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1. BEVEZETES

Az értekezés targya exp(tA)/ill. exp(tA)b/, valamint
ennek az A matrix valamely paramétere szerinti parcialis de-
rivaltja kiszamitasara vonatkozdé numerikus eljérésok megada-
sa ill. elemzése, ahol exp(tA) a joélismert hatvanysorral de-

finidlt matrix-exponencialis filiggvény. Foglalkozunk még ezen

eljarasoknak az un. bioldégiai kompartment-rendszerekre vald
alkalmazasanak kérdésével is.

Az értekezés felosztasa a kovetkezd. Jelen elsd fejezet
tartalmazza a problémafelvetést és az eldzményeket, tovabba
a jeldléseket és a gyakrabban hasznalt elméleti eredményeket.

A masodik fejezetben a matrix-exponencialisnak és par-
cialis derivaltjainak kis perturbacidkra vonatkozd érzékeny-
ségét vizsgaljuk, melynek fontos szerepe van az egyes algo-
ritmusok megitélése szempontjabdl. Itt egyrészt élesitjik
az irodalomban talalhatd perturbaciés korlatokat a matrix-
exponencialisra vonatkozban, masrészt az exp&A)k vektorra
ill. exp(fA) paraméter szerinti derivaltjara is megadunk
abszolut és relativ perturbacids korlatokat. Ezenkivil ez a
fejezet a matrix-exponencialissal kapcsolatos kondicids széa-
mokr6l is tartalmaz néhany uj eredményt.

A harmadik fejezetben h&rom mbédszert irunk le, melyek
részben exp(tA), részben exp(tA)b kiszamitdsara alkalmasak.
Mindharom eljarast elemezzik hatékonysag, ill. pontossag
szempontjabdél, ramutatva azok kényes pontjaira és alkalmaz-

hatésaguk korlataira. A négyzeteléssel kombinadlt Taylor-sor



médszerrel kapcsolatban bevezetjik egy matrix hatvanyozasra
vonatkozé kondicids szamat, amely lokalisan jellemzi az
O0roklott relativ hiba terjedését a matrixhatvanyozas ill.
négyzetelés soran, és ramutatunk ennek kapcsolatara a Van
Loan altal bevezetett exponencidlis kondicids sza&mmal. A
spektralfelbontas mddszerénél a kerekitési hibak hataséanak
elemzésével alatamasztunk egy, az irodalomban bizonyités
nélkill ko&zolt 4llitast a mddszer pontossagaval kapcsolatban.
A harmadik eljarads, a minimé&lpolinom-médszer, altalunk ki-
dolgozott moédszer, mely egy ismert alapdtlet tovabbfejlesz-
tésére éplil, és elsBsorban exp%éA)h kiszamitasara alkalmas.

A negyedik fejezetben megadjuk a megeldzd fejezet modd-
szereinek kiterjesztését a matrix-exponencialis paraméterek
szerinti parcidlis derivaltjaira. Ezek kozll a minimalpoli-
nom-médszer tovabbfejlesztése, valamint a spektréalfelbontési
moédszer kiterjesztése a masodik parcidlis derivaltakra sajat
eredménylink .

Az 6tddik fejezetben el8szdr bemutatjuk a bioldgiai
kompartment-/rekesz-/rendszerek analizisénak alapproblémait
és mbédszereit /modell-egyenletek, identifik&lhatdsag, para-
méterbecslés/, és megvizsgaljuk e rendszerek matrixainak, az
un. kompartment-matrixoknak a spektralis és egyéb tulajdon-
sagait. Itt néhany uj eredményt is bebizonyitunk a kompart-
ment-matrixokkal kapcsolatban. Ezutan megvizsgaljuk az eldzd
fejezetekben ismertetett mdédszerek kompartment-rendszerekre
valdé alkalmazdsanak célszerl médjait, és megmutatjuk, hogy
bizonyos esetekben egyes mddszerek kompartment-matrixra nu-

merikusan igen stabilak. Igy példaul bebizonyitjuk, hogy



szinguléaris kompartment-matrixok exponencidlisanak hatvanyo-
zadsra vonatkozd6 kondicids szama 84—norma esetén mindig opti-
malis. A fejezet végén egy szampéldan bemutatjuk a minimdl-
polinom-mddszer alkalmazasat kompartment-rendszerre.

Végilil egy mellékletbem megadjuk a minimdlpolinom-mdéd-
szer Fortran nyelvl implementdcidéjanak leirasat, valamint a
program moduljainak és a futtatési eredményeknek a szamitd-

gépes listajat.

1.1. A probléma felvetése

A mérnoki tervezéstdl az orvosbioldgiai kutatéasig a

matematika szamos alkalmazasi teriletén meril fel az

x=Ax , x(0)=b /1.1.1./

lineadris allandbegylitthatés differencidlegyenletrendszer
numerikus megoldasanak igénye, ahol Ae R™™ valds mAtrix és
QGIRM' valdés vektor. E kezdetiérték-probléma megoldasa for-

malisan az

x = exp(tA) b /1.1.2./

alakban adhaté meg, ahol a matrix-exponencidalis, exp(fA)
tA

/melyet a késObbiekben néha e alakban is irunk/, a mindig

konvergens

L
exp (LA) -5 % A

&__._0 /1.1.3./'

matrix-hatvanysorral definialt.

A matrix-exponenciélis numerikus meghatdrozdsa irant a



hatvanas évek vége 6ta egyre fokozdédik az érdeklddés, és
mérndki folydiratokban /pl. Proc. IEEE egy IEEE Trans. Aut.
Control/ igen sok cikk jelent meg, melyek exp(tA) kiilénféle
eldallitésait javasoltak szamitas céljara. E cikkek legtdbb-
jében a szamitdégép véges pontossagabdl addédd kerekitési
hibakat - melyek exp(tA) szamitdsakor &ltaldban a legtdbb
problémat okozzdk a pontossag szempontjabdél [38] - teljesen
figyelmen kiviil hagytédk. Az emlitett mdédszerek kritikus at-
tekintését adja Moler és Van Loan 8sszefoglald cikke [387],
amely nagy vonalakban elemzi a mdédszereket a kerekitési hiba
terjedése és hatékonysag szempontjabdl.

Bar matematikailag exp(tA) és CXP&A)E kiszamitasanak
problémaja ekvivalens, szamitastechnikai szempontbdél célsze-
ri a két szamitasi feladatot megkiilénb&ztetni, ugyanis bizo-
nyos moédszerek a két feladat kdzil /membria- és miiveletigény
szempontjabdl/ az egyikre lényegesen hatékonyabbak, mint a
masikra. E kilonbség nem mindig jut kifejezésre Moler és Van
Loan emlitett cikkében, ahol bizonyos mdédszerek kevésbé ha-
tékonynak nyilvanitasakor els&sorban exp (tA) meghatarozasat
tartottdk szem eldtt. Az altalunk vizsgalt mbédszerek kozil
milveletigény szempontjabdél a négyzcteléssel kombinalt Tay-
lor-sor moédszer exp(tA), a -minimialpolinom-médszer exﬁ(fA)b
kiszamitasara hatékonyabb, mig a spektralfelbontas mbédszere

egyforman hatékony mindkét feladatra.

Paraméterek szerinti parcidlis derivaltak szamitéasa

Egy masik szamitasi feladat, amely szintén sokszor fel-



merlil a gyakorlatban, az /1.1.1/ kezdetiérték-probléma
megoldasanak az A matrix bizonyos paraméterei szerinti par-
cialis derivaltjainak kiszamitasa. Tegylik fel, hogy A fiigg
bizonyos paraméterektdl és jeldlje O ezek barmelyikét /a to-
vabbi paraméterektdl valo fliggéstdl pillanatnyilag eltekint-

hetiink /. Ekkor

A=A(08) eés x = x (t,8) /1.1.4/
és feladatunk
_ _. 9)._95(*.9)_9€M(9)

2=z 50/= —55 =730 /1.1.5/

szédmitdsa a paraméter valamely rogzitett 6=6, értéke mellett
/az [1.1.5/ képletben a parcidlis derivalds komponensenként
értendd/.

Az /1.1.5/ szerint definialt Z(.) figgvényt az x (.)

figgvény & paraméteréhez tartozd érzékenységi fiilggvényének

nevezzlik; ez bizonyos simasdgi feltételek esetén /melyek a
gyakorlatban szinte mindig teljesiilnek/ kielégiti az [1.1.1/
rendszerhez kapcsolddd

=25 x+hAz, EO=0 /1.1.6/

un. érzékenységi /varidcids/ egyenletet. Hasonldképpen, a

teljes matrix-exponencidlis parcialis derivaltija, Z==Z(€ﬁ”

:= (3/00) exp (tA(B)) kielégiti a

Z=(%5A-€M ¥y AZ, 2(0)=0 /1.1.7/

linearis inhomogén matrix-differencidlegyenletet.

Az erzékenységi figgvény elnevezés abbdl ered, hogy g
elsd rendben jellemzi x érzékenységét a 6 paraméter egy rég-
zitett 90 korili kis megvaltozasara vonatkozdlag, a kdvetke-

z0 Osszefliggés szerint:



X (tlg) - §('t,60)= ;({:,90)'(9—90) + 0'(9"90)

E szemléletes jelentésén kivil az érzékenységi fliggvény egy
fontos alkalmazasi terililete az [/1.1.1/ line&ris rendszerben
szerepld A matrix [/&ltalédban egynél tdbb/ paraméterei "legva-
10szinlibb" értékeinek becslése gradiens-tipusu iterdcids mod-
szerrel [[2], 226.0./, mérési adatokhoz vald illesztés utjan.
Ilyenkor az iteracid minden lépésében kiszamitanddk az il-
lesztendd flggvény parcialis derivaltjai, amelyhez viszont
sziikség van X paraméterek szerinti parcialis derivaltjai
kiszamitasara. A paraméterbecslés probléméajardl az 5. feje-
zetben, a kompartment-analizissel kapcsolatban ejtiink tobb
szot.

Az érzékenységi egyenletek specialis szerkezete a nume-
rikus megoldasnal lényegesen kihasznalhaté. Az [l1.1.1/ meg-
oldasara ill. exp(tA) kiszamitdsdra kidolgozott médszerek
tovabbfejleszthetdk a megfeleld parciadlis derivaltak kisza-
mitasara vonatkozdlag. Szemben a matrix-exponencidlis kisza-
mitasaval foglalkozd publikacidk nagy tOmegével, a paraméte-
rek szerinti derivaltakkal kapcsolatban viszonylag kevés
cikk talalhatdé, melyek nagyrészt a Taylor-soron ill. a spekt-
ralfelbontason alapuld médszereket irjak le. Ezenkivil ido-
figgd linearis differencialegyenlet-rendszer esetére linea-
ris tobblépéses numerikus integralasi médszert is javasol-
tak [36], amely azonban &llandd egylitthatdés esetben kevéébé
hatékony, mint m&s mdédszerek, elsCsorban nagyobb miveletigénye

miatt.



1.2. Jelblések és elméleti alapok

E pontban megadjuk a hasznalt jelblés~ és fogalomrend-
szert, valamint az ezzel kapcsolatos gyakrabban alkalmazott

elméleti alapdsszefiliggéseket.

Jelodlésjegyzék

Logikai és egyéb jelek:

V, 3 - univerzalis és egzisztencialis kvantor
>, = ~ logikai ekvivalencia és implikacid
{ }, € - halmaz és tartalmazas jele

AxB - az A és B halmaz Descartes-szorzata
= - defini&ld egyenldség
o - bizonyitéas vége

Valds és komplex szamok és fliggvények:

R,C - valds ill. komplex szamok halmaza
(eib), la,b] | (a,b], {a,b) - nyitott, zart, balrdol nyitott
ill. jobbrél nyitott intervallum [R -ben

gq - Kronecker-delta

sgn(.)

eldjel-fliggvény /ha xeR és x<¢0, x=0 6 x>0 akkor
sgn(x) értéke rendre -1, 0, 1/

lel - a ¢ valdés vagy komplex szam abszolut értéke

5, Rec, Imc - a ¢ komplex szam konjugaltja, valds része,

ill. képzetes része

L - képzetes egység

flrtx -y - X-en értelmezett, Y-ba képezd fiiggvény

fl. 1 ~ norma

o(.) - kis ordé fliggvény. Ha f(.):X—=>Y és q():X—=>C



ahol X és Y normalt terek, akkor

{-(x):&(g(x))' X>a £ Um l\;(*ﬂ“/\%()‘)l =0
X o
O(.) - nagy ordd filiggvény. Az eldzd jeldlések mellett
f(x)=0(gt0), x>a & 3870 3K VxeX
ix-all 8§ = WFeol € Kligeal

f0=0(g6)) & IK VxeX lfoeolle Kigel

ét),(dk“){t) - valés argumentum /altaldban "idBparamé-
ter”, t vagy $/ szerinti derivaltfiiggvény

FQQ-L (dh&)kft) - az §(.) skalaris argumentumu fiiggvény
k-adik differencidlhanyadosa [/ k%0, egész/

%ig),(&ﬁe)fﬂ) - az f(.) tobbvaltozés fiiggvény 8 paramé-

tere/valtozdja/ szerinti parcialis derivaltija

[x“.,”xn]{(,) - az §(.) valés vagy komplex valtozds
figgvény X400+, Xy [nem feltétlendl kiildnbdzd/
pontokhoz tartozé (n-4)-edrendi osztott diffe-
renciaja.

Vektorok és matrixok:

mqn c™ - valés ill. komplex -elemii /oszlop/vektorok
halmaza

ﬂ{: - mjt nemnegativ elemi vektorainak halmaza

E:(XLL1=[X4|“,|XM]T - m-elemi /valds vagy komplex/ oszlop

vektor, melynek 4 -edik eleme X;

Q=(O)% - M-elemi nullvektor

1=(4)M_ - csupa egyesb®l alldé un. Osszegzd vektor

§j=(&ﬂ)mf - a j—edik n-eleni /természetes/ egységvektor

5T=[x4'“_,xh] - az x=(x), oszlopvektor transzpondltja;
sorvektor



X =[a,.” fm] - az 5=(i£%‘oszlopvektor Hermite-transzpo-

naltja; sorvektor

lhxh - az x vektor valamely normaja

{(.)=(X{L))n - vektorértéki R™-be vagy €™ -be képezd
figgvény

x<y (x<¢y4) - Vi xpey, (xocyy)

IRm*n, C"“w - valdés ill. komplex mxn-es matrixok halmaza

A==(ag)m‘n=[g““w9“]= ?: - A valdés vagy komplex mxn-es

EL matrix, melynek (i,j) indexi

eleme a, j-edik oszlopa Qj=(qu«1 i-edik sora
pedig _bI:[a“'...,am]

O=(0)Mx,\ - Mxn-es nullmatrix

I=(5g)n,n - nan-es egységmatrix

AT' AH - az A matrix transzponaltja és Hermite-transzpo-
naltja

HA - az A matrix normaja

’A(A) - az A matrix logaritmikus normaja

%(A)|%i(A) - az A matrix tetszdleges ill. t{-edik sajat-
értéke [valamely sorrend szerint/

?(A) - az A matrix spektralsugara [ P(A)=1mgi|1JA)l /

o (A) - az A matrix spektrdlis abszicisszaja:

o (A)= max Red;(A) (AecC™")
q(A)mfdA)—d(A) - az A matrix logaritmikus inefficienciaja
tr (A) - az A matrix nyoma
det (A) - az A matrix determinéansa
A1 - A inverz matrixa
3<(A) - az A matrix /invertalasra vonatkozd/ kondicids

szama: 3 (A= IAIIA™ )



€A=3XP(A),GFA=EXp(fA) - az A négyzetes matrix exponen-
ciadlisa, "matrix-exponencialis"

v(At) - az A négyzetes matrix exponencidlis kondicids
szédma a t helyen

3m(ﬂ) - m-edrendii A sajatértéki [felsd/ Jordan-matrix;
Bm(?‘)zz (A8£:i+8’;}*4)mxm

A<B (A<B) - Vivj: a; 45.,_, (QLJ<b‘J) ahol A és B azonos
méretii valds matrixok

X(.):(XQ(J)Mx“ - matrixértéki, R™"-pe vagy €™ "-be képe-
z6 figgvény

Megallapodas. A d/dt, 9/06 és egyéb differenciadloperatorok

és az integral vektor- vagy matrixértéki flggvényekre valod

alkalmazasa mindig elemenként értendd.

Matrixok particioné&lésa:

i ce . A a;

A v “ ( b& (s Q"\seq S¢) s

) ) &:4 [ 5 = N
A=(a = | : R,

' . N=04r,d . L LN dhy,, =

_A,M e e AF‘L S1=O<SQ<“‘<SD<S\)+4=”

- az A matrix particionalt alakban valdé megadasa;

s oz e c (14
a particionadlasban szereplso A&E matrix a;,. eleme

)
egybeesik az A matrix a?ﬁﬂ%ﬂ elemével
g"g S 0 ( ®)
. . 2 . . . ’ qu M=4,...‘m
- = . . . . ¢ >
A—A"@...eAm' . . . O QK"‘
0....0 A,
m
- az A 'E:qk rendi négyzetes matrix az A, ..., A,
Y

négyzetes matrixok direkt Osszege

- 10 -



Linearis algebrai alapok

A kOvetkezd definicidban megadjuk azon matrixosztalyo-
kat, amelyek a késObbiekben emlitésre kerililnek.

1.2.1. Definicidé. Legyen A=(a‘-j)nm [komplex/ négyzetes

matrix. Azt mondjuk, hogy

A szimmetrikus, ha AT'—'A;

A hermitikus, ha AH=A;

A ortogonalis, ha ATA=1 ;

A unitér, ha AYA=1I ;

A normalis, ha AYA=AA",

A ferdén szimmetrikus, ha AT=-A ;

A permutacidmatrix, ha létezik az '1,... m szamoknak egy

!

olyan 1,,...,1, permutaciéja, hogy A=f§{4’...,e. T

n - 1ln ’

.
!

A diagonalis, ha A= (aig St‘j)nxn

>

felsd triangularis /[/fels® haromszogmatrix/, ha
1>y esetén ai’J:O ;

alsdé triangularis, ha AT felss trianguléaris;
szigoruan felsd triangularis, ha i.>,J' ~re a.;,d-:O;
/felsd/ Hessenberg-alaku, ha 1:>d‘+4 esetén a,;J’:O;

kompanion- vagy Frobenius-matrix, ha 14<<4m-4 esetén

> > > »

Aij=0ivay 0 47 ey ™5
nilpotens, ha A"=0;
szingularis, ha det(A)=0;

nemnegativ /pozitiv/ elemii, ha A20 / A>O/;

> > » >

reducibilis, ha taladlhatdé olyan m-edrendii P permuté-
cidmatrix é€s olyan B:—(b‘:J.)P"P ) C= (CCJI)P”] ,D=(d.;j)q“|
matrixok, hogy P|0L>,/l' prq="m és

- 11 -



B C
—A _ .
P AT>‘[O'D j
A irreducibilis, ha nem reducibilis;
A lényegében nemnegativ, hogyha £84tldén kiviili elemei
mind nemnegativok;
A pozitiv /szemi-/definit, ha AH=A és Vi: A, (A)>0 (»O);

A stabil tipusu, ha o (A) <0,

A matrix sajatértékproblémaja alatt sajatértékei ill.
sajatvektorai meghatarozasanak feladatat értjik. Az alabbi-
akban a sajatértékproblémaval kapcsolatos néhany alapvetd
klasszikus eredményt idézink.

P .. . . nxn
1.2.1. Schur-féle felbontasi tétel /[[41], 302. o./ Minden AeC

matrix unitér-hasonld egy felsd haromszdgmatrixhoz,

n nxn

azaz van olyan unitér Q€ (I:M, felsd triangularis ReC '

hogy H
A=QRQ
/1.2.1/
A /1.2.1/ elBallitasat A Schur-féle felbontasanak ne-

vezzik.

Megjegyzés. R fatléja A sajatértékeit tartalmazza,

multiplicitasuknak megfeleld szamban.

1.2.2. Jordan-féle kanonikus felbontési tétel [/[41], 362. o./

Minden Aedf““ matrix hasonld Jordan-matrixok direkt

nxn

Osszegéhez, azaz van olyan Ve nemszinguldaris matrixk,
hogy
A=V3AV_4, /1.2.2]
ahol
3, = 3",4(7\.)@...693"\&(10 /1.2.3/

- 12 -



és Py oy my 24, E§a¢nh=:~p,

A }A matrixot A Jordan-féle kanonikus alakjanak nevez-
zik. A Wc(i=4,“.,k) szamok az A matrix /nem feltétleniil kii-
16nb62z8/ sajatértékei. A direkt Osszeg 3m£(16) matrixait a

kanonikus alak Jordan-féle blokkjainak nevezziik. A V matrix-

nak a 3¥,.(A;) blokk indexeihez tartozé oszlopait a A, sajat-
L

értékhez tartozd [jobboldali/ fdvektoroknak, V-1 ugyanazon

indexd sorainak Hermite-transzponaltjait pedig X&—hez tartozd

baloldali fovektoroknak nevezziik. Ezek kozil az elsd index-

hez tartozd. jobboldali és az utolsd indexhez tartozdé balol-
dali fovektor rendre a 1¢ sajatértékhez tartozd jobb- és

baloldali sajatvektor.

1.2.2. Definicidé. Azt mondjuk, hogy az A matrix A sajatértéke

defektiv, ha a }A kanonikus alakban valamely A -hoz tar-
tozé Jordan-blokk rendje egynél nagyobb/ JA;=A: m >4/,

Azt mondjuk, hogy az A matrix defektiv, ha van defektiv

sajatértéke; egyébként A-t nemdefektivnek vagy diagona-

lizalhatdénak nevezzik.

1.2.3. Definicié. Azt mondjuk, hogy az A matrix derogatédérius,

ha Jordan-alakjéaban valamely tObbszdrds sajatértékhez
egynél t8bb Jordan-blokk is tartozik; kiildnben A nem-

derogatdrius.

Egy matrix karakterisztikus polinomja akkor és csak
akkor esik egybe minimalpolinomjaval, ha a matrix nemderoga-
térius [ 53].

Most néhé&ny matrixosztaly specidlis spektralis tulaj-

donsagait foglaljuk Ossze.



’ nxn . .
1.2.3. Tétel [41]. Ha A€ € normalis matrix, akkor van olyan

in ~ _ nxn q .
Qe (En unitér és ./\.EC diagondlis matrix, hogy

A=QAQ" /1.2.4]

nxn
, azaz A

Ha ezen tulmenden A hermitikus, akkor AelR
sajatértékei valésak, és ha A még valds szimmetrikus

matrix is, akkor (lear”lortogonélis. Ha A pozitiv sze-
midefinit/definit/, akkor sajatértékei nemnegativok/po-

zitivok/.

1.2.4. Tétel /[45], 453. o./. Legyen A=(a;)nxn kompanion-

- /Frobenius-féle/ matrix. Akkor (a) A nemderogatdrius;

-4
(<1) A karakterisztikus egyenlete: Xﬁumﬂf—"fonzk—an4=0.

Vektor- és matrixnormék. Logaritmikus normak

1.2.4. Definicid. A n.u=¢”‘—+[o”x) fliggvényt vektornormanak

nevezziik, ha teljesiti a kbvetkezd feltételeket ["vek-

tornormak axidmai"/:

(i) VYxe€": 1xua0 & x=0

(11) Vge@“cheC: e X il = tei-nxl

(44 ¥x ye€ s lxeyll < uxi+uyi

A vektornormdk axiomaibél kovetkezik, hogy egy vektor-
norma mindig folytonos fliggvény [/ Wx.-xl—>0 = hx, N —>luxi /.

Amennyiben egy partikularis normardél van szd, ugy azt
alulindexezéssel jelezziik. Az alkalmazanddé konkrét normak az
un. ep—normék kozil keriilnek ki, amelyek a k&vetkezOképpen

definidltak: N
n P
||_>£NP:=(Z\>‘;|P) : p el4,00)

=1

WX il = Ui Xty = Mmox Ixel
p->eo leiem /1.2.5/



Az eP—normék k6zll csak a p=4'2'oo esetekhez tartozd
"szumma"(ﬁd), euklideszi(?,_) és Csebisev—tipusu(ﬂw) norma-
kat fogjuk alkalmazni. E vektornormak k&zott Vxe L™ esetén
fennallnak az aléabbi egyenldtlenségek /[45]1, 621. o./:

IXllog & 1%, & m I1Xlles
402

Pxllgy XU, €M™ lIXlgy /1.2.6/

i, < nx, £ uxiy

Az [1.2.6/ egyenldtlenségek az 21-—, Ql— és Qo,,—normék
bizonyos egyenértékiiségét, ekvivalenciajat fejezik ki. Ilyen
értelemben barmely két vektornorma egyenértékii:

1.2.5. Vektornormak ekvivalenciatétele /[55], 40. o./. Ba&rmely

. n p . .
két €~ -en értelmezett l.ll, és ll.lly vektornorma ekviva-

lens, azaz léteznek olyan b*” c pozitiv konstansok,

Y e H#
hogy
VxeC™: b Uxl, clixl cc  lxl, |

Nyilvanvald, hogy az QP -vektornormak invaridnsak permu-
tacidval szemben. Ezenkivil az ez—vektornorma invarians uni-
tér/ortogonalis/ transzformacidkkal szemben is, ugyanis, ha
Qunitér matrix, akkor wQxu, = xHQ"Qx =x¥x = ux1},

1.2.5. Definicio. A LI €""—[0,00) fiiggvény matrixnorma,

ha kielégiti az alabbi kikOtéseket ["matrixnormdk axid-
mai"/:

(1) VAeC
(11) VAeC™" VceC:  lcAll=1c Al
(I11) YA, BeC™":  UA+BI <Al +1BI
(IV) VA, BeC™:  1ABI<IANLIBY

nxn

IAll=0 & A=0

Mivel az mxmM-es matrixok felfoghatbk 'nz—elemii vektorok-
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nak, és az (I)-(II1) axiémék pontosan megfelelnek a vektor-
normak (i)-(<t4d) axidémainak, igy egyrészt a matrixnorma is
folytonos fliggvény, masrészt érvényes az 1.2.5. tétel megfe-
leldje matrixnormakra:

1.2.5’, Matrixnormak ekvivalenciatétele /[55], 41. o./. Barmely

_ nxn . - - , :
ket C -en értelmezett “.“* és H.H# matrixnorma ekvi-
valens, azaz léteznek olyan @*# L Tws pozitiv konstan-
sok, hogy

VAEC™ Py IAN €IAN < IAL,

Minden vektornormadhoz hozzarendelhetlink egy matrixnor-
mat a kdvetkezdképpen.

1.2.6. Definicidé. A 1. vektornorma altal indukalt matrix-

normat a kovetkezdképpen értelmezzik:

YAeC™:  NAl= sup, nAx i

Nx it =
Konnyen belathatd, hogy egy indukalt métrixnorma telje-
siti a matrixnormak axidmait, sdt még a kovetkezd Osszeflig-

gések is igazak ra:

HTi=4
/1.2.7/
nxn n
€ :
VAeC Vxel wAxu< HAN uxn . /1.2.8]
1.2.7. Definicibé. Ha egy U.!N vektornorma és egy ll.ll matrix-

norma egylitt kielégiti [/1.2.8/-at, akkor konzisztens-

nek /vagy kompatibilisnek/ nevezziik Oket.

Minden [I.ll matrixnormdhoz van vele konzisztens vektor-
norma; ilyen pl. az uxu:=lUx%¥"l relacidéval definiadlt vektor-
norma, ahol E#Q [tetsz8leges/ rogzitett vektor. Masrészt,
ha egy matrixnorma majoral egy vektornorma altal indukalt

matrixnormat, akkor konzisztens az illetd vektornormaval.
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A matrixnormék fontos tulajdonsaga, hogy felsd becslést

adnak egy matrix sajatértékeinek nagysagara:

?(A):,Tf‘fnn M1l <A) . 1.2.9]

Az eP—vektornormék altal indukalt matrixnormakat QP-

matrixnormaknak nevezzik. Az ez—métrixnormét spektradlnorma-

nak is szokas nevezni. A kovetkezd tételben Osszefoglaljuk
a harom kivalasztott ep—métrixnorma kiszamitasi modjat.

1.2.6. Tétel /[45], 625. o./. Minden Ae C™" matrixra

IAl, = T“;an‘g‘ lagil = n(uhe n), iy
WAl = NATH, = I’:‘:ﬁ?‘“ = 1(nAein,), g, /1.2.10/

AL, =[p(AMA)]™ =[o (an")]"?

Az QP—métrixnormékon kivil még két fontos matrixnormat
emlitlink meg, amelyek nem indukalt matrixnormak, de konzisz-

tensek bizonyos @P—vektornormékkal.

" {
Euklideszi norma: “AI[E==(Z:41Q,;JIZ)‘2 =n(nAeu,),. |
t,&:

Az euklideszi matrixnorma konzisztens az euklideszi vektor-

normaval és teljesiti a kovetkezd relacidkat:

NIl =
VAeC™: AN =[tr(A)])" "= [tr (aA]" /1.2.11/
Maximum-norma: HAH = m omox oyl =’W|'(“A§€“w)nﬁw

1<H&4h

/Megjegyezzilk, hogy van aki a maximum-norma elnevezést az
@N—métrixnorméra hasznalja./ A maximum-norma konzisztens
az 84—, ef- €s ea,—vektornormék mindegyikével.

A fenti Ot konkrét matrixnorma mindegyike invaridns
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permutacidmatrixszal vald balrdl vagy jobbrdl tdrténd szor-
zasra nézve. Ezen tulmenden, az Qz— és euklideszi matrixnor-
mak unitér /ortogondlis/ matrixszal t8rténd balrdl vagy jobb-

ré6l valé szorzasra is invariansak; azaz, ha Q unitér, akkor

IQAU,=IAQU, =lIAl, &5  NQAl =lAQI =IIAl

A tekintett matrixnormak kozott a kdvetkezd reladcidk allnak

fenn minden Ae(ﬁm‘n esetén:

WAL < I AT < WAl € n'2 AT
et AL <UA T, < TAL, € m LAl
w2 AN <AL < AT € n™ 1AL,

P=4ﬂ”

/1.2.12/
Wf‘“AUwénAlhélh”A”m
m1 llAllmﬂll All,< ||A|lEé A, < wllAl, < nltAll
1.2.8. Definici6é. Legyen Il.ll egy olyan matrixnorma, melyre

\Ill =4. Ekkor az e matrixnormdhoz tartozd logaritmikus

norma a kovetkezO hatarértékrelaciodval értelmezett:

plA)= e R

> 0+

Az alébbi tételben a logaritmikus norma legfontosabb
tulajdonsagait foglaljuk Ossze.

1.2.7. Tétel [48]. Legyen m(.) a ll.)l matrixnormahoz tartozé
j

logaritmikus norma és legyen A,BeC"" telR zeC.
AKOT o) (SHAlc-pMI&) w(A) < p(A) < DIA]

(b) g (A =lt] p(ognt)-A)

(c) }u(Ai—B)é}k(A)&»p(B)

(d)y m(AtzI)=p(A) + Rez

(e) p(A)= p&'a(d/&) In llexp (RA)]]

Amennyiben egy specifikus matrixnorm&hoz tartozdé loga-
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ritmikus norméat hasznalunk, ugyanazzal az indexszel latjuk
el, mint az illetd matrixnormat. A kdvetkezd tétel az Q,—
Qz‘ és Qoa-métrixnormékhoz tartozd logaritmikus normék ki-
szamitasi médjat adja meg.

1.2.8. Tétel [48]. ,A,4(A) moy (Reo. -I»Z]O.LJ’)

AJL,L

‘*d
/1.2.13/

H T

#Z(A)=u(é_itﬁ) /u-oo(A)=)k4(A )

Azt, hogy }k(A) mennyire éles felsd becslése a sajatér-
tékek valds részei maximumanak, a q(A)==F(A)—d(A) un. loga-

ritmikus inefficiencia adja meg. Az alébbi kdvetkezmény sze-

rint normalis matrix anorma szerinti logaritmikus ineffi-
cienciaja minimalis.
1.2.1. Kévetkezmény. Ha A normalis matrix, akkor

M A =o(A)  &s q,(A)=0

A matrix-exponencidlis és a linearis &allandoegylitt-

hatdés differencidlegyenletek

A linearis &llanddegylitthatds [/valds vagy komplex/ dif-
ferencidlegyenletek megoldasa explicit alakban kifejezhetd
az [/1.1.3/ hatvanysorral definidlt /mas ekvivalens definici-
6k is lehetségesek/ matrix-exponencidlis scgitségével. Hogy
a késObbiekben a matrix-exponencidlissal dolgozhassunk, a

kdvetkezd tételben felsoroljuk legfontosabb tulajdonsagait.

1.2.9. Tétel 3,10 . Legyen A\B\VECM”’ ceC, t€R és m ter-
mészetes szam. Akkor
(a) exp(cl)=exp(c)l, exp(0)=1
(B8) [exp(A)]™ = exp(mA)
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(c) [CXP(AU_"—-— exp (-A)

(D)
(E)
(r)
(G)
(H)
(1)

tés i
kifej
skala
eldal

1.2.1

AB=DA &> exp(A+B)=cexp(A)exp(B)
eXP(cI+A) =exp(c) exp (A)
ha A nilpotens, exp (£A) =é;_j (fé/é!) A*

ha A=A®.. . @A, ,akkor exp(Al=exp(A)®...8exp(A,)
ha A=VBV™ akkor exp(tA)= \/exp(tB) vt

eXP(tﬂ) akadrhanyszor differencidlhatd az idd szerint,

és (d/df)mexp(tA)::AmexF(tA), m=0|4’2‘...

Az (E)-(H) tulajdonsagok alapjan, a Jordan-féle felbon-
smeretében tetszbleges matrix exponencialisa explicite
ezhetd, felhasznalva, hogy egy 3h$1) Jordan-matrix a Al
rmatrix és a ¥, (0) nilpotens matrix Ssszege. Ezt az
litast adja meg az alabbi tétel.

B nxn _ .
O. Tétel [[41], 398. o./. Ha AeC Jordan-£féle kanonikus

felbontéasa az 1.2.2. tétel szerint adott, akkor
t3,(,) 3, (A,) -
eth Ve ™ e e ™™Vt 12014

ahol egy }m(l) Jordan-matrix exponencidlisa a kdvetke-

z8képpen all eld: r, t + "1
4T 2t (m-A)!
£3,(0)  tx 1 ;
et I _ Lo
SN /1.2.15/
o %
_ .

Az altalanos linearis allanddegyitthatds matrix-diffe-

rencialegyenlet a kovetkezdképpen irhatd fel:

ahol

).(({—)=AXH:)+ F(’U, /1.2.16/

Nnxm
X(.): Q*-)C a keresett /differencidlhatd/ megoldéas-

fliggvény, AE (]:"x“ a rendszer egylitthatomatrixa és F()[Rz

nxm . ., -
—e»Q: folytonos fliggvény /inhomogenitas/.
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1.2.11. Tétel /konstansvaridcidés formula [ 101, 45. o./.

Az [1.2.16/ matrix-differencidlegyenlet megoldéasa

t
X ()= et ® X(o) + Se(*'S)A F(s) ds . /1.2.17/
0

Magasabbrendii [skalaris/ lineadris &allanddegyiitthatds
differencialegyenletek megoldasa is kifejezhet® matrix-expo-
nencialis segitségével, ahol a matrix specialis, Frobenius-
tipusu matrix. Tekintsik a

p(d/dt) x @)= { (&) /1.2.18/

magasabbrendii inhomogén differencidlegyenletet, ahol TDL)

egy TN-edfoku polinom:

p(h):h”‘+c,,7»"'4+...+c2>\+64 /1.2.19/

és -FL):“I*9EL folytonos fuggvény. A szokasos mddon bevezet-
ve az 5(.)::(X(G”L))m’ vektorértéki flggvényt, az [1.2.18/

egyenlettel ekvivalens

x(£) =C x(¥) + fty e, /1.2.20]
elsdrendl linearis rendszerhez jutunk, melynek matrixa a
FO /1 O . LI B Oq
. 01 0 ‘

O

I
- L]
o .

/1.2.21]/

=€y =Cq v v =Cpy =Cp |

Frobenius-matrix, amelyet a P(.) polinom kompanion- vagy

kisérd matrixanak nevezink. A konstansvariacids formula sze-

rint /1.2.20/ megoldasa

¢ (t-s)C
x(t):—etcg(o) + [ fare,, ds,
- o

melybol

.t
_ aT ot€ T 55 f(s) ds
x()=¢€, e 5‘°7+§§43 e, ‘ /1.2.22/
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§(OY=(XQMVODﬁ' régzitésével, azaz a 0.)4v..7(h~0. deri-
valtak kezdGértékeinek megadasaval az /1.2.22/-ben megadott
megoldas egyértelmiivé valik.

A konstansvariacibés formula segitségével integral-alak-
ban &dllithatd eld egy @ paramétertdl fiiggd, a 0=6, hely egy
kdrnyezetében folytonosan differencialhaté A=A(B) matrix
exponencidlisanak a paraméter szerinti derivaltja a 8 =0,
helyen. A k&zbnséges differencidlegyenletek megoldasainak
paraméter szerinti differencidlhatésagara vonatkozd tétel

/lasd pl. [10], 22. o./ értelmében ugyanis

Z (¢, 6,):= @/ag)exp (tA(®) l9=90 létezik és megoldasa a

; A
Z=A0®)Z +25(5) exp(tABa))  £(0,6,)=0
inhomogén egyenletnek, melynek megoldasa a konstansvariacids

formula alapjan

tA(0) ¢ -ne. A(6,)
Z(f,90)=-6—,§r—{9 . =Se y )Qé(go)es ds. /1.2.23/



2. PERTURBACIO-ANALIZIS

A gyakorlati feladatokban a szamitasokban részt vevd
differencidlegyenlet~rendszer A matrixa altalaban eleve pon-
tatlanul adott; un. "Oro6klott hiba" terheli, amely lehet
megfigyelési hiba, el16z6 szamitésok soran felgylilemlett hi-
ba, stb. Ilyenkor fontos ismerni ezen Ordklott hiba tovabb-
terjedésének tdrvényszeriiségeit, azaz, hogy a kiindulasi
adatok hibai milyen eltérést okozhatnak a szamolt exp(tA)
i11. exp(tA)b eredményekben. E fejezetben éppen ezért azt
vizsgaljuk meg, hogy az emlitett szamitasi feladatok meny-
nyire érzékenyek a bemendadatok perturbécidéjara. E vizsgala-
tok akkor is fontosak, ha a bemend adatok pontosan ismertek,
mivel szé&mitdgépi lebegdpontos aritmetikaval vald szamolas
esetén - mint azt Wilkinson megmutatta [52, 53]-, az alapmii-
veletek egy sorozatanak elvégzésébdl nyert, kerekitési hi-
bakkal terhelt kdzelités ugy tekinthetd, mintha az az erede-
ti adatok kis perturbaidéjabél /un. "ekvivalens perturbacid-
j&bol"/ szarmazd adatokon pontosan, kerekitési hiba nélkiil
elvégzett azonos miveletsorozat eredménye lenne.

Egy szamitasi eljarast akkor tekintiink numerikus szem-
pontbdl stabilnak, ha a szamitésok soré&n felhalmoz6ddé kereki-
tési hibakhoz a bemend adatoknak csak kismértékii ekvivalens
perturbdcidja tartozik. Ha a szobbanforgd szamitasi feladat ér-
zékeny a kiinduléasi adatok kis perturbécidjara, akkor még nu-
merikusan stabil eljaras alkalmazasa mellett is eléggé nagy

lehet a szamolt megoldas pontatlansaga, de ilyen esetben e
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hiba - a véges pontossagu aritmetika hasznalata miatt - el-
kerilhetetlen, egylitt jar a feladat eredd érzékenységével.
Amennyiben az alapfeladat nem érzékeny az input adatok kis
megvaltoztatasara, csak numerikusan instabil médszer produ-
kdlhat nagymértékben pontatlan eredményt.

A hibaterjedés vizsgalatanal megkiildnbbztethetjik az
abszolut ill. a relativ hiba terjedését. A matrix-exponenci-
dlisra Van Loan [50]) és K8gstrém [27] adtak relativ ill. ab-
szolut perturbacids korlatokat. Az altaluk megadott korlatok
eélesitésén tul mi exp(ﬁA)h—re, valamint a matrix-exponencia-
lis paraméter szerinti derivaltjara is megadjuk a megfeleld
perturbacios korlatokat.

A relativ hibak terjedésének lokalis jellemzésére Van
Loan bevezette egy matrix exponencialis kondicids szamat. Mi
egyrészt élesitjik Van Loan egy ezzel kapcsolatos eredményét
masrészt valaszt adunk Van Loan egy kérdésére az exponencia-

lis kondicids szam nagysagrendjével kapcsolatban.

2.1. Perturbacidos korlatok a matrix-exponencialisra

A. A matrix-exponencialisra vonatkozdé korlatok

A matrix-exponencialisra vonatkozdé perturbacids korla-
tok megadasanal mindig maganak a matrix-exponencialisnak a
korladtaibél indulunk ki. Az &ltalanos és a [27, 50] cikkekben
hasznalt ez—normén kivil még mas, az @L—nél k&nnyebben kisza-
mithaté konkrét normara is megadjukaexp(fA) korlatait O@Efﬂﬂj,
Ezenkivil bizonyos esetekben élesitjlik az emlitett cikkekben

megadott korlatokat.




A matrix-exponencidlis legegyszeriibb, és talan legis-
mertebb korlatja a logaritmikus normaval adhatd megqg.

2.1.1. Lemma /Dahlquist, v&. [48]/. Ha WIli=4, akkor

1A tp(A)
le*®ll < e . 20, 12,01

A késbbbi fejezetekben szilikségiink lesz e lemma alabbi
kovetkezményére.
2.1.1. Kovetkezmény. lIll=4 esetén a kdvetkezd harom feltétel

ekvivalens: (a) ,.A.(A)éo (b) MexpxAi<4 V t e[0,00)

(c)lkxp(tA)H monoton nemndvo t-ben a [0,99)-en.

Bizonyitds. (a)=>(b): a 2.1.1. lemma alapjé&n nyilvanvald.

(b)=y(c): ha Oe¢set, akkor letAllelle® A lIeSA N < lesh.

(c)=>(a): a logaritmikus norma (e) tulajdonsaga alapjén

A =&9§6’L (1/8) enllexp (RAMN < &_%:(4/&) b ITh =0, o

A 2.1.1. lemma gyakran nem ad megfelelden éles felsd
korlatot, fdéleg t nagyobb értékeire. Példaul stabil matrix
esetén eldfordulhat az u(A)<'0<F(A):szituécié, ami azt je-
lenti, hogy t-»ocere exp(tHUW)—§r00, mik&zben Hexp(%A)H—>O,
vagyis ilyenkor a [/2.1.1/ felsd becslés elég nagy <t-kre mar
teljesen értéktelen. Ilyen esetekben olyan becslésekre van
szlkség, melyek figyelembe veszik A sajatértékeit, ill. az
o (A) spektralis abszcisszat.

Megjegyezziik, hogy a fels® korlat exponencialisanak ki-
tev&jében t-nek o (A)-nal kisebb egylitthatdja nem szerepelhet,

mivel

leshllz p(et) =™, +20. /2.1.2/

Olyan felsd korlatok, melyek O®{A) <O esetén nullahoz tartanak

ha Jf-'"O"/, exp(tA) azon eldallitasai alapjan nyerhetdk, amelyek
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tartalmazzak a sajatértékeket.
A matrix-exponencialis Newton-féle, osztott differenci-

as eldallitasa alapjan bizonyithatd a kovetkezd.

2.1.2. Lemma / BpjgoB és masok, [91, 131. o./. lIIll=4 esetén

letA ¢ f@uane) 2™ g0 /2.1.3

?

ahol §,(x) az e* (m-4)-edfoku Taylor-polinomja:

n-4 I
fn(")‘=%%‘g - [2.1.4)

Ezzel azonos nagysagrendd becslést nyert Zz-norméra a

Schur-felbontas alapjan Van Loan, amelyben a polinomidlis

tényezd egylitthatdéi kisebbek.

nxn
2.1.3. Lemma /Van Loan [50]/. Legyen az Ae matrix Schur-

felbontasa A=Q (A+r ) QM , ahol Q unitér, U szigo-
ruan felsd triangularis és N = (A(S}J)ﬂx“ diagonalis.
Akkor
ta(A)
tA Z JulLt) e +>0
ne “Z..‘fn( 1) ) y /2.1.5/

ahol az f,(.) polinom /2.1.4/ szerint definialt.
E lemmdbdél a normak kozti /1.2.12/ Osszefiiggések és az
f,(.) polinom monotonitésabél adédik az alébbi.

2.1.2. Kbvetkezmény. Legyen |.ll az euklideszi, 24— vagy Qw—

normak barmelyike. Akkor a 2.1.3. lemma jeldlései mel-

lett

tw(A)
LAY L +
fesf Il < £, (il t) e y £20, [2.1.6/
m {/2
anol  Jull = (VA7 - 2 )

A /2.1.3/ korlatban szerepld polinomialis tényezd a zé-

rus matrix kivételével, a [/2.1.5-6/ korlatokban szerepld po-



linomok pedig a normalis matrixok kivételével mindig (n-4)-
edfokuak. E fokszam altaldban csdkkenthetd a Jordan-féle
kanonikus alak figyelembe vételével. Ha A Jordan-felbontésa

az 1.2.2. tétel szerint adott, akkor

lexp (Al ¢ (V) "CXPU}A)“, [2.1.7]
ahol K((V)I=lIVIHIV-*|| a V matrix .l normahoz tartozé /kdzdn-
séges/ kondicids szama. Tovabba ﬁp—normék esetén

) {’Qel( ‘E}m,(o)
et 3a | p=maxlle || &t ¥ I, = = max e lle® m: HP 12.1.8)

Latjuk, hogy exp(tA) /2.1.7-8/ alapjan tdrténd becsléséhez
sziikség van a szinguldris Jordan-matrix exponenciélisénak

korlatjara. Ilyet ad meg a kdvetkezd segédtétel.

2.1.4. Lemma. Legyen ﬁh(L)/2.1.4/ szerint definialt. Akkor

t20 -ra

-_—]CMG:), ha P='1 vagy 00 ;

)63

< fm®),  ha P=A7~‘ [2.1.9/

Bizonyités. p=4 vagy oo esetben az allitas leolvashatd

/1.2.15/-r51l. p=2 esetben alkalmazzuk a 2.1.3. lemmdt. Itt
a(}m«»)=0, M=3,(0); utébbi ez—norméjét kdnnyld meghataroz-
ni, mivel 0

0
3,073 ()= i
O .

2 . - .
és igy |I3% wﬂlv[g(}(o)}(Oﬁ]1/ . Ezutdn az allitds mar
kovetkezik a 2.1.3. lemmabél. O

Most mar kdnnyen igazolhatdé az alabbi, Jordan-felbonta-

son alapuld korlat érvényessége.
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2.1.5. Lemma. Legyen az Ae C"xn matrix Jordan-felbontasa az

1.2.2. tétel szerint adott és legyen m=;nq;ckm¢. Akkor
£ie

||eJ°AHpé[itp(v){m(’c)]e“m) . 20, /2.1.10/

ahol p=412 vagy oo , €és &m() /2.1.4/ szerint definialt.

Bizonyitas. /2.1.7-9/ alapjan
tA tReA!
et ll, € %p(V) mox e*Fe2 4, (4) £ 1, (V) fa k) €

ta (R)
.0

Az {,#)em max({:‘:/{!) egyenldtlenség alapjén /2.1.10/-
0sicm-4

b6l megkapjuk Van Loan E,_-norméra megadott korlatjat.

2.1.3. Kovetkezmény. /Van Loan [50]/. A 2.1.5. lemma jeldlései

mellett . ol
lle*A | < [m KP(V) max (é‘/t‘!)] e
° ocemd /2.1.11/

2.1.4. Kovetkezmény. Ha az A matrix diagonalizalhatéd a V mat-

rix segitségével [azaz viav diagonalis/, akkor

”etA”F,éxp(V)eta(A) , £20. [2.1.12/

ahol p=1,2 vagy oo . Ha ezen tulmenden, A normalis mat-

rix, akkor i exp(tA) [lz—‘—eXP(‘td(A))'{:)O. /2.10.13/

Kénnyen belathatd, hogy még a 2.1.5. lemma sem ad min-
dig nagysagrendben pontos becslést. Ugyanis €¥p ({}A) maxi-
mum normaja:

+3 _ ‘{:F‘-d ‘to((A)
“e ““M"“'(Fr‘\—A)l € ’ ha t elég nagy,

ahol m a maximalis valds részii sajatértékekhez tartozd Jor-
dan-blokkok rendjének maximuma /mivel elég nagy t-re 3, ex-
ponencidlisaban a ({W\—"/(VT\—A)I_‘)QXP({:%L), Re ;\A;'-‘OC(A) alaku

elemek domindlnak/. llexp(‘t}A)Ns V-2 lexp &AMV alapjéan

ebbdl kdvetkezik, hogy elég nagy t -re
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_ -
m-1 o (A +A + o (A)
NN Ml ™ < = e /2.1.14/
o) ol < lle “M € 3%, (VIn Gon g

ami a matrixnormé&k ekvivalenciatétele alapjan azt jelenti,
hogy barmely matrixnorma esetén lexp(tA)l pontos nagysag-

W -1
rendje O’(t exp (fd(A))>. Kovetkezd lemmankban ilyen nagysag-

rendli felsd becslést adunk meg.

2.1.6. Lemma. A 2.1.5. lemma jelblései mellett

|| &4 ”P < [KP(VD) f-®)] SR ' +20. [2.1.15/

ahol m=max m; és a D diagondlis matrix a kdvetkezd:
Re); =a(A)

D=D,6...6Ds, D.=(d'%) 0 (.

és 4’ mrém /2.1.16/

dy = ’
min{o(A)-Red 4} | moom; r=d. k.

Bizonyitas. A 2.1.5. lemma bizonyitdsdhoz hasonldan eljarva,

-4
et helr | P Fm O

et 1, < 3¢ (VD) frit

-4
Itt D }mr(O)Dr-‘- d. 3,, (0), és a 2.1.4. lemma alkalmazisa-
val, D, és W definicidéja alapjan azt kapjuk, hogy

efo((A)_sz ({:) , ""'\,»é m’

r

+ Re A
(HEEe [ @) g P

f, (td) <
’ gtleex, +dr]

/ MrPVVL,

Viszont m,.>®W esetben d,.<¢ «(A)-ReA, miatt

ef[RE/\yﬂ- d,oj < e'ﬁd(A)é e'ta((A);ﬁ ({) .o

A fenti lemméban &nkényesnek tilinik, hogy m,.»m esetén
d, definicidéjaban a sajatértékekre vonatkozd o (A)-Re), el-
térést éppen az 1 szamhoz viszonyitjuk. Ez azonban abbdél add-

dik, hogy a Jordan-féle kanonikus alak definicidéja is wala-
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melyest Onkényes: ha ugy definidlnank, hogy a f0atld feletti
1-eseket egy €20 szammal helyettesitenénk, akkor d, defini-
ciéja mo>m esetén d, .= min{[u(A)-Re)\r]/e"f} lenne, és a fenti
becslésben f;(f) helyett fmaw) szerepelne. Az elemzést to-
vabb finomithatnank a Golub és Wilkinson altal definidlt
kvadzi-Jordan-alak [ 18] alkalmazasaval, melyben a f8atld fe-
letti l-esek helyén tetszBleges nemzérus szamok &llhatnak.

A D diagonalis matrix megjelenése a [/2.1.15/ becslésben
legfeljebb ?KP(D)—szeresére ndvelheti a :KPO/) kondicidés sza-

mot, ahol
A-m,
K =
e (D) max d, . [2.1.17/

Erre nézve a kdvetkezd becslés adhatd: ha

t= ML d-r-
d o /2.1.18/

ésm a 2.1.5. lemma szerint definidlt, akkor
{-m, I-m
2.1.
yp(vo)éup(v)d?éid, 3 V)d" ", / 19/

d<«4 esetén a Kp kondicids szam jelentds romlasa varhaté.

2.1.5. Kovetkezmény. Ha AeC™" maximalis valds részi sajat-

értékei nemdefektivek, akkor a 2.1.6. lemma jeldléseivel

tA 1t (A)
le** I, < %, (VD) e , £20 /2.1.20/

Utdobbival azonos nagysagrendi korlatot /2.l.li/—ben ad-

tunk, azon erdsebb kikotés mellett, hogy A nemdefektiv.

Végiil megadunk még egy becslést exp(tA)-ra, amely nagy-
sadgrendben kevésbé jo ugyan, mint az elBbbi becslések nagy
része, de a benne szerepld £>0 szabad paraméter valaszthatd

ugy, hogy stabil matrix esetén a felsd korladt nullahoz tart-
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son /ha t-—>o0e/. Ilyen tipusu korlatot K§gstr6m kozolt £27] QQ_-
norma esetén, de az 6 becslésében szerepld diagondlis matrix
/a trividlis esetektdl eltekintve/ gyengébben kondicionéalt,
mint az alabbiakban megadott.

2.1.7. Lemma. Legyen € tetszOleges pozitiv szam. A 2.1.5.

lemma jeldlései mellett

t [ (AY+E]
“etA“PéNp(VD)e Cv20, o021y

ahol D= 'D4 ®...0 Dk olyan diagonalis matrix, melyben
H ) 4 rei
’Drz(drq&'vj)mrxm,. es drz{ .’ m /2.1.22/
'mm{ot(A)—Re)\,-k&, 4} L M4

r=4,...., k.

A lemma bizonyitdsa hasonld a 2.1.6. lemma bizonyitéasahoz,
ill. annal egyszeribb.

Az eldzdekben exp({/\)—ra megadott korlatokat Osszeha-
sonlitva megallapithatjuk, hogy t kis /O-hoz kdzeli/ értéke-
ire a Jordan-felbontason alapuld korlatok kevésbé jok, mint
a tébbi, mivel a % (V) ill. K(VD) kondiciés szamok altaléa-

ban 1-nél nagyobbak, viszont £ -norma esetén IIexp(iA)llPxL

P
ha t~0 . Masrészt nagy t-re a Jordan-tipusu becslések /[kivé-
ve [/2.1.21/-et/ altaldban élesebbek, mint a tobbi /mivel al-
taldban o (A)<p(A) ill. mm <m /.

A tovabbiakban legyen %(.):[0,00)—) R olyan monoton
nemcsokkend filiggvény, ﬁ olyan valds szam és il olyan norma,
melyekkel fennall a kdvetkezd relécid:

lexp (kML ¢ glt)exp (tB) |, 20, /2.1.23/
ahol AeC™" adott. Vegyik észre, hogy a matrix-exponencia-
lisra eddig megadott Osszes becslésiink /2.1.23/ alaku, ahol

%(.) nemnegativ egyiitthatés polinom. A /2.1.1/ és /2.1.21/

becslésekben %(t)s% konstans és (5 >/0((A), mig a todbbiben
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%(.) altalaban nemkonstans polinom és B=uo(A).

Perturbécids korlatok a matrix-exponencidlisra

A kdvetkezbkben a

L (£) e et BB otA

/2.1.24/
eltérés-matrix becslése lesz a célunk, ahol az E¥=(eg)h,n
matrix az A matrix egy perturbaciéja. Ehhez H({) kovetkezd
integral-eldallitasabol indulunk ki:

t
H )= fet 1A @B 4 [2.1.25/

° .
melyet egyszerien ugy kaphatunk meg, ha a F‘(*)==A HE#) +

E exp({UHE]) differencidlegyenletre alkalmazzuk a konstans-
varidciés formuldt. Hogy /2.1.25/-b8l becsiilhessiik H(t)-t,
szllkségiink van exp(%EQ+E]) valamilyen becslésére. Ilyet az
alabbi segédtétel felhasznalasaval nyeriink.

2.1.8. Lemma /Bellman-Gronwall-egyenldtlenség; vo. [10], 19. o./.

Legyenek M(.):R—=R, v()R->R és w(.): R—[oe0)

folytonos figgvények, melyekre
t
u®)e vrl) + fwyusds, Yteloe),
(o]

+
Akkor Swi)dt

+
w®) e r®) + S wis e® ds, Vtelo),
o]

A 2.1.8. lemma segitségével *exp(fA) /2.1.23/ alaku al-
taldnos becslésébGl exp (t[A+E]) alabbi korlatja adédik.

2.1.9. Lemma. Tegylik fel, hogy /2.1.23/ fennadll. Akkor

.t
It A || ¢ ‘JH’) exP(’CF” MEM(S;%GMS), t>0. J2.1.26/
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Bizonyitas. exp(’c[A+E]>=eXp(€A)+H(l:) és /2.1.25/ alapjéan

let BBV < lletA 1l + g" e AIIEN I1es A& 1) as

+ -
2 q0r&®y (g Pl 1 F P ds
(o)

< gl¥) etP [4 + JtllEll%(SY (IleS(mE) l /[%(s)e{ss]) ds
°

ahol felhasznaltuk a/2.1.23/ban szerepld %(.) fliggvény
monotonitdsat és pozitivitasat / %(%)>, %(O)» HIW>0/. Legyen

most

wit)=llet @O /lqwe™ ] wlt)=lENg®), £20.

Ekkor +

ud)e 4+ S\u(s) u(s)ds) t20,
(o]

és igy a Bellman-Gronwall-egyenldtlenség kovetkeztében
t t t
wr)e 1+ gw(s) exp(st(t)dr) ds =exp<§>w(s)ols> ' t> 0,

utoébbibol U(.) és w(.) definiciéja alapjan éppen [2.1.26/
adédik.

Most mar kimondhatjuk azt a tételt, amely a matrix-ex-
ponencidlis minden egyes [/2.1.23/ alaku korlatjahoz megad
egy megfeleld perturbaciés korlatot.

2.1.1. Tétel. Tegylik fel, hogy érvényes /2.1.23/, azaz

le )l < gle) P | 30,

ahol %(.) monoton nemcsdkkend fliggvény. Akkor t20-ra

+
11O gl fsplenfgoddA] . 22,201

Bizonyitas. /2.1.25/, /2.1.26/ és %(.) monotonitasa alapjén
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t
$-
IH&) | ¢ S%(Jc-s) CtEsIB NE 9(s) &P exp (Il f%(t)olr) ds
0 )
.t
tph 3
< glt)e (S) IEll g.(5) exp (NEN g%a:)dr) ds
t
= %({:) ejc(z> [exP(lIEH é%(S)dS) —4], a
A 2.1.1. tételbsl %(.) monotonitasat és az exponencia-
lis fliggvényre vonatkozd elemi egyenldtlenséget felhasznalva

azonnal megkaphatdk az aladbbi gyengébb becslések.

2.1.6. Kovetkezmény. [Ka8gstrdm [27], Van Loan [50]/. A 2.1.1.

tétel feltevései mellett

+ +
IH® < et(5 IIEll.%(Jc)-g%(s)ds.eXp (lIElI tS)c&(s‘wlS) | 150 /2.1.29/
(RIOIPIALING [exp(iENtgw) - 4] /2.1.30/

sueuf[%ce)]zexp(f[mnsugte)]) €20 /2.1.31/

A fenti becslések k&zil /2.1.30/-at Kagstroém, [2.1.31/-
et pedig Van Loan adta meg. Ha %(f)séllandé, akkor az alta-
lunk megadott /2.1.28/ perturbacids korlat meegyezik a K%g—
strom altal adottal, kilonben viszont élesebb annal. Mivel
konkrét [/2.1.23/ alaku becslések esetén %(.) mindig polinom,
igy az altalunk adott /[/2.1.28-29/ korlatok kiszamitasa nem
nehezebb, mint a [/2.1.30-31/ korléatok kiszémitésa, mivel
csak polinomot kell integralni.

A matrix-exponencidlisra eldzdleg megadott becslésekbdl
a 2.1.1. tétel segitségével pl. a kovetkezO perturbacids

korlatok szarmaztathatdk /mindeniitt t20/:

£Lp(AIHUEN]

12.1.17 => Hwl € EFO g tlEN e /2.1.32/

ta(A)[-euenfg,\(ZHAlls)ds _ 4]

[2.1.3/ => [H@We {, Q2118 e /2.1.33]
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t
- (iU, s)d
12.1.5/ =» IHWI, < §, (lue) ot @ [ RIS 470 ) 5y
/2.1.10/ =p [IH@®I, € 3(V) £, et"(A)[e"E"P“P(V)&"*(”dSJ] /2.1.35]/
/2.1.19/ => | HE o< -J-<,,(V){_;(Jcal)é‘“(m[e"E"")“’(V)g‘cﬁ(%5 -4 ] /2.1.36/

T
cLIEN, [xo(vp)) AR (DL y5 59

E perturbacidés korlatok koziil t kis értékei [ftx0/ ese-
tén altalaban a /2.1.32-34/ korlatok a jobbak; a /2.1.35-37/
Jordan-tipusu korlatok csak akkor jok, ha ’J{Px/f.

¥t nagy értékei /t 00/ esetén egy érdekes jelenséget fi-
gyelhetilink meg: exp({rA) nagysagrendben legélesebb korlatai-
boél szarmaztatott [/2.1.33-36/ perturbacids korlatok - a leg-
kedvezlibb specialis esetek kivételével [amikor %(.) konstans/
- a legrosszabbak, mivel exponencialisnal nagyobb nagysag-
rendben tartanak a végtelenbe, ha t—>w . Ez a helyzet
/2.1.36/-ndal, ha A-nak van defektiv o (A) valds részii sajat-
értéke/m>4/, /2.1.35/-nél, ha A defektiv /m>»4/ /2.1.34/-
nél, ha A nemnormalis /[MU#0/ és /2.1.33/-ndl, ha A#0O . Ezzel
szemben a [2.1.32/ korlat stabil matrix esetén O-hoz tart,
ha m(A)¢Q és lEll¢-p(A), és hasonléképpen a /2.1.37/ kor-
14t is null&hoz tart o(A)<0 esetén, ha €<-a(A) valamint
HEHP<-[0L(A)+£]/J<P (VD) . A /2.1.32-37/ perturbaciés korla-
tok kozil tehadt t—»m-re altalanos Jordan-alakot feltételezve
/2.1.37] a legjobb /ha & elég kicsi/, ha viszont a maximalis
valds részl sajatértékek nemdefektivek, akkor altalaban

/2.1.36/ a legjobb.



Relativ hibak becslése

A perturbdlt A matrix exponencidlisanak relativ hibéaja

alatt a

_iHa et BBt
tA“ - “e{A“ /2.1.38/

o ()

lle

/normafiiggd/ mennyiséget értjik [50]. Specidlis matrixnorma
hasznadlata esetén megfeleld alulindexezést alkalmazunk. ¢(-)
altaldban nemkorlatos [0,°°)—en; korlatosséga az E perturba-

cidmatrixtdl fligg. A
“ef (A+E)H y
) — 2 | £
¢ (&) I e*4 ||

relacid mutatja, hogy (?({) pontosan akkor korlatos, amikor
az l|exp(f[A+E])U/ﬂexpC£A)“ hanyados t€[0,00) /. Viszont min-
dig megadhatd olyan tetszdlegesen kis normaju E matrix, hogy
u(A+E)>-u(A), és ekkor dJLJ nemkorlatos. Ebbdl kovetkezik,
hogy ¢(.) tetszdleges olyan becslése, amely az E matrixnak
csak a normajatdl fligg, sziikségképpen nemkorlatos Uhoo)—en.

H(t)-nek a 2.1.1. tétel szerinti korlataibdl kézvetle-
niil kaphatunk @ (t) -re is korlatot /2.1.2/ alapjan:

) ¢ g oELR-a(A)] [exP(HEIIg%(S)dS)*4] €20, /2.1.39/

Az ilymédon nyerhetd konkrét korlatokat itt nem részletezziik.

Normalis matrixok esete

Az eldzbekben megadott korlatok és perturbacids korlatok
f&ként nemnormalis matrixok esetén &rdekesek. Ha az A matrix
normalis, azaz AAH=AHA , akkor a helyzet nagymértékben le-
egyszeriisddik és kedvezObbé valik. Ilyenkor ugyanis /[2.1.13/

szerint Hexp(éA)Hztexp(éu(A)) , 6s igy a 2.1.1. tétel ér-
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telmében t >0 -ra

HEh, ]

IH@, < e , /2.1.40/

valamint

St UEN;

h,)¢ e84 2 e, /2.1.41/

E becslések az altalédnos esetre megadott korlatok optimumat
képezik.

A normalis matrixok osztalya magaban foglalja példaul
a valds ortogonadlis, szimmetrikus és ferdén szimmetrikus
matrixokat ill. ezek komplex megfeleldit. Sajnos a legtdbb
gyakorlati problémaban fellépd differencialegyenlet-rendszer
matrixa nem normalis matrix, é€s igy altalaban nem érvényesek

a [/2.1.40-41/ optimalis reléciodk.

Perturbaciés korlatok x=Ax , x(0)=b megoldaséara

A matrix-exponencidlisra vonatkozd korlatok és pertur-
bacids korlatok segitségével mar konnyen adhatdk megfeleld
korlatok az
x ()= JAE /2.1.42/
vektorra. Maganak X (t)-nek a felsd becslése [kompatibilis

vektor- és matrixnormat feltételezve/ visszavezethetd exp(&A)

becslésére

ixn g letA e /2.1.43/

alapjan. Az ilymédon kaphaté, nagysagrendben legélesebb
becslés Ik qlt) exp (ta(Al) alaku, ahol g(.) polinom.
Megjegyezziik, hogy a b specialis valasztéasa mellett /ha
b ortogonalis az ®(A) valés részii sajatértékekhez tartozé
baloldali fdvektorokra/ x (t) exponencidlis nagységrendije ki-

sebb, mint exp(fd(A». Mivel ez ritkdn eldforduld specidlis
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eset, igy ennek elemzésébe nem megylink bele.

- P ) b - HE) (bef) 4 € /2.1.44/

eltérés becslése, ahol f a b perturbalé vektora, ugyszintén

visszavezethets exp(tA) és H{) becslésére:

IH® N ub+fa + e Lty

letA | [& &) (nnsifn)+ it 12.1.43)

IS

IN

1N

Konkrét korlatok H(#) és exp®A) konkrét korlatainak az
utdébbi egyenlOtlenségbe vald helyettesitésével nyerhetdk.

A relativ hibat itt a

p (&)= NXGIVAELL [2.1.44/

hédnyadossal definidljuk. Ennek becsléséhez szlikséglink van
Hx®)| alsd korlatjara, amelyet a kdvetkezdképpen kaphatunk

meg:

~tA ~th -tA
>, (¢) = b
e 2 e x@i/le™ =k /le™ . /2.1.45]

/2.1.43-45/ alapjén a @ (¥) relativ hiba becslése

¢ nfuy  nEn
(P(f) < k(e A)[cb(f)('“'”éu)* kil [2.1.46/

ahol ¥ (expA))=llexp (-tA)l-llexptA)l & matrix-exponencia-
lis /invertaldsra vonatkozd/ kondicids szama.
A relativ hiba /[/2.1.46/ korlatja harom részre bonathatd.

A csak az A matrix perturbacidjabdl szdrmazd relativ hiba
korlatija B{(exp(*«’A))Cb({) % () . A csak a b kezdeti vektor
perturbacidjabol szarmazd relativ hiba korlatja aranyos a
vektor relativ hibajaval, és az aranyossagi tényezd ismét
jc(exp(%A)). Végil a kétféle perturbacid egylittes hatasabol

szarmazé relativ hiba korlatjanak 3¢ (expA)) @@y nfu/nbi
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tekinthetd; ez mind exp(tA), mind b relativ hibajaval ara-
nyos és az aranyossagi tényezd megint ¥ (exp(tA)).

Felmeriil a kérdés, hogy milyen nagysagrendi a /2.1.46/-
ban szerepld tl-c(exp(fA)) tényezd. Egy egyszerii alsd korlatja

[2.1.2/-bB1

~AY+ o (A)]
w (eth) 5 ot A . 430, [2.1.47/

EbbGl az egyenldtlenségbsdl o(-A)+o (A)= maxReA(A) — min
1€ven 104 n

-

ReAc(A) >0 alapjan lathaté, hogy a (f?({-) relativ hiba korlat-
ja altalaban sokkal nagyobb @(#)-énél, ugyanis, ha van A -nak
két kiilonbszG valds részii sajatértéke, akkor Xk (exp(A))—> o0
t—=> 00,

-j-(P(exPG:A)) nagysagrendben pontos felsd becslését pél-
daul a 2.1.6. lemma alapjan kaphatjuk:
x, (eFA) £ [%, (VD) fi(‘{)::(P(VD,)]CE‘(%)Je*[“MM(?Ew’ [2.1.48]

ahol mg és 'DG_ rendre az m szamnak és a D diagondlis matrix-

nak a O:A matrixhoz tartozd értékét jelsli, &=-4, 41 -re. Az,
hogy /2.1.48/ nagysagrendben pontos, /[/2.1.14/ segitségével

lathatjuk be, ugyanis alkalmazva /2.1.14/-et (=A)-ra, kapjuk:

Ay [ -e[o((—A)i-c((A)]
Fn (€ )/["’M(W (,;_;4>!(m4-4)! )

2 tm_‘fmj-z

t20, /2.1.49/

-4

Osszevetve [2.1.49/-et [/2.1.48/-cal /ahol -f-m ()ﬁ-ﬂ- () m_ +
-y A
’7'{4—2, fokszamu polinom/, a matrixnormak ekvivalenciatétele

alapjan kovetkezik, hogy barmely matrixnorma esetén 'J-((etA)

m +m -2
pontos nagysagrendje O’(‘L'm'*+ * exp(k&(-A)w(A)]))‘ Ezzel
lényegében kovetkezd tétellinket is igazoltuk, amelyben
pontosan megadjuk azt a matrixosztalyt, melyre ¥ (exp(+A))

korlatos, ha te [0,00),
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2.1.2. Tétel. W (exp(tA)) = lexp(tMllllexp(-tAIIl akkor és

csak akkor korlatos t€ [0,020) -en, ha az A matrix dia-
gonalizéalhatdé &s minden sajatértékének valds része azo-

nos.

A tétel feltétele igen erds megszoritast jelent, igy al-
talaban i((e“‘)—)oo /t=e0/ érvényes. De pl. teljesiil az emli-
tett feltétel ferdén hermitikus /ferdén szimmetrikus valds/
matrixokra, melyek normalisak /tehat diagoniz&lhatdok/ és
minden sajatértékik valds része nulla; vagy pl. 2x2-es valods

matrixra, melynek sajatértékei komplex konjugaltak.

2.2. A matrix-exponencialis lokalis érzékenységének

jellemzése: az exponencialis kondicibs szam

A kondicids szam /meghatdrozottsdgi szam/ fogalma a nu-

merikus analizisben a line&ris egyenletrendszerek megoldasa-
val ill. a matrixinvertdlassal kapcsolatban alakult ki [52].
Egy A nemszinguldris matrix invertdliésra vonatkozé kondicids
szama, x (AY=lAIlIA""]] elsd rendben megadja, hogy a pertur-

balt A+f matrix kis

_ JEN .
£= ai /2.2.1/

relativ hib&ja hanyszoros relativ hibat eredményez az inverz
matrixban. Ugyanis € < 1/X(A) /¢4/ esetén, vagyis, ha A+E
relativ hibaja nem tul nagy, érvényes az
Jeas) " - A1l 3 (A)
IIA 4-¢g3(A)
egyenldtlenség, melyben a jobboldal gyakorlatilag € X(A)+

/2.2.2]

O(ez). Ez azt jelenti, hogy ha a J((A) szam nagy, akkor az

A matrix elemeinek viszonylag kis perturbaciéja is igen nagy
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relativ hibat okozhat az inverz matrixban. Ilyen esetben az

A matrixot gyengén meghatdrozottnak /ill-conditioned/ nevez-

zlik [az invertalasra nézve/.

A szamitasi feladatok meghatarozottsaganak, kondicidja-
nak egy altalénos elméletét Rice dolgozta ki [44]. Rice elmé-
lete alapjan Van Loan [50) definidlta egy A matrix kondiciés
szamat expCfA) kiszamitésara vonatkozdan. A tovabbiakban e
fogalmat és Van Loan ezzel kapcsolatos eredményeit ismertet-
jik, ill. kiegészitjlik sajat eredményeinkkel.

nxn
2.2.1. Definicidé /Van Loan [50]/. Az Ae€ matrix t helyen

vett exponencidlis kondicids szama alatt a

V(A L):= egwy&vm(/\,{) [2.2.3]
-

hatarértéket értjik, ahol
" et (AYE) e{-A “

nEnesual  § lledAll . /2.2.4]

Valamely partikuldris norma hasznalatakor VY -re ugyan-
olyan alulindexezést alkalmazunk, mint az illetd normara.

A definicidé geometriai értelmezése a kdvetkezd:
nxn

T:SlkXP(tAﬂVJ“(A‘{) a sugara azon legsziikebb, exp&ﬁ)éd:
1B-All< SIAI

kézéppontu gombnek, amely tartalmazza a tBe(m”’
g&mb 15-—>QXPCtB) leképezés szerinti képhalmazat. Ha A eleme-
inek viszonylag kis valtozasai relative nagy valtozasokat
okoznak exp(tA) elemeiben, akkor i#‘%A;t) ennek megfelelBen
nagy lesz.

A kovetkezd tétel a definicidéndl jobban hasznalhatd
eldallitasat adja meg egy matrix exponencialis kondicids
szamanak. Emlékeztetilink arra, hogy egy F: X—>Y operator
Fréchet-derivaltja az A€X helyen egy olyan D(Fﬂn): XY

- 41 -



lineadris operator, melyre F (A+E)-F(A)=D(F(A)E + o(E),

!
\

2.2.1. Tétel /van Loan [503]}/. Ha 'D(etA\ jeldli a Boe t.B -

képezés Frechet-derivaltjat a B=A helyen, akkor

v(A )= \”ﬂ“ 1D /2.2.5/

ahol

ID ()] —"é:l*p “ Se(t R ds“, [2.2.6]

2.2.1. Kbvetkezmény. /Van Loan [50]/. 2 0-ra

v(A,t)?t%%% , /2.2.7]

és ha A normalis matrix, akkor \)z(A“f)‘—‘ f"A”z

. e A |
Bizonyités. VALY 2] ! A'll “j @- ”A llI" ] ehds ““ tIAll.

és normalis matrix esetén /2.1.2/ alapjan

v, (Ad) ¢ ,"i,‘i;, IR 1A, ds = £ IAD, . o

A 2.2.1. kbvetkezmény értelmében a matrix-exponencialis
kisza@mitdsara vonatkozdlag a legjobban meghat&rozott matrix-
osztaly a normalis matrixoké, mivel ezek exponencidlis kon-
dicibds szama a lehetd legkisebb /Qz-norma hasznalata esetén/.
Sajnos a matrix-inverzid problémajaval szemben itt elég ne-
héz kérdés azon matrixok jellemzése, melyek gyengén meghata-
rozottak olyan értelemben, hogy a V(A£) kondiciés szam nagy.
Van Loan megmutatta [50], hogy olyan szigoruan trianguldris
matrixokra, melyek (m-4)-edik hatvanya nemzérus, v(A,f)

O(t") nagysagrendii nagy t-re, szemben a normdlis matrixok
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esetén érvényes oW nagysagrenddel. Altaléanos jellegli fel-
tételt azonban mindeddig nem adtak és nincs még tisztazva
V(A ,t) és A spektralis strukturajanak kapcsolata sem [50].
Mi az alabbi tételben az A matrix Jordan-féle kanonikus fel-
bontasa segitségével olyan alsd és felsd korlatot adunk meg
v(Alf)—re, amely pontosan meghatdrozza annak nagysagrendjét
elég nagy t-re. Ez a nagysagrend OGF\"), aholw A maximalis
valdés részi sajatértékeihez tartozdé Jordan-blokkok rendjének
maximuma.

2.2.2. Tétel. A 2.1.6. lemma jeldlései mellett

ax (18731
“A"P 4!342xm(4 )) PRV, (A"t) <
7 o (VD) ip (V]2 tnax (£¥/41) F
Ocjem—-4

/2.2.8]

< "A”P [w x,,(VD)]zx,,(V) max gk?'/j!) , 2 0.
04 &P~

Bizonyitads. EldszOr a felsd becslést igazoljuk, amelyhez

kovetkezd alsb6 korlatjat hasznaljuk:

Il A “P: HVet?a V“" 2 llet3a /xP(V) 4m:;;: o tRedi || i-?‘m;(o)“P /KP(\/)’
|
és mivel llexp (f}m{LO))“Pb llexp(t‘} (o))ﬂ [m; —‘o_::‘:.: d('l:a’/a )
igy |
(A .
VA, 5 max &5 maxEH31) Y mox N (831 = &% max (1)
P ’7'1;7,"7\ 0&§<m - m .5 m 0jem-A 05._.&5,;‘-_4

Most a 2.1.6. lemma alkalmazasaval, ‘F._. () monotonitasa alap-

e« e fpeony pen, 6
P

t
1Al § %, (VD) 01 é Mo wupd () ¥ Py

[wp (V13-4 T 13/5) eF*A)
Dejem-A

IN

IN

2 :
/450
Al %, (v) t BevD)f 0]/ Jg;lsxm(- )
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melybol -F (f)ém mo % ({:3/3') alapjan addédik a /2.2.8/-ban
J‘m -A

szerepld felsd korlat.

Az alsd korlat levezetéséhez el8szdr alulrdl becsiiljik
, ahol

a D(etA) Fréchet-derivalt normajat. Legyen E=F/ NF“
. ‘4 5 _ a)(Ma
F=V(F®...0F )V es  F= S:. e €, T eR7 S R

és 1 egy olyan Jordan-blokk indexe A kanikus alakjaban,
melyre M-=m és ReA-=da(A) /ilyen van m definiciéja miatt/

Ekkor
UE Il € 36(V) max IF Il = %o () lle,,_ €l =3¢, (V)

15&‘&

és € ws)A F sA
1D, 2 IS " g e sl -

ViR @R Tes g, v Il /IF I,

| N |
S Bk C I LRl PR VA CAUA N

A /13, (11T

=Vl
ahol t (t-5) 3 (@) 3_(0)
\F('E)':(\l/‘d(t))'-ﬁ*m":g’e g—;‘ g-: es " Gl.S,
es D L LPoi . —
Y(‘J (t)dg (M- (5-4)‘. ds = (;;;_(,;3‘)\. ) “id —4' SR LA
Utébbi alapjan WY () l\ tovabb becsiilhetd alulrél
&
Il » 1Y @y, = e 741

szerint. Ezzel mar adddik ‘VP(A,b) alsd becslése:
t % (A) -t
uAuP e eI oy ({,3/ )

All
1 ) "_’—'E' ID tP\)“
(A I "All Ip 1€, (VD) §_ () et (A 1¢5¢2m-A
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ahol ismét f (t) ¢ m max ({3/0!) alkalmazasaval kapjuk a
OSJSM -4

tételben megadott alsd korlatot. QO

Ha + 2 2m -4 , akkor a 2.2.2. tételben szerepld alsbd
és felsd korlat egyarant konstans-s ‘tm alaku, ami a matrixnor-
mak ekvivalencidja alapjan azt jelenti, hogy barmely norma
esetén V(A t) pontos nagysagrendje O (+™).

A 2.2.2. tételben megadott korlatok kis t -re &ltaléaban
nem élesek, f3leg ha a 1-(9(\/) ill. ‘KP(VD) kondicibés szamok
nagyok. Ilyenkor kis t-re \)(P\‘t)—nek jobb alsdé becslését ad-
ja [/2.2.7/; alkalmas felsd becslést pedig a kovetkezdképpen

nyerhetlink. Tegyiik fel, hogy érvényes /[2.1. 23/ Ekkor

» (A £) < ,“T,"“ St A e as < “Q'ms - Pos)eP ds

= Al §9(e-s)3<s)ds gt [P -]

EbbSl exp(tA) megfeleld korlatai alapjan kozvetleniil adédnak
az alabbi becslések.
2.2.3. Tétel. A [2.1.1-3/ és [/2.1.5/ lemmak jelOlései mellett

(i) V(At) «lAltexp (tqM),  +30,

/ahol q(A)::,,,(A) - (A) az A matrix logaritmikus ineffi-

cienciaija/;
(ii) V(A1) ¢ lIAl f{’ (21l (e-s) 8, (zuAus) ds, +20;
(i11) Vv (AE) £ Al £ {h(lluuz(b-s)) ¢ (wis)ds, €20;
(iv) Ve (A£) 2 IIA up[x,,(v)]l ffmec-s) P.)ds, 20,
[

1tt a (iv) Jordan-tipusu korlat ismét csak akkor jé kis

t-re, ha x,,(\/)x/?.
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A relativ hiba 6sszefliggése az exponencidlis

kondicidés szammal

A matrix exponenciadlis kondicids szamaval kapcsolatban
Van Loan f8 eredménye a matrix-inverzidéra vonatkozd [2.2.2/
egyenldtlenség egy analogonjanak megtaldlasa. Ennek ismerte-

téséhez vezessiik be a kovetkezd fliggvényeket:

+
D(AL)=max v(As) ,  J(At)=]Al §u(eSA)d5; [2.2.9]

0eset

mindkettd \J(A.{;) felsd korlatja. Egyrészt V(A.'E)‘:V(Alt)

-nyilvanvalé, masrészt

V(A &) = JAL ||’°AS"AEe ds L < limusup, HSe"‘E “ s |

et et | ueu~ 0 ney=4
¢ uAué &SP lle®® s = & (A,+)

E jeldlésekkel Van Loan eredménye a kdvetkezdl.

2.2.4. Tétel. [van Loan [50]/. Ha £x=|IE”/uA“<4/4}(Alt)/ f>/0;

akkor

“ t(A+E)e{:A“ %(Alt)

q)(t)' [[ef“\ ée4-g&(#\,t) /2.2.10/

E tételnek az [/2.2.2/ egyenldtlenséggel valdé formai ana-
l6giadja mellett két szépséghibaja is van. Az egyik,hogy A
barmilyen kicsiny pozitiv £ relativ hibaja esetén a [2.2.10/
egyenldtlenség csak egy véges @\fe) intervallumon érvényes,
ahol a t, végpontot J(At) 9 oo [t>0/ miatt egyértelmiien
meghatarozza a L}(A,ta)::4/i relacidé. A masik, lényegesebb
hidnyossag az, hogy a /2.2.10/-ben szerepld korlat kis £ -ra
ev (A L) +O0(s*), holott a matrix-inverziéval kapcsolatban e

pont elején mondottak alapjan azt varnank, hogy ¢(€) korlat-
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jaban az elsdrendi tag ev(A,t) legyen. Ez az elvaréas jogos,

és kovetkezd tétellinkben mindkét emlitett problémat kikliszo-

boltik.
E tA
2.2.5,. Tétel. Legyen ¢({)== Het(m L etAN/lle “ , ex=lER/IAL,

akkor t%0-ra

A S(A L)
({)(Jc)l.-&v(A,Jc)J“c}v(A,k)d(A,f)a€ U 2211y

Bizonyitas. (b L) = ” S'te(t-s)A E e (ME)ds“/"etA “ <
L]

“ gte(t-s)AE BSAOlS“ " oth fe-sh E [es (A+E)_ esl\] d “

T EA i [t~ 1

+
£ ev(AE) +elAll J 1P fes ™ et ds =

=ev(A&)+ [IA] Stu(eSA)(P(S) ds

Innét a Bellman-Gronwall-egyenl&tlenség (2.1.8. lemma/ alkal-

mazasaval kapjuk, hogy
Q) CeVAL) + DA fv (A,5) %E€*") exp (gnal 5 3¢ (€R)dz) ds
EbbSl V(A t) és ~F(At) tulajdonsdgai alapjan
Q) ev(At)+ 9 (A%L) éta (Al () exp (e Al sfx(e“‘\)dr) ds
=g vAt)+e O (At) [ex\o (ellAIlS;((e’A)ols) -~ /1]
cev(AR)+ 2 F(A)F(AL)exp(edAL)) .

Az inverz matrixra vonatkozd [2.2.2/ egyenl&tlenség egy

ujabb formai analogonjat kapjuk, ha bevezetjik a

DULe)=vh)redB ) [VAL)- »(At)] J2.2.12/
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jelslést. Lathaté, hogy fennall v (A t) %> (A L)  +t20.
2.2.2. Kdvetkezmény. Ha g:=UEU/NAU <4/‘0‘(A.t>, tz 0, akkor

[| et (AE)_ A || 5 (At,E)
(b(k)‘:: Tot A < g 2-sO(AL) /2.2.13/

Bizonyitds. Alkalmazzuk a [/2.2.11/-ben szerepld Osszeg maso-

dik tagjadban az exp(R)¢4/(1-h) egyenlGtlenséget, ahol
K=849‘(A,£)€ [0,4) és hozzuk a két tagot kdzds nevezdre. 0O

Megjegyzés. A 2.2.2. kbvetkezmény még mindig erSsebb, mint

Van Loan eredménye /2.2.4. tétel/, mivel &<A/3At) miatt
(At e) = M-c®,)]v(At) rePAL) SAE) = D (AL) , t20.
Ezenkiviil az utébbiban szerepld korlat &v(At)+ O(g?) [e»0/

mivel Y(A4,8)=»(A,t) +0L),

2.3. Perturbacids korlatok a matrix-exponencidlis

parcidlis derivaltjaira

E pontban a matrix-exponencialisnak az A matrix paramé-
terei szerinti parcialis derivaltjaira adunk perturbaciés
korlatokat. Ilyen jellegli eredményeket az irodalomban nem ta-
laltunk.

Tegyik fel tehat, hogy Al) R> — d:n¥n folytonosan dif-
ferencialhatd paraméter-fiiggvény. Ekkor elfDCtA(J) parcialis
derivaltja az Y -edik paraméter szerint egy rdgzitett Qo

helyen /1.2.23/ szerint

tAQ) @A) Al
2 =28 = (v gg_@o)es @,
% |, 0 -

A tovabbiakban az egyszeriliség kedvéért hagyjuk el a pa-

raméterfiiggés jeldlését [mivel B  rogzitett/ és legyen
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A
A“":A(Qo) ’ B:= ﬁr(e_0> .
E jelolésekkel

+ A A .
Zl)=§ e e ds 231

Tegyik most fel, hogy az A matrixot E-vel, B-t pedig

F -fel perturbaljuk. Célunk a Z(t) és perturbaltja kozti
t+

t
- E (A+E) -
G®) = S e(t (A )(B+F)es ' ds - S e,(t A B eShds /2.3.2/
0 0

eltérés-matrix becslése lesz. Ehhez a kdvetkezd lemmdt hasz-

naljuk fel.

2.3.1. Lemma. Ha "JA"é%({')etﬁ, ahol 9,() monoton nem-

csdkkend EO'OO)—en, akkor t20 -ra

t
+
Gl < exp(tp +lEW f%(s)ds) g 8(%-5)3(5)&5-@!-‘“+2"E|“|5“ gg(” 7‘25.]3 3

Bizonyitas. Egyszerl &atalakitassal kapjuk, hogy

t (3] t - t -
Gle) = o s)(A+E)ch(A+ Ls + Se& ”(A"E)Buls)ds +SH<s)B L s)AdS
[}

[+} [0} /

ahol H(.) /2.1.24/ szerint definialt. Innét normakra attér-

ve, a feltevések és a 2.1.1. tétel alkalmazasaval kapjuk,

hogy + t-s 5
- f enjat)de
G () £lIF] Jgtts)€* B JENIgRIE s IEIGET )

¥ ¢-)g UElf Sat)dt UEN § glo)dT
HIBI Jgtesye e a9 g 1g) P [ S T A T ds
S
+ 1Bl ét% (s)esp[e"t”ég&’dt_”%(t—s) e({-s)po(s < ’
< |IF otP eusu fg(s;ds jtg (¢-s) 9(s) ds
° +
+(Bl1e® §t3 tt-5) ) [ 613974 dls
t t
+[181] &t [EM 2 1] (qtt-g)ds =
°
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+ t t
_ etpeneuéga)ds §%(t-s) g(s)ds [l[FHfQ HEN B Il éoals) ds:\ . O

—

A 2.3.1. lemma azt mutatja, hogy nagy t-re /g(s)>,4 mi-
att/ a hiba/korlat/ nagysagat |IFll nemigen befolyasolja, az
elstsorban NEN i11. WBHI nagysagatél filigg. A matrix-exponen-
cialis esetéhez hasonldan itt is minden olyan perturbacids
korlat, melyben %(-) nemkonstans polinom, igen gyorsan tart
a végtelenbe, ha t-»>v0 [az E=0 trivialis esetet kivéve/.

Konkrét perturbacidés korlatokat a matrix-exponencidlis-
ra vonatkozd6 korlatokbdl kdzvetlenlil nyerhetiink a 2.3.1.
lemma alkalmazasaval; ezekre itt nem térink ki, csupan meg-

emlitjik, hogy ha A normalis matrix, akkor az optimalis

* [x (A)+UEY, ]

Gl < £ (WF1, + 2t IEWBI, ) L 30 [2.3.4

becslés érvényes.
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3. ELJARASOK A MATRIX-EXPONENCIALIS KISZAMITASARA

E fejezetben harom mbédszert vizsgdlunk meg a matrix-ex-
ponenciélis/eqﬂfﬂ)/ ill. GXP&A)E kiszamitasara: a négyze-
teléssel kombindlt Taylor-soros mddszert, a spektralfelbon-
tas modszerét, valamint a minimdlpolinom-médszert. A miivelet-
1ll. memdériaigény szempontjabdl az elsd mdbdszer csak exp(fA)
szamitésdra hatékony, a harmadik exp(*A)b  szamitasara, a
masodik mindkett®re, azonban gyengén meghatarozott sajatérték-
probléma esetén pontatlan.

Vizsgalatunkban kitérlink az emlitett harom mdédszer al-
kalmazhatdosaganak feltételeire, elemezzik a kerekitési hibak
hatasat és észrevételeket teszlink a pontossag szempontjabdol
fontos szamitasi részletekkel kapcsolatban is.

Az emlitett mddszereken kiviil szadmos mas eljaras isme-—
retes: Moler és Van Loan Osszefoglald cikke [383 19 "kétes
értékli" /[dubious/ mddszert kiilonboztet meg. Ezek az emlitett
harom médszeren kivil magukban foglaljak a d;szkretizéciés
modszereket, Padé-approximacidot, racioné&lis Csebisev-appro-
ximaciét, klilonféle interpoléaciés polinomok/Lagrange, Newton,
Hermite/ alkalmazas&t, hasonldsagi transzformacidt specialis
alaku /Jordan, triangularis, blokk trianguléris, Frobenius/
matrixokra, stb. E tovabbi mbédszerek tulajdonsagaira ill.

kritika&jara vonatkozdéan a [38] cikkre utalunk.



3.1. Taylor-sor és négyzetelés mdbddszere

Ebben a pontban eldsz0r a Taylor-sor-mbddszerrel és a
négyzeteléssel kapcsolatos numerikus problémakat targyaljuk.
Ezutan a Taylor-soros modszerrel kapott k&zelités hibajanak
a négyzetelés soran vald terjedésének jellemzésére definial-
juk egy matrix hatvanyozasra vonatkozd kondicids szamat és
elemezziik annak tualjdonséagait, ramutatva a Van Loan altal

bevezetett exponencidlis kondicids szammal vald kapcsolatara.

A Taylor-sor-mbdszer és mdédositasai

Az egyik legkézenfekvObb mddszer expétA) szamitasara -
melyet tdbben is ajanlottak az alkalmazési irodalomban [ 6,14,
30, 31, 35] - a definiald matrix-hatvanysor egy véges részlet-

Osszegével vald kozelités:

N-A4 L
=5 kA
etA z;fN(tA)-Z Y] /3.1.1/

4,=0 L.

E kozelités képlethib&jara nézve kdnnyen belathatdk a kdvetke-

26 egyenldtlenségek [feltéve, hogy N+d > I[EAll /:

"M p (kAN

IN

N
"em “fw Al < IHNA'" 4ann
T Y
N! PR
N+A4

/3.1.2]
A [/3.1.2/ becslést figyelembe véve exp(tA) elvileg tetszdle-
ges pontossaggal meghatérozhatd, ha a hatvanysorbdél szamitas-

ba vett tagok N szamat elég nagyra valasztjuk.
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Azonban a mbédszer e formadjaban nem tekinthetd egy gya-
korlati médszernek WtAll>4 esetben. Ennek egyik oka, hogy N-=t
altalaban viszonylag nagyra kell valasztani a pontossagi
kritérium kielégitése érdekében, és emiatt a mdédszer sok
matrixmiveletet igényel. Példaul a legegyszeriibb £A=G£)€“Fx4
skalaris esetben az &£=0.0004 relativ pontossag eléréséhez
legalabb N=2% tag figyelembe vételére van sziikség, ami sok-
nak minSsithetG, tekintve, hogy ltAll=6 nem tul nagy l-hez
képest.

Talédn az el®z6nél is sulyosabb problémat jelent ItAl>4
esetben a sordsszegzésnél fellépd jegyveszteség, amely a
szamolashoz felhasznalt szamitdgépi lebegdpontos aritmetika
végességébdl adddik. Ugyanis ilyenkor az Osszegzésben szerep-
15 (tA)ﬁQ! matrixok normaja /i ndvekedésével/ altalaban
eldsz8r ndvekszik és csak azutan csdkken. A (fA)':/(f matrix-
szal végzett Osszeadas soran ennek elemeihez viszonyitva kis
helyiértéki jegyek elvesznek. Ez a jegyveszteség jelentds
hibat okoz abban az esetben, ha valamely ¢-re H(éA)‘/e!H >
llexp (tA)ll , mivel ekkor a végeredménynek /relative/ nagyobb
helyiértéki jegyeit érinti. E probléma elsOsorban a gyakor-
latban legfontosabb stabil tipusu matrixoknal jelentkezik,
mivel ezeknél C)(PG:A)-QO /t>00/ miatt 4All >> 41 esetén
Hexp(%A)“<<4. Ilyen matrixokndl tA egymdst kdvetd hatvanya-
iban az elemek gyakran ellenkezd eldjeliiek, ami noveli a jegy-
veszteséget. A Taylor-soros médszer gyengéit jo6l illusztral-
ja a [38] cikkben kozdlt 2x2-es példamatrix, amelynél az
¥N6€A) részletdsszeg-sorozat [/gépi/ konvergencidjahoz N=59
tagra volt sziikség és a kapott végeredmény egyetlen értékes
jegyet sem tartalmazott, sdt bizonyos elemei nagysagrendben

ill. eldjelben is eltértek a helyes eredménytdl.
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Az emlitett probiémak miatt a Taylor-sor modszert csak
akkor célszerii alkalmazni eXPG’A) szamitasara, ha ItAllg 4.
Hogyha ez a feltétel nem teljesiil, akkor a mdédszert csak va-
lamilyen modositott formaban érdemes alkalmazni, ahol a mo6-
dositas lényege a feladat visszavezetése egy olyan matrix
exponencialisanak kiszamitasara melynek normdja mar nem na-
gyobb egynél. Ward [51] a matrix-exponencidlis tulajdonsagai
alapjan az alabbi harom normaredukald eljarast javasolta:

(i) [spektrumeltolas] Ha A4= A- (tr(A)/n) T 4 akkor

tr(ﬂ)
2 +tA  t- tA

= 1, (A)e _Zb\ W s " =e ™-e 1 [3.1.3

az=A
/E transzformacié alapjan remélhetd, hogy S’(Aq)l;Q(A) és
UtA, ll<litAl, /

-4
(ii) [ Kegyensulyozas] Legyen A,=D, A"D“ ahol

DA D= mcn ID'A,DIl . akkor
D olinaom\h‘s
eJCA‘-:D‘e:CAz D4—4' /3.1.4/

A gyakorlatban nem fontos a pontosan minimalizald 1’4 matrix
megkeresése, hanem megfelel pl. a Parlett-Reinsch-féle kie-
gyensulyozé eljaras /[54], 315. o./, melyben 'D4 diagonalis
elemei a lebeglpontos szamrendszer alapjanak egészkitevOs hat-
vanyai. Utdébbi eldnye, hogy mind Az képzése, mind a [3.1.4/
visszatranszformalas kerekitési hiba nélkiil végezhetd el.
(iii) [négyzetelés] Legyen K= 'min{gﬁfol LAl 42&} és
b= 2%t Akkor II&AHZsA &y

[e&A] [ [[em]] ] /13.1.5])

'SZOI"

Megjegyezziik, hogy Ward az (i)- (iii) normareduk&lé eljaraso-

kat a Padé-approximacid moédszerével kombinalva alkalmazta muvem
‘n\\ 7 .

e ?/ > SZEGED : \

\\ f \
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amely a Taylor-sor-mdédszerhez hasonldan szintén csak l[tAll£4
esetben hatékony és pontos.

Az (i) és (ii) eljarasokkal egy matrix normadja csak bi-
zonyos hatarok koézt redukalhatdé, mig (iii) alkalmazasaval
tetszés szerinti redukcid elérhetd. Ezért a tovabbiakban a
négyzetelés mdédszerével foglalkozunk csak részletesebben, és

az egyszeroség kedvéért A, helyett A-t irunk.

2
A négyzetelés mddszerénél a kerekitési hibak szempont-
jabol a kovetkezd probléma meriil fel. Mivel itt K szamu mat-
rixszorzast végzink az QXP(RA) matrixb6él kiindulva, exp(iA)
=&”ﬁﬂ4ﬂ2K végeredményként kapott kdzelitésének kerekitési
hibakorléatja |k¥?(&A)“2K -nal lesz /durvan/ aranyos Nexp(*A)l
helyett [vd. [381/, ami igen nagy relativ hibat tesz lehetd-
vé, ha az utdbbi két mennyiség aranya egynél sokkal nagyobb.
Ez a probléma kiiléndsen hangsulyozottan jelentkezik stabil
A matrix esetén, mivel ilyenkor elég nagy t-re lexp @A) li<4,
viszont pfA)>0 esetén kdnnyen eldfordulhat /vo. 2.1.1. ko-
wtkezmény/, hogy ”exp(&A)u>'1 és ha K elég nagy, akkor
Hexp(RA)Uﬂ(>> 4 . Ezt a stabil matrixoknal gyakran eldfordu-
16 esetet Moler és Van Loan [38] "pup-jelenségnek" nevezték
el, mivel ilyenkor "exp&A)H grafikonja egy puppal kezdddik,

mint azt a kovetkezd abra mutatja.

I e*A |l




Abban az esetben, amikor pfA)é-O , a 2.1.1. kovetkezmény sze-
rint HGXP(éA)H monoton nemndvé +4-ben és a pup-jelenség nem
fordulhat eld. Ez a helyzet pl. stabil normalis matrixoknal,
mivel ﬂz(A)zd(A\<0. Osszefoglalva megé&llapithatjuk, hogy a
négyzetelés mdédszere stabil tipusu matrixokra FIA)>O esetén

a kerekitési hibak felndvekedése miatt numerikusan instabil.

Az Oroklott hiba terjedése a négyzetelés mddszerében

Tegylik fel, hogy a Taylor-sor-mbédszerrel [vagy mas uton/
meghataroztuk B= exp(hA)-nak egy B+E kozelitését, ahol az E
hibamatrix kicsiny, és erre alkalmazzuk a négyzetelés mod-
szerét a [3.1.5/ kélet szerint. Ekkor /ha a négyzetre emelé-
seknél elkdvetett kerekitési hibaktdl eltekintink/ exp (tA)
iBﬂ( helyett eredményijla(BH:')ZK matrix adédik. Az alabbi-
akban megvizsgaljuk, hogy egy B matrix E perturbaicéja mi-
lyen mértékl eltérést okozhat a % -adik hatvanyban /[négyze-
telésnél k:ZK/. Az alabbi tételben megadott harom perturbaci-
6s korlat koziil a kdzépsd érvényességét [tdliink eltérd mddon/
Kanyar és T6th [31] is igazolta.

n
3.1.1. Tétel. Legyen B,Eed?”" és kb természetes szam. Akkor

IB+EN* - yBut e

B+ E I+ IBI
I (B+E) - B < IB+EN - uBU ' .
& IELNBI . Ra IB+EN=NBI
k-4
< (anueu)k- ltsu&s L UEN (NBU+IEN) /3.1.6/

Bizonyitads. ElOszOr a tételben megadott legélesebb korlat

érvényességét igazoljuk teljes indukciéval. &=0-ra az alli-

tas nyilvanvaldé. Ezutan az indukcids feltevést kihasznalva,
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IN

iBE) L g = B+ (BeE)[(B+EV B T I

In

<HENNB®] + UB+EN | (B+E)%-BYl

N e
IEN e —ngr ~ 0 "BYENHEL

< LENUBN® + [B+EL -
kel pend  1grEN=NE
&+ &+
R Ty |
L T e ) erEl X8
(o+DIEN 1B 1% | lg+EN=1IB]

amivel az elsd egyenldtlenséget igazoltuk. A tovadbbi egyen-
18tlenségek UB+EW £ liBU +llEN alkalmazésaval az (x"- |l)/(X“"’L)
(x'o. %0) és &.X&J (x);O) fiiggvények x szerinti monotonitasa-
b6l a kOzépértéktétel segitségével kdvetkeznek. O

A tételben becsiilt N(B+E)e-gk | mennyiség k —»co -re 0-
hoz tart, ha 9(5)44 és E elég kicsiny ahhoz, hogy ?(B+E)<4
is fennall. A B=exp(RA) matrixra a 9(5)44 feltétel ekviva-
lens azzal, hogy «(A)<0 , azaz A stabil. Ezzel szemben a té-
telben megadott felsd korlatok csak akkor tartanak O-hoz, ha
IB<4 és WB+EN<4 az elsd korlat esetén ill. lIBU+IEN<] 4
tobbinél.

A tételben szerepl®d kolratok levezetésében alkalmaztuk
a kgl egyenlStlenséget, ami bizonyos matrixoknal
nem ad elég éles becslést. A madtrixhatvanyok perturbacidra
vald érzékenysége - mint azt alabb latni fogjuk - optimalis
akkor, ha ez az egyenldtlenség éles. Hogy ezt az allitéast
pontosithassuk, eldszér definidljuk egy B matrix hatvanyo-
zadsra vonatkozd [relativ/ kondicids szamat, Rice [44] elméle-

tével Osszhangban.



nxn
3.1.1. Definicidé. Egy B€ €  matrix k-adik hatvany képzésére

vonatkozd kondicidés szama alatt az
bim sup n(g+E)e-¥ |
NBel 550+ penek §

N(B &)= /3.1.7]

hatarértéket értjiik, amennyiben BL+0.

A kondicids szamnak itt is hasonld geometriai jelentés
tulajdonithatd, mint az exponencialis kondicids szam eseté-
ben /2.2.pont/, és kiszamitdsa itt is visszavezethetd a &-
adik hatvanyt kézd operator Fréchet-derivaltjanak normajara.

3.1.2. Tétel.

L] & g g
i} < BEB
N (8,&) 18] UE‘;L"Z‘ I /3.1.8]

Bizonyitas. Rice [46) cikkének 4. tétele értelmében

N (8, &)= qoer 1D@HI,

ahol D(B&) az F(A)rAb’ , AE€ C™" relaciéval definialt

operator Fréchet-derivaltja a B helyen. Konnyen lathatd, hogy
& . k-t
(B+E) - B = > B™EB ™ + O (kW)
1=4
amib®l kovetkezik, hogy a /3.1.8/-ban szerepld szuprémum va-

16ban D(BY) normajanak felel meg. 0O

3.1.1. K&vetkezmény.

g leit HBH&

LeN(B R)Z Tetl /3.1.9

és ha B normélis matrix, akkor N, (B,ﬁ): k.

Bizonyitas. L .
N B 16“ -4 B -¢ -
& . &
81 -4 k-i lisil”
< Sap ugn " Uehngl = § ..
N($|&) llB"ll UEH=4§ &” Masrészt,

ha B normalis matrix, akkor B=QAQ", ahol @ unitér &s A ai-
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agonalis, tovabba IB*I,=lQ QI =IAM =Unlt —neid o
igy /3.1.9/-bd1l kdvetkezik NZ(B,&)z'k. o

Latjuk tehat, hogy a normdlis matrixok kondicionaltsaga
nemcsak a matrix-exponencialis kiszamitasara nézve optimalis,
hanem a hatvanyozasra nézve is. Mivel GXPG:A) négyzeteléssel
vald szamitasakor a 'B.-.ex(;(aA) matrixot emeljiik b-2%_aaik
hatvanyra /ahol h=t/& /, igy az a kedvezd, ha eXP(RA) norma-
lis matrix, ami azonban a matrix-exponencialis (D) tulajdon-
saga [/1.2.9. tétel/ kbvetkeztében ekvivalens azzal, hogy maga
A is normalis.

az N(B,&) kondiciés szém elsd rendben jellemzi a rela-
tiv hiba terjedését B k-adik hatvanyra emelésekor, mint azt

az alabbi tétel mutatija.

3.1.3. Tétel. Legyen B+E relativ hibaja &:=lEN/NBl. Akkor
I (e+E)®- B P igl® k
4 ~ke-4
”B&” N( )E+ &“[(‘I’E) 1) ] . /3.1.10/
Bizonyitas. “(B'}'E)&—— B&” _ ”%;:-quEg&-i + tabbs ta%“
[l et
| . & .
Jizeest 2 () e g™
el gt
. lEy uenyé | neyt
s nBuN(B e) +Z( )(Té‘u) igé) - 0O

A tételben megadott felsd korlat €< 4 esetén N(B|&)£ +
O(&"), mivel ekkor (_44—2)&-%_5 -4 & 812%'.

A fentiekben lattuk, hogy a hatvanyozasra vonatkozd
kondicidés szam ugyanugy optimalis a normalis matrixok oszta-
lyara, mint a 2.2. pontban vizsgdlt exponencié&lis kondiciéds

szam. A tovabbiakban megmutatjuk, hogy a négyzetelés mbddsze-
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rének alkalmazasa esetén még szorosabb kapcsolat is van a
kétféle kondicids szam kozott.

El18szdr tegyiik fel, hogy A normalis matrix és [tAl =&
egész. Ekkor a 2.2.1. kdvetkezmény szerint vZUMt)ztﬂAH2=&.
Amennyiben &:.2“, ugy a négyzetelés modszere a B=exp(tA/k)
matrix %&-adik hatvanyra emelését jelenti. Viszont ilyenkor B
is normalis, tehat N, (B &)= N, (exp (iA/&)’&) =h =y, (A,t),

azaz az A matrix exponencidlis kondiciés széama megegyezik a

hatvanyozandé exp(fA/&) matrix hatvanyozasra vonatkozd kon-
dicidés szamaval.

Ha A nem normalis, de & elég nagy, akkor bizonyos kéze-
litdleges kapcsolat szintén létesithetd N(exp G.:A/%-),&.) és

v(A,t) kbzott. Ugyanis

-4 B-c
N (efA/e,’ )= uefA/%u sup MZ eig-tA é_E{;A “ ) (2)

THetAN gy
w bt suplp S FEAE R
Te*Al qenaq & &
N__&li_ ”S SAE (t'S)Ad ”::_.__..-\)( ) /3.1.11/

~lletAll ueu_ I+ AN

és igy lltAllxf esetén N(exp(tA/e) &)= V(A /t). Bar e leveze-
tés soran eléggé durva kozelitéseket alkalmaztunk, a kapcso-
lat szorossa&ga a két kondicids szam kozdétt mégis figyelemre
méltd. Leszlirhetjik beldle azt a kdvetkeztetést, hogy a négy-
zetelés mddszere csak akkor noveli meg erSsebben az 6rdklott
relativ hibakat, ha exP(JcA) kiszadmit&sanak problémaja eleve
gyengén meghatarozott.

Hogy a (3.1.11/ k6zelités nem lehet tulsidgosan rossz,

alatamasztja a kovetkezd becslés is, melyet [3.1.9-b&1l/
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/2.1.1-2/ alapjan kapunk N(e,xp(tf-\/%)lé_) -ra:

[ ROV _—,&
SEX(A)

beN(EH* £)ct

- ot L £30, /3.1.12/

Ugyanezt a becslést kapnank akkor is, ha /3.1.11/-ben

helyére annak a 2.2.3. tételbeli (i) korlatjat irnank.

A Taylor-soros és négyzetelési mdédszer milvelet- és

membériaigénye

A Taylor-sor-mddszer miiveletigénye e xp (tA) szamoléasa
esetén /N tagot figyelembe véve/ (N-2)n> + O(‘n"), exp(A)b
szémolasa esetén (N-4)nm* + O (n), ahol egy mivelet alatt egy
szorzas [vagy osztads/ + egy Osszeadas [vagy kivonds/ értendd.
A memdriaigény A tarolasara n!, az eredmény tarolasara pedig
exp(tA) esetén 'nz‘ exp(tA)b esetén pedig m memériarekesz.

A négyzetelés miiveletigénye K- %3, ahol K= (Zogznthl), me-
moriaigénye ugyanaz, mint a megeldzd Taylor-sor-moédszeré.

Ha csak az €xp (-44)@_ vektor-problémat akarjuk megoldani, ak-
kor a négyzeteléssel kombinalt Taylor-sor mddszernél nincs
moéd a miiveletigény 0 ('nz)—re vald csokkentésére. Ez a nagy-
sagrendi csodkkentés elérhetd, ha négyzetclés helyett '&,—szori

szorzast alkalmazunk, ahol b= Mb'n{'f}o ““A”éif, Ekkor

& tA
etA!Z =[etA/&] é’. - etA/&. [e Z3 '[e-tAli_ é]__] :
L_"szor
és a miveletigény f&n* , ahol &z lltAll. A vektor-problémara

az utdbbi eljarast akkor érdemes alkalmazni a négyzetelés
helyett, ha m*IHAl<n®log, ItAll,
Kilén emlitést érdemel az az eset, amikor exp(®A) vagy

exp('éA)lg értékeit egy {:&,2kl,,,‘m& ekvidisztans pontsoro-
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zaton kell kiszé&molni. Ilyenkor célszeril kiszamolni el&szor
az exp(&A) matrixot a négyzeteléssel kombindlt Taylor-sor-
modszerrel, majd az egymdst kovetd pontokban felvett értéke-
ket exp(&A)—val vald szorzas utjén; nem pedig minden

pontra fliggetleniil szdmolni exp(tA) -t.

3.2. Spektralfelbontas moédszere

Amennyiben ismernénk az A matrix Jordan-féle kanonikus
felbontasat, ugy eXPCfA) széamolasa t kiilénbdzd értékeire az
1.2.10. tételben megadott explicit képlet alapjan elméleti-
leg igen egyszeri lenne. A f6 probléma a gyakorlatban az,
hogy lebegdpontos aritmetika alkalmazasaval a Jordan-féle
kanonikus alak nem hatarozhatdé meg megbizhatdan. Ennek £0
oka, hogy a hasonlésagi transzformacidk elvégzésekor elkdve-
tett kerekitési hibak miatt a tObbszOrds sajatértékek altala-
ban kiildnbozdekbe mennek at, amelyekhez tartozd sajatvektorok
k8zel parhuzamosak. Igy defektiv matrix esetén is altaléban
egy 3A=j\ diagonalis matrixhoz és egy olyan V sajatvektor-
-matrixhoz jutunk, amely kdzel szingularis. Ennélfogva a de-
fektiv matrixok gyakorlatilag nem kiildnithetdk el a gyengén
meghatarozott sajatértékproblémadju diagonalizalhatd matrixok-
t61l, amelyekre a

g(A): tnf *x (V)

A=V AV /3.2.1/

Jordan-féle kondicibds szam [J[55], 83. o./ nagy. Ezt a prob-

lémat részletesen targyalja a pl. Golub és Wilkinson [18].



A defektiv matrixok Jordan-féle kanonikus alakjanak nu-
merikus meghatarozasaval kapcsolatban emlitett nehézségek
miatt eleve csak arra az esetre szoritkozunk, amikor }A:.-_/\_

diagonalis, tehat

A=VAV! , ahol N = 0 “.2’ ' /3.2.2]
és igy
th,
e O
tA tA -4 tA .
e =Ve V e = *
, ahol 0 C o [3.2.3]/

Amennyiben A sajatértékproblémadja gyengén meghatarozott /pl.
A kozel defektiv/, c}(A) és ¥ (V) nagy, és ilyenkor mind a
sajatértékek, mind a sajatvektorok csak nagy hibaval szamol-
hatdék még stabil médszer [pl. a QR-algoritmus [ 54]/ alkalma-
zédsa esetén is. Ugyanis az alkalmazott mdédszer numerikus stabi-
litasa csak azt biztositja, hogy a szamolt sajatértékek és
sajatvektorok pontosak lesznek egy olyan A+E matrixra, amely
kézel van A-hoz [54], de gyengén meghatarozott sajatprobléma
esetén a két matrix sajatértékei és sajatvektorai koézt igen
nagy eltérés lehet kis E mellett is. Ez utdébbi Snmagdban nem
lenne probléma, mivel végsd célunk exp (tA) kozelitése.

Tegyik fel tehat, hogy a szamolt sajatértékekbdl és sa-
jatvektorokbdol képzett JN\_ /diagonalis/ és \7 matrix egy A+E
matrix

A+E=V A V™ /3.2.4/

spektralfelbontasat adjak, ahol lE|l /lIAIll kicsiny. Ekkor a re-

lativ hiba nagysaga a 2.2.5. tétel szerint

+(A+E)_ tA ” e len7*
¢({)="€"e{:A“e = v(A,{) m +O([m] ), /3.2.5/
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tehat elsSsorban az A matrix exponencidlis kondicids szama-
tél fligg. Mivel WEI/NAN kicsiny, a § () relativ hiba csak a
matrix-exponencialis kiszamitdsara nézve gyengén meghataro-
zott matrixok esetén lehet nagy. Ez azt jelenti, hogy a
spektralfelbontasi mdédszer numerikusan stabil médszer lenne,
ha a [/3.2.3/ képletet. pontosan tudnénk sz&molni.

Azonban, ha 3((V) nagy, azaz a szamolt sajatvektorok

oA

matrixa gyengén meghatdrozott matrix, akkor V~ képzésekor
a kerekitésekbdl eredd hiba igen nagy lesz. Példaul a rész-
leges fdelemkivalasztasos Gauss-elimindcid alkalmazéasa ese-
tén az inverz kerekitési hibaanalizisb®l ismert [52], hogy v
inverze helyett egy perturbalt $==V“¥F matrix inverzét kap-

juk meg, ahol
NENe cVll,  c=0w) /3.2.6]

és ahol u a lebegdpontos aritmetika relativ pontossaga /[pl.
P alapu szamabrazolas és d-jegyl mantissza esetén uzéﬁbd/.
I1gy exP({[/HE]): v e,xPU:T\_)G—A helyett a v exp(-k}\'.)’\ﬁ}"' ki-
fejezést szamoljuk, és az ebbdl addéddé hiba becslése [3.2.6/

felhasznalasaval

1 Vexp ((R)LT-F"11 < 1Texp 0RYT N IT-TV7

= Jlexp (£TAED ) IIF 41

< l(e"mw)”chll“\?“u = fleth | ex (V) /3.2.7/

vagyis, ha ®(V)>>4, akkor V k&zelitd inverzének alkalmaza-
sa durvan ¢X(V)>>u relativ hibat okoz, és ez fliggetlen A

exponencidlis kondicids szamatdl. Ez az eredmény megegyezik
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Moler és Van Loan [387) bizonyitéas nélkiil k&z6lt megjegyzé-
sével a mbédszer pontossagaval kapcsolatban.

}((\7)>>4 esetben a kerekitési hibdk halmozédasanak egy
tovabbi tényezbje a \7 exe ({K)V'4 szorzat kiszamitdsa. Még ha
V"" pontosan ismert lenne is, a matrixszorzas soradn elkdve-
tett kerekitési hiba korlatja €, [IVilllexp GERMUT) = | exp (¢ )|
‘K (V)c2 , ahol CZ=O(M) . Latjuk, hogy az emlitett matrixszor-
zasnal fellépd hiba korlatja ismét a ‘:K('\\;) kondicidés szammal
aranyos.

Az eldzdekben elemzett okok miatt a spektralfelbontéas
moédszere csak jo6l kondicionalt sajatértékfeladat mellett ja-
vasolhatdé. A sajatértékfeladat megoldasanak egyik legjobb
médszere hatékonysag és numerikus stabilitds szempontjabdol a
QR-algoritmus, melynek megbizhatd programjai hozzaférhetdk a

szakirodalomban [54].

Mivelet- és memdériaigény

A spektralfelbontasi moédszer egy szémitégépre orientalt
algoritmusanak sémajat Moler és Van Loan adtak meg, a Q@QR-al-
goritmusra alapozva [38]. Ez a séma magadban foglalja a x(V)
kondicids szam nagysagénak, azaz a mdédszer adekvat voltanak
ellendrzését is. Az eljaras miiveletigénye a koévetkezd.

E10készitd szakasz. A matrix spektralis felbontasanak megha-

tarozasa QR-algoritmus segitségével /beleértve V"' nmeghata-
rozasadt exp(tA) szamitasa ill. S=V°4_lg meghatarozéasat exp({'/\)h
szamitasa esetén/ atlagosan K *ns’rO('nz) miveletet igényel,

ahol a ‘z konstans egy jb& becslése a [38] cikk szerint K5,



Masodik szakasz. 1 tetszdleges értékére exp(éA) kiszamitasa
a /3.2.3/kéglet szerint n3+0(72-17, exp(-éA)l_:_ kiszamitéasa
exp (tA)b = Vexp({/h)g_ szerint pedig m*+0(n) miveletet igé-
nyel, az n szamu skalaris exponencialis kiértékelésén kivil.

Ha t tobb értékére is el kell végezni a szamitasokat,
akkor lathatjuk, hogy a vektor-probléma miveletigénye egy
nagysagrenddel kisebb, mint a matrix-problémaé, szemben az
eldz6 pontban targyalt négyzetelési mdédszerrel. Tovabbi eld-
nye a spektralfelbontasnak a négyzetelésen [vagy hatvanyozéa-
son/ alapuldé mdédszerrel szemben, hogy a miveletigény itt gya-
kolatilag filiggetlen lltAll nagysagatél, mig az eldzd pont mdd-
szerében altalaban t-vel egylitt ndtt a sziikséges méveletek
szama.

A spektralfelbontasi médszer exp(fA)—ra vald alkalmaza-
sa esetén szlikség van A,\a V'4 tarolasara, igy a memdériaigény
3n?+0(n). exp(tA)b szamolasa esetén V! kiszamitasa és
taroldsa elkeriilhetd, ezért itt csak 29+ OM) membéria-re-

keszre van sziikség.

3.3. Minimalpolinom-médszer

Az e pontban kifejtendd mddszert elsBdlegesen exp(%A)g
kiszamitadsara fejlesztettiik ki [ 12], tekintettel az olyan ese-
tekre, amikor A sajatértékproblémidja gyengén meghatarozott
/i}oa) nagy/ és a spektralfelbontas mbédszere nem alkalmazhatd,
masrészt mivel a négyzeteléssel kombindlt Taylor-soros mddszer

exF(fA)é szadmitasara tulsagosan milveletigényes. Az un. poli-
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nomialis médszereket - melyekhez az alabbiakban megadott méd-
szer is sorolhatd - Moler és Van Loan 8sszefoglald cikke [38]
elveti, mint amelyek nem hatékonyak, mivel OQ(n*) a miivelet-
igényiik és O(m*) a memériaigényiik /exp(tA) szamitasa esetén/,
szemben mas modszerekkel, ahol a nagysagrend eggyel kisebb /pl
az eldzd két pontban targyalt mdédszereknél/. Azonban az
QXPGA)Q vektor-problémara az eldkészitd szakaszban e mivelet
igény &altalaban O (m®)-re csdkken, a kiilénbozd t értékekhez
tartozé kés®Bbbi szamitdsokban pedig mar csak O(m?) niivelet-
re van szlikség, hasonldéan pl. a spektralfelbontas médszeréhez;
ezenkiviil a memériaigény is O (m?) -re redukalddik.

Eljarasunk lényege eXPG.A)\g kiszamitasanak visszaveze-
tése egy Frobenius-alaku /kompanion-/ matrix exponencidliséa-
nak kiszamitasara, amely utdbbi feladat megoldasara Kammler

dolgozott ki egy hatékony eljarast [ 28].

Az eljaras levezetése

-1
Legyen /f)(l) =N+, A" +,,,+C2>\+C4 az AeR™™ nat-
rix befR”‘ vektorhoz tartozd minimalpolinomja, azaz a legki-
sebb fokszamu egy fBegylitthatds polinom, melybe az A mat-

rixot behelyettesitve fennall a
'F(A) b=0 /3.3.1]

egyenl&ség. Mivel X = exp(tA)b 1idd szerinti derivaltjai
x=Ax izAzg(_ és altalaban (O(/dé)‘_&=Ak_)_£) i=0,4,2‘..., igy

-—-’ —

P(d/de)g_qo(ﬁ«)zé =etA7>(A)‘2=_Q /3.3.2]

-4
ahol a #p(d/dt)= (d/dt)™+ e i)™ % L ¢, (d/edt) + ¢, diffe-
rencialoperator az Xx =x(t) vektorra komponensenként alkalma-

zand6/. [/3.3.2/-b61 lathatd, hogy X barmely X§ eleme kielé-
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giti a
P(d/df)x(}-:O (1¢5em) /3.3.3/

M-edrendli homogén egyenletet.
A bevezetés 1.2. pontja alapjan //1.2.22/ formula/ a

[/3.3.3/ egyenlet megoldasa

X}‘?j 6tC2<_3'(0) | Mécfé%) /3.3.4/
ahol
v (m-4), AT
_x__&‘ (O) = [Xd(‘))‘ X&(O)| . *) Xam (O)] /3.3.5/

és C a *)(.) polinom kompanion-/kisérd/ matrixa:

0.4 00 ]

C=]| - 0 /3.3.6/
0....0 1
=€ - - =y =G,

ol

A /[/3.3.5/-ben specifikalt kezdetiértékeket az

xé”(O):g})_(_m(O): g—; A"_b_ L L=04, ..., m—A4 [3.3.7]

relacid adja meg(4éJéM). Ezzel exp(tA)b kiszamitasanak fel-
adatat visszavezettiik az A matrix b vektorhoz tartozé mini-
malpolinomjanak meghatarozédsara és exp(tC) kiszamitasara,
ahol C a p(.)xninimélpolinom kisérd matrixa.

Vilagos, hogy a fenti levezetés érvényes akkor is, ha
4P(-) az A matrix b vektorhoz tartozé tetszdleges annullédld
polinomja /amelyre /3.3.1/ fennall/. Ezt a levezetést
Kolodner [ 33] alkalmazta annak igazoldsara, hogy fﬂﬂ)=0 ese-
tén exp(tA) minden eleme megoldasa a p(dh&)x:o egyenletnek;
bonyolultabb bizonyitast Putzer [ 43] és Biermanl[ 7J adott a
karakterisztikus polinom esetére. Azonban ezek a cikkek nem
kapcsoljak Ossze a homogén magasabbrendl differencidlegyen-

let megoldasat a kisérd matrix exponencidlisaval, ill. nem
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foglalkoznak a P(.) polinom és exp(tC) numerikus meghatéro-
zasanak kérdésével sem. Az alabbiakban e két fontos részfel-
adatra gyakorlati szempontbdél is kielégitd megoldasi eljara-

sokat ismertetiink.

A vektor-minimalpolinom meghatarozéasa

A p(.) polinom valasztasara egy lehetbség az A matrix
karakterisztikus polinomja, melynek meghatarozasara a miisza-
ki cikkekben altaldban Le Verrier médszerét [melyet a mérnd-
kok "Bocher formulaja" néven ismernek/ javasoljak [37]. Azon-
ban Le Verrier mdédszerének nemcsak az a hatranya, hogy ()Cn“)
miveletet igényel [lasd [39]/, hanem az is, hogy a kerekité-
sek gyakran katasztrofél}s jegyveszteséget okoznak, mint azt
Wilkinson kimutatta /[53]1, 434. o./. Ezért mi ink&bb Kriilovy
médszerének alkalmazasat javasoljuk.

A klasszikus Kriilov-mdodszer [lasd pl. [53], 364. o./ al-
kalmazasaval éppen egy matrixnak egy vektorhoz tartozé mini-
madlpolinomja addédik eredményiil. A b vektorhoz tartozd minimal-

polinom m fokszamat a Krilov-vektorok

=b ) l'—34:’A—l2-1 bz:Azb) covy bas A“-b- /3.3.8]

-0 —-—

sorozataban az elsd olyan vektor indexe adja meg, amely li-
nearisan fligg az eldzdektdl; egylitthatdi pedig eldjeltdl el-
tekintve megegyeznek ezen linearis figgés egyitthatdéival, s
igy kielégitik a

[bolh,”.-.'bm.%][%l}:-bm /3.3.9/

Cm

linearis egyenletrendszert. Ez az egyenletrendszer hatéko-



nyan oldhatd meg a részleges fdelemkivalasztasos Gauss-eli-
minacido médszerével. Mivel a [3.3.9/ egyenletrendszerben
szerepld oszlopok m szama eldre nem ismert, Wilkinson kidol-

gozta e feladat megoldasé&ra az un. oszloponkénti Gauss-eli-

mindcié mdédszerét [lasd [53], 370. o./ melyben a k -adik 1lépés
kezdetekor a &‘Q+4l".,ﬂ, indexi Kriilov-vektorok még nem vet-
tek részt a szamitasokban. Az eljaras akkor ér véget, ha mar
nem talalunk nemzérus fdelemet.

A szamitasok folyaman elkodvetett kerekitési hibak ter-
mészetesen "elronthatjak" a pontos szamitds mellett zérus
részeredményeket, és igy tévedhetiink a minimalpolinom fok-
szamat illetBen. Wilkonson elemezte ezt a problémat és meg-
mutatta, hogy eljarédsa altaldban olyan polinomot eredményez,

melyre az

r=b,

+§;c\. b“:ﬁ:’P(A)_b‘ /3.3.10/
rezidual-vektor igen kicsiny /itt #P-vel mar a szamolt mini-
malpolinomot jeloltuk/.

Megjegyezzik még, hogy bar a matrix sajatértékeinek /a
minimalpolinom gydkeinek/ kiszamitasara gyengén meghatéro-
zott polinom esetén a Krilov-mddszer nem alkalmas még kis
rezidudl mellett sem /lasd Wilkinson [53], 377. o./, a mi

céljainknak megfelel, ha az r rezidudl kicsiny, mint azt az

alabbi vizsgalat megmutatija.

Kozelitdleg annullald polinom alkalmazasédnak hibaja

Legyen a tovabbiakban az A matrix b vektorhoz tartozé
- . m m-4 .
szamolt minimadlpolinomja '}9(2)’:9\« + Cmg\' +...tC, A«y—c'1 és C

ennek kisérd matrixa. Mivel a szamolt polinom a kerekitési
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hibadk miatt altaldban csak ko&zelitdleg annullald, igy az
E’;P(A)b, rezidual-vektor altaldban kicsiny, de nem nulla.
A kovetkezd tételben egy becslést adunk arra, hogy ennek ko-
vetkeztében a minimdlpolinom-médszerrel addéds X (t) megoldas
/minden tovabbi szémolast pontosnak feltételezve/ mennyire
tér el az eredeti >_$(JC)=€)tp(fA)b megoldastdl.

3.3.1. Tétel. Legyenek érvényesek a 2.1.3. lemma jelblései,

- . ~ T
és legyen ¥ =p(A) b, )_(_(l:):exp({—A)_}_J_ és X‘}-:Q, eXP(‘tC)_)SJ'(O),
&=4,...|n, ahol C a 10(. ) m-edfoku polinom kisérd mat-
rixa és 53(0) /3.3.5/ szerint definidlt. Akkor

et -F @0, < e, 7 p @uu) Emete®w@)

)
A tétel bizonyitadsahoz szikséglink lesz az alabbi két

segédtételre.

3.3.1. Lemma. A 3.3.1l. tétel jeldlésel mellett

+
X (t) - X (&) :g)(gje e, eSA_r ds .

Bizonyitas. Legyen d{t):= x(t)-X{) és alkalmazzuk ennek &'—

edik komponensére a 'p(d/o&) differencidloperatort:

P (d/dt) d; () = p(d/dt) €f e A b - p(d/dt) ¢] etfﬁd.(oy

- tA T tC T _tA
—gé‘"e p(Alb - e e zp(C)gd-(o) =g er

Tehat dd-(.) megoldasa egy m -edrendii inhomogén differen-
ciadlegyenletnek, mégpedig zérus kezdeti feltétellel, mivel

\) ". .
ot:.‘cm = e x"(0) -, C“x; 00)

xof."’(o> ~ Brey X;(0) =0, £=0,4, ..., m-1,

d

ahol felhasznaltuk }_& (0) definiciéjat ill. a C kompanion-
matrix azon tulajdonsagat, hogy chC = g:';ﬁ y 4’:4, ceey fm-4.

Tehat ola-({') az /1.2.22/ formula alapjéan a
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t
~s)C A
o{J‘(H= [ gfe& s) gmg;es rds
0

alakban adhatdé meg, melyb&l kdzvetlenlil addédik a lemma sze-
rinti eldallitéas. O

3.3.2. Lemma. Legyenek a Cemmxm kompanion-matrix /nem fel-

tétlentl kiillonboz8/ sajatértékei A, A, ... Am . Akkor
T
ahol a jobboldal exp(At)-nek, mint A fliggvényének a

Agj oo d

renciaija.

m PONtokhoz tartozd (m-4)-edrendii osztott diffe-

Bizonyitas. Irjuk fel a matrix-exponencidlisra vonatkozd

Newton-féle osztot: differencids interpolécids formulat C -re:

- it
¢ -t .
otC = ZX [R5 ]e ;;];(C-K;I) ‘ /3.3.11/
-
mivel e1C=¢}, e C'=elC=ey, ... el C" =zl gy
T -4 T .
=4 ¢ €m = & gngim, C=Aym

Ezt felhasznalva,

T fc c.t
§4 e ey = [11}“‘]}wnje
/mivel az osztott differencias alakban C (m-4)-nél kisebb hat-

vanyai kiesnek/, és ezzel igazoltuk a lemmat.

A tétel bizonyitasa. A 3.3.2. lemma és az osztott differen-

ciédk integréleldallitasa /[47], 188. o./ alapjan t 2 S -re

t-s)C C(t- - 2!
ey e e =lhdn]e® = 5 S 0 e (2 wi)do, . da,,
Q =
ahol

S2 =y, 0 TER™

w\
=1
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Ebb&1
B e#9C, | o (o)™ 4S SIup(ﬁﬂZw A )| doy...do

= (_{-S)M—‘ S S exp (rt-s] gch_dO dw,‘ ...dwm
Q =4

(t-5)u (€ S A duo (4-)"1 -s) w(C)

LR (m-4)! .

< (£~s)"“4e

Az igy nyert becslést, valamint a 2.1.3. lemmat alkalmazva a

d(+) =x(t)-X (¢) xiilénbség 3.3.1. lemma szerinti integral-

eldallitasara,
M-t (k-s)atlC A
ld@l, < S o) O ) P ir, ds

tmax fo W) (O} (€ gyt

P Cm-d)'

< el gm(éllullz) 53

é€s az utdbbi éppen a tételben megadott korlat. O

A 3.3.1. tételben megadott hibakorlat egyenesen aranyos
az © rezidual-vektor normajaval. Az aranyossagi tényezd egy
polinom és egy exponencialis szorzata, ahol az exponencidlis
tényezd kitevOjében szerepld egyiitthatd x (C) 2 o (A) esetben
kbzel egyenld maganak az x (t) megoldasnak a korlatjaban fel-
1éps o (A) egylitthatéval. Ilyen esetben, ha Irll, kicsiny,
akkor varhatban Slf) relativ hibdja sem lesz tul nagy.

Stabil A matrix esetén x(+)—0 /{r*oo/; viszont d(¢)-0
a fenti korlat alapjan csak ugy garantalhatd, ha o (A)<0 mel-
lett w(C)<0 is teljesiil, azaz, ha a fﬂ}) szamolt minimal-
polinom gy®kei is mind negativ valds résziek. Az utdbbi fel-
tétel viszont teljesiil, ha a szé&molt minimdlpolinom elég jb

kdzelitése a tényleges minimalpolinomnak.
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Kompanion-matrix exponencidlisanak meghatarozasa:

Kammler mdédszere

QXPGA)& minimalpolinom-mdédszerrel vald szamitasahoz
a P(.) minimalpolinom meghatdrozasa utan sziikség van egy
megfeleld médszerre exp(tC) kiszéamitasara t kiilénbszd érté-
keire, ahol C a pLJ polinom kisérd matrixa. Elvileg a sa-
jatértékek ismeretében exp(éC) explicite is megadhatd, akéar
a /3.3.11/ osztott differencias képlettel, akar C Jordan-fé-
le felbontasa segitségével, ahol a fdvektorok V matrixa a
sajatértékekhez tartozd /esetleg konfluens/ Vandermonde-féle
matrix, melynek inverzére is vannak explicit képletek [ 32, 40].
Azonban, ha az A matrix sajatértékproblémdja gyengén megha-
tarozott, a sajatértékek nem szamithatdk ki megfeleld pontos-
saggal. De ha még pontos sajatértékekbdl indulnaénk is ki,
kozeli sajatértékek esetén mind az osztott differencias,
mind a Vandermonde-matrixon alapuld [ 38] explicit képletek
igen érzékenyek a szamolas soran elkdvetett kerekitési hibak-
ra, ezért ezek alkalmazadsa nem javasolhatod.

A probléma megoldasara jelenleg ismert leghatékonyabb
eljaras Kammler mddszere [ 287]. Ez a mdédszer tulajdonképpen
egy négyzeteléssel kombinalt Taylor-soros mbédszer, speciali-
san kompanion-matrixra kifejlesztve. Az eljaréas foO szakaszai
a kovetkezdk.

A. ElGzetes transzformadcidk a polinom-egylitthatdk (94-)
normajanak redukdlasara a C matrix kompanion-strukturajanak

megtartasa mellett.



B. Taylor-sor-mbédszer.
C. Négyzetelés.
D. utdlagos transzformacidk.

Kammler cikkében elvégezte az eljards részletes kereki-
tési hibaelemzését, valamint az egyes lépések érzékenységi
analizisét.

Mieldtt Kammler modszerének egyes lépéseit ismertetnénk,
kitérliink a kompanion-matrix egy olyan tulajdonsagara, amely
kulcsfontossagu az eljaras hatékonysaga szempontjabol.

3.3.3. Lemma. Legyen FeC™™ felcserélhetd a Ce€™™ kompa-

nion-matrixszal. Ekkor C -nek, és F utolsd oszlopanak
ismeretében F &sszes tdbbi eleme egyértelmiien meghata-

rozhatd az alabbi, un. Thomson-féle relacidk segitségé-

vel:
{ﬁ4= "C1fbﬁm y L2, em
'F\.,'é = {(-ﬂlé‘A - c&‘ {i_4‘m 7 {:a\+4l..-|m;}=21.u,m /3 3 12/
1££-4.,§-4=f% F G feoam g higy e 2

Bizonyitds. A C kompanion-matrix szerkezete [lasd [3.3.6//

alapjan érvényesek az alabbi Osszefiliggések:

T T \
C§4=—C1§M ) Cgi"gf-i—cx'-e-m 3 g’\‘—ac'g{. ) ““21"' m.

Ezeket, valamint F és C felcserélhetdségét felhasznéilva, >4

esetén
T T T
‘Fgé = €3 F.@&"—‘ g, C ng' =e. FC €,
_C4QI4F§M = =Gy f""*»w‘ ) 3:4}
T T = - ’
gc-,F_cJ_;Cj&\--AFEM-F«'-A,é-a Ca']tf—«,m, §z4. a



Megjegyzés. Mivel egy kompanion-matrix mindig nemderogatdri-

us /[karakterisztikus és minimadlpolinomja egybeesik/, igy a
lemma FC=CF felcserélhet&ségi feltétele ekvivalens azzal,
hogy F kifejezhetd C polinomjaként [lasd [45], 6.2.2. tétel/.

A /3.3.12/ relaciékat F =exp(C) esetére Thomson [49] és
kammler [ 28], F=4£(C), f(»)analitikus fliggvény esetére pedig
Kaufman [32] igazoltak, de a fentinél bonyolultabb uton.

Az alabbi Abran az m=,4 esetben nyilak segitségével szem-
léltetjlik a /3.3.12/ rekurzibds relacidk alkalmazasanak sor-
rendjét; egyik elembdl a masikba mutatd nyil azt jelenti,
hogy az egyik elemet eldbb kell kiszamitani, mint a masikat.
Amelyik elembe nem mutat nyil, annak kiszamitasahoz egyediil

az utolsd oszlop /ismert/ elemeire van szlikség.

f44 ¥1L {13 f4q
AN
fu gu \fzg, -qu

a4 \1(31 ™ fs'_x, f34
N

Ezekutan ratérhetiink a Kammler-médszer egyes lépéseinek

ismertetésére.

A D. E16- és utdtranszformacidk. Kammler hadromféle eldzetes

transzformacidét adott meg, de ezek kdzil az elsdt, a
spektrum-eltolast nem vette figyelembe hibaanalizisében.
Egy ko nagysagu eltolasra igazolta, hogy ha
Ct= gheH C etoM -1,
ahol 0 0 ()
H =(<i-4) 31-_403.) = | 20, és e (("1) li"j)

mrm )
C) oo, rxm
(m-4) O



/itt a binomi&lis egylitthatdok kiterjesztett értelmezése sze-

1-1
rimt (&—4)=0, ha 4;<0C/, akkor C¥ a

P =N A e Ay =TT [-(e-20)]

polinom kisérd matrixa, ahol a C; =1oq—4)(9\0)/(3—-4)‘. egyltt-
hatdék az altalanositott Horner-séma szerint szamolhatdk. Ha
mar meghataroztuk c* exponencialisat, akkor ebbdl C exponen-

cialisa a kovetkezOképpen transzformalhatd vissza:

%
otC _ (tho oA H LECT -AH

tA b  minimalpolinom-médszerrel vald

Megjegyezzik, hogy e
szamitasahoz e lehetOGségre nincs szilikséglink, mivel a spekt-
rum-eltolast még a minimalpolinom meghatarozasa eldtt elvé-
gezhetjlik, ha szlikséges, és a tovabbiakban az A—AOI matrix-
szal szamolhatunk /ezt a transzformacidét a 3.1. pontban emli-
tettilk a Aq=tr(A)/m esetben/.

Fontosabb szerepe van viszont a masodik fajta transzfor-
macibénak, melynek célja a polinomegyiitthatdk nagysaganak re-

dukalasa. Konnyen belathatd a kovetkezd Osszefiiggés: ha

4 -1
C=2e1DCD |
i1 ~
ahol D= (« gcd' )'mxm diagonalis matrix, és o#0, akkor C a

,f)“(;\)z PO Lo PR C,A+C, = ﬁ (2 -2 lo)

S sons the e ~ 1~ "
poiinom kisérd matrixa, ahol C&L- = CJ/o(m* 4., Az paraméter
valasztasa a kovetkezo: usze , @ahol [ a szamitasokhoz hasz-
nalt szamitdogép lebegbpontos aritmetikajénak alapszama /[pl.

a Rjad-10 gépen [5=46; f masik gyakori értéke 2/, és

L= minm {30,0 | & eqesz és%@-l/[ﬁ%"‘”’é) < 4} :




E valasztassal a polinom egylitthatdéinak redukéalasa ill. a

matrix exponencialiséanak az
exp(tc) = D exp (xt C) D

képlet szerinti visszatranszformaladsa soran nem kovetiink el
kerekitési hibat.

A D diagonalis matrixszal vald hasonldésagi transzforma-
cid célja a szamitasokban részt vevd polinom-egylitthatdk
normalizalasa és ezaltal a kerekitési hibak terjedésének
csOkkentése volt. Azonban az at6 matrixra ®t>4 esetben nem
alkalmas a Taylor-sor mdédszer, ezért ilyenkor a négyzetelés-~
re is szikség van. Jeldlje M azt a legkisebb nemnegativ e-
gész szamot, melyre lat|l £ 2™M . akkor Kammler eljarasa sze-
rint Taylor-sor-modszerrel meghatarozzuk az exp (2-Mdta>
matrixot, majd ebbdl M-szeri négyzetre emeléssel kapjuk az
exp (e t E) matrixot.

B. Taylor-sor-médszer. Legyen az egyszerdoség kedvéért

~

t= 2"t és F::exp(ga). Mivel F kommutal a C kompanion-matrix-
szal, a Thomson-féle /3.3.12/ relacidk birtokaban elég F

utols6 oszlopat meghatarozni a Taylor-sor mdédszerrel, amely

OO ~
Ttk xe
Fgm=%;6 27 C e,

A kompanion-matrix-struktura alapjan kiilontsen egyszeri az

- .. e = 2 - P . .
egymast kovetd (?gﬂ,lc €m ... vektorok képzése, mivel kony-
nyen belathatdé, hogy

~ T
&
C gm=[%&‘4'.nt|?&+m] ’ L:Old’ ooo,
ahol

%’4-;'--:%77'1-4:0/ 3m=4



m-4

%'M»d: _?__: Conec ?93_‘; | &=M+4,M+Z,.... /3.1.13/

Ez alapjan exP(ga) utolsé oszlopanak 4 -edik eleme:

Fen = 2o @) g, intyym

f=m-¢

Kammler szerint a k&zelitésnél utolsdnak figyelembe vett tag

legyen a K—adik, ahol
K= min {Rom| 1[4/ < JZI’""/(M)'.}

€s U a lebegdpontos kerekitési egység. Ha feltesszilik, hogy
N > 1/u, akkor 1< 4 alapjan belathatd, hogy K<&m+N, azaz
k>2m+N indexii 3&'egyUtthat6k sehol sem szerepelnek a sza-
mitasokban. /N minimalis értéke &altalé&ban nem nagy; pl. a
Rjad-10 gépen u=-12: 167° mellett N=40. /

Mivel az elbzetes transzformacidk kovetkeztében éilﬁ;l

< '1, igy a (3& sorozat tagjaira a /3.3.13/ rekurziv képletbdl
I%tlé’f} &=4I2|.v-

kovetkezik. EbbBl K definiciéjat figyelembe véve a Taylor-

soxr csonkitasabdél szarmazd képlethibéara az

|eiFe, Z(ﬁ‘/&' ) e | ]Z?(Z%()gml ¢

k=k+4

™K ~ym-4 Tym-<
< -l—t——l-—(i**i_h...)s u—l-t—l——-(e—z)su—lé—l—-

(m-1)! (m-i)! Ay m

! ! )

pecslés addodik, azaz a képlethiba nem haladja meg a sor elsd
nemzérus tagjanak lebegbpontos gépi reprezentacidébdl eredd
kerekitési hibajat.

Miutan F=exP(€“6) utolsd oszlopat meghatdroztuk, ebbdl a

teljes matrix a Thomson-féle /3.3.12/ relacidk alapjan konst-

Ly



ruadlhatdé meg. /Valdjadban, ha a kerekitési hibaktdol eltekinte-
nénk, akkor a Thomson-féle reldcidk exp(ga) helyett annak K-
adfoku Taylor-polinomjat adndk./ Mivel nem a teljes matrixra
alkalmaztuk a Taylor-sor mddszert, és a Thomson-reldcidk mi-
veletigénye csak m*4+0O(m), igy exp(fa) eldallitasanak miive-
letigénye a kompanion-struktura kovetkezétben ()(wé) helyett
csupan O (m?) . Ebbsl m*+0O(m) a 9y sorozat képzése

[&=msd ... 2m+N/, és hasonléképpen m*+0(m) a Taylor-sor

részletdsszegének kiszamitasa.

C. Négyzetelés. Az exp(xtC) méatrixot eXP(IMo(‘ﬁC) Taylor-

sor-médszerrel szamolt k&zelitésébsl kiindulva M -szeri négy-

zetreemeléssel, az

~ B- ~ 2
exp(Z‘&aJcC) = [exp (2 ¢ 4«%6)] ) f=M-1, o1, 0

rekurzid alapjan hatéarozhatjuk meg. Egy M-edrendli matrix
négyzetre emelése altaléban m> niveletet igényel. Viszont
jelen esetben, a Thomson-féle relacidk felhaszndlasaval ez a
miiveletigény '2w3'+cxm)—re csdkkenthetd, ha eldszOr meghata-
rozzuk a négyzetmatrix utolsd oszlopat ugy, hogy a négyzetre

emelendd matrixot szorozzuk sajat utolsd oszlopaval:

1= FRE [

-_m

[ 7% C
e e,

majd ebbdl a /3.3.12/ relacidk szerint rekonstrualjuk az

exp(f&dfff) matrix Osszes elemét.

A minimadlpolinom-médszer milvelet- és memériaigénye

A milvelet- és memdriaigény megadasanadl az alabbiakban
feltételezziik, hogy a minimdlpolinom fokszama maximalis,

azaz M=m. Ekkor az eldkészitd szakaszban a Krilov-vektorok



képzése ﬂ}— ﬂ}, a vektor-minimalpolinom meghatarozéasa ‘ns/S
+0(n*) és a Kammler-médszerhez sziikséges {.%h} sorozat képzé-
se m}+00n) miiveletet igényel. A mdédszer e kezdeti szakasza-
nak mﬁveletigénye;’%ﬂ3+O(ML)/ tehat jéval kisebb, mint az
el62z8 pontban targyalt spektralfelbontasé /x45m®/. Ezutan
‘t barmely értékére Kammler mdédszere eXPCtC) meghatarozasara
(2M+2) m*+ 0 (n) miveletet igényel, ahol M értéke fiigg 1
nagysagatdl. Tovabbi nt aritmetikai mivelet szitkséges X {)=
exp(tA)b képzéséhez a [/3.3.4/ képlet szerint. Ebben a maso-
dik szakaszban tehat a spektréalfelbontdsi mdédszer gyorsabb.

A Taylor-soros mdédszerhez hasonlban, t:R"ZR,... ekvi-
disztans pontsorozat esetén itt is csOkkenthetd a mivelet-
igény. Ugyanis, ha exp(RC) meghatarozasa utan annak utolsd
oszlopat megdrizzik, akkor exp(&&C) utolsd oszlopa megkap-
hats exp ((B-4JAC) -b5l az [exp(RRC)Em]= exp(Lk-412C) [exp(hC) e, ]
matrix-vektor szorzassal, majd ebbdl a /3.3.12/ Thomson-féle
relacidk alapjan aqﬂQRC) minden eleme meghatarozhatdé. Ez-
altal egy-egy ujabb pont esetén a sziikséges aritmetikai miive-
letszéam mar csak 3m* +0(n).

Az eljaras memdériaigénye 3m*+C(n) membériarekesz; ebbdl
az A madtrix taroldsan kiviil m' rekeszt igényel a Krilov-vek-
torokb6l képzett matrix tarolasa, tovabbi mi-et az utdbbi
matrix LW -felbontésa /Gauss-eliminéacié/, amely késdbb expCtC)
szamitasanal is felhasznalhatdé. Igy a minimalpolinom-médszer
memdriaigénye korilbelil masfélszer akkora, mint a spektral-

felbontasé.



4. ELJARASOK A MATRIX-EXPONENCIALIS PARAMETEREK

SZERINTI PARCIALIS DERIVALTJAINAK KISZAMITASARA

A matrix-—-exponencialis paraméterek szerinti parcialis
derivaltjai az /1.1.7/ érzékenységi egyenletek megoldasai,
melyek specialis szerkezete lehet&vé teszi az eldzd fejezet
modszereinek kiterjesztését a parcialis derivaltak szamola-
sara. E kiterjesztéseknek altalaban ugyanazok a gyenge pont-
jai, mint maguknak az eredeti médszereknek.

Mivel a Taylor-sor és négyzetelés, valamint a spektral-
felbotnds modszereinek kiterjesztését e problémara mar elvé-
gezték, ezért ezeknek csupan rovid leirasdra szoritkozunk.
Viszont részletesebben adjuk meg a spektralfelbotnds alkal-
mazasat exp(£A(.)) masodik parcialis derivaltjainak meghatéa-
rozdsara, valamint a minimélpolinom-mddszer kiterjesztését
exp(tA(.))b parcialis derivaltjainak kiszamitasara, melyeket

mi dolgoztunk ki.

4.1. Taylor-sor és négyzetelés mddszere

A Taylor-sor mdédszerének alkalmazasat a matrix-exponen-
cidlis paraméter szerinti derivaltjainak kiszamitasara
Kanyar és mtsai [ 30, 31], valamint Feldman [16] javasoltak. Az
eljaras a kovetkezd.

Tegyik fel, hogy ﬁKJﬂQv~9ﬂ€un' folytonosan differencial-

hatd a 0 € R® pont egy kdrnyezetében, és legyen v tetszdle-
2, P



ges [rdgzitett/ paraméter-index /44r¢ v/ . Az egyszeriiség ked-

véért vezessiik be a kbvetkezd jeloléseket:

,ae-\:A(_G_)
A=Al = BaBR (o) BO=Te— |
g=%0 .

Ekkor érvényes az

HEEIM N inRH

kibdvitett differencidlegyenlet-rendszer, melynek megoldasa

] e (12 8])3]

Ebb&1l a keresett Z () parciédlis derivalt matrix

za-tomoe t[3 ) 1]

Legyen

Akkor
ok
t
Z(‘t)=§ & B& /4.1.1/

ahol A& és B& a kovetkezd rekurziv képletekkel szamolhatdk:
A°=I ! Ah:AA&—4 b
-;1‘2.,.... /4.1.2/
B, =0,  B,=BA,,+AB,,
[+ [3 4]
Ismét érvényes, hogy tie A >4 esetben a sor kon-

vergenciaja lassu, €s jegyveszteséggel szamolhatunk. Ezért



itt is ajanlatos a matrix-exponencidlis multiplikativitasan
alapuld hatvanyozast vagy négyzetelést alkalmazni. A [16, 30,
31] cikkekben csak a hatvanyozast /[azaz szukcessziv matrix-
szorzast/ javasoltadk, amely azonban csak akkor hatékony, ha
a szamitdsokat t ekvidisztans értékeire kell elvégezni; kii-
1énben a négyzetelés hatékonyabb.

Kénnyen belathatd, hogy a négyzetelés ill. hatvanyozas
alapjaul szolgald multiplikativ tulajdonséag a 2(#) parcialis

derivaltra a kovetkezd formulat adja:

Zuswr)=Z ) X (v) + X(u) Z2() /4.1.3/

A négyzetelés modszere esetén e képletben w=w =284 [e=14, ...,

K/; hatvanyozasnal pedig u=(&-ND& w=h /b=4... M/ ahol

la[aalliet

A [/4.1.3/ képletbdl lathatd, hogy Z{t) meghatarozasa ésak
X (#)=ex kisza&mitasaval egyidejlileg tdrténhet.

A [/4.1.1/ sor véges részletdsszeggel vald kdzelitésére,
valamint az ebbdl szarmazd Oroklsétt hiba hatvanyozas [/4.1.3)
alkalmazdsa/ soran vald terjedésére Kanyar és Toth adott meg

hibakorlatokat 31 ; ezekkel itt nem foglalkozunk.

Mivelet- és memériaigény

A Taylor-sor-mbédszer N szadmu tag figyelembe vétele ese-
tén (N*—vaV*4)(m3+~O(”3)) aritmetikai miveletet igényel
QXPCEA) és a VY szamu parcialis derivalt kiszamitasra. Ezu-
tan a [/4.1.3/ relacid egyszeri alkalmazasa az Osszes parcia-
lis derivaltra 2Vn® miveletet jelent; a négyzetelés médsze-

re esetén e reliaciét WK-szor kell alkalmazni, ahol
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K= min {&;0}2"‘% “ [ ]“ < =3§(e), 4erev} ;

hatvanyozas /[szorzas/ esetén pedig legalébb Zk—A—szer és leg-
feljebb 2¥ -szor.

A memdériaigény /[feltéve, hogy az Osszes parciélis deri-
valtat egyidejiileg szamitjuk/ a B=(0/96,)A(8,) matrixok taro-

lasat is figyelembe véve 2 (v+4)m* nemériarekesz.

4.2. Spektralfelbontas mbédszere

A spektralfelbontas alkalmazasat exPCEA(J) parcialis
derivaltjaira Atherton és de Gance [1], valamint Jennrich és
Bright [25] javasoltak. Mi kiterjesztettiik a médszert a maso-
dik parcialis derivaltak szamitasara is [11].

Induljunk ki az eldzd pontban hasznalt jeldlésekbdl és

legyen az A==A(Qo)diagonalizélhaté matrix spektralfelbontéasa

A=VAV™ N=(A:8),,,.

ahol /Al a sajatértékek diagondlis matrixa. Ekkor az 1. feje-

!

zet [/1.2.23/ képlete alapjan

Z (£)= é’ce&—sm BesA

Alkalmazva erre spektralis felbontast,

t @, A -4
Z)=V e VBVetds VT /4.2.1/
azaz
Qe th()
2= S|, =V G@IV /4.2.2)
- 20



ahol G (t)=( 9 G‘))mxm_ elemei:

t .
% (&)= K‘d‘ ge)‘.(t—‘)e)‘ésds :9\% [le;ﬁ(;]e't /[4.2.3/

H=(%)pin= VBV

D eth®)
Tovabba, a Z):= ———igng‘z“
a

g)=VGM®c Ve=b

relacidk alapjan hatarozhatd meg.

/4.2.4/

parcialis derivalt

/4.2.5/

A spektralfelbontas alkalmazasa itt is igen hatékony

eljaras miiveletigény szempontjabdl, mivel az eltkészitd sza-

kasz /A, V, V="' i11. H és ¢ meghatarozasa/ utan Z(#) ill.

g(ﬁ) kiszamitéasa /rendre/ csak két matrix-matrix- ill. mat-

rix-vektor-szorzast igényel. Azonban numerikus pontossag

szempontjabol kétszeresen is problémat okoz, ha a x (V) kon-

dicids szam nagy, mivel a V”tényezG kétszer is szerepel

Z(&) /4.2.1/ elBallitasaban. Ezért ?K(V)>>4 esetben a mdéd-

szer alkalmazasa nem javasolhato.

Mivelet- és membériaigény

ElOkészitd szakasz miveletigénye: [ V=paraméterszam/

(i) Spektralfelbontas /beleértve NV t-et isy meghatdrozasa

a QR-algoritmus felhasznalasaval:

x K m3 [ R 46/

(ii) a H matrixok képzése minden paraméterre: 2vn® + O (n*)

Masodik szakasz miiveletigénye t egy-egy uj értékére:

(iii) Z(t) kézése minden paraméterre a [(4.2.2-3/ képletek

alapjan:

Zvnd® + O (n?)



(iii)’ z(¢) xépzése minden paraméterre a [4.2.5/ képlet
alapjan: (3v+%2) m* + O(n),
Az itt megadott miiveletigény csak az aritmetikai mliveletekre
vonatkozik; szikkség van ezen kiviil az exp (+A;)exponencidli-
sok kiszamitasara is /i=4,...,n /.

A mdédszerhez sziikséges a sajatvektorok V matrixéanak és
inverzének, valamint az egyes paraméterekhez tartozé H mat-
rixoknak a taroléasa, ami /valds sajatértékek esetén/ (v+2) m?
membriarekeszt igényel. Azonban, ha A -nak komplex sajatérté-
kei is lehetnek, akkor kétszer ekkora membriateriiletet kell

lefoglalni.

Masodik parcialis derivaltak szamitasa

Bizonyos esetekben - pl. a masodrendben konvergens
Newton-mddszerrel torténd paraméterbecslés esetén - sziikség
van exp({A(.)) vagy exp (tA())b paraméterek szerinti masodik
parcialis derivaltjainak kiszéamitéasara [11]. Az alabbiakban
megmutatjuk, hogyan valdsithatd ez meg a spektralfelbontés
segitségével.

Tegyiik fel, hogy A(fthv—aﬁfn\kétszer folytonosan dif-

ferencialhaté a QOGIRV pont egy kdrnyezetében, és legyen

—

A‘-':A(Qo), 'B£=ggé(ao)' L=4'...,\’, D ’D(P-"v)_ @9 99 ( )

tA(9)
_ Qe ~ 2 tALD)
2. (0)= S imh v, Y)Yy e
< Q:go ggpaew 9_:_9_0 ]

ahol p g rogzitett indexek/dspnxé\>/. Ekkor pl. a p index-
hez tartozdé elsd parcidlis derivaltra vonatkozdé érzékenységi
egyenlet Q% szerinti parcialis derivalasaval és a Qw és t

szerinti differencidlas sorrendjének felcserélésével belat-



hatd a k&vetkezd inhomogén matrix-differencidlegyenlet érvé-

nyessége:
Y = AY() + B Z, (k) +Bg () + Deth
Y(©)=0

EbbBl a konstansvariaciés formula alapjéan

Vie)= (et [Be2, (5> +B J2p (0 +De* ] ds /4.2.6/

adodik. [/4.2.6/-ba behelyettesitve a matrix exponencialisnak
és els® parcialis derivaltjainak [vo. [4.2.1// spektralis
elGéllitésait/ a

G (s)=V1Z. )V | <=1, n

jeldlés alkalmazasaval azt kapjuk, hogy
t -
Y (£)=V§ 4 [VB,Y G ls) VB,V G604V DV e asV . 2.7
0

Legyen

K= (ke )=V "DV, H")=(P»(?),,,,,\"‘V BV, rep,o,

t -
L(t>=(€%)»nﬁ=8 eusxA}<€&kds,

[}

nxn’

(r,w) r w) (-(; =Y, . »
= ({A 'nxh = ;5) H G"(S)dsl Y',W:qu,.
Ekkor [4.2.7/-b01
(P19) (3.p) y1v-1
Y()=V][F®P¥ )+ F@P )L )] v j4.2.8)
ahol L(¥) elemei /4.2.3/-hoz hasonldan az
(’,i(}.(t)= ki (2,21t [4.2.9/
(£)  elemei /QW==p,% / pedig

t
444 A (#-9) 9\'(") (w)
= e (s) ds
§21. ay %&J

=2 by &QJT’ feX 4 a0

Cw= (n) g (W) . o+ . .-
—Z e‘d&. g‘&a ) [—ai,kb_;;\&']e [4.2.10/



szerint szamithatdk ki.

Mivel igen sok gyakorlati alkalmazasnal - mint pl. a
kovetkezd fejezetben targyalt bioldgiai kompartment-rendsze-
rek esetében [vd. [111/ - az A(8) matrix elemei maguk a 6
paraméterek, vagy azok lineadris filiggvényei, igy a masodik

{ .
=@ matrixok /jaz L (£) matrixokkal

parcialis derivalt D
egylitt/ eltiinnek és csupan a PJ“) matrixokra van szikség,

mely utdbbiak amugy is kellenek az elsd parcialis derivaltak
szamitdsédhoz. Ilyen esetben a szamitasigény egyetlen masodik
parcialis derivalt esetén relative nem sokkal tdbb /kb. mas-
félszer akkora/, mint egy elsd parcialis derivalt matrixnal.

/[Vegyik azonban figyelembe, hogy Osszesen v (V1) /2 szamu

kiilénboz0 masodik parcialis derivalt van./

4.3. Minimalpolinom-mbédszer

E pontban megadjuk az &ltalunk kifejlesztett minimal-
polinom-modszer kiterjesztését exp(tA(J)h' parcialis deri-
valtjainak kiszéamitasra /[cf. [12]/. A mdédszer alkalmazasa
akkor javasolt, amikor a spektralfelbontasi médszer gyengén
meghatarozott sajatérték-probléma miatt nem ad pontos ered-
ményt.

Legyen r rogzitett index/4¢rev/ és alkalmazzuk az

+A(®)
g %A ARy e
A“-A(Qo), B"‘ %‘é‘r(go\); -)-('({:)_e b-) g(é)‘——é'é‘:—’ 9=90

jeltléseket. Ekkor célunk a 2(¢) parcialis derivalt meghata-
rozasa. Fennall az alabbi /az érzékenységi egyenlettel/ ki-

bovitett differencidlegyenlet-rendszer:



OB AN O

-A
Legyen 'p(l)—_- ﬁm+cm?\m +__,+czk+ ¢y az A matrix minimadlplinom-

ja /[/vagy tetszbleges annulldld polinomja/, melyre

p(A)=0
és legyen g (2):= [p(ﬁ)]l= p I dy ’)3'"'4+, oA dh rd,

Ekkor a %(.) polinom annullélja a /4.3.1/ rendszer matrixat,

s([830)-150 ] - [3 810

‘Igy a 3.3. pont eredményei alapjan

ugyanis

}:4'...,71, /4.3.2/

_ T tD
Zé(t)“s1e EJ(O),

ahol D a %( ) polinom kompanion-matrixa, és a
3 (2-"1—47 T
. = . . . 0

vektorok elemei megkaphatdék a

<) +-[A 07 [b g
Zé (o) = [qT,EJ] [B A} [0] \ 4—0J,.“,2m—4‘

relaciokbo A gyakorlati szamitas céljara az utdbbiaknal

alkalmasablhi®k a

%(0) (0) =

<)
rekurzids képletek.

A D 2m-edrendii kompanion-matrix exponencialisa ismét
hatékonyan szamithatdé ki Kammler médszerével [lasd 3.3. pont/.
A métrix—miniméléolinom meghatarozasara két lehetSséglink is
van. Az edgyik, hogy egy /R™ feletti folytonos eloszlasbdol/
véletlenszerien valasztott vektorhoz tartozd minimalpolino-
mot hatarozunk meg Kriilov mdédszerével. Ekkor "egy valdszinii-
séggel" a matrix-minimdlpolinomot kapjuk. Ez az eljaras rejt

magaban egy bizonytalansagi tényezdt, melyet viszont lénye-
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gesen csdkkenthetiink, ha az eljarast egy masodik véletlen
vektorral megismétéljﬁk. Azonban, ha ellenbrizni is akarjuk,
hogy mennyire joé a szémolt‘?(.) minimalpolinom, azaz kisza-
mitjuk az R‘:ﬁ(l\) rezidual-matrixot, akkor ez mar O('vt"‘) mii-
veletet igényel.

A masodik lehetGséget matrix-Krilov-mdédszernek is nevez-

hetjik. Ez abban &ll, hogy az I,A,Al... A™ matrixok elemeit

!
n-elemi oszlopvektorokba rendezziik, majd részleges fdelem-
kivalasztasos Gauss-eliminaciéval meghatdrozzuk az elsd olyan
m oszlop kozdtti linedris fluggést, ahol az elsd m-4 oszlop
még linearisan figgetlen. A mellékletben megadott programban
lényegében az utdbbi eljarast valdsitottuk meg; ennek mive-
letigénye %'n“ + O (mY).

Tovabbi lehetbség lenne még a matrix karakterisztikus
polinomjanak k&zvetlen meghatarozasa. A LeVerrier-médszer a
3.3. pontban mar emlitett hidnyossagai [ G(m*) niiveletigény,
jegyveszteség/ miatt a karakterisztikus polinom meghatidroza-
sara nem javasolhatdé. Egyeldre nincs tudomadsunk mas, haté-
kony és numerikus szempontbdl /a kerekitési hibakat is fi-
gyelembe véve/ stabil eljarasrd6l egy altalanos matrix karak-
terisztikus polinomjanak meghatarozasara.

Megemlitjiik még, hogy a k&ézelitd annullald polinom al-

kalmazasab6l eredd hibara itt is hasonld hibabecslés érvé-

nyes, mint amit a 3.3.1l. tételben megadtunk.

Miivelet- és memdériaigény

ElSkészitd szakasz miveletigénye:

(i) Krilov-médszer, maximalis fokszamu minimdlpolinomot
feltételezve, vektor-Krilov-médszer esetén: %191~O(mf);

matrix-Kriilov-médszer esetén: _z_nn‘* + O (n®),;



(i1) a g(”m) /i:O,lrn'Zm—d/ vektorok képzése az Osszes
/ ¥ szamu/ paraméterre: £ U*V+Z) m?

Masodik szakasz miiveletigénye t barmely ujabb értékére:

(iii) exp(tD) szémitasa Kammler médszerével: (ZM*2)7&+'O(“L
ahol M a sziikséges négyzetelések szama;

(iv) parcialis derivaltak képzése a [4.3.2/ képlet alap-
jan, az Osszes 9, /r=4'-._'\)/ paraméter esetén: 2yn*

Osszehasonlitva a spektralfelbontasi médszerrel, megal-
lapithatjuk, hogy ha 2M+% nagyobb /kisebb/, mint V+%1 akkor
a minimé&lpolinom-mdédszer masodik fazisa tdbb /kevesebb/ miivele-
tet igényel az eldbbinél, feltéve, hogy A sajatértékei vald-
sak [komplex sajatértékek jelenléte esetén a komplex aritme-
tika hasznalata miatt durvan a miiveletigény megkétszerezddé-
sével szamolhatunk a spektralfelbontasi mdédszernél/.

Az elijaras memdriaigényének nagysagrendben legnagyobb
tételei a ko6vetkezdk. Kammler mdédszeréhez exp(tD) szamitasa-
nal sziikség van egy (2n)=4m* méreti témbre. A g‘“(o) vekto-
rok tarolasédhoz 2vn* szamu memériarekesz sziikséges. A matrix-
Krilov-mbédszer alkalmazasahoz az eljards eldkészit® fazisa-
ban n¥+n" rekeszre van szikség, melyek azonban atfedésben
lehetnek az utana kiszamitando gf“w) vektorokhoz hasznalt
Zvﬁz szamu rekesszel; igy a kettd egylittes memdériaigénye
csupan h?ﬂnaxin+ﬂ2v}. Megjegyezzik, hogy komplex sajatérté-
kek esetén nagysagrendben ugyanennyi a spektralfelbontdsi

moédszer memdriaigénye is.



5. ALKALMAZAS A BIOLOGIAI REKESZ-/KOMPARTMENT-/

RENDSZEREK MODELLEZESEBEN

E fejezetben megvizsgaljuk az eldzd két fejezet mbébdszere-
inek alkalmazhatbosagat ill. alkalmazasi médjat az orvosi bio-
légidban gyakran hasznalt un. kompartment-modellekre. Ehhez
elSszbr bemutatjuk, hogy milyen feltevések mellett lépnek fel
ilyen rendszereknél a linearis allandbegylitthatdés differencial-
egyehletek, valamint ismertetjlik a kompartmentrendszerek in-
verz [paraméterbecslési/ problémajaval kapcsolatos kérdéseket
és eljarasokat.

Az 5.3 pontban elemezzik a kompartment-rendszerek mat-
rixainak /un. kompartment-matrixok/ és azok exponencidlisai-
nak specialis tulajdons&gait, majd erre alapozva targyaljuk
a 3. és 4. fejezetbeli mddszerek linearis kompartment-rend-
szerre vald alkalmazasanak szempontjait. E pont leglényege-
sebb konkluzidéja, hogy alkalmas spektrum-eltolassal kombinal-
va a Taylor-sor és négyzetelés mddszere varhatdan numeriku-
san igen stabil eljaras kompartment-matrix exponencidliséanak
meghatdrozésara [bar az exp(tA)b vektor-probléméra a nagy
miveletigény miatt tovabbra sem hatékony/.

Végil az 5.4. pontban egy numerikus példan mutatjuk be
a minimalpolinom-médszer kompartment-rendszerre tOrténd al-

kalmazéasat.



5.1. A bioldgiai kompartment-analizis alapjai

E pontban eldszdr megadjuk egy altalanos /nemlinedris/
rekeszrendszer leirasdt és modell-egyenleteit, utalva az
utobbiakra vonatkozd elméleti eredményekre. Ezutan bemutat-
juk, hogy egy egyensulyi helyzetben levd id&-invarians [auto-
ném/ nemlinearis rendszerbe beadott radiocaktiv nyomjelzd
dramlasa igen j6 koOzelitéssel linearis &allandodegylitthatds
differencialegyenlet~rendszerrel irhaté le, melynek egyitt-
hat6éi az egyensulyi helyzet relativ sebességi egylitthatdi.
Végll egy konkrét bioldgiai példat mutatunk be egy egyszeri
kompartment-rendszerre, és ennek segitségével illusztraljuk
a kompartment-analizis inverz, paraméterbecslési feladatat

és az ezzel kapcsolatos kérdéseket.

Kompartment-rendszerek modell-egyenleteil

Egy kompartment-rendszer vagy rekeszrendszer alatt [vé-
ges/ m szamu, bizonyos anyagot tartalmazd kompartmentet [vagy
rekeszt/, és ezek egymaskdzti, valamint a rendszer kdrnyeze-
te felé iranyuld anyagaramlasait értjlk. Jeldlje a 1 iddpont-
ban az ¢ -edik rekeszhez tartozd anyagmennyiséget %C(ih az
anyagnak az 4 -edik rekeszb&l a J—edik felé vald kidramlasi
sebességét ]%L (t, ‘(}(f)) y ahol 4 ()= [4.}4 (. ), vo i&n(.)JTt [Dlw)
——9[RTZ QJ=:0|4,.T.,n, {#4, &s az «,j=0 esetek a kdrnyezet
- mint "0O-dik rekesz" - iranyaban tOrténd be- és kidramlas-
nak felelnek meg. A kovetkezd oldalon lathatdé abra a rend-
szer 41 -edik és g—edik rekeszt tartalmazd részének sémajat

mutatja.
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kbrnyezet

aramlasok a aramlasok a

tObbi rekesz tObbi rekesz
iranyaban iranyaban

kbrnyezet

5.1.1. Abra. Egy kompartment-rendszer i-edik és

j—edik rekeszének sémaja

Lathato, hogy egy kompartment-rendszer tulajdonképpen
egy iranyitott graffal reprezentalhatd, ahol a csucsoknak az
%4(J|°-'|%n(') fliggvények ill. a kbrnyezet /"O-adik csucs"/
feleltethetok meg, az éleknek pedig az f@}(.) aramlasi se-
besség-fiiggvények /[ahol az {-»] élnek %ég(.) felel meg, (=
0,4, .. .}%/. Ha fi}(.)EEO,akkor a 3—%6 €l elhagyhatd a graf-
bol.

Egy bioldgiai rendszerben az egyes kompartmentekhez tar-
toz6 vizsgalt anyag lehet fizikailag /pl. membrannal/ szepa-
ralt a tobbi rekesz anyagatdol, de lehet akar kémiailag is,
ha mas vegyililet formajaban van jelen esetleg ugyanazon a he-
lyen. Tehat, ha egy rekeszben levd anyagmennyiségrdl beszé-
link, az nem jelent feltétlenlil térbeli elkiildonitettséget,
bar az utdbbit kdnnyebb szemléletesen elképzelni.

A rekeszrendszerek modell-egyenletei lényegében az

alabbi feltevésekre éplilnek:



(i) A t idGpontban az 1 -edik rekeszben levd anyag mennyi-
sége ‘\ag(f) 20, a=4,...,m, 30,

(ii) A t iddpontban az anyag < -~edik rekeszbdl a j—edik
felé valdé kilépési sebessége fé,_ ({‘,%(ﬁ)) , ahol f'ab() IR,tn-a [R+
megfelelBen sima fliggvény, i,}::O,A‘...,n.

(iii) A t id®Bpillanatban az 4-edik rekeszbdl a é.—edik
felé kilépd anyag ugyanabban a pillanatban belép a é—edik re-
keszbe.

(iv) Ha a t id®Bpontban az 4-edik rekesz lires /435({')’:0/,
akkor barmely féift,ilé)) kilépési sebesség nulla./€=4,u.,n;
j=0,4, e,/

Mivel a t iddpontban az < -edik rekeszben levd anyag-
mennyiség valtozasanak sebessége egyenld a be; és kiaramlasi

sebességek kilonbségével, igy a fenti feltevések alapjan ér-

vényes a kdvetkezd differenciadlegyenlet-rendszer [24]:

%C (t)= é\; ['ft.a (tlg&)) —%'i(tﬁé&»] ) {»’Ol "=4|"'|“' /5.1.1]
it

Mivel az /‘Fi‘j (t,.) figgvények csak nemnegatiyv elemii vek-
torokra értelmezettek, igy /5.1.1/ megoldasa alatt egy olyan
43,(.): R,— [R:' figgvényt értiink, amely /komponensenként/
differencialhaté [0, ®0) -en és kielégiti /5.1.1/-et. Ilyen
megoldas egzisztenciajat és unicitasat az F‘J (t,.) fliggvée-
nyek Lipschitz-folytonossaga esetén bebizonyitottak [vd. [ 46],
275. o./.

Mieldtt tovabbmennénk, megjegyezziik, hogy tdbb biold-

giai rendszerben /[lasd pl. [39]/ a (iii) feltevés nem teljesiil
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/még kdzelitbleg sem/, vagyis az anyagnak az egyik rekeszbOl
vald kilépése és a masikba vald belépése kozott eltelt ido
gyakran nem elhanyagolhatdé. Ilyen un. idd-késleltetéses kom-
partment-rendszerek modell-egyenleteit Gydri és Eller [21, 20,
19] vezették le és vizsgaltak /linedris esetben/; egy konkrét

biolégiai rendszer modellezésére pedig [29]-ben alkalmaztéak.

Nyomjelzok alkalmazasa idd6-invaridns egyensulyi

rendszerekben

Most ratériink annak bemutatasara, hogyan irhaté le egy
/nemlinearis/ iddinvarians, egyensulyi helyzetben levd re-
keszrendszerbe beadott kis mennyiségi radioaktiv nyomjelzd
anyag ['’tracer’/ kinetikaja /3jé kozelitéssel/ linearis allan-
doegylitthatdés kompartment-egyenletek segitségével. A gyakor-
latban vizsgélt rendszerekrdl altalaban feltételezhetd, hogy

id6-invariénsak, vagyis azfq dramlasi sebességek explicite

nem flggnek az idotdl: ‘FLJ (t,%(k))z {L& (‘\&(f)) . Ilyen biold-
giali rendszerek normalis korilmények ko&zott altalaban dina-
mikus egyensulyi allapotban /[/’steady state’/ vannak, azaz

A}({:) = 4 = konstans [¢[R]/

Kilonféle, nem tul szigoru feltételek mellett Sandberg
[46] bebizonyitotta az idé-invaridns rekeszrendszerek egyen-
sulyi helyzetének létezését, unicitasat és stabilitasat.
A v egyensulyi vektor megoldasa a kovetkezd nemlinearis

egyenletrendszernek:

0= Z; [fc‘;(‘f)—fd-c (*I)] , AEA e m /5.1.2]
32

#



/5.1.2/-bB1l a (iv) feltétel és ¥ nemnegativitasa alapjan

=0 =» ‘Y&(.UI)":O = Zéfcé-(g_')—_-O = «?CJ(\I)=O, SL
/¥ J=0,4,<cm;

tehat, ha valamely kompartment egyensulyi helyzetben Ures,
akkor az Osszes feléje iranyuld be- és kiaramlasi sebesség
nulla. Mivel az egyensulyi helyzet nagyon kis perturbacidja
esetén az ilyen rekeszek iranyaban tOrténd aramlasok /az
egyensulyi helyzet stabilitasa ko&vetkeztében/ elhanyagolhato-
an kicsik, ezért e rekeszek gyakorlatilag elhagyhatdok a rend-
szerbol. Ennélfogva a tovabbiakban feltehetjik, hogy a vizs-
galt ido-invarians rendszer A egyensulyi helyzetére teljesiil
a r> 9
feltétel.

Egy radioaktiv nyomjelzdvel végzett kisérlet abban all,
hogy az iddskala t=0 pontjaban az egyensulyi rendszer {-edik
rekeszébe beadunk b& mennyiségi radioaktivan jelzett anyagot
/pl. injekcid formajaban; leggyakrabban csak egyetlen rekesz-
nél van /[pozitiv/ input/, majd alkalmas mérdeszkdzzel figyel-
jik a nyomjelzd mennyiségének idobeli valtozasat az egyes
rekeszekben.

A beadott nyomjelzOre vonatkozdan a kovetkezd feltevé-
seket tesszik:

(I) a nyomjelzd pillanatszeriien egyenletesen elkeveredik a
rekeszben levd jelzetlen anyaggal, és igy a kiadramléasnal
mindig olyan aranyban aramlik ki egy rekeszbol, mint amilyen

aranyban az illetd rekeszben jelen van;

wRIFEly
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(II) a beadott jelzett anyag mennyisége olyan kicsiny a bent
levd jelzetlen anyagéhoz képest, hogy a rendszer "észre sem
veszi", vagyis az egyensuly gyakorlatilag nem valtozik meg

(2{}; << Mmin W,

=4 1ciamn

Jeldlje a t iddpontban az 4-edik rekeszben levd jelzett
anyag mennyiségét X;(t), Mivel az 4-edik rekeszb8l a }—edik
felé a jelzetlen anyag kidramlasi sebessége (II) miatt gya-
korlatilag az egyensulyi f-cof) sebesség, és (I) alapjan a
nyomjelzd gyakorlatilag x&(t)/ux aranyban aramlik egyitt a
jelzetlen anyaggal, igy a nyomjelzd kilépési sebessége a

iddpillanatban az 4-edik rekeszbdl a j—edik felé

A ) ‘
XU‘&- )"h-‘.(‘f) = o‘a’d ﬁc(f) L=4'..."TL) a=0,4,...|n

1

ahol
Qo= -—3———-{ ()
v /5.1.3/

Tehat a nyomjelzd aramlasat jo kozelitéssel a kovetkezd se-

bességi egyenletek irjak le:

ii(’c)=—Z_uJL X (&) + Z aix; @) | £20,
|
o j*b /5.1.4]
X((O)zbc | [,-;4'...'%.

Az [/5.1.3/ relacidéval definidlt a;; &allanddkat relativ sebes-

ségi allanddknak vagy /frakciondlis/ transzportegylitthatodok-

nak nevezzik.

Bevezetve a transzportegylitthatdékbdl képzett A= (q%)nxn

matrixot, ahol



az [/5.1.4/ rendszer vektor-matrix-alakba irhaté:

x (€)= A x (&)
b

-

0
) €2 /5.1.5/

x (0)

/5.1.5/ linearis &llanddegyiitthatdés differencialegyenlet-
rendszer, melynek numerikus megoldasara felhaszné&lhatdk a
3. fejezetben targyalt eljaréasok.

A nyomjelzOk alkalmazaséanak id&-invarians, dinamikus
egyensulyban levd rekeszrendszerek vizsgalataban két szem-
pontbél is 6riasi jelentlsége van: (l) kiilondsebb /pl. mi-
téti/ beavatkozas nélkil megfigyelhetdvé valnak mas uton ne-
hezen vagy egyaltaldn nem megfigyelhetd folyamatok; (2) a meg-
figyelt nyomjelzb-aramlas az egyensulyi transzport egylitthatdk
segitségével megadott linedris allanddegyiitthatdés differen-
cidlegyenlet-renszerrel irhaté le, annak ellenére, hogy az
alapvetd transzportfolyamat altaldban ismeretlen nemlineéaris
természetii. A megfigyelési adatok alapjan lehetOség van az
egyensulyi transzportegyltthatdk becslésére, amelyek az or-
vos szamara diagnosztikus értékiliek lehetnek.

Megjegyezzik, hogy &ltaldban nem maguk az xifk) mennyi-

ségek mérhetdk, hanem a Zi(t)=r£x;aﬂ/ux un. specifikus

aktivitasok, melyek lényegében a jelzett anyagnak a jelzet-
len anyag egyensulyi mennyiségéhez viszonyitott koncentraci-
6i, szorozva az Y, fizikai konverzids faktorokkal, amelyek
a koncentracidérdl a radioaktivitasra vald atszamitas miatt

szerepelnek /[lasd [24], 4. o./.
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Példa: a kalium megoszlasa a sejtek és a plazma kozdtt

A fentiek illusztralasara megadunk egy, Jacquez koOnyvé-
bol /[24], 121. o./ vett példat, amely a k&lium egyensulyi meg-
oszlasanak vizsgalata K izotbép segitségével. A kalium egy
aktiv transzportfolyamat utjan éplil be az emberi vérbsvér-
sejtekbe, amely ezzel egylitt natriumot von el a sejtekbdl.

A transzportfolyamat nemlinearis, és energiaraforditast igé-
nyel a sejtektdl egy magas sejtkozi kaliumszint fenntartasa-
hoz.

Tegyiik fel, hogy a t=0 id&pillanatban egy kis € mennyi-
ségli jelzett kaliumot adunk a plazmaba A jelzett kalium el-
oszlasa az abran lathatd rekeszrendszerrel modellezhets:

€ mennyiségli input

a t=0 iddpillanatban

5.1.2. Abra. K izotdép eloszlasanak rekeszmodellje

A nyomjelz0 aramlasat leird6 differencialegyenletek:

X, (£) = —a,, X, () &+ a, %, &) x4 (0)=¢

)

%, ()

"

B, Rl o= B 2 (L) | x,(0)=0

= Al =



melyek megoldasa )
-t (o, ta,,
0, +0,, €
X (£)= ¢ —2_2 :
Qpz + Ogy

—t(Qs+034)
Xp(t)= g Qaa-Qu e T H

acz + Qg4

Mint mar emlitettiik, megfigyelni &altalaban csak a 2;H)

=vr % (t)/v, specifikus aktivitdsokat tudjuk, amelyek itt

P Q24 ‘t(°41*a24)
_ e
Z, ()=, E[:Va(“n“"au) ATy (Qu*'au)

Aq4 _t(on.“’azﬁ]
)= g — 224 [ _
Zz() 2€ vy (a,+ay,) 1-e

A 2Z,(+) fliggvény ismeretében egyértelmiien meghatarozha-
t6 (a,+a,,), (a,, /vy) és (a4/v,) /feltéve, hogy ¢ ¥, és T, is-
mertek/, amelyekbdl az &,, és Q,, transzportegylitthatdok ki-
szadmolhatok. Ha csak a zﬂ.)nggvényt ismerjik, akkor abbdl
csupan (Qn+az;) és (024/U1) hatarozhaté meg. Ha viszont mindkét
specifikus aktivitasi fliggvényt ismerjik, akkor az emlitet-
teken tul még a OQ/LQ) egyensulyil térfogatarany is megkapha-
td, amely az orvos szamara szintén fontos informacidét jelent-
het /pl. egy normalértéktdl vald lényeges eltérés valamilyen

rendellenesség jele lehet/.

Rekeszrendszerek paraméterbecslési feladata

A kompartment-analizis legfontosabb gyakorlati feladata

az un. inverz probléma [[24], 102. o./, amely alatt a rend-

szer ismeretlen paramétereinek meghatdrozasat /becslését/
értjik mérési adatok alapjan. A paraméterbecslési mddszerek

alkalmazasahoz feltessziik, hogy a keresett paraméterek iden-
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tifikalhatdak a megfigyelendd gbrbékbdl, azaz, ha e gdrbéket

pontosan ismernénk, ugy azok egyértelmiien meghataroznak a
keresett paramétereket. Az identifikalhatbésaghoz a szliksé-
ges, hogy a tekintett mérési fliggvény ténylegesen fliggjon az
Osszes keresett paramétertdl, ill. hogy paraméter-transzfor-
macidval ne legyen csokkenthetd a filiggvény paramétereinek
szama. Igy fenti példankban az ZZ(.) figgvénybdl a V, paramé-
ter nem identifikalhatd, mivel attdl Zz(.) nem figg; masrészt
az @, ,Q,, Vv, paraméterhdrmas sem identifik&lhatd beldle,
mert a 0,=tr,a,/[v,(a,+a, )] , ©,=0a,4+0,, paraméter-transz-
formacioéval a filiggvény a zz(€)=94[4—e—tez] kétparaméteres
alakra hozhato.

Egy kompartment-rendszer transzportegyltthatdi identi-
fikalhatdésaganak kérdése altalaban a rendszer strukturaja
/grafja/ és a mérési ill. input konfiguracidé alapjan mar a
megfigyelés eldtt elddnthetd. E problémanak mar eléggé kiter-
jedt irodalma van; a kérdés egy logikai megkdzelitése és re-
ferenciak talalhaték [22]-ben.

A gyakorlatban a paraméterek az identifikalhatdsagi fel-
tétel teljesiilése esetén sem azonosithatdok pontosan, mivel
egyrészt a matematikai modell sem felel meg szaz szazaléko-
san a tényleges bioldgiai folyamatnak, masrészt a mérés so-
ran elkovetett megfigyelési hibak is zajossa teszik az out-
put figgvényt. Ezen okok miatt csupan a paraméterek kdzelitd
értékeinek meghatarozasara, azaz paraméterbecslésre van le-
hetoségiink.

Az alkalmazasok soran egy vagy tobb iddfliggvényt figyel-

nek meg diszkrét iddpontokban, ahol a & -adik megfigyelési
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fliggvény, %h(t)' &ltaléban a rekeszekben levd x; () nyom-

jelzG-mennyiségek linedris kombinacidja:

Yp(£) =2 e x ) = ¢ 2@ =cy &M b L=h .. K

=A - - ) !

Mivel k&zvetleniil csak a Z,;(t) specifikus aktivitasok fi-
gyelhetdk meg, ezért g&'é—edik eleme tartalmazza az Y. [+,
tényezdt. Egy megfigyelés leggyakrabban egyetlen rekesz spe-
cifikus aktivitasanak mérését jelenti, é€s ilyenkor egy kivé-
telével Cg Osszes eleme nulla.

Tegylik most fel, hogy mind a Ce vektorok, mind az A mat-
rix tartalmaz ismeretlen paramétereket, és foglaljuk az Osz-
szes paramétert egy Q:(e,;)velR” paramétervektorba. A ¢,
vektorok paraméterei pl. a V. rekesztérfogatotk, az A matrix
paraméterei &ltaldban a nemzérus transzportegyitthatodk.
Legyen a Q paramétervektor keresett ["elméleti"/ értéke Q*
és tegyidk fel, hogy a.'h—adik'output figgvénynek a t;& ido-
pontban tOrténd mérésgkor Eﬁt hibat kovetink el, vagyis a

ténylegesen mért érték
~o * .
%JL=%Q({:JL'Q ) + Eé&. ) J=4‘~-~.M&_) Q'—“(,\..‘ K)

ahol

]
e-tA(,)E

Ya (£,8) = ¢ (8) /5.1.6/

Az ismeretlen Q*paraméter—érték csak pontos mérések,
azaz Edk=0 /ng&/ esetén lenne meghatarozhatd, egyébként

¥ -hoz, ha

——

csak egy é\ becslés adhatd ra, amely kdzel lesz
az ejh mérési hibak elég kicsik. A paraméterbecslés mddszerei-
vel a kOvetkezd pontban foglalkozunk, elbtte csupén két tech-

nikai szempontra térilink ki.
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A leghatékonyabb paraméterbecsld mddszerek /[’gradiens
tipusu’ mdédszerek/ alkalmazasa&hoz a megfigyelési fliggvénye-
ken kivil szilikség van ezek paraméterek szerinti parcialis
derivaltjainak kiszamitasadra is. Esetiinkben az /5.1.6/ out-

put fliggvény parcialis derivaltjai:

Vpls) | BL@) th®), , x

rae{:A(e)
b r=4.
096, 20,

ce

20y - )
Tehat a paraméterbecslési feladat megoldasahoz sziikség van
GXPGA(Q))\_D_ és parcialis derivaltjai szamitasara, ami megold-
hatd a 3. és 4. fejezetben targyalt mdédszerekkel.

A paraméterbecslési mbédszerek targyalasdhoz az egyszerd
ség kedvéért célszerl a mérési adatokat linedris sorozatba
rendezni. Legyen az Osszes mérési adat szamam, és ha az 4-
edik 1’5{=%&, akkor legyen a hozza tartozdé mérési hiba £,;=E,é~&
és a megfeleld output fliggvény pedig QL(Q)=4$&U%&'Q). Ezzel
a paraméterbecslési feladat az egyszeriibb g,;-.—.?c (9_)+E_A;’
t=4,...,m alak segitségével adhatd meg.

}

5.2. Nemlinearis paraméterbecslési mbédszerek

Tegylik fel, hogy bizonyos /bioldgiai, kémiai, stb./ in-
put-output rendszerek egy osztalya egy Qe@c TR,\’ paraméter-
vektorral jellemezhetd, és barmely input /pl. mérési konfigu-
raci6é, stb./ esetén ismerjlik egy ilyen rendszer valaszanak
fliggési médjat az inputtdl és a @ paramétervektor értékétdsl.
Legyen a megfigyelni kivant konkrét rendszerre a 8 paraméter
értéke 0 =0" és tartozzék m szamu kivalasztott input kdzil
az 4-edikhez az .e,"(Q*) output, ahol {,(.):® — R  ismert

paraméter-fliggvény [melyrdl feltessziik, hogy elegenden si-
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ma/. Végil tegyiik fel, hogy az ¢ -edik inputhoz tartozé va-
lasz megfigyelésekor €, mérési hibat kovetink el, és igy az

ei(Q“) outputok helyett az
gc =¥¢(9ﬁ) tEp, =4 m /5.2.1]

hibaval terhelt értékeket figyeljik meg.
A paraméterbecslési feladat abban &ll, hogy Q*ismeret—
A

len értékére minél jobb B becslést adjunk a mért g; adatok

és az ¥{(-) figgvények /a tovéabbiakban modell-fliggvények/

ismeretében. Ha az €, hibakrdél semmit sem tudunk, akkor
semmiféle é becslésrdl nem mondhatunk semmi érdemlegeset.
Egy é becslés josagat az €, hibak viszonylataban legszeren-
csésebben statisztikailag jellemezhetjiik; ehhez az g, hiba-
kat valdszinlségi valtozdknak tekintjlk és bizonyos feltevé-
seket teszlink ezek eloszlasara.

Gyakori feltevés, hogy az €, hibak figgetlenek, azonos
eloszlasuak és nulla varhatdo értékiek. Mivel mérési hibakrdl
van sz0, szokasos feltenni, hogy ez az eloszlas a normalis
eloszlas. Azonban radioaktiv méréseknél, ahol a mért érték a
belitésszam, jogosabb lehet annak feltételezése, hogy §¢
7\=£; (6") paraméteri Poisson-eloszlast kdvet. A tovabbiakban
csak e két eloszlasra leszlink klilonds tekintettel.

E pontban két paraméterbecslési eljarast ismertetiink:

a [sulyozott/ legkisebb négyzetek mddszerét és a maximum-
likelihood-mbédszert Poisson-eloszlas esetén. Mindkét mbdszer-
rel kapcsolatban kitérilink a é paraméterbecslések numerikus
meghatarozasara szolgdld eljarasokra is; de az utdbbiak ko-
zlil csak olyanokra szoritkozunk, melyeknél csak az els® par-

cialis derivallak kiszamitasa szlkséges.
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Legkisebb négyzetek mddszere

A nemlinedris filggvények paramétereinek becslésére leg-
gyakrabban alkalmazott eljaras a /sulyozott/ legkisebb négy-

A

zetek médszere, amely a 8 paraméterbecslést az

s(g)xiw‘.[«'gu—ﬁé(e)]z /5.2.2/

sulyozott négyzetdsszeg minimalizalésa utjén hatarozza meg.
Itt a b&lyo sulyok altalaban az g@ megfigyelések pontossagat,
megbizhatdésdgat reprezentdljak. Példaul ha az €, hibak Tffﬁg)
==G§ variancidja /[esetleg egy konstans szorzdtdl eltckintve/
ismert, akkor a W= sz sulyok alkalmazasa célszeri /'altala-
nositott legkisebb négyzetek mbédszere’/.

Statisztikai szempontbdl a legkisebb négyzetek mdédsze-
rérdl, mint paraméterbecslési mddszerrdl, a kovetkezdk mond-
haték el. Amennyiben az £, hibak figgetlen, nulla varhatd
értéki normalis eloszlasu valdésziniségi valtozdk, az altala-
nositott legkisebb négyzetek moédszere egybeesik a maximum-
likelihood;médszerrel [vé. [2], 63. o./; é&s ha még az azonos
hibavariancia feltétele is all, akkor mindkettd a "kdzOnsé-
ges" legkisebb négyzetek mddszerére [ahol W,.=1 V</ redukalé-
dik. Ilven esetekben tehat érvényesek a maximum-likelihood-
becslések kedvezd tulajdonsagai, azaz a becslés bizonyos vi-
szonylag enyvhe feltételek mellett konzisztens, aszimptotiku-
san hatdsos és aszimptotikusan normalis eloszléasu, tovabba,
ha létezik elégséges becslés, ugy az /az egyetlen/ maximum-
likelihood~becslés [ 2, 8].

Abban az esetben, ha a hibak normalitaséanak feltétele

nem teljesil, szintén érvényesek bizonyos aszimptotikus tu-
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lajdonsagok, melyeket pl. a [8] cikk foglal &ssze. Bebizonyi-
tottak, hogy ha az €; hibak korreldlatlanok, nulla varhatd
értékliek és azonos szdrasuak, akkor az 2&(.) fliggvényekre
vonatkozd regularitasi feltételek mellett a [/kdzdnséges/ leg-
kisebb négyzetek médszerével nyert é paraméterbecslés erdsen
konzisztens és aszimptotikusan normalis.

Sajnos a fentiekben felsorolt aszimptotikus tulajdonsa-
gok csak az m mintelemszam eléggé nagy értékeire vonatkozdan
mondanak valamit. A gyakorlati problémak nagy részében a mé-
rések szama altalaban elég kicsi, legtdbbszdr 10 és 40 kdzt
mozog. Ilyen kis mintak esetére a legkisebb négyzetes becs-
lések tulajdonsagai csak lineéris f&(Q) modell-fliggvényekre
ismertek [lasd a linearis regresszid jb6lismert Gauss-Markov-
féle elméletét; pl. [2], 58. o./.

Most ratériink a legkisebb négyzetek médszerének numeri-
kus megvalésitasaval kapcsolatos eljarasokra. Bar tdbbvalto-
z6s fliggvények minimalizalasara tobbféle mbédszer is ismeretes,
/5.2.2/ minimalizalasara azok az eljarasok a leghatékonyabbak,
amelyek figyelembe veszik az S(.) fiiggvény négyzetdsszeg-
-strukturajat L2]. E médszerek alapja a négyzetre emelendd
%C—ﬂﬂg)fﬁggvények linearizalasa az aktualis, mondjuk 4&-adik
kbzelités/@“ / k&ril. Ezaltal a minimalizalandd S(.) filigg-

vényt helyettesitjik Gauss-Newton-féle k&zelitésével:

Sp(0“+8)= 2= wi[y, - P.(6") - ‘_4 99 84: (0) 5] /5.2.3/

amely mar /a § novekményben/ linearis flggvények négyzetdsz-

szege. Vezessiik most be az alédbbi jel&léseket:

308, gom -2 g @) [ ]| iy,
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k >~ B
M a1 mm 2 B0 BREY, ¢yt

Ekkor az [/5.2.3/ kvadratikus figgvény minimumhelye
L -1
Y "'Wa T
alakban all eld, feltéve, hogy M&_ nemszingularis.

A klasszikus Gauss-Newton-féle iteracidés mbédszernél ki-

indulva egy kezdeti 6° k6zelitésbdl, minden ujabb kdzelitést

-

a K 'S e
e+4=e+§-

relacid alapjan szamitunk. Azonban az eljaras ilyen formaja-
ban nem mindig konvergens, még jo kezdOérték esetén sem [vO.
[34], 72. o./. A divergencia oka lehet az f;.() fliggvények
nagymértékl nemlinearitasa a é minimumhely k&rnyezetében,
vagy rossz illeszkedésiik a mérési adatokhoz /S (é) nagy/.

k
Ilyen esetben szokasos eljaras a é: korrekcids vektornak egy

olyan wke(0,4) relaxacids tényezdvel vald szorzasa, hogy a

helyen mar kisebb legyen S (.) értéke, mint Qh—ban. Mivel S(.)
negativ gradiense Qk—ban Zg_,"', és &‘ezzel bezart szoge q,h#:O
esetben hegyesszog /§&T%&= 3‘"1' M: %"‘70, mert M&. pozitiv defi-~-
nit/, igy 5(.) a Q_&' helyen lokéli;an cstkken a §& iranyban,
s ezért ilyen ), tényezd létezik. W, célszerl valasztasara
kiilénféle stratégiak ismertek /lasd pl. [2], 110. o./.

A relaxacidés Gauss-Newton-tipusu modszerekkel kapcsola-
tos £O probléma az Mk /pozitiv szemidefinit/ matrixok szin-

. . . B L
gularitasa 1il1l. kézel-szingularitasa. Ilyenkor a szamolt §
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korrekcidés vektor igen nagy hibat tartalmazhat, mivel gyen-
gén meghatarozott linedris egyenletrendszer megoldasabdl
szadrmazik. E nehézség athidalhatdé Levenberg-Marquardt-tipusu

médszerek alkalmazasaval, melyek altaléanos alakja

-4
ot -0  rwy [M+2 I1 g4 | k=01, ..

ahol lk alkalmas nemnegativ szam és wy € (0,1] relaxéciés té-
nyezd. Ha ﬁ&>0 akkor My +A, I mindig pozitiv definit /tehat
nemszingularis/, és elég nagy 7\b-ra nem gyengén meghataro-
zott. AL megvalasztasara szintén tobbféle stratégia létezik
/lasd pl. [13]/.

Az emlitett mbédszerekre az w, ill. a A, tényezdk alkal-
mas valasztasa esetén un. szemilokalis konvergenciatételek
mondhaték ki /lasd [42], 14.4 pont/. E tételek szerint, ha a
8° kezddértékhez tartozd {Qem" l S(8)e S(QO)}C ® szinthal-
maz kompakt és egyetlen é /lokalis/ minimumhelyet tartalmaz,
akkor az ¥¢(.) fliggvények /[kétszeri/ folytonos differencial-

A

hatdésaga esetén az iteracidé /[/elsd rendben/ konvergal a Q mi-

nimumhelyhez.A

Maximum-likelihood-mddszer Poisson-eloszlas esetén

Tegylk fel, hogy az gal...,g,, megfigyelések filiggetlen
Poisson-eloszldsu valdsziniiségi valtozék, rendre ¥4(g“|"w
¥M(Q*) varhatd értékkel, azaz

. ~peleh) LR Exd e,
Pla=t = 5 0 o

A
A @ maximum-likelihood-becslést az alabbi likelihood-fiigg-

vény maximalizadlasaval nyerjik:
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L (e l"}) = ﬁ— [exP (-4:(2)) [%;(9)]%/(5;'.)]
"—i‘f‘ EXP(—&Z:[L(Q)—EL-%h(@)]> /5.2.4]

A maximum-likelihood-becslések statisztikai tulajdonsa-
gait a legkisebb négyzetek mddszerével kapcsolatban mar em-
litettik, és most mar csak é numerikus meghatarozasanak kér-
désével foglalkozunk.

Vilagos, hogy /5.2.4/ maximalizalasa ekvivalens a k&-

vetkezd ¢(-) figgvény minimalizalasaval:

d(e)= 2 (@) -4 e (@)

¢(.) negativ gradiense a 9k helyen k =(%@ )y, ahol

- 2 [ L AC )-—-2[&(9*)} (G- fe(6] ()

Lathaté, hogy ¢(.) negativ gradiense a Qk helyen forma-
ilag megegyezik az [/5.2.2/-vel definialt S(.) négyzetdsszeg

negativ gradiensével abban az esetben, ha a W; sulyokat a

e = LR =1 m /5.2.5]

! )

relacidéval definidljuk /és ro&gzitettnek tekintjlk derivalas-
nal/. E felismerés, amely Jennrich és Moore eredménye [26],
lehetdvé teszi a legkisebb négyzetes nemlinedris paraméter-
becsld programok felhaszndlasat a maximum-likelihood-becslés
meghatarozasara; csupan annyit kell tennlink, hogy minden
egyes ujabb Qk kozelités meghatarozasa utan [/5.2.5/ szerint
ujradefinialjuk a w, sulyokat. Ezen szukcesszive médositott
sulyozas alkalmazasaval a Gauss-Newton-tipusu mdédszerek min-

dig lejtOmoédszerbe mennek at.
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A paraméterbecslés pontossaga és az illeszkedés jdsaga

A\
Az iter&cids eljarassal nyert 8 paraméterbecslés megha-

tdrozasa utan felmeril a kérdés, hogy mennyire jol illeszked-
nek a becsiilt §,(8) output értékek az %& mérési adatokhoz
ill., hogy mennyire megbizhatdak, pontosak a szamolt paramé-
terek. Sajnos e kérdésekre nem adhatunk kielégitd valaszt,
mivel a nemlinedris regresszids modellek statisztikai elméle-
te e téren jelenleg még nem kidolgozott. Bizonyos kvantita-
tiv mérSszamok megadhatdk, de ezek csak kelld dvatossaggal
veenddk figyelembe.

A paraméterbecslés pontossagara vonatkozbdan kovetett
eljaras: az £&(.) figgvények linearizalasa a szamolt é para-
méterbecslés koril, majd a kapott linearizalt modell alapjan
a linearis regresszidn&l szokasos statisztikai vizsgalatok
elvégzése [pl. é becsilt kovariancia- ill. korrelacidmatrixa-
nak megadasa, ennek fdOkomponens-analizise, konfidenciatarto-
manyok és hipotézisvizsgalat az egyes paraméterekre ill. a
teljes paramétervektorra/. A linearizalt modellel vald koze-
lités megbizhatdosagat két, egymassal Osszefliggd tényezd is
ronthatja: ha é nincs elég kézel a valddi B értékhez ill.,
ha az §:(.) figgvények erdsen nemlinedrisak B* kdrnyezetében.
Ezért a linearizalas utjan nyert eredmények gyakran csak
durva kozelitésnek tekinthetdk.

A modell-filiggvények illeszkedésének joésagat két szem-
pontbdl is jellemezhetjik. Az egyik szempont, hogy mennyire
vannak koézel az illesztett £é(é) fliggvényértékek az ﬁc mé-~
rési adatokhoz, azaz, hogy mennyire kicsik az V}==i}ia¥;(é)

rezidualok. E kdzelség kvantitative jellemezhetd példaul az
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€. hibak becstlt szorasaval [abszolut mérdszam/, vagy kiilonfé-
le korrelacids tipusu mutatdkkal /relativ mérGszamok/; egyéb
mérdszamok taldlhatdk [13]-ban.

Amennyiben az /5.2.1/ regresszids modellben az £, hibak
fliggetlen N(Olb") valdésziniiségi valtozék, és a @'—‘:9“ kbzeli-
tés elég jo, akkor az T, rezidudloknak véletlenszeriien kell
ingadozniuk a nulla kdril. Ha ez az ingadozas szisztematikus,
pl. valamilyen gorbe alakjat koveti, akkor az £¢(.) modell-
fliggvények hibas specifikacidéjara gyanakodhatunk. A rezidu-
alokban levd szisztematikus tendencia, trend jelenléte jol

jellemezhetd a rezidu&lokbdl szamolt sorozatkorreldcids

egyilitthatd segitségével [13]. A rezidualok eldjelei sorozata-

nak véletlenszerlisége a run-szam-prdba segitségével ellend-

rizhetd /[81, 201. o./. Annak tesztelésére, hogy valéban az
adott ££(') figgvényekkel érvényes-e az [5.2.1/ regresszids
modell, jelenleg még nem ismert elméleti szempontbdol adekvat

eljaras.

5.3. Matrix-exponencialis médszerek kompartment-rendszerre

torténd alkalmazasanak specialis szempontjail

Bizonyos matrix-exponencialis moédszerek linedris kom-
partment-rendszerre valdé alkalmazasanal jol kihasznélhatodk

az ilyen rendszerek egylitthatématrixai, az un. Kompartment-

matrixok specialis tulajdonsagai. Igy példaul megmutatjuk,
hogy a Taylor-sor és a négyzetelés mddszerénél a kerekitési
hibak terjedését eldsegitd bizonyos tényezdk nincsenek jelen

ill. konnyen kikiszob&lhetdk. Ehhez el8szOr megvizsgaljuk,
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hogy milyen tulajdonsagokkal rendelkezik egy kompartment-

matrix és exponencialisa.

Kompartment-matrixok tulajdonséagai

Emlékeztetiink arra, hogy egy kompartment-matrix egy

nxn - . . .. o
Q‘R,x matrix, melynek elmei a kdvetkezO

olyan A= (a".()‘ )mxn

Osszefliggéseknek tesznek eleget:

Lty g=4,...m /5.3.1/

/ahol az a”j szamok maguk nem matrixelemek, csupan aﬁé defi-
nicidéjaban szerepelnek/.

Tehat az A kompartment-matrix egy un. lényegében nemne-
gativ matrix [[5], 146. o./, mivel f£8atlén kiviili elemei nem-
negativok. Egy ilyen matrix spektrum-eltoldssal nemnegativ

matrixba vihetd at:

Y = mox ('“JJ) = A+AI1>0 /5.3.2/

4‘_-J'e’f\.

Ebbdl kdzvetleniil kévetkezik, hogy exP({A) nemnegativ t%0 -ra:
t
e-tAae_}‘ch-o’L.‘ (A'*‘kl) >/O . /5.3.3]/

Tovabba, ha A irreducibilis, akkor /és csak akkor/ ¢>0-ra
exp(€A)>O /elemenként/ is érvényes /[[5], [3.11/ tétel/.

A Gersgorin-tétel [[417], 289. o./ segitségével kodnnyen
belathatdé, hogy egy kompartment-matrix barmely sajatértéke
vagy negativ valds részi, vagy nulla. Ugyanis az AT matrixhoz

tartozd Gersgorin-kdrdk vagy teljesen a képzetes tengelytdl
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balra helyezkednek el, vagy /ha 3§' a°J=(>/ balrdél érintik

a képzetes tengelyt az origodban, mivel kozéppontjuk a“;:-jz:a%’
LCO

v#y
sugaruk pedig ZZ'QJ Ebb31l kdvetkezik, hogy egy nemszingula-
t#‘J
ris kompartment-matrix mindig stabil tipusu /o (A)< 0/.

A szingularitds kompartment-matrixoknal bizonyos érte-
lemben "természetes" mdédon léphet fel. Ha példaul az A kom-
partment-matrix zart, azaz az Osszes kdrnyezetbe vald kiaram-
lasi transzportegylitthatd zérus/c%5=0,}=4,...,m,/, akkor
szingularis, mivel sorvektorainak Osszege a zérus sorvektor.
S0t az is nyilvanvald, hogy zart kompartment-madtrix nulla
sajatértékéhez tartozé baloldali sajatvektora az 1=[4r-w4jr
Osszegzd vektor:

T T
a°J=O'J=4|..."n ‘=@ /1 A"':O'l /5.3.4/

A kovetkezd lemma kompartment-matrixok spektrélis absz-
cisszajan fontos tulajdonsagait adja meg.

5.3.1. Lemma. Egy A kompartment-matrixnak d(A)mindig egyet-

len /bar nem feltétlenilil egyszeres/ maximalis valds részii

sajatértéke, és érvényes ra a kdvetkezd becslés:

wun (-ao ) £ o« (A) « max ("%3) /5.3.5/
4$J‘sh 443(41,

Ha A-rdl még azt is feltessziik, hogy irreducibilis,
akkor d(A)egyszeres sajatérték, és léteznek hozzad csu-
pa pozitiv elemet tartalmazd bal- és jobboldali sajat-
vektorok, tovabba /5.3.5/ két egyenldtlensége koziil bar-

melyikben csak akkor érvényes egyenléség, ha 0g=...=Qgm .

Bizonyitds: El8szdr tegyilik fel, hogy A irreducibilis. Ekkor

az /5.3.2/-vel definialt A+AIl nemnegativ elemli matrix is ir-
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reducibilis, és igy Frobenius tétele /[451, 524. o./ alapjén
P(A+RI) egyszeres sajatértéke, pozitiv elemii bal- és jobbol-
dali sajatvektorokkal. Nyilvanvald, hogy o (A) =« (A*?\I) -A=
9(A+AI)-R, igy u(A) egyetlen és egyszeres maximalis valods

részii sajatértéke A-nak. Ezenkivil a [45] k6nyv 9.1.5. téte-

1ébd1 kovetkezik, hogy
mon (Za +;\) < P(A+;I‘) Z rw\ax (Zapa‘ +A.))
¢ fgem

deyan i=
ahol barmelyik egyenlOtlenségben egyenl&ség csak akkor lehet
érvényes, ha az alsd és fels® korlat egybeesik. Az eldzbek-
b1l lathatd, hogy A levonasaval az utdbbi egyenldtlenség épp
/5.3.5/-be megy at. Mivel A és A+Al sajatvektorai megegyez-—
nek, igy a lemma allitaséat irreducibilis matrixra belattuk.
Ha A nem irreducibilis, 9(A+A1)tovébbra is sajatértéke
(A+A1)-nek /L4511, 9.2.1. ttel/, és nyilvan nem lehet ettdl
eltérd, P(A+XI) valés részii sajatértéke. EbbSl ismét  (A)=
P(A+AI)—A alapjan kapjuk, hogy x (AY A-nak egyetlen maximé—
lis valds részli sajatértéke. [/5.3.5/ igazolasahoz képezzik

C (€
A&)

A-bél azt az = lay Ymym kompartment matrixot, melyben

¢ S
az a%) transzportegyitthatdot az a?)"-a + ¢ egyenldséggel
3 Pl

)
definialjuk /a#*/ , ahol €& >0 . Ekkor A®) irreducibilis /mi-
vel f0atldén kivili elemei pozitivok/, tehat M(AQ)) ~-ra ér-
vényes az /5.3.5/ alaku becslés. Ebbdl £€-50 hataratmenettel
adédik /5.3.5/, tekintettel a sajatértékeknek a matrixelemek-
t6l, ill. a spektralis abszcisszanak a sajatértékektdl vald
folytonos fliggésére. O

Kdnnyen lathatd, hogy az [/5.3.5/-ben szerepld felsd kor-

14t éppen az A kompartment-matrix Q—norméhoz tartozdé loga-
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ritmikus normaja:

}L,(A)=;vzfz>:(-%})= ‘,"Z;*Z;q"é /5.3.6/

Tehat a fﬂ(A) logaritmikus norma mindig nempozitiv, és csak

akkor negativ, ha ao‘}->0, J: ... m

matrix diagondlisan dominans.

y amikor is a kompartment-
A logaritmikus norma nempozitivitasa a 2.1.1. kdvetkez-

mény szerint maga utan vonja, hogy kompartment-matrix esetén
tA
0<tes —> “35‘\“441‘63 <. /5.3.7/

/5.3.5/ alapjan egyszeri becslés adhatd egy kompartment-

matrix logaritmikus inefficienciajara /eq—norma mellett/:

0, (A) = py(A) —et(A) £ mMax Gop - min G /5.3.8/

4éJ'£-'n. 4‘:J'£'V\

Az 5.3.1. lemma értelmében egy irreducibilis kompartment-mat-
rix qq(A) logaritmikus inefficienciaja akkor és csak akkor

nulla, ha minden Q,. kifolyasi transzportegylitthaté egyenld.

¢
Tovabba egy szingularis kompartment- matrixra &(A)é/h(A)ﬁo
miatt /t%»0-ra/

((A)=0 => m(A)=q (R)=0 & el =4 . .

Ha A reducibilis, akkor o(A) lehet t8bbszdrds sajatér-
ték is. ®(A)=0 esetben exp(tA) korlatossagabsél [lasd /5.3.7//
kovetkezik [lasd [41], 402. o./, hogy egy tO8bbszdrds nulla
sajatérték nem lehet defektiv. ®(A)<¢0 esetben viszont el&for-
dulhat, hogy o(A) defektiv sajatérték, mint azt a kdvetke-

z0 példa mutatja:
-2 A
A"[o —Z]
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A nulla sajatérték multiplicitasa Foster és Jacquez alabbi
eredménye alapjan egyértelmiien meghatarozhatdé a kompartment-
matrix strukturdja [grafja/ alapijan.

5.3.2. Lemma [17]. Legyen az A kompartment-médtrixnak a nulla

Y -sz6rds /v% 0/ sajatértéke. Ekkor A egy alkalmas P per-
mutacidématrixszal elvégzett hasonldosagi transzformlcio-

val a kovetkezd reducibilitiasi normalalakra hozhatd:

ey

.ol o
/'i 1= P"‘A‘P — AOM, ce Aolu 7 - - /5.3.10/
' A“H,a(,; AdM,u-M O
: : ! . A R-vid, fe-vea

| .
I -
A - - Aga O Ae

ahol 0cou<hen; 45}50!. esetén van olyan {vd’ , hogy AQ-#o’

és a f6atld mentén elhelyezkedd AM TR AM:, négyzetes
blokkok irreducibilis kompartment-matrixok, melyek ko-
zUl A,}'J. pontosan akkor zart kompartment-matrix, hogyha
&-va—déd'é@z. Tovabba sziikségképpen teljesiil &-vza.

/A particionalas ugy értendd, hogy d=0 esetben csak a

jobb alsdé blokk-diagonalis rész szerepel./

Bizonyitas. Lasd [17]-ben. Kiegészitésiil csak azt jegyezziik

meg, hogy [17]-ben az Ac{M,u+4;---; At-v,t-v /oszlopok szerint/
izolalt blokkokat [melyek alatt és felett csupa O blokk szere-
pel/ nem kiildnitették el. /Lasd a [451 kényv 9.2. pontjat,
amely sorok szerint izolalt blokkokkal definidlja egy reduci-
bilis matrix normalalakjat/. O

Megjegyzés. Ha A irreducibilis, akkor «=0, k=4, &5 a

reducibilitasi normalak egyetlen blokkja lehet maga az A mat-

rix [ha P=I /.
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A reducibilitasi normalalak segitségével [/5.3.7/-nél
élesebb eredmény bizonyithatd egy kompartment-matrix exponen-
cialisanak 24 -normajara.

5.3.3. Lemma. Legyen A kompartment-matrix. Akkor

(1) «(A)=0 esetén t%0 => llexp(tAl,=4;
(11) % (A)<0 esetén 5»t>0 _-—?9llg;P(sA)“‘(“exp({A)“‘<4‘

Bizonyitds. (I): lasd [/5.3.9/-et, (II): Mivel az Q,, -norma

permutaciéra nézve invarians, igy llexp(tA)ll, =llexp (e'A)ll,‘,
ahol A az /5.3.7/ reducibilitasi normalalak matrixa, és of(A)¢
0 miatt v=0. Tudjuk, hogy llexp(fA)\\,‘ﬁZ‘&’;Zg“) ahol Ze(f)”‘
T N ~ . p .
1 exp({A)ge (>,O). Legyen g,_c:-.:(qo;_)n) gozz’pg_‘):(o.og)% és parti-
cionaljuk az 'G:L_'o vektort ugyanugy, mint A -ot [/5.3.10/-ben:
@:: 6._::-“..., é{k]. Tegyik fel, hogy A l-edik oszlopa az Aéj £6-
atlomenti blokkot metszi, mégpedig annak 1 -edik oszlopéaban.
mivel exp(tA)»0, &s exp(tA) j-edik £Gatlémenti blokkja

exp (t A&‘&’), igy

: ~ A 1 tA =T otA)
Ze(t)=1TAe €g=-9c& €4 -2; ¢ “e. /5.3.11/

Mivel Add- irreducibilis kompartment-matrix, igy t>0 -ra
EXP({:AJJhO/elemenként/; tovabba mivel Aéé nem zart, igy az Qa,:
ben szerepld kiaramlasi transzportegylitthatdk valamelyike ha-
tarozottan pozitiv. E két utdébbi ténybdl [5.3.11/ alapjan ko-
vetkezik, hogy t»0 -ra }_:2({-)< 0, tehat 22(.) szigoruan mono-
ton csdkkend [0,) -en /1¢€¢ m/. E monotonitas a RY Zy()
fliggvényre is igaz, ami maga utan vonja (II) érvényességét. O
Végilil megemlitjiik, hogy bizonyos strukturdlis feltéte-
lek mellett garantadlhatdé, hogy egy kompartment-matrix sajat-~
értékei valésak legyenek. Hearon bebizonyitotta  [23], hogy ha

egy A kompartment-matrix eldjel-szimmetrikus, azaz
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OL;J>O (:)0.0-90, Ay=4 M, és kdrmentes, azaz nincs olyan, {33

kiilénbozd indexbdl allé i,r..,éc sorozat, hogy az aﬁ{il'”’

a matrix-elemek mindegyike pozitiv, akkor A diago-

{0 iy ) Py
nalis— hasonld egy szimmetrikus matrixhoz, és ennélfogva nem-
defektiv és sajatértékei valésak. Mivel A sajatértékeinek
Osszessége megegyezik reducibilitasi normalalakijiban szerepld
AM,-'-: A&& blokkjai sajatértékeinek Osszességével, igy az
5.3.2. lemma alapjan belathaté, hogy ha az eldjel-szimmetria
feltételét elhagyjuk, akkor is valdsak lesznek a sajatérté-
kek. [Ugyanis k&rmentes esetben az AJJ diagondlis-menti blok-
kok irreducibilitdsa maga utan vonja azok eldjel-szimmetria-
jat./ Az utdbbi eredményt Smith és Mohler [47] bizonyitotta
be mads uton. Azonban az eldjel-szimmetria feltételének elha-
gyasa esetén mar nem garantalhatd A nemdefektivitasa. Viszont
akar eldjel-szimmetrikus a matrix, akar nem, mindkét esetben
lehet k&zel-defektiv, ami a sajatértékprobléma megoldasénal

majdnem ugyanolyan kellemetlen, mint ha defektiv volna.

exp(tA) és exp(lA) b kiszamitdsa kompartment-matrix

esetén

Mieldtt az egyes mddszerekre ratérnénk, megemlitjik azt
az érdekes tényt, hogy szingularis kompartment-matrix 24—nor—
mahoz tartozd exponencidlis kondicids szama mindig optimalis.
Ugyanis a 2.2.1. kdvetkezmény, a 2.2.3. tétel és [5.3.9/
alapjan

«£L(A)=0 = v1(A|t)=%"A”4 ) t20. /5.3.12/

Sajnos ®(A)<0 esetben ez altalédban nem all fenn, st v (k%)
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nagysagrendje nagy t-re 0 (t)-nél nagyobb is lehet /[amikor az

o (A) sajatérték defektiv/.

a) Taylor-sor-médszer. Mint azt a 3.1. pontban emlitettiik,

a Taylor-sor-mdédszerben komoly jegyveszteség léphet fel el-
lenkez6 el&jeli szamok &sszeadasanal. E probléma kompartment-
matrixoknal kiklisztbbdlhetd, ha elvégezziik az [/5.3.2/ képlet
szerinti A—=>A+AIl spektrumeltolast, amellyel egy nemnegativ

elemi A+Al matrixhoz jutunk. Q%P(¥Aﬂ kézelitése ezutan az
N
tA -t 1t b
e xe &Z-ﬁ(AW\I) /5.3.13/
=0

képlet szerint tdrténhet, ahol N értéke a pontossagi krité-
riumtél fiigg.

Az [5.3.13/ jobboldalan szerepld Osszeg tagjainak ill.
részletdsszegeinek szamitadsa soran mindvégig nemnegativ sza-
mokon végzilink szorzasokat és Osszeaddsokat, és ez a jegyvesz-
teséget igen nagy mértékben csokkenti. Ugyanis a szamoléas
kOzben elkdvetett kerekitési hibak relative kicsik az aktua-
lis részeredményekhez viszonyitva, és még kisebbek a végered-
ményhez viszonyitva, mivel a nemnegativ tagok hozzaadasaval
a matrix-részletdsszeg-sorozat elemenként nemcsdkkend.

Latjuk tehat, hogy kompartment-matrixokndl az [/5.3.13/
képlet szerint alkalmazott Taylor-sor-médszer pontossagi
szempontbdl kedvezd tulajdonsagokkal bir. Tovabbra is hat-
rany azonban, hogy lltAll»4 esetén a Taylor-sor konvergenciéa-
janak lassusaga miatt tul sok miiveletet igényel. Ezért ilyen-

kor a mdédszert a négyzeteléssel célszery kombindlni.
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b) Négyzetelés mbédszere. E moédszernél e“A egy /pl. Taylor-

soros moédszerrel szamolt/ kbzelitésébdl indulunk ki, ahol
R=2™t &s teljesiil pl. e All,e4; majd szukcessziv négyzete-
léssel kapjuk az explt; A) matrixok kézelitéseit, ahol t;=
mef=2ih. Mivel egy kompartment-matrix exponencialisa min-
dig nemnegativ, igy itt minden mdédositas nélkilil biztositott
a szamitasokban részt vevd EXPGQA) matrixok nemnegativitasa.
Igy a Taylor-sor-mddszerel kapcsolatban mar emlitett okok
miatt a kerekitési hibak hatasa relative igen kicsiny lesz,
ami biztositja a mddszer numerikus stabilitasat.

Hogy utobbi allitasunkat méginkabb alatamasszuk, megem-
litjik, hogy mivel kompartment-matrix esetén uexp(tA)H4 t-
ben vagy allanddé /ha A szinguléaris/, vagy monoton cs&kkend /[ha
A:étabil; lasd az 5.3.3. lemmat/, igy a 3.1l. pontban emli-
tett pup-jelenség itt nem léphet fel. Ezenkivil, szinguléaris
kompartment-matrix esetén exp(ﬁA)'ftedik hatvanyanak cxp(&A)
O0roklott relativ hibéaira vald érzékenysége 24—norméban mini-
maélis, hasonldéan a normalis matrixok és ez—norma esetéhexz.
Ugyanis, ha A szingularis kompartment-matrix, akkor exp(&A)
hatvanyozasra vonatkozb /94—norméhoz tartozd/ kondicids szama-

ra (3.1.12/ és [5.3.8-9/ alapjan azt kapjuk, hogy

«(A)=0 = N,(eb® 2m)=2" /5.3.14/

Osszefoglalva megéallapithatjuk, hogy a négyzeteléssel
kombinalt spektrum-eltolasos Taylor-sor-mdédszer mind haté-
konysag /miiveletigény/, mind pontossag szempontjabél igen al-
kalmas kompartment-matrixok exponencidlisanak meghatarozasa-
ra. Amennyiben csak exp(tA)@ kiszamitdsara van sziikség, az

O(n3) miveletigény /barmely t-re/ miatt a mdédszer nem haté-
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kony, kivéve a t=4,2h,... ekvidisztans pontsorozat esetét,
amikor a miiveletigény exp (AA) meghatarozdsa utdn mar DCn")-

re redukalddik.

cy Spektralfelbontads mdodszere. E mdédszer kompartment-mat-

rixra torténd alkalmazasaval kapcsolatban megemlithetd, hogy
a nulla sajatérték sohasem lehet defektiv, bar a t&bbi sajat-
értékek azok lehetnek. Ezenkivil semmi sem biztositja, hogy
egy kompartment-matrix ne legyen k&zel-defektiv, illetve,
hogy Jordan-kondicids szama ne legyen nagy.

Ha exp(tA)b kiszamitasa a célunk, akkor csak a médszer
elBkészitt szakasza igényel O(m3) szamu miiveletet. E szakasz-
miiveletigénye esetenként lényegesen redukalhatd a matrix re-
ducibilitasi normalalakjanak figyelembe vételével. Ugyanis
exp(éA)zpexPCtK)P'g ahol K /5.3.10/ szerint adott; és K
spektralfelbontasanak QR-algoritmussal vald meghatarozasanal
elég csupan a foatldémenti A&} blokkokra elvégezni a QR-ite-
raciot, mert ha meghataroztuk ezek A&==QJL@3Q; Schur-fel-
bontasat, ahol @ unitér és LJ} alsé triangularis, akkor

(g

A alsdé Schur-alakja:

H

Q,‘ L"Q . O O Q‘\. O
~ k O Lza . L Q
B o= Q, g vy v
Gv§.4 : : L\H-‘l‘v'H O Qv;q
O ‘ : sk . O ‘a
Q;,_J _Lm...Lw O Lk.!o_J i k|
ahol a f6atlo alatti Lc} blokkok mar egyszerii matrixszorzas-

sal megkaphatok:

|

Az “'

R v
Ld&'—:—Q": AA_JQ‘} ) 1.>&.

= [L23

o

matrixok foatloelemei adjak A sajatértékeit, a sajat-



vektorok pedig a szokasos mdédon, inverz iteracidéval vagy egy-
szeriyen haromszdgmatrixu egyenletrendszerek megoldasaval kap-
hatdék meg. [Megjegyezziik, hogy az elterjedt szamitdgépi prog-
ramok [lasd pl. [54])~ben/ altalaban felsd Hessenberg- és fel-
sO© haromszogmatrixokkal dolgoznak; ilyenek alkalmazasahoz ﬂ
transzponaltja vehetd, vagy definidlhatunk egy felsd reduci-
bilitasi normalalakot./

Amennyiben az A kompartment-matrixnak a nulla VY ~szdrds
/v>0/ sajééértéke, az A matrix A&N+MLNH)"') A,, Dblokkjai-
ra - melyek egyszeres nulla sajatértékkel rendelkezd zart
kompartment-matrixok - meggyorsithatdé a spektralfelbontas,
ugyanis a kovetkezd lemma alapjan a nulla sajatérték egyet-

len elemi Householder-transzformacidval levalaszthatd.

5.3.4. Lemma. Legyen AE€ IRmmzért kompartment-matrix. Legyen

Q=1 -z us, wsire 44

Akkor Q ortogonalis és Q'AQ elsd sora zérus.

Bizonyitads. Az, hogy (@ /szimmetrikus/ ortogonalis matrix,

kévetkezik abbél, hogy @ elemi Householder-transzformacids

matrix /lasd pl. [39], 86. o./, mivel I-2ww' alakba irhatd,

-1 - -
ahol W:=(2n+2Vn) b y_, és WTw =4, Tovabba,
TOTe T A (msA) (el 44T )= =4 47
§4Q & 'nwii(“ ) = ") W =

és mivel '1 az A matrix nulla sajatértékéhez tartozd balolda-

1i sajatvektora [lasd /5.3.4//, igy
T AAQ=-LATAQ =0T,
-1 ViR - }

amivel az allitést igazoltuk. O
A lemmadban megadott elemi Householder-transzformaciodt

e

elvégezve A A‘” (J'ﬂvv) blokkjaira, a kapott almatrixoknak
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mar csak a jobb alsd részét képezd eggyel kisebb rendd blokk-
jat kell alsé haromszdg alakura transzformdlni a QR-algorit-
mus segitségével.

Megemlitjiik még, hogy az A=VAV™ spektralfelbontis meg-
hatarozdsa utén az exp ({73«')=Vexp(tJ\«) V' nmatrixszorzat kisza-
mitasakor is csdkkenthetd a miveletigény a reducibilitési

struktura figyelembe vételével.

d) Minimalpolinom-médszer. Ennél a mdédszernél a Taylor-sor-

médszerhez hasonldan csdkkenthetd a kerekitési hiba az
/5.3.2./ spektrum-eltolas segitségével, ha A helyett az A+ATl
matrix b vektorhoz tartozé Kriilov-sorozatat képezzik és ez~
zel szamolunk tovabb. Itt a é vektor fizikai jelentése [kezde-
ti anyagmennyiség az egyes kompartmentekben/ miatt nemnega-
tiv, és ezt a nemnegativ A+Al matrixszal szorozgatjuk. Ha
meghatdroztuk exp (¢ [A+7\1])b—t, akkor ebbdl x{t)=exptAlb a2

- A+AL)
e e)'ef( M

—-—

X (£)=

képlet szerint kaphatd meg.

exp(tA) és exp(tA)b paraméterek szerinti derivalt-

jainak szamitasa

A paraméterek szerinti parciédlis derivaltak vonatkozaséa-
ban sajnos nem haszndlhatdé ki az, hogy A kompartment-matrix,
mivel az érzékenységi egyenlettel kiegészitett [4.3.1/ rend-
szer matrixa mar nem kompartment-matrix. Azonban altalaban
lehet8ség van a miveletek szamanak lényeges csOkkentésére,
ha figyelembe vessziik a 3A/39r parcidlis derivalt matrixok
ritka voltat. Ugyanis linearis kompartment-rendszer esetén

a Gr paraméterek altaldban maguk a /nemzérus/ transzport-
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tehat 3/\/99, altalaban csak egy vagy két nemnulla elemet tar-
talmaz. Fnnélfogva a 91‘/99y matrixnak egy vektorral valéd
szorzasanal a miveletszam O(m*) -r51 O (4) -re csdkkenthetd.
Tehdt a DA/90 parcialis derivaltakkal kapcsolatos szamit&-
sok miiveletigénye két nagysagrenddel csdkken, ha figyelembe

vesszlk a parcialis derivalt matrixok ritkasagat.

5.4. Példa a minimalpolinom-moédszer alkalmazasara

Befejezéslil illusztracid gyanant bemutatjuk az altalunk
kifejlesztett minimalpolinom-médszer alkalmazasat egy egysze-
ri numerikus példan.

Tekintslik az 5.4.1. abran lathatd, négy rekeszbdl a1l
kompartment-rendszert. Tegyiik fel, hogy a rekeszek kezdetben
liresek, és a t=0 id6pontban impulzusszeriien egységnyi mennyi-
ségli anyagot adunk be a masodik rekeszbe. Ekkor a rekeszek-
ben levd anyagmennyiségek valtozasat a kovetkezd differenci-

dle-egyenlet-rendszerrel irhatjuk le:

r).(d &) | - 6, 6 0 0 x, (t)

X, (4) 0 -6-6 B, 0, | [x®

x,) | | 0 0 -B-8 0 3 (&)

. /5.4.1/
%, (&) 6, 6, 6, -6-6_| |x®
R 73 h b 2 51 _
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ahol a kezdeti feltétel

.’.(.(o)=.b.=[0|4| OlO]T.

/5.4.2/

5.4.1. Abra. Egy négyrekeszes kompartment-rendszer

a t=0 idbpillanatban a 2. rekeszbe

beadott egységnyi inputtal

A fenti kezdetiérték-problémat a paramétervektor 8, =
[3, 4, 9, 3, 1, 5, 217 értéke mellett oldottuk meg a t= 04,02,
.,6 ekvidisztans pontsorozaton a minimélpolinom-médszernek a
mellékletben talalhatd programja segitségével. A b kezdeti
vektorhoz tartozd minimalpolinom harmadfoku:

Pa (A)=A>+ 200%+ 1% A + 54

A megoldasok grafikonja az 5.4.2. abrén lathaté, x5(.)
kivételével, amely azonosan nulla /ami természetes a rend-

szer struktuaja alapjan, hiszen a 3. rekeszbe sohasem keriil

~ . LZ27 =



5.4.2.Abra. Az /5.4.1-2/ kezdetiérték-probléma
megoldédsainak grafikonja /x350/

2



anyag/. A program altal szamolt értékek a mellékletben csa-
tolt szamitdégépi listan talalhatodk.

Ezutan a minimalpolinom-mdédszerrel megoldottuk az
/5.4.1/ rendszerhez tartozd érzékenységi egyenleteket is,
ugyanazon paraméter-érték mellett és ugyanazon a pontsoroza-
ton. A rendszer matrixanak minimalpolinomat a matrix-Krilov-
médszerrel [lasd a 4.3. pontban/ hataroztuk meg, és ez egybe-

esett a karakterisztikus polinommél:

Py (A)= A+ 2402+ 254X+ 833 A+ 338 .

Az érzékenységi fliggvények szamolt értékeit a melléklet-
ben talalhatd output lista tartalmazza, grafikonjaik pedig
az 5.4.3. abran lathaték, kivéve X4(.) parcialis derivaltja-
it, wvalamint a 86 és 94 paraméterekre vonatkozd parcialis
derivaltakat, amelyek ismét azonosan nullak.

Megemlitjik még, hogy az [5.4.1/ rendszer matrixa nem-
szingularis reducibilis kompartment-matrix, melynek reducibi-

litasi normalalakja:

- :
i
0 -0, © 0
re ‘4 i 3 '1
A=F AP =| o 0 -60, 6, |
04 §93 0, ‘92’95_

ahol T’=[g1.§3lg4‘gq] permutacibmatrix, és az 5.3.2. lemma

jeldlései mellett V=0, =2 és a=1.
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0L x4 .04 56,

-.20 -

5.4.3.Abra. Az /5.4.1-2/ rendszerhez tartozd
érzékenységi egyenletek megolddsainak
grafikonjai /axi/aejzo, ha i=3 vagy j=6,7/
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Melléklet:

A MINIMALPOLINOM-MODSZER FORTRAN NYELVU PROGRAMJA

Az alabbiakban megadjuk a minimadlpolinom-mbédszer megva-
lositasara kifejlesztett programunk szubrutinjainak hasznala-
tahoz szilikséges informaciodkat, csatolva a szubrutinok Fortran
forrasnyelvi listait. E szubrutinokban hasznalt utasitasok
megfelelnek a hivatkozasi Fortran nyelvnek. A melléklet végén
megadjuk a program probafuttatésahoz felhasznalt tesztfelada-
tokat, valamint az input-output tevékenységet és a szubruti-
nok meghajtasat végzo foprogramot, tovabba a futtatas eredmé-

nyeit.

M.l. A Krllov-mbédszer szubrutinjai

A [matrix-/ Krilov-modszert a KRYLOV nevii szubrutin va-
lésitja meg, amely a minimalpolinom fokszamanak meghataroza-
sara ill. a moédszerben fellépd linearis egyenletrendszer meg-
oldasara felhasznalja a DECOMP és ITSOLV szubrutinokat. Az
utobbi rutin ezenkivil még egy haromszdgmatrixu egyenletrend-

szereket megoldd TRSOLV nevl szubrutint is hiv.

A KRYLOV nevi szubrutin tevékenysége

nxn el
A szubrutin adott A€R ™, BER ~ matrixok és A valdog
y @\‘\%ﬂ yﬁiﬁqé‘

2
‘ﬁ 2\
I =




szam esetén a 4.3. pontkan emlitett matrix-Krilov-médszerrel
meghatarozza az(A—AI) matrixnak a B matrixhoz tartozd mini-
malpolinomjat, azaz azt a legkisebb/m/ fokszamu olyan ¢ ()
=?\M+Pm'l\m_4+...+ht)~+f’1 polinomot, amelyre 'P(A')\I)B=0 fennall.
Ehhez a szubrutin el&szdr képzi a B, (A-A1)B8 ,(A‘)I)’L B,
..”(A—RITnB Kriilov-matrixsorozatot, amely a sorozat tagjainak
oszlopait egymas ala helyezve egy‘n&x(n+4) méretl matrixsza
rendezhetd at. /Mivel a Fortranban a kétdimenzids tombdk /mat-
rixok/ abrazolasa oszlopfolytonos, tényleges atrendezésre
nincs szlkség/. E matrixra a DECOMP szubrutin segitségével
végezzik el a Wilkinson-féle oszloponkénti Gauss-eliminacioét
/lasd a 4.3. pontot/, melynek eredményeként megkapjuk a Krilov-
sorozat elsd® m [linearisan fliggetlen/ tagja altal alkotott
mkxm méretli matrix PLU-felbontéasat, ahol'Pelpﬁhxm&permutécié-
matrix, Leﬂgbxm féatlo feletti elemei nullak, foatloelemei
egyesek, és UWeR™™ felsd triangularis matrix, és ahol (A-)I)MB
mar linearisan fligg a sorozat el6z0 tagjaitdél. Ezutadn a line-
aris fliggés, azaz a minimadlpolinom egylitthatéit a megfeleld
egyenletrendszer matrixanak PLU-felbontasara tamaszkodva, az
iterativ javitas mddszerével, Forsythe és Moler kdnyvében
leirt médon hatarozzuk meg az ITSOLV szubrutin segitségével
/lasd: G.E. Forsythe-C.B.Moler: Linearis algebrai problémak

megoldasa szamitdgéppel. Miszaki Koényvkiaddé, Bp. 1976/.

A KRYLOV nevi szubrutin paraméterei

A SUBROUTINE utasitds a kdvetkezd:

SUBROUTINE KRYLOV (N,A,NA,AB,K,SHIFT,P,M,RN,WORK,IW )

A megfeleld aktuidlis paramétereket az alabbiak szerint kell



megadni

N - /input/ az A matrix rendje /m/ /egész tipusu/;

A - /input/ az A mitrixot tartalmaz, legalabb NA = N -elemii
kétdimenzids valds tOmb, melynek a hivd szegmensbeli
deklardciéjaban az elsd indexhatar =NAzN és "bal felsd"
NxN-es részében tartalmazza az A matrixot;

NA - /input, egész tipusu/ lasd A;

AB - legalabb N#K=x2N-elemii haromdimenziés valés tomb a
Kriilov-sorozat matrixa é&s annak LU-felbontasa tarolasara.
Inputként AB(’L’.J,’”—nek a B matrix b"}. elemét kell tar-
talmaznia/i=4,...’w; =4 2/ ; visszatéréskor pedig
AB(@,J,E) tartalmazza a Kriilov-sorozat f-edik tagjanak

(“:1&) indexii elemét/4=4,...,n/;

K -/input/ a B matrix oszlopainak széama/&/ /egész tip./;
SHIFT ~-/input/ elvégzendd spektrum-eltolas/A/ értéke /valds/;
P - [Joutput/ legaldbb N-elemii valdés tSmb, melynek elsd M

eleme tartalmazza kimenetkor a szamolt minim&lpolinom
egyttthatdéit / P =pg, <=4,...,m/;
M -/output/ a szamolt minimalpolinom fokszama /m/ [egész/;
RN - /output/ szamitott rezidudl-norma /lasd 3.3. pont/:
a szamolt ‘p(A-}I)B matrix elemei abszolut értékének
maximuma /valdés tipusu/;
WORK - legalabb N Kwel-—elemii valés munkatdmb;

Iw - legalabb N» K-elemi egész munkatdmb.

A DECOMP nevl szubrutin tevékenysége

A szubrutin egy Ae€ IR M téglalapmatrix elsd &0—4 oszlo-
pabdl &116 A, részmatrix Ay=PLU faktorizacidéjat hatarozza meg,

ahol &om wax{fze{"l' .‘,"n.,m-»{}

&-A«:—.m, A elss k-4 oszlopa lineé-
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risan fliggetlen és a % -adik oszlop /ha van ilyen/ linearisan
figg az el626ekt61}; PeR™™ permutaciématrix; Le Rmx(%'n

-

féatloelemei egyesek, fBatld feletti elemei nulldk, tovabba
Uem(&"q)x“"_d) felsd triangularis. Az alkalmazott médszer
Wilkonson oszloponkénti Gauss-eliminacidja. A részleges f6-
elemkivalasztasi eljaras altal megkivant sorcseréket a haté-
konyabb miikodés érdekében a szubrutin nem végzi el, hanem a
szikséges permutacidkat egy IP egész tOmbben megjegyzi, és az
L,u matrixok /informativ/ elemei egy UL tOmbben [sorok szerint/

permutalt alakban addédnak.

A DECCMP nevi szubrutin paraméterei

A SUBROUTINE utasitas a kovetkezo:

SUBROUTINE DECOMP (M,N,A,MA,UL,MUL,IP,K®,SC,DP)

A megfeleld aktualis paraméterek a kdvetkezdképp adanddk meg

M - Jinput/ az A matrix sorainak szama /m/ |egész tip./;
N - /input/ az A matrix oszlopainak szama /m/ /egész tip./;
A - /input/ legalabb MA*N-elemi kétdimenzids valds tdmb,

melynek hivé szegmensbeli deklaréacidéjaban az elsd index-
hatar =sMA>M, és amely "bal felsd" MxN-es részében tar-
talmazza az A matrixot;

MA - /input, egész tipusu/ lasd A;

UL - /output/ legalabb MuLsN-elemii kétdimenzids valds tdmb,
melynek hivd szegmensbeli deklaracidjaban az elsd index-
hatar =MUL » M, Kimenetkor UL els® QO-A oszlopa tartalmaz-

za A megfeleld részének permutéalt LU-felbontasat. Neveze-
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tesen, UL IP(«) -edik sora 1'.>,3.° esetén az L matrix

+-edik sorat tartalmazza, we¢k, esetén pedig rendre az

0«;4)..., 9‘;';_4, u’aﬁilu'i,in | "‘)’u‘i.,fzg% elemeket;
MUL - /input, egész tip./ lasd UL;
ip - /output/ a P permutaciémiatrixnak megfeleld permutacid

megjegyzését biztositd [legalabb/ M-elemi egési tOmb
/lasd még UL leirasat/;

K@ - Joutput/ kimenetkor értéke &o , hogha &oén, és nulla,
ha R,=m+4;

SC - legalabb M=-elemii valds munkatdmb;

DP - legalabb M-elemi dupla pontossagu munkatémb.

Az ITSOLV nevi szubrutin tevékenysége

Legyen adott az AeR™™ matrix PLU-felbontasa és egy
b_GlRM vektor, ahol m> m=rank(A), Legyen AeR™ a P*A=LU
matrix els® n sorabdl képzett nemszinguldris matrix, és EetR"
a P“b_ vektor elsd n elemébdl a4ll16 vektor. Ekkor a szubrutin
az K5=E linearis egyenletrendszert oldja meg az iterativ ja-
vitas mbédszerével, mely az alabbi képletekkel adhatd meg:

x-0,

; r(S)___ '2 _ A?E‘S) A 4(5)_3 r ) )—((s+4>= xfs)+ d(S)

] - 7 -

X = e‘:m {s)
T Sauw

! S=O'4|2|oa.

¥

ahol £ az illetd egyenletrendszer k&zelitd megoldasara utal,
melyhez a szubrutin felhasznalja az A matrix /DECOMP segitsé-
gével meghatarozhatd/ PLU-felbontasat. Hogy az iteracid vald-

r (s) rezidu-

ban javitsa az egyes kOzelitéseket, sziikséges az
alok dupla pontossagu kiszamitasa. Az eljaras gépi konvergen-
cidjahoz &ltalaban 3-4 javitas elegendd.

Amennyiben A annyira gyengén meghatarozott, hogy az elja-

ras divergal, pontosabban, hogy nem konvergal bizonyos ITMAX
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szamu [pl. 20/ lépésben, ugy a szubrutin ezt jelzi [lasd ITNO
paraméter/, és azt az &::&“) kdzelitést adja vissza megoldas
gyanant, amelyre az Y= ll -Axe R™ rezidualvektor 800 -normaja

a legkisebb volt /4«s< ITMAX/,

Az ITSOLV nevi szubrutin paraméterei

A SUBROUTINE utasitas a kdvetkezd:
SUBROUTINE ITSOLV (M,N,A,MA,UL,MUL,IP,B,X,ITNO,COND,RNORM,R,DX)

Az aktualis paraméterek az alabbiak szerint adandok meg:

M - /input/ az A matrix sorainak szama /egész tip./;
N - /input/ az A matrix oszlopainak szama, ¢M Jegész tip./;
A - /input/ legalabb MAsN-elemii kétdimenzids valds témb,

melynek hivd szegmensbeli deklaracidéjaban az elsd index-
hatar =MAwM, és "bal felsd" MxN-es részében tartalmazza
az AR matrixot. Feltételezziik, hogy az A matrix rangja =N
és PLU-~felbontasat /e rutin hivasa eldtt/ a DECOMP nevi
szubrutin segitségével mar meghataroztuk;

MA - /input, egész tip./ lasd A;

UL - /input/ legalabb MUL¥N-clemii kétdimenzids valés tomb,
melynek hivd szegmensbeli deklaracidéjéban az elsd index-
hatar =MULyM, és MxN-es "bal felsd" része tartalmazza az
A matrix sorok szerint permutalt LU-felbontasat, ahogy
azt DECOMP produkalja;

MUL - /input, egész tip./ lasd UL;

IP - /input/ az A matrix PLU-felbontasahoz tartozé permu-

tacidot tartalmazd M-elemi egész tdmb;
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B - /input/ az egyenletrendszer jobboldalanak b vektorat
tartalmazdé /[legaléabb/ M-elemi valds tomb;

X - /output/ egyenletrendszer szamolt megoldasvektora,
N-elemli valds tomb;

ITNO -~ Joutput/ ha ¢ ITNO (£ITMAX), akkor az iteradcid ITNO
szamu lépésben konvergadlt; ITNO<0 esetben pedig diver-
galt és X kimenetkor a legkisebb rezidualhoz tartozod,
(-ITNO) sorszamu kdzelitést tartalmazza [egész tip./;

COND - [output/ az egylitthatomatrix kondicids szamanak egy
becslése [valds tip./;

RNORM - /output/ a szamolt r=b-Ax rezidualvektor £ oo -nor-
maja [valds tip./;

R - /output/ a szamolt r rezidualvektort tartalmazd leg-
alabb M-elemii valds tomb;

DX - legalabb N-elemi valds munkatdmb.

A szubrutinnak egy adott szamitdgépen vald hasznalatahoz
egy DATA utasitéasban harom olyan konstanst kell megadni, ame-
lyek figgenek a gép lebegbpontos szamabrazolasatol. Ezeket a
kovetkezoképpen kell megadni:

BETA - a szamitdgép lebegdpontos szamabrézolasanak alapszama
/valds tip./ [R-10-en BETA=16./;

EPS - - a lebegOpontos aritmetika relativ pontossaga: az a
legkisebb pozitiv lebegbpontos szam, melyet 1-gyel le-
begBpontosan Osszeadva l-et kapunk eredményiil. Ertéke

) pi-d
z B

esetén, ahol R=BETA és d a mantissza jegyeinek szama

kerekitéses, és Bd-d csonkitasos aritmetika

P . A-6 -
/valdés tip./ [R-10-en EPS=%46 =2244
ITMAX - maximalis iteracids lépésszam. Javasolt értéke Forsythe

és Moler kényve alapjan =« Z Q%(d/EPS). [egész tip./
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A TRSOLV nevii szubrutin tevékenysége

Ez a szubrutin egy LUx=b alaku linearis egyenletrend-

szert old meg, ahol L alsé és U felsd haromszogmatrixok, L

féatléelemei l-esek, U faatléelemei pedig nemnullak. L és U

sorait és b elemeit permutdlt alakban lehet /és kell/ megad-

ni a szubrutin szamara.

A TRSOLV nevi szubrutin paraméterei

A SUBROUTINE utasitas a kovetkezd:

SUBROUTINE TRSOLV (N,UL,NUL,IP,B,X)

Az aktualis paramétereket az alabbiak szerint kell megadni:

N

UL

NUL

Ip

- /input/ a megoldandd egyenletrendszer rendje [egész/;

- /input/ legalabb Nut#N-elemii kétdimenzidés valds tdémb,
melynek hivd szegmensbeli deklaracidjaban az elsd index-
hatar =NULZ max{IP()]1¢ie N} &s amelynek IP (<) -edik

sora az L és W matrixok &, ..., ¢

u [ Uy ele-

a4 ) Ly -
meit tartalmazza [ilyen sorrendben/;

- /input, egész tip./ lasd UL;

- [input/ legaladbb N-elemii egész tipusu vektor; UL
azon N sorat és B azon N elemét jeldli ki, melyek a sza-
mitasokban részt vesznek /lasd UL, B /;

- /input/ az egyenletrendszer b jobboldalat tartalmazd,
legalabb OnaX{Ipbﬂl4é€é'ﬂ}— elemii valés témb, ahol B
IP (1)-edik eleme tartalmazza b, ~t;

L7

- [output/ megoldasvektor; N-elemli valds témb.
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M.2. A Kammler-mddszer szubrutinja

A KAMLER nevii szubrutin adott p(ﬁ):k”+bm7t'“"+...+ by A +b,
polinomhoz és t id6-értékhez kiszamitja a f%.) polinom C xom-
panion-matrixéanak exp(tC) exponencidlisat a 3.3. pontban le-
irt Kammler-féle mobdszerrel.

A szubrutin IT nevii paraméterén keresztiil jelezni kell
azt, hogy adott 4(.) polinom esetén az elsd t-értékkel hiv-
juk-e, ugyanis a szubrutin csak ilyenkor végzi el az eldké-

szitll szamitasokat.

A szubrutin paraméterei

A SUBROUTINE utasitas a kdvetkez6:

SUBROUTINE KAMLER (M,B,T,IT,EBT,MEBT,ALFA,BB,E,GTl,GT2)

Az aktudlis paramétereket az alabbiak szerint kell megadni:

M - /input/ a fp(.) polinom fokszama /m/ |egész tip./;

B - /input/ a p(.) polinom egyiitthatdit tartalmazdé M-

elemi valdés tomb

T - /input/ a t ido-érték [valds tipusu/;

IT - /input/ ha IT<41, akkor a szubrutin csak az el3készitd,
t-t81 figgetlen szamitasokat végzi el, ha IT>4, akkor
ezeket feltételezi és csak a +t-vel kapcsolatos masodik
szakasz szamitédsait hajtja végre, IT=4 esetben pedig
mindkettdt. [/IT altalaban a KAMLER szubrutin hivasanak
sorszama egy adott polinom mellett./ [egész tip./;

EBT - /output/ legaldbb MEBT#M-elemi kétdimenzids valés tdmb,
melynek hivd szegmensbeli deklaracidjaban az elsd index-

hatar =MEBTzM. Visszatéréskor EBT "bal felsé" MxM-es



része tartalmazza a szamolt exP(fC) matrix-exponen-

cialist.
MEBT - /input, egész tip./ lasd EBT;
ALFA - a szubrutin adott polinom melletti elsd [IT&¢4/ hi-

vasa soran szamolt skalaparaméter, amely az esetleges’
tovabbi hivasokhoz valtoztatas nélkiil megdrzendd [va-
16s tip./:

BB - a szubrutin adott polinom melletti elsd hivasakor
szamolt skalazott polinomegylitthatdkat tartaimazé M-
elemli valds tdmb, amely az esetleges tovabbi [uj T-vel
valdé/ hivasokhoz megdrzendd;

E - [legalabb/ M-elemi valds munkatomb;

GT1 - a szubrutin adott polinom melletti elsd hivasakor
szamolt hatvanysor-egylitthatdékat tartalmazd M+ NGT -
elemli valdés tdmb; uj T-vel vald hivasokhoz megdSrzendd
/NGT értékét a szubrutin DATA utasitasa adja meg/;

GT2 - /legalabb/ M+NGT elemii valdés munkatémb, ahol NGT

értéke a szubrutin DATA utasitaséban specifikalt.

A szubrutinnak egy adott szamitbégépen vald hesznalata
eldtt a szubrutin DATA utasitasaban két, a gép lekegbpontos
szamabrazolasatdl fliggd konstanst kell megadni az aldbbiaknak
megfelelben.

BETA -a szamitdégép lebegdpontos szamabrazolasanak alapsza-
ma /valdés tip./ /R-10-en BETA=16./;

NGT - NGT:=~m‘n{ve{_4,z,m}\v!73-{3““} ahol PB=8ETA és d a
mantissza jegyeinek szadma a gép lebegbpontos szamabrazo-
lasaban, tovabba Za:4 csonkitasos és g:Z kerekitéses

aritmetika esetén /egész tip./ [R-10-en NGT=1Q/.
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M.3. ETAB: szubrutin exp(tA)b szamolésara
1

A szubrutin az x()=expltAlh vektort szamolja adott t

ids-érték, Ae R™" matrix és éemvv vektor esetén, a 3.3. pont-

ban leirt minimalpolinom-médszerrel. A szubrutin feltételezi

az A-AI matrix b vektorhoz tartozd minimalpolinomjanak isme-

retét /ahol A adott valds szam/, amely az M.l. pontban leirt

KRYLOV szubrutin segitségével hatarozhatd megq.

ETAB hivja az M.2. pontban ismeretetett KAMLER nevi szub-

rutint, igy azonos A b de kiilénbdzd t melletti hivisnal az

IT paramétert az ott leirtak szerint kell megadni.

A szubrutin paraméterei

A SUBROUTINE utasitas a kovetkezd:

SUBROUTINE ETAB (T,AB,N,M,P,SHIFT,IT,XT,ALFA,SAVE,WORK)

Az aktudlis paraméterek az alabbiak szerint adanddk meg:

T

AB

M

SHIFT

- linput/ a t idd-érték [valdés tip./;

- /input / N*M méretiinek deklaralt kétdimenzids valods

tomb, melynek ABG;}) eleme a Kriilov-sorozat é -edik,

Atdé vektoranak ¢ -edik elemét tartalmazza [ahogy a
KRYLOV szubrutin produkalja/;

- /input/ az A matrix rendje /mn/ Jegész tip./;

~ /input/ az A-AT matrix b vektorhoz tartozdé minimal-
polinomjénak fokszama /egész tip./;

- /input/ az A-Al matrix b-hez tartozé minimdlpolinomja-
nak egyilitthatéit tartalmazd M -elemii valds tdmb;

- /input/ a A spektrum-eltolds értéke [valds tip./;
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IT

XT

ALFA

SAVE

WORK

- /input/ adott A, b esetén l-re 4llitandd be az el-
s6 t-vel valdé hivasnal és » 4 -re a tovabbi t-knél
/jegész tip./[;

- /output/ a szamolt X (t)=exp(tA)b vektort
tartalmazé, N-elemii valds tomb;

- a KAMLER szubrutin altal szamolt skalaparaméter;
értéke megbrzendd azonos A-val és b-vel, de kiildnbdzs
t-vel vald hivasokhoz /[valés tip./;

- legaldbb 2M + NGT-elemii valds témb a KAMLER szubru-
tin részeredményeinek tarolasara; tartalma megdrzendd
azonos A b de kiilonb6zd t melletti hivasokhoz [NGT
értékére nézve lasd az M.2. pontot/;

- legalabb Mx (M+2) + NGT - elemii valds munka-

témb; NGT-re vonatkozdan lasd az M.2. pontot.
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M.4. GRETAB: szubrutin exp(tA)b paraméterek szerinti

parcialis derivaltjainak szamitasara

A szubrutin az gaﬁﬁc=g&(t,go) vektorokat szamolja, ahol
2o (t,8):= (0/98;) exp(tA@) b, k=4.., v és v a § paraméter-
vektor elemeinek szama. Kérés esetén x(t):= exp(tA(8)) b is
kiszamitasra keril, de ennek meghatarozasa az ETAB rutinnal
pontosabb. Az alkalmazott mdédszer a 4.3. pontban targyalt mi-
nimdlpolinom-médszer. A szubrutin feltételezi az A-ALl matrix
/A adott szam/ minimalpolinomjanak ismeretét, amely az M.1l.
pontban leirt KRYLOV szubrutinnal hatarozhatd meg.

Ha a 2,(t) vektorok kiszamitadsa egynél tobb t-re is szik-
séges, akkor az IT paraméteren keresztiil k&6z&lhetjlik a szubru-
tinnal, hogy ne ismételje meg az eldkészitd [t-t0l filiggetlen/
szakasz szamitasait.

A szubrutinnak inputként meg kell adni a 9A/90£(g°) par-
cidlis derivalt matrixokat, melyeket & az elsd t-vel vald
hivaskor feliilir bizonyos, ujabb t-vel vald hivasnal is sziik-

séges részeredményekkel.

A szubrutin paramétereil

A SUBROUTINE utasitds a kdvetkezo:
SUBROUTINE GRETAB (T,A,B,N,NA,IT,IX,XT,ZT,NZT,NPAR,P,M,

' ,P2,GRA,MGRA,NGRA, SHIFT, ALFA, WORK,, SAVE)

Az aktualis paraméterek az alabbiaknak megfelelden adanddk meg:
T - /input/ a t ids-érték /[valds tip./
A - /input/ legalabb NA#N-elemii kétdimenzids valés tomb,

melynek hivdé szegmensbeli deklaracidjaban az elsd index-
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hatdr =NA 2 N, és amely NxN-es "bal felsd" részében

tartalmazza az A= A(8,) matrixot;

B - /input/ a b vektort tartalmazd N-elemi valés tomb;

N - /input/ az A matrix rendje [egész tip./;

NA - /input, egész tip./ lasd A;

IT - /input/ ha a Z,(t) vektorokat az elst t-értékre sza-
moltatjuk, akkor IT l-re allitandd be, késdbbi t-kre
pedig » 41-re [egész tip./;

IX - /input/ ha IX=¢, akkor a szubrutin nem nyul az XT
tdmbhoz; kiilénben XT tartalmazza /kimenetkor/ az x(t)
exp{tA)b vektort [egész tip./;

XT - /output/ IX=0 esetben XT aktudlis értéke barmi lehet,
mert a szubrutin nem hasznalja output céljara; IX#0 eset-
ben N-elemi valés tOmb, mely visszatéréskor a szamolt
X (¢) vektort tartalmazza;

ZT - /output/ kétdimenzids, legaldbb N2ZT*NPAR-clemii valéds
témb, melynek hivdo szegmensbeli deklaraciéjaban az elsd
indexhatar =N2Tz N. Visszatéréskor a 27—%,&) tSmbelem
tartalmazza a szamolt gk(f) vektor é -edik elemét;

NZT - /input, egész tip./ lasd 2ZT;

NPAR - /input/ A(.) paraméterei [valtozdi/ szama /V/ [egész/;

P - /input/ az A(8,)~Al matrix minim&lpolinomjanak egylitt-
hatdéit tartalmazd M-elemii valds tomb;

M - /input/ A(8,) minimdlpolinomjanak fokszama /egész/;

P2 - a minimalpolinom négyzetének egylitthatdéit tartalmazd

2M-elemi valds tdmb, melynek a szubrutin az elsd t-vel
valé hivaskor /IT=1/ad értéket, és ezt uj t-vel vald

hivasnal /IT >4/ felhasznalja;
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GRA

MGRA

NGRA

SHIFT

ALFA

WORK

SAVE

- legalabb MGRA* NGRA = max{N 2M}-elemii, haromdimen-
zids valdés tomb, melynek hivd szegmensbeli deklaracié-
jaban az elsd és masodik indexhatdr rendre =MGRA%L N &g
=NGRAZNPAR, IT=1 esetén bemenetkor a GRA(ﬁ\%.&) tomb~
clemnek kell tartalmaznia a @A/96, (8,) matrix (d,&)
indexli elemét. A GRA tdimb IT=1 esetben kimenetkor felil-
irédik a /4.3.3/ képlet szerint szamolt g“k0)=§:)W)
vektorokkal / &=1,..., v /, amelyek az IT»l mellett valéd
hivasokhoz megdrzenddk;

/input, egész tip./ lasd GRA;

/input, egész tip./ lasd GRA;

[input/ értéke a A spektrum-eltolas /valds tip./;

- IT=1 esetén a hivott KAMLER szubrutin &ltal szamolt
skalaparaméter, mely az ITyl esetekre megdrzendd [valds/;
- legalabb N* (4N+4) + NGT -elemii valdés munkatdmb; NGT
értékére nézve lasd az M.2. pontot;

- legalabb N¥ (ZM+4)+NGT  -elemii valés témb az IT=1
hivaskor szamolt részeredmények tarolséara, amelyekre IT)1
esetben is szilkség van: NGT értékére vonatkozdlag lasd

az M.2. pontot.
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M.5. A tesztadatokon vald futtatas leirdsa és eredményei

A minimalpolinom-médszer tesztadatokon vald kiprobalasa-
hoz egy PRETAB nevi f0programot irtunk, amely beolvassa az
adatokat, hivja az M.1-4. pontokban ismeretetett szubrutinokat
é€s sornyomtatdén megjeleniti az eredményeket. Matrixok és vek-
torok kiirasara egy, a SZOTE R-10 sza&mitdgépén beldbvéseknél
részeredmények nyomtatasara alkalmazott MXWRT nevi szubrutint
hasznaltunk fel, amely a kinyomtatott tdmb eldtt egy csupa M,
utana pedig egy csupa W karakterbdl 4116 sort ir ki. Az input-
output utasitasoknal nem ragaszkodtunk a hivatkozasi Fortran
nyelvhez, és kihasznaltuk az R-10-en mik6dé Fortran-reprezen-—
tans altal biztositott specialis lehetGségeket is.

A PRETAB foprogram segitségével lehetdség van egymas utan
tobb feladat megoldasara [/a program ujrainditasa nélkil/. Itt
egy feladat alatt vagy (1) exp{tA)b kiszamitasat értjik egy
t=t,, toth, ..., tor ntgv ekvidisztans pontsorozaton, ahol
Ae R™*™ tetszBleges matrix és b vagy n, szamu kiviilrél meg-
adott vektort, vagy az €,,...,&, egységvektorokat futja be
/ha m,=0 /; vagy pedig (2) exp(tA)b és paraméterek szerinti
derivaltjai egyidejl kiszamitasat ugyanolyan pontsorozaton, de
ekkor A csak kompartment-matrix lehet és m,=4 . A program jelen-
legi verzidjaban az A matrix rendje és paramétereinek szama egy-
arant legfeljebb 9 lehet, de ez a korlat a DIMENSION,EQUIVA-
LENCE és MAX=9 utasitéasok cseréjével mdédosithatd. A program
adatait lyukkartyan kell megadni.

(1) exp(tA)b kiszamitasanak feladata esetén a megfeleld

input sorozat a k&vetkez®: -
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1. Cimke-kartya: tetszdleges 80-karakteres szdveg a feladat
megjeldlésére.

2. Adatkartya, formaja: NT=dm)>_ T@=4Eed HadRY yuuuu<my?
ahol m, I3, t, F44, & F84 5 m, 12 formatummal olvasdédik.

3. Matrix-rend és sor-formatum kartya, formaja: N ={m> L format'y
ahol az A matrix m rendjét I2, a matrix soraira és az esetle-
ges b vektor/ok/ra vonatkozé ’'format’ input formatumot pedig
19 A4 formatummal olvassa a program.

4. Az A matrix sorai /m szamu/, mind uj kartyan kezdddden, az
elbzbleg beolvasott 'format’ formatumnak megfelelden.

[5.]1 A b vektorok /[m, sza&mu/, mind uj kartyan kezdve, a ’'format’
b

formatumnak megfelelden. M = esetén e tétel kimarad és a
program rendre az €,,..-, €, egységvektorokat generalja b gya-
nant.

6. Adatvégjel-kartya, form&ja: %EOD

(2) Ha A kompartment-matrix, és exp (tA) b -n kiviil annak pa-
raméterek szerinti parcialis derivaltjait is szamoltatni akar-
juk, akkor a megadandé input sorozat 1-5. tételei megegyeznek
a fentivel, de ilyenkor a program a parcidlis derivaltakat

csak egyetlen h vektorra szamolja /ha nb#d , akkor az utolsé-

ra/. Az input sorozat tovabbi része itt a kovetkezO:

6. Paraméterszam-kartya, formaja Znpar?y ahol npar

)
az A matrix azon paramétereinek szama, amelyek szerinti par-
cialis derivéaltak szamitanddk; olvasas formatuma: I3.

7. Sorindex-kartya /[kartyak/: az npar szamu paraméter, mint

transzportegyltthatd, elsd indexe [O is lehet, lasd az 5.1.

pontot/; 2¢I3 formatummal olvasodik.
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8. Oszlopindex-kartya /[kartyak/: ugyanugy adanddk meg, mint
az elobbiek, csak a megfeleld transzportegylitthatok masodik
indexére vonatkoznak.

Az utolsd feladat input sorozata utan egy /ujabb/ adat-
végjel-kartya a program futasanak szabalyos befejez0dését
eredményezi .

A program sornyomtatdn megjelend outputja a kovetkezdket
tartalmazza: input adatok, vektor-minimadlpolinom egyilitthatoi,
QtAé megoldasvektor értékei a megadott pontsorozaton, matrix-
minimalpolinom egyilitthatéi, tovabba eﬁl\k paraméterek szerinti
parcialis derivaltjai /a legutdébbit csak 2 tipusu input ese-
tén/.

A probafutas soran a kovetkezO feladatokat oldottuk meg,
az itt megadott sorrendben.

1. Az 5.4. pontban leirt rekeszmodell egyenletének megoldasa
és annak a 94'...)

janak kiszamitasa. Itt

-9 3 0o of 0
o o Bl 3 6,=a;, 8,72y,
B e st gl P Ra W5
| 9 3 2 -5 | 0] %504

2. Ward [51] 1. sz. teszt-példaja: EA meghatarozasa, ahol

. . ; B tA
nemderogatdorius defektiv matrix. eA t-edik oszlopat € €,

kiszamitasa utjan kapjuk meg/¢=4,2,3/, ahol t=4,

= XVIIT =

65 paraméterek szerinti parcialis derivalt-

== }\\

7 w06y
[0\
[N < \




3. Ward [51] 3. sz. teszt-példaja: eA meghatarozasa, ahol

-131 19 18
A =] -390 56 54
-387 57 52

A . e e p .
Itt € oszlopait az eldzdvel azonos médon nyerjik.

E harom feladat megoldasara a program inputja a ko&vetke-
z6 vyolt:

AZ 5.4. PONTBAN MEGADOTT REKESZMODELL EGYENLETEINEK MEGOLDASA

NT= 6@ T@= ¢.¢ H= ¢.1 1
N= 4 (4F4.Q)
-9 3
-6 5 4
-7
9 3 2 =5
1

5

1 2 4 4 ¢

2 4 1 2 4
WARD 1.S%. TESZT-PELDAJA (NEMDEROGATORIUS DEFEKTIV MATRIX)
NT= 1 T¢= 1.9 H=0.0
N= 3 (3F3.9)

4 2 9@
1 4 1
1 1 4

IEOD
WARD 3.SZ2. TESZT-PELDAJA
NT= 1 T¢= 1.¢ H= ¢.0
N= 3 (3F5.9)
-131 19 18
-390 56 54
-387 57 52
3EOD
3EOD

A PRETAB fOprogram és az MXWRT matrixkiird rutin forras-

nyelvi listaja, valamint a szerkesztési és futtatasi listak

a kovetkezd lapokon talalhatok.
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™0

JETERMINATION OF THE MINIMAL POLYNOMIAL OF AN N=BY=N MATRIX A
AITH RESPECT TO AN N=BY=K MATRIX B BY KRYLOV'S METHOD,

THAT MINIMAL POLYNOMIAL IS THE SMALLEST ORDER POLYNDMIAL P(,)
SATISFYING P(A)*B = 0,

IFI 8 IS THE IDENTITY MATRIX THEN THE MATRIX MINIMAL POLYNOMIAL OF A
NILLI RESULT

£ 4254

DIMENSION ACNAYN) pABIN K1) yPIN) ,NORK(IN K 4)pTWIN,K)

ACNAPN) INPUT: TWO=DIMENSIONAL REAL ARRAY (N, LE.NA) CONTAINING
_ THE MATRIX A
ABUNIKr o) INPUTE: THREE®DIMENSIONAL REAL ARRAY WITH THE THIRD (ACTUAL
e DIMENSIONING PARAMETER NOT LESS THAN 2xN, AB(Il,J.1
MUST BE SET TO THE (I,J) ENTRY OF THE MATRIX B
OUTPUTS ANCgapeel) CONTAINS THE L»TH MEMBER OF THE KRYLOV
SEQUENCE, Aax(L=1)%B, FOR L=1,.es2MN. THE OTHER HALF
OF ARRAY AB CONTAINS INTERMEDIATE RESULTS,
SHIFT INPUT: VALUE OF EIGENVALUE=SHIFT TO BE USED (REAL)
M OUTPUT: DEGREE OF THE MINIMAL POLYNOMIAL
IF B=0 THEN M=0 I8 RETURNED (ANY POLNOMIAL IS
ANNIHILATING WITH RESPECT 1O B
PIN) QUTPUT?: THE FIRST M ELEMENTS ARE THE MINIMAL POLYNOMIAL
COEFFICTENTS, THE MINIMAL POLYNOMIAL IS GIVEN BY
XxkM * P(M)aXke{M=1) #,...% P(2IxX + P(1)

RN DUTPUTS RESIDUAL NORM, E,.B,s, MAXIMAL MAGNITUDE' IN P(A)%B
NORKEN Ko 4) REAL WORKING ARRAY WITH AT LEAST NxKwxd4 ELEMENTS
IANCN2 KD INTEGER WORKING ARRAY WITH AT LEAST NxK ELEMENTS

JQUBLE' PRECISION SUMyALJ

IFCN,LE,0,0R,K,LE,0) GO TO 40
NPl=N*1

FORM KRYLOV'S SERUENCE

2010 L=i,N

)0 10 ISI'N

00: 10 J&1,K

SUM=0,D0

20 11 1Jds=4,N

AlJsACI, 1)

IFCIJLEQ,I) AIJ=AlJ=DBLEC(SHIFT)
11 SUMESUM#AIJ*DBLECABCIJ,J,L))
100 ABCI,J,L*1)=8SUM

STORE! N#1=ST MEMBER OF THE SEBQUENCE
20 20 ISi;N
20 20 Js1,K (‘§

)

20¢ WORK(I,J,1)==AB(I,JyNP1)
M=N

iy,

A\
Q)
é\
>y
=
*

BAUSSIAN ELTMINATION BY COLUMNS FOR THE DETERMINATION
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OF MINIMAL' POLYNOMIAL DEGREE, M

NKENK K,
CALL! DECOMP(NKsN,AByNK,AB(1,1,NP1) ,NK,IW,MPYL
’e WORK(131,4),WORK(1,1,2))
IF(MP1 ,EQ,0) GO TOD 50
MINIMAL POLYNOMIAL DEGREE < N
Y=MPle]
D0 3D0: I=1,N
20 30 J=1,K
30 WORK(I,J,1)=mAB(I,J,MP1)
IFKM,NE,0) GO TO S0

BE0s ANY PDLYNOMIAL OF A IS ANNIHILATING WITH RESPECT TD B
40 M=z0

RN=0,0

ITND=0

COND®1,0

30: TD 99

FIND' COEFFICIENTS

500 CALL! ITSOLVINKM,AByNKpAB(L1,1,NP1) NK,IW,WORK,P,ITND,COND
'y RNe WORK(1,1,2) WORK(1,1,3))

99 RETURN
END
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PkLxJ DECOMPOSITION OF AN M=BY=N RECTANGULAR MATRIX

IF THE RANK OF THE MATRIX IS LESS THAN N AND KO IS THE NUMBER
JFI THE FIRST COLUMN THAT LINEARLY DEPENDS ON THE PRECEDING ONES

THEN ONLY THE FIRST (KO=1) COLUMNS ARE INCLUDED IN THE DECOMPOSITION

SUBROUTINE DECOMP (M,N,A,MA,UL,MUL,IP,K0,SC,DP)

DJIMENSION A(MA/N) ,ULIMUL,N),IP(M),8C(M)
JDUBLE PRECISION DR 1 DP (M)

M, N INPUT: NUMBER OF RDWS AND COLUMNS, RESP,,
OF THE MATRIX TD BE DECOMPOSED

ACMA,N) INPUT: TWO=DIMENSIONAL REAL' ARRAY (M,LE_ MA)
CONTAINING THE MATRIX TO BRE DECOMPOSED

ULCMULYN)  OUTPUT: TWO=DIMENSIONAL REAL ARRAY (M, LE_MUL) CONTAINING

THE L*U DECOMPOSITION OF THE

APPROPRIATELY PERMUTED INPUT Uti1,1) UC1,2) U(C1,3
MATRIX, PLACED = APART FROM Lit2,1) U(2,2) uUC2,3
PERMUTATIONS = ACCORDING TO L3, 1) LES,2) ‘ULE,)S
THE FOLLOWING PATTERNG: LCd,1) LC4,2) L(4,3
(MS, N=3) LS, 1) L(S,2) L(5,3
12(M) QUTPUT: INTEGER ARRAY DESCRIBING THE PERMUTATION MATRIX P
OF! THE P»xL*xJ DECOMPOSITION
K0 QUTPUT: EITHER ZERO OR THE NUMBER OF THE FIRST COLUMN
FOUND TO BE LINEARLY DEPENDENT ON THE PRECEDING ONES
SC(M) ,DP (M) REAL AND DOUBLE PRECISION WDRKING ARRAYS, RESP,
£0=0

IFCN,LE,0,0R,MqLE,0) GO TO 100

INITIALIZE! IP,UL,»SC AND DP

P01 10 I=1'M

IP(I)=1

JP(I)=DBLECACI,1))

3I6=0,0

20: 20 Js1,N

IF(31G,LT,ABSCA(CI,J))) BIG=ABS(A(I,J))
200 ULIeJ)=A(I,J)

IFKBIG,NE,0,0) BIG=1,/BIG
100 SC(I)=BIG

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
P1=1

20 XK=KP1
KP1sK+1

FIND: PIVOT ELEMENT
3[G=0,0
)0 40 I:K'M
IRISIPICI)
SIZERABS(SNGL(DP(IPI))I*SCC(IPI)
IFCSIZE,LE,BIG) GO TO 40
3IG=SIZE
IPIV=]

40 CONTINUE



SIZE=BIG+1,0
IFKSIZE,LE,1,0) GO TO 90

EXCHANGE!

KP=IP(IPIV)
IPCIPIV)=IP(K)
1P(K)=KP
JLICKPK)=SNGL(DP(KP))
IFCKs LT, M) GO TO 51
IF(M, LT ,N) KO=KP1

G0 TO 100

FORM THE! K»TH COLUMN OF! LI

a1

50:

20 50 I=KP1i,M

IPI=IPII)
JLCIPI,,K)=SNGL(DP(IPI)/DP(KP))
IF(K.GE,N) GO TD 100

PROCESS THE KP1=TH COLUMN

DD 60 I=1 M

60 DJP(I)=DBLECUL(I,KP1))
20: 70 J=1,K
JP1sU+4
IPJ=IPICJ)
DO: 80 I=JP1,M
IPI=SIPII)
80 DJP(IPI)=DP(IPI)=DBLECULCIPI,J))*xDP(IPJ)
700 JULKIPJ.KP1)SSNGL(DP(IPY))
6GQ: TD 30
ZERD PIVOT FOUND
90: KD=K!
TERMINATE
00 RETURN

END
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SOLUTION OF A DECOMPOSED LINEAR ALGEBRAIC SYSTEM By ITERATIVE REFINE

SUBROUTINE ITSOLV (M,N,A,MA, UL, MUL,IP,B,X,ITND,COND,RNORM,R,DX)

SZRERE

JIMENSION A(MA:N);UL(MUL:N)'IP(M).B(H),X(N),R(MJoDX(N)

PPAR AMETERS:;

LR L L E R E R L L T T L

M INPUT:
N INPUT}
ACMA,N) INPUT:

ULEMULEN) INPUT:

IPLM) INPUT:

10

SE

20

B(H4) INPUTS
X(N) QUTPUT:
ITND: QUTPUT:
COND. QUTRUT
RNORM QUTPUTS
REMY,DXIN)

BETA DATAZ
EPS DATA:
ITYAX DATA:

NUMBER OF EQUATIONS IN THE SYSTEM, ALL OF WHICH AR
INCLUDED IN RESIDUAL NORM COMPUTATION(CSEE 'RNORM')
BUT ONLY N OF WHICH TAKE PART IN OTHER COMPUTATION
(N,LE,M, SEE PARAMETER 'N')

NUMBER OF UNKNOWNS IN THE SYSTEM 0OF ERUATIONS

REAL TWO=DIMENSIONAL' ARRAY (N, LE.M,LE,MA)
CONTAINING THE M BY N COEFFICIENT MATRIX OF THE SY
REAL TWOSDIMENSIONAL: ARRAY (M,LE.MUL) CONTAINING
THE PERMUTED TRIANGULAR MATRICES U,L OF THE

PxLxyU DECOMPOSITION OF THE COEFFICIENT MATRIX,

AS PRODUCED BY DECOMP

INTEGER ARRAY DESCRIBING THE PERMUTATION MATRIX P
OF THE PxlL#U DECOMPOSITION OF THE COEFFICIENT MATR
ONLY THE FIRST N ELEMENTS OF IP ARE USED HERE
RIGHT=HAND SIDE OF THE SYSTEM

SOLUTION VECTOR OF THE SYSTEM

0€ITNO=g THE NUMBER OF ITERATION STEPS TAKEN

IN CASE OF CONVERGENCE WITHIN ITMAX STEPS, WHERE
ITMAX IS GIVEN IN THE DATA STATEMENTS OTHERWISE
ITND®O AND =ITNO IS THE NUMBER OF THAT APRROXIMATI
WITH THE SMALLEST RESIDUAL NORM ZIN SUCH A CASE,
THE NUMBER OF ITERATION STEPS TAKEN IS ITMAX=ITNO,
BECAUSE THE FIRST =ITNO STEPS ARE REPEATED
ESTIMATE OF THE CONDITION NUMBER OF THE COEF, MATR
MAGNITUDE OF THAT ERUATION RESIDUAL WITH MAXIMUM
ABSOLUTE VALUE

REAL' WORKING ARRAYS

RADIX BASE IN FLOATING POINT REPRESENTATION
ROUNDOFF! UNIT OF THE FLOATING POINT REPRESENTATION
ON THE COMPUTER/APPROXIMATELY/
EPSs(1/2)*xBETA**(1=ND) WHERE ND2&NO_OF MANTISSA DI
MAXIMUM NUMBER OF ITERATIONS, A VALUE NOT LESS THA
2%xALOG10(1/EPS) 18 USED

kxk: BETA,EPS AND ITMAX ARE MACHINE DEPENDENT wx%

DATA BETA,EPS,I1TMAX/16,,238B800000,207
EPSs(1/2)%x16%xx(1=6)

J0UBLE! PRECISION SUM

ITEND=ITMAX
ITNO=D

CALLI TRSOLV (N, UL, NUL,IP,B,X)

T INITIAL VALUES
XNORM=0,0
20 20 Isi,N

XNORM=AMAX1 (ABS(X(I)),XNORM)
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COND=1,0
IXNORMEXNORM
DXEPS=EPSxXNORM

COMPUTE RESIDUALS WITH DOUBLE PRECISION ACCUMULATION
30 RNORM=0,0
200 50 Isi, M
SUM=DBLE(B(I))
20 40 J=1,N
40 SUMsSUM=DBLECACTI,J))*DBLE(X(J))
RI=SNGLISUM)
AINDRM=AMAX1 (ABS(RI),RNORM)
300 R(I)=RI
IFCITND,EQ,0) GD TO 55
IFCRNMIN,LE,RNORM) GO TOD 60
55 ITMIN=ITNO
INMINSRNORM

TEST FOR CONVERGENCE

60 IFCOXNORM,LE,DXEPS) GO TD 100
IFCITND,EQ,1) COND=BETA*DXNORM/DXEPS
IFCITNOLLT,L,ITEND) GO TO 70
IFCITND,EQ,ITMIN) GO TO 99
ITEND=ITMIN
GO TO 10

70 ITNO=ITNO#1
CALL! TRSOLVIN, UL, MUL,IP,R,DX)

FORM REFINED SOLUTION VECTOR
QXNORME0.0
200 80 I=q,N
XI=x(1)
XCI)EXT4DX(I)

80 OJXNORM=AMAX1(ABS(X(I)=X1),DXNORM)
30/ TO 30

FINISH

99 ITNO==ITMIN |
IFCITND,EQ,0) COND=®1,E30

109 RETURN

END
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TRIANGULAR SYSTEMS SOLVER
SUBROUTINE  TRSOLY (N,UL,NUL,IP,8,X)

JIMENSION ULCNULaN),IPEN) ,BIN),XEN)

#
L]

i,
R

INPUTs ORDER OF THE SYSTEM TO BE SOLVED

N
ULIENULYND INPUT: TWO=QIMENSIONAL REAL' ARRAY CONTAINING A PERMUTED

LxU DECOMPOSITION OF A NONSINGULAR MATRIX, AS
PRODUCED BY DECOMP, (N,LE NULY,

IPCN) INPUT: INTEGER ARRAY CDNTAINING THE PERMUTATION OF THE
L*xU DECOMPOSITION

BEN) INPUTs RIGTH=HAND SIDE OF THE SYSTEM

x(\N) QUTPUT: SOLUTION VECTOR OF THE SYSTEM

M EETH OD ¢ THE SUBROUTINE SOLVES THE SYSTEM PxLxuUxX=B, WHERE
Teeesansenm. PeL' AND U DENOTE PERMUTATION,

UNTT LOWER TRIANGULAR

AND UPPER TRIANGULAR MATRICES GIVEN IN IP AND UL, RESP,
BY MEANS OF FORWARD SUBSTITUTION FOLLDWED BY BACK

SUBSTITUTION

FORNARD SUBSTITUTION

10

30

40

I=0

I=1+1

IFCI,6T,N) GO TO 20
IPI=IP(I)
SUM=B(IPI)

J=0

JeJ+1

IFKJLGE,I) GO TO 40
SUMESUMeULCIPIJI*X(J)
20 TO 30

X(I)=8UM

50: TD 10

3ACK/ SUBSTITUTION

20

60

Iz1»=1

IFCI.LE,0) RETURN
IRI=IPKI)

SuUM=X(I)

Jsl

Jad+l

IFCJ,GT,N) GO TD 60
SUMZSUMeULCIPT, J)*X ()
80: TD 59
X(I)=SuMZUL(IPI,I)
50/ T0 20

END
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11

COMPUTATION OF EXP(

SUBROUTINE KAMLER

-

N

T*A) WHERE A IS A COMPANION MATRIX BY KAMMLER'S METHI

(MyB,T,IT,EBT,MEBT,ALFA,BB,E,GT1,G6T2)

DIMENSION B(M),EBT(MEBT, M) ,BB(M),E(M),B6T1(1),6T2(1)

PPARAMETERS 3

LA R B L B L B E R E E R E B b Rok B i )

M INPUT:
B(4) INPUTS
T INPUT:
IT INPUT:
ALFA ouTtTRUT,

DAS'LDAS#+L) OUTPUT:

B3(4)
E(M)
gr1t.)

6T2(,)

ORDER QOF THE COMPANION MATRIX A
COEFFICIENTS OF THE

CHARACTERISTIC POLYNOMIAL 0 1 0 0
OF A WHICH OCCUR WITH 0 0 1 0
OPPOSITE SIGN IN A AS IN 0 0 0 1

THE FOLLOWING PATTERN/M=4/: =B(1) =B(2) =B(3) =B(4)

TIME=VALUE FOR WHICH EXP(TAA) IS To BE COMPUTED

INTEGER PARAMETER CONTROLING PROGRAM FLOW

IF IT<l ONLY COMPUTATIONS INDEPENDENT OF T ARE DONE;

IF IT>{ THE ABOVE ARE ASSUMED AND ONLY THE SUBSEQUEN
COMPUTATIONS ARE DONE,

AT FIRST CALL (WITH A NEW COMPANION MATRIX)

1T SHOULD NORMALLY BE SET TO 1

IF ITe=1, INPUT, IF IT>1 : SCALE PARAMETER

TWO=DIMENSIONAL REAL ARRAY (MEBT_GE,M) CONTAINING

THE MATRIX EXP(T®A) IN THE RELEVANT PART

AUXILIARY REAL VECTOR TO SAVE SCALED COEFFICIENTS
REAL WORKING ARRAY

AUXILIARY REAL ARRAY TO SAVE TAYLOR SERIES
COEFFICIENTS, GT1 MUST HAVE AT LEAST M#NGT
ELEMENTS, WHERE NGT IS MACHINE DEPENDENT AND IS8
GIVEN IN A DATA STATEMENT OF THE PRESENT ROUTINE
REAL WORKING ARRAY WITH AT LEAST M+#NGT ELEMENTS

DATA BETA,NGT/16,,10/

BETA DATA:
NGT DATA:

MACHINE=BASE(RADIX) OF FLOATING POINT ARITHMETIC
THE SMALLEST .INTEGER SATISFYING

FACTORTAL(NGT) > 2*BETA*X*NDIGIT
WHERE NDIGIT IS THE NUMBER OF MANTISSA DIGITS IN THE
FLOATING PDINT REPRESENTATION OF THE MACHINE

JOUBLE PRECISION SUM

REALI LN2

DATA LN2/0, 693 147 180 559 945/

IF(M=1) 900,110,1
YP1 =M+
MPNGTEM4NGT

IFCIT.6T,1) GO TO 50

TERMINE ALFA,BB
ALFA=1,0
60 TO 11
ALFASALFAXBETA
33NORM=0,0
3C=1,0
D0 20 J=1,M
J3=MPl =]
SC=SCAALFA



33(JB) =B (JB)/SC

33NORM=BBNORM+ABS (BB (JB))

IFI(3BNORM,GT,1,0) GO TO 10
20 CONTINUE

GENERATE TAYLOR SERIES COEFFICIENTS G(M),,aeeB(2xM+NGT=™]1)
AND STORE THEM AS G(M#+K=1)=3GT1(K), K=1s,04sM#NGT
8T1(1)=1,0
K=1
3D: KiEkK#l
IFCK,GT,MPNGT) GO TO 49
37K
20 40 J=1,M
J3=MPlm]
L3=KB»1
IFKKB,LE.0) BO TO 41
40 SUMsSUM=DBLE(BB(JIB))*DBLE(GTI(KB))
41 GT1(K)=SUM
50 TO 30

49 IFCIT) 900,900,50
COMPUTATIONS INVOLVING T

DETERMINE N

S0 AT=ALFA%T
SC=ABS(AT)
N=0.
IFKSELLE.140) GD: TO: 60
NEIFIXCALOG(SC) /LN2) *+1
AT=AT/FLOAT(2%x%N)

FORM POWER! SERIES TERMS IN GT2(,)
STR2(K*1)SATx*K/K! , KS0s1),0,eMENGT=1

60 5T2(1)=1,0
20 61 KP1=2,MPNGT
K=KPli=1
61 ST2(KPL1)=AT*GT2(K)/FLDAT(K)

COMPJTE LAST COLUMN OF EXPC(ATxA) AND STORE IT IN E
DO 70 Imi M
SUM=z0,0D0
KL=NGT+I
K2=MPNGT
71 SUM=SUM+DBLE(GTLI(K1))IXDBLE(GT2(K2))
K1=X1=1
K2sK2=1
IFCKL) 70,70,71
700 EI)=SuM

K=0
80 <=K+l

RESCALE E
J3=M
SC=l,0

81 J3=JB=i
IFCJB,LEL0) GO TO 90
SC=SCxALFA
ECJB)SE(JB)/SC
GO TO 81

APPLY THOMPSON'S RELATIONS



90 30 91 I=1,M
5T2(1)=BB(I)
IF(K. 6T ,N) GT2(I)=B(I)

91  EBT(I,M)=ECI)

J3EM
92. J3=JB=1
IFCJB,LE,0) GO TO 94
2D 93 1=1,JB
93 EBT(I,JB)=EBT(I+1,JB+1)+GT2(JB+1)*E(I)
30 TO 92

94 I=4
93 IMi=1
I=sl+rl
IFCI,GT,M) GO TO 99
J=1
EBT(I,1)=mGT2(1)XECIML)
95 JMisd
JeJ+y
IFC)].GE,I) GO TO 95
EBTCI,J)=EBT(IM1,JM1)=GT2(JI*E(IML)
80 TD 96

IFi N50 ND SQUARING IS REQUIRED
99 IF(K,GT,N) GO TO 900

SAUARING

20 100 I=1.M

SUMz0,D0

20 101 J=1.M
01 SUMsSUM+DBLECEBT(I,J))*DBLECEBT(J,M))
00 ECI)=SUM

30 TD 80

SOLVE! THE MATRIX EXPONENTIAL PROBLEM FOR M=1
10 IFKIT.GE,1) EBT(1,1)=EXP(»B(1)%T)

TERMINATE
00: RETURN
END



SUBRDUTINE ETAB

COMPJTES XT=EXP(T»A)%B, WHERE' A IS SQUARE MATRIX AND B IS A COLUMN VECTO

SUBROUTINE ETAB (T,ABsNyM,P,SHIFT,IT,XToALFA,SAVE,WORK)

CALL! KAMLER

el
* (ﬂoPtTpITjNURKvﬂnALFA¢SAVE;NORK(10"+1)aSAVE(lpa)a“DRK(i;W@§§BMQ%

OOy

c
c
&
¢
G PIARAMETERS:}
c L E E A L B L B A L K LA KX 2 B A L X J
C:
g’ T INPUT:
[ N INPUT:
c.-
c i INPUT:
P
e
¢ A3 (N, M) INRPUTS
G
C‘
c P{M) INPUT:
¢
L
&
o SHIFT INPUTS:
C
¢
o
G 3 INPUTS
o
c
g XTON) QUTPUT:
C: ALFIA QUTPUTS
£:
C SO\VEi(.Mé l)
¢
£
C kAR X
g
¢

Q0UBLE! PRECISION
c‘;
c

IFEN,LE,0) GO TO
C‘
g
£
e

M 8 T IT EBT MEBT ALFA BB E 6T} GT?X%n

DIMENSION AB(NsM)»PCM) s XT(N) ,SAVEC(M,1),HDRK(M, 1)

TIME=VALUE
ORDER OF MATRIX A

ORDER OF THE MINIMAL (DR ANNIHILATING) POLYNOMIAL
OF: THE: MATRIX A WITH RESPECT TO THE VECTOR B

MATRIX FORMED BY THE KRYLOV SEQUENCE 0OF COLUMN
VECTORS B, AxB, Awx2%xB, ,.., s Axx(M=1)%B

VECTOR OF MINIMAL' (DR ANNIHILITING) POLYNOMIAL
COEFFICIENTS, WHERE THE CORRESPONDING POLYNOMIAL
IS XXAMEP (M) AXkk(MmL) 4., #+P(2) *X+P (1)

EIGENVALUE=SHIFT THAT HAS BEEN PERFORMED BEFORE
THE' COMPUTATION OF THE MINIMAL POLYNOMIAL,
(SHOULD BE~SET TO ZERO IF NOT USED)

INTEGER; SHOULD BE SET YO 1 AT FIRST CALL AND
GREATER THAN 1 AT SUBSEBUENT CALLS WITH THE SAME
MATRIX A

REAL' ARRAY CONTAINING EPX(TxA)*B ON EXIT

IF ITe=1, INPUT, IF IT>1 3 SCALING PARAMETER

REAL: SAVE ARRAY WITH AT LEAST 2xM#NGT ELEMENTS
WHERE' THE VALUE OF NBT IS BIVEN IN A DATA
STATEMENT OF SUBROUTINE 'KAMLER!

IN THE PRESENT VERSION NGT®12 axxkx

REAL WORKING ARRAY WITH AT LEAST Mx(M+2)#NGT
ELEMENTS, FOR THE ACTUAL' VALUE OF NGT, SEE THE
SUBROUTINE 'KAMLER!

SUM

99

COMPUTE THE EXPONENTIAL OF THE COMPANION MATRIX
OF THE POLYNOMIAL P BY KAMMLER'S METHOD

g

S =

\\\"\hv‘]:p[ % Y
R e
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g FORM EXP(TxA)xB

ETS=EXP(T#SHIFT)
20 20 I;l,N
3UM=z0,0D0
J=0

100 JsJ+#l
IFC).GT ,M) GO TO 20
SUMSUM+DBLECWORKCL,J))I*DBLECABCI,J))
80: TD 10

20« XTCI)=SUMXETS

99 RETURN
END
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CIY

OO0 OOoOOOOOO0O0OOOOOOOOOOOOCOOOO00000000000000000

SUBROUTINE GRETAB

384 1

COMPUTES' THE GRADIENT ZT OF XT=EXP(TxA)®B WITH RESPECT TD A PARAMETER V
UPDON WHICH THE N BY N MATRIX A DEPENDS, XT IS ALSD COMPUTED ON nguesr,i

SUBRDUTINE GRETAB (T,A,B,NyNA ITIXsXToZT,NZT ,NPAR,P,M,P2

tGRA, MGRA,NGRA,SHIFT,ALFA, WORK,SAVE)

JIMENSION ACNASN) )BCN) e XTIN),ZTCNZT,NPAR) ,,P(M),P2(1)
’ tGRA(MERA,NGRA, 1) ) WORK(N,1),SAVE(N,1)

PPARAMETER S

; & INPUTS
N INPUTS
ACNALND INPUTS
8L\N) INPUTS
IT INPUT:
IX INPUTS
XT QUTPUTS
NPAR INPUT:

2ZTONZTHNPAR) QUTPUTS

SHIFT INPUT:
M INPUT:
PLM) INPUT:
p2(,] QUTPUT,

GRA(CMGRA,NGRA,,)

ALFA QUTPUT;
NORKCNg )

kkkXk%k
SAVE(N,4)

JQUBLE! PRECISION

TIME=VALUE

ORDER QOF MATRIX A .
TWO=DIMENSIONAL REAL ARRAY (N,LE_NA) CONTAINING
THE MATRIX A

ONE»DIMENSIONAL REAL ARRAY CONTAINING THE VECTOR B
CONTROL' PARAMETER (INTEGER)=(SEE RELODW)

FOR IXx=0 XT SHOULD NOT BE COMPUTED
XT=EXP(T*A)%xB, PROVIDED IT»=1 AND IX_NE,O

NUMBER QF PARAMETERS 0?§THE'MATR;X A
TWO=DIMENSIONAL REAL: ARRAY (N, LE.NZT), ON EXIT THE
KeTH COLUMN OF ZT CONTAINS THE PARTIAL DERIVATIVE
VECTOR OF XT WITH RESPECT TD THE K=TH PARAMETER,
K=1,.0.¢/NPAR

VALUE OF EIGENVALUE=SHIFT TO BE USED IN COMPUTATIO

DEGREE' OF THE MINIMAL (OR ANNIHILATING) POLYNOMIAL
OF THE MATRIX A

MINIMAL POLYNOMIAL COEFFICIENTS

IF IT<e=1, INPUT, IF IT>1, REAL ARRAY WITH AT LEAST
2xM ELEMENTS TO STORE THE COEFFICIENTS OF THE
SQUARED MINIMAL POLYNOMIAL :
INPUT: THREE-DIMENSIONAL REAL ARRAY WITH N,LE, MG

NPAR,LE,NGRA AND WITH THE THIRD ACTUAL DIMEMENSIONG
PARAMETER NOT LESS THAN MAX(N,2%M), ON ENTRY GRA(CI,K
SHOULD CONTAIN THE PARTIAL DERIVATIVE OF A(I,J) WITH
RESPECT TD THE KeTH PARAMETER, THE INPUT MATRIX 18

OVERWRITTEN BY AUXILIARY BUANTITIES NEEDED SUBSERUEN

IF IT<=1, INPUT, IF IT>1 3 SCALING PARAMETER

WORKING AREA WITH AT LEAST Nx(4xN+4)+NGT ELEMENTS,
WHERE THE ACTUAL! VALUE OF NGT IS GIVEN IN SUBROUTI
'KAMLER!

IN THE PRESENT PROGRAM, NGT=12 wwxax

AUXILTIARY REAL ARRAY WITH AT LEAST Nx(2xM+4)+NGT
ELEMENTS: TO SAVE RESULTS OF THE FIRST CALL (ITe®1)
NEEDED ON LATER CALLS WITH DIFFERENT T (IT>1)

SUMATL

IFEN,LE,0) GD TO 99

M2sM+ M

IFCIT,6T,1) 6O TO 50

122MeM
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i

OO0 OO0

oooooonoo0

FORM XKRYLOV'S SEQUENCE IN SAVE

IFKM,LE,Q0) 60 TO 51
20 20 Isi;N
IFCJ,NE,1) 6O TO 10
SAVE(L,1)=8(1)

80: TD: 20

10: SUM=0,D0
20: 19 LE=1,N
AIL=A(I,L)
IFCLGER,I) AIL=AIL=DBLE(SHIFT)
19 SUMSSUM+AIL*DBLE(SAVE(L,J=1))
SAVE(I,J)=SUM :
20 CONTINUE

FORM COEFFICIENTS OF SQUARED MINIMAL POLYNOMIAL' IN P2

Dn SO'K=1'M2
SUME0, D0
I=0
1=K
IFKIG,LE.M) GO TOD 31
IsKeM
SUME2,00*DBLE(P(I))
I1G=%

31 Jakel:
I21+1
IPCILGT,IG) GO TOD 30
SUMESUM¢DBLE(P(I))*DBLE(P(J))
80: 7O 3%

30 PRAKJI=SUM

SET INITIAL CONDITIONS FOR HIGHER ORDER DERIVATIVES
20 40 K=1,NPAR

COPY GRAL.,Ks,) INTO WORK(C4s4)7 ZERD GRA(,,Ks1)
20 44 1s1,N
20 42 J=1,N

42, NORKCI,J)=GRA(I,K,J)

41 3RA(I1:K,1)%0,0

200 40 J=2,M2
JMisd=1
20 84 I=q,N
3UM=0,00
20 45 L=1N
AIL“(I(L)
IFKLLER,I) AIL=AIL=DBLE(SHIFT)
SUMESUMEAIL*DBLECCGRACL K JML))
43 SUMSSUM+DBLEC(WORKC(I,LIIADBLECSAVEC(L,JIM1))
44 GRA(I,K,J)=SUM
40 CONTINUE
PARTIAL DERIVATIVE MATRICES IN GRA ARE OVERWRITTEN NOW

FORM THE! EXPONENTIAL OF THE COMPANION MATRIX OF THE SAQUARED MINIMAL
POLYNOMIAL! IN WORK USING KAMMLER'S METHOD

KAMLER e=@> ( M B T IT EBT MEBT ALFA BB E

S50 CALL! KAMLER(M2,P2,T)IT)WORK,2xN, ALFA,SAVE(L1,M2+1),WORK(1,H4%xN+1)
' P SAVEC(L1,M243)  WORK(1,4%N+3))
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GT1 GTe )

COMPUTE ZT AND OPTIONALLY XT

51

b2

63.
b1

64
60
93

IFCIT,LE,0) 6O TO 99
ETS=EXP(T*SHIFT)

00 60 I=1,N
IFCIX.EQ,0) GO TO 61

SUM=s0,D0

J=0

BENE ST

IFKJ.GT,M2) GO TO 63 .
SUMESUM+DBLE(WORK(1,2xJ=1) ) *DBLE(SAVE(I,))
530 TO 62

XTCI)=SUMXETS

20 b4 K=1,NPAR

SUM=0,D00

Js0

AE HES

IFCJ.6T,M2) GO TO 64
SUMESUM+DBLE(WORK (1,281 ) )%DBLE(BRACI,K,J))
50 TD &5

ZTCI K)=SUM*ETS

CONTINUE

RETURN

END
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950

D

961 0:

MATRIX WRITING ROUTINE £4
SUBROUTINE MXWRT (NAME,MATRIX,MDIM,M,N)

sz==s
JOUBLE! PRECISION NAME
DIMENSION MATRIX(1),ROWC10),IR0OWN(20),F9020(8)
EQUIVALENCE(ROW(1),IRDONW(1))
JATA KOEZ72H /4F1,F2,F3,FU4/74H1,3X,4H2,2X,4H3,1X,4H4
DATA F9020732H ('0 ', 10CA6,'/',12,2X, 2X )) 7

PRINT 900
FORMAT(/66('MM'))
IFKMDIM,LE,O) GO TO 1
REALI CASE

KE2

INCR=2xMDIM

NR=10

SQ TD 2

INTEGER CASE!

(=1

INCRE®"MDINM

NR=2D

LOOP! FOR COLUMNS
12=0

JisJjesi

IFCJL1,6T,N) GO TD 9
J2=J2+NR

IFLJ2,6T,N) J2=N
IFCK,EQ,2) GO TO 200

RRINT 9010,NAME

FORMAT (10!, A6y '2")

IFI(J2,6T,1) PRINT 90100;§J'J=J1,J2)

9R1000FORMAT( 141 ,9%,20(1I5,!,!

9511
200

O =Y O ~n

= o
N e
foasie

O£

961

1FIJ2,6T,1) PRINT 9011
FORMAT (! mommmmmal)
691 T 100

FI020(6)=F1

IFCJ2,LE,9) GO TO 201

FROR0(6) =F3

17F(J2,LE,99) F9020(6)=F2
1FICJ2,GE,1000) F9020(6)=F4

NRITECL08,F9020) (NAME, Ju J5J1,J2)

PRINT 9021, (KDEZ,Jsd1,J2)
FORMAT(10(A2, ' ==m=m=',5X))

LDOP! FOR ROWS
2. 10 I=i,M

LDOP FOR ELEMENTS
JR=(:

200 4 J=J1,Je
LB=(JI=1) ¥ INCReKX]
LizsL2+1eK

P0: 5 LEeL1,L2
JR=JR#*1
IRONCJRI=MATRIX(L)
CONTINUE

JoRJ2=J1 41

IFKK ER,2) GO TO 6

INTEGER CASE

PRINT 901, CIROWCJ),J=1,JD)
FORMAT(10X,2016)
IF(M,6T,1) PRINT 9001,1
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9501

952
16

953

969

PORMATC('+!,14,',")

80. TD 10

REAL! CASE!

PRINT 902, (ROWCJ),J=1,JD)
FORMAT(1X,10613,6)
CONTINUE

IFICN,GT,NR) PRINT 903
FORMAT (66('=="))

60: TO:' 3

PRINT 909
FORMAT(/66('WiW') /)
RETURN

END
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MAIN PRETAB

- —— - -

DIMENSION FORMA (19)

0 DIMENSION A(9,9),8(9),AB(9,9,2),P(9),P2(9,2),XT(9),27(9,9)
1,5RA(99,9,18),AA(9,9,18) yWORK1(9,4),1W1(9),SAVER2(9,4),W0RK2(9,9,2)
2y NIRK3(9,9,4),1IK3(9,9),WORKA(9,9,5),5AVE4(9,9,3),ATA(1)
3,11(9),3J(9)

0 EQUIVALENCE (XTC1),IW1C1)),C2TC1,1),1W3C1,1))
1,(GRACL,1,1),AAC1,1,1),ATAC1)),(SAVE2(1,1),SAVE4(1,1,1))
20 (ADRKLIC1,1),WORK2(1,1,1),WORK3(1,1,1),WORK4(1,1,1))

EQUIVALENCE TABLE

KRYLOVL; IW1CN) WORK1(N,4)
ETA3 : XT(N) SAVE2(N,4) WORK2 (N, N,
KRYLOV2: TW3(NgN) AACNNp2%N) WORK3 (N, N,

GRETAS 3 XT(N) ZT(N,NPAR) GRA(N,NPAR,2%N) SAVEU4(N,N,3) WORKH (N, N,

DATA SHIFT/0,0/

MAXES
NGT=12

THE VALUES OF MAX AND (2xMAX) OCCUR IN THE DIMENSION STATEMENT ABOVE
AND 30TH STATEMENTS (DIM,AND MAX= ) MAY BE CHANGED CORRESPONDINGLY

HOWEVER, NGT,LE,2%*MAX AND NGT,LE,MAX*(MAX=4) MUST HOLD, WHERE THE VALUE
OF! NST SHOULD NOT LESS THAN THAT IN SUBROUTINE KAMLER (DATA STATEMENT)

FURTHERMORE, MAX,GE,2 MUST ALSO BE FULFILLED
AITH NGT=12, MAX,GE,6 SHOULD BE SATISFIED

IFICNGT ,GT . 2#MAX ,OR NGT4GT, (MAX=4) %*MAX) STOP

LABEL! CARD INPUT

0 REZAD(105,905,END=9999) FORM1,FORMA
i FORMAT(20A4)

NRITEC108,908) FORM1,FORMA
i FORMATC111,20A4/)

CONTROL PARAMETER INPUT

"~ FDRMATC(INT=!,I3,! TO=',F4,1,' He',F8,4,5X,12)
PRINT 910,NT,T0,H,NB
. FORMATC('ONT=!',I3,' TO=',F4,1,' H=',F8.4,' NB=',I2)

MATRIX QORDER' AND ROW FORMAT INPUT

READ 906,N,FORMA

l FORMATC('N=!,12,19A4)
PRINT 909,N,FORMA

' FORMATC'ON="',I2,19A4)



*% NoLE,MAX MUST HOLD wxx
IFEN,GT ,MAX) STOP

ATRIX INPUT
27 100 I=1,N

READC10S,FORMA) (ACI,J).J=1,N)
ARITECL08,FORMA) (ACI,J),J=1,N)

PRINT 900
FARMATC(!tQm! ,65('=="))

CALLI MXWRT(6H A r Ay MAX,N,N)
M3=NB!

IFIN3,LE,0) MB=N

DO 1 IB=1.MB
IFNBL.LE,0) GO TO 102

READ VECTOR B

READC10S,FORMA) (B(I),I=1,N)
62:TD 101

CHOOSE! NATURAL UNIT VECTORS FOR B

2001010 Is1,N
0 3(1)=0,0
3(I8)=1,0

NT1=aNT#+1

IFCNT,LE, 1) NTI=NT

IFi (IBL,G6T,1) PRINT 901
FORMAT('1!)

CALLI MXWRT(6H B eBy1,1,N)
PO 1 JT=1,NTY

IT=JT=1

IFNT LE,1) 1T=aNT
T=TO+FLOATC(IT)*H
IFKNT,LE,1) T=TO
IFKJT,67T,1) GO TD 600

AKKARKKKKR KK KA RRKRR KK RRRARKNKA KR AR AR ERRARRARARAARRA IR AR R KR AR Ak ko ke Ak dokhk ok ok kX kkk
DETERMINATION OF THE MINIMAL POLYNOMIAL OF A WITH RESPECT TD THE VECTOR B

USING KRYLOV'S METHOD

20 500 I=1,N
00 A3(I,1,1)=B(I)
CALLEKRYLOV(NpAlMAx'ABI1OSHIFT1P;M,RN;WORKl}le)

AAKKKKKKKEAKKAKRKRKKKRARRAK AR AARKAAAAARKAANRRARRARRNRR A AR AR AR R AR A A AR AR AR AN KR

CALL! MXWRT(eH P tPelyt M)

& Aok Kk R K ok K K ke ok ke ke kK Kk kR R Rk ok ke ok Kk ok ok o ok ok e ol ok ok ok o o o ok ol A ok ok o ok o o K ok ok ok 0k i o ke ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok Rk

COMPUTATION OF XT=EXP(TxA)*B

00 CALLI ETAB(T,ABsNyM,P,SHIFT,JT,XT,ALFA,SAVE2,WORK2)



KRKERKKERKERE KRR KA KRR KRR AR AR A AR AR R ARARNA R AR AN A R ARAA R AR A AN AR AR A AR A AR AR NK

IPLIT, 6T, 1) GO TO 200

Ll=1

IFI INT.LEL1) LimoO

PRINT 920,L1,(J,J=1,N)

FORMATCIL,!' IT',SXs'TIME ',9(5X,'X',I1,6X))
PRINT 921
FORMAT(66(1==1))

PRINT 922+ IT,T,C(XTC(J),J=1,N)
CONTINUE

KEEKKKRKKE XN KKK AAKRRARKR KK KRARAAKNARRKRARNRARNRR AR AARRAAANRA AR AR AR kAR kAR AR A AR AR R AKX kK

DETERMINATION OF THE MINIMAL POLYNOMIAL OF A BY THE MATRIX KRYLOV METHOD

PJT THE: N=BY=N IDENTITY MATRIX INTO THE FIST NaN LOCATIONS OF THE

ARRAY 'AA'
NNESNAN
20 700 I=1,NN
00 AIA(CI)=0,0
NPiaN+]

10

20 710 J=1,NN,NP1
AIACJ)=1,0

LI KRYLDV'S METHOD

CALL! KRYLOV(N, A, MAX, AAsNySHIFT,P,M,RN, WORK3,IW3)

KKK KREKK KRR JK KKK K k& &k K &k ok ok k& okok k& K K ook ok ok e ok o ok ok ok ok Rk R R ok K ok e Rk R ok ok ke ok ok ok ok ok ok ok oK Ok e ok ok K ok

CALLI MXWRTC(6H PCA) ,P,1,1,M)
PRINT 921

INPUT COMPARTMENT MATRIX PARAMETER STRUCTURE

READC105,904,END=1000) NPAR

FORMAT(201I3)

PRINT 903,NPAR

FORMATC(!1 NPARs',12/)
NPARLLEL,MAX MUST HOLD =%#x
IFCNPAR,GT,MAX) STOP

READC105,904) (II(CI),Is1,NPAR)

PRINT 904,(IICI),I=1,NPAR)

READC105,904) (JJCJ),J=1,NPAR)

PRINT 904, (JJ(J),J=s1,NPAR)

SET PARTIAL' DERIVATIVE MATRICES

D0 300 K=1,NPAR

DD 301 Isi N

DO 304 J=i,N

GRACI Ky J)=0,0

I€=11(K)

JE=JJ LK)

GRACJK K, JK)==1,0
IFKIK,NE,0) GRACIK,K,JK)=1,0
CONTINUE



LJ0P FOR TIME VALUES
DO 3 JTs1.NT1
1TzJT=1
IFKNTLLE,1) ITeNT
TETO+FLOATCIT)»H
IFENT,LELL) T&TO

KAKKKKK KKK Kok &k ok ok ok ok & &Kk K k& ok ok ok o ok A o o A e ok e R o ok ook ok ok ok ok ok ok o ol ke ok ok ok ok ok o ok ok ok ok ok ok ok ke ok ok ok ke ke

COMPUTATION OF THE GRADIENT, ZT, OF XT=EXP(TxA)*B

CALLI GRETAB(T, A, BN, MAX, JT)1,XT,ZT,MAX,NPAR,P,M,P2
P s GRA, MAX,MAX,SHIFT,ALFA,WORK4,S5AVE4)

KEKKRKKKRKEE AR R AR KA R AR AR KR AR KA AR AR KRR AR A AANARA RN RALAA AR AN A AR ARARRR AR KRR AR KRR A

IFKJIT,.GT,1) GO TO 30

PRINT 930, (J,J51,N)

FORMATC('] IT!,5X,'TIME ',9(5X,'Y',11,6X))
PRINT 921

PRINT 922, IT,T,(XTCJ),J=1,N)
PRINT 93}

DO 33 Kmi:NPAR

PRINT 933,K,(ZTC(J,K),Jd=1,N)
FORMAT(! DY, L, '8, 4X,9613%,6)
PRINT 931

FARMAT(1X)

CONTINJUE

GO TD 1000

9 '8T0QP
END



%*J0B

D20 138 /38

XC/31B/COPY,ULWG0, (PRETAB)

BIB

"LINKD!

0008

6CB6 6D12 B344.

XC/LINKD/SLyULWKSG,CL,FR, (PRETAB)

LINKD

006D

6CBe 6086 B3CH

*xk SEGMENT RELDCATION TABLE *x*x

10
11
12
13
14
i3
16
17
18

19
20

ed
22
24
25
2b
27

28
29

30
31
32

® NV S W

F3CDS
RETA3!
PRETA3
LFSINI
FsINIL
FsSTP
FsSTPN
LF3RBEI
FiREW
FSENDFI
LFEREC
F3RECS
LFsROFI
F3RDF
LFRI0
FslID
LFsFIO
F3FIO
LF 3 WRFI
F3WRF
XWRT
MXWRT
LDSCIR
FRCVIRI
RYLOYV
KRYLOV
TAB.
ETAB
LDSOPR!
F:OPPR
RETA3
GRETA3!
LFSES
FIDENR!
FSFENR
LFis ERFI
FIERFQ!
LFSESFI
FSESF
F3DECI
Fi:SABLI
F3INBLI
FsINCN
F3TAB
LFRESC!
F:GETC
FiPUTCt
LPSLDPI
F:LDDPI
LDSSDP
FsSTDP
LDSCRD
F2CNRDI
LDSFSJY

0000
0124
298C
52A6
32C0
32CH4
32F8
3302
daid
3344
3354
3386
3384
33E4
33E8
33EE
3406
3490
3494
34A0
34A4
34AA
35A4

38BE!

38CH4
38Fb
3942
3CC4
3D34
3E98
3E9A
3EAZ
3FA4
G4FA
43508
4512
4658
HoTA
4694
4794
5482

S4BE

54cCC
SHE®
SUFA

551 Ei

5522

SS3E!

555C
5562
5576
557C
5590
5594
559C

\' },Ll ht’/,ye;\

X

\\

Conp *

\,:w,tm %\

1800 g

W

4,

%



33
34
31
36
37
38
39
40
41

42

43
44
45
46
47
48
49
50
51
52
53

54
55

56

*xx LIST OF COMMON UTILISER

kXX

F:DFSJ
XLDS
FsDFMU
DFaLDS
F3sDFAD
LDSCDR
F:CVDR
ECOMP!
DECQOMP!
TSOLY
ITSOLV
AMLER!
KAMLER
LDSEXPI
EXP
LDOVFD.
FsOVFD
DFCOM
DFSFNC!
LDFASU
FADFSU
LDSNO
DNORM
LLOSABS
ABS
LDSCMR!
F:CMPR
LDSNGLI
SNGL
DVLDS
FiDFDV
RSOLV
TRSOLV
LDSIR
AMAX1
LDSLOG
ALDG
LDSCRI
FsCVRI
VELDS
FREX1I
LF3ERR!
FIERR
DEBUG
LUS
USERR

UNSATISFIZD REFERENCES

53A2
- 314
55F0

S76E!

5774
3786
5784

S78E:

58338
58C6
5098
5F12
6008
6540
659C
65EH
66EA
673C
6740

674C:

6758
6840
6B84UA
63EB

68EC!

68FA
68FE
6920
6924
6928
693C
6A6C
6ACO
6C02

6CoC
6C2E!

6C76
6D3A
603E

6DBE

6DAC
6ESH

bESE!

6F36
6F50
6F54

* %k

LR

xx% LIST OF COMMON SP CALLED %%x

MSEXIT
M:IO

MIWAIT
M3BNHX
M3 BNDC!
M3IMOVEI
M3ABRT
M3INDI
M3FLD3!

SZC
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