiction that there is no periodic solution oscillating slowly
around &; with the stated properties. Then there exists a sequence of periodic solu-
tions 2" : R — R of (1.1) with minimal period w, € (1,2), 1 < n € N, so that 2" is
slowly oscillatory around &;, ™ (R) C 2"+ (R) C (0,&3) for n > 1, and there exists no
solution z : R — R oscillating slowly around &; with 2" (R) C z (R) C (0,&2) for each
n > 1.

As z™ (t) € (0,&2) for all t € R and f is bounded on (0,&3), Eq. (1.1) gives a uniform
upper bound for || on R, n > 1. Applying the Arzela—Ascoli theorem and choosing
a subsequence if necessary, we obtain that there exist w, € [1,2] and a continuous
function z* : R — R such that w, — w, and ™ converges to =* as n — oo uniformly
on each compact subset of the real line. It is easy to see that x* is periodic with period
wy. Also, we find that

" (t) = —a* (t)+ f(x"(t—1)) asn — o0

uniformly on each compact subinterval of the real line. It follows that x* is differentiable
and satisfies Eq. (1.1) for all ¢ € R.

As 2 (R) C 2" (R) C (0,&) for all n > 1, necessarily

teR teR

0 <minz* (¢t) < minz" (¢ () < (1) <
< minz* (t) < minx ()<§1<r{1§§<x (t) max (t) <&

for all n > 1. We claim that mingeg 2* (t) > 0. Indeed, if ¢, € R is chosen so that

¥ (tmin) = mingeg x* (t) = 0, then
f (@ (tmin — 1)) = &7 (tmin) + p2” (tmin) = 0

and hypothesis (H1) implies 2* (£, — 1) = 0, a contradiction to Lemma 2.3.2 (ii), (iv)
and the periodicity of x*. Similarly, max;cr z* (t) < &o.

Proposition 2.3.4 implies t — V (x;" — 51) is finite and constant. It follows from
Lemma 2.3.1 that
V(2 = &) <liminfV (af — &) =2
forallt € R and n > 1. However, V' (9:2‘ — 51) > 0 as function * — &; has sign changes.
So V(27— &) =2forall t € R.

We conclude that solution z* is periodic, slowly oscillatory around &;, has range
in (0,&2), and 2" (R) C = (R) C (0,&) for each n > 1, a contradiction to our initial

assumption.

The proof is analogous for x 1. O
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4.2 Periodic solutions oscillating around fﬂ

If f e C}(R,R) is close to f7¢ in C}-norm with € > 0 small, then we may assume
that f satisfies hypothesis (H2), see Remark 4.5.1.

Let p° denote the periodic solution of Eq. (3.2) with K = 7 and € = 0 determined by
the unique fixed point a* of F (-,0) in Ug.

Recall that if = 1 and K = 7, then for each ¢ € (0,¢,), there exists 01 (¢) > 0 such
that if a nonlinearity f € C} (R,R) satisfies (H1), and || f — f7’6||0l} < 01 (¢), then the
statement of Theorem 3.1.1 holds for f. Without loss of generality, we may assume
that 1 (¢) — 0+ as € — 0+. Hence we may assume that max_j<;<2 |p (t) — p° (t)| = 0
as € = 04. We also have £ — 1 and & — 7 as € — 0+.

Proposition 4.2.2. Let r : R — R be a periodic solution of Eq.(1.1) either with range
in (0,&) and with V (rt — él) = 2 for all t € R, or with range in ({-2,0) and with
1% (rt — 5:1) =2 for allt € R. If e > 0 is sufficiently small, then V (py —rs) = 2 for
allt € R and s € R.

Proof. We consider the case when r has range in (0,&2) and V (rt — fl) = 2 for all
t € R. The other case is analogous.

By Proposition 2.3.4, V (p; — rs) is the same constant for all t € R and s € R. Thus
it is sufficient to find a pair (¢,s) € R x R with V (p; — rs) = 2.

Let w°, @, p denote the minimal periods of p°, p, 7, respectively. Define t1, s1,t4, 52,7 =
w9 — 1 for p° as in Section 3.2. Set z = —1 + w/2. Then p° strictly increases on
[—1, 51], decreases on [s1, 2], p° (t) < 0 for t € (z,7), p° (1) =p° (2) = p° (r) = 0 and
p° (t1) = p°(t4) = 1. There exist t1,51,%4,2,7 = @ — 1 such that p strictly increases
on [—1,351], decreases on [51,z2], p(t) <0 fort € (z,7), p(—1) =p(2) = p(7) = 0 and
p(t1) =p(ts) =&. We have t1 — t1, 51 — s1, ta — ta, 2 — 2, T — T as € — 0+.

From Section 3.2 we know that 7 — 1 > #; and w° > 1.

Claim. There exist g9 > 0 and &y € (0, min {7 — 1 —#;,w’ — 1,¢4 — s1}) such that
for all € € (0,¢9),

(i) if r (to + o) = & for some ty € [t1 + o, 51] and o € R, then r (o + s) < p(s) for
all s € [to, 51],

(ii) if r (to + o) = & for some ty € [t4 + 0o, z] and o € R, then r (o +s) > p(s) for
all s € [to, 2],

(iii) if r (to + o) = & for some tg € [S1,t4 — 0] and o € R, then r (o + s) < p(s) for
all s € [51,10)].

Proof of (i). Clearly, & — 1, & — 7, t1 + 69 — t1 + 0o, 51 — s1 and

0
—111132122’})(75) P (t)‘—>0as€—>0—|—.

For r, the differential inequality
F(t) < —r(t)+ f (&)
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4 The Global Attractor

holds for all ¢t € R. Hence
r(o+s) < Eefom + (1 - eto*s) f (&) for s > to.

For a fixed tg € [t; + do, s1], the right side of the inequality tends to 7 — 6e!°~* as
g — 0+. Using p° (s) = 7 — 6e/17%, s € [t1, 1], one finds
. 0 o o to—s _ _ ti—to . to—s do __ t1—s1
seﬁgﬂ (p (s) (7 6e )) =6 (1 e ) Serf;;gl] e >6 (e 1) e > 0.

Since the derivatives of p and r are uniformly bounded for all ¢ € R and for small € > 0,

the statement is obtained as ¢ — 0+.
Assertions (ii) and (iii) of the Claim can be shown analogously. [

Let w;, i € {0,1,2,3,4}, be given so that uy < u; < ug < ug < ug, ug = ug +
p, m(ug) = r(ug) = &, r(u1) = mingerr (t) > 0 and r (uz) = maxerr (t) < &o.
Propositions 3.4.2, 4.3.2 and Theorem 7.1 in [33] guarantees the existence of uy, .., u4
and the fact that r strictly increases on [u1,us] and strictly decreases on [us, us] with

Uus = uy + p.
We distinguish 3 cases.

Case 1: ug—us > 7—1t4. As7—t4 > 7—2 =w"/2 > 1/2, we may assume 7—1t4 > 1/2.

Then uy —ugz < 7 — t4 or ug — us < 7 — t4 holds because us — ug < 1.

In case uy —uz < 7 —ty4 set y(t) = r(t —7 +uq). Then y(7) = &, y decreases
on [T —uy + us, 7|, y increases on [T — ug + ug, 7 —ug +ug), y (T —ug +ug) = &. If
T —u4 + uy € [81,t4], then p — y has one sign change on [7 —1,7] since y(t) <
& < p(t) for t € [T—1,7—us+ ug, p decreases on [T — uyg + ug,t4], y increases
on [T — w4+ ugty], and y(t) > & > p(t) for t € (44,7). If T — ug + uz < 51, then
T—us+ug € (T —1,81). Then for sufficiently small ¢ > 0, T—us+ug € (t1 + do, 51) will
be satisfied, and Claim (i) can be applied to get y (t) < p(t) for all t € [T — uq + ug, 51].
Clearly, y(t) < & for all t € [T — 1,7 —uyq + ug). Now it is obvious that p — y has

exactly 1 sign change on [T — 1,7].
The case uz — us < 7 — t4 is analogous.

Case 2: z —ty < uy —uy < 7 —t4. Consider
Yo (1) =y (t —ts+0) for o € [ug,us +t4 — 7] .
It can be shown that p — y, has at most two sign changes on the interval
[T—1Lta+1]N[ur+ts—o,us +ta — 0]
for all o € [ug,us + ¢4 —7]. It is not difficult to show that there is a o in interval
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4.3 Rapidly oscillatory periodic solutions

[ug, usq + t4 — 7| so that the length of
[7_'— 1,544—1] N [ul +£4—0’,U5+£4—0’]

is at least one.

Case 3: uy — uz < z — t4. Consider
Yo (1) :y(t—t_4—5o+a) for o € [u27“4+54+50—ﬂ.

Claim (ii) can be applied to show that p—y has at most two sign changes on the interval
[7—1Lts+@|Nfur +ts+ 8 —o,us +ta+ 6 — o] forall o € [ug,us +t4 +do — 7. A

continuity argument yields that for some o, the length of the interval is at least one. [

4.3 Rapidly oscillatory periodic solutions

We give conditions for the nonexistence of rapidly oscillatory solutions. First we go

back to special nonlinearity f&=.

Proposition 4.3.1. For K < 8 and ¢ € (0,1), Eq.(3.2) has no periodic solution
p:R— R with V(p;) >4 fort € R.

Proof. If p: R — R is a periodic solution of Eq. (3.2), then it is of monotone type and
of special symmetry, see Propositions 3.4.1 and 3.4.2. Proposition 3.5.1 give Eq. (3.2)
has no periodic solutions for K € (0,1]. Set K > 1 and ¢ € (0,1). If V (p;) > 4, then
3w/2 < 1, where w > 0 is the minimal period of p. Proposition 3.5.1 gives that

3 K+1 K+1
S>>
1>2w_61nK_1+31n % > 91In 7
that is
2 3
1 1
P 1+(9) +(9> +
K 9 2 3
Y. <1)2+ 111
9 9 \9) ) 91-% 8
Thus K > 8, and the statement is verified. ]

We also need the following simple observation regarding periodic solutions.

Proposition 4.3.2. Assume p =1, f: R — R is continuously differentiable, nonde-
creasing, and
§2<E1<H=0<& <&

are five consecutive zeros of § — —&+ f (&) with f' (&) <1 < f' (&) for j € {-2,0,2}
and k € {—1,1}. Suppose x : R — R is a nontrivial periodic solution of Eq.(1.1) with
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4 The Global Attractor

x (t) € [£-2,&2] for allt € R. Then the following statements hold. If maxscr x () > 0,
then & < maxgerx (t) < &. If maxger z (t) < 0, then &1 < maxgerz (t) < 0.
If mingeg x (t) > 0, then 0 < mingerx (t) < &1. If mingerx (t) < 0, then o <

mingeg @ (¢) < &-1.

Proof. Assume z : R — R is a periodic solution of Eq. (1.1) with x () € [_9,&s] for
all t € R and maxecg « (t) > 0. Choose t* € R so that = (t*) = maxier x (t). In case
x (t*) < & use the fact that f(x) < z for x € (0,£;1) to derive that

O0=a(t") =—2 )+ f(z" -1) < —xt”)+ f(z(7) <0,

a contradiction. If z (¢*) = &;, then Proposition 2.3.4 implies z (t* — 1) < z (t*). As f

is strictly increasing in a neighborhood of £, we get that
0=&(t")=—z ")+ f(z("—1) <—z(t") + f(z (")) =0,

a contradiction. Hence z (t*) > &;. One may deduce that max;cgr = () < &2 in the same

way. We leave the verification of the rest of the statements also to the reader. O

Note that the conditions of the previous proposition are fulfilled if (H1) holds for f.
Recall that a threshold number e, > 0 can be given so that to each € € (0,¢,) there
corresponds §; = d1 (¢) > 0 with the following properties: if p = 1, f € C} (R,R)
satisfies (H1), and ||f — f7¢

LSOP solutions. Now we are able to prove even more.

o1 < 01, then Eq.(1.1) admits exactly two normalized
b

Proposition 4.3.3. To each ¢ € (0,¢4), there corresponds d2 = 92 (¢) > 0 such that if
pw=1, f € C}(R,R) satisfies hypothesis (H1), and ||f — f7’5||01 < 02, then Eq.(1.1)
b

with =1 and nonlinearity f has no periodic solutions oscillating rapidly around 0.

Proof. Suppose for contradiction that there is a sequence (f")7° in C} (R,R) with
||f—f7’€|cg — 0 as n — oo so that for n € N, (HI1) holds for f", and & (t) =
—x (t) + f" (x (t — 1)) has a periodic solution p"” : R — R, with V (p}’) > 2 for all
t € R. Applying the Arzela—Ascoli theorem, we get that there exists a continuous

function p : R — R such that p™, p™ converge to p, p uniformly on compact subsets of
R, respectively. Then p is a periodic solution of Eq. (3.2) with feedback function f7*.

It follows from Proposition 4.3.2 that maxscg p"™ (t) > & > 1 for all n > 1. Hence
maxeg p (t) > 1. Similarly, minser p (£) < —1. Thus Proposition 4.3.2 implies p (R) D
(€-1,&).

As p is periodic, V' (p;) is the same constant for all ¢ € R. As p oscillates around 0,
Vi(p:) > 2forallt € R. If V(p;) = 2, then p is an LSOP solution, and it is either
2507 (€)) or g =(ale)e) up to time translation. Thus the zeros of p are simple. Asp™ — p

and p" — p uniformly on compact subsets of R, we obtain that V (p}') = 2 for all large
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4.4 Unstable manifolds

n, a contradiction to the choice of p". So V (p;) > 4, which contradicts Proposition

4.3.1. The proof is complete. O

4.4 Unstable manifolds

This section assumes that we are in the situation of Theorem 3.1.1, namely u = 1,
f € C! satisfies (H1), furthermore p: R — R and ¢ : R — R are the normalized LSOP
solutions of Eq. (1.1) with maxer g (t) > maxyer p (¢).

Consider the C''-smooth Poincaré return map P defined in a small neighborhood of
poin H={p e C:p(—1)=0} with fixed point pg. Theorem 3.1.1 states that pg is
hyperbolic and D P (pg) has exactly two eigenvalues A; > Ay with absolute value greater
than 1. Let H, and H, be the closed subspaces of H chosen so that H = H; & H,,
H, and H, are invariant under L = DP (pp), and the spectra o5 and o,, of the induced
maps Hy; 5 ¢ +— Lz € Hy; and H, > © — Lu € H,, are contained in {pn € C: |u| < 1}
and in {pu € C: |u| > 1}, respectively. Then H, is 2-dimensional (Appendix VII in
126]).

The unstable manifold. According to Appendix I in [26], there exist convex bounded
neighborhoods Ny, N, of 0 in H,, H,, respectively, and a C'-map w : N,, — H, with
range in Ny so that w (0) =0, Dw (0) = 0, and subset

W*(po) ={po+z+w(z): v € Ny}
of C is equal to

{a: € po + Ns + N, : there is a trajectory (xn)(l of P in

o0

po + Ns + N, with g =z and z,, — pp as n — —oo}.

W (po) is the (2-dimensional) local unstable manifold of P at po.

The leading unstable manifold. Let H}, H? be the linear subspaces in H, generated by
v1, V2, the eigenvectors corresponding to A1, Ao, respectively. Then H,, = HI@H?2. Set 3
so that 1 < Ao < 8 < A;. There exist dg > 0 and a C'—map @ : (—do, 6o) v1 — H2 D Hy
with @ (0) = 0 and Dw (0) = 0 such that for §* € (=g, dg), there is a trajectory (a:n)(ioo
of P with zy = po+w (6*v1)+d*v; and with 57" (x,, — pg) — 0 as n — —oo. Moreover,
xy, belongs to

WY (po) = {po + @ (dv1) + dvy : ] < o}

for n < 0. WY} (po) is the leading unstable manifold of P at py. It is a 1-dimensional
submanifold of W* (py).

Similarly, there is a Poincaré map (also denoted by P) with fixed point ¢p. By
Theorem 3.1.1, DP (qo) has exactly one eigenvalue with absolute value greater than 1.

W (qo) denotes the (1-dimensional) unstable manifold of P at gp. The characterization
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of W" (qp) is analogous to the one given for WY (po).
The unstable set of O, = {p; : t € R} is defined as

W"(Op) ={xo: = :R— Ris asolution of (1.1), a(z) exists and a (z) = Op}.
It is the forward extension of W" (py):
W (Op) = {zf = ¢ € W*(po), t =0}

Set W" (Oy) can be described analogously. We also introduce the leading unstable set
WE(O) = {af : € Wi (po), ¢ >0},

Recall that ¢ < ¢ for p,¢p € C if ¢ (s) < ¢ (s) for all s € [-1,0]. Relation ¢ <
holds if ¢ < ¢ and ¢ # . In addition, ¢ < 9 if ¢ (s) < ¢ (s) for all s € [-1,0].
Relations “>”, “>” and “>>” are defined analogously.

The semiflow ® is monotone in the following sense.

Proposition 4.4.1. Suppose ¢, € C with ¢ # 1. Then xf # xip for all t > 0.
If o < (¢ >1), then zf < xf’ (mf > J:f) for all t > 1. In addition, if p < 1
(o> 1), then =¥ < z¥ (acf > :cf}) for allt > 0.

The assertion follows easily from the variation-of-constant formula. For a proof we
refer to [43].
Proposition 4.3.2 implies that p (R) C (§-2,&2) and ¢ (R) C (§-2,&2). Hence

W (0,) UW" (0,) € A

by Proposition 4.4.1. Consequently, {z] : t € R} is precompact for each p € W* (0,) U
W (0,).

We need a few more propositions before proving Theorem 4.1.1.

Proposition 4.4.2. Assume x : R — R is a solution of Eq.(1.1) with initial function
xo € W (po) \ po such that z oscillates around & € {£-1,0,&1}. Then V (:L‘t — 5) =2
for all t € R, where £ € C is the equilibrium g(s) = ¢, s € [-1,0]. In addition,
V (Ttgu —pt) =2 for all u,t € R and V (x44y, — x¢) = 2 for allu € R\ {0} and t € R.
If z oscillates around & with i € {—1,1}, then V (x4, — 2%) = 2 for all u,t € R, where
z' : R — R is given by Proposition 4.2.1.

Proof. Let = be a solution of Eq.(1.1) oscillating around £ € {£-1,0,& } with zg €
WY (po) \ po. Clearly, o # €, hence z; # € for t € R by Proposition 4.4.1.

Since zg € W (po), there exists (t,);” C R so that ¢, — —oco as n — o0, 2y, €
WY (po) for n > 0 and x¢, — po in C as n — oo. Clearly, pp € A and z; € A for all
t € R. The norms ||-|| and ||-||; are equivalent on A. Thus z;, — pg as n — oo also in

C'-norm.
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Let w € (1,2) be the minimal period of p. Clearly, V' (pt — é) =2 forall t € [0,w),
hence Lemma 2.3.2 (iii) gives p; — e Rforalte [0,w), where function class R is
defined in Subsection 2.3.1. Now Lemma 2.3.1 implies

2=V 8) = i V o).

Hence by Lemma 2.3.2 (i), V (xt — f) < 2 forall real t. If V (a:t* — é) = 0 for some
t* € R, that is x4 < éor Type > é, then Proposition 4.4.1 implies z; < f or Ty > f
for all ¢ > t* + 1, respectively. This is a contradiction as x oscillates around £. So
V(:Bt—é) =2 for all t € R.

It is easy to deduce from the monotone property of p that V (piyr — pi4o) = 2 in
case t € R, 7,0 € [0,w) and o # 7. In consequence piir — piro € R all for t € R and
oFT.

Now choose any u € R. Using the continuity of the flow ® 4, we obtain that x¢, 4+, —
py in Cl-norm as n — co. By compactness, we may assume the existence of o € [0,w)

such that p;, — py in Cl-norm as n — oo. If o # u, then Lemma 2.3.1 implies
2=V (pu—ps) = lim V (2, yu = pr,),

and Lemma 2.3.2 (i) gives V (2444 —pt) < 2 for all real ¢. In case 0 = u, observe
that x¢, 1y1+e — Pe # Po for any small € > 0, thus we may use our previous result and

Lemma 2.3.1 to get

V (@t — pr) <Hminf V (xpq e —pr) < 2
e—0+

for all real t.

Now assume that V (x4, — pp+) = 0 for some t* > 0, that is @4y, < ppr OF Ty, >
Dy Suppose Ty, < py for example. As xg ¢ O, Proposition 4.4.1 gives &y« # py-
and thus ¢ 12 < pg=yo. By Theorem 2.1.1, the set of those functions ¢ for which xf
converges to an equilibrium as ¢ — oo is dense in C'. Consequently there exits n € C
so that z} tends to one of the equilibrium points as t — 00, and Ty« 12 <K 17 <K Ppeto.
AS Ty qpyro K l’? &K prypeyo for all t > 0 again by Proposition 4.4.1, this equilibrium
point is necessarily é_g contradicting to the fact that x oscillates around £. One comes
to the same conclusion assuming that x4, > pg=.

The argument confirming the rest of the claim is similar, so we leave it to the reader.

To prove the last assertion, use Proposition 4.2.2. ]

In this chapter, a second essential technical tool besides the Lyapunov functional is
the linear map 7 : C' 3 ¢ — (¢ (0), ¢ (—1)) € R? introduced in Subsection 2.3.1. From
paper [33] of Mallet-Paret and Sell we know that 7 maps nontrivial periodic orbits of

Eq. (1.1) into simple closed curves in R?, and the images of different periodic orbits are
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4 The Global Attractor

disjoint curves in R?. So
OPSRBt'—)ﬂptER2, Oq:RBt»—qutE]R2,

Op:Rotsmz} €R?*and Oy :R >t ma; ' € R?

are simple closed curves and disjoint. Here solutions 2! and 2~! are the periodic
solutions given by Proposition 4.2.1.

As ¢ (R) 2 p(R), O, C ext (0p). Also, 70,01,0_; € int (O,), and 7€_, w€s belong
to ext (O,). For the images of the unstable equilibria, we have 7€_; € int (O_;) and
Té1 € int (O1). If z : R — R is periodic solution oscillating slowly around £_; with
z (R) C (€-2,0), then either {mz; : t € R} = O_; or {mz; : t € R} C O_; by Proposition
4.2.1. Similarly, for a periodic solution x oscillating slowly around &; with range in
(0,&2), either {may : t e R} = Oy or {may : t € R} C Oy.

Note that as p(—1) = ¢(—=1) =0, p(0) < 0, ¢(0) < 0 and O, C ext (O,), we have
q(0) <p(0) <0.

Corollary 4.4.3. Let x : R — R be a solution of Eq.(1.1) with initial data xo €
WY (po) \ po such that x oscillates around & € {{-1,0,&1}. Then curve S : R 5 ¢ —

7z € R? is simple and does not intersect Op.

Proof. Proposition 4.4.2 yields ¢t — V (x4, — 2¢) is finite and constant for all u €
R\ {0}. If there exist ¢ € R and u € R\ {0} such that mx; = 7x¢1y, then by
Lemma 2.3.2 (ii), V (2440 — x¢) < V (X44y—2 — x4—2), a contradiction. So S is simple.
It follows from Proposition 4.4.2 and Lemma 2.3.2 (ii) in a similar way that S and O,

are disjoint. O

4.5 The proof of Theorem 4.1.1.

Set £ =1, K =7 and ¢ € (0,e.), where ¢, is given by Proposition 3.5.6. Choose non-
linearity f € C} (R,R) satisfying hypothesis (H1) so that || f — f775HC§ < min {41, 62}
Then the conditions of Propositions 3.3.5, 3.5.7 and 4.3.3 are satisfied by f, which
means that the statement of Theorem 3.1.1 holds, and Eq.(1.1) admits no rapidly

oscillatory solutions.

Remark 4.5.1. We may assume that f satisfies hypothesis (H2) introduced in Section
4.2. As f is close to f7¢ in Cl-norm, it suffices to verify this statement for f7° with
e € (0,e4). Recall that ¢ is defined by

z[ -1

£1(@) =7 (£ ) sen (@

for all e € [0,1), where p € C®, p(t) =0for t <0, p(t) =1fort > 1 and p'(¢t) > 0 for
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4.5 The proof of Theorem 4.1.1.

all t € (0,1). Set interval I. = p=1[1/7,(1 +¢)/7]. Clearly,

minp’ (t) > min o (t) =m > 0.

telg tepfl[%7%]

As (H1) holds and & € (1,1 + ¢), there exists ty € I such that to = ({4 — 1) /e and
p(to) = & /7. We obtain that

(f7’5)/(f1):gpl(to) > 77m—>ooass—>0+.

Similarly, (f7°)" (€_1) — 0o as ¢ — 0+. So we may assume that e, > 0 is chosen so
small that (H2) holds for ¢ provided e € (0, &,).

Theorem 4.1.1 is the direct consequence of Claims 4.5.2-4.5.8 below.
Claim 4.5.2. A\ (A—20UAp2) = W* (O,) UW" (Oy).

Proof. Clearly, A\ (A_20UAg2) 2 W*(O,) UW"(O,). Suppose z : R — R is a
solution of (1.1) with zg € A\(A_20U Apz2). Then a (z) contains no stable equilibrium
point, as in this case zg would be the stable equilibrium itself. If 51 € a(z), then
Proposition 4.4.1 implies ; € Cp o for all ¢ € R, a contradiction to zg ¢ Ag2. Similarly,
£_1 ¢ a(z). Asz is necessarily bounded, the Poincaré~Bendixson theorem implies a ()
is a periodic orbit. Theorem 4.3.3 gives there are no periodic orbits in A\ (A_2,0 U Ag2)
besides O, and Oy,. So zg € W* (O,) UW" (Oy). O

Claim 4.5.3. There exist connecting orbits from O, and O, to the equilibrium points
£_5 and &. Moreover, for each ¢ € W (Op) \ Op and for each ¢ € W*(O,) \ Oy ,
w () is either £ 5 or &.

Proof. First consider the 1-dimensional leading unstable manifold W} (pg). By Ap-
pendix VII in [26], the eigenfunction v; corresponding to the greatest positive eigen-
value Ay of DP (po) is strictly positive. Choose d; so small that ||Dw (dv1)| < 1/2 for
|6| < 61, where w is the C'—map introduced on page 75. Observe that

1
w (0v1) + dvy = / D (sévy) dvids + dvy > 0
0

if 6 € (0,01), and @ (0v1) + dv; < 0 if § € (—01,0). Setting

01 _ (0 d 01 _ &1
e —_ [— n f— R — P
m p0—|—2U1—|—w 2U1 a 72 Po 2v1+w 2U1 s

we get n1,m2 € Wi (po) and n2 < pg < m1. According to Theorem 2.1.1, there exist
ny,ny My 1y € C such that

ny Ky <L Lpo <Ly Km <Ly,
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4 The Global Attractor

- +
and for ¢ = 1,2, solutions x?z and x?z converge to one of the equilibrium points as
t — oo. Since maxer p (t) > &1, minger p (t) < £-1 and

5y s

- +
) <o <p <t <xt fort>0

by Proposition 4.4.1, we obtain that

1‘?2_ — £ o, x?; — &y, x?l_ — & and x?r — & as t — oo,
Using Proposition 4.4.1 again, we get z/> — ¢_o and z]" — & as t — occ.

For each ¢ € W' (O,) \ O,, there is a solution z : R — R of Eq. (1.1) and a sequence
(tn)g such that zo = ¢, x4, € Wi (po) \po for all n > 0 and z, — po as n — oo. Hence
there exist 6 € (—61,0) U (0,d1) and n* > 0 so that x; . = po + W (0v1) + dvi. The
above reasoning shows that if § < 0, then w (p) = £_o, and if § > 0, then w (p) = &o.

Since W* (qo) is a 1-dimensional unstable manifold as well, and W* (OQ,) is the for-
ward extension of W" (qp), it is analogous to show that for each ¢ € W* (O,) \ Oy,

w () is either £_o or &, moreover these connections indeed exist. O

It remains to describe W* (O,) \ W} (Op).
Claim 4.5.4. Suppose that for ¢ € W* (O,) \ Op, the limit set w (¢) is a non-constant

periodic orbit. Then the subsequent assertions are true. If solution z¥ : R — R

oscillates around 0, then w (¢) = O,. Otherwise w (¢) is either O_; or O.

Proof. Suppose ¢ € W" (0,)\O,, and w (¢) is a non-constant periodic orbit {r; : t € R}.

First let us examine the case when ¥ : R — R oscillates around 0. Then as W* (O,)
is the forward extension of W" (py), Proposition 4.4.2 implies V (z7) = 2 for all ¢ € R.
For any ¢t € R fixed, there exits (t, ), with ¢, — oo asn — 0o so that ry is the limit of xfn
in C. As we have seen before, this implies convergence also in C'-norm. As the segments
of any periodic solution belong to R, Lemma 2.3.1 gives V (r;) = limp o0 V () = 2.
In addition, Proposition 4.3.2 yields 7(R) D (£-1,&1). Therefore r equals p or ¢ apart
from shift by Theorem 3.1.1. We claim that w(n3) # Op. Indeed, Corollary 4.4.3
implies R > t + 7y € R? is a simple curve winding around (0,0). This fact and the
assumption that dist (ray, 7O,) — 0 as t — +oo give a contradiction by the Jordan
curve theorem. So we obtain that if ¥ : R — R oscillates around 0, then w (¢) = O,.

Now assume that z¥ is not oscillating around 0, that is there exists ¢, € R such that
zf > 0or zf < 0. Suppose z{ > 0 for example. Then z{ > 0 for all ¢ > ¢, + 1.
Necessarily r (t) > 0 for all ¢ € R, and Proposition 4.3.2 gives that

0 < minr (¢ t .
<ming () <& <maxr(t) <&

As w (@) = {r¢ : t € R}, solution z¥ is also oscillatory around &;. Thus V' (xf — él) =2
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4.5 The proof of Theorem 4.1.1.

for all ¢ € R by Proposition 4.4.2. For each ¢t € R, there corresponds a sequence
(tn)y” C R with ¢, — oo as n — oo such that zf — r; in C' (and thus in C') as
n — oo. Hence V (rt — él) = 2 for all ¢ € R by Lemma 2.3.1. We obtain that r is
a slowly oscillatory periodic solution around &; and has range in (0,&2). Recall from
Proposition 4.2.1 that the periodic solution z! : R — R is set so that it oscillates
slowly around ¢; with z!(R) C (0,&2), and the range x'(R) is maximal in the sense
that z1(R) D z(R) for all periodic solutions = oscillating slowly around & with ranges
in (0,&). Therefore {nr; : t € R} either equals O; or belongs to int (O;). Proposition
4.4.2 implies V (27, — z}) = 2 for all u,t € R. With Lemma 2.3.2 (ii), this yields that
curve S : R 3 ¢t + mxf € R? does not intersect O7. So necessarily r equals x! apart
from shift and w (¢) = O;. In case there is t, € R such that x;fi < 0, we deduce in a
similar way that w (¢) = O_;. O

Claim 4.5.5. Assume that for ¢ € W* (O)) \ O,, limit set w (¢) is not a non-constant

periodic orbit. Then it is a stable equilibrium.

Proof. As for all ¢ € W"(O,) \ O,, orbit {zf :¢ >0} is bounded, the Poincaré-
Bendixson theorem can be applied. If w (¢) is not a non-constant periodic orbit, then
for each ¥ € w (), we have a () Uw (¢) C {é s i=-2,—-1,0,1, 2} (see Section 4.1).

If & is in w (), then & = w () as this equilibrium is stable. Similarly for £_, and
&.

Suppose for contradiction that w () contains no stable equilibrium point. If ¢ is
in the stable set of & with ¢ € {—1,1}, then as (H2) holds, V (a:f — é,) > 2 for all
t € R (see Section 2.1), a contradiction to Proposition 4.4.2. So there exits 1) € w (¢)
such that v is not an equilibrium. Then « (¢) Uw (¢) C {é_l,él}. As it is already
mentioned, there exits no homoclinic orbit to & and to é_;. Hence a (V) # w(¥). If
a(y) = 5_1, then there exists t* € R with xfi < éo. By Proposition 4.4.1, a:;b < éo for
each t > t*, a contradiction to w (¢) = £1. One comes to the same conclusion assuming
that o (v) = & and w (1) = £_1.

So w (i) is a stable equilibrium. O

We have to show that the above connections indeed exist.

Recall that the unstable space
H, = {civ1 + caua : ¢1,c2 € R}

of DP (pg) is 2-dimensional, where v; is a positive eigenfunction corresponding to the
leading eigenvalue A1 and v is the eigenfunction corresponding to the second eigenvalue

Ao greater than one. Then for the solution x;? : R — R of the linear variational equation

#(t)=—z(t)+f (p(t-1)z(t-1) (4.1)
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4 The Global Attractor

with initial segment ve, we have V (z;?) = 2 for all real ¢ [26]. Clearly va (—1) = 0
and so vy (0) # 0 by Lemma 2.3.2. Either vy (0) > 0 or vy (0) < 0 is possible. Assume
eigenfunction ve is chosen so that v (0) > 0. Also, we may set ||v1]| = [Jvz] = 1.

Forn >0, let S, = {¢ € C : ||¢ — po|| = 1/n} denote the sphere in C' centered at pgy
with radius 1/n. As W" (po) and W} (po) are 2-dimensional and 1-dimensional local
manifolds tangent to {po} + H, and {po} + H]} at pg, respectively, there exists ng > 0
such that for n > ng, S, N W* (py) is homeomorphic to S, and S,, N W{ (pg) consists
of two points i € H and 73 € H. It is easy to see from the proof of Claim 4.5.3 that
Nt <K po K ny for each n > nyg.

For each n > ng, let C,, : [-1,1] — S, N W"(pg) be a simple closed curve with
Cy (—1) = C, (1) = nt and C,, (0) = 0% oriented so that Prg, (Cy (—1,0) — pp) inter-
sects {cvg : ¢ <0} C H2 and Pry, (C, (0,1) — po) intersects {cvy : ¢ > 0} C H2, see
Fig.4.2. This choice is possible. Obviously, C,, (s) # po for n > ny and s € [—1, 1].

M —Po H2

W (p0) — po /1

Figure 4.2: The unstable manifold

To prove the existence of the heteroclinic connections, we are going to apply the next

assertion.

Claim 4.5.6. To each & € {£_1,&0, &1}, there correspond initial functions ¢ € W* (po)
and ¢ € W (pp) with
q(0) <¢(0) <p(0) < (0) <0

such that solutions 2% : R — R and z¥ : R — R oscillate around ¢&.

Proof. Set £ € {¢_1,&0,&1} and define
Ay = {nGW“(po): 2 > € for sometZO}

and
A= {nEW“(po) : x?<<éf0rsomet20}.
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4.5 The proof of Theorem 4.1.1.

Clearly nf € A_ and ny € A4 for all n > ng. Then sets AL N C, [—1,0] and A_ N
Cy,, [—1,0] are disjoint, open and nonempty in C, [—1,0] for all n > ng. It follows
from connectedness that there exits s, € (—1,0) with Cy, (s,) ¢ (A4 U A_), that is

Cn(sn)

x : R — R oscillates around &.

For n > ng, function y™ : R — R with

anln) (1) —p (t)
ICr (s0) = poll

Yy (t) = t e R,

satisfies equation y" (t) = —y" (t) + a” (¢t) y"™ (t — 1), where
1
a":RBt»—)/ f (0:60”(5”) (t—l)—i—(l—@)p(t—l)) dg € R.
0

Because of the choice of curves C,,, a™(t) — f'(p(t—1)) as n — oo uniformly on
compact subsets of [0, 00).

Since Cy, (sn) € W* (po) \ {po} for all n > ng, since Cy, (sn) — po as n — oo and as
W (pp) is tangent to {po} + H, at pp, we may suppose that yg — z0 € C as n — oo,
where zp € H,. Since ||yg| = 1 for all n > ng, ||z0|| = 1. Let z : [-1,00) — R be
the solution of the linear variational equation (4.1) with initial data zp. Then y" — z
uniformly on compact subsets of [—1, 00).

We claim that zg = —vy. Assume that zy = c1v1+cove with ¢; # 0. As vy is a positive
eigenfunction corresponding to the leading eigenvalue A\; > 1, there exits t* = t* (¢1)
such that z > 0 (or 2= < 0) and thus yit > 0 (or y+ < 0) for some n > ng. This
is impossible by Proposition 4.4.2. So zg = cove with co € R. The definition of C,,
and the fact that s, € (—1,0) implies ca < 0. Also, |ca| = 1 as ||zo]| = [Jv2]| = 1. So
co = —1.

As v3(0) > 0, we conclude that zp (0) < 0. Since yj — 29 and Cy, (sp) — po as
n — 0o, there exist n; € N so that for n > ny, g0 (0) < Cy, (s5) (0) < po (0). Accordingly
set o = Chp, (Sny) -

Similarly, there exits ¢, € (0,1) so that solution 2¢»(t») : R — R oscillates around

. . o0 . o0 . .
. n n n n
¢. The same reasoning carried out for (C), (t,)),° instead of (C), (s,)),. implies that

no no
po (0) < Cy, (ty) (0) < 0 for n > ny with some ng € N. So choose ¢ = Cy, (tn,).
Clearly ¢ and v are in possession of the required properties. O

Claim 4.5.7. There exist heteroclinic connections from O, to 0 and to Oy-
Proof. Claim 4.5.6 gives that there exists 73,14 € W" (pg) with
q(0) <n3(0) <p(0) <ma(0) <O

such that solutions ™ : R — R and z™ : R — R oscillate around 0. Claim 4.5.5

gives that w(n;), i € {3,4}, is either a periodic orbit or a stable equilibrium. If
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4 The Global Attractor

w (n3) = &, then by the monotone property of the semiflow ® (see Proposition 4.4.1)
there is tg > 0 such that z® > 0 for ¢ > o, a contradiction. Similarly, w (3) # &_o
and w (n4) € {5_2,32}. We prove that w (n3) = Oy and w () = 0.

Consider curves
S3:Rotr na® €R® and Sy :R >t 7wzt € R

By Corollary 4.4.3, S5 and Sy are simple, furthermore they have no points in common
with Op,.

Function 73 is selected so that S3(0) = (3(0),n3(—1)) € ext (Op). Thus S3(t) €
ext (Op) for all t € R. As a consequence, 0 is not in w (n3). Note that all the other
stable equilibria have already been excluded, hence it follows from Claim 4.5.5 that
w(ng) = {r¢:t € R}, where r is a nontrivial periodic solution of Eq.(1.1). As z'B
oscillates around 0, w (n3) = Oy by Claim 4.5.4.

Similarly, Claim 4.5.4 yields that if w(74) is a non-constant periodic orbit, then
w(ns) = O4. However, the choice of 1y implies S4 (0) = (n3(0),n3(—1)) € int (O,),
hence Sy (t) € int (O)) for all t € R. It follows immediately that w (n4) # O4. So
w (n4) is a stable equilibrium by Claim 4.5.5. As é_g and ég have been excluded at the
beginning of this proof, necessarily w (1) = 0. O

Claim 4.5.8. There are heteroclinic connections from O, to the orbits O; and O_;.

Proof. According to Claim 4.5.6, there exists 75 € W*" (pg) with 0 > 15 (0) > p (0) such
that solution 2 : R — R oscillates around & . Curve S5 : R 3t +— 72}® € R? does not
intersect Op,. Hence S (t) € int (O,) for all t € R and w (15) # O4. Also, w (1) is not a
stable equilibrium or O_; as " oscillates around &;. So w (75) = Oy, see Claim 4.5.4.

Finally, set ns € W" (pp) with 0 > 76 (0) > p(0) so that 2 : R — R oscillates
around £_1. This is possible by Claim 4.5.6. An analogous argument verifies that
w(ne) = O_1. O
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5 Slowly Oscillatory Periodic Solutions for

Negative Feedback

5.1 Introduction to the problem

Consider Eq. (1.1) in the negative feedback case, i.e.

i (t) = —pa (t) — f (z(t = 1)) (5.1)

where ¢ > 0, and f : R — R is a continuous function with f (0) =0 and = f () > 0 for
all z € R\ {0}.

In [46] Walther has given a class of Lipschitz continuous nonlinearities f for which
Eq. (5.1) admits an SOP solution (that is a periodic solution with successive sign
changes spaced at distances larger than 1). A nonlinearity f in the function class
considered is close to a - sgn () outside a small neighborhood of 0; the Lipschitz con-
stant for f is sufficiently small on (—oo, —¢)U (e, 00), € > 0 small. Hence the associated
return map is a contraction, and a periodic solution arises as the fixed point of the
return map. In case f is C'-smooth, the corresponding periodic orbit is hyperbolic and
stable. In a subsequent paper [38], Ou and Wu have verified that the same result holds
for a wider class of nonlinearities.

In case f in Eq.(5.1) is continuously differentiable with f’(z) > 0 for z € R, Cao
[2] and Krisztin [22] have given sufficient conditions for the uniqueness of the SOP
solution. In these works, x — f (x) /x is strictly decreasing on (0, 00).

In this chapter we follow the technique used by Walther in [46] to show that one may
guarantee the existence of an arbitrary number of SOP solutions. For the nonlinearity

f in the next theorem, x — f () /x is not monotone on (0, c0).

Theorem 5.1.1. Assume p > 0. There exists a locally Lipschitz continuous odd non-
linear map f satisfying xf (x) > 0 for all x € R\ {0}, for which Eq.(5.1) admits
an infinite sequence of SOP solutions (p™)°o, with p™ (R) € p"T1(R) for n > 0. If

f is continuously differentiable, then the corresponding periodic orbits are stable and

hyperbolic.
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We point out that a similar result appears in paper [37] of Nussbaum for the case
u = 0. Although the construction of Nussbaum is different from the one presented
here, x — f (x) /x is likewise not monotone for the nonlinear map f given by him.

Suppose f in Theorem 5.1.1 is smooth with f/(z) > 0 for z € R. Based on [47],
it can be confirmed that for the hyperbolic and stable SOP solutions p", p"*! with
ranges p" (R) C p"*! (R), there exists an SOP solution p* with range p" (R) < p* (R) €
p"t1(R). Also, we have a Poincaré-Bendixson type result. For each globally defined
bounded slowly oscillating solution (i.e., for each bounded solution defined on R with
at most 1 sign change on each interval of length 1), the w-limit set is either {0} or
a single periodic orbit defined by an SOP solution. Analogously for the a-limit set.

Moreover, the subset
{zo: x: R — R is a bounded, slowly oscillating solution of Eq. (1.1)} U {0}

of the phase space C' = C ([—1,0],R) is homeomorphic to the 2-dimensional plane.

The nonlinear map in Theorem 5.1.1 is close to the odd step function f* with

. 0 for all z € [0, 1],
f (@) =
Kr™ foralln>0and z € (r",r"H].
We conjecture that with similar nonlinearities, equation & (t) = —pux (t) + f (x (t — 1))

also admits an infinite number of periodic solutions oscillating slowly around zero in

the sense that they have no 3 different zeros in any interval of length 1.

5.2 Periodic solutions for step functions

Fix p > 0 and
et + /221 — ek + 1
K 2
> 1 (5.2)
in this chapter. As a starting point we look for periodic solutions of
& (1) = —pa (8) — [ (x (¢ = 1)), (5.3)
where R > 0 and
—KR ifz < —R,
@) =10 if |z <R, (5.4)
KR ifx>R.

Step function f is the same as fX70 defined in Chapter 3. However, the more simple
notation f% fits our purposes better in this chapter, so we change to this notation.

This should not confuse the reader.
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5.2 Periodic solutions for step functions

Remark 5.2.1. For each R > 0 and z € R, f¥(z) = Rf! (z/R). Hence all solutions of
Eq. (5.3) are of the form Rz (t), where x (t) is a solution of

i (t) = —pa (t) — 1 (@ (t = 1)). (5.5)

In particular, all periodic solutions of Eq. (5.3) are of the form Rx (t), where x (¢) is a
periodic solution of Eq. (5.5). Thus the study of Eq. (5.3) is reduced to the investigation
of Eq. (5.5).

Set R=1and J; = (f1)"" (i) for i € {—K,0,K}.

If to < t; and x : [to—1,t1] — R is a solution of Eq.(5.5) such that for some
i€ {—K,0,K}, we have z (t — 1) € J_; for all t € (tg,t1), then Eq. (5.5) reduces to the
ordinary differential equation

T (t) = —px(t)+1

on the interval (tg,¢1), and thus
o) = -+ (a: (to) — Z) e HE10)  fort ¢ [to, ). (5.6)
7 7
In coherence with Chapter 3, we say that a function x : [tg,t1] — R is of type (i/u) on
[to, t1] with i € {—K,0, K} if (5.6) holds.
It is an easy calculation to show that if y > 0, and K satisfy (5.2), then K > 2u. As
we shall see later, condition (5.2) comes from assumptions

K% —2Ku—p?  _

K >0 and K22 > e M (5.7)

As for any p > 0 fixed, the second inequality is of second order in K, the solution

formula gives (5.2) and (5.7) are equivalent.

Fix ¢ € C with ¢(s) > 1 for s € [-1,0) and ¢ (0) = 1. This choice implies that
solution x = z¥ : [—-1,00) — R of Eq. (5.3) is of type (—K/u) on [0, 1], that is

K K —ut
x(t):—#+<1+u>e for t € [0,1]. (5.8)

Clearly, = is strictly decreasing on [0, 1]. We claim that

2 (1) = —I/j + <1 + f) b (5.9)

is smaller than —1, that is e™* < (K — u) / (K 4 p). Indeed, (5.7) (which condition is
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equivalent to the initial assumption (5.2)) gives

K?—2Kp—p* _(K—p)’ _ K-—p

H< = :
€ K2 _ 2 K22 K+pu
Therefore equation x (t) = —1 has a unique solution 7 in (0,1). It comes from (5.8)
that LK
S (5.10)
po K—p

Note that  maps [0, 7] onto [—1, 1]. Hence x is of type (0) on [1,7 + 1]. Relations (5.6)
and (5.9) yield

K K
z(t) =z (1)e D = _—emnlt=1) 4 (1 + ) e M fortel,7+1]. (5.11)
I 1
In particular,
K—pu ( _ K
+1)= B > 5.12
w4 1) ==t (e (512

by (5.10).

Assumption (5.7) implies z (7 + 1) < —1. In addition, = (1) < —1 and (5.11) give that
x is strictly increasing on [1,7 4+ 1]. So x (t) < —1 for ¢t € [1,7+ 1]. Also, z (t) < —1
for t € (7,1) because z (1) = —1, 7 € (0,1), and x strictly decreases on [0, 1].

In consequence, z is of type (K/u) on [T+ 1,7+ 2]. Then (5.6), (5.10) and (5.12)

imply
2K 2et
K—p

K 1

) e Mforte[r+1,7+2], (5.13)
0

and

1 2K?
t2)=—| K-+ TH (K —p)e ).
x (T ) M( Me ( ) e )

We claim z (7 +2) > —1. This statement is equivalent to
(e" = 1)° K2 + 2™ K + pi? (% — 1) > 0,

So it suffices to show that

—e?t + \/64“ — (et — 1) (et — 1)

K>K0(:u)::u (6“—1)2

This condition is clearly fulfilled, as K > 0 and Ko () < 0 for all 4 > 0. Hence
x(T+2)>—1.
Hypothesis (5.7) implies

thus z is strictly increasing on [T + 1, 7 + 2] by formula (5.13). This result and z (7 + 1) <
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5.2 Periodic solutions for step functions

—1 < z (7 + 2) yield that there exists a unique z € (7 + 1,7 + 2) with z (2) = —1. From

(5.13) we get
1 2K?

Clearly, 2 < 7 4+ 2. We show that z < 2. Indeed, z < 2 is equivalent to

ver 41

< K,
H et —1

which relation is a direct consequence of (5.2). So the monotonicity of z on [T + 1,7 + 2]
gives z (2) > —1.
It follows from the definition of z, from the estimate z (¢) < —1 for t € (7,2) and

from z — 7 > 1 that
z;(s) < —1for s € [-1,0), and z, (0) = —1.

For odd nonlinearities f, we have the following simple observation concluding from

the variation-of-constants formula.

Remark 5.2.2. If f : R — R is odd, i.e. f(—z) = —f (x) for all x € R, then for all
peCandt>—1,27%(t) = —a¥(1).

Remark 5.2.2 and the previous argument give

xoy (s) = x37 (s) > 1 for s € [-1,0), and z2, (0) = 237 (0) = 1.

z

Hence x can be extended to a periodic solution of Eq. (5.5) on R. Let u! : R — R be a

periodic function with minimal period 2z, and with

—x(t—2), te(z22).

Ul(t):{x(t)’ tE[O,Z],

Then u! satisfies Eq. (5.5) for ¢t € R.

Note that for all ¢ € C with ¢ (s) > 1 for s € [~1,0) and ¢ (0) = 1, we have z{ = u}
for all t > 1.

By Remark 5.2.1, our reasoning gives the following result for Eq. (5.3).

Proposition 5.2.3. Assume R > 0, u > 0, and K is chosen such that (5.2) holds. Let
7€ (0,1) and z € (7 + 1,2) be given by (5.10) and (5.14), respectively. Then Eq.(5.3)
admits a periodic solution uf* : R — R with the following properties.

(i) The minimal period of u't is 2z.

(ii) uf (0) = —uft (1) = —uf (2) = R.

(iii) uf* (t) > R on [~1,0), uf*(t) € (=R, R) on (0,7), u®(t) < —R on (1,2) and
uf (t) > =R for all t € (2,2].
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5 Slowly Oscillatory Periodic Solutions for Negative Feedback

(iv) uf® strictly decreases on [0, 1], and it strictly increases on [1,2].
(v) uft (t) = Ru' (t) for allt € R.
In consequence,

(vi) maxicr ‘uR (t)‘ = Rmaxeg |u' (t)], where

K K K
max‘ul (t)‘ =—u'(l)="—— +He*“ € (1, ) .
teR [ [ 1

Proposition 5.2.3 is applied in the next section with R = 7™, where r > 1 is fixed and
n > 0. We are going to construct a feedback function f so that Eq. (5.1) has an SOP

. n . .
solution close to 4" in a sense to be clarified.

For technical purposes, we need the following notation. For £ € (0, 1), set T; () > 0,
i € {1,2,3}, so that T (§), T2 (§), T3 (§) is the time needed by a function of type
(—=K/un) to decrease from 1 to 1 — &, from —1 + £ to —1, and from —1 to —1 — &,

respectively.

Using (5.6), one gets

_1. 23
h@) =g (1+K+u(1—£))'

AsIn(1+ z) < z for all z > 0, we obtain

§

T (§) < )

< (5.15)

£
=.

Similarly,

§ and Ty (6) < —°

T2(§)<K—,u K—2u

(5.16)

As u! is of type (—K/p) on [0,1] (see (5.8)), and u® (t) = Ru' (t) for all R > 0 and
t € R, the definition of T; (£), i € {1,2}, clearly gives

W (Ty(€)) = R(1 =€) and u” (1 = T3 (§)) = —R(1 &)

for R > 0, ¢ € (0,1) and 7 defined by (5.10). Analogously, u? (7 + T3 (£)) = —R (1 + )
for R > 0 and £ € (0,min {1, [u! (1) + 1[}).

5.3 Slowly oscillatory solutions for continuous nonlinearities

Now we turn attention to continuous nonlinearities. In addition to parameters p > 0

and K satisfying condition (5.2), fix a constant M > K.
For r > 1,e € (0,r—1) and n € (0, M — K), let N = N (r,e,n) be the set of all
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5.3 Slowly oscillatory solutions for continuous nonlinearities

continuous odd functions f : R — R with
|f ()| <n for = €0,1],

f (x)

Tn

‘<Mfor all z € (r",r" (14+¢)) andn >0

and
/(@)

rn

—K’ < nforall z € [r”(l—i—a),r"“} and n > 0.

Elements of N restricted to [—r",r"], n > 1, can be viewed as perturbations of f’"%1

introduced in the previous section.

Observe that

max 2 < Mr™ ! for all n > 1. 517
fEN(rem), me[—r”,rn] ’f ( )‘ > ( )

For f € N (r,e,n), we look for SOP solutions of Eq. (5.1) with initial functions in the

nonempty closed convex sets A,, = A, (r,¢) defined as
A, = {cpe C:r"(14¢)<p(s) <r"for s € [~1,0), ¢ (0) :r"(l—i—s)}, n>0.

Solutions of Eq. (5.1) with f € N (r,e,n) and with initial segment in A,, (1, ) converge
to u”" on [0,2] as r — oo, € — 0+ and 7 — 0+ in the following sense.

Proposition 5.3.1. For each § > 0 there are 1o = 19 () > 1, €0 = €0 (0) > 0 and
o = 1o (8) > 0 such that for all r > 1o, € € (0,e9), n € (0,1m0) and n > 0,

sup ‘a:“" (t) —u"™" (t)‘ < or".
fEN(rem), p€An(re),t€(0,2]

Proof. Fix § > 0 arbitrarily. Set r,e,7 as in the definition of N (r,&,7), and choose r

to be greater that —u! (1). In addition, assume that

e+n <r+u (1), and2<€—|—77<min{17

ul (1) +1]}. (5.18)

This is clearly possible. Fix any n > 0, ¢ € A, (r,e) and f € N (r,e,n). As usual, let
x¥ denote the solution of Eq. (5.1) with feedback function f and initial segment .

1. By Proposition 5.2.3 (iii), u"" (t) > r™ for t € [~1,0). Hence the definition of

f™", the definitions of the function classes N (r,&,7) and A, (r,¢) and the variation-of-
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constants formula give that

[ (8) — " (1))

IN

‘x“" (0) —u™" (O)‘ e Mt

+ /Ot e_”(t_s)f (p(s—1))ds — /Ot e_“(t_s)f’m (uw (s — 1)) ds

< ere M 4 / ' mnlt=s) | (¢ (s —1)) —r"K|ds (5.19)
0

<r"(e+n)

for t € [0,1].

2. Similarly, for ¢ € [1,2] we have

[ (1) =™ ()] < o (1) — " (1)] 10D

+ /t e_M(t_S)
1

n
< [l o

f?(s=1) =" (u" (s = 1)) \ ds  (5.20)
+ /01 ’f (¥ (s)) — Ji (uTn (s))‘ds.

By the previous step, ||zf —u] || < 7" (¢ + ). Since |u"" (t)| < r™|u' (1) holds for
all real ¢ by Proposition 5.2.3 (vi) and since e+n < r + u' (1) holds, it follows that

|27 (1) <

WO ) <0t (<ut () +etn) <ot forte[0,1]. (5.21)

We give an upper estimate for the integral on the right hand side in (5.20).

2.a. First we consider interval [0, 7], where 7 € (0,1) is defined by (5.10). Recall
from Proposition 5.2.3 (iii) that u”" () € [—r™,r"], thus f™" (u"" (t)) =0 for t € [0, 7].

Parameters ¢, 7 are set so that 0 < ¢ +n < 1, therefore T; (¢ +n), i € {1,2}, is
defined, and Ty (¢ +7) < 7 — T3 (¢ + ). By the monotonicity property of " on [0, 1]
(see Proposition 5.2.3 (iv)) and the definitions of T;, i € {1, 2}, we have

u” (t)‘ <r"—r"(e4+n) forte[Ti(e+n),7—Ta(e+n).
So with 71 =Ty (¢ + 1) and Ty = T (¢ + 1), the estimate given in the first step implies

2% ()] <

u" (t)‘ +r"(e+n) <r" forte [T, —T).
In case n > 1, property (5.17) yields
F @ @) =7 (0" )| = 1f @ @) < ", teTir =Tl
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5.3 Slowly oscillatory solutions for continuous nonlinearities

For n =0,

F @ @)= £ (w' (1) = If @ @) <, tehr-Tl,

by the definition of the function class N (r,e,7n). As 0 < 7—T; —Ts < 1, it follows that

/TT2
iA

f(z?(s)) = f (urn (s)) ‘ ds < max {]\f,n} r" (5.22)
for each n > 0.

For t € [0,T1) U (1 — Ty, 7], we have |2% (t)| < r"*! by (5.21). Hence (5.15), (5.16)
and (5.17) imply

( [ /:_T) F@ ()= £ (a7 ()] ds= ( [+ T_T2> £ (@# (s))]ds

2M
< Mr" (Ty +T3) < I7a

(e+mn)r". (5.23)

2.b. Estimates for the interval (7,1]. For each ¢t € (1,1], u"" (t) < —r", hence
(W™ (b)) = —Kr™.

Parameters e, n are fixed so that 0 < 2¢ + 7 < min {1, ‘ul (1) + 1|} holds, thus
T3 (2¢ +n) is defined and 7 + T3 (2 +7) < 1. The fact that u"" strictly decreases on
[0,1] and the definition of T3 give that

n

u” () < —r"—=r"(2e4+n) forte[r+T3(2e+mn),1].

Hence

2 (t) <u™ )+ (e4+n) < —r"(1+e) forte[r+1Ts1],

where T3 = T (26 + 7). Also, 2% (t) > —r™*! for ¢ in this interval. It follows from the
definition of N (r,e,n) that

F @ @)= 7 (u" (0)| = 1f (2 (1) = (—Kr™)] <"y

for t € [t 4+ T3,1], and

1
/ f(z?(s))— f (uw (s)) ‘ ds < (1 —7—=T5)r"n <7r"n. (5.24)
T+T13

It remains to consider the interval (7,7 + T3). From (5.16), (5.17) and (5.21) we
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obtain that

/T+T3
’

F @ () =" (u" ()] ds <

<Ty(M+ K)r"

@ )

(2 +n)r". (5.25)

A

~1\\‘

+

&

ga—

~
X
)
D
z
_l’_

IN

K —-2u

Set 79, €0,M0 as in the definition of N (r,e,7n) with rg > —u' (1) and M/rg < §/2. If
necessary, decrease €9 > 0 and 79 > 0 so that (5.18) holds for rg, 9, 7m0, and

|

M+ K
(€0 +mo) +mo + (260 + m0) <

(€0 +10) + 10 + K2

K—p

Then summing up the estimates (5.19), (5.20) and (5.22)-(5.25), we conclude that
‘:r“”f (t) —u"™" (t)‘ < or" on [0, 2]

for all r > 19, € € (0,e0), n € (0,1m0), n >0, p € A, (r,e) and f € N (r,e,n). O

Fix any w € (7,2 —1). Then w+1 € (7 +1,2), and u"" (t) < —r™ on [w,w + 1] for
all n > 0 by Proposition 5.2.3 (iii).

In the subsequent result, we apply Proposition 5.3.1 and confirm that with an ap-
propriate choice of parameters r, ¢ and 7, we have z¥ (t) < —r" (1 + ¢) on [w, w + 1] for
all f € N(r,e,n), n>0and ¢ € A, (r,e). The same proposition and u™" (2) > —r"
guarantee ¥ (2) > —r". Hence there exists ¢ € (w + 1,2) with 27 € — A4, (,¢).

Before reading the proof, recall that u"" (t) = r"u! (t), t € R, and

f > ‘ul (1)’ >ul (2) > —1>u! (1).
Proposition 5.3.2. There exist r1 > 1, €1 > 0 and n1 > 0 so that for each r > ry,
e € (0,e1), n € (0,m), n >0, f € N(r,e,n) and ¢ € A, (r,e), the solution z¥ :
[—1,00) = R of Eq.(5.1) with nonlinearity f has the following properties.
(i) —r" Tt < 2% (t) < r"*L fort € [0,2].
(i) z% (t) < —r" (L +¢€) fort € [w,w+ 1], and ¥ (2) > —r".
(iii) ¥ (t) < 0 fort € (0,1), and £¥ (t) >0 fort € (w+ 1,2].
() If g = q(p, f) € (1 +w,2) is set so that ¥ (q) = —r" (1 +¢€), then q is unique,
and xf € — Ay, (1,€).
(v) If in addition ¢ € A, (r,€), then for the semiflow (2.2) the equality
O (1+w,¢) =21+ w,p) implies q (b, f) = q (o, f).

Proof. Assume

0<5<min{;(i{+ul(l)>,—;< max ul(t)+1>,1+u1(2)}.

te(w,w+1]
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Note that all expressions on the right hand side are positive.

Choose 1 = max {K/u,ro ()},

te|w,w+1]

1 1
€1 = min {50 (6), —3 ( max u' (t) + 1) } , 71 = min {170 (6), B (K + put (1))} ,
where 7 (9), €0 (6) and ng () are given by Proposition 5.3.1. Consider r > ry, € €
(0,e1),n € (0,m), n =0, f € N(re,n) and p € Ay (r,€).

(i) For t € [0, 2], it follows from Proposition 5.2.3 (vi) and Proposition 5.3.1, that
22 (O] <u” (1) + 70 <o (|ul ()] +6)

As we chose § to be smaller than K/p + u' (1) < 7+ u! (1), we deduce that |z% (t)| <
rrtl

(ii) For t € [w,w + 1] we get

o (t) <™ (t) + "6 <" ( max u' (t) + 5) <—=r"(1+¢)
te[w,w+1]

because  + & < — maXye(w,w1] u! (t) — 1. For t = 2 we obtain that

n

2#(2) 20" (2) =6 > (ul (2) = 8) > ",

as § < 1+a!(2).
(iii) For ¢ € (0, 1),

7 (t) = —pa®(t) = f(p(t—1))
< —p (Wt @) =) = (K =)
< o (—pul (1) + po — K +1) <0,

as the parameters are set so that

K
s+ 1< = put).
poon

For t € (w+ 1,2], we have t — 1 € (w, 1]. Thus —r" ™! < 2% (t —1) < —r" (1 +¢) by

assertions (i) and (ii) of this proposition, and

#(1) = —pa® (1)~ f (27 (t ~ 1)
> (1) +776) 4" (K~ )
> " (—pu (2) = pd + K — ) >0,
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since

K K
S+l < )<= —ul(2).
poop [

Assertion (iv) now follows immediately.
(v)Ifyp € Ay (r,€) and @ (1 4+ w,1p) = & (1 4+ w, ), then ¥ (t) = 2% (¢) for t > 1+w.
Asq (¥, f) > 1+wand q(p, f) >1+w, q(¥, f) = q (e, f) follows. O

5.4 Lipschitz continuous return maps

Recall that > 0, and (5.2) holds in this chapter. In addition, from now on we assume
that K > pet. M > K is fixed as before.

Set r > 11, e € (0,£1) and n € (0,71) in this section, where r1, £1 and 7, are specified
by Proposition 5.3.2. Following Walther [46] and based on the results of Proposition

5.3.2, we introduce the Lipschitz continuous return map

R} : An(re) 29— —2(q(p, f).p) € An(r,¢)

for each f € N (r,e,n) and n > 0. As it is discussed in [46], the fixed point of R%,
n > 0, is the initial segment of a periodic solution p™ of Eq. (5.1) with minimal period
2q and special symmetry p" (t) = —p" (t + q), t € R. As p" has at most 1 zero on |0, ¢
and g > 1, the special symmetry property implies that p™ is an SOP solution.

In order to verify the Lipschitz continuity of R}, we define the map

st @ (14w, Ay (re) 2= q(p, f) —1—we (0,1 —w), with ) =& (1+w,yp),
for each n > 0 and f € N (r,e,7n). Also, set
F': A, (rie) 29— @(1,p) € C,

FL:® (1L An(re) 29 ®(w,g) €C,
S} @ (14w, Ay (r9)) 2 9 =~ (s (¢) ) € An (1)

for all f € N (r,e,n) and n > 0. Proposition 5.3.2 implies that st and S} are well-
defined. Then RY is the composite of F]*, followed by F}, then by S;}.

We give Lipschitz constants for the maps above. As next result we state Proposition
3.1 of [46] without proof.

Proposition 5.4.1. Set r > 7, ¢ € (0,e1) and n € (0,m1). Assume n > 0, and
f € N (r,e,n) is locally Lipschitz continuous. If L™ = L™ (f) and L} = L} (f) are
Lipschitz constants for the restrictions f|[,Tn+1,rn+1] and f|[rn(1+€)ﬂ.n+1}, respectively,

then L7} is a Lipschitz constant for FI', and 1 +wL™ is a Lipschitz constant for F;.
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The following result is analogous to Proposition 3.2 in [46], and the proof needs only

slight modifications.

Proposition 5.4.2. Let r > r, ¢ € (0,e1), n € (0,m1) and n > 0. Assume in addition
that

K—n>(1+¢)pe"

If flipn(14e),rn+1) @8 Lipschitz continuous with Lipschitz constant LY = L7 (f), then s}

is Lipschitz continuous with Lipschitz constant

14 erL?
L n — %
(+3) (K —n — pet (1+¢)]

and S¥ is Lipschitz continuous with Lipschitz constant L (s?) (pr+M)r™+1+ LY.

Proof. Choose ¢, € ®(1+w, Ay (r,€)). With s = s (¢) € (0,1 —w) C (0,1) and
§=s%(p) € (0,1 —w) C (0,1), we have

~(1+e)m = p @) — [Ty (o6 - 1) e,

and _
~(1H )" = p e — [ O (o (g - 1) de.

0
Hence

(I+¢e)r" ‘e"s —ehs

> /Ose“gf(w(é—1))d§—/056“§f(<p(§—1))d£’
~ o) - 5 (0)]

_ /OS M {f(p(E—1))—f(p(E— 1))}d5‘
> |[ s ote- )

= -l

_ /0 eﬂf{f(SO(g—1))—f(cp(£_1))}d§‘.

Since —r"*t! < ¢ (t) < —r" (1 4+ ¢) and —r"*! < ¢ (t) < —r" (1 +¢) for each t € [—1,0],
we conclude that

(I+¢e)r" ‘e”s —ehs

2 |s = 5[r" (K —n)—lle—oll —e'Lille -2l
On the other hand, |e#* — /5| < pet |s — §|. Thus

1+ etLn

_5 <
s 8|_r”[K—n—ue“(1—|—6

||<)0 - QBH )
)]
and the proof of the first assertion is complete.
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If p =@ (1+ w,v) with ¢ € A, (r,¢), then for t € [-1,0],

O (5,0) (1) =D (s,0) (1) = a¥spis ()=l iy (t)
14+w+3
= / # (€)d¢
1+w+s
1+w+3
- /1+w+s {_'uxw & -1 (x¢ (3 1)) } d¢€.

So Proposition 5.3.2 (i) and (5.17) imply
@ (5,0) (£) = @ (5,0) (B)] < |5 = 5] (ur + M) < L(s}) (ur + M) [l — @

for t € [-1,0]. Also, it is easy to see using 5 € (0,1), =" < o (), ¢ (t) < —r" (1 +¢),

t € [-1,0], the oddness of f and the variation-of-constants formula, that

1@ (5,0) =@ (5,0)| < (L+LY) [l — 2l -

Hence

1S (p) =S (@)l < [[®(s,0) = (5,0) + 12 (5,0) — @ (5,9)

1+elL} _
- M)+1+ L} —
(ot = M+ 1+ L2 o=l

<

and the proof is complete. O
It follows that under the assumptions of the last two propositions, RY is Lipschitz
continuous, and

1+ erLn
K —n—pet(l+e)

L(R’;):Lf:(uwm)( (,ur+M)+1+LZ})

is a Lipschitz constant for RY. Clearly, if L (R?) < 1, then RY is a strict contraction
with a unique fixed point in 4, (r,¢), and Eq. (5.1) has an SOP solution with initial
function in A, (r,¢€).
5.5 The proof of Theorem 5.1.1
Proof of Theorem 5.1.1. Choose r > 11, € € (0,¢1) and n € (0,71) with

K —n>(1+4¢)pe’.

We give a nonlinearity f € N (r,&,7n) so that R;% is a contraction for each n > 0. The
function f is defined recursively on [—r", r"] for n > 1.

First step. Let f : [-1—¢,1+¢] — R be a Lipschitz continuous odd function
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5.6 A possible modification

with |f (z)] < n for x € [0,1], |f(z)] < M for all x € (1,1+¢) and f(1+¢) €
(K —n, K +n). Let LY, be a Lipschitz constant for fli=1=c,14¢)- Extend the definition
of f to domain [—r, 7| so that f remains odd, |f (z) — K| < n for z € [1+¢,r], and

flj14¢,) is Lipschitz continuous with Lipschitz constant LY satisfying

1+ erLY
0 0 70 * 0
L <1+wmax{L*,L**}> ( e (159 (,u1“+M)+1+L*> < 1.

This is possible by choosing LY sufficiently small. Then L° = max {L% L%} is a

Lipschitz constant for f|,_,,}, and R? is a strict contraction.

Recursive step. If f is defined for [—r",r"] with some n > 1, extend the definition

of f to the domain [—r"* 7"*1] so that f remains odd, Lipschitz continuous,

f(x)
(z)

r

‘<Mfor all z € (r",r" (1 +¢)),

’f —K‘<77forallx€[7’"(14—5),7“”“},

and if L}, is a Lipschitz constant for f[;n yn(14e)), then f|pn(i4e)m+1) has a Lipschitz

constant L} with

1+ erL”
(1 Ik Ik ) ( i M) a1 L’”) .

Then L™ = maxo<g<n {Lf, L’j*} is a Lipschitz constant for f[_n+1 ,n+1), and RYis a
strict contraction.

Thereby we obtain a locally Lipschitz continuous odd function f for which RY is a
strict contraction for all n > 0. For such f, Eq.(5.1) has an infinite sequence of SOP

solutions with initial segments in A,, (r,€), n > 0. It is clear that one may set f in this
construction so that zf (z) > 0 holds for all z € R\ {0}.

It follows from Section 4 in [46], that if f is continuously differentiable, then the

corresponding periodic orbits are stable and hyperbolic. (|

5.6 A possible modification

As before, set K > 0 satisfying condition (5.2) and choose M > K. For r > 1,
e e (0,r—1) and n € (0,M —K), let N (r,e,n) be the set of all continuous odd
functions f : R — R with

f(x)

Tn

< Mforall z e (r",r" (1 +¢)) and n € Z

99
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and with
f(z)

T.n

—K‘ < nforall x € [r”(l—l—e),r”“] and n € Z.

Then minor modifications of our results in Section 3 and in Section 4 yield the

subsequent theorem.

Theorem 5.6.1. Assume p > 0. There exists a locally Lipschitz continuous odd non-
linear map f € N (r,e,m) satisfying xf (z) > 0 for all z € R\ {0}, for which Eq.(1.1)
admits a two-sided infinite sequence of SOP solutions (p™)>,_ with

: n _ . n _
Jlm max[p®(z)] =0,  lim max|p® (z)] = oo,

and with p™ (R) € p" T (R) for n € Z.

It is easy to see that the elements of N (r,e,n) are not differentiable at x = 0.
Hence the hyperbolicity and stability of the periodic orbits given by the theorem does
not follow directly from paper [45] of Walther. Still we conjecture that these periodic
orbits are hyperbolic and stable.
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6 Dynamics for the Hopfield Activation
Function

6.1 The Gyori-Hartung conjecture

This chapter studies Eq.(1.1) with the piecewise linear Hopfield activation function
defined by

) 1, x>1,
f:]RBa:I—>§(|:U+1|—|x—1|)= x, —-1<z<l, (6.1)
-1, z< -1

Motivated by paper [11] of Gy6ri and Hartung and by paper [17] of Heiden, Mackey
and Walther, we consider the following more general form:
z(t) = —px(t) +af(x(t) + bf(x(t — 1)) + 1, (6.2)

where

a,byp, I €R, p>0,0#0 (6.3)

and f is the Hopfield activation function (6.1).

_05-

-10-
Figure 6.1: Plot of the Hopfield activation function

It is easy to check that there is a single equilibrium point if © > a + b — |I|. If
u<a+b—|I|, Eq.(6.2) has more equilibria, which makes the asymptotic behavior of
the solutions more interesting.

The dynamics of (6.1)-(6.3) was described by Gy6ri and Hartung in [11] for certain

choices of parameters. They have proved that the unique equilibrium point is globally
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6 Dynamics for the Hopfield Activation Function

asymptotically stable provided p > a + |b| 4+ |I|. Conditions b > 0 and a +b — |I| <
i< a+b+|I| yield the same result. Based on numerical studies, Gyéri and Hartung
have drawn up the conjecture that in case b > 0 all solutions of (6.2) are convergent as
t — oo. In this chapter we disprove this conjecture and intend to give a description of

the dynamics in the remaining case, namely if
b>0and 0<pu=a+b—|I| (6.4)

and if
b>0and 0< pu<a+b—|I]. (6.5)

In the first place, the conjecture is sustained under condition (6.4) (see Theorem
6.3.1). Under hypothesis (6.5), most of the solutions of Eq. (6.2) still tend to a constant
equilibrium, namely there exists a one-codimensional submanifold S of the phase space
C such that all solutions with initial functions in C'\ S are convergent. To describe this
latter case in detail, we distinguish two subcases according to whether b > L (a, u) or
b < L(a,p), where

p—a _ - o ‘
L(a,p) = ol with 6 € (m,27) and 0 = (a — p) tan @ if p #a

The main purpose of this chapter is to show that condition b > L (a, ) implies the
existence of a periodic solution of Eq. (6.2) (see Theorem 6.3.2). In case b < L (a, u) the
description of the long-term behavior of solutions is not complete yet. We suspect that
the conjecture is true for this choice of parameters. Assumption b = L (a, i) serves as
an easy counterexample to the conjecture, as a continuum of periodic solutions appear

in this case.

As we have mentioned in Section 2.2, if the feedback function f is smooth and
strictly increasing, the so-called The Poincaré—Bendixson theorem confirmed by Mallet-
Paret and Sell [33] shows that all bounded solutions of (6.2)—(6.3) are convergent
or asymptotically periodic. However, the fact that the Hopfield activation function
is neither strictly monotone nor smooth gives rise to nontrivial technical problems:
the solution operator is neither injective nor differentiable everywhere. Thereby the

techniques of the Poincaré-Bendixson theorem cannot be used here.

It also appears to be evident to approximate the Hopfield function with a sequence
(fn)o~ of smooth and strictly increasing feedback functions, and then apply either
the Poincaré—Bendixson theorem or the results of Krisztin, Walter and Wu for the
equation with feedback function f,. In the special case when b > 0, a = I = 0 and
f is a 7good” strictly increasing smooth feedback function, the global dynamics was
completely depicted by Krisztin, Walter and Wu, see Section 2.2, and the references

therein. However, the method of approximation is not as beneficial as one would expect,
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since the global attractor is only upper semicontinuous [14].

We use another approach in this chapter to describe (6.1)—(6.3) and we focus only
on conditions (6.4) and (6.5).

6.2 Notations and preliminary results

Assume (6.1)—(6.3) and b > 0. As one can easily verify, there are three possible
equilibrium points &4, €_, & of (6.2) given by
a+b+1 —a—b+1 I
f4=——, &=—— and =—— 6.6
" 7 m p—a—b (6.6)
if 4 # a4+ b in the third case. It is obvious that £+, f_ and éo are equilibrium points of
Eq.(6.2) ifand only if 1 <&y, & < —land -1 < < 1.

The following lemma is stated in [11] and holds without assumption b > 0.

Lemma 6.2.1. Let §+,é_ and éo be defined by (6.6). The following statements hold.
(i) If 0 < p=a+b and I =0, then any number £ € [—1,1] defines an equilibrium of
FEq.(6.2), and Eq.(6.2) has no other equilibria.
(i) If 0 < p=a+b—|I| and |I| # 0, then Eq.(6.2) has two equilibrium points:

o if I >0, then £+ > 1 and é_ = éo = —1 are equilibria,

o if I <0, then £+ = é() =1 and é_ < —1 are equilibria.
(i5i) If 0 < p < a+b—|I|, then £, >1, 6 <—1and —1< & < 1 are the equilibrium
points of Eq.(6.2).

The phase space for Eq. (6.2) is C = C' (|-1,0],R). As in case Eq.(1.1), each ¢ € C
uniquely determines a solution z¥ : [—1,00) — R of Eq. (6.2) so that z§ = .

The map ® : R* x C 3 (t,) — af € C is a continuous semiflow also in this
case with three possible stationary points €+,f_ and éo. As the Hopfield activation
function is neither strictly increasing nor smooth, @ is neither injective nor differentiable
everywhere.

Define v : R? — R (Fig. 6.2) by

1, lul <1 and |v| <1,

G, Jul > 1and |u] <1,

Y 0) = § ) < Land o] 2 1, (67)
W, u>landv<—-loru<-landv>1,
0, u>landv>1loru<-1andov<-1.

Then v is a nonnegative and continuous function on the set R? \ {(—1,—1),(1,1)}.
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TV
.. 2 _ 1-— _
7= = 7= = 7=0

IS

—ay — 14U —— — —_ _ 1-v —»
7= v—u Y=o T=u=v 4
= — utl _ _2
=0 T=u—v 7= u—

Figure 6.2: The definition of v
For each (u,v) € R?\ {(—1,-1),(1,1)} we have

1
flu) = f(v) = /0 f'(su+ (1 = s)v)ds(u—v) = y(u,v)(u - v).

Therefore, f(u) — f(v) = y(u,v)(u — v) for all (u,v) € R

If u,v : [a,b] — R are continuous functions, then it also easy to see that [a,b] > t —
~v(u(t),v(t)) € [0,1] is Lebesgue integrable.

Let J be an interval. Setting

a:J 3t pu—ay(x(t),z(t)) (6.8)

and
B:Jot—by(z(t—1),2(t—1)) (6.9)

where z : [-1,0] +J — R and & : [-1,0] + J — R are solutions of Eq. (6.2), we find
z 1= x — & satisfies
Z(t) = —a(t)z(t) + B(t)z(t — 1) (6.10)

for t € J, t > inf J. Notice that « is locally Lebesgue integrable, 5 is nonnegative, and
[ positive provided & = éo and —1 < éo < 1 (see Lemma 6.2.1). Hence Lemma 2.3.2
can be applied for z = x — Z. By Remark 2.3.3, if xg # £, then z; =+ & for all ¢. This
fact plays an important role later in this chapter.

Recall that for ¢, ¢ € C, we have ¢ < ) if p(s) < (s) for all s € [-1,0], ¢ < ¢ if
¢ < and ¢(0) < ¥(0), and in addition ¢ < ¢ if p(s) < P(s) for all s € [-1,0].

Proposition 6.2.2. Let ¢ and ¢ be elements of C with ¢ < ¢ (p < ). Then xz?(t) <
z¥ (1) <:c9"(t) < x¢(t)) forallt > 0.

Proof. Assume that ¢ € C and ¢ € C with ¢ <1 (¢ < ). Set y = 2¥ — x®. Then y
satisfies Eq. (6.10) for ¢ > 0, where o and 3 are given by (6.8) and (6.9) with z = 2¥
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and # = 2%. As ¢+ [j a(u)du is absolutely continuous, one obtains
t t t
u(t) = e oo ty(0) - [ el g e)y(s — 1)ds 2 0 (> 0)
0
for t € [0,1]. The proof can be completed by the method of steps. O

Recall from Lemma 6.2.1 that if conditions (6.4) and |I| # 0 are fulfilled, or (6.5)
holds, then é’+ > 1 and é_ < —1 are equilibria.

Proposition 6.2.3. Assume conditions (6.4) and |I| # 0 are satisfied, or (6.5) holds.
If v : [-1,00) — R is a solution of Eq. (6.2), then

min{— l|ol| ,5:} < z(t) < max {HXQH ,ér} for all t > —1.

Proof. Assume that there exist ¢ > 0 and ¢ > 0 so that z(t) > max {HXOH ,§+} + €.

Then there is a minimal ¢y > 0 with z(¢y) = max{HXoH ,§+} + e. Necessarily z(tg) > 0.
On the other hand,
&(to) < —pa(to) +a+b+1 <0,

which is a contradiction. One can prove analogously, that min {— llzo] ,f_} < x(t) for
all t > —1. O

Observe that in case (6.4) and |I| # 0 hold or if hypothesis (6.5) is satisfied, then
Proposition 6.2.3 ensures that condition (T) introduced in Section 2.1 is valid for
Eq. (6.2). If we choose v to be greater than p + |a|, then (SM) is also fulfilled. Hence
the set of convergent points contains an open and dense subset of C in these cases by
Theorem 2.1.1.

6.3 The main results of the chapter
First, we prove the truth of the Gyéri-Hartung conjecture in case (6.4).

Theorem 6.3.1. Consider (6.1)-(6.3). If (6.4) holds, then every solution of Eq. (6.2)

tends to an equilibrium as t — o0.

As more complicated structures appear if © < a + b — |I|, the greatest part of the
chapter deals with that case. Assume (6.1)—(6.3) and (6.5). Recall that ® has three
stationary points: 1 < €+, é_ < —land -1 K éo < L

Let interval J C R be given. If x is a solution of Eq.(6.2) with |z(t)] < 1 for
t € J 4 [—1,0], then (6.2) becomes linear, and for y := z — & we get

§(t) = (=p+a)y(t) +by(t — 1) (6.11)
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for all t € J, t > infJ. For this reason it is evident to examine (6.11). Let y¥ :
[-1,00) — R denote the solution of (6.11) with initial function . The solution op-
erator T'(t) : C — C, t > 0, defined by relation T'(t)y = y;b, is a strongly continuous
semigroup of linear operators. The spectrum of the generator of the semigroup consists

of eigenvalues that coincide with the zeros of the characteristic function
Co A= —pu+a+be ™ eC. (6.12)

As discussed in Section 2.1, there is one real eigenvalue \g, the others form a sequence
of complex conjugate pairs ()\k,/\ik), 1 < k e N, with (2k — )m < Im)\;, < 2k,
Ao > Redp > Re)gyq for all £ > 1 and ReAy, — —o0 as k — o0o. The real eigenvalue \g
is positive if and only if 4 —a < b.

Set L(a,pu) = (1 — a)/cos6, where § € (m,27) with = (a — p)tané if p4 # a,
otherwise set L (a, ) = 3w/2. An elementary calculation yields that condition p —a <
b < L(a, ) implies Re\; < 0 < Ao, while b > L (a, ) is equivalent to 0 < ReA; < Ag.
As we shall see, in the latter case interesting structures appear.

The asymptotic behavior of a solution of Eq. (6.2) also depends on whether the initial

function belongs to the set
S = {go € C: 2% — & has arbitrarily large zeros} .

The set S is a 1-codimensional Lipschitz submanifold of C' (see Proposition 6.5.2),

which also plays a role in the following theorem, the main result of this chapter.

Theorem 6.3.2. Consider (6.1)—(6.3) and (6.5).

(i) Most of the solutions are convergent. That is, if ¢ is an element of C'\ S, then
xf—>§c+ 0rxf—>£_ as t — oo.

(ii) Condition b > L (a, j1) implies the existence of a periodic solution p : R — R with

minimal period w € (1,2).

Recently Garab and Krisztin [10] have shown for the case a = I = 0 that if exactly
2k 4+ 1 eigenvalues of the generator have positive real parts, then exactly k different
periodic orbits exist. In particular the existence of a periodic orbits is precluded for
b < L(a,p). The proof of the existence of the periodic orbits is based on Theorem
6.3.2 (ii).

It remains an open problem whether the global attractor of Eq. (6.2) can be described
as in [22] for the equation @(t) = —px(t) + f(z(t — 1)) with feedback function f(x) =
atanh(fx). We suspect that the Gyéri—Hartung conjecture, stating that all solutions
tend to a constant equilibrium, is true if b < L (a, p).

Before moving on, it is worth mentioning case b = L (a, 1), as it serves as an easy

counterexample to the conjecture. Condition b = L (a, u) is equivalent to ReA; = 0,
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and in consequence the periodic function
R >t & + acos(Imht) + bsin(ImA\it) e R, a€R, beR

is a solution of Eq. (6.2) provided |a| and |b| are small enough.

6.4 The proof of Theorem 6.3.1

Theorem 6.3.1 follows immediately from results of Smith, Gyo6ri and Hartung.

Proof of Theorem 6.3.1. 1. Case I = 0. Evoke that if 0 < p =a+ b and I =0,
then any number £ € [—1, 1] defines an equilibrium of (6.2). Gy6ri and Hartung have
shown in [11] that if 1 < ¢ (¢ < —1), then lim¢ oo 29(¢) = 1 (limyoo 2¥(t) = —1).
As a consequence of these facts and monotonicity, w(¢p) is a subset of C' ([-1,0], [-1, 1])
for all ¢ € C.

First we prove that whenever ¢ € C satisfies —1 < ¢ < 1, ¥ tends to a constant as
t — oo. In this case x¥(t) € [—1,1] for all ¢ > —1, and therefore ¥ : [-1,00) — R is

the solution of the linear equation
z(t) = —bx(t) + bx(t — 1). (6.13)

Using Lyapunov functionals, Haddock and Terjéki have shown in [13] that all solu-
tions of Eq. (6.13) converge. See also Krisztin [21]. We come to the same conclusion

using the theory of linear autonomous equations. Examining the characteristic equation
A= —b+be?,

it is easy to see that the only real root is 0, that is simple, and all the others have
negative real part. Therefore C' 5 ¢ = @1 + @92 and zf = 27" + z, where z' = ¢
is a constant function and zf? — 0 as t — oo [16]. Consequently, if p € C with
—1 < ¢ < 1, then the solution of equation (6.2) with initial function ¢ tends to a
constant equilibrium.

Now suppose ¢ € C, t, = occand z] — ¢ € Casn — oco. As¢ € C([—1,0],[-1,1]),
there exists an equilibrium point € such that for any & > 0, ||5L‘17€ — &|| < £/2 with some
T =T(e) > 0. Since z}  p — :U% as n — oo, we have fonJrT —éH < ¢ for n large
enough. Combining monotonicity and this result, we get fo — é H < ¢ for all t large
enough. As € > 0 was arbitrary, w(p) = £ follows.

2. Case |I| # 0 follows immediately from Theorem 2.1.1. Proposition 6.2.3 ensures
that (T) holds for (6.2). If we choose v to be greater than p + |a|, then (SM) is also
fulfilled. Additionally, Eq. (6.2) has exactly two equilibrium points if 0 < p = a+b—|I|

and || # 0 by Lemma 6.2.1. Therefore all solutions converge to one of these. O
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6 Dynamics for the Hopfield Activation Function
6.5 The separatrix and the leading unstable set of ¢,

We proceed to verify Theorem 6.3.2, so from now on consider Eq. (6.2) with feedback
function (6.1) and parameters satisfying (6.3) and (6.5).

By Lemma 6.2.1 (iii) and Proposition 6.2.2, the closed and convex sets
K2:{<70603 503@}, KSZ{CPECZ ﬂpééo}
are positively invariant. The separatrix
S = {90 € C: 2% — & has arbitrarily large zeros}
is also positively invariant. Observe that

C\S=Jo( )" (intK> UintK<),
>0
which shows that S is closed.
The next statement is analogous to Proposition 3.1 in Krisztin, Walter and Wu
[26]. However, a different order is considered on C, as we examine a different type of

equation.
Proposition 6.5.1. For each ¢,v € C with ¢ <1, either o € C'\ S or¢p € C'\ S.

Proof. Provided there are ¢ € S and ¢ € § with ¢ < 1, we may suppose ¢ < ¢ using
Proposition 6.2.2 and the positive invariance of S. Theorem 2.1.1 ensures that we find
©* € C and ¢* € C with ¢ € ¢* < ¥* < 1) so that xf* — &9 and :nff) — &
as t — oo, where &9 € {§+,§_,€0} and £V € {f+,§_,§0}. Then y = 2% — 2% is

positive and satisfies

y(t) = (=p+ay(t)) y(t) + b5 — Dy(t = 1)

for t > 0, where 4(t) =~ (J:W (t), z#" (t)) and ~y is defined by (6.7).

Suppose xf* and :L"f’* both converge to & as t — co. Then A(t) — 1 as t — oo, and

there exists a o > 0 such that |§(t) — 1| < & for all ¢ > t;. Therefore

eww (ut—a [ 463ds) w(0)) = vexp (st —a [ 4(s3ds) 30— Dyl = 1) > 0

for t > tg + 1, and thus

se-1 < ew(n—af 36ds)

3a

< exp (max {,u,,u - 2}> y(t) =ey(t) for t>to+2,
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where ¢ = max {p, p — 3a/2} > 0. Choose
e=0.5(a+b—p)(ef+ 1)1

Then € is positive since u < a +b. As 4(t) — 1 as t — oo, there exists 1 > to + 2 so
that
for ¢ > t;.

€
y(t) —1 _—
‘7() ‘<max{|a],b}

It follows that for ¢ > ¢q,
§t) = (—p+a— y(t) + (b— Iyt —1) = (1 — a+ e(1+ ))y(t) + by(t — 1).
The choice of € ensures the existence of a positive constant A such that
A= —(p—a+ed+e))+be

Choose § > 0 so that y(t) > de* on [t; — 1,#;]. Function z(t) = e is a solution of
the equation
2(t)=—(p—a+e(l+e€%))z(t) + bz(t — 1).

Set u =1y — z. Then 0 < uy, and
u(t) > —(p—a+e(l+e€))u(t) +bu(t — 1) for all t > ;.

Assume there exists a to > ¢; so that u(t2) = 0 and w is positive on [t; — 1,%2).
Clearly u(t2) < 0. On the other hand, the inequality for u combined with the facts
that w(t2) = 0 and u(te —1) > 0 yields @ (t2) > 0, which is a contradiction. So
u(t) = y(t) — z(t) = y(t) — deM > 0 for all t > ¢; — 1, which contradicts the boundedness
of y.

Hence either &9 € {é_l,_,é_} or & € {€+,€_}. If :Uf’* — €+ as t — oo, then
there exists ty > 0 such that éo < xi/;*. By Proposition 6.2.2, éo < x;%* < xf’o and
:B?’ € intK> for all ¢ > tg, a contradiction to ¢ € S. If :L'f’* — é_ < éo as t — oo, there
exists tg > 0 so that :cf}o* < fo. As acfo < xf;* < 50, segment xf € intK< for t > to,
a contradiction to ¢ € S. The assumption that w (¢*) N {£+,é_} # () also leads to a

contradiction. O

Recall that the realified generalized eigenspace P of the generator associated with Ag
is 1-dimensional and is given by 0 and the segments of the solution R 3 t + e*? € R of
Eq. (6.11). With notation o : [-1,0] 3 t — et € R, P = Ryq. If the 1-codimensional
realified generalized eigenspace of the generator associated with the rest of the spectrum

is denoted by @Q, then C = P & Q.

We claim that .S is a Lipschitz manifold of codimension 1.
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Proposition 6.5.2. There exists a map Sep : Q — P with ||Sep(x) — Sep (X)|| <
e |lx — x| for all x, X € Q such that

S ={&+x+Sep(x): x€Q}.

Proposition 6.5.2 is a direct consequence of Proposition 6.5.1. It can be verified as
Proposition 3.2 in [26], therefore the proof is omitted here.

Assume that b > L (a, ) in the rest of this section. Condition b > L (a, i) is equiv-
alent to 0 < ReA; < Ag, which means the linear unstable space of the generator of the
semigroup is at least 3-dimensional. Note that as Eq. (6.2) is linear in a neighborhood
of &, the leading unstable manifold Wi oc (fo) C (' can be chosen so that it consists of
those functions ¢ for which ||| < 1, and p—£& is an element of the realified generalized

eigenspace of the generator given by A\g and Ai, A\;. So set

Wi loc (éo> = {gp € C: |l¢|l <1, there exist ag,a1,a2 € R so that for ¢t € [—-1,0],

p(t) = €0+ e>‘0t+eRe’\1t (a1 cos (ImAt) 4 ag sin (Im)\lt))}.

The forward extension ® (R+ X W oe (éo)) is denoted simply by W in this case. Every
¢ in W determines at least one solution z¥ : R — R with ¥ € W for all t € R and
2#(t) — & as t — —o0.

The next assertion is an easy application of the discrete Lyapunov functional pre-
sented in Subsection 2.3.1. W denotes the closure of W.

Proposition 6.5.3. Let o € W and v € W with ¢ # 1. Then V(p — 1) < 2.

Proof. Since V is lower semicontinuous, it is sufficient to verify that V(¢ — 1) < 2 for
all p e W, ¢ € W with ¢ # 1. By the definition of W, there are solutions ¥ : R — R
and z¥ : R — R with initial functions ¢ and 1), respectively, and there exists g < 0 so
that =} € Wi 1o and x}f € Wil if £ < to. Then

29(t) —x¥(t) = apet + areReM cog (ImAq (¢ 4 b1))
= eRe)‘lt {aoe’\ot_Re)‘lt + ay cos (ImAg (¢ + bl))}

for t < tg with real constants ag,a; and b;. As A9 > Re\; and Im)\; € (7, 27), there
is t; < to so that V(zf —a) < 2 for t < t;. Lemma 2.3.2 ensures that the function
t—V (a:f — :L‘f’) is monotone decreasing, therefore V(p — 1) < 2. O

Our next goal is to describe set W N S.

Proposition 6.5.4. The set W NS is compact and invariant.
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6.5 The separatrix and the leading unstable set of fo

Proof. Whenever ¢ € W, there exists a solution z¥ : R — R with f_ <Ll < é+ for
some t < —1. Proposition 6.2.2 yields that §A, K p K §+ for ¢ € W, consequently
é_ <p< €+ for ¢ € W. It is clear that all ¢ € W is continuously differentiable. From
Eq. (6.2) we get a bound for ¢, ¢ € W. By the Arzela—Ascoli theorem, W is compact,
and W NS C W is also compact.

Looking at the definition of W and S, it is clear that W N S is invariant. Let
¢ € WN S and choose a sequence (¢y,)oe, in W N S converging to ¢ as n — co. For
t>0,

O(t,p) = (tjnlgrgo gpn> = nlLI%OQ (t,on)
and as ®(t,0,) € WN S for all n € N, we get ®(¢,0) € WNS. We also have to
show there exists a solution ¥ : R — R with ¥ € WN S for all + < 0. Consider
solutions z#» : R — R for which it is true that " € WN S for all t € R and n € N.

oo
By compactness, the sequence (mf’i)zozo has a convergent subsequence (qu’“) with

some limit 1_; in WN S. Using the continuity of ®(1,-), we get ®(1,7_1) :njo(? The
sequence (mf’;’“):oio also has a convergent subsequence with limit 1»_o € W N S. Again
t_1 = ®(1,1_3). Repeating this procedure, we get a sequence (V). C W NS with
D(1,9_1) = ¢y, for all k € Z, k < 0. Consequently we get a solution ¥ : R — R with

zp =Yy fork € Z, k<0and zf e WN S forall t € R. O

Proposition 6.5.5. If o € WNS '\ {éo} and r = z%¥ : R — R is a solution with

xt € WNS forallt € R, then V (cp — éo) = 2 and there exists a sequence (tn)iooo S0
that for alln € Z,
tny1 —tn < 1, tnyo —tp > 1,

x (tn) = 507 x (th) > 07 x (t2n+1) < 07
2(t) > & if t € (tan, tant1)
z(t) < & if t € (tan—1,ton) -

Proof. Suppose ¢ € WN S\ {éo} and z = 2¥ : R — R is a solution with z; € WN S
for all real t. By a previous remark in Section 6.2, x; # éo for all t € R. As éo ew,
Proposition 6.5.3 gives that V' (fct - éo) < 2 for all t € R. Assume there exists tp € R
with V' (mto — fo) = 0. Since t — V (:ct — fo) is monotone decreasing, the function
2 (t)—&o has no sign change on [ty — 1, 00). On the other hand, there exists ¢; € [to, to+1]
with x (t1) # 0. We get & < Ty, OF Ty < €0, which contradicts Proposition 6.5.1. So
V(:Bt—éo) =2 for all t € R.

Assertion (ii) of Lemma 2.3.2 implies that if 2(t) = & for some ¢, then z(t — 1) # &.
Eq. (2.6) shows the zeros of x — é[) are all simple, hence there exists a strictly increasing
sequence (t,)>,, such that z (t,) = €0, @ (tan) > 0, @ (tony1) < 0, z(t) > & if t €
(ton, tony1) and z(t) < & if t € (tyn_1,t2,) for all n € Z. As we have seen before,
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6 Dynamics for the Hopfield Activation Function

sc (xt — £0> € {1,2} for all ¢t. It is certainly evident that in this case sc (a;t — éo) is
given by the number of zeros in (¢t — 1,t). Thus t,41 — t, < 1 and t,,42 — t, > 1 for all
n € Z. Lemma 2.3.2 rules out the possibility that ¢,42 —t, =1, so t,12 —t, > 1 for
alln € Z. O

6.6 The proof of Theorem 6.3.2

Proof of Theorem 6.3.2 (i). Suppose conditions (6.1)—(6.3) and (6.5) are satisfied.
Let ¢ be an element of C'\ S. Then by the definition of S, there exists T" € R so that
fo < zhoor zf < . Assume & < z7.. We show that in this case z¥(t) — £, as
t — o0.

On the one hand, Theorem 2.1.1 yields an initial function ¢, € C with §+ < 1 and
¢ < 11 such that %! converges one of the equilibria as ¢ — co. By monotonicity, this
equilibrium point is necessarily €+.

On the other hand, set 1o = éo + ae™! with @ > 0 chosen to be so small that
[2]] < 1 holds. Then z¥2(t) = &y 4 ae! for t < 0 and z¥2(t) — & as t — —oo.
We claim that z%2(t) — €. as t — co. Notice that Proposition 6.2.2 and the fact that
2V? = &y as t — —oo imply 2¥2(t) < &4 for all t € R. Clearly 2%2 < 2 for s < t <0,
thus 792 < IL‘;ZJ 2 for all s < t by Proposition 6.2.2. Solution z¥2 is injective, because
otherwise there exists s # t with z¥2(s) = z¥2(t), and 37;/}2 — 2¥2 has a zero at 0,
which contradicts 2¥2 < z?. Therefore ¥ is strictly monotone. Since x> — &, as
t — —o0o, we get x¥2 is strictly increasing. It follows that z¥2(t) converges to some
¢ € (éo,ér} as t — 0o. By Eq.(6.2), 2¥2(t) — —ué +af(&) + bf(€) + 1 as t — oo.
If —p&+af(é) +0f(&)+ 1 # 0, then ¥ is bounded away from 0 on an unbounded
interval, contradicting Proposition 6.2.3. For this reason —ué + af(§) +bf(§) + 1 =10
and [—1,0] © ¢t — £ is a constant solution of Eq. (6.2), which means that £ = ;. The
claim is verified.

The choice of ¢ and 1 ensures that 22 < Th < x? with some s € R and T given
above. Since z¥i(t) — £, as t — oo for i = 1,2, we get x?(t) — &4 as t — oo,

One can confirm analogously that z%(t) — £ ast— oo if <L & for some T € R.
[l

Assume again that not only conditions (6.2)—(6.1) and (6.5) are satisfied, but also
b > L (a,p) holds. Recall the properties of the set W NS from the previous section.
For the sake of simplicity, if ¢ belongs to WN S, let 2% : R — R denote any solution
of Eq. (6.2) for which it is true that x§ = ¢ and ¥ € WN S for all t € R. We move on
to show the existence of a unique periodic solution with segments in WnN S.

We need the continuous map

T :C 3@ (90(0) — o, (1) — fo) € R
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6.6 The proof of Theorem 6.3.2

Map 7o is a modification of map 7 introduced in Subsection 2.3.1.

The rest of the chapter makes great use of the following assertion.

Proposition 6.6.1. If p € WN S, ¥ € WN S and map = T3, then % (t) = x¥(t) for
allt > 0.

Proof. Consider ¢ € WNS and ¢ € WN S with map = matp. If o = 1), there is
nothing to prove, so suppose that ¢ # 1. Lemma 2.3.2 and Proposition 6.5.3 yield
Vie—v) <V (fo - a:g) < 2. Consequently V(p —1¢) =0 and ¢ < ¢ or ¢ < ¢.
Assume ¢ < ¢ for example. Then ¥ (t) < 2#(t) for all t > —1 by monotonicity. If there

exists a tg > 0 with a¥ (tg) < 2% (tg), then a;}f) < «f , which contradicts Proposition

6.5.1. Necessarily z¥(t) = x%(t) for all t > 0. O

For ¢ €e WN S, the curve
x: Rt mazf € R?

is C'—smooth and has its range in 7o (W) . It is called the canonical curve associ-
ated with solution ¥ : R — R. The range of two different canonical curves may have
points in common. If x and x are such canonical curves, that is there exists a tg € R
with x (to) = X (to), then x (to + s) = X (to + s) for all s > 1 by Proposition 6.6.1.

The images of the closed hyperplane

H={peC:(0) =t}

and its subsets

~

H =lpeH:p(-1)>b}, H ={pcH: p(-1) <&}

under w9 are

{(u,v)ERQ:u:O},
v+:{(O,U)ER2:v>O} andv_:{(O,v)€R2zv<O},

respectively. Evoke function v defined by (6.7). If mazf € vy (v_) for some ¢ € WN S
and ¢t € R, then
#2(t) = 0+ B(t) (29t = 1) = &) > 0 (< 0),

where 8 : R 5t — by (m‘p(t —1), fo) € R is a positive function. Therefore the canonical

curves intersect v_ U vy transversally.
For p e WNS'\ {éo} and n > 0, let z, = z,(¢) denote the nth zero of the function

2% — & on [0,00). Proposition 6.5.5 ensures the existence of z,. Next we introduce a
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6 Dynamics for the Hopfield Activation Function

Poincaré return map
Pi(v-Uvy)Nm (WNS) 3" = md (22,0) € (v-Uvy) Ny (WNS),

where ¢ is any element of 75, ' (x°) ¢ (Ht* UH~)N (W N S) . Since z3 > 1, Proposition
6.6.1 shows that map P is well-defined. Proposition 6.5.5 also yields that

P (v nm (WAS)) = o nm (WAS)

and

P (vinm (WAS)) =vynm (WAS).
One would expect P to be continuous. We can verify only the following weaker property.

Proposition 6.6.2. For each x° € (v_Uwvy) N m (W N S) and sequence (X)o7, C

(v— Uwvy) N (W N S) with x™ — X° as n — oo, there exists a subsequence (X" )re,
so that P (x™*) — P (x°) as k — oo.

Proof. Assume that (v— Uwvy) N (W) 3x" = XY € (v_Uvy) N (W) as
n — oo. Let (¢");2, be a sequence in WN S with m (¢™) = x™ for n € N. Since
WS is compact, (¢™)o2 ; has a convergent subsequence (¢ )32 ;. Let ¢ denote the
limit of this subsequence. Then necessarily ¢ € (HT U H~)NWN S and m (¢°) = x°.
We show that mo® (22, ") — ma® (29, "), that is P (x™*) — P (x") as k — co. As my
and ® are continuous, it remains to show that the function 2o : (HYUH")NWNS —
R giving the second smallest zero is also continuous. Let (¢,),~, C (HTUH™) N
WNS be a convergent sequence with limit ¢ in (HT UH") N WNS. Since @ is
continuous, z¥%* — x¥ uniformly on compact subsets of [~1,00). Using (6.2), we
conclude that #%» — &% also uniformly on compact subsets of [0, 00). Proposition 6.5.5
yields z2 (¢,) — 22 (¢) as n — oo. O

Further notations are needed.
As usual, let P denote the map P = P o P! for n > 2.
Let (X")p2; C vy Ny (W N S) be a trajectory of P, and let x be a canonical curve

o0
—0o0

associated with solution z : R — R. The sequence (x") is the trajectory of P

associated with solution z, if

X" 10 € Z} = v N x (=00, 00))

At last we define a relation <2 on set {(0,v) : v € R}. Let x° <? x! if the second
component of Y € R? is smaller than that of x'.

The following argument is analogous to Proposition 7.1 in [26]. However, we have
a meaningful difference in the statement as well as in its proof, since in [26] the map

T2 |yyag is invertible, which may not hold here.
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6.6 The proof of Theorem 6.3.2

Proposition 6.6.3. If x°,x* € (v_ Uvy) N (W) with xX° <? XY, then
P (XO) <P ()ZO) or P" <X0> =p" ()20) for allm > 2.

Proof. Assertion is obviously true if x* € v_ and X° € vy, as P (x°) € v— and P (¥°) €
vy. For this reason suppose x* € vy, X° € vy and x* <? {°. Let z : R — R and
#: R — R be any solutions of (6.2) with segments in YW N S such that mxo = x%and
mado = . As mentioned before, P (x°) and P (X°) are independent of the choice of
solutions = and Z. By definition, canonical curves y and y associated with x and &
satisfy x(t) = (x(t) — &, x(t—1) — éo) and Y(t) = (ﬁ(t) —fo,2(t—1) — éo) for t € R.
Also x(0) = x° and %(0) = %°. Clearly & = z(0) = (0), & < x(—1) < Z(—1), so
i:(0) > 0, £(0) > 0, and for the smallest positive zeros z; of & — & and 2; of & — &y we
have z > & on (O z1) and & > & on (0, 2) . According to Proposition 6.5.5, i (1) < 0,
2(z1—1) <&, (21) <0and 2 (2 — 1) < &.

Next we verify that the restriction x [j ;) and the line segment
A:[0,1] 98|—>X0+5(x(z1)—xo> € R?

form a simple closed curve (. It is obvious that X’(O,zl) has no points with the line
segment in common, as x > & in (0,21). Suppose there exist t1,t2 € (0,21), t1 < to
with x (t1) = x (¢t2). According to Proposition 6.6.1, this implies x (t; + s) = x (t2 + s)
for s > 0. With s = 21 —t3 > 0 we get éo =1x(z1) =x (21 — t2 + t1), a contradiction to
T > éo in (0, z1). Consequently ( is a simple closed curve.

One can easily see that the set
{(u,v)tr cu<0 or u=0andv<z(z1—1) or u=0andwv >m(—1)}

belongs to ext (¢), in particular x(0) € ext (¢).

We have to distinguish two cases.

1. If there exist ¢y € [0, z1] and %o € [0, 21] with x (tg) = ) then by Proposition
6.6.1, x(to—}—s)—x(to—l—s)fors>0andx(t0+s):)2 )

6.5.5 yields z;19 — 2 > 1 for all [ € N, hence x (z,,) = ¥ (
P ({°) for n > 2.

2. Now suppose that {([0,21]) N x([0,21]) = 0. Using 2 > & on (0,2;) and
R(0) € ext (¢), we have ¥ ([0, 21)) € R?\ |¢|, and therefore X ([0,21)) C ext (¢). As-
sume x (z1) <? ¥ (21). Then % (%) = (0,2 (21— 1)) € A((0,1)). Since z(31) < 0,
X ((21 —¢€,21)) C int (¢) with some € > 0, which contradicts the fact that X ([0, 21)) C
ext (¢). As X (21) # x (21), we infer ¥ (21) <2 x (21).

By inverting the role of x° and X° in the argument above, we come to the same

conclusion if x?, ¥ € v_ with % <2 x0.

Ao for s > 1. Proposition
Z

+
n) for n > 3 and P (x!) =
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6 Dynamics for the Hopfield Activation Function

In case X ([0,21]) N x ([0,21]) = 0 apply the same argument to x (z1) € v— and
% (21) € v_ in order to deduce that P (x°) <2 P (X°) or P? (x*) = P? (¥°). O

Proof of Theorem 6.3.2 (ii). Let 1) be an element of WN S\ {fo}. Proposition
6.5.5 yields the existence of a zp > 0 with xfo € H NWNS. Put x° = ﬂgxfo and take
trajectory (x")*,, C vy Nm2(WNS) of P associated with solution z¥ : R — R. Clearly
X (22) = X", where (z,)>_ is the sequence of zeros of z¥ — &o. Since h € W, x™ = 0

as n — —oo. By Proposition 6.6.3, ("), is either strictly increasing according to the

order introduced on v, or there exists ng € N so that (x™)™,, is constant for n > ny.
As w9 (W N S) is compact, x4+ = limy, o X" € v4-Nmy (W N S) exists. Clearly x4 # 0,

and Proposition 6.6.2 ensures the existence of a subsequence (x™* ), so that

X" =P (x™) = P(x4) as k — oo,

Necessarily P (x4) = x+. Choosenn € HTNW N S so that mon = x4. With ¢(t) = 2"(¢),
t € R, we get ma® (22,q0) = P (x+) = x+ that is m2q,, = m2qo. Using Proposition 6.6.1
we conclude ¢(t) = q (t + z2) for t > 0. Let p be the periodic extension of ¢ to R.
Obviously p; € WN S for all t € R and Proposition 6.5.5 gives V (pt — éo) = 2 for
all real . The statement related to the minimal period w follows also from Proposition
6.5.5 and P (x+) = x+- O

As one can suspect from the proof of Theorem 6.3.2 (ii), zf — {p:: t € [0,w]} as
t — oo for all initial functions ¢ in WN S\ {fo}, where p denotes the unique periodic

solution with segments in WN S.
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7 Summary

The dissertation studies the scalar delay differential equation

E(t) = —pa(t)+ f(z(t-1)) (1.1)

with parameter p > 0 and nonlinear feedback function f. Both continuously differ-
entiable and nonsmooth, both monotone increasing and monotone decreasing nonlin-
earities are considered. The goal is to detect periodic orbits and describe the global

attractor as thoroughly as possible under a wide variety of conditions.

Such equations appear in artificial neural networks. Some examples motivating this
work are listed in the introduction of the dissertation, and book [50] of Wu contains a

more detailed description of applications.

Chapter 2 gives a general theoretical overview. First, basic concepts (phase space, so-
lution, semiflow, global attractor, unstable manifold, etc.) are introduced, then Section
2.2 summarizes the most relevant results within the field of monotone nonlinearities.
Krisztin, Walther and Wu have described the asymptotic behavior of the solutions
in case of positive feedback, i.e. when f is continuous and xf (z) > 0 for all  # 0
[20, 22, 23, 25, 26, 27|, whereas in case of negative feedback (f is continuous and
xf (z) < 0 for all x # 0) the works [45]-[49] of Walther and Yebdri have provided
the main references. This present thesis is based on their results and on paper [11]
of Gy6ri and Hartung. Section 2.3 places a special emphasis on the most important
tools applied in the subsequent chapters. Mallet-Paret and Sell [32] have introduced a
discrete Lyapunov functional V' counting the sign changes of the elements of the phase
space C. Though most of their findings cannot be applied directly, a straightforward
generalization of their theorems proves to be an efficient tool in understanding the dy-
namics of the equation. Poincaré return maps also play an essential role as their fixed
points yield the initial segments of the periodic solutions. According to the Floquet
theory, the spectrum of the derivative of a Poincaré map at its fixed point determines
the stability of the associated periodic solution. The work of Lani-Wayda [28] is also
applied, as it shows that small perturbations of the feedback function preserve these

periodic orbits, provided they are hyperbolic.

Chapters 3 and 4 examine the positive feedback case. In these chapters, a strictly

increasing, continuously differentiable feedback function f is considered so that £ —
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7 Summary

—ué + f (&) has 5 consecutive zeros
§2<E1<&H=0<& <&,

the equilibria é_g, éo, ég defined by £ o, &, & are stable, and the equilibria 5_1, él
defined by £_1, & are unstable. The monotonicity of f implies that the subsets

Coo={peC:§{2<¢(s)<0forall se[-1,0]},

Coa={peC:0<p(s) <& forall se[-1,0]}

of the phase space C = C ([—1,0],R) are positively invariant. The restrictions of the
semiflow to C'_5 and to Cp 2 have global attractors A_5 ¢ and Ag 2, respectively. Sets
A_s and Ap o have spindle-like structures according to the Krisztin, Walther and Wu
characterization. The question whether the equality A = A_20 U Ap2 holds for the

global attractor A of the semiflow restricted to
Coo={peC:&2<¢(s)<&forall se[-1,0]}
has already been drawn up in [26].

Theorem 3.1.1 in Chapter 3 shows that the structure of A can be more complicated:
a smooth, strictly increasing nonlinear map f is given so that there are exactly two
periodic orbits Op and O, in A\ (A—_2,0 U Ap,2), which are unstable with 2 and 1 Floquet
multipliers in {z € C: |z| > 1}. The solutions p and ¢ defining these periodic orbits
are so-called LSOP solutions: on the one hand they are of large amplitude in the sense
that p(R) 2 (£-1,&1) and ¢ (R) 2 (€-1,&1), and on the other hand they are slowly
oscillatory in the sense that each segment of them has one or two sign changes. Note
that such solutions cannot appear via local bifurcation, hence it is a challenging task
to verify their existence. The nonlinear map f in Theorem 3.1.1 is ”close” to the step

function %0 parametrized by K > 0 and given by

0 if |z| <1,

K0 (. _
@) { Ksgn (z) if |z| > 1.

The starting point of the proof is to form explicit periodic solutions for Eq. (1.1) with
p=1and f = f%0 which is a finite dimensional problem and, therefore, a manageable
one. Then the implicit function theorem and perturbations of Poincaré maps can be

applied in order to find exactly two LSOP orbits for 4 = 1 and nonlinearities close to

f7’0-

Chapter 4 analyzes the structure of the solutions in the situation of Theorem 3.1.1.
By Theorem 4.1.1, one may set f so that Theorem 3.1.1 holds, and for the global
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attractor A, we have equality
A= A_270 U A072 uw (Op) U w (Oq) ,

where W" (O),) and W" (Oy) denote the unstable sets of the LSOP orbits O, and O,
respectively. Sets W" (0p) and W* (O,) are also described, using discrete Lyapunov
functionals around £_1, 0, &, the Poincaré—Bendixson theorem, information on the
unstable sets of the fixed points of the Poincaré maps and elementary topological ar-
guments, among others. Characterizing the global attractor is of key importance as
this is the subset of the phase space C that determines the asymptotic behavior of
all solutions in C_g 2. This work is done only for a small class of infinite dimensional
systems [14].

Chapter 5 turns to the negative feedback case. A locally Lipschitz continuous map
fwith zf () <0 for x € R\ {0} is constructed for all 4 > 0 (see Theorem 5.1.1) such
that Eq. (1.1) has an infinite number of periodic orbits. All periodic solutions defining
these orbits oscillate slowly around 0 in the sense that their sign changes are spaced
at distances larger than delay 1. Moreover, if f is continuously differentiable, then the
periodic orbits are hyperbolic and stable. In this example, f is "close” to the odd step

function f* set so that

f*(x):{o for x € [0,1],

Kr" forn>0and x € (r",r"*1],

where K and r are chosen to be large. Based on this property, an infinite sequence of
contracting Poincaré return maps is given. Their fixed points are the initial segments
of the periodic solutions. The construction can be easily modified to give a locally
Lipschitz continuous map f such that Eq.(1.1) has a two-sided infinite sequence of
slowly oscillatory periodic orbits.

In Chapter 6 a nonsmooth and not strictly monotone nonlinearity is considered.

Motivated by papers [11, 17], the more general equation
z(t) = —px(t) +af(x(t)) + of(x(t—1))+ 1

is investigated, where p > 0,a € R, b > 0, I € R and f is the piecewise linear Hopfield

activation function

) 1, z>1,
f:RB:L’I—>§(|JJ—|—1|—|:L‘—1|): x, —-1<z<l1,
-1, z<-1.

Based on numerical studies, Gy6ri and Hartung [11] conjectured that for b > 0, all

solutions tend to an equilibrium as t — co. Theorem 6.3.1 and Theorem 6.3.2 analyze
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7 Summary

the truth of the conjecture for those choices of parameters that were not covered in
[11]. In particular, it is shown that although most of the solutions are convergent, there
exists a slowly oscillatory periodic orbit for certain choices of parameters. In the course
of the proof, one has to overcome the difficulty that the solution operator is neither
injective nor differentiable everywhere. The key step is to project the unstable set
of the unstable equilibrium to the two-dimensional plane together with its boundary.
A Poincaré return map is defined on the plane, and its fixed point yields the initial
segment of the periodic solution. The analysis uses the generalizations of results in [32]
for the discrete Lyapunov functional counting sign changes.

The dissertation is based on two papers of the author and on one paper with co-author

Tibor Krisztin. These publications are the following:

e Kirisztin, T., Vas, G., Large-amplitude periodic solutions for differential equations
with delayed monotone positive feedback, submitted to Journal of Dynamics and

Differential Equations.

e Vas, G., Asymptotic constancy and periodicity for a single neuron model with
delay, Nonlinear Anal. 71 (2009), no. 5-6, 2268-2277.

e Vas, G., Infinite number of stable periodic solutions for an equation with negative
feedback, E. J. Qualitative Theory of Diff. Equ., 18 (2011), 1-20.
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8 Osszefoglalas

A disszertaci6 téméjat az
i (1) = —pa (1) + f (2 (t 1) (1.1)

alaku skaldris funkciondl-differencidlegyenletek képezik p > 0 paraméter és kiillonbozé
nemlinearis f visszacsatolasi fiiggvények esetén. Folytonosan differencidlhatd és nem-
sima, monoton névé és monoton csdkkend nemlinearitasokat is tekintiink. Célunk a
periodikus palyak létezésének kimutatasa és a globalis attraktor lehetd legrészletesebb
leirdsa f-re tett széles korii feltételek mellett.

Ilyen egyenletek mesterséges neuronhélézatok tanulmanyozasandl fordulnak els. A
disszertaciéo bevezetdje felsorol néhany, e munkat motivalé példat. Wu részletesebb
leirast ad az alkalmazésokrél [50]-ben.

A 2. fejezet attekintést nyujt a dolgozat elméleti hatterérél. Miutdn ismertetjik a
teriilet alapveto fogalmait, a 2.2. szakasz Osszefoglalja a monoton nemlinearitasokra
vonatkozé eddigi legfontosabb eredményeket. Krisztin, Walther és Wu jellemezte a
megoldasok aszimptotikus viselkedését pozitiv visszacsatolas esetén, azaz amikor f
folytonos és zf (z) > 0 minden nullatdl kiillonbozd valés a-re [20, 22, 23, 25, 26, 27].
Negativ visszacsatolds esetén (f folytonos és zf (z) < 0 minden x € R\ {0}-ra) el-
sésorban Walther és Yebdri [45]-[49] munkait érdemes kiemelni. E disszertici6 az
6 eredményeikre, illetve Gy6ri és Hartung [11] publikdcidjara épil. A 2.3. szakasz
a kés6bb hasznalt legfontosabb analitikai eszkozoket taglalja. Mallet-Paret és Sell
[32]-ben bevezettek egy diszkrét Ljapunov-fliggvényt, amely a C' dllapottér elemeinek
elojelvaltasait szamlalja. Habéar eredményeik tobbsége kozvetleniil nem alkalmazhatd
ebben a dolgozatban, tételeik egyszert altalanositasai hatékony eszkoznek bizonyulnak
a globalis dinamika megértésében. A Poincaré-féle visszatérési leképezések is lényeges
szerepet jatszanak, mivel fixpontjaik adjak a periodikus megoldasok kezdeti szegmen-
seit. A Floquet-elmélet értelmében a Poincaré-leképezés fixpontban vett derivaltja-
nak spektruma hatarozza meg a tarsitott periodikus pélya stabilitdsat. Alkalmazzuk
Lani-Wayda [28] munkéjat is, amely igazolja, hogy a visszacsatoldsi fiiggvények kis
perturbaciéi megérzik a periodikus palyakat.

A 3. és a 4. fejezet pozitiv visszacsatolds esetén vizsgalja az (1.1) egyenletet. Ezekben
a fejezetekben egy olyan folytonosan differencialhaté, szigorian monoton névé nemline-

aritast tekintiink, amelyre a £ — —ué + f (§) fliggvénynek 6t egymadst kovetd
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§2<E1<§H=0<8 <8

zérushelye van, a £_o, &y, &2 zérushelyek dltal meghatarozott egyensulyi helyzetek sta-
bilak, és a £_1, & zérushelyek &ltal definidlt €_;, & egyenstlyi helyzetek instabilak.
Mivel f monoton, ezért a C' = C ([—1,0],R) allapottér

Cooo={peC: & 2<¢(s) <0 minden s € [-1,0]-re},

Co2={peC:0<p(s) <& minden s € [—1,0]-re}

részhalmazai pozitivan invaridnsak. Jelolje A_oo és Ap2 a szemidinamikai rendszer
C_g0-ra és Cp o-re vett megszoritasainak globélis attraktorait (ezek léteznek). Krisztin,
Walther és Wu eredményei szerint az A_ o és Ag 2 halmazoknak orsé-szerti strukturajuk

van. A kérdés, hogy a szemidinamikai rendszer
Cooo={peC: & a<¢(s) <& minden s € [-1,0] esetén}

halmazra vett megszoritdsdnak A globélis attraktora eléall-e A_s o és A2 unidjaként,

mar [26]-ban felmertlt.

A 3. fejezetben olvashaté 3.1.1. tétel igazolja, hogy A szerkezete osszetettebb is
lehet: megadunk egy olyan folytonosan differencidlhatd, szigorian monoton névo f
nemlinedris fliggvényt, amelyre az A \ (A_2,0 U Ag2) halmazban van pontosan 2 peri-
odikus palya, O, és O,. A periodikus pélydkat definidl6 p és ¢ megolddsok tn. LSOP
megoldasok: nagy az amplitidéjuk abban az értelemben, hogy p(R) 2 (£-1,&1) és
qg(R) 2 (£-1,&1), valamint lassan oszcillilnak abban az értelemben, hogy minden 1
hosszu intervallumon egy vagy két el6jelvaltasuk van. Ilyen periodikus megoldasok nem
keletkeznek lokalis bifurkacié révén, igy létezésiik igazoldsa kihivast jelentd feladat. A

3.1.1. tételben szerepld f fliggvény “kozel” van az

0 ha |z| <1,

K0 (. _
fo ) = { Ksgn (z) ha |z|>1

1épcsés fliggvényhez, ahol K > 0 paraméter. A bizonyitas els6 1épéseként explicit pe-
riodikus megoldasokat adunk meg abban az esetben, amikor p =1 és f = 59, Ez a
probléma véges dimenzids, igy kezelheté. Majd az implicitfliiggvény-tétel és Poincaré-
leképezések perturbécidinak segitségével megmutatjuk, hogy az (1.1) egyenletnek pon-

tosan két LSOP palyéja van, ha p = 1 és f fiiggvény az f70-hoz kozeli nemlinearités.

A 4. fejezet a megoldasok szerkezetét vizsgalja a 3.1.1. tétel teljesiilése esetén. A
4.1.1. tétel szerint f valaszthatd gy, hogy a 3.1.1. tétel igaz legyen, és az A globdlis

attraktorra teljesiiljon az
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egyenlet, ahol W* (O,) és W" (O,) rendre az O, és O, LSOP palyak instabil halmazait
jelolik. A 4. fejezet a W™ (O),) és W* (O,) instabil halmazokat is leirja, tobbek kozott
a &1, 0, & koril vett diszkrét Ljapunov-fiiggvények, a Poincaré—Bendixson-tétel, a
Poincaré-leképezés fixpontjanak instabil halmazaval kapcsolatos ismereteink és elemi
topolégiai érvelések segitségével. A globalis attraktor jellemzése azért kulcsfontossdgu
feladat, mivel ez a C fazistér azon részhalmaza, amely C'_oo Osszes megolddsdnak a-
szimptotikus viselkedését meghatarozza. Ilyen eredmények csupan a végtelen dimenzios

dinamikai rendszerek egy sziik osztalyara léteznek.

Az 5. fejezet attér a negativ visszacsatolds esetére. Minden p > 0-hoz konstrudlunk
egy olyan lokélisan Lipschitz-folytonos f fuggvényt, amelyre xf (x) < 0 teljesiil min-
den 0-t6l kiilonb6z6 valés = esetén, és amelyre az (1.1) egyenletnek végtelen szamu
periodikus palyaja van. A periodikus palyakat definidlé megoldasok mindegyike las-
san oszcillal 0 koriil abban az értelemben, hogy a szomszédos eléjelvaltasaik tavolsaga
nagyobb a késleltetésnél, azaz 1-nél. Ha f folytonosan differencialhato, akkor a pe-
riodikus palyak stabilak és hiperbolikusak. Ebben a példdban f “kozel” van az f*

paratlan 1épcsOs fiiggvényhez, ahol

f*(x):{o ha z € [0,1],

Kr™ han>0ésx e (r”,r”“} ,

és ahol K, r nagy konstansok. FErre a tulajdonsigra épitve kontraktiv Poincaré-
leképezések végtelen sorozatat adjuk meg, amelyek fixpontjai a periodikus megolda-
sok kezdeti szegmensei. A konstrukcid egyszeri médositasaval megadhatunk egy olyan
lokalisan Lipschitz-folytonos f leképezést, amelyre létezik lassan oszcillalé periodikus
palyak két iranyban végtelen sorozata.

A 6. fejezetben egy nemsima és nem szigoriian monoton visszacsatolasi fiiggvényt
tekintiink. A [11, 17] cikkek indittatdsara az altaldnosabb

&(t) = —px(t) +af(x(t)) +bf(x(t—1)) +1

egyenletet tekintjiik, ahol 4 > 0, a € R, b > 0, I € R és f a szakaszonként linearis

] L x>1,
f:RBam—)i(\x—i—H—\x—l\): r, —-1<z<1,
-1, z< -1

Hopfield-féle aktivalasi fiiggvény. Gyéri és Hartung numerikus eredményeikre alapozva
azt a sejtést fogalmaztak meg, hogy b > 0 esetén minden megoldés egyensulyi helyzethez

tart, hat — co. A 6.3.1. és a 6.3.3. tételek a sejtés igazsdgtartalmat vizsgaljak azokra a
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paramétervalasztasokra, amelyeket [11] nem fed le. Megmutatjuk, hogy bar a megoldé-
sok tobbsége konvergens, bizonyos paramétervalasztasok esetén létezik lassan oszcil-
1416 periodikus péalya. A bizonyitds soran le kell kiizdeniink azt a nehézséget, hogy
a megoldasoperator nem injektiv és nem mindenhol differencidlhaté. A bizonyitéas
kulcslépéseként levetitjik az instabil egyensilyi helyzet instabil halmazat a lezartja-
val egylitt a 2 dimenzids sikra. Poincaré-féle visszatérési leképezést definidlunk a
sfkon, amelynek fixpontja adja a periodikus megoldas kezdeti szegmensét. Vizsgaloda-
sunk sordn a diszkrét Ljapunov-fiiggvényre vonatkozd, [32] -ben igazolt eredmények
altaldnositasait hasznaljuk.

A disszertacié a szerzé két publikicidjara és egy, Krisztin Tiborral kozosen irt dol-

gozatara épil:

e Kirisztin, T., Vas, G., Large-amplitude periodic solutions for differential equations
with delayed monotone positive feedback, submitted to Journal of Dynamics and

Differential Equations.

e Vas, G., Asymptotic constancy and periodicity for a single neuron model with
delay, Nonlinear Anal. 71 (2009), no. 5-6, 2268-2277.

e Vas, G., Infinite number of stable periodic solutions for an equation with negative
feedback, E. J. Qualitative Theory of Diff. Equ., 18 (2011), 1-20.
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