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Summary 

Despite the development of new therapeutic strategies, cardiovascular diseases, 

principally ischaemic heart disease and myocardial infarction remains among the leading 

causes of mortality world-wide. Antiarrhythmic therapy has a significant role in the 

treatment of this disorder. The aim of this study was to investigate the possible role of 

potassium channels in the prevention of cardiac arrhythmias and in the development of 

myocardial infarction. Therefore, in coronary artery ligated animals we compared the 

effect of two ATP-sensitive potassium channel inhibitors, glibenclamide and glimepiride; 

and studied the efficacy of a newly developed combined potassium and sodium channel 

inhibitor, GYKI-16638. 

The effect of glibenclamide and glimepiride was investigated on the development 

of reperfusion-induced arrhythmias and it was correlated to their blood glucose lowering 

action. Myocardial ischaemia-reperiusion induced arrhythmias were produced in 

anaesthetised, male Sprague-Dawley rats by occlusion of the left main coronary artery for 

6 min, followed by 5 min reperfusion. Glimepiride pretreatment (0.001-0.01-0.1-5.0 mg/kg 

i.p., 30 min before coronary occlusion) significantly decreased the incidence of irreversible 

ventricular fibrillation and increased the survival rate during reperfusion (64%, 61%, 60%, 

and 67% vs. 27% in controls). Glibenclamide produced similar effect (81% survival) only 

in a dose of 5 mg/kg, while smaller doses were ineffective. The minimal hypoglycaemic 

dose and the dose required to inhibit the hyperglycaemia induced by oral glucose loading 

were similar after glibenclamide and glimepiride. It is concluded from these experiments 

that although the blood glucose lowering potency of glibenclamide and glimepiride is 

rather similar, glimepiride appears to be more potent than glibenclamide in preventing 

reperfusion induced cardiac arrhythmias. 

The effect of glibenclamide and glimepiride was also investigated on the 

development of myocardial infarction. Permanent coronary artery ligation was performed 

in rats and the development of infarction was evaluated by a computer-assisted method 

after nitroblue-terazolium staining. Seven-day coronary ligation produced enlargement of 

the left ventricular cavity, scar thinning and thickening of the non-infarcted myocardium. 

Glibenclamide treatment (5 mg/kg b.i.d. intraperitoneally) decreased the infarct volume 

(29.1±3.5 % vs. 39.1±3.2 % in controls), that occurred primarily as a result of more 

significant thinning of the scar tissue (1.6±0.04 mm vs. 2.0±0.13 mm in controls). 



Glibenclamide also inhibited the thickening of the non-infarcted ventricular septum 

(2.1±0.10 mm vs. 2.9±0.10 mm in controls). In contrast to the effects of glibenclamide, 

glimepiride treatment (5 mg/kg b.i.d. intraperitoneal^) inhibited the enlargement of the left 

ventricular cavity (15.2±1.1 % vs. 19.9±1.2 % of the left ventricular volume in controls), it 

did not precipitate scar thinning and did not influence the development of hypertrophy of 

the non-infarcted myocardium. These results suggest that glimepiride treatment might 

inhibit the development of left ventricular dilatation after myocardial infarction. 

Glibenclamide treatment, however, producing a thinning of the scar tissue may further 

precipitate morphological changes that can contribute to the development of heart failure. 

The effect of GYKI-16638 (iV-[4-[2-iV-methyl-I\I-[l-methyl-2-(2,6-dimethylphenoxy) 

ethylamino]-ethyl]-phenyl]-methanesulfonamide hydrochloride), a novel antiarrhythmic 

compound, was assessed on arrhythmias induced by 10 min of coronary artery occlusion 

and 10 min of reperfusion in anaesthetised rabbits. GYKI-16638 (0.03 and 0.1 mg/kg i.v.) 

significantly increased survival during reperfusion (79 % and 100 %, vs. 33 % in controls, 

P<0.05, respectively). GYKI-16638 in a dose of 0.1 mg/kg significantly increased the 

number of animals that did not develop arrhythmias during reperfusion (46 % vs. 0 % in 

controls, P<0.05). These results suggest that in rabbits GYKI-16638 has an in vivo 

antiarrhythmic effect which can be best explained by its combined Class I/B and Class III 

antiarrhythmic actions. 

Our results confirm that equally hypoglycaemic ATP-sensitive potassium channel 

inhibitors do not possess the same antiarrhythmic efficacy. Further, the combination of 

sodium- and potassium channel inhibition by a single molecule may provide advantages 

over highly selective potassium channel blockers in the prevention of cardiac arrhythmias. 
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1. Introduction 

Despite growing knowledge in the understanding of cardiovascular physiology and 

pathophysiology and the development of new therapies in the 20th century, cardiovascular 

diseases principally ischaemic heart disease (IHD) and myocardial infarction (MI), remain the 

leading cause of mortality world-wide. In tfie United States, coronary artery disease results in 

approximately l.S millions myocardial infarction and causes 500,000 fatalities each year 

(Heart and Stroke Facts, 1997). In developing countries including Libya, a significant number 

of patients die in similar circumstances. The major cause of sudden death is attributed to the 

development of ventricular arrhythmias shortly after MI (Josephson et al., 1978; Wit and 

Janse, 1993; William, 1998). Moreover, when ventricular arrhythmias are frequent in 

survivors of MI, the relative risk of cardiovascular death is increased 2- to 4-fold (Bigger et 
al., 1984; Maggioni, 1993). The failure of antiarrhythmic drugs to counteract these 

arrhythmias may be explained, in part, by lack of specificity and because of several 

mechanisms involved in the development of arrhythmias. 

Patients that survived the acute stage of MI are at high risk of developing necrosis and 

slowly progressing ventricular hypertrophy (Dawber, 1980; Kannel et al., 1987). It has been 

consistently shown that left ventricular hypertrophy (LVH) is strongly associated with 

increased mortality of coronary heart disease in both clinical based studies (Casale et a\., 
1986; Sullivan et al., 1993; Levy et al., 1994) and population-based investigations (Levy et 
al., 1989; 1990). 

Therefore, strategies relating to particular classes of drugs to prevent the occurrence of 

early as well as late events of MI, with particular attention to the resulting arrhythmias and 

progression of left ventricular hypertrophy have been developed. Once this approach is 

accomplished, both sudden cardiac death due to arrhythmias and heart failure due to 

ventricular hypertrophy could be decreased. 

1. 1. Myocardial ischaemia and progression of myocardial infarction 

Sudden interruption of blood supply to the myocardium results in a spectrum of 

derangements, ranging from transient reversible stunning of the myocardium and arrhythmias 

to severe irreversible changes i.e. infarction. The alterations in metabolic substances, 
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particularly an increase in intracellular calcium and formation of oxygen free radicals may 

contribute largely to the evolvement of ischaemic injury (Blaustein et al, 1986; Basu et al., 
1987). Amongst the other metabolic disturbances occurring during ischaemia are the 

reduction in oxidative phosphorylation (Simon et al., 1997), depletion of gluthatione 

(Patterson et al., 1988), an increase in cellular free fatty acids (Fiskum et al., 1983), 

myocardial acidosis (Johnson et al., 1995), polymorphnuclear leukocytes' accumulation 

(Kevin et al, 1984), high non-physiological levels of catecholamines (Wheatly et al., 1985; 

Metsuki et al., 1990), accumulation of intracellular unesterified arachidonic acid, release of 

chemical mediators such as prostaglandins, prostacyclines and thromboxane A2 (Klein et al., 
1987; Vesterqvist, 1988; Yamamoto et al., 1999). All these have additive effects in favour of 

cellular damage. While no single process has been identified as the critical factor leading to 

ischaemic injury, the failure of cellular homeostasis characterised by loss of ion gradients 

across the cell membrane may play a critical factor (McCord, 1985). 

Occlusion of a main coronary artery results predominantly in a loss of function of the 

supplied myocardium (Katz, 1973). The ischaemic cells are deprived of the energy needed to 

maintain ionic gradients and homeostasis and failure of enzyme systems that finally leads to 

cell death (Rhodes et al., 1980). Later, this phenomenon results in a restructuring of the 

geometry of the remaining viable myocardium which is called upon to maintain cardiac 

performance. This reaction has been found to be characterised by infarct area extension and 

non-infarct area dilatation, both being considered the main components of left ventricular 

remodelling (Bassand, 1995). Extension of the infarcted area occurs within hours following 

the onset of myocardial infarction, whereas, hypertrophy of the non-infarcted myocardium is 

a more prolonged and durable process (Bassand, 1995). Unless treated, long-term dilatation 

can eventually result in alteration of the contractile properties of the non-infarcted 

myocardium and impairment of systolic and diastolic performance of the left ventricle-the 

hallmark of congestive heart failure (Hochman et al., 1982; Pfeffer et al., 1990). 

1. 2. Reperfusion injury 

Re-establishing the blood flow to previously ischaemic tissue has a double-edged 

sword effect. On one hand, supply of oxygen and nutrients is restored and toxic metabolites 

are removed and recovery from ischaemic injury is established. On the other hand, the return 

of toxic metabolites to the circulation may have serious metabolic consequences (Haimovici, 

1979). Furthermore, upon reperfusion, the myocardial function is often markedly impaired by 
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what is now recognised as a distinct pathologic process, referred to as "ischaemia/reperfusion 
injury" (Parks and Granger, 1986; Edward et al, 1997). 

Although early reperfusion of the ischaemic myocardium may protect the cells from 

further damage, it may on the other hand be associated with a host of distinctive 

pathophysiologic derangement, the most important of which are reperfusion arrhythmias 

(Sewell et al., 1955). These arrhythmias oceur in experimental animals after reperfusion 

following transient ischaemia, and there inconsiderable evidence that this derangement also 

develops in humans following surgical procedures, during thrombolysis therapy or even in 

spontaneously released coronary artery spasm (Tzivoni et el., 1983; Pogwizd and Corr, 1987; 

Hearse, 1990; Baxter and Yellon, 1993; Lu et al\ 1995). Although, the pathogenesis of 

reperfusion arrhythmias has not been conclusively established, impairment of cellular energy 

stores and cellular alterations that induce changes in the activity of channels, pumps and 

exchangers responsible for the potassium and calcium ions homeostasis are essential 

prerequisites for ischaemia/reperfusion-induced life threatening arrhythmias. It has been 

suggested that following coronary occlusion the intracellular potassium content declines 

which results in extracellular potassium accumulation, sometimes to very high levels (Kleber, 

1983; Janse and Wit, 1989; Wild et al., 1990). The accumulation of potassium and its 

heterogeneity are both considered to contribute to the evolution of rhythm disturbances during 

ischaemia and may well be critical during reperfusion (Hill and Gettes, 1980). As a 

consequence, the homogeneity in action potential duration is markedly altered in and around 

the previously ischaemic zone immediately after reperfusion (Coronel et al., 1992). These 

changes in turn cause a dispersion of refractoriness between ischaemic and normal tissue, 

which contributes to the electrophysiological substrates for reentrant (Russel and Oliver, 

1978, Janse et al., 1986) and non-reentrant arrhythmias (Pogwizd and Corr 1987). Priori et 
or/.(1990), showed that more than 70% of the arrhythmias induced by reperfusion in the 

anaesthetised cat are explained by non-reentrant mechanism, possibly due to enhanced 

automaticity or triggered arrhythmias. Other factors such as accumulation of cathecolamines 

(Bralet et al., 1985; Dimassi et al., 1992), production of free radicals (Manning et al., 1984; 

Woodward and Zakaria, 1985), and generation of phospholipid metabolites (Arnsdorf and 

Sawacki, 1981; Akita et al., 1986; McHowatt et al, 1993) also play a major role in the 

development of arrhythmias. 

Although numerous pharmacological methods are currently available to investigate the 

role of different channels, pumps and exchangers, no single approach has proved to be 



consistently effective in limiting arrhythmias. However, replenishing of high energy 

molecules and amelioration of early potassium efflux have been appreciated as promising 

tools in preventing life-threatening ventricular arrhythmias. 

1. 3. Myocardial potassium channels 

At present, at least eight distinct potassium channels have been identified in the heart 

and proposed to play a role in shaping the cardiac electrophysiology. These include both 
rapidly and slowly activating subtypes of the delayed rectifier potassium channel, the 
background (inward rectifier) potassium channel, a voltage-dependent transient outward 

2+ 

current, a Ca -activated transient outward current, a high-conductance plateau channel, and 

potassium channels regulated by ATP and acetylcholine. In addition, a potassium channel 

activated by extremely high intracellular sodium ion concentrations has been described, but its 

physiologic role remains uncertain. These channels can vary markedly in their distribution 

within different regions of the heart, as well as from species to species. Related to the scope of 

the present study, emphasis will be focused on myocardial K A T P channels. 

1. 3. 1. Myocardial ATP sensitive potassium (KATP) channels 

1. 3. 1. 1. Physiological and pathophysiological roles 

Since its first description in cardiac myocytes by Noma (1983), the physiological and 

pathophysiological roles for potassium channels sensitive to intracellular ATP concentration 

( K A T P ) have been suggested to play a complex role in the cellular strategy in many tissues. 

These channels were found in pancreatic |3-cells (Ashcroft et al., 1984; Rorsman and Trub, 

1985), myocardium (Noma, 1983), skeletal muscle cells (Spruce et al., 1987), smooth muscle 

(Quast and Cook, 1988) and neurons (Bernardi et al., 1988). In the resting pancreatic P-cells, 

where their physiological role is better understood, the K A T P channels are usually active at 

low blood glucose, and they set the membrane potential close to the K+ equilibrium potential, 

thereby reducing their excitability and inhibition of insulin secretion. However, upon an 

increase in blood glucose level, the intracellular ATP rises which results in closure of KATP 

channels, thereby depolarising the plasma membrane of 3-cells. Such depolarisation increases 
2+ 

intracellular calcium concentration largely through the activation of voltage-gated Ca 

channel which in turn triggers exocytosis of insulin granules, and hence stimulates the release 

of insulin (Sturgess et al., 1985; Dunne and Petersen, 1991; Ashcroft and Ashcroft, 1992). 
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In the heart - where their role is still under debate - K A T P channels have been 

implicated in the cellular electrophysiological behaviour and ionic homeostasis that occur 

during various forms of metabolic stress, including ischaemia, hypoxia, and inhibition of 

glycolysis and/or oxidative phosphorylation (Faivre and Findlay, 1990; Nicholas et al., 1991; 

Findlay, 1994). Opening of K A T P channels has been proposed as one of the main 

cardioprotective mechanisms underlying ischaemia-related preconditioning (Downey, 1992; 

Cole, 1993; Parratt and Kane, 1994). During early ischaemia, opening of K a t p channels and 

its consequences may lead to conditions that promote the induction of cardiac arrhythmias 

(Gasser and Vaughan-Jones, 1990; Wild, 1993; Wild and Janse, 1994). There is considerable 

evidence that K A T P channel activation might also exacerbate the disturbance of the cellular 

ionic homeostasis and contribute to the failure of cellular electrophysiological state to recover 

upon reperfiision (Weiss and Venkatesh, 1993). 

Recently, the molecular structure of K A T P channels has been clarified. The K A T P 

channel in pancreatic p-cells is a complex composed of at least two subunits, a member of 

inwardly rectifying K+ channels and a sulphonylurea receptor (Inagaki et al., 1996; Miki et 

al., 1999). Subsequently, two additional homologs of the sulphonylurea receptor, which form 

cardiac and smooth muscle type K A T P channels, respectively, have been reported (Isomoto et 

al., 1996; 1997). This study focuses attention on cardiac K A T P channels that can serve as a 

paradigm with particular emphasis on the better understanding of K A T P channel inhibition. 

1. 3. 2. Effects on potassium homeostasis and action potential duration 

Myocardial ischaemia disrupts the cellular electrophysiological properties through 

alterations in the intracellular homeostasis of the involved cells. As a result, the intracellular 

concentrations of several ions are perturbed that finally culminate in the formation of 

malignant arrhythmias (Opie et el., 1979). Various chemical substances have been implicated 

as causative factors in the genesis of these arrhythmias during myocardial ischaemia, 

extracellular potassium being the predominant among them. 

One of the most prominent changes observed during acute ischaemia is the rise in the 

concentration of K+ in the extracellular space [K+]0 as early as within the first 15 seconds and 

reaching a plateau within 5-10 minutes after coronary occlusion. Two major mechanisms have 

been emerged to explain the [K+]0 rise. (1) As a consequence of the inhibition of oxidative 
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metabolism the cytosolic concentration of lactate and inorganic phosphate increases and these 

ions subsequently leave the cell. K+ is thought to be coupled to this anion efflux (via an 

unknown pathway) to balance the charge movement (Kléber, 1983; Yan et al., 1993); (2) The 

increase in [K+]0 also occurs via opening of K+ channels thereby generating a sufficiently 

high potassium conductance. K A T P channels are the most likely ones among the various K+ 

channels responsible for K+ loss during ischaemia (Smallwood et al., 1990; Gross et al., 1992; 

Vanheel and de Hemptinne, 1992). Grover et al. (1989) and Spinelli et al. (1990) have 

suggested that by shortening of the action potential duration, K A T P channel opening inhibits 
I 

voltage dependent Ca entry into the myocardium, resulting in a decrease of energy 
} I 

consumption and in a decrease of Ca loading during the ischaemic period. This mechanism 

could reduce and perhaps limit further damage of the myocardium. This assumption has been 

supported by Noma (1983), and also by Leprán et al. (1996) and Baczko et al. (1997). 

Under conditions where K A T P channels mediate the ischaemic K + efflux, 

glibenclamide, an inhibitor of K A T P channels, has been shown to reduce [K+]0 accumulation 

in isolated tissue (Venkatesh et al., 1991; Hicks and Cobbe, 1991) and in regionally or 

globally ischaemic hearts (Wilde et al, 1990; Kantor et al., 1990; Hamada et al, 1998), 

whereas nicorandil, a potassium channel opener, significantly accentuated the initial increase 

in [K+]0 during global ischaemia in isolated perfused rat hearts (Mitani et al. 1991). 

In certain conditions during regional ischaemia the administration of potassium 

channel openers has been shown to be proarrhythmic (Chi et al., 1990). Presumably because 

of using higher doses of K A T P openers these agents decreased refractoriness of the tissue, 

whereas glibenclamide has been shown to be markedly antiarrhythmic (Wolleben et al., 1989; 

Kantor et al., 1990). Thus, although activation of K A T P channels might be expected to oppose 

spontaneous activity due to increased automaticity (e.g., early or late afterdepolarization), it 

may exacerbate arrhythmias due to conduction block (e.g., reentrant arrhythmias) 

(Haverkamp etal., 1995). 

1. 4. Potassium channel inhibitors 

Potassium channels are ubiquitous and the pharmacology of the different types of 

potassium channels in various cells has not been fully delineated. It is therefore possible that 
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some of the potassium channel blockers, developed as potential sub-class specific agents, may 

exert effects in other tissues as well. There are currently a number of molecules, some of them 

are in clinical use and others at various stages of clinical and pre-clinical development, that 

inhibit potassium channels. In the present study, emphasis will be placed on the second 

generation sulphonylureas, glibenclamide and glimepiride as inhibitors of K A T P channels and 

on a recently developed antiarrhythmic agent GYKI-16638, that reputed to have novel 

mechanisms of action or antiarrhythmic profile. 
«y 

1. 4. 1. Kajp channel inhibitors 

Inhibitors of K A T P channels have been invaluable in studying K + channel function and 

to investigate the biochemical properties of this channel. The sulphonylurea class of 

compounds is the best known and most effective in inhibiting K A T P channels, and their use 

has been central to the understanding of this channel. 

Sulphonylureas are used clinically to treat non-insulin-dependent diabetes mellitus 

(type-II, NDDDM). The hypoglycaemic effect of these compounds was attributed to their 

ability to bind with high affinity to a subunit of the K A T P channel, known as the sulphonylurea 

receptor (SUR) (Isomoto et al., 1996). Occupancy of this receptor by a sulphonylurea inhibits 

flux of K+ through the channel pore, depolarizing the plasmalemma and inducing release of 

insulin. In the heart, Belles et al. (1987) and Fosset et al. (1988) have shown that 

sulphonylureas may act, although at higher concentrations, by binding to a specific site on the 

K A T P channel or to a very closely associated protein. These drugs, among which 

glibenclamide is the most potent, can inhibit the channel from inside or outside (Zunkler et 

al., 1989). 

During myocardial ischaemia, sulphonylureas, such as glibenclamide, have been 

reported to block the opening of cardiovascular K A T P channels with high specificity (Sturgess 

et al., 1985; Fosset et al., 1988). This property significantly modifies the outcome of 

experimental myocardial infarction. In isolated perfused hearts during regional ischaemia andJ 

or reperfusion, it has been shown in a number of studies that inhibition of the opening of K A T P 

channels by glibenclamide is antiarrhythmic and prevents the shortening of action potential 

duration representing a class III antiarrhythmic effect (Wolleben et al, 1989; Kantor et al., 

1990; Zhang et al., 1991; Tosaki et al., 1993; D'Alonzo et al, 1994). In this context, Bril et 

al. (1992) and Rees and Curtis (1995) have shown an increase in the incidence of spontaneous 

recovery from ventricular fibrillation. Moreover, Linz et al (1994) have reported similar 
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results and showed glibenclamide to be protective against reperfusion-induced arrhythmias in 

isolated working rat hearts. In globally ischaemic rat heart, glibenclamide was found to 

antagonize ventricular fibrillation (Kantor et al., 1987; Wolleben et ál., 1989). 

There are also in vivo results which coincide with these observations (Ballagi-Pordany 

et al, 1990; Bekheit et al., 1990; Billman et al, 1993; Kondo et al, 1996). Previously, we 

demonstrated in in vivo conditions that glibenclamide pretreatment increased the survival rate 

and decreased the incidence of life-threatening arrhythmias during acute myocardial 

infarction in conscious rats (Leprán et al, 1996) or during ischaemia/reperfusion in 

anaesthetised rats (Baczkó et al, 1997; EL-Reyani et al., 1999). However, opposite results 

have also been presented. For instance, glibenclamide was found to be devoid of an effect on 

the incidence of ventricular fibrillation developing in response to a secondary insult in 

anaesthetised dogs with recent myocardial infarction (Chi et al., 1989), or in vitro against 

reperfusion-induced arrhythmias (Cole et al, 1991; Bernauer, 1997). 

Recently, a newly developed sulphonylurea compound, glimepiride has been shown to 

be more potent than glibenclamide as an antidiabetic agent (Geisen, 1988; Langtry and 

Balfour, 1998), while producing less adverse effects in the cardiovascular system (Geisen et 
al., 1996). 

The potential harmful effects of K A T P channel inhibitors in inhibiting ischaemic 

'preconditioing' and enlarging infarct size have been reported with relatively little attention. 

Pharmacological doses of glibenclamide have been shown to increase myocardial infarct size 

(Auchampach et al, 1992; Münch-Ellingsen et al, 1996), and to block the infarct size 

limiting effect of K A T P openers (Grover et al, 1989; Auchampach et al., 1991), however, 

these effects were apparent when glibenclamide was given before the ischaemic insult in 

animals pretreated with K A T P channel activators. Most of these studies involved the use of 

occlusion-reperfusion induced myocardial cellular damage and the examination of the effect 

of an intervention after reperfiising the ischaemic myocardium when the process of infarction 

is still incomplete (Thornton et al, 1993; Münch-Ellingsen et al, 1996). Many investigations 

showed that K A T P channel inhibitors abolish the protective action of preconditioning on the 

development of infarct size after coronary artery occlusion and reperfiision (Grover et al., 

1992; Rohmann et al., 1994; Miura et al., 1995; Schultz et al, 1997). However, the long-term 

effects of K A T P channel inhibitors on the development of myocardial infarction have not been 

investigated. 
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1. 4. 2. Class III amiodarone like action 
The unfavorable interaction between myocardial ischaemia and Class lc 

antiarrhythmic drugs is well established. Experimental data indicate that class lc drugs exhibit 

profibrillatory effects in the presence of myocardial ischaemia (Aupetit et al., 1997; Bui-Xuan 

et al., 1997). Subanalysis of the CAST data also suggest that the interaction between active 

ischaemia and treatment with flecainide or encainide may have been responsible for the 

increased mortality in the treatment group (Greenberg et al., 1995). 

Class m antiarrhythmic drugs that prolong cardiac repolarization without slowing 
conduction are now the preferred antiarrhythmic medical treatment for tachyarrhythmias 
(O'Callaghan and McGovern, 1996; Hohnloser and Woosley, 1994). However, there exists no 
doubt about the proarrhythmic potential of selective class III drugs. Indeed, in the SWORD 
trial, D-sotalol given to patients with a diminished left ventricular systolic function and a 
recent or remote myocardial infarction has been found to increase mortality by 4.6% versus 
2.7% in the placebo group (Waldo et al., 1996). 

Accordingly, special attention has been paid to antiarrhythmic drugs with complex 

effects on different ion channels and receptors. These include D,L-sotalol (a delayed rectifier 

potassium channel and p-adrenergic receptor blocker) and amiodarone (a potassium channel 

blocker possessing sodium and calcium channel blocking properties and anti-adrenergic 

activity). Amiodarone has been shown to exert strong antiarrhythmic effect in a number of 

studies and currently is considered to be one of the most efficacious antiarrhythmic drugs 

available in the medical practice. The long-term treatment with amiodarone, however, leads to 

the development of serious extracardiac side effects (Hilleman et al., 1998). Therefore, it 

seems worthwhile to pursue the development of novel amiodarone-like compounds with 

marked antiarrhythmic potency but without unwanted extracardiac side effects. 

GYKI-16638 (N-[4-[2-N-methyl-N[l[methyl-2-(2,6-dimethylphenoxy)ethylamino]-

ethyl]-phenyl]-methanesulfonamide hydrochloride) is a novel N-(phenoxyalkyl)-N-

phenylalkylamine that has been developed recently. Although it is not an amiodarone 

congener, based on its chemical structure the compound was expected to show amiodarone-

like electrophysiological effects, i.e. both Class I/B and Class III properties. 
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1. 5. Purpose of the study 

The main aim of the present study was as follows: 

(i) To evaluate the possible contributions of K A T P channels to the development of 

myocardial infarction. For this purpose we intended to use two experimental 

models: (a) a model of short regional myocardial ischaemia and reperfusion to 

investigate the developed arrhythmias, (b) a model of experimental myocardial 
s/ 

infarction after permanent coronary artery occlusion in the rat, in order to measure 

directly and compare the effectiveness of two K A T P channel inhibitors, 

glibenclamide and glimepiride, in inhibiting the development of myocardial 

infarction at day 1 (when the process of infarction is still incomplete) and day 7 

(when the healing process is nearly complete) in metabolically healthy rats. 

(ii) To assess the efficacy of a newly developed amiodarone-like compound, GYKI-
16638 in coronary artery occlusion and reperfusion induced arrhythmias in 
anaesthetised rabbits. Because GYKI-16638 combines class IB and class HI 
properties and because of the scarcity of delayed rectifier potassium channels in 
the rat, we intentionally used rabbits owing to their ubiquitous potassium rectifier 
currents, all of which are implicated in shaping the cardiac action potential. 
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2. Materials and Methods 

2. 1. Animals 

Male Sprague-Dawley CFY rats and male rabbits with an average weight of 300 to 
350 g and 2 to 3 kg, respectively, were used. The animals were fed standard laboratory food 
pellet (Altromin, Gödöllő, Hungary) and were allowed to drink tap water ad libitum. The 
handling of animals and the investigations xonform with the protocol reviewed and approved 
by the Ethical Committee for the Protection of Animals in Research of the University of 
Szeged, Albert Szent-Györgyi Medical Center (Szeged, Hungary). 

2. 2. Blood glucose determination in conscious rats 

In conscious rats a single drop of blood was taken by cutting the end of the tail. Blood 

glucose concentration was measured using a med-strip test (One Touch n, Lifescan, Johnson 

& Johnson, USA). A series of blood samples were taken before treatment, 30 minutes after 

intraperitoneal drug treatment and 30 min after oral administration of 1 g/kg glucose in 5 

ml/kg tap water. 

2. 3. Acute myocardial ischaemia and reperjusion in anaesthetised rats 

2. 3. 1. Surgical preparation 
The animals were anaesthetised with sodium pentobarbitone (60 mg/kg in a volume of 

2 ml/kg) intraperitoneally. The skin of the animales was removed with a midline incision from 

below sternum to neck notch to allow surgery. The carotid artery was gently detached from 

the nerve and fat and cannulated for measuring the blood pressure using a pressure transducer 

(Gould-Statham, P23DD, Hugo Sachs Electronik, March-Hugstetten, Germany). Blood 

pressure was recorded on an oscillographic recorder (Watanabe, WTR 331, Hugo Sachs 

Electronik). The catheter was filled with saline that contained heparin (500 IU/ml), but the 

animal was not heparinized. Tracheotomy was performed and a polyethylene tube with a 

convenient diameter was inserted for artificial respiration later. The left pectoral muscles were 

separated gently, followed by opening the chest wall in the fourth intercostal space, 

approximately 2 mm left to the sternum. After incising the pericardium, the heart was eased 

out of the chest, using gentle pressure on the rib cage. After pushing aside the auricle with a 

small plastic strip, a 5-0 braided non-absorbable suture (Ethibond 5/0, Ethicon Ltd., United 

Kingdom) attached to a 16 mm micropoint reverse cutting needle (MERSILK W582, 

ETHICON) was passed under the left main coronary artery, approximately 2 mm from its 
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origin, as described by Selye et al. (1960) and modified by Baczko et al. (1997). A small 

plkstic button was threaded through the ligature and placed in contact with the heart. The 

heart was set back in its place and artificial respiration was immediately started using positive 

pressure ventilation via previously inserted tracheal tube connected to a volume-cycled 

respirator (Harvard rodent ventilator, model 683, Harvard apparatus, Southnatick, MA, USA). 

The tidal volume was set for approximately 2.5-2.9 cm3 (depending on the body weight), and 

the respiratory rate was maintained at 60 cycles/min. The standard electrocardiogram (lead n, 

ECG) was recorded using subcutaneous needle electrodes. Both ends of the ligature were led 

out of the thoracic cavity through a flexible tubing. The artery could then be occluded by 

applying tension on the tube towards the button and fixed by clamping with artery forceps. 

The reperfusion was achieved by releasing the clamp with gentle backward pulling of the 

tube. 

2. 3. 2. Experimental protocol 
After surgical procedures the animals were allowed to equilibrate for 10 min to 

stabilise haemodynamic parameters before coronary occlusion. Animals in which this 

procedure produced arrhythmias or caused a sustained fall in blood pressure to less than 80 

mmHg, were excluded from the final evaluation. 

Baseline haemodynamic parameters were measured before coronary artery ligation, 

after 1, 3, and 5 min coronary artery ligation and 1, 3, and 5 min after reperfusion. 

Arrhythmias were detected and diagnosed in accordance with the Lambeth conventions as 

ventricular tachycardia, ventricular fibrillation and other types of arrhythmia including single 

extrasystoles, bigeminy, salvos and bradycardia (Walker et al., 1988). 

At the termination of the experiment, heparin (500 IU/kg) was given intravenously via 

the femoral vein. The heart was rapidly excised and placed in isotonic NaCl solution. The left 

coronary artery was retightened and the heart was perfused retrogradely with isotonic NaCl 

solution (10 ml), followed by perfusion with ethanol (2ml) via the aorta for demarcation of 

occluded (appeared dark red) and the non occluded (white colour) myocardium (Lepran et al., 
1983). The non-perfusable area, that remained red coloured, was cut along the epicardially 

visible border and its weight was measured and expressed in percentage of the wet weight of 

the ventricles. Hearts showing <10% non-perfusable area were excluded from the final 

evaluation. 
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2. 3. 3. Drug administration protocol 

Glibenclamide (Sigma-Aldrich, Hungary) or glimepiride (Hoechst, Germany) was 

dissolved in dimethyl sulfoxide/saline, 1:1 mixture and was administered intraperitoneally 30 

min prior to coronary artery ligation in doses ranging 0.001-5 mg/kg. To reduce the influence 

of the solvent, the volume of injection was 100 pl/kg. Control animals were given the same 

volume of the solvent. 

2. 4. Persistent coronary artery occlusion in rats 

2. 4. 1. Surgical preparation 

The animals were anaesthetised with ethyl ether and the parasternal area was depilated 
and disinfected using 70% ethanol. A small parasternal incision was made through the skin 
and the pectoral muscle layers were gently separated. Coronary artery ligation was performed 
as described earlier by Selye et al. (1960). On the left side at the fourth intercostal space, a 
small incision was made and the chest was opened in the fourth intercostal space and the ribs 
were gently spread using a retractor. The exposed heart was quickly pushed out of the 
thoracic cavity, inverted, and a 5-0 silk suture attached to a 16 mm micropoint reverse cutting 
needle was passed under the visualised left main coronary artery and ligated with a "double 
knot" tie, and hence acute regional myocardial infarction was developed. The heart was set 
back in its place and the chest was closed in layers while the thorax was slightly compressed 
to evacuate pneumothorax and regain spontaneous ventilation. Sham operated animals were 
treated in the same manner except that the silk ligature around the coronary artery was left 
loose. Since in the rat blood to the left ventricle is supplied by the descending and septal 
arteries (Johns and Olson, 1954), coronary ligation near its origin was expected to affect most 
of the left ventricle. The animals were then returned to their cages and recovered from the 
anaesthesia within 1-2 min. In case of developing ventricular fibrillation during the first 2-3 
hours after coronary artery ligation, attempt was made to defibrillate the animals by 
mechanical tapping on the chest wall. After the acute phase of coronary artery ligation, the 
condition of the animals was periodically followed-up carefully for 1-7 days. 

As the aim of this protocol was to investigate the influence of the drugs on the 

developed infarct size for longer time, no arterial catetherisation or tracheal intubation was 

performed. Moreover, because of the short time of open-chest surgery (< 40 sec), no 

ventilatory support was called for. 
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2. 4. 2. Measurement of infarct size 

After one or seven days of coronary artery occlusion, the rats were anaesthetised with 
pentobarbitone (60 mg/kg i.p.) and their hearts were excised and washed in isotonic NaCl 
solution. The attached aorta, auricles and right ventricular free wall were carefully removed 
and by using a series of razor blades, the hearts were sectioned transversely into 1.6 mm thick 
slices from apex to base. The heart slices were then incubated in 0.1% nitroblue-tetrazolium 
(Fluka AG, Switzerland) dye for 10 min to allow demarcation of the non-infarcted (stained 
dark blue), and infarcted (appeared pale) myocardium (Nachlas and Shnitka, 1963) to 
develop. This differential staining was enhanced by immersing the slices into 1% formalin 
until further evaluation within 1 day. The slices were subsequently ranked in order from apex 
to base and digitised using a desktop scanner (ScanJet lie, Hewlett-Packard) with 400 dpi 
resolution, and 'million of colours' to delineate the regions of viable and infarcted tissue. 

Stored images were pre-processed for enhancing the colour difference using 

PhotoFinish (Zsoft Corporation) and to increase the signal to noise ratio, then the colour depth 

was decreased to 256 colours. Further differentiation between the non-infarcted, infarcted and 

totally necrotic areas and the calculation of the volume of these tissues and the left ventricular 

cavity were done by using a computer program developed at our Department (Volume 2.0) 

under Microsoft Windows. Using the cursor pointer a pixel was selected, representing the 

totally infarcted tissue (not staining with the dye), or partially infarcted tissue (showing some 

staining), or normal myocardium (well stained), as well as the left ventricular cavity. The 

colour of other pixels, having similar colour in a prefixed range to the representative one, 

were automatically redefined by the program. In this way a certain area is repainted to the 

same colour and the number of pixels representing this colour were counted by the program. 

Using a 10 mm calibration bar, that was scanned together with the heart slices, and the 

thickness of slices (1.6 mm), the computer can automatically calculate the volume of the 

aforementioned tissues (Figure 1). 

The volume of the infarcted myocardium (i.e. the volume of the totally infarcted and 
partially infarcted tissues together) was expressed as a percentage of the volume of the whole 
myocardium (totally infarcted + partially infarcted + non-infarcted). The volume of the left 
ventricular cavity was also expressed as a percentage of the total volume of the heart (totally 
infarcted + partially infarcted + non-infarcted + left ventricular cavity). From the computer 
stored images we also measure the thickness of the septum (representing the non-infarcted 
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myocardium, NMIS) and the thinnest part of the infarcted left ventricular myocardium 

(MILV) were also measured. 

All images were processed by the same person using blind technique. The same colour 

settings were used for differentiating the infarcted and non-infarcted myocardium. 

(A) (B) (C) 

Figure 1. Representative sections from the heart of a control animal at different phases of the 
evaluation of the infarct volume after 1 day coronary artery occlusion in rats. (A) original 
scanning with 400 dpi; (B) enhancing the signal to noise ratio and (C) differentiation 
between totally infarcted (red), partially infarcted (green) and non-infarcted myocardium 
(blue). 



2. 4. 3. Drug administration protocol 

Glibenclamide (0.1 or 5 mg/kg), glimepiride (0.001 or 5 mg/kg) obtained from the 

same sources (see section 2. 3. 4.) or vehicle (DMSO : EtOH 1:1) were administered i.p. twice 

a day with a Hamilton syringe in a volume of 100 pl/kg. The first dose of either drug or 

vehicle was given 30 min prior to occlusion and the treatment was maintained throughout the 

specified period after coronary arteiy ligation. These doses were selected on the basis of 

previous experiments (El-Reyani et al., 1999) i.e. the larger doses decreased basal plasma 

glucose concentration and inhibited its elevation upon oral glucose loading as well as 

decreased the incidence of irreversible ventricular fibrillation after transient coronary artery 

occlusion and reperfusion. The smaller doses either did not influence plasma glucose 

concentration in metabolically healthy rats or produced only marginal effect on the incidence 

of arrhythmias. All substances were prepared fresh daily and the animals were allowed to 

consume food and water ad libitum. 

2. 5. Coronary artery ligation and reperfusion in anaesthetised rabbits: 

2. 5. 1. Surgical preparation 

The animals were anaesthetised with sodium pentobarbitone (30 mg/kg i.v. in a 

volume of 1 ml/kg) injected into the marginal vein of the right ear. The exposure of carotid 

artery and trachea was performed as described earlier (see section 2. 3. 1.). For infusion of 

drug another catheter was introduced into the marginal vein of the left ear. After tracheal 

cannulation, thoracotomy was performed at the fourth intercostals space and artificial 

respiration was started immediately (see section 2. 3. 1.). The respiratoy volume and rate was 

adjusted to keep blood gases and pH within normal range (7 ml/kg/stroke, 40 strokes/min, 

respectively). Following pericardiotomy, a loose loop of 4-0 atraumatic silk (Ethicon, 

Edinburg, UK) was placed around the first branch of the left circumflex coronary artery just 

below its origin. Both ends of the ligature were led out of the thoracic cavity through a 

flexible tube. 

2. 5. 2. Experimental protocol 

After stabilization of blood pressure and heart rate (approximately 10 min) saline or 

0.03 mg/kg or 0.1 mg/kg GYKI-16638 was administered i.v. during a 1 min infusion in a 

volume of 2 ml/kg 5 min prior to coronary artery occlusion. Coronary artery occlusion and 

thus local myocardial ischaemia was produced by tightening the loose loop and clamping on 
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the silk. After 10 min of coronary artery occlusion , the ligature was released to permit 

reperfiision for 10 min. 

The electrocardiogram (lead I, II, ID) was registered using a thermographic recorder 

(ESC 1104 CH, Multiline Ltd, Esztergom, Hungary) with subcutaneous needle electrodes. QT 

interval was defined as the time between the first deviation from the isoelectric line during the 

PR interval until the end of the TU wave. QT interval corrected for heart rate (QTc) was 

calculated using the following equation by Carlsson et al., (1993a): QTc = QT- 0.175 x (RR-

300). 

At the end of the experiment, heparin (500 IU/kg. i.v.) was administered and the 

animals were sacrificed. The hearts were cut out from the chest in order to determine the size 

of the occluded zone. After retightening the ligation the hearts were retrogredely perfused via 

the aorta with 20 ml saline and 10 ml of 96% ethanol as previously described by Leprán et al. 
(1983). The non-denaturated area (occluded zone) was excised and its extent was expressed in 

percentage of the total wet weight of the ventricles. Four animals with an occluded zone less 

than 16% or larger than 32% were excluded from the final evaluation. 

2. 5. 3. Drug administration protocol 

GYKI-16638 (0.03 or 0.1 mg/kg) was dissolved in propylene glycol/saline, 1:1 
mixture. Both drugs were applied 5 min prior to coronary artery ligation in a volume of 2 
ml/kg. Each dose was prepared on the day of the experiment. Control animals received 
propylene glycol/saline, 1:1 mixture in a volume of 2 ml/kg. 

2. 6. Statistical analysis 

All values are expressed as mean ± standard error of the mean (S.E.M.). Analysis of 

variance (ANOVA) was applied and the results were compared by means of the modified 7'-

statistical method of Wallenstein et al. (1980). The survival rate and the occurrence of 

arrhythmias were analysed using the x2-method. 

A P-value less than 0.05 was considered statistically significant for all study protocols 

applied. 
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3. Results 

3. 1. Effects of sulphonylureas 

3. 1. 1. Blood glucose level in conscious rats 

During basal conditions, i.e. before any drug treatment, the blood glucose level did not 

show significant differences among different groups (Table 1). Thirty minutes after the 

intraperitoneal administration, both glibenclamide and glimepiride significantly reduced the 

blood glucose concentration when given in a dose of 1 mg/kg (2.6 ± 0.12 and 2.7 ±0.11 

mmol/1, vs. 3.3 ± 0.08 and 3.5 ± 0.06 mmol/1 before treatment, respectively, P < 0.05). In a 

dose of 0.1 or 1 mg/kg both compounds inhibited the elevation of plasma glucose 

concentration after oral glucose loading, while the smallest dose applied (i.e. 0.01 mg/kg) was 

devoid of such an effect (Table 1). 

Table 1. Effect of glibenclamide and glimepiride on the blood glucose level (mmol/1) after 
oral glucose loading in conscious rats. 

Group Dose 
(mg/kg) 

Basal Drug Glucose 
loading 

Control 3,2 ±0,16 3,7 ±0,10 5,4 ± 0,26 

Glibenclamide 0,01 3,2 ±0,11 4,3 ± 0,02 5,7 ±0,17 

0,1 3,0 ±0,15 3,6 ±0,10 4,4 ±0,21* 

1,0 3,3 ± 0,08 2,6 ±0,12* 3,4 ±0,08* 

Glimepiride 0,01 3,1 ±0,16 3,8 ± 0,42 5,9 ±0,18 

0,1 3,2 ± 0,04 4,2 ±0,31 4,0 ±0,11* 

1,0 3,5 ±0,06 2,7 ±0,11* 3,8 ±0,19* 

Results are mean ± S.E. of 6 animals in each group. Blood glucose concentration (mmol/1) 
was measured before treatment (Basal), 30 min after drug treatment (Drug) and 30 min after 
oral administration of 1 g/kg glucose (Glucose loading). *P < 0.05 compared to the 
corresponding control value. 
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3. 1. 2. Myocardial ischaemia-reperfusion induced arrhythmias in anaesthetised rats 

3. 1. 2. 1. Haemodynamic parameters 

Table 2 shows values for mean arterial blood pressure (MAP) and heart rate (HR). At 

the doses that did not influence the blood glucose concentration in conscious rats, neither 

glibenclamide nor glimepiride pretreatment influenced significantly the baseline values of 

HR, blood pressure or PRI as measured before coronary artery ligation in anaesthetised rats. 

These haemodynamic parameters did not differ from the control during coronary artery 

ligation. Larger doses of either glibenclamide or glimepiride (i.e. 5 mg/kg i.p.), however, 

significantly increased the heart rate before coronary artery ligation which remained high 

during the occlusion also after glimepiride pretreatment (Table 2). During reperfusion, it was 

difficult to measure the haemodynamic parameters because of the frequent arrhythmias 

occuring in this period. Nevertheless, when it was possible to perform statistical analysis, no 

significant differences were observed after glibenclamide or glimepiride pretreatment 

concerning the heart rate or blood pressure as compared to the control group. 

3. 1. 2. 2. Arrhythmias during ischaemia and reperfusion 

In the present experiments, 6 minutes of coronary artery ligation was not long enough 

to develop severe ischaemia-induced arrhythmias. There were no significant differences 

among different treatments concerning the incidence of arrhythmias or the survival rate 

during coronary ligation. 

Arrhythmias induced by reperfusion after 6 min myocardial ischaemia started within 

10-30 s following the release of the coronary artery ligature. Irreversible ventricular 

fibrillation occurred in 73% of the control animals and no animal survived without developing 

arrhythmias during reperfusion. Only 2 of 18 animals recovered spontaneously from 

ventricular fibrillation in the control group (Table 3). 

Pretreatment with either glibenclamide or glimepiride (5 mg/kg, i.p.), significantly 

increased the survival rate from 27% in the control group to 81% and 67%, respectively 

during reperfusion after 6 min myocardial ischaemia in anaesthetised rats (Table 3). This 

protective effect of glimepiride, but not of glibenclamide, was also significant after using 

smaller doses (0.01 and 0.001 mg/kg, Table 3). 
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Both glibenclamide and glimepiride decreased significantly the incidence of 

irreversible ventricular fibrillation occurring during reperfiision after 6 min coronary 

occlusion. Moreover, this effect was also significant when using smaller doses of glimepiride 

(i.e., 0.001-0.1 mg/kg) (Table 3). The incidence of ventricular tachycardia and other types of 

arrhythmias did not show a dose related change after the pretreatments. 

The length of arrhythmic attacks was also measured in the animals surviving 

reperfusion. As compared to the control animals, both glibenclamide and glimepiride at the 

submaximal doses investigated, i.e. 0.1 mg/kg, significantly decreased the duration of 

arrhythmias. Moreover, the length of VF was significantly decreased at a wide range of doses 

i.e. by 0.01-5 mg/kg of glibenclamide and 0.001-0.1 mg/kg of glimepiride (Table 4). 

However, the total period that was characterised by arrhythmic attacks during reperfusion was 

not changed by pretreatments (Table 4). 

3. I. 3. Myocardial infarction in rats 

3. 1. 3. 1. Survival after coronary artery ligation 

Sham operation in rats, i.e. anaesthesia, rapid opening and closing of the chest wall 

without coronary artery ligation, as expected did not cause death. Out of 146 animals that 

produced myocardial infarction 16 (11%) died during the first 4 hours after coronary artery 

ligation in spite of using mechanical tapping on the chest wall to revert ventricular fibrillation 

to normal rhythm. Further 32 (22%) died after the 4th hour of the 1st day of infarction. No 

death occurred later until the end of the examination period, i.e. the 7th day. There were no 

significant differences between different groups concerning the survival rate during the whole 

run of myocardial infarction. 

3. 1. 3. 2. The developed infarct size 

Sham operated animals did not show loss of nitroblue-tetrazolium staining in the 

myocardium and the volume of the calculated 'infarcted' myocardium (measured with low 

staining of remaining connective tissue or the heart valves), was less than 1% (not shown in 

tables). 
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Table 2. Effect of glibenclamide and glimepiride on heart rate (HR), mean arterial blood pressure (BP) in anaesthetised rats. 

Group Dose Basal Occlusion Reperfusion 
(mg/kg) nl HR BP n2 HR BP n3 HR BP 

Control 26 389+7,5 110+3,8 22 374+8,5 80+7,2 6 450±27,6 86±14,7 
Glibenclamide 0,01 16 379+9,1 105+5,1 13 364±9,4 73+5,6 4 ND ND 

0,1 15 392±6,1 104±4,8 15 385±7,9 73±4,7 8 429+21,3 94±9,5 
5 20 432±7,5* 104+5,5 16 398+15,3 49±4,8* 13 432+11,6 89+9,6 

Glimepiride 0,0001 9 337±9,0 121±6,7 8 312±10,9 72+11,7 3 ND ND 
0,001 23 384+12,4 109±3,6 22 369±15,1 78±7,8 14 398±23,5 92+8,4 
0,01 19 386±6,8 107±5,2 18 369±8,4 79±7,6 11 382+12,1 110±9,4 
0,1 15 396±7,1 105+8,1 15 376±12,8 74±10,6 9 374±11,5 92+9,2 
5 22 428±7,7* 108±4,6 18 415+9,8* 87+5,5 12 429±13,2 102±7,5 

Results are mean + S.E. of the animals surviving the given period (nl, n2 and n3 means the number of these animals, respectively). Heart rate 
(HR), mean arterial blood pressure (BP) and pressure rate index (PRI) was measured before coronary artery ligation (Basal), 5 min after coronary 
ligation (Occlusion) and 5 min after the release of occlusion (Reperfusion). ND = Not determined because of few surviving animals. * P <0.05 
compared to the corresponding control value. 
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Table 3, Effect of glibenclamide and glimepiride on the survival rate and the incidence of 
arrhythmias during reperfusion after 6 min coronary artery ligation in anaesthetised rats. 

Group Dose 
(mg/kg) 

N Survived 
(%) 

Incidence of arrhythmias (%] 
None Rev VF IrrevVF 

I 
VT Other 

Control 22 27 0 9 73 100 100 
Glibenclamide 0,01 13 31 0 8 69 100 62* 

0,1 15 53 0 33 47 87 100 
5 16 81* 0 75* 19* 100 94 

Glimepiride 0,0001 8 38 ~ 0 37 63 100 100 
0,001 22 64* 5 32 36* 91 96 
0,01 18 61* 0 11 39* 100 89 
0,1 15 60* 0 13 40* 93 100 
5 18 67* 0 50* 33* 100 72 

N= Total number of animals at the beginning of reperfusion; None= No arrhythmia 
developed; RevVF= Reversible ventricular fibrillation; IrrevVF= Irreversible ventricular 
fibrillation; VT= Ventricular tachycardia; Other= Ventricular extrasystoles, bigeminy, and 
salvos. * P< 0.05 compared to the corresponding control value. 

Table 4. Effect of glibenclamide and glimepiride on the appearance and length of arrhythmias during 
coronary reperfusion in anaesthitized rats. 

Dose Appearance of Duration of Length of arrhythmic attacks (sec) 
Group (mg/kg) nl arrhythmias 

(min) 
n2 arrhythmias 

(min) VF VT Other Total 
Control 22 0.08 ±0.02 6 4.4 ± 0.5 84 ±44.8 66 ±24.1 53 ± 15.5 203 ±31.9 

Glibenclamide 0.01 13 0.26 ± 0.04 4 3.6 ±0.8 8 ±7.5* 33 ± 14.4 83 ± 34.2 123 ±32.0 
0.1 15 0.12 ±0.03 8 2.7 ±0.4* 21 ± 12.9* 34 ± 13.5 65 ± 14.6 120 ±24.8 
5 16 0.16 ±0.01 13 3.7 ±0.3 25 ±6.9* 83 ± 12.3 62 ± 10.2 171 ±17.1 

Glimepiride 0.0001 8 0.07 ±0.02 3 3.9 ±0.5 25 ± 15.5 70 ± 4.8 90 ± 6.35 186 ±16.5 
0.001 22 0.08 ±0.02 14 4.2 ± 0.4 18 ± 9.1* 53 ±11.3 73 ± 10.6 145 ± 19.9 
0.01 18 0.18 ±0.01 11 3.7 ±0.4 8 ±5.5* 52 ± 13.3 87 ± 18.2 147 ±24.2 
0.1 15 0.14 ±0.01 9 2.2 ±0.5* 19 ± 15.6* 63 ± 18.4 45 ± 10.6 128 ±28.1 
5 18 0.17 ±0.01 12 3.9 ±0.3 54 ± 14.9 88 ±16.1 53 ± 11.4 196 ±17.5 

Results are mean ± S.E. nl= total number of animals at the onset of reperfusion, n2= total number of 

animals surviving coronary reperfusion. * P<0.05 compared to the corresponding control value. 
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Coronary artery ligation resulted in extensive loss of nitroblue-tetrazolium staining 

that involved the anterior and lateral free wall and extended to 45 ± 2.5 % of the left 

ventricular myocardium after 1 day infarction in control animals (Table 5). After 7 days the 

volume of the infarcted myocardium became albeit smaller (39.1 ± 3.2 %) due to the 

shrinkage of the infarcted tissues. As myocardial infarction progressed the calculated volume 

of the left ventricular cavity significantly enlarged from 12.1 ± 0.7 % to 19.9 ± 1.2 % 1 day 

and 7 days after myocardial infarction, respectively. 

»«/ 

Glibenclamide treatment in a dose of 5 mg/kg b.i.d. did not influence the development 

of infarction at 1 day coronary artery occlusion. This treatment, however, considerably 

decreased the volume of the infarcted myocardium 7 days after coronary artery ligation (Table 

5), while the enlargement of the ventricular cavity did not differ from the control group (Table 

5). The smaller dose of the compound did not influence the development of myocardial 

infarction. 

Glimepiride, on the other hand, at either high dose i.e. 5 mg/kg or small dose i.e. 0.001 
mg/kg did not influence the size of the infarcted myocardium (Table 5). However, at 5 mg/kg, 
the compound significantly decreased the enlargement of the left ventricular cavity during the 
evolvement of myocardial infarction.. 

3. 1. 3. 3. Thickness of myocardium 

In the control animals, the progression of myocardial infarction was characterized by 

thinning of the infarcted left ventricular wall and thickening of the non-infarcted ventricular 

septum (Table 6). 

Glibenclamide at the higher, but not the smaller dose, resulted in more intense 

thinning of the infarcted myocardium as compared to the control (Table 6). Interestingly, both 

doses of the compound inhibited the development of hypertrophy of the non-infarcted 

myocardium, measured as the thickness of the septum 7 days following myocardial infarction 

(Table 6). 

Glimepiride pretreatment (5 mg/kg) decreased the thickness of the infarcted 
myocardium 1 day after coronary artery ligation. However, following 7 days coronary artery 
ligation, the compound neither increased the scar thinning nor influenced the thickening of the 
non-infarcted myocardium (Table 6). 
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Table 5. Effect of glibenclamide and glimepiride on the volume of the myocardium (Vol) and 
the percentage volume of the infarcted myocardium (MI) and the left ventricular cavity (LVC) 
after 1 or 7 days of myocardial infarction in rats 

Group Dose 1 day 7 days 

mg/kg n Vol MI LVC n Vol MI LVC 
(nun3) (%) (%) (mm3) (%) (%) 

Control 15 677±19.1 45.3±2.5 12.1±0.7 10 571±47.6t 39.1±3.2 19.9±1.2f 

Glibenclamide 0.1 10 653±26.2 37.7±3.4 10.3±0.5 13 540±24.4f 35.1±2.2 18.3±1.4 

5 10 578±25.9* 38.9±2.9 13.5±0.6 8 467±29.7*t 29.1±3.5* 19.0±1.0 

Glimepiride 0.001 10 625±29.0 39.0±4.0 ll.Oil.O 6 625±36.6 41.1±6.0 15.6±1.5 

5 8 653±26.9 46.1±3.6 8.7±0.6* 8 565±25.9 43.3±2.0 15.2±1.1* 

Results are mean ± SE of n animals in which infarct size was measured in each group. 
Drugs were applied intraperitoneally 30 min before coronary artery occlusion and then twice 
daily. * P < 0.05 compared to the corresponding control value; f P < 0.05 compared to 1 day-
old myocardial infarction. 

Table 6. Effect of glibenclamide and glimepiride on the thickness of the infarcted left 
ventricle (MILV) and the non-infarcted septum (NIMS) after myocardial infarction in rats 

Group Dose 1 day 7 days 
mg/kg n MILV 

(nun) 
NIMS 
(mrri) 

n MILV 
(mrri) 

NIMS 
(mml 

Control 15 2.5±0.06 2.4±0.08 10 2.0±0.13t 2.9±0.10f 

Glibenclamide 0.1 10 2.4±0.09 2.6±0.07 13 1.8±0.09 2.3±0.05* 

5 10 2.2±0.07* 2.4±0.04 8 1.6±0.04* 2.1±0.10* 

Glimepiride 0.001 10 2.4±0.09 2.6±0.09 6 2.1±0.14 2.9±0.11 

5 8 2.2±0.09* 2.6±0.08 8 2.0±0.06 2.8±0.11 

For details see Table 5. 
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3. 2. Effects of GYKI-16638 

3. 2. 1. Myocardial ischaemia-reperfusion induced arrhythmias in anaesthetised rabbits 

3. 2. 1. 1. Haemodynamic parameters 

There were no significant differences between the mean arterial blood pressure of 

control and GYKI-1663 8 treated animals. Mean arterial blood pressures fell significantly in 

both groups due to coronary artery occlusion as compared to pre-occlusion values (84±2.6 vs. 

95±3.5 mmHg, 69±3.8 vs. 93±3.4 mmHg and 74±3.9 vs. 94±2.7 mmHg in controls, 0.03 and 

0.1 mg/kg GYKI-16638 treated animals, respectively, all P<0.05). 

The infusion of the drug significantly decreased the heart rate at both doses compared 

to the basal values (Table 7). However, coronary occlusion did not change the heart rate 

significantly compared to pre-occlusion values nor did reperfusion. 

3. 2. 1. 2. QTandQTc intervals 

GYKI-16638, in a dose of 0.03 mg/kg, had no effect on QT and QTc intervals, but 

caused a significant increase of both variables in the dose of 0.1 mg/kg (Table 7). No 

significant changes occurred in QT or QTc intervals during coronary artery occlusion or 

reperfusion. 

Table 7. Effect of intravenous administration of GYKI-16638 on the mean arterial blood 
pressure (MBP), heart rate (HR), QT and QTc intervals in anaesthetised rabbits 

Group Dose 
(mg/kg) Variable N Before infusion 5 min after 

infusion 
MBP 101±2.8 100±2.6 
HR 271±7.2 268±6.6 

Control QT 
QTc 

19 149±4.0 
162±3.4 

149±4.4 
162±3.8 

MBP 93±3.4 93±2.8 
HR 273±5.2 259±6.3* 

GYKI-16638 0.03 QT 
QTc 

14 150±4.6 
164±4.1 

159±7.3 
171±6.5 

MBP 94±2.7 93±2.5 
HR 270±8.7 253±7.3* 

0.1 QT 
QTc 

17 140±4.4 
153±3.4 

166±6.4*t 
173±4.7* 

N= number of animals, MBP= mean blood pressure (mmHg), HR= heart rate (1/min), QT= 
QT interval (msec), QTc= corrected QT interval, *= P<0.05 compared to the pre-infusion 
value of the same group, t = P<0.05 compared to the control group. 
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Table 8. Effect of GYKI-16638 on the incidence of arrhythmias during 10 min coronary 
artery occlusion in anaesthetised rabbits. 

Dose 
Group N 

(mg/kg) 

Survived 

n (%) 

Incidence of arrhythmias, n (%) 

None VF VT Other 

Control 19 12 (63%) 4(21%) 8 (42%) 2(11%) 14 (74%) 

GYKI- 003 14 14 (100%)* 3 (21%) 3 (21%) 2 (14%) 11 (79%) 

16638 0.1 17 15 (85%) 5 (29%) 4 (24%) 0 (0%) 2 (71%) 

N= total number of animals; n= number of animals exhibiting the given response; %= 
percentage of the animals exhibiting the given response. VF= ventricular fibrillation; 
VT=ventricular tachycardia; Other= extrasystoles, salvos, and/or bigeminy. * P<0.05 
compared to the control group. 

Table 9. Effect of GYKI-16638 on the incidence of arrhythmias during 10 min reperfusion 
following 10 min of coronary artery occlusion in anaesthetised rabbits. 

Dose 
(mg/kg) 

Survived Incidence of arrhythmias, n (%) 
Group Dose 

(mg/kg) N 
n (%) None VF VT Other 

Control 12 4 (33%) 0 (0%) 9 (75%) 7 (58%) 5 (42%) 

GYKI- 0.03 14 11 (79%)* 3 (21%) 3 (21%)* 4 (29%) 9 (64%) 

16638 0.1 15 15 (100%)* 6 (40%)* 5 (33%) 6 (40%) 8 (53%) 

For details see Table 8. 

3. 2. 1. 3. Arrhythmias during myocardial ischaemia and reperfusion 

In all groups, arrhythmias did not develop during 1 min infusion of drugs or vehicle, 

or between the infusion of drugs and coronary occlusion. In the control group during 10 min 

ischaemia, 7 animals out of 19 died due to irreversible ventricular fibrillation. All animals 

survived coronary occlusion in the 0.03 mg/kg GYKI-16638 (n=14) treated groups. In the 0.1 

mg/kg of the compound 2 animals out of 17 died because of irreversible ventricular 
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fibrillation during coronary occlusion (Table 8). However, there were no significant 

differences in the treated and control groups concerning the incidence of other types of 

arrhythmias during the coronary occlusion period. 

Arrhythmias induced by reperfusion appeared within 10-30 sec following the release 
of the ligature. Pretreatment with GYKI-16638 at a dose of 0.03 mg/kg significantly reduced 
the incidence of reperfiision-induced ventricular fibrillation (Table 9). The larger dose (0.1 
mg/kg) of the compound reduced the overall occurrence of ventricular fibrillation (33% vs. 
75% in controls), and significantly decreased the incidence of irreversible ventricular 
fibrillation (0% vs. 89% in controls, P<0.05). Both doses of the compound significantly 
increased the number of animals surviving reperfusion (79% and 100% with 0.03 and 0.1 
mg/kg GYKI-16638 vs. 33% in controls, P<0.05, respectively). The number of animals that 
did not develop any arrhythmia during reperfusion was significantly higher in the 0.1 mg/kg 

GYKI-16638 treated group (Table 9). There were no differences in the incidence of other 

types of arrhythmias. 
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4. Discussion 

4. 1. Cardiac arrhythmias in anaesthetised animals 

Transient coronary artery ligation followed by reperfiision in anaesthetised animals, 

like rats or rabbits, is a widely used and accepted method to investigate the efficacy of 

antiarrhythmic treatments. In the present experiments, induction of brief i.e. 6 min or 10 min 

occlusion of the left coronary artery per-se..was not long enough to permit significant amount 

of ischaemia-induced arrhythmias to develop, however, it was purposely chosen to prime the 

heart to develop severe consistent arrhythmias 10-30 s after reperfiision. 

The pathophysiological mechanisms responsible for reperfiision arrhythmias are not 
fully understood. Although reperfusion is essentially meant for the recovery of ischaemic 
myocardium, it might be associated with more serious rhythm disturbances including 
ventricular tachycardia and ventricular fibrillation both experimentally (Curtis and Hearse, 
1989; Wolleben et al., 1989; Gelvan et al., 1991; Krumholz and Goldberger, 1991; Liu et al., 

1991) and clinically (Kuck et al., 1985; Murohara et al., 1991; Smith et al., 1992) 

The genesis and maintenance of reperfiision arrhythmias represent complex 

phenomena involving both reentrant and non-reentrant mechanisms. Although reentrant 

arrhythmia is the proposed mechanism during ischaemia, however, some non-reentrant 

mechanisms may also be involved (Pogwizd and Corr, 1987). It appears that during the 

reperfiision period both reentrant mechanisms and triggered activities (non-reentrant 

mechanisms) are important in the initiation and maintenance of reperfiision arrhythmias 

(Pogwizd and Corr, 1992; Ponce-Zumino et al., 1997; Tachibana et al., 1998). At the cellular 

level, these arrhythmias may emerge due to the direct effects of abrupt myocardial ischemia 

which may cause varying metabolic and ionic changes resulting in inhomogeneous 

refractoriness across and within the ischaemic zone. Dispersion of conduction and 

refractoriness favour the appearance of reentrant ventricular arrhythmias (Pogwizd and Corr, 

1992). The multiple mechanisms, however, seem to provide the best explanation. These could 

include, in particular, the activation of the ATP-sensitive potassium channels secondary to a 

reduction in the intracellular ATP content, and an increase in the extracellular potassium 

concentration, secondary to intracellular potassium loss. These cellular alterations lead to a 

reduced conduction velocity, a decrease in action potential duration and refractoriness and 

may also be responsible for the initiation of after-depolarization. In addition, several other 

factors could be involved in the genesis of ischaemia-induced reperfiision arrhythmias. These 
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may include alterations of the intercellular coupling at the gap-junction level (Saffitz et al., 

1993), as well as the effects of endogenous factors, such as endothelin, angiotensin EE, 

thromboxane A2 and many others (Curtis et al., 1993). 

The multiplicity of the cellular mechanisms involved makes the choice of therapy 
difficult but suggests that antiarrhythmic agents with a diversity of cellular 
electrophysiological activities may have the best potential to prevent ischaemia and 
reperfusion-induced life-threatening arrhythmias. 

4. 2. Sulphonylureas and reperfusion arrhythmias in anaesthetised rats 

The findings of the present study demonstrate that pre-treatment with two 

sulphonylureas, glibenclamide or glimepiride (both are K A T P channel inhibitors), significantly 

decreased the incidence of irreversible ventricular fibrillation during reperfusion following 

transient myocardial ischaemia in anaesthetised rats. Moreover, this cardioprotective action of 

glimepiride occured in smaller doses than that producing a blood glucose lowering effect. 

The role of K A T P channel blockade in reducing ventricular fibrillation during 

myocardial ischaemia is well established, but the antiarrhythmic effect may largely depend on 

the attendant decrease in the loss of intracellular potassium and the prevention of non-uniform 

shortening of the action potential duration during myocardial ischaemia (MacKenzie et al., 

1993; Tweedie et al., 1993). Such an effect by K A T P inhibitors, like glibenclamide or 

glimepiride, could decrease the development of electric inhomogeneity between the ischaemic 

and non-ischaemic myocardium and might suppress the substrate for reentrant pathways, 

resulting in antiarrhythmic, antifibrillatory action. Such an idea is consistent with other 

investigators using glibenclamide in various in vitro (Pogatsa et al., 1988; Wolleben et al., 

1989; Kantor et al., 1990; Tosaki et al., 1993; D'Alonzo et al., 1994), as well as under in vivo 

experimental conditions (Pogatsa et al., 1988; Bekheit et al., 1990; Billman et al., 1993; 

Kondo et al., 1996). In agreement with these observations, recent results from our lab have 

demonstrated in in vivo conditions that inhibition of K A T P channels by glibenclamide 

provided an effective protection against irreversible ventricular fibrillation and increased the 

survival rate during acute myocardial infarction in conscious rats (Lepran et al., 1996) or 

during ischaemia/reperfusion in anaesthetised rats (Baczko et al., 1997; EL-Reyani et al., 

1999). Clinical data seem to corroborate these results. In a randomised crossover study in 

NEDDM (glibenclamide vs. metformin), glibenclamide significantly reduced the incidence of 

ventricular premature complexes and ventricular tachycardia during (spontaneous) transient 
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myocardial ischaemia (Cacciapuoti et al., 1991). Glibenclamide did not alter the ischaemic 

burden nor did it interfere with non-ischaemia-related arrhythmias (Cacciapuoti et al, 1991). 

In a study on NIDDM patients suffering from acute MI, ventricular fibrillation occurred 

significantly less frequently in the glibenclamide-treated group than in NIDDM patients 

treated otherwise and in non-diabetics (Pogatsa et al., 1992; Lomuscio et al., 1994 and Davis 

etal., 1996). 

Very few data are available on the possible antiarrhythmic effect of glimepiride. Vegh 
and Papp (1996) have found that only glimepiride but not glibenclamide attenuated the 
number of episodes and the incidence of ventricular tachycardia during ischaemia after 
coronary artery ligation in anaesthetised dogs. Our present investigations corroborate these 
findings and support that, in a wide dose range, glimepiride provides a more potent 
antiarrhythmic effect than glibenclamide (EL-Reyani et al., 1999). 

The reason for the observed difference between glibenclamide and glimepiride, and 

the divergence of the blood glucose lowering potency and the 'antiarrhythmic' activity have so 

far not been interpreted. However, some data do describe differences in the various actions of 

these two compounds. Ozaki et al. (1992) found that glimepiride inhibited the 

cyclooxygenase pathway of isolated human platelets, while the activities of 12-lipoxygenase 

and phospholipase A2 were not influenced. On the other hand, glibenclamide inhibited both 

the cyclooxygenase and 12-lipoxygenase enzymes and also the phospholipase A2. In diabetic 

population, Muller et al. (1994) have shown that glimepiride was more potent than 

glibenclamide in lowering blood glucose level, whereas had 2.5-3-fold lower affinity to 

membranes isolated from rat pancreatic 3-cells. Moreover, Bijlstra et al. (1996) found that 

forearm vasodilator response to the administration of the specific K A T P channel opener 

diazoxide was significantly inhibited by therapeutic concentrations of glibenclamide, while 

glimepiride was devoid of such an effect. Presumably, differences in the effects on membrane 

currents or in direct metabolic effects, not related to the increased secretion of insulin, e.g., 

increased glucogenolysis, decreased fatty acid metabolism (reviewed by Schotborgh and 

Wilde, 1997), could be related to the more pronounced 'antifibrillatory' action of glimepiride 

than that of glibenclamide. Moreover, the existence of multiplicity of sulphonylurea receptors 

that regulate the opening of K A T P channels might largely correlate to the discrepancies of the 

observed 'pancreatic' and 'cardiac', as well as the 'sarcolemmal' and 'mitochondrial' activity of 

sulphonylurea compounds. The contribution of these possibilities to the differences between 

glibenclamide and glimepiride revealed in the present study require further investigation. 
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Based on the observed differences between the two sulphonylurea compounds, this 

may suggest the possibility of developing 'cardioselective' or 'ischaemia selective' compounds 

that inhibit K A T P channels albeit different subtype without decreasing blood glucose level. 

This conclusion is supported by recent findings that a novel 'cardioselective' K A T P channel 

antagonist, HMR-1883, reduced the incidence of ventricular fibrillation induced by 2 min 

coronary artery occlusion during submaximal exercise test in mongrel dogs with healed 

myocardial infarction (Billman etal., 1998). Such compounds may be the potential candidates 

for the drug treatment of cardiac arrhythmias with a selective action during myocardial 

ischaemia. 

4. 3. Development of myocardial infarction 

In experimental cardiology, regional myocardial infarction by occlusion of the left 

main coronary artery in the rat is of particular importance because of its similarity to the 

clinical situation of acute myocardial infarction (Bernauer, 1997). Moreover, it is a widely 

used method for the evaluation of different phases of myocardial infarction in 

pharmacological interventions when large number of animals are involved in the experiments. 

Coronary artery occlusion in this model is characterised by two phases. The first acute phase 

(i.e. the first hours) after myocardial infarction is characterised by high mortality due to 

severe arrhythmias (Leprán etal., 1983; Walker etal., 1988), whereas the second late phase is 

characterised by scar formation and anatomical remodelling of the ventricles (Anversa et al., 
1985; Pfeffer etal., 1985). 

Preclinical screening for a special indication, such as infarct size developing after 

myocardial infarction, should involve estimation of putative beneficial effect of compounds 

on cardiac geometry. Detailed morphologic evaluation of myocardial infarction with classical 

histologic methods (i.e. serial sectioning, histologic staining, microscopic evaluation, etc.), the 

expense, labour and intensive nature of traditional methods restricts possibility to carry out a 

large number of experiments (Jang et al., 1983; Epstein and Patterson, 1985; Ware et al., 
1992). There are several techniques that make these large-scale measurements easier and 

simpler. Among them computer assisted planimetry is emerging to be very helpful to shorten 

the time of evaluation, but preparation of the samples is still a problem. 

Recently, Porzio et al. (1995) described a method for simultaneous measurement of 

the infarct size and left ventricular geometry in the rat. Accordingly, after cryostatic 

sectioning, nitroblue-tetrazolium staining and mounting on slides, video images were 
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analysed by a sophisticated computer technique. However, the expenditure and the time 

consuming nature of the procedure is not solved. In the present study, we developed a much 

simpler technique using a macroscopic sectioning and staining, no mounting, but a direct 

digitalization of stained slices of the heart using a flat-bed scanner. Furthermore, during the 

evaluation of stored images the differentiation of infarcted and non-infarcted tissues were 

performed automatically by the software using constant settings of the colours representing 

these area. In this method no manual delineation of the infarcted area is needed as in previous 

planimetric techniques. Therefore, a subjective component of the differentiation did not 

influence the evaluation, and myocardial infarction in small patches or the finger type border 

zone could easily be evaluated. 

Using this evaluation method, the present investigations demonstrated that in the 
control animals the infarct size was smaller by the 7th day after coronary artery ligation as 
compared to the 1st day and this change was mainly due to the thinning of the scar tissue. The 
remodelling of the ventricle by the 7th day of infarction was characterised by thickening of the 
non-infarcted left ventricular myocardium and by the enlargement of the left ventricular 
cavity. These changes are in accordance with the results of others using classical 
morphological methods for the evaluation of experimental myocardial infarction in the rat 
(Fishbein et al., 1978; Roberts etcil., 1984; Pfeffer etal., 1992). 

4. 4. Sulphonylureas and the development of myocardial infarction 

The results in the present study indicate that one week intraperitoneal glibenclamide 

treatment significantly modified the capability of in vivo infarcted rat hearts to adapt to the 

gradually progressing compensatory reaction of the left ventricle. This effect was represented 

by a significant decrease in the volume of the infarcted myocardium at a dose that was 

previously shown to decrease basal plasma glucose concentration and inhibited its elevation 

upon oral glucose loading (EL-Reyani et al., 1999). Such an effect appeared to be due to the 

increased scar thinning 7 days after coronary artery ligation. The smaller dose of the 

compound, that did not influence significantly the plasma glucose concentration (EL-Reyani 

et al., 1999), did not influence scar formation, however, it still inhibited the thickening of the 

non-infarcted myocardium. 

The reason(s) why glibenclamide treatment resulted in increased scar thinning and 

inhibited the hypertrophy of the non-infarcted myocardium is not known. Death of animals 

having larger myocardial infarction cannot explain the reason for this difference since in our 
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conditions death was rare after 1 day of coronary artery ligation. K A T P inhibitors may increase 

the energy requirements of the myocardium by inhibiting the shortening of action potential 

duration due to decreased intracellular ATP concentration during myocardial ischaemia 

(Escand and Cavero, 1992; Grover et al., 1994). Such an effect might result in a more intense 

loss of the myocardium within the infarcted region. 

K A T P inhibitors may also decrease vasodilation during hypoxia and ischaemia (Daut et 

al., 1990; Aversano et al., 1991; Komaru et al., 1991). Inhibition of reactive hyperaemia in 

the myocardium after coronary artery ligation could also contribute to both the more intense 

scar thinning and to the inhibition of myocardial hypertrophy. 

The hypoglycaemia itself evoked by glibenclamide is not likely to be responsible for 

scar thinning and inhibition of hypertrophy since glimepiride, in high dose that produced even 

more intense effects than glibenclamide on the plasma glucose level (Geisen et al., 1988), did 

not influence scar thinning or the hypertrophy of the non-infarcted myocardium. Moreover, 

after glimepiride treatment the calculated volume of the left ventricular chamber was smaller 

than in the vehicle treated controls. 

The discrepancies between the effects of the two compounds on the development of 

myocardial infarction is not only a conjecture. It might be important that glimepiride produces 

less significant effect on the inhibition of vascular K A T P channels than glibenclamide (Bijlstra 

et al., 1996; Geisen et al., 1996). Whether this difference also exists in the inhibition of 

reactive hyperemia, thereby contributing to the observed differences in influencing the 

development of myocardial infarction, requires further experimentation. It was also found that 

glimepiride inhibited the cyclooxygenase pathway of isolated human platelets, while not 

influencing 12-lipoxygenase and phospholipase A2 (Ozaki et al., 1992). On the other hand, 

glibenclamide inhibited both the cyclooxygenase and the lipoxygenase pathways, as well as 

the phospholipase A2.. Such differences in the actions of the two compounds may explain the 

differences in their influence on the development of myocardial infarction, since 

phospholipase A2 inhibition also adversely influences the healing process and results in 

increased scar thinning and mummification of the infarcted myocardium (Kloner et al., 1978; 

Mannisi etal, 1987). 

In the present study, treatment with glibenclamide has been shown to attenuate the 

hypertrophy of the non-infarcted myocardium in vivo. Nevertheless, no data have been 

available as to whether the drug is able to ameliorate the functional capacity of heart after 



myocardial infarction. The results reported here clearly show that treatment with 

glibenclamide for 7 days after permenant coronary artery occlusion tended to improve cardiac 

geometry as measured by a decrease in the volume of infarction and the marked reduction in 

the left ventricular hypertrophy when compared to vehicle treated rats. 

Inhibition of the development of hypertrophy in the non-infarcted myocardium after 
permanent coronary occlusion may have two consequences. On one hand it may deteriorate 
the heart function and promote the shift from a compensated state to a decompensated one 
after myocardial infarction. On the other hand it may provide protection against cardiac 
failure developing as a consequence of ischaemic heart disease. Our results corroborate the 
results of others who have shown that in glibenclamide treated patients the incidence of post-
infarction heart failure was significantly lower as compared to other hypoglycaemic agents 
(Lomuscio et al, 1994). Further experimental and prospective controlled studies will be 
needed to definitely evaluate the question whether the disparate ability of antidiabetic agents 
to reduce left ventricular hypertrophy can be translated into better cardiovascular and overall 
prognosis of susceptible patients. 

4. 5. GYKI-16638 and reperfusion arrhythmias in rabbits 

The recently developed GYKI-16638 is a member of a new series of N-

(phenoxyalkyl)-N-phenylalkylamine compounds. Its structure combines Class I/B and Class 

i n structural elements, i.e. those of sotalol and mexiletine. In the present study, the 

antiarrhythmic effect of the compound was investigated in anaesthetised rabbits. The 

compound significantly decreased the number of animals that died due to lethal ventricular 

arrhythmias during reperfusion after 10 min regional myocardial ischaemia. The 

antiarrhythmic activity of GYKI-16638 was already observed after the administration of the 

lower dose that did not influence QT or QTc intervals. 

Occurrence of torsades de pointes (TdP) is the classic proarrhythmic effect of selective 

Ikt blockers that has been causally linked to an increased dispersion of ventricular 

repolarization both in experimental and clinical studies (Buchanan et al., 1993; Vos et al, 

1995; Gottlieb etal, 1995). Such proarrhythmia may be the cause of excess mortality seen in 

the SWORD trial with D-sotalol (Waldo et al., 1996). These results have shifted the attention 

towards antiarrhythmic compounds with a combined mechanism of action. Amiodarone, for 

example, is an antiarrhythmic agent with a complex mode of action that has recently attracted 

a great deal of interest. It was shown to decrease the ventricular fibrillation vulnerability in 



rabbit hearts following long-term pretreatment (Behrens et al., 1997), to be protective against 

ischaemia-and reperfiision induced arrhythmias (Varro and Rabloczky, 1986; Li and 

Northover, 1992), and it is effectively used for the treatment of life threatening ventricular 

arrhythmias in humans (Singh 1999). 

Amiodarone was found to have a remarkably low potential for inducing TdP 

tachyarrhythmias despite its ability to prolong QT interval (Hohnloser et al., 1994). On the 

other hand, Class I/B antiarrhythmics liker..mexiletine and lidocaine were shown to suppress 

TdP induced by D-sotalol both in animal (Carlsson, 1993b) and human studies (Assimes and 

Malcom, 1998). Antiarrhythmic drugs with Class I/B action have also been shown to be 

effective against coronary artery occlusion/reperfusion induced arrhythmias (Bonaduce et al., 
1986; He et al., 1992; Komori et al., 1995). These results suggest that an antiarrhythmic 

compound with combined Class I/B and Class III effects could reduce the incidence of re-

entry arrhythmias without a high risk of producing TdP. 

When administered chronically, amiodarone exhibits serious extracardiac side effects 

limiting its use (Hilleman et al, 1998). GYKI-16638 shares some (Class I/B + Class HI) but 

not all of the electrophysiological properties of amiodarone and its chemical structure is also 

different. Based on its chemical structure (containing no iodine), it can be reasonably 

expected that this compound, unlike amiodarone, would be relatively free of extracardiac side 

effects. Due to its Class I/B action it is also expected that the compound lacks the significant 

inhibitory effect on conduction at normal heart rate. However, further studies are needed to 

elucidate the possible side effects of GYKI-16638. 

The haemodynamic side effects are of particular importance when considering 

antiarrhythmic drugs. GYKI-16638 did not change the mean arterial blood pressure, but 

decreased the heart rate of anaesthetised rabbits. A similar heart rate decreasing effect of D-

sotalol has been shown by Schwartz et al. (1987), although this compound lacks the 

antiadrenergic properties of DL-sotalol. A moderate decrease in heart rate may be beneficial, 

especially in the setting of myocardial ischaemia and reperfiision induced arrhythmias 

(Bernier et al., 1989). 

Based on these results, GYKI-16638 can be regarded as a novel antiarrhythmic drug 

candidate which provides protection against coronary artery occlusion and reperfiision 

induced arrhythmias in anaesthetised rabbits. This protection was already noticed at a lower 

dose that did not lengthen the QTc interval significantly. 
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5. Conclusion 

The present results suggest that potassium channel blockers may show a remarkable 

diversity which can presumably be utilized .therapeutically in the future. Important differences 

might be expected among these agents in (1) the degree of selectivity for the various 

potassium channel subtypes, (2) the voltage_andJime-dependence_ofj:hannel_ block,.(3Xtheir 

ability to prolong repolarization at short cycle lengths and (4) the propensity to induce 

excessive prolongation and early afterdepolarization. Although some properties of the 

different agents classified can be generalized, one cannot assume that all agents belonging to a 

certain class will be identical in their electrophysiological profiles or their antifibrillatory and 

proarrhythmic actions. 

Highly potent and selective potassium channel blockers not only provide an extremely 
useful means of clarifying possible arrhythmogenic mechanisms as expressed in animal 
models and in humans, but appear to hold considerable promise as an alternate mode of 
antiarrhythmic therapy. The diversity of potassium channels present in the heart, their 
regional expression and their possible long-term modulation, present an intriguing number of 
possibilities for building in selectivity and minimizing the risk of proarrhythmia and other 
adverse effects. 

In the development of new agents a number of issues merit consideration. There is 

now much evidence that multiple channel and receptor action properties may provide a better 

antiarrhythmic effect. The development of newer compounds having more complex 

mechanism of action may provide clinically usefull drugs in the treatment of early and late 

events of myocardial infarction. 
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