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1. BEVEZETÉS

Az értekezés tárgya ex p (t A) / ill. exp (t A) b /, valamint 

ennek az A mátrix valamely paramétere szerinti parciális de­

riváltja kiszámítására vonatkozó numerikus eljárások megadá­

sa ill. elemzése, ahol exp(-fcA) a jólismert hatványsorral de­

finiált mátrix-exponenciális függvény. Foglalkozunk még ezen

eljárásoknak az un. biológiai kompartment-rendszerekre való

alkalmazásának kérdésével is.

Az értekezés felosztása a következő. Jelen első fejezet 

tartalmazza a problémafelvetést és az előzményeket, továbbá 

a jelöléseket és a gyakrabban használt elméleti eredményeket. 

A második fejezetben a mátrix-exponenciálisnak és par­

ciális deriváltjainak kis perturbációkra vonatkozó érzékeny­

ségét vizsgáljuk, melynek fontos szerepe van az egyes algo­

ritmusok megítélése szempontjából. Itt egyrészt élesítjük 

az irodalomban található perturbációs korlátokat a mátrix­

exponenciálisra vonatkozóan, másrészt az exp(tA)b vektorra 

ill. exp(tA) paraméter szerinti deriváltjára is megadunk 

abszolút és relativ perturbációs korlátokat. Ezenkívül ez a

fejezet a mátrix-exponenciálissal kapcsolatos kondíciós szá­

mokról is tartalmaz néhány uj eredményt.

A harmadik fejezetben három módszert Írunk le, melyek 

részben екр(-ЬА), részben exp(-tA)b kiszámítására alkalmasak. 

Mindhárom eljárást elemezzük hatékonyság, ill. pontosság

szempontjából, rámutatva azok kényes pontjaira és alkalmaz­

hatóságuk korlátáira. A négyzeteléssel kombinált Taylor-sor



módszerrel kapcsolatban bevezetjük egy mátrix hatványozásra 

vonatkozó kondíciós számát, amely lokálisan jellemzi az

öröklött relativ hiba terjedését a mátrixhatványozás ill. 

négyzetelés során, és rámutatunk ennek kapcsolatára a Van 

Loan által bevezetett exponenciális kondíciós számmal. A 

spektrálfelbontás módszerénél a kerekítési hibák hatásának

elemzésével alátámasztunk egy, az irodalomban bizonyítás 

nélkül közölt állitást a módszer pontosságával kapcsolatban. 

A harmadik eljárás, a minimálpolinom-módszer, általunk ki­

dolgozott módszer, mely egy ismert alapötlet továbbfejlesz­

tésére épül, és elsősorban £Xp(-tA)b kiszámítására alkalmas. 

A negyedik fejezetben megadjuk a megelőző fejezet mód­

szereinek kiterjesztését a mátrix-exponenciális paraméterek

szerinti parciális deriváltjaira. Ezek közül a minimálpoli­

nom-módszer továbbfejlesztése, valamint a spektrálfelbontási 

módszer kiterjesztése a második parciális deriváltakra saját 

eredményünk.

Az ötödik fejezetben először bemutatjuk a biológiai

kompartment-/rekesz-/rendszerek analizisénak alapproblémáit 

és módszereit /modell-egyenletek, identifikálhatóság, para­

méterbecslés/, és megvizsgáljuk e rendszerek mátrixainak, az

kompartment-mátrixoknak a spektrális és egyéb tulajdon­un .

ságait. Itt néhány uj eredményt is bebizonyítunk a kompart-

ment-mátrixokkal kapcsolatban. Ezután megvizsgáljuk az előző

fejezetekben ismertetett módszerek kompartment-rendszerekre

való alkalmazásának célszerű módjait, és megmutatjuk, hogy

bizonyos esetekben egyes módszerek kompartment-mátrixra nu­

merikusán igen stabilak. így például bebizonyítjuk, hogy

2



szinguláris kompartment-mátrixok exponenciálisának hatványo­

zásra vonatkozó kondiciós száma -norma esetén mindig opti­

mális. A fejezet végén egy számpéldán bemutatjuk a minimál- 

polinom-módszer alkalmazását kompartment-rendszerre.

Végül egy mellékletbem megadjuk a minimálpolinom-mód- 

szer Fortran nyelvű implementációjának leirását, valamint a

program moduljainak és a futtatási eredményeknek a számitó­

gépes listáját.

1.1. A probléma felvetése

A mérnöki tervezéstől az orvosbiológiai kutatásig a

matematika számos alkalmazási területén merül fel az

x - A x x /0) ^ b /1.1.1./

lineáris állandóegyütthatós differenciálegyenletrendszer 

numerikus megoldásának igénye, ahol Аб IR valós mátrix és

be ÍR" valós vektor. E kezdetiérték-probléma megoldása for­

málisan az

exp(íA) bx = /1.1.2./

alakban adható meg, ahol a mátrix-exponenciális, €Xp (bA)
± A

/melyet a későbbiekben néha e 

konvergens

alakban is Írunk/, a mindig

exp (bA) =5 ^ Ak
/1.1.3.i

mátrix-hatványsorral definiált.

A mátrix-exponenciális numerikus meghatározása iránt a
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hatvanas évek vége óta egyre fokozódik az érdeklődés, és 

mérnöki folyóiratokban /pl. Proc. IEEE egy IEEE Trans. Aut. 

Control/ igen sok cikk jelent meg, melyek exp (IÁ) különféle 

előállításait javasolták számitás céljára. E cikkek legtöbb­

jében a számitógép véges pontosságából adódó kerekítési 

hibákat - melyek exp(tA) számításakor általában a legtöbb 

problémát okozzák a pontosság szempontjából C383 - teljesen

figyelmen kivül hagyták. Az emlitett módszerek kritikus át­

tekintését adja Moler és Van Loan összefoglaló cikke ["38},

amely nagy vonalakban elemzi a módszereket a kerekítési hiba

terjedése és hatékonyság szempontjából.

Bár matematikailag exp(-fcA) és exp(tA)b kiszámításának 

problémája ekvivalens, számítástechnikai szempontból célsze­

rű a két számítási feladatot megkülönböztetni, ugyanis bizo­

nyos módszerek a két feladat közül /memória- és műveletigény 

szempontjából/ az egyikre lényegesen hatékonyabbak, mint a 

másikra. E különbség nem mindig jut kifejezésre Moler és Van 

Loan emlitett cikkében, ahol bizonyos módszerek kevésbé ha­

tékonynak nyilvánításakor elsősorban A) meghatározását

tartották szem előtt. Az általunk vizsgált módszerek közül

műveletigény szempontjából a négyzcteléssel kombinált Tay- 

lor-sor módszer exp(tA), a -minimálpolinom-módszer expOt A) b 

kiszámítására hatékonyabb, mig a spektrálfelbontás módszere

egyformán hatékony mindkét feladatra.

Paraméterek szerinti parciális deriváltak számítása

Egy másik számítási feladat, amely szintén sokszor fel-
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merül a gyakorlatban, az /1.1.1/ kezdetiérték-probléma 

megoldásának az A mátrix bizonyos paraméterei szerinti par­

ciális deriváltjainak kiszámitása. Tegyük fel, hogy A függ 

bizonyos paraméterektől és jelölje 0 ezek bármelyikét /a to­

vábbi paraméterektől való függéstől pillanatnyilag eltekint­

hetünk/. Ekkor

A = А (0) és x = x (1! 6) /1.1.4/

és feladatunk tA(9)
- /i. n\ 9 *(-t,®) 9 ez.z(t,8):= ■ 9ё’— =—se /1.1.5/

számítása a paraméter valamely rögzített B-0O értéke mellett 

/az /1.1.5/ képletben a parciális deriválás komponensenként 

értendő/.

Az /1.1.5/ szerint definiált 2 (.) függvényt az 

függvény 9 paraméteréhez tartozó érzékenységi függvényének

x (.)

nevezzük; ez bizonyos simasági feltételek esetén /melyek a

gyakorlatban szinte mindig teljesülnek/ kielégíti az /1.1.1/ 

rendszerhez kapcsolódó

fr * + A 2
un. érzékenységi /variációs/ egyenletet. Hasonlóképpen, a 

teljes mátrix-exponenciális parciális deriváltja, Z = ZCf,0) 

:= (Э/30) e-xp A(0)) kielégíti a 

j, QA -fcA
2 - 56 e

2(o)= 02 = /1.1.6/

+- A Z , Z (o) = 0 /1.1.7/

lineáris inhomogén mátrix-differenciálegyenletet.

Az érzékenységi függvény elnevezés abból ered, hogy г 

első rendben jellemzi x érzékenységét a 0 paraméter egy rög­

zített 0O körüli kis megváltozására vonatkozólag, a követke­

ző összefüggés szerint:
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*(t,e)- xOt.e«,)^ z(t,e0)-(e-e0)+ tr(e-e„)
E szemléletes jelentésén kivül az érzékenységi függvény egy 

fontos alkalmazási területe az /1.1.1/ lineáris rendszerben 

szereplő A mátrix /általában egynél több/ paraméterei "legva- 

lószinübb" értékeinek becslése gradiens-tipusu iterációs mód­

szerrel /С23, 226.0./, mérési adatokhoz való illesztés utján.

Ilyenkor az iteráció minden lépésében kiszámitandók az il­

lesztendő függvény parciális deriváltjai, amelyhez viszont 

szükség van x paraméterek szerinti parciális deriváltjai

kiszámítására. A paraméterbecslés problémájáról az 5. feje­

zetben, a kompartment-analizissel kapcsolatban ejtünk több

szót.

Az érzékenységi egyenletek speciális szerkezete a nume­

rikus megoldásnál lényegesen kihasználható. Az /1.1.1/ meg­

oldására ill. exp(tA) kiszámítására kidolgozott módszerek

továbbfejleszthetők a megfelelő parciális deriváltak kiszá­

mítására vonatkozólag. Szemben a mátrix-exponenciális kiszá­

mításával foglalkozó publikációk nagy tömegével, a paraméte­

rek szerinti deriváltakkal kapcsolatban viszonylag kevés 

cikk található, melyek nagyrészt a Taylor-soron ill. a spekt- 

rálfelbontáson alapuló módszereket Írják le. Ezenkívül idő­

függő lineáris differenciálegyenlet-rendszer esetére lineá­

ris többlépéses numerikus integrálási módszert is javasol­

tak [36], amely azonban állandó együtthatós esetben kevésbé

hatékony, mint más módszerek, elsősorban nagyobb műveletigénye

miatt.
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1.2. Jelölések és elméleti alapok

E pontban megadjuk a használt jelölés- és fogalomrend­

szert, valamint az ezzel kapcsolatos gyakrabban alkalmazott 

elméleti alapösszefüggéseket.

Jelölésj egyzék

Logikai és egyéb jelek:

V. 3 - univerzális és egzisztenciális kvantor)

<=$ , =v> - logikai ekvivalencia és implikáció

l!,í - halmaz és tartalmazás jele

A*B A és В halmaz Descartes-szorzataaz

:= - definiáló egyenlőség

- bizonyítás végeО

Valós és komplex számok és függvények:

IR.C - valós ill. komplex számok halmaza

(a.bj , Ca.U ( (а, Ы , [a, b) - nyitott, zárt, balról nyitott 

ill. jobbról nyitott intervallum IR-ben

8.-: Kronecker-delta4
sgnL.) - előjel-függvény /ha és x<-0J x = 0( x>0 akkor

Sgn(x) értéke rendre -1, 0, 1/

- a c valós vagy komplex szám abszolút értéke

- a c komplex szám konjugáltja, valós része,

lei
C . Rec . Irv\ c

ill. képzetes része

L - képzetes egység

- X-en értelmezett, Y-ba képező függvényf (.): X Y
II. II norma

(У (.) - kis ordó függvény. Ha és g(-): X -*(C

7



ahol X és Y normált terek, akkor

fM = őr(g6o) 4=4> ßim. llfooll/ l^(x)l - 0x-+ a
I X-> CL

Ш - nagy ordó függvény. Az előző jelölések mellett

4=ф Э£>0 3K Vxe X
tlx-а II < =$> WfU)H - К l$Wl

f íx)= О'С^(х)) х-> аI

[М =СГ(%с*)) <É=S>3KVxéX Il-f(x)ll4 К lg60|

fco, c<Ä/ao-f(.) - valós argumentum /általában "időparamé­

ter", -t vagy s/ szerinti deriváltfüggvény

az fC.) skaláris argumentumu függvény 

k.-adik differenciálhányadosa / k^0; egész/

- az f (•) többváltozós függvény 0 paramé­

tere/változója/ szerinti parciális deriváltja

- az fi.) valós vagy komplex változós 

/nem feltétlenül különböző/

pontokhoz tartozó (n- '0-edrendü osztott diffe­

renciája.

í(kV.)(

э Ю (ът) ff.)"63 >

К- • «

függvény X \ ) • • ' I

Vektorok és mátrixok:

IR*, (C* - valós ill. komplex -elemű /oszlop/vektorok

halmaza

ÍR^ - IR’"’ nemnegativ elemű vektorainak halmaza

x 1T
vektor, melynek i-edik eleme 

Уъ-elemű nullvektor

- csupa egyesből álló un. összegző vektor

- a j-edik u-elemü /természetes/ egységvektor 

az x = (ix^') oszlopvektor transzponált ja;

k = ( хд! )n = С X - тг-elemü /valós vagy komplex/ oszlop
41 *

o-(ol

Sí = (íij)^
-j

XT=fx
Л I • I

sorvektor

8



хн =гг *„] 6- oszlopvektor Hermite-transzpo-az-I I *'•;

náltja; sorvektor 

- az л vektor valamely normája

- vektorértékü lRu-be vagy C^-be képező

II5II
* (• ) = (xt(-))>v

függvény
X < у (x^y j Vó: (*«.'* }/t)

- valós ill. komplex mxn-es mátrixok halmaza

= [?<, ...,9n]= T'1

j

A= - A valós vagy komplex глкп-es 

mátrix, melynek (-íjj) indexű

l-edik sora
UTJ

j-edik oszlopa a j = ,eleme a-. ,
J

pedig b[=[a^
I '• ‘)

0 = (0)

I =^ij)n>,n 

AT AH

mxrt-es nullmátrixi*u»v

- n*n-es egységmátrix

- az A mátrix transzponáltja és Hermite-transzpo-I

náltja

az A mátrix normája

az A mátrix logaritmikus normája

- az A mátrix tetszőleges ill. t-edik saját­

értéke /valamely sorrend szerint/

HAH
де(А)

'XCA), vA>>

IVA>| /p(A) az A mátrix spektrálsugara / p(A) 

az A mátrix spektrális abszicisszája:

= műi 
■léüáKv

«(A)
(A6rh)oc (A):=^** R* Я-СA)

A mátrix logaritmikus inefficienciájac^(A):= |xCA)-oíCA) 

tr (A 

elet (A)

az

az A mátrix nyoma

A mátrix determinánsaaz

A"1 A inverz mátrixa

К (A) A mátrix /invertálásra vonatkozó/ kondiciósaz

k(A)=||AI|IIA-'1 IIszáma

9



еА = ехрбА)( etA = exp(tA) A négyzetes mátrix exponen-az

ciálisa, "mátrix-exponenciális"

- az A négyzetes mátrix exponenciális kondiciós 

száma a t helyen

- m-edrendü X sajátértékü /felső/ Jordan-mátrix;
:= (^+ )

V (A, t)

3- (A)

AéB (AkB)
méretű valós mátrixok

ahol A és ВViVJ azonos>

МХП1V\X nX (. ) = -be vagy C- mátrixértékü, IR -be képe-rv

ző függvény

Megállapodás. A áídt, Ъ/д9 és egyéb differenciáloperátorok

és az integrál vektor- vagy mátrixértékü függvényekre való

alkalmazása mindig elemenként értendő.

Mátrixok particionálása:

AU'(% )(«k„-rby(sw-st). . AА/и • )

fc.= -1, . • {. = <1,..^ Y>;A ■= (a-:) =
° v LJ 'МХП.

r^O<rzZ ... <rAt<r/U+1 

= 0 4 <

= m/

Ap4 .... A • c s ь>-М="• t

A mátrix particionált alakban való megadása;az
kea particionálásban szereplő A 

egybeesik az A mátrix Q.

mátrix a;; eleme
LJ

elemével
ke

VbV(/

A„ 0 ... 0
О Аг • . •

l4= 'l (— (tw.
А = А.Ф...ФА„-= •. •. 0 

_0 • • -.0
YYV

az А 2Гcu rendű négyzetes mátrix az A
lOrA '

t • *1 » I

négyzetes mátrixok direkt összege
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Lineáris algebrai alapok

A következő definícióban megadjuk azon mátrixosztályo­

kat, amelyek a későbbiekben említésre kerülnek.

1.2.1. Definíció. Legyen A = (aij) 

mátrix. Azt mondjuk, hogy 

A szimmetrikus, ha AT=Aj 

ha AH = A ;
A ortogonális, ha ATA = I ;

A unitér, ha A^A = I ;

AH A = A AH ;

A ferdén szimmetrikus,

A permutációmátrix, ha létezik az számoknak egy

olyan i-j ( , гп Permutáció j a, hogy A = [ §4-

A diagonális, ha

A felső trianguláris /felső háromszögmátrix/, ha

/komplex/ négyzetes

A hermitikus,

A normális, ha

ha AT = - A ;

.. , e ,• ] .» - гп J /S I '

A = (°-u Sy) пхл.

a Ч " 0 >esetén

A alsó trianguláris, ha AT felső trianguláris;

ag = 0 ;
A /felső/ Hessenberg-alaku, ha г>^’-Н esetén ;

A kompanion- vagy Frobenius-mátrix, ha esetén

j= V-j*1»
A nilpotens, ha A™ = 0 }

A szinguláris, ha detíA^O j

A nemnegativ /pozitiv/ elemű, ha A ^0 / A>0/j

A szigorúan felső trianguláris, ha -re

)<)

A reducibilis, ha található olyan тг-edrendü V permutá­

ciómátrix és olyan B = (b,;j)pXp f 

mátrixok, hogy p| ^ 41 p+-^=*t és

Г - ('г.Л D-(dcj )^XC|
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?-‘AT> = [oSL
A irreducibilis, ha nem reducibilis;

A lényegében nemnegativ, hogyha főátlón kivüli elemei 

mind nemnegativok;

A pozitiv /szemi-/def init, ha AH=A és \/t •• A^(A)>0 j

oc (A) <0.A stabil tipusu, ha

A mátrix sajátértékproblémája alatt sajátértékei ill. 

sajátvektorai meghatározásának feladatát értjük. Az alábbi­

akban a sajátértékproblémával kapcsolatos néhány alapvető 

klasszikus eredményt idézünk.

1.2.1. Schur-féle felbontási tétel /[41], 302. о./ Minden AéCrun

mátrix unitér-hasonló egy felső háromszögmátrixhoz, 

azaz van olyan unitér 0.£ C ftxh, felső trianguláris I
hogy

A = Q FLQ.H
/1.2.1/

A /1.2.1/ előállítását A Schur-féle felbontásának ne­

vezzük .

Megjegyzés. R főátlója A sajátértékeit tartalmazza,

multiplicitásuknak megfelelő számban.

1.2.2. Jordan-féle kanonikus felbontási tétel /[41], 362. o./
nxnMinden A£ (Г 

összegéhez, azaz van olyan Vo(T

mátrix hasonló Jordan-mátrixok direkt
nxn. nemszinguláris mátrix,

hogy

A 5 V Vj /1.2.2/

ahol

\ * í\) Ф .. (At)
1 k. /1.2.3/

12



к
2. - -vu .
v-1I • * • I

А 3-д mátrixot A Jordan-féle kanonikus alakjának nevez­

zük. А («i=. ) számok az A mátrix /nem feltétlenül kü­

lönböző/ sajátértékei. A direkt összeg ^.(A^) mátrixait a 

kanonikus alak Jordan-féle blokkjainak nevezzük. А V mátrix-

és

пак а blokk indexeihez tartozó oszlopait a A^; saját­

értékhez tartozó /jobboldali/ fővektoroknak, V~^

indexű sorainak Hermite-transzponáltjait pedig A—hez tartozó 

baloldali fővektoroknak nevezzük. Ezek közül az első index-

ugyanazon

hez tartozó, jobboldali és az utolsó indexhez tartozó balol­

dali fővektor rendre a A^ sajátértékhez tartozó jobb- és 

baloldali sajátvektor.

1.2.2. Definició. Azt mondjuk, hogy az A mátrix A sajátértéke

defektiv, ha а "3"д 

tozó Jordan-blokk rendje egynél nagyobb / 3 A;=A: 4 /.

Azt mondjuk, hogy az A mátrix defektiv, ha van defektiv 

sajátértéke; egyébként А-t nemdeféktÍvnek vagy diagona- 

lizálhatónak nevezzük.

1.2.3. Definició. Azt mondjuk, hogy az A mátrix derogatórius, 

ha Jordan-alakjában valamely többszörös sajátértékhez 

egynél több Jordan-blokk is tartozik; különben A 

derogatórius.

kanonikus alakban valamely A -hoz tar-

nem-

Egy mátrix karakterisztikus polinomja akkor és csak

akkor esik egybe minimálpolinomjával, ha a mátrix nemderoga- 

tórius C 53 3 -

Most néhány mátrixosztály speciális spektrális tulaj­

donságait foglaljuk össze.
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nxn
1.2.3. Tétel С41]. Ha Ae € normális mátrix, akkor van olyan

K*nnxn unitér és AeCQ,£ C diagonális mátrix, hogy

A-(3AQH /1.2.4/

nxnHa ezen túlmenően A hermitikus, akkor A é ÍR. 

sajátértékei valósak, és ha A még valós szimmetrikus 

mátrix is, akkor Q £ IR

, azaz A

nxn ortogonális. Ha A pozitiv sze- 

midefinit/definit/, akkor sajátértékei nemnegativök/po­

zitivok / .

1.2.4. Tétel /[45j, 453. o./. Legyen A = (ал") kompanion-tj ' nxn

-/Frobenius-féle/ mátrix. Akkor (a) A nemderogatórius; 

(u) A karakterisztikus egyenlete: -an2A-= Ö.

Vektor- és mátrixnormák. Logaritmikus normák

1.2.4. Definició. А It. Ц : (Г * [О, со) függvényt vek tor normának 

nevezzük, ha teljesiti a következő feltételeket /"vek­

tornormák axiómái"/:
(•0 Vx eCft •*
(a) VxeC7L{ Vee(T =

(•i-cO VxCn; Hi+v11 á ii£ii + i/vii

x = 0(I X I) a О Ф=Ф

IIС X II = ICI-их II

A vektornormák: axiómáiból következik, hogy egy vektor-

II x II / .norma mindig folytonos függvény / l|xn-xll

Amennyiben egy partikuláris normáról van szó, úgy azt

О =? II in И

alulindexezéssel jelezzük. Az alkalmazandó konkrét normák az 

6p-normák közül kerülnek ki, amelyek a következőképpen 

definiáltak:

un.

Vp

Lów. II X Kp = -VvyOLX |x^ I 
p->co feéLü'ft'

p € Pt,o°)II x II
j

: =
/1.2.5/
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Az íp-normák közül csak a p-s't^oo esetekhez tartozó 

"szumma" (íj, euklideszi(£2) és Csebisev-tipusu( normá­

kat fogjuk alkalmazni. E vektornormák között VxeflTn esetén 

fennállnak az alábbi egyenlőtlenségek /С453, 621. o./:

11*11 é 11*11,, é u Шоо 

IUII«, n/2 11x11«,

ъ yiW*\é 11*11^ UxlL,
/1.2.6/

Az /1.2.6/ egyenlőtlenségek az és ü^-normák

bizonyos egyenértékűségét, ekvivalenciáját fejezik ki. Ilyen

értelemben bármely két vektornorma egyenértékű:

1.2.5. Vektornormák ekvivalenciatétele /С55Д, 40. o./. Bármely

két -en értelmezett ll.il* és II. 11^ vektornorma ekviva­

lens, azaz léteznek olyan b pozitiv konstansok,** 1 c*#

hogy

,J-11* - 11-"tt - c*# 11-11* •

Nyilvánvaló, hogy az tp -vektornormák invariánsak permu­

tációval szemben. Ezenkivül az -vektornorma invariáns uni­

tér/ortogonális/ transzformációkkal szemben is, ugyanis, ha 

Q. unitér mátrix, akkor К 0. 2 11^ = *H Q. Q x = xHx = II x 11^ .

1.2.5. Definició. A 11.11= C
nxn CO.oo)

ha kielégiti az alábbi kikötéseket /"mátrixnormák axió-

függvény mátrixnorma,

mái"/:
nxn IIA 11=0 A =0

11С АII = ÍC/- II All

Cl) VAeC
(II) VAeC
(III) VA1'BeC*’'1 •• IIA + BU HAU + U&II
(IV) \/А(Ье Crtxw = II A ßЦ < HAH IIВU

nxn Ve ed :

2Mivel az Tixn-es mátrixok felfoghatók n -elemű vektorok-
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nak, és az (Г)-(1Г1) axiómák pontosan megfelelnek a vektor­

normák (0-(<г<0 axiómáinak, igy egyrészt a mátrixnorma is 

folytonos függvény, másrészt érvényes az 1.2.5. tétel megfe­

lelője mátrixnormákra:

1.2.5'. Mátrixnormák ekvivalenciatétele /[55J, 41. o./. Bármely
nxnkét (C -en értelmezett H.IL és II. IL mátrixnorma ekvi- 

valens, azaz léteznek olyan pozitiv konstan­

sok, hogy
|^JIAII#állAll#áft*IIAll* .VAe €

Minden vektornormához hozzárendelhetünk egy mátrixnor­

mát a következőképpen.

1.2.6. Definíció. A IMI vektornorma által indukált mátrix­

normát a következőképpen értelmezzük:
HAH ■= övLjp i\A*u

II* II v.AVAeC

Könnyen belátható, hogy egy indukált mátrixnorma telje­

siti a mátrixnormák axiómáit, sőt még a következő összefüg­

gések is igazak rá:
IIIII - A

/1.2.7/
nxn Vx e (Ln •• и A x и í ПАН и ж к.VAeC /1.2.8/

1.2.7. Definíció. Ha egy l/.ll vektornorma és egy II. II mátrix­

norma együtt kielégíti /1.2.8/-at, akkor kon2isztens-

nek /vagy kompatibilisnek/ nevezzük őket.

Minden II. II mátrixnormához van vele konzisztens vektor­

norma; ilyen pl. az li£ii := К * II

norma, ahol | =£ 0 /tetszőleges/ rögzített vektor. Másrészt, 

ha egy mátrixnorma majorál egy vektornorma által indukált

relációval definiált vektor-

mátrixnormát, akkor konzisztens az illető vektornormával.
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A mátrixnormák fontos tulajdonsága, hogy felső becslést

adnak egy mátrix sajátértékeinek nagyságára:

(A) := так 1Я-(А)| < ЦАЦ .V /1.2.9/

Az 8p-vektornormák által indukált mátrixnormákat tp- 

mátrixnormáknak nevezzük. Az 6^ -mátrixnormát spektrálnormá- 

nak is szokás nevezni. A következő tételben összefoglaljuk 

a három kiválasztott ftp -mátrixnorma kiszámitási módját. 

1.2.6. Tétel /[453, 625. o./. Minden Аб C ИХП mátrixra

HAH = max Zilahi = II ( IIAejjJn ||

HAll0O=llATl| = i|(«ATejbV

IIAII2=[p(AHA)]’'2=[^(AAH)3,/2

/1.2.10/»0O

Az £p -mátrixnormákon kivül még két fontos mátrixnormát 

emlitünk meg, amelyek nem indukált mátrixnormák, de konzisz­

tensek bizonyos b p -vektornormákkal.

/ ^ , •) \4/2и а и p ;= (x: Iа.j J1) = II (llAe.iO^i^ .Euklideszi norma:

Az euklideszi mátrixnorma konzisztens az euklideszi vektor­

normával és teljesiti a következő relációkat:
■t/гIII HE - n

: |IAilE = [tr(AHA)]^[ir(AAH)]^2VAcC /1.2.11/

И ( И A§<_IIA 11 _ := u írna* 1 Q-üjMaximum-norma: - ЛО.

/Megjegyezzük, hogy van aki a maximum-norma elnevezést az 

t^-mátrixnormára használja./ A maximum-norma konzisztens 

és ^ - vektornormák mindegyikével.Vaz

A fenti öt konkrét mátrixnorma mindegyike invariáns
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permutációmátrixszal való balról vagy jobbról történő szor­

zásra nézve. Ezen túlmenően, az £^- és euklideszi mátrixnor­

mák unitér /ortogonális/ mátrixszal történő balról vagy jobb­

ról való szorzásra is invariánsak; azaz, ha CL unitér, akkor

liaAIIE = HAQllE = llAllE .110А11г=11АаНг=11А11г és

A tekintett mátrixnormák között a következő relációk állnak

fenn minden A & C 

-MiTi

n x n esetén:

HAH íllAII^ IIAIJE 4 n1/2 IIAl|p 

/n-1- IIAllM é II A llp ^ И A llM é п Ц Allp 

t:V2IIAIIe 4|lAll^ IIAIIe é V/2IIAII2 

n1 IIAU^II All^ *JAIIoe 

'n"' HAIIMí-ll All^ HAII^é IIAIIMé ti||Ali2é-n||Alle

л
p- <1, oo

/1.2.12/

1.2.8. Definició. Legyen И . 11 egy olyan mátrixnorma, melyre

lllll И . Ekkor az e mátrixnormához tartozó logaritmikus

norma a következő határértékrelációval értelmezett:

£ Cwí,
0+

Az alábbi tételben a logaritmikus norma legfontosabb 

tulajdonságait foglaljuk össze.

1.2.7, Tétel [4 8]. Legyen a

logaritmikus norma és legyen A,BfC

II Г + к А II - 1ju. (А) := к

II. II mátrixnormához tartozó
nxri te íR-, £6€ ./i

Akkor (a) (-IIAllé-p(AH) 06 (A) é (A) < II All

(b) /д. (-tA)-lil

(c) jm(AtB) é juu(A)+/A.CB)

(d) f*- (A +2 Г) = y-L (A) t Re t

(e) yu. (A) - £.с"иг (4/£.) II e*p A)||

Amennyiben egy specifikus mátrixnormához tartozó loga-
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ritmikus normát használunk, ugyanazzal az indexszel látjuk 

el, mint az illető mátrixnormát. A következő tétel az ^- 

és mátrixnormákhoz tartozó logaritmikus normák ki­

számítási módját adja meg.

1.2.8. Tétel [483. T'i \
=■ Ma/ (R
líjtn 4Гл (A)

= /хоо^А) = /л--,(Аг)

e a;; fél

/1.2.13/

Azt, hogy j*.(A) mennyire éles felső becslése a sajátér­

tékek valós részei maximumának, a у-Ск')-ы.(А') un. loga­

ritmikus inefficiencia adja meg. Az alábbi következmény sze­

rint normális mátrix í-norma szerinti logaritmikus ineffi- 

cienciája minimális.

1.2.1. Következmény. Ha A normális mátrix, akkor

Я/2^■z(A)-ol(A) és

A mátrix-exponenciális és a lineáris állandóegyütt­

hatós differenciálegyenletek

A lineáris állandóegyütthatós /valós vagy komplex/ dif­

ferenciálegyenletek megoldása explicit alakban kifejezhető 

az /1.1.3/ hatványsorral definiált /más ekvivalens definíci­

ók is lehetségesek/ mátrix-exponenciális segítségével. Hogy 

a későbbiekben a mátrix-exponenciálissal dolgozhassunk, a

következő tételben felsoroljuk legfontosabb tulajdonságait.

CéC, 'tclR és M. ter-r\XY\,3,10 . Legyen A^^éC1.2.9. Tétel I

mészetes szám. Akkor

(a) exp(cl)= exp (c) I

(b) [exp(A)]m= ехр(мА)

exp(О) = II
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(c) [ex-pCA)]"^ exp (-А)

(d) А6=ЪА 4=Ф exp(AtB)-ехр(А)ехр(&)

(e) ехр(с1+А) = ехр(с) ехр(А)
(f) ha A nilpotens, p(tA) = s:(tV<0A

1 'L-О
ex

exp(A)= exp(A,) ф ...фехр(А„,)(G) ha А“А(1Ф1,.ФА(Л|
(н) ha A = V6 V~\ akkor exp (t A) = Vexp ("tß) V~*

akkor

(i) exp (-t A) akárhányszor differenciálható az idő szerint,

(cH/db ),n exp A) = Am exp C^A) f m = 0,4 ( 2és I « •I

Az (e)-(h) tulajdonságok alapján, a Jordan-féle felbon­

tás ismeretében tetszőleges mátrix exponenciálisa explicite 

kifejezhető, felhasználva, hogy egy Jordan-mátrix а Я1

skalármátrix és а cf-^Аэ) nilpotens mátrix összege. Ezt az 

előállítást adja meg az alábbi tétel.

1.2.10. Tétel /Г41Д, 398. o./. Ha AéC Jordan-féle kanonikus

felbontása az 1.2.2. tétel szerint adott, akkor

e*»=V[eV')$...9e(i,‘W]V< , /1.2.14/

ahol egy Э^Я) Jordan-mátrix exponenciálisa a követke­

zőképpen áll elő: , -t -fcz
А 7Г ii • * * (m-V)*

4 *-A\et^a) tx= e
/1.2.15/* "t*-0 >1

Az általános lineáris állandóegyütthatós mátrix-diffe­

renciálegyenlet a következőképpen irható fel:

X (f) = A X(t) +■ F fa) , /1.2.16/

ahol X (.)’■ ÍR —> C a keresett /differenciálható/ megoldás- 

a rendszer együtthatómátrixa és FFF-IR' 

folytonos függvény /inhomogenitás/.

függvény, A€C
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1.2.11. Tétel /konstansvariációs formula C1CŰ, 45. о./.

Az /1.2.16/ mátrix-differenciálegyenlet megoldása

X(o) + fe(t'i)A 
o

tA Rs)ds .X(0*e /1.2.17/

Magasabbrendvj. /skaláris/ lineáris állandóegyütthatós

differenciálegyenletek megoldása is kifejezhető mátrix-expo­

nenciális segítségével, ahol a mátrix speciális, Frobenius-

tipusu mátrix. Tekintsük a

p (d/d-fc) x (-fc ) = I Gfc) /1.2.18/

magasabbrendü inhomogén differenciálegyenletet, ahol p(.) 

egy U-edfoku polinom:

/р(Л)~Я°а+с^Х +,. .t c2A /1.2.19/

és ff.): ÍR ÍR,
X (.) = (x

folytonos függvény. A szokásos módon bevezet- 

vektorértékü függvényt, az /1.2.18/(i"l) '•>)*ve az

egyenlettel ekvivalens

X (b) - C X (i) + fa) /1.2.20/

elsőrendű lineáris rendszerhez jutunk, melynek mátrixa a

0 10 . . . . 0
• 0 4 0

C = /1.2.21/0
0 . . . . 0 4

-C*J
Frobenius-mátrix, amelyet a p (.) polinom kompanion- vagy 

kisérő mátrixának nevezünk. A konstansvariációs formula sze-

L~ca C2, • * •

rint /1.2.20/ megoldása

x(t) = etC x(o) + X
О

fís)e^ ds »

melyből
x c-ir) = е*С Xto)+Í e] еН)С ^ds •

/1.2.22/
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x(0) = (*“-%))„ ,rögzítésével, azaz a 0. ^ 'í 

váltak kezdőértékeinek megadásával az /1.2.22/-ben megadott

deri-.) ...j

megoldás egyértelművé válik.

A konstansvariációs formula segítségével integrál-alak­

ban állítható elő egy 0 paramétertől függő, a © -0O hely egy 

környezetében folytonosan differenciálható A=A(ö) mátrix 

exponenciálisának a paraméter szerinti deriváltja а В - B0 

helyen. A közönséges differenciálegyenletek megoldásainak 

paraméter szerinti differenciálhatóságára vonatkozó tétel 

/lásd pl. C10J, 22. o.J értelmében ugyanis

2 (fc, 60):= (Э/Э6)е)ср (-t fttel) I

H = A(60) Z + ff ft,) екр (t/КвоЬ
inhomogén egyenletnek, melynek megoldása a konstansvariációs

létezik és megoldása a
B-Qo

^(O,0o) = oJ

formula alapján

= |е,ЫА^е:0ew(9' sAOo)
1M)=9 9 c(s. /1.2.23/

e=e0
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2. PERTURBÁCIÓ-ANALÍZIS

A gyakorlati feladatokban a számításokban részt vevő

differenciálegyenlet-rendszer A mátrixa általában eleve pon­

tatlanul adott; un. "öröklött hiba" terheli, amely lehet

megfigyelési hiba, előző számítások során felgyülemlett hi­

ba, stb. Ilyenkor fontos ismerni ezen öröklött hiba tovább­

terjedésének törvényszerűségeit, azaz, hogy a kiindulási 

adatok hibái milyen eltérést okozhatnak a számolt exp(fcA) 

ill. exp(^A)b eredményekben. E fejezetben éppen ezért azt 

vizsgáljuk meg, hogy az emlitett számítási feladatok meny­

nyire érzékenyek a bemenőadatok perturbációjára. E vizsgála­

tok akkor is fontosak, ha a bemenő adatok pontosan ismertek,

mivel számítógépi lebegőpontos aritmetikával való számolás 

esetén - mint azt Wilkinson megmutatta C52, 533-, az alapmű­

veletek egy sorozatának elvégzéséből nyert, kerekítési hi­

bákkal terhelt közelítés úgy tekinthető, mintha az az erede­

ti adatok kis perturbáiójából /un. "ekvivalens perturbáció­

jából"/ származó adatokon pontosan, kerekítési hiba nélkül

elvégzett azonos müveletsorozat eredménye lenne.

Egy számítási eljárást akkor tekintünk numerikus szem­

pontból stabilnak, ha a számítások során felhalmozódó kerekí­

tési hibákhoz a bemenő adatoknak csak kismértékű ekvivalens

perturbációja tartozik. Ha a szóbanforgó számítási feladat ér­

zékeny a kiindulási adatok kis perturbációjára, akkor még nu­

merikusán stabil eljárás alkalmazása mellett is eléggé nagy 

lehet a számolt megoldás pontatlansága, de ilyen esetben e

23



hiba - a véges pontosságú aritmetika használata miatt - el­

kerülhetetlen, együtt jár a feladat eredő érzékenységével. 

Amennyiben az alapfeladat nem érzékeny az input adatok kis 

megváltoztatására, csak numerikusán instabil módszer produ­

kálhat nagymértékben pontatlan eredményt.

A hibaterjedés vizsgálatánál megkülönböztethetjük az 

abszolút ill. a relativ hiba terjedését. A mátrix-exponenci­

álisra Van Loan C503 és Kägström C27J adtak relativ ill. ab­

szolút perturbációs korlátokat. Az általuk megadott korlátok 

élesítésén túl mi exp(tA)b-re, valamint a mátrix-exponenciá­

lis paraméter szerinti deriváltjára is megadjuk a megfelelő 

perturbációs korlátokat.

A relativ hibák terjedésének lokális jellemzésére Van 

Loan bevezette egy mátrix exponenciális kondíciós számát. Mi 

egyrészt élesítjük Van Loan egy ezzel kapcsolatos eredményét 

másrészt választ adunk Van Loan egy kérdésére az exponenciá­

lis kondíciós szám nagyságrendjével kapcsolatban.

2.1. Perturbációs korlátok a mátrix-exponenciálisra

A. A mátrix-exponenciálisra vonatkozó korlátok

A mátrix-exponenciálisra vonatkozó perturbációs korlá­

tok megadásánál mindig magának a mátrix-exponenciálisnak a 

korlátáiból indulunk ki. Az általános és a [27, 50 ] cikkekben 

használt -normán kivül még más, az f^-nél könnyebben kiszá­

mítható konkrét normára is megadjuk., exp(tA) korlátáit (Ae£1>',,), 

Ezenkívül bizonyos esetekben élesítjük az emlitett cikkekben 

megadott korlátokat.
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4
■j

A mátrix-exponenciális legegyszerűbb, és talán legis­

mertebb korlátja a logaritmikus normával adható meg.

2.1.1, Lemma /Dahlquist, vő. C48J/. Ha 11111=4, akkor

|le*A t|éet'*W)

■ H

UO . /2.1.1/)

A későbbi fejezetekben szükségünk lesz e lemma alábbi 

következményére.

2.1,1. Következmény. |III|='| esetén a következő három feltétel 

ekvivalens

(c) Hexp(-tA)||
Bizonyítás. (a) =$> (b): a 2.1.1. lemma alapján nyilvánvaló.

(b)^(c): ha OéSétt akkor !| efcA l| í II II á||es^l|.

(b) II exp (-fcA)ll é A V'fcfeCo,^0) 

t-ben a [0,oo)_

(a) jx(A)éO

monoton nemnövő en.

(c)=^>(a): a logaritmikus norma (e) tulajdonsága alapján
~ (4/^) ß*4(e.xp (& A-)H é (4/^-) ^ II £ N - 0 . о

А 2.1.1. lemma gyakran nem ad megfelelően éles felső 

korlátot, főleg t nagyobb értékeire. Például stabil mátrix 

esetén előfordulhat az odfA')’* 0 A) szituáció, ami azt je­

lenti, hogy t-*oo-re exp (-tpi(A))—^ oo f miközben II exp (-ЬА)Ц —? 0f 

vagyis ilyenkor a /2.1.1/ felső becslés elég nagy -fc-kre már 

teljesen értéktelen. Ilyen esetekben olyan becslésekre van 

szükség, melyek figyelembe veszik A sajátértékeit, ill. az 

Oí (A) spektrális abszcisszát.

Megjegyezzük, hogy a felső korlát exponenciálisának ki­

tevőjében t-nek ot(A)-nál kisebb együtthatója nem szerepelhet,

mivel
t Ы (A)lletAIOs>(etA) = e

Olyan felső korlátok, melyek 0/(A)<0 esetén nullához tartanak 

t-*00 /; eXp(tA) azon előállításai alapján nyerhetők, amelyek

Ь Z o. /2.1.2/1

ha
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tartalmazzák a sajátértékeket.

A mátrix-exponenciális Newton-féle, osztott differenci- 

ás előállítása alapján bizonyítható a következő.

IIIII * 42.1.2. Lemma / БЫЛОВ és mások, [9], 131. o./. 

:tA IU fw(2HAU-t) etoc(A)
esetén

/2.1.3/

exahol ('л-4) -edf okú Taylor-polinomj a :az

kw-Z-fí . /2.1.4/

Ezzel azonos nagyságrendő becslést nyert 6 ^-normára a 

Schur-felbontás alapján Van Loan, amelyben a polinomiális

tényező együtthatói kisebbek.
-*ПДП

2.1.3. Lemma /Van Loan C50J/. Legyen az Aé(L mátrix Schur- 

felbontása A = GL (-Л.+- U) Q_4 ,

felső trianguláris és _A_ = ( Л<;

ahol Q unitér, U szigo-

diagonális.ruan

Akkor
U(A)|le+A|l á (JUU^e , -U0 f /2.1.5/

ahol az fn(.) polinom /2.1.4/ szerint definiált.

E lemmából a normák közti /1.2.12/ összefüggések és az 

■p C. ) polinom monotonitásából adódik az alábbi.

2.1.2. Következmény. Legyen || . || az euklideszi,

normák bármelyike. Akkor a 2.1.3. lemma jelölései mel-

vagy

lett
-Ы(А)lletA IliRhClIull^e 

1IUII£ = (lIAIIj - ál ■

i>0 )J /2.1.6/

ahol

A /2.1.3/ korlátban szereplő polinomiális tényező a zé­

rus mátrix kivételével, a /2.1.5-6/ korlátokban szereplő po-
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linomok pedig a normális mátrixok kivételével mindig (oo. — /1) —

edfokuak. E fokszám általában csökkenthető a Jordan-féle 

kanonikus alak figyelembe vételével. Ha A Jordan-felbontása 

az 1.2.2. tétel szerint adott, akkor

II eyp (tA)H é x(V) ||exp (> Эд) Ц j /2.1.7/

ahol *(\/MlV||||V-4l а V mátrix II . II normához tartozó /közön­

séges/ kondiciós száma. Továbbá tp-normák esetén

-ь1?еЯ^|letVWll(,=Ik* Ml 'ma.*, e 
44 i 4 к

= TVLÖ-X
P 44téJc

/2.1.8/

Látjuk, hogy €Xp(lA) /2.1.7-8/ alapján történő becsléséhez 

szükség van a szinguláris Jordan-mátrix exponenciálisának 

korlátjára. Ilyet ad meg a következő segédtétel.

2.1.4. Lemma . Legyen -fm ( . ) / 2.1.4 / szerint definiált. Akkor 

t >, 0 -ra
r = -M±)

P ) < ha

ha p- ^ vagy 00/•»

lle*^0j|
/2.1,9/p = 2..

Bizonyítás . p-= К vagy ©o esetben az állitás leolvasható

/1.2.15/-ről. p= 2. esetben alkalmazzuk a 2.1.3. lemmát. Itt 

oí(lm(o)) = 0 utóbbi 8^-normáját könnyű meghatároz-/

ni, mivel 0 A.O
4

>0 4

= 4 .és igy ll>m(o)H1=[9(V0)T^Jo))] Ezután az állitás már

következik a 2.1.3. lemmából. □

Most már könnyen igazolható az alábbi, Jordan-felbontá­

son alapuló korlát érvényessége.
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MX мLegyen az A € C mátrix Jordan-felbontása az2.1.5. Lemma.

1.2.2. tétel szerint adott és legyen m-'mo.v. . Akkor

-fc otíA)lletAIU6<p(v)kW]e t ^ 0. /2.1.10/>

ahol vagy oo , és /2.1.4/ szerint definiált.

Bizonyítás. /2.1.7-9/ alapján
■fc ReXú •fcoí (A)lletAllpí^(V) □wio-x e

Az -C (fc) é m- rn<xx (fcVfc!) egyenlőtlenség alapján /2.1.10/-
€ni<m-A

bői megkapjuk Van Loan 6^.-normára megadott korlátját.

2.1.3. Következmény. /Van Loan [503/. A 2.1.5. lemma jelölései 

mellett -fctf(A)(i‘A0lelletA II *|>xr(v) , -t^o.max.
/2.1.11/

2.1.4. Következmény. Ha az A mátrix diagonalizálható a V mát­

rix segítségével /azaz V~7V diagonális/, akkor

■fcot (A)|letAl| í«,(V)e ■fc*0. /2.1.12/
I

ahol vagy oo . Ha ezen túlmenően, A normális mát-

/2.1.13/II exp (iA) |(2 = e.xp(-to<(A)) ,-fc^O .rix, akkor

Könnyen belátható, hogy még a 2.1.5. lemma sem ad min­

dig nagyságrendben pontos becslést. Ugyanis €*p maxi­

mum normája:
Vй-4.. toc(A) 
(m-4)1. ^IU^IIh = m. ha b elég nagy,1

ahol iív a maximális valós részű sajátértékekhez tartozó Jor- 

dan-blokkok rendjének maximuma /mivel elég nagy -fc-re Зд ex­

ponenciálisában a

elemek dominálnak/. II exp (•ЬЭ’д ) II $ II V“*||-||exp(4A)l|-|| V l| 

ebből következik, hogy elég nagy

, Re Xi« oí ÍA) alakú

alapján

t -re
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7л-\•к. ул
"с -Ь öc(А) /2.1.14/'YU ■е ;í«-4)í

ami a mátrixnormák ekvivalenciatétele alapján azt jelenti,

hogy bármely mátrixnorma esetén lle*p(-fcA)| pontos nagyság­

rendje

rendű felső becslést adunk meg.

p (toííAí)'). Következő lemmánkban ilyen nagyság-

2.1.6. Lemma. A 2.1.5. lemma jelölései mellett

II efcA llp ^ K>(VD)faW] i>0. /2.1.15/
/

és aD diagonális mátrix a következő:ahol w = rv\(XK Yn^ 
Rei;=*(A)

"D „r u r у / mpKmrD ="Ц, Ф . . .Ф ;
és /2.1.16/

;

Yruln. CA ) ~ ßfi Xr ( 'l I Г= V-'Л *J

Bizonyítás. A 2.1.5. lemma bizonyításához hasonlóan eljárva,
•fc II e'tl>r’,í",'í0,T>rllr,||etAllp s KpCVD)

Itt V V^k-^r^ío),

'Yvt ССУ- € 
-íé Г é ic

és a 2.1.4. lemma alkalmazásá­

ig és »л definíciója alapján azt kapjuk, hogyval,

■fc ReA /e+^e>r ||etcAr^rÍO)||p é e 'Lrfto*
e*ree>r tdrl My.? M..

t

cl, é o( (A) -Ht Ar
-to<(A)

Viszont mr> esetben

fRe- Ar*- ^r"2 . "tof ГА i € < e

miatt

-fsr^) • ak. e

A fenti lemmában önkényesnek tűnik, hogy 'mr>yv\ esetén 

dr definíciójában a sajátértékekre vonatkozó 

térést éppen az 1 számhoz viszonyítjuk. Ez azonban abból adó­

dik, hogy a Jordan-féle kanonikus alak definíciója is .vala-

oí (A)-&e Xr el-
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melyest önkényes: ha úgy definiálnánk, hogy a föátló feletti 

1-eseket egy £>0 számmal helyettesítenénk, akkor dr definí­

ciója ín esetén dr-= 'wuh.|[«.(A)-*leA,r3/k| 4 ] lenne, és a fenti 

becslésben Cfc) helyett szerepelne. Az elemzést to­

vább finomíthatnánk a Golub és Wilkinson által definiált 

kvázi-Jordan-alak Г18 3 alkalmazásával, melyben a főátló fe­

letti 1-esek helyén tetszőleges nemzérus számok állhatnak.

aD diagonális mátrix megjelenése a /2.1.15/ becslésben 

legfeljebb К p(D)-szeresére növelheti a 

mot, ahol

■á<p(V) kondíciós szá-

S — *r\r
Cd) = 'wiccx Ar /2.1.17/

Erre nézve a következő becslés adható: ha

/wvi kv olr<£■- /2.1.18/
lírirtl.

és tn a 2.1.5. lemma szerint definiált, akkor

dr'"”rí Xrlv)i é -ha /2.1.19/^p(VD) í *p(V) -*v X.
AkriL

d«4 esetén a Kp kondíciós szám jelentős romlása várható.

ПХЛ2.1.5. Következmény. На АбС maximális valós részű saját­

értékei nemdefektivek, akkor a 2.1.6. lemma jelöléseivel
-t* (A)II etA II é Kp (VD) e l>,0 . /2.1.20/I

Utóbbival azonos nagyságrendű korlátot /2.1.12/-ben ad­

tunk, azon erősebb kikötés mellett, hogy A nemdefektiv.

ехрС^А)-га, amely nagy­

ságrendben kevésbé jó ugyan, mint az előbbi becslések nagy 

része, de a benne szereplő £>0 szabad paraméter választható

Végül megadunk még egy becslést

úgy, hogy stabil mátrix esetén a felső korlát nullához tart-
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o°l. Ilyen tipusu korlátot Kagström közölt С 27] 

norma esetén, de az ő becslésében szereplő diagonális mátrix 

/a triviális esetektől eltekintve/ gyengébben kondicionált,

son /ha t

mint az alábbiakban megadott.

2.1.7. Lemma. Legyen £ tetszőleges pozitiv szám. A 2.1.5.

lemma jelölései mellett
t C*(AH£]||etA ilp ^ Xp(VD) e /2.1.21/>

ahol T) - Ф . . . Ф olyan diagonális mátrix, melyben
1 ,es (А p — /2.1.22/

пор>>(г- 4.......... . II

A lemma bizonyítása hasonló a 2.1.6. lemma bizonyításához,

ill. annál egyszerűbb.

Az előzőekben ex.p(iA)-ra megadott korlátokat összeha­

sonlítva megállapíthatjuk, hogy i; kis /О-hoz közeli/ értéke­

ire a Jordan-felbontáson alapuló korlátok kevésbé jók, mint

X(NA') ill. X(VD) kondíciós számok általá­

ban 1-nél nagyobbak, viszont ßp-norma 

ha t~0 . Másrészt nagy -fc-re a Jordan-tipusu becslések /kivé­

ve /2.1.21/-et/ általában élesebbek, mint a többi /mivel ál­

talában ос (А)г.р.(к) ill. т(гм < ov / .

A továbbiakban legyen (.) : Ü0,oo) —

a többi, mivel a

esetén ]| exp GfcA) ||р« t

olyan monoton

nemcsökkenő függvény, ß olyan valós szám és II - II olyan norma,

melyekkel fennáll a következő reláció:

llevcp A)l( é ^(-t) exjo (t ß) t>0 /2.1.23/)I
n*nahol AeC

lisra eddig megadott összes becslésünk /2.1.23/ alakú, ahol 

C^(.) nemnegativ együtthatós polinom. A /2.1.1/ és /2.1.21/ 

(ß(t)ECj. konstans és ß ^olíA^ mig a többiben

adott. Vegyük észre, hogy a mátrix-exponenciá-

becslésekben
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С . ) általában nemkonstans polinom és ß = od(A).

Perturbációs korlátok a mátrix-exponenciálisra

A következőkben a

t (A+E) i/\H(t)- e /2.1.24/- e

eltérés-mátrix becslése lesz a célunk, ahol az ЕГ = (etj') лжп

mátrix az A mátrix egy perturbációja. Ehhez H (0 következő 

integrál-előállitásából indulunk ki:

, , /, N [ (t-s)Ar S(A+E)H(t)= Je te
о

/2.1.25/ds

н c-fc)=а на) +melyet egyszerűen úgy kaphatunk meg, ha a

£ еУ-р (i[A4-E J4) differenciálegyenletre alkalmazzuk a konstans­

variációs formulát. Hogy /2.1.25/-ből becsülhessük H(i)-t, 

szükségünk van €xp(-fcCA+E]) valamilyen becslésére. Ilyet az

alábbi segédtétel felhasználásával nyerünk.

2.1.8. Lemma /Bellman-Gronwall-egyenlőtlenség; vö. [103, 19. o./.

C0,oo)Legyenek AA (. ); tR —* !R., (.) ÍR —> IR.

folytonos függvények, melyekre

és W (.) : ÍR.

u (t) á v(t) + I 'VOÍs) U(s) ds , о

5 w (r) dt

V t 6 [0, «>)

Akkor ■t
V .v(U + Iv(s)W(s) €S 

о ás,

A 2.1.8. lemma segítségével -e.xp6fcA) /2.1.23/ alakú ál-

eyp CbLA+E]) alábbi korlátja adódik. 

2.1.9. Lemma. Tegyük fel, hogy /2.1.23/ fennáll. Akkor

talános becsléséből

■b
-fcfA+E)Ke /2.1.26/
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pfrCA+E])« exp(tA) + Hft) 

(+-s)A

Bizonyítás. -ex és /2.1.25/ alapján

||et(A+E)|| ^ ||£tA|| + f ||e
О

II IIElllle5,AtE,ll<U

, g "t
£ t í^-s)e

£ g(+)e^[4tj1lEI|^)(||e.

ahol felhasználtuk a/2.1.23/-ban szereplő Cj ( . )

pozitivitását / >/ ^ (0) ^ HI II > 0 /.

li/[*w«**]

■fc

u (-fc) £ A +■ ^ w(s) uts) ds

(-fc-s)ß IIEli lle^^lNs

I! /[^í$le^S]) Jss(A+E)

függvény

monotonitását és Legyen

most
■fc (A+E) Таг ("t) = НЕ IIu(t) •- Цe )

Ekkor
-t>0 I)

о

és igy a Bellman-Gronwall-egyenlőtlenség következtében

u (1) £ A t í twfs) exp( S ш(г)с1т) ots = exp( 5u>(s)eU^ ±>,0;
I

utóbbiból tt(.) és W(. ) definíciója alapján éppen /2.1.26/

adódik.

Most már kimondhatjuk azt a tételt, amely a mátrix-ex­

ponenciális minden egyes /2.1.23/ alakú korlátjához megad

egy megfelelő perturbációs korlátot.

2.1.1, Tétel. Tegyük fel, hogy érvényes /2.1.23/, azaz

II etA|U^(hetP ii-0 J>

monoton nemcsökkenő függvény. Akkor iZ-O-raahol

II H Ш ií= К etA II £ [exp(ilf/í . /2.1.28/

monotonitása alapján/2.1.26/ és/2.1.25/,Bizonyítás.
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Иж-о II í ^ Heh ol(s) e
0

^ I НЕ II <j(s) exp (llEII $ ^(х)сЕс) ás

•= c^(-fc) [ exp (IIEli $<j.(s)ds) - 4~\ ,

sP p (lIEH f^COdr) dsex

a

^(.) monotonitását és az exponenciá­

lis függvényre vonatkozó elemi egyenlőtlenséget felhasználva 

azonnal megkaphatok az alábbi gyengébb becslések.

2.1.6. Következmény. /KÜgström £27], van Loan [50]/. A 2.1.1.

A 2.1.1. tételből

tétel feltevései mellett

HE II ^(-O'^íbUs-exp (llEII ^(s)ds) 

IIHÍOIU e^OOfexpOlEllt^)) - О

± НЕ II i [<^Ш]гехр (* [ (i + НЕ II 3(E)])

HHWlUe^ i>,0 /2.1.29/

/2.1.30/

E^O /2.1.31//

A fenti becslések közül /2.1.30/-at Kagström, /2.1.31/- 

et pedig Van Loan adta meg. Ha ej (E) ^állandó, akkor az álta­

lunk megadott /2.1.28/ perturbációs korlát meegyezik a Kag­

ström által adottal, különben viszont élesebb annál. Mivel 

konkrét /2.1.23/ alakú becslések esetén mindig polinom,

igy az általunk adott /2.1.28-29/ korlátok kiszámítása nem 

nehezebb, mint a /2.1.30-31/ korlátok kiszámítása, mivel 

csak polinomot kell integrálni.

A mátrix-exponenciálisra előzőleg megadott becslésekből 

a 2.1.1. tétel segítségével pl. a következő perturbációs 

korlátok származtathatók /mindenütt E 3-0 / :

et*(A)j-^UEllf?h(2UAlls)ets

/2.1.1/ ЦНШ11* etA*ÍA)[e

/2.1.3/ ЦНШ1К fn&HAH)

tuen /2,1.32/

/2.1.33/
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IIEIIj SfnOMIiOds j-j

t«(A)j-^|l£||pXp(\/)|fmC^els^^ J

e^(A)r ||El|1,Jf,M|fs.hWs_/1-j

/2.1.5/ =Ф IIH(t)ll24 fn(«Ullll')et“'A>[e 

/2.1.10/=f l№)llrsxr(v)fjtíe 

|IH№)lipívf(v)f_(ia)

/2.1.21/ => ||H(«llpí KP(VÜ) etbl(A)t^ [e*#E Wvrt_ 4]

ítlEI,OKflVDl]1el6,(*He*'^e/W]

/2.1.34/

/2.1.35/

/2.1.36//2.1.19/

/2.1.37/

E perturbációs korlátok közül £ kis értékei /ЬъО / ese­

tén általában a /2.1.32-34/ korlátok a jobbak; a /2.1.35-37/ 

Jordan-tipusu korlátok csak akkor jók, ha 3<p äs 4 .

-fc nagy értékei /1->oo / esetén egy érdekes jelenséget fi­

gyelhetünk meg: e*p(£A) nagyságrendben legélesebb korlátái­

ból származtatott /2.1.33-36/ perturbációs korlátok - a leg- 

kedvezübb speciális esetek kivételével /amikor konstans/

- a legrosszabbak, mivel exponenciálisnál nagyobb nagyság­

rendben tartanak a végtelenbe, ha t -*oo . Ez a helyzet 

/ 2.1.3 6/-nál, ha A-nak van defektiv o((A) valós részű saját­

értéke I m> Л j , /2.1.35 / -nél, ha A defektiv 1гл>А / f /2.1.34/- 

nél, ha A nemnormális /fí£0/ és / 2.1.33/-nál, ha A^O . Ezzel 

szemben a /2.1.32/ korlát stabil mátrix esetén О-hoz tart, 

ha yu.(A)zO és IIE'II <í-/u.(A) , és hasonlóképpen a /2.1.37/ kor­

lát is nullához tart ol(A) ^0 esetén, ha £< -cl valamint

A /2.1.32-37/ perturbációs korlá­

tok közül tehát t->oo-re általános Jordan-alakot feltételezve
llEllp<-[i(AH£3/«pCVD) •

/2.1.37/ a legjobb /ha e elég kicsi/, ha viszont a maximális

valós részű sajátértékek nemdefektivek, akkor általában

/2.1.36/ a legjobb.
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Relativ hibák becslése

A perturbált A mátrix exponenciálisának relativ hibája

alatt a

II et^A+E)- e+A IIII И Ш|)ф(0 /2.1.38/II etA II II etA II
/normafüggő/ mennyiséget értjük С50]. Speciális mátrixnorma 

használata esetén megfelelő alulindexezést alkalmazunk, ф C•) 

általában nemkorlátos C0,oo)-en; korlátossága az E perturbá- 

ciőmátrixtól függ. A

lief CA*EhiI* ^ A(t)- llefcAll
reláció mutatja, hogy ф (-t) pontosan akkor korlátos,

-fc£[0(oo) /. Viszont min­

dig megadható olyan tetszőlegesen kis normáju E mátrix, hogy 

Ot (A + E) > ot(A) , és ekkor ф(.) nemkorlátos. Ebből következik, 

hogy ф(.) tetszőleges olyan becslése, amely az E mátrixnak 

normájától függ, szükségképpen nemkorlátos CO,oo)-en.

H(-t)-nek a 2.1.1. tétel szerinti korlátáiból közvetle­

nül kaphatunk ф(4г)-ге is korlátot /2.1.2/ alapján:

amikor

II ex p (■bLAiE])||/l|exp(-tA)|l hányadosaz

csak a

<Ф C-fc) * <^a)eti:,5"Ä^:i[e/p(llEllSVs)c{s)-/1] ,-t»0’ /2- 1.39/

Az ilymódon nyerhető konkrét korlátokat itt nem részletezzük.

Normális mátrixok esete

Az előzőekben megadott korlátok és perturbációs korlátok 

főként nemnormális mátrixok esetén érdekesek. Ha az A mátrix

AAH = AHA , akkor a helyzet nagymértékben le­

egyszerűsödik és kedvezőbbé válik. Ilyenkor ugyanis /2.1.13/ 

szerint ll exp (,'ЬА) Нг - exp CbsiíA) ) , és igy a 2.1.1. tétel ér­

normális, azaz
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telmében t ^ 0 -ra

+ C*((A)f HEllil-fcllElla.to<ÍA) fe -4Já tllEÜjj eIIH (t) II, 5 e /2.1.40/}

valamint
ШЕИг•fc/IEl/jф2СО 4 e ->1 4 ±IIEIIze /2.1.41/

E becslések az általános esetre megadott korlátok optimumát

képezik.

A normális mátrixok osztálya magában foglalja például

a valós ortogonális, szimmetrikus és ferdén szimmetrikus

mátrixokat ill. ezek komplex megfelelőit. Sajnos a legtöbb 

gyakorlati problémában fellépő differenciálegyenlet-rendszer 

mátrixa nem normális mátrix, és igy általában nem érvényesek

a /2.1.40-41/ optimális relációk.

Perturbációs korlátok x=A* , b megoldására

A mátrix-exponenciálisra vonatkozó korlátok és pertur­

bációs korlátok segítségével már könnyen adhatók megfelelő

korlátok az
■fcAx 0) ••= e~" b /2.1.42/

vektorra. Magának x(-b")-nek a felső becslése /kompatibilis 

vektor- és mátrixnormát feltételezve/ visszavezethető expOtA) 

becslésére

||x(t) ll 4 Ile*A II llbll /2.1.43/

alapján. Az ilymódon kapható, nagyságrendben legélesebb

alakú, ahol ^í.) polinom.

Megjegyezzük, hogy а Ь speciális választása mellett /ha 

b ortogonális az tf(A) valós részű sajátértékekhez tartozó 

baloldali fővektorokra/ x (t) exponenciális nagyságrendje ki­

sebb, mint 4Xp Cfc<*(A)). Mivel ez ritkán előforduló speciális

becslés ||Ь|| cj(t) ex p (-tol(A))
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eset, igy ennek elemzésébe nem megyünk bele.

A

(b 4-f) - b = Hít)(b+f) + e*Af+ (A+E)к (b) := € /2.1.44/

eltérés becslése, ahol í a b perturbáló vektora, úgyszintén 

visszavezethető e/p(bA) és H(b) becslésére:

||Mt)l|é II H(-t)ll II b+f и +• lletA II U £U 

ér He^ II [(()(t)(llb|l+ll{lO+ll£ll] /2.1.43/

Konkrét korlátok M (b) és exp(bA) konkrét korlátainak az 

utóbbi egyenlőtlenségbe való helyettesítésével nyerhetők. 

A relativ hibát itt a

Cp(b):= llM*>ll/ /2.1.44/

hányadossal definiáljuk. Ennek becsléséhez szükségünk van

alsó korlátjára, amelyet a következőképpen kaphatunkII x (t) Ц

meg:
x(*)ll/lle'tAl|= IIЬ и / II e_t AII.-tAllx(t)U lie /2.1.45/

/2.1.43-45/ alapján a Cf (b) relativ hiba becslése

<f«> é 3c(e*A)[<}>H)(^0)

ahol K(exp6fcA)) = ||exp (-tA)ll-Цехр(Ь А) Ц

lis /invertálásra vonatkozó/ kondíciós száma.

A relativ hiba /2.1.46/ korlátja három részre bonatható. 

A csak az A mátrix perturbációjából származó relativ hiba 

korlátja Db (exp (ЬА)) ф (b) ф(Ь) . A csak a b kezdeti vektor 

perturbációjából származó relativ hiba korlátja arányos a 

vektor relativ hibájával, és az arányossági tényező ismét 

X^exp(bA)') . Végül a kétféle perturbáció együttes hatásából 

származó relativ hiba korlátjának Db (exp (tA)) ф (i) II £ И / II b II

II fii J* Hbll /2.1.46/

a mátrix-exponenciá-
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tekinthető; ez mind 6xp(tA), mind b relativ hibájával ará­

nyos és az arányossági tényező megint >C (e*p OfcA)) .

Felmerül a kérdés, hogy milyen nagyságrendű a /2.1.46/- 

ban szereplő ~X, (e-vcpílA)) tényező. Egy egyszerű alsó korlátja 

/2.1.2/-bői

*(etA)> e* M-AH« CAU -6^0. /2.1.47/)

Ebből az egyenlőtlenségből o/(-A )+ d (A) = m<vx
léién L 4 H

ße At-(A) > 0 alapján látható, hogy a C-h) relativ hiba korlát­

ja általában sokkal nagyobb <f)&)-énél, ugyanis, ha van A-nak

két különböző valós részű sajátértéke, akkor :k ((■*A)) -> c&

-fc-^ oo .
Kp CexpOtA)) nagyságrendben pontos felső becslését pél­

dául a 2.1.6. lemma alapján kaphatjuk;

/2.1.48/■Ь>у0,
I

ahol és Dg.

a-A mátrixhoz tartozó értékét jelöli, &■= -A , 4 -re. Az, 

hogy /2.1.48/ nagyságrendben pontos, /2.1.14/ segítségével

rendre az m számnak és a D diagonális mátrix­

nak a

láthatjuk be, ugyanis alkalmazva /2.1.14/-et ('-A)-ra, kapjuk:

-fc Б* (-A^+o<пл.1+^-2.
2i__l2i 

(v/j (m-д)! (*у-Ю!. ЛЛ
/2.1.49/

Összevetve /2.1.49/-et /2.1.48/-cal /ahol (.)f- (. ) куц-b 

^-2, fokszámu polinom/ , a mátrixnormák ekvivalenciatétele

alapján következik, hogy bármely mátrixnorma esetén

pontos nagyságrendje 

lényegében következő tételünket is igazoltuk, amelyben 

pontosan megadjuk azt a mátrixosztályt, melyre К (exp(-fcA)) 

korlátos, ha 't€C0jeo)i

ex Ezzel
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3C(е.крC-tА)) - Некр(£А)|| \Uxp(-tA)ll2.1.2. Tétel. akkor és

csak akkor korlátos -t € СО , cx>} -en, ha az A mátrix dia-

gonalizálható és minden sajátértékének valós része azo­

nos .

A tétel feltétele igen erős megszorítást jelent, igy ál­

talában M (e*A)—>00 /í-+oo/ érvényes. De pl. teljesül az emlí­

tett feltétel ferdén hermitikus /ferdén szimmetrikus valós/

mátrixokra, melyek normálisak /tehát diagonizálhatók/ és 

minden sajátértékük yalós része nulla; vagy pl. 2x2-es valós 

mátrixra, melynek sajátértékei komplex konjugáltak.

2.2. A mátrix-exponenciális lokális érzékenységének

jellemzése: az exponenciális kondíciós szám

A kondíciós szám /meghatározottsági szám/ fogalma a nu­

merikus analízisben a lineáris egyenletrendszerek megoldásá­

val ill. a mátrixinvertálással kapcsolatban alakult ki Г523. 

Egy A nemszinguláris mátrix ir.vertáiésra vonatkozó kondíciós 

xCA)~llAllllA~1ll első rendben megadja, hogy a pertur- 

mátrix kis

száma,

bált A+£

HEH£ = /2.2.1/HAH
relativ hibája hányszoros relativ hibát eredményez az inverz 

mátrixban. Ugyanis £ <A/x(A) /é4/ esetén, vagyis, ha A + E

relativ hibája nem túl nagy, érvényes az

11(а+ег1-А~4 II у (А)
é £ /2.2.2/

А - £ у (А)
egyenlőtlenség, melyben a jobboldal gyakorlatilag £У(А) +

II A'4 U

Q(SZ). Ez azt jelenti, hogy ha a У(А) szám nagy, akkor az 

A mátrix elemeinek viszonylag kis perturbációja is igen nagy
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relativ hibát okozhat az inverz mátrixban. Ilyen esetben az 

A mátrixot gyengén meghatározottnak /ill-conditioned/ nevez­

zük /az invertálásra nézve/.

A számitási feladatok meghatározottságának, kondíciójá­

nak egy általános elméletét Rice dolgozta ki C 4 4 J. Rice elmé­

lete alapján Van Loan £503 definiálta egy A mátrix kondíciós 

számát exp (iA ) kiszámítására vonatkozóan. A továbbiakban e 

fogalmat és Van Loan ezzel kapcsolatos eredményeit ismertet­

jük, ill. kiegészítjük saját eredményeinkkel.

2,2.1, Definició /Van Loan C50j/. Az mátrix £ helyen

vett exponenciális kondíciós száma alatt a

.£)•'- ti**, 
8-* 0+

/2.2.3/

határértéket értjük, ahol

||e*<A* - e*A IIvf<W) S>u p -
ne и hah /2.2.4/illegi!

Valamely partikuláris norma használatakor V~re ugyan­

olyan alulindexezést alkalmazunk, mint az illető normára.

A definició geometriai értelmezése a következő:

r=S lle*p(iA)HvÍS)(A ,-fc)
középpontú gömbnek, amely tartalmazza а £Вб(С 

gömb Ti)—>С.хр(£В) leképezés szerinti képhalmazát. Ha A eleme­

inek viszonylag kis változásai relative nagy változásokat 

okoznak £Xp(iA) elemeiben, akkor V^YA,£) ennek megfelelően 

nagy lesz.

ИХЛlegszűkebb, exp(£A)€ C

IIIB-AIU SIIAll^
a sugara azon

cwoo

A következő tétel a definíciónál jobban használható 

előállítását adja meg egy mátrix exponenciális kondíciós 

számának. Emlékeztetünk arra, hogy egy F- X-+Y operátor 

Fréchet-deriváltja az AeX helyen egy olyan X)0r(A})’ X*^Y
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lineáris operátor, melyre F (A+E)-F(A)z:'D(F(f\))E + СГ ( E ) , ha

2.2.1. Tétel /Van Loan £50J/. Ha T) (e*A jelöli a

képezés Frechet-deriváltját a 8= A helyen, akkor

le­

li A II IID(e*A)l|,V (A,-k) - /2.2.5/
lletAll

ahol

IID (etA)|J = sup II j e 
ne и*4 1 0

(t-s)A r sA j к e ds . /2.2.6/

2.2.1. Következmény. /Van Loan £ 50} /. F^O-ra

/2.2.7/

V2(A,F)*HAII2 . 

l|íV1)A[-jiijr]e5A</5||-t||AI|. d

és ha A normális mátrix, akkor

HAHBizonyitás. VÍA,t)^|letA||

és normális mátrix esetén /2.1.2/ alapján
II Allt íV*-s)4IUIe5AUs =t ИЛИ» .ч)г(А,+ ) í DНе*АНго

А 2.2.1. következmény értelmében a mátrix-exponenciális

kiszámítására vonatkozólag a legjobban meghatározott mátrix­

osztály a normális mátrixoké, mivel ezek exponenciális kon­

díciós száma a lehető legkisebb /^-norma használata esetén/. 

Sajnos a mátrix-inverzió problémájával szemben itt elég ne­

héz kérdés azon mátrixok jellemzése, melyek gyengén meghatá­

rozottak olyan értelemben, hogy a kondíciós szám nagy.

Van Loan megmutatta C50], hogy olyan szigorúan trianguláris 

mátrixokra, melyek С"* - 4)-edik hatványa nemzérus, v(A,-fc)

nagyságrendű nagy t-re, szemben a normális mátrixok
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esetén érvényes Oí't) nagyságrenddel. Általános jellegű 

tételt azonban mindeddig nem adtak és nincs még tisztázva 

V [A ,t) és A spektrális struktúrájának kapcsolata 

Mi az alábbi tételben az A mátrix Jordan-féle kanonikus fel-

fel-

[50].sem

bontása segítségével olyan alsó és felső korlátot adunk meg 

^(А,+)-ге, amely pontosan meghatározza annak nagyságrendjét 

elég nagy t-re. Ez a nagyságrend 0 (■fc1*), ahol w A maximális 

valós részű sajátértékeihez tartozó Jordan-blokkok rendjének

maximuma.

2.2.2. Tétel. A 2.1.6. lemma jelölései mellett

^^pCvoH-KpCv)]1 Wx C-tfr/jO

- IIAIL [*\ yCpNorf-XpiV) 'Mo-y- i-feVj!)

IIAIIp “meLje
Л<>£2Ъ-Л £ Vp (A,*) £

/2.2.8/

■b^ 0.;

Bizonyítás. Először a felső becslést igazoljuk, amelyhez

következő alsó korlátját használjuk:

*a>i|/e*V»||(>/Kp(y/)lletA ifp = IWe+>* V-’llp * 11е+э«ир/хр(и)

|le.xp(tí„;t»))llp >, Ue/p(tV,<0>)HM /mí

= 4w<ä.x e )

s /VvO ex Xés mivel )

így
-toc(A)tReAí (fcVjí)

Most a 2.1.6. lemma alkalmazásával, -p__ (. ) monotonitása alap-

VP(A,há ^Ae^llplle^llpA

^ IIAIIp

m[) — €-
0 S rn - <

j án

í*-sWA)

е+<х(А)Ы pCV)!'* ■Vncx-X 
J - kn—4

2 / (W,|)£ IIAIIP«PM tMlß)fsW]/ tncu
J
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melyből (b) £ m n\alapján adódik a /2.2.8/-ban 

szereplő felső korlát.

Az alsó korlát levezetéséhez először alulról becsüljük 

а Т}(е^) Fréchet-derivált normáját. Legyen E=F/llFllp , ahol

F:= ->i • em.eTfe|Rés > a
és i egy olyan Jordan-blokk indexe A kanikus alakjában,

és ReAr = cl(A) /ilyen van m definíciója miatt/.melyre M:= m 

Ekkor
(V)H F ííp ^ 'Mp(V) 'mák íl lip = 'Xp(V) IIG

^ ^<j" ^

IIDLíA)JI(p)í life 

. II v sV's)>A [F,®...© Fj es>4 ob V* HP /IF Up >

e_eiesi"Ur)dülp/Ktv^2 =
— — *1 Г

(t-s)A F || p =és
II F К

II feü"s)^(^)
= ||Yfc)llp

Y

==f
0

tV°>ahoi
e ee _ e1" e

>Vl *—Л—« —» *

m -cés
0Í5 — ?

Utóbbi alapján HY(-fc)Hp tovább becsülhető alulról

ct */>!)llYí«llp YWl|M — >yr\OJA 
i Íjilm-A

Ezzel már adódik "VpCA^) alsó becslése:szerint.

t «ÍA) DMv)rlHAH. MP e (Wj!) ,IID^UII,, *у = - Pl 1 ; II
moot

Kp(VD){_(t)e.tc<<A)U4f
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ahol ismét j-_6fc) é- />v» Max (•№/*{ ) alkalmazásával kapjuk a

tételben megadott alsó korlátot. P

Ha i, 2 in - 4 , akkor a 2.2.2. tételben szereplő alsó
Ríés felső korlát egyaránt konstans*£ 

mák ekvivalenciája alapján azt jelenti, hogy bármely norma 

esetén V (A,-fc) pontos nagyságrendje 0 (t*1).

A 2.2.2. tételben megadott korlátok kis Ь-re általában

) ill. 'Kp(VD) kondíciós számok 

nagyok. Ilyenkor kis t-re V (A jt) -nek jobb alsó becslését ad­

ja /2.2.7/; alkalmas felső becslést pedig a következőképpen 

nyerhetünk. Tegyük fel, hogy érvényes /2.1.23/. Ekkor

alakú, ami a mátrixnor-

nem élesek, főleg ha a

jje,t-s>A»lkA|US S}(i-s)elt-S)fy>esß Js

■i iß -

IIAII
lle*All о 

= IIAII £cj(f-s)cjís) cis

Ebből exp^-tA) megfelelő korlátái alapján közvetlenül adódnak 

az alábbi becslések.

2.2.3. Tétel. A /2.1.1-3/ és /2.1.5/ lemmák jelölései mellett

v(A,-b) é: HAH -b ey-p (t C^CA))

/ahol - «X. (A)

cienciáj a/;

-fc ^ 0(i) I

az A mátrix logaritmikus ineffi-

-t
WA.-l) + |IAIIÍfn(2llAlKt-í))|n(2|IAIl5) «Is, -W0 ;

о

é mi2 Jtftl(l|UlliOr-s))|(nCtlUII2s)as

Vp(A,t)é НАЙр[«рад1 f^CsUs ,

Cii)

(iii) I

(ív) -t 0.

Itt a (^iv) Jordan-tipusu korlát ismét csak akkor jó kis

t-re, ha Xp(V)&4.
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A relativ hiba összefüggése az exponenciális

kondíciós számmal

A mátrix exponenciális kondíciós számával kapcsolatban 

Van Loan fő eredménye a mátrix-inverzióra vonatkozó /2.2.2/ 

egyenlőtlenség egy analogonjának megtalálása. Ennek ismerte­

téséhez vezessük be a következő függvényeket:

lHA,t)!=IIAII j!l<(esA)flls ; 
о

v(A,$)v(A,t):= 'ma*. /2.2.9/;

mindkettő VÍAtt) felső korlátja. Egyrészt V (A, 4 ) é V (A | О

• nyilvánvaló, másrészt
ds || é: 11 All Slip esA ds ||

HEIM 0
II He

o

é IIAIlf lie!AIliiesA|U5 .
О

sA r *A t ev (a , t) e-ÜAÜ Sáp
II е*А II IIE || = i

E jelölésekkel Van Loan eredménye a következő.
/Van Loan C50]/. Ha £'= ||£ll / В AII < 4 / $ (Aji)2.2.4. Tétel. )

akkor
||etCA+EletAllфсьь A - nMA ,4)||e*All /2.2.10/

E tételnek az /2.2.2/ egyenlőtlenséggel való formai ana­

lógiája mellett két szépséghibája is van. Az egyik,hogy A 

bármilyen kicsiny pozitiv £ relativ hibája esetén a /2.2.10/ 

egyenlőtlenség csak egy véges CP^^') intervallumon érvényes, 

ahol a végpontot f- oo

$ (А I 4^) — reláció. A másik, lényegesebb 

hiányosság az, hogy a /2.2.lO/-ben szereplő korlát kis £-ra 

E,v (A,4) +0^£.г), holott a mátrix-inverzióval kapcsolatban e 

pont elején mondottak alapján azt várnánk, hogy <|>(4) korlát-

/4-*оо/ miatt egyértelműen

meghatározza a
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jában az elsőrendű tag & V(A(-t} legyen. Ez az elvárás jogos, 

és következő tételünkben mindkét emlitett problémát kiküszö­

böltük .

<j)(i):- ||etíAtE- etAll/llttAll , t-«EH/ÍAII.2.2.5. Tétel. Legyen

■fc * o -raAkkor

<= t V (A,-t) + Ег0(А,4)4НА(*) e

ф (t) = II SV“>,A

II sV*-rtftE
í -ü-2_______________ t-

)WtAll

á £D(A,E) +£[|A|| f l|e-iA(| ||eSÍMe,-esAIM
О

- £ v(A,-fc) -t I jIA II J x (esA) <p(b) cls
о

/2.2.11/

E eiíA+El<b|l/lle*All £ 

||e*MVAE[es(Ate!-esA]^|l

Bizonyítás.

II etA II

S —

Innét a Bellman-Gronwall-egyenlőtlenség /2.1.8. lemma/ alkal­

mazásával kapjuk, hogy
~t "t

ф^) 4 £,VfAf4) + fllAH í^(A,s)^(esA) €*p (s/ÍAllJ ^CeTA)át) ás

Ebből v (A ,-t) ®s tulajdonságai alapján
t 1

£ vCA,*fc) +- £ v(A,-t) j £ÍÍAI!^(e$A) €хр(£!1А1|Ь(етА)с11г)б(5 

= £ v>^A,i) +£. v (A,fc) £e.*p (&ИА1! 5:k(e?A)cb) -^ J

<6V(A ,-Ь) -ь 8.ZV (Аа)^(Аа)ехр(б^^)) t D

Az inverz mátrixra vonatkozó /2.2.2/ egyenlőtlenség egy 

újabb formai analogonját kapjuk, ha bevezetjük a

v(A,4,e):= у(А,*) + £<Я(М)рбА,Е) - »M] /2.2.12/
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, hogy fennáll V (A ,t) * V CA ,-b) , '

Ha £:=U£ll/IIAH < V<WA,fc)f hbO,

SfA.t.O
A - E

jelölést. Látható

akkor2.2.2. Követke zmény.
||et(A*£)_btA||Ф(*) = ^ E /2.2.13/11 е*л 11

Bizonyítás. Alkalmazzuk a /2.2.11/-ben szereplő összeg máso­

dik tagjában az exp((v)<4/(4- Ю egyenlőtlenséget, ahol 

Pi=E^6A|^) G fO, 4) és hozzuk a két tagot közös nevezőre. □ 

Megjegyzés. A 2.2.2. következmény még mindig erősebb, mint

miatt1<4Шл,Ь)
v (A, t, i) = [a-- £ aHA,t)] v(A,i) + £ fitAt) 0 (A,i) ± v (A ,t)

e vCA,-h) + OU2) /1+0/

Van Loan eredménye /2.2.4. tétel/, mivel

Ezenkivül az utóbbiban szereplő korlát

v (А ,g) = t0(£).mivel

2.3. Perturbációs korlátok a mátrix-exponenciális

parciális deriváltjaira

E pontban a mátrix-exponenciálisnak az A mátrix paramé­

terei szerinti parciális deriváltjaira adunk perturbációs 

korlátokat. Ilyen jellegű eredményeket az irodalomban nem ta­

láltunk .
n*r\.

Tegyük fel tehát, hogy A (. )• ÍR''* —^ (C 

f erenciálható paraméter-függvény. Ekkor e * p (■t A(.)) parciális 

Г -edik paraméter szerint egy rögzitett ©0

folytonosan dif-

deriváltja az

helyen /1.2.23/ szerint

*e*Afö) г a-s)A(ö0) ^ s A ft.)c(* Je 
0

«U .эег

A továbbiakban az egyszerűség kedvéért hagyjuk el a pa­

raméterfüggés jelölését /mivel 6Q rögzitett/ és legyen
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A1-A(e.) ,
E jelölésekkel

Zttl- fe^A sABe cis /2.3.1/

Tegyük most fel, hogy az A mátrixot ЕГ-vei, "В—t pedig

F -fel perturbáljuk. Célunk a ?í(b) és perturbáltja közti

, f* ot-s)A db - j e? tt-y)(A+E) s(A+E) sAGCt) * J e (fc+F)e Be cls /2.3.2/
0

eltérés-mátrix becslése lesz. Ehhez a következő lemmát hasz­

náljuk fel.

llet'IU^We^2.3.1. Lemma. Ha ahol

csökkenő CO,oo)-en, akkor t Ъ 0 -ra

monoton nem-

3.3/

Bizonyítás. Egyszerű átalakítással kapjuk, hogy

G(0 = feC"j)ÍA+EV^A+£dSMV)(A+E)
О о

ßH(s)ds + Jh(s)B e
о

cLs;

ahol H(.) /2.1.24/ szerint definiált. Innét normákra áttér­

ve, a feltevések és a 2.1.1. tétel alkalmazásával kapjuk,

hogy t-s

+ IIBII

á || F II é* e"£'"ÍV5'"ÍS íj «•-*) 3 ÍS ) d 5 

lieil^íVt-^C» ás

Cs) e*

->(J^(t-s) S)^ols 4rfejdc

+

■MIß II
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"fc ^
^llEU^Ms ^(s)ds £||F|| 12 HEH l|ß II • D±P- e

lemma azt mutatja, hogy nagy t-re / ^fs) ^A 

att/ a hiba/korlát/ nagyságát IIFII nemigen befolyásolja, az 

elsősorban l|BI| ill. HBIl nagyságától függ. A mátrix-exponen­

ciális esetéhez hasonlóan itt is minden olyan perturbációs 

korlát, melyben ) nemkonstans polinom, igen gyorsan tart 

a végtelenbe, ha /az E*0 triviális esetet kivéve/.

Konkrét perturbációs korlátokat a mátrix-exponenciális­

ra vonatkozó korlátokból közvetlenül nyerhetünk a 2.3.1. 

lemma alkalmazásával; ezekre itt nem térünk ki, csupán meg­

említjük, hogy ha A normális mátrix, akkor az optimális

mi-A 2.3.1.

IIGWII, á t(llF4t +2.tllEllj.llBiy e i>,0 /2.3.4/

becslés érvényes.
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3. ELJÁRÁSOK A MÁTRIX-EXPONENCIÁLIS KISZÁMÍTÁSÁRA

E fejezetben három módszert vizsgálunk meg a mátrix-ex­

ponenciális /exp(tA)/ ill. •e.X'pOfcA'Jb kiszámítására: a négyze­

teléssel kombinált Taylor-soros módszert, a spektrálfelbon­

tás módszerét, valamint a minimálpolinom-módszert. A művelet­

ül. memóriaigény szempontjából az első módszer csak е*рМгА) 

számítására hatékony, a harmadik exp(tA)b számítására, a 

második mindkettőre, azonban gyengén meghatározott sajátérték- 

probléma esetén pontatlan.

Vizsgálatunkban kitérünk az emlitett három módszer al­

kalmazhatóságának feltételeire, elemezzük a kerekítési hibák 

hatását és észrevételeket teszünk a pontosság szempontjából 

fontos számítási részletekkel kapcsolatban is.

Az emlitett módszereken kivül számos más eljárás isme­

retes: Moler és Van Loan összefoglaló cikke L38J 19 "kétes 

értékű" /dubious/ módszert különböztet meg. Ezek az emlitett

három módszeren kivül magukban foglalják a diszkretizációs

módszereket, Padé-approximációt, racionális Csebisev-appro- 

ximációt, különféle interpolációs polinomok/Lagrange, Newton, 

Hermite/ alkalmazását, hasonlósági transzformációt speciális

alakú /Jordan, trianguláris, blokk trianguláris, Frobenius/

mátrixokra, stb. E további módszerek tulajdonságaira ill.

kritikájára vonatkozóan а Ц38Ц cikkre utalunk.

51



3.1. Taylor-sor és négyzetelés módszere

Ebben a pontban először a Taylor-sor-módszerrel és a 

négyzeteléssel kapcsolatos numerikus problémákat tárgyaljuk. 

Ezután a Taylor-soros módszerrel kapott közelítés hibájának 

a négyzetelés során való terjedésének jellemzésére definiál­

juk egy mátrix hatványozásra vonatkozó kondíciós számát és 

elemezzük annak tualjdonságait, rámutatva a Van Loan által 

bevezetett exponenciális kondíciós számmal való kapcsolatára.

A Taylor-sor-módszer és módosításai

Az egyik legkézenfekvőbb módszer exp£iA) számítására - 

melyet többen is ajánlottak az alkalmazási irodalomban £ 6,14, 

30, 31, 35U - a definiáló mátrix-hatványsor egy véges részlet­

összegével való közelítés:

«kw-íF.0#- /3.1.1/

E közelítés képlethibájára nézve könnyen beláthatok a követke­

ző egyenlőtlenségek /feltéve, hogy N+4 > lit AII /:

lit AUá e
iim" a||etA -Í„(*A)|) lit AIIN! 4-* A N+4

VT N! lltAII4 - N*•4
/3.1.2/

A /3.1.2/ becslést figyelembe véve e*p(tA) elvileg tetszőle­

ges pontossággal meghatározható, ha a hatványsorból számítás­

ba vett tagok N számát elég nagyra választjuk.
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Azonban a módszer e formájában nem tekinthető egy gya­

korlati módszernek esetben. Ennek egyik oka, hogy N -t

általában viszonylag nagyra kell választani a pontossági 

kritérium kielégitése érdekében, és emiatt a módszer sok 

mátrixműveletet igényel. Például a legegyszerűbb ,bA=(-C)€lR 

skaláris esetben az £=0.000 4 relativ pontosság eléréséhez 

legalább tag figyelembe vételére van szükség, ami sok­

nak minősíthető, tekintve, hogy HfcAII-C nem túl nagy 1-hez 

képest.

Talán az előzőnél is súlyosabb problémát jelent lltAIJ>^ 

esetben a sorösszegzésnél fellépő jegyveszteség, amely a 

számoláshoz felhasznált számítógépi lebegőpontos aritmetika 

végességéből adódik. Ugyanis ilyenkor az összegzésben szerep­

mátrixok normája /£ növekedésével/ általában 

először növekszik és csak azután csökken. A OfcA)V‘i! mátrix­

lő (íA)V<:!

szál végzett összeadás során ennek elemeihez viszonyítva kis 

helyiértékü jegyek elvesznek. Ez a jegyveszteség jelentős 

hibát okoz abban az esetben, ha valamely i-re 

l(e*p (£A)I| , mivel ekkor a végeredménynek /relative/ nagyobb 

helyiértékü jegyeit érinti. E probléma elsősorban a gyakor­

latban legfontosabb stabil tipusu mátrixoknál jelentkezik, 

mivel ezeknél C-kpHA)—^0 /-i-*oo/ miatt HAH »4 

Uex-pCtA) (I« 4. Ilyen mátrixoknál iA egymást követő hatványa­

iban az elemek gyakran ellenkező előjelűek, ami növeli a jegy­

veszteséget. A Taylor-soros módszer gyengéit jól illusztrál­

ja а С38Л cikkben közölt 2x2-es példamátrix, amelynél az 

|NfiA) részletösszeg-sorozat /gépi/ konvergenciájához N—59 

tagra volt szükség és a kapott végeredmény egyetlen értékes

lí ft A) Ve! II »

esetén

jegyet sem tartalmazott, sőt bizonyos elemei nagyságrendben

ill. előjelben is eltértek a helyes eredménytől.
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Az einlitett problémák miatt a Taylor-sor módszert csak 

akkor célszerű alkalmazni e>cp6tA) számítására, ha Ц-ЬА1|^4* 

Hogyha ez a feltétel nem teljesül, akkor a módszert csak va­

lamilyen módosított formában érdemes alkalmazni, ahol a mó­

dosítás lényege a feladat visszavezetése egy olyan mátrix 

exponenciálisának kiszámítására melynek normája már nem na­

gyobb egynél. Ward £511 a mátrix-exponenciális tulajdonságai

alapján az alábbi három normaredukáló eljárást javasolta:

(ij [spektrumeltolásj Ha A,, = A - (ir(A)/rt) X f

, trfA)
У rv

akkor

ihkWihZMA)!1 éS i АлtA /3.1.3/• -e■c = e
t = 4

/E transzformáció alapján remélhető, hogy (A^ 1 ^ (A)

HAJI < H-t АII. /

(ii) [ klegyensulyozásj Legyen A2 = T)^

нт>ГЧ1),11 = 'mCKv iiü'Xdii .

e+A<

és

aholA >

Akkor
0 oliaqohÄUs2

±AZ D-<Л
/3.1.4/= U.,e

A gyakorlatban nem fontos a pontosan minimalizáló I^ mátrix 

megkeresése, hanem megfelel pl. a Parlett-Reinsch-féle kie­

gyensúlyozó eljárás / [54] ; 315. o./, melyben diagonális

elemei a lebegőpontos számrendszer alapjának egészkitevős hat­

ványai. Utóbbi előnye, hogy mind f\2 képzése, mind a /3.1.4/ 

visszatranszformálás kerekítési hiba nélkül végezhető el.

(iii) [négyzetelésj Legyen К— win I HA 11^ й j és

1- 2~K-fc. Akkor és

etA2 = [e*1^ /3.1.5/
K-szor

Megjegyezzük, hogy Ward az (i)- (iii) normaredukáló eljáráso­

kat a Padé-approximáció módszerével kombinálva alkalmazta
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amely a Taylor-sor-módszerhez hasonlóan szintén csak HtAllá'l 

esetben hatékony és pontos.

Az (i") és (ii) eljárásokkal egy mátrix normája csak bi­

zonyos határok közt redukálható, mig (iii) alkalmazásával 

tetszés szerinti redukció elérhető. Ezért a továbbiakban a 

négyzetelés módszerével foglalkozunk csak részletesebben, és 

az egyszerűség kedvéért f\.x helyett A-t Írunk.

A négyzetelés módszerénél a kerekítési hibák szempont­

jából a következő probléma merül fel. Mivel itt К számú mát­

rixszorzást végzünk az €-Xp((\.A) mátrixból kiindulva,
2« . ... végeredményként kapott közelítésének kerekítési

-nal lesz /durván/ arányos llexf>CbA)ii 

helyett /vő. C383/, ami igen nagy relativ hibát tesz lehető­

vé, ha az utóbbi két mennyiség aránya egynél sokkal nagyobb. 

Ez a probléma különösen hangsúlyozottan jelentkezik stabil 

A mátrix esetén, mivel ilyenkor elég nagy t-re II exp (-tA) ll<^ 41 

viszont yh(A)>0 esetén könnyen előfordulhat /vö. 2.1.1. kö- 

vstkezmény /, hogy || exp A)|| > \ és ha К elég nagy, akkor 

llexp (ЛA)ll“5' » A . Ezt a stabil mátrixoknál gyakran előfordu­

ló esetet Moler és Van Loan С38] "pup-jelenségnek" nevezték 

el, mivel ilyenkor ile<XpftA)|| grafikonja egy púppal kezdődik, 

mint azt a következő ábra mutatja.

exp(iA)
=[exp(RA)J

2v.
hibakorlátja llexp (A A) II

-> t-
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Abban az esetben, amikor yu (A)é 0 , a 2.1.1. következmény sze­

rint l|eypCtA)l| monoton nemnövö -t"ben és a pup-jelenség nem 

fordulhat elő. Ez a helyzet pl. stabil normális mátrixoknál, 

mivel |иг(А) = о((А^0, Összefoglalva megállapíthatjuk, hogy a 

négyzetelés módszere stabil tipusu mátrixokra esetén

a kerekítési hibák felnövekedése miatt numerikusán instabil.

Az öröklött hiba terjedése a négyzetelés módszerében

Tegyük fel, hogy a Taylor-sor-módszerrel /vagy más utón/ 

meghatároztuk 6= exp(ívA)-nak egy B+E közelítését, ahol az F 

hibamátrix kicsiny, és erre alkalmazzuk a négyzetelés mód­

szerét a /3.1.5/ kélet szerint. Ekkor /ha a négyzetre emelé­

seknél elkövetett kerekítési hibáktól eltekintünk/ •exp('fcA) 
,K ,k

=3 helyett eredményül a (BtE)

akban megvizsgáljuk, hogy egy В mátrix E perturbáicója mi­

lyen mértékű eltérést okozhat a *k, -adik hatványban /négyze­

telésnél k-2^1. Az alábbi tételben megadott három perturbáci- 

ós korlát közül a középső érvényességét /tőlünk eltérő módon/

mátrix adódik. Az alábbi-

Kanyár és Tóth C 313 is igazolta.

3.1.1. Tétel. Legyen B^cC
IIB+Ejl*-- к В II k
|IB+Ej| - II В II

és k. természetes szám. Akkor

IIEI) , ка ПВ+ЕНФИВН 

; Ra. II B+Efll •= ИВ II

< (ilBítllEll)*! Hellyé -fe i>EП (llßll+IIEll)

И (В+Б)Ь- B*1)! ^ г:

k-<lк IIEU IIВII

/3.1.6/

Bizonyítás. Először a tételben megadott legélesebb korlát

к = 0-ra az álli-érvényességét igazoljuk teljes indukcióval, 

tás nyilvánvaló. Ezután az indukciós feltevést kihasználva,
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H(B+E)k*l ВЫ II - IIEBk+ (8^)[(B+E)k-Bl'J II á 

é ЙЕН llb^ll + UB+EII Н(В+Е)4-В4Н é 

HB+Eíf4- I1S|[4
ИВ-Ь&П =Й1ВЦHEH IUB+EII -ИВНк< ЦЕН IIBII + ||B+E|1‘

Ы ЦВ+-ЕН = IIBIIt heh neu
I

t+4 Ы-IIBIIЦВ+-Е1)IIEll IIS+EII + 46II)UB+EII - II В 4

(fe-M)UEII IIBII1 II в kB II = 11 в II
)

amivel az első egyenlőtlenséget igazoltuk. A további egyen­

lőtlenségek IIB+BU ü. IIBII +-IIE II alkalmazásával az (x^-л!*)/бх-л) 

(x^ >,o) és 4. x

bél a középértéktétel segítségével következnek. D 

A tételben becsült II(В+Е)^-бЛ (|

ha és E elég kicsiny ahhoz, hogy

is fennáll. A B = e*p(M) mátrixra a yCB)^ feltétel ekviva­

lens azzal, hogy oí(A)^0 , azaz A stabil. Ezzel szemben a té­

telben megadott felső korlátok csak akkor tartanak О-hoz, ha 

IIBIU'I és Il8+Ejlk/I az első korlát esetén ill. 11611 + HEI) <■ \ a

4-< (x^.o) függvények x szerinti monotonitásá-

mennyiség fe.-^>сю-re 0-

hoz tart,

többinél.

A tételben szereplő kolrátok levezetésében alkalmaztuk

а II II ^ IIBII k egyenlőtlenséget, ami bizonyos mátrixoknál

nem ad elég éles becslést. A mátrixhatványok perturbációra

való érzékenysége - mint azt alább látni fogjuk - optimális 

akkor, ha ez az egyenlőtlenség éles. Hogy ezt az állítást 

pontosithassuk, először definiáljuk egy В mátrix hatványo­

zásra vonatkozó /relativ/ kondíciós számát, Rice C44j elméle­

tével összhangban.
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nxn
mátrix fe-adik hatvány képzésére3.1.1. Definíció. Egy € C

vonatkozó kondíciós száma alatt az

II (B+E)*1'- ß4* II11811 p.
■—— ttirv S yjJP
llBfc|| í-*0+ flEíufN(B,fe) /3.1.7/S'

határértéket értjük, amennyiben *Bíe’:#0.

A kondíciós számnak itt is hasonló geometriai jelentés 

tulajdonítható, mint az exponenciális kondíciós szám eseté­

ben /2.2.pont/, és kiszámítása itt is visszavezethető a k- 

adik hatványt kéző operátor Fréchet-deriváltjának normájára.

3.1.2. Tétel.

"Blsup||bUEBk-j|I\Z(B,k) = /3.1.8/

Bizonyitás. Rice П463 cikkének 4. tétele értelmében
116 II

az F(A) = A , A € C

ne 41
njox relációval definiáltahol

operátor Fréchet-deriváltja а В helyen. Könnyen látható, hogy

(B+E)k- Bk=Ít + 0 (HEU2)
1 = 4

amiből következik, hogy a /3.1.8/-ban szereplő szuprémum va­

lóban D (Bk) normájának felel meg. □

3.1.1. Következmény. кOBI!
llBMl ’ /3.1.9/

és ha В normális mátrix, akkor N2 (ßf4)= 

Bizonyítás. И ВII
IIBfell valamint

кк It i. SAupXUB«HÍIEIIIIBII 
HßkH ЦЕП =4 1=4

lienHß и = 4 Másrészt«в*// •
ha В normális mátrix, akkor B"=GlAQ.^/ ahol Q, unitér és A di-
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agonális, továbbá II В*1 llz« HQ. 7^ QH Нг - НЛ^|12 = li Allf = II В11^ 

így /3.1.9/-bői következik Nz(B,4)=fe.. Q

és

Látjuk tehát, hogy a normális mátrixok kondicionáltsága 

nemcsak a mátrix-exponenciális kiszámítására nézve optimális, 

hanem a hatványozásra nézve is. Mivel 6xp(iA) négyzeteléssel 

való számításakor a Ъ = &xp$A) mátrixot emeljük fe-2^-adik 

hatványra /ahol к-Ъ/к /, igy az a kedvező, ha exp(RA) normá­

lis mátrix, ami azonban a mátrix-exponenciális (D) tulajdon­

sága /1.2.9. tétel/ következtében ekvivalens azzal, hogy maga 

A is normális.

Az kondíciós szám első rendben jellemzi a rela­

tiv hiba terjedését В fc.-adik hatványra emelésekor, mint azt 

az alábbi tétel mutatja.

3.1.3. Tétel. Legyen *B+■£ relativ hibája í'-- |IE|\ /IIВ II . Akkor

II (BfE)*1- ВЧ1 . bIIВIIé N(e,&}e + /3.1.10/116*11

-B*ll = + tibwt^ll

lfeb II
íBizonyítás. II (&*■£)

llßkll II ß*(l

L + S.^)/!^ ЛВН, IISb^eb 

llBMl

< ÜÜ1 N(g ft) (Ш)'.
" IIB1I 1 UBItJ

k-L

ti B* II
к кИВ К

. О/18*//

A tételben megadott felső korlát té A esetén K(ß,4)fi+

OCt3"), mivel ekkor

A fentiekben láttuk, hogy a hatványozásra vonatkozó 

kondíciós szám ugyanúgy optimális a normális mátrixok osztá­

lyára, mint a 2.2. pontban vizsgált exponenciális kondíciós 

szám. A továbbiakban megmutatjuk, hogy a négyzetelés módsze-

59



rének alkalmazása esetén még szorosabb kapcsolat is van a 

kétféle kondíciós szám között.

Először tegyük fel, hogy A normális mátrix és К^АН^б. 

egész. Ekkor a 2.2.1. következmény szerint {i) ^ íl A H2 = к .

Amennyiben úgy a négyzetelés módszere а Ъ=€Хр("ЬА/4)

mátrix 4-adik hatványra emelését jelenti. Viszont ilyenkor Ъ 

is normális, tehát (ß,&.)=• (exp (íA/4.)( 4.) = fa. ■=■ Уг (A,-fc) ? 

azaz az A mátrix exponenciális kondíciós száma megegyezik a 

hatványozandó exp6tA /&) mátrix hatványozásra vonatkozó kon­

díciós számával.

Ha A nem normális, de 4 elég nagy, akkor bizonyos köze- 

litőleges kapcsolat szintén létesíthető N (e.*p (-ЬА/6.), 4.) 

v(A,t) között. Ugyanis 

■fcA/fc

és

ЛЧА|| «i (>)

He H IIEII=-1 l=<

Me*A/4llN (e 4) ■= Sup; lí A 1| KEIM

Л1Р . S^4P j| ^ €
HeiAll ней 11 о

sAfe(t-s)A fedsü = /3.1.11/
II-t All

és igy HéAll^fi. esetén N (exp (irA/&), 4 ) V (A,i) . Bár e leveze­

tés során eléggé durva közelítéseket alkalmaztunk, a kapcso­

lat szorossága a két kondíciós szám között mégis figyelemre 

méltó. Leszűrhetjük belőle azt a következtetést, hogy a négy­

zetelés módszere csak akkor növeli meg erősebben az öröklött 

relativ hibákat, ha €Xp6tA) kiszámításának problémája eleve 

gyengén meghatározott.

Hogy a /3.1.11/ közelítés nem lehet túlságosan rossz, 

alátámasztja a következő becslés is, melyet /3.1.9-ből/
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/2.1.1-2/ alapján kapunk N ( e,*p £fcA/&)( {г.)

еЫ (А)

-га:

1А/Ь = 4 e't^ÍA)4)é4 4>s0. /3.1.12// ?

Ugyanezt a becslést kapnánk akkor is, ha /3.1.11/-ben 

helyére annak a 2.2.3. tételbeli (i) korlátját imánk.

A Taylor-soros és négyzetelési módszer művelet- és

memóriaigénye

A Taylor-sor-módszer műveletigénye e/p (±A) számolása 

esetén /IV tagot figyelembe véve/ (NJ-2) n? 4-

számolása esetén (fV-'On1 + 0 , ahol egy művelet alatt egy 

szorzás /vagy osztás/ + egy összeadás /vagy kivonás/ értendő. 

A memóriaigény A tárolására n7, az eredmény tárolására pedig 

eypC^A) esetén

6>cp6iA)k

'r^l 6*p(éA)b esetén pedig n memóriarekesz. 

A négyzetelés műveletigénye H • ог^ К* 2одгЦШ{ahol me-J

móriaigánye ugyanaz, mint a megelőző Taylor-sor-módszeré.

Ha csak az €xp (4A)b vektor-problémát akarjuk megoldani, ak­

kor a négyzeteléssel kombinált Taylor-sor módszernél nincs

mód a műveletigény 0(ог2)-re való csökkentésére. Ez a nagy­

ságrendi csökkentés elérhető, ha négyzetclés helyett 4-szőri 

szorzást alkalmazunk, ahol 4 лу\,С>\ |a’^0 } Аli é.<. J

e**k*UA/kfí = ... t ]....]
' " tízszer /

és a műveletigény , ahol 4,%ll-fcAl(. A vektor-problémára

. Ekkor5=*

7

az utóbbi eljárást akkor érdemes alkalmazni a négyzetelés

helyett, ha

Külön emlitést érdemel az az eset, amikor &Kp(£A) vagy

*rv & ekvidisztáns pontsoro-Ckp6kA)b értékeit egy % » "II
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zaton kell kiszámolni. Ilyenkor célszerű kiszámolni először 

az 6Xp(^A) mátrixot a négyzeteléssel kombinált Taylor-sor- 

módszerrel, majd az egymást követő pontokban felvett értéke­

ket exp(&A)-val való szorzás utján; nem pedig minden 

pontra függetlenül számolni expGtA) -t.

3.2. Spektrálfelbontás módszere

Amennyiben ismernénk az A mátrix Jordan-féle kanonikus 

ekp&A) számolása i különböző értékeire az 

1.2.10. tételben megadott explicit képlet alapján elméleti­

leg igen egyszerű lenne. A fő probléma a gyakorlatban az, 

hogy lebegőpontos aritmetika alkalmazásával a Jordan-féle 

kanonikus alak nem határozható meg megbizhatóan. Ennek fő 

oka, hogy a hasonlósági transzformációk elvégzésekor elköve­

tett kerekítési hibák miatt a többszörös sajátértékek általá-

felbontását, úgy

* ban különbözőekbe mennek át, amelyekhez tartozó sajátvektorok

közel párhuzamosak. így defektiv mátrix esetén is általában 

egy З.- A diagonális mátrixhoz és egy olyan V sajátvektor- 

-mátrixhoz jutunk, amely közel szinguláris. Ennélfogva a de­

fektiv mátrixok gyakorlatilag nem különithetők el a gyengén 

meghatározott sajátértékproblémáju diagonalizálható mátrixok­

tól, amelyekre a

t'n-f ^c(V) 

A = VAV"/| /3.2.1/

Jordan-féle kondíciós szám /С551, 83. о./ nagy. Ezt a prob­

lémát részletesen tárgyalja a pl. Golub és Wilkinson [18].
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A defektiv mátrixok Jordan-féle kanonikus alakjának 

merikus meghatározásával kapcsolatban emlitett nehézségek

nu-

miatt eleve csak arra az esetre szorítkozunk, amikor -f - A.A
diagonális, tehát

о
o\A-A--VAV-' /3.2.2/, ahol >

és igy
etx< . 0- ИiA x/ e = Ve tA• e, ahol r: /3.2.3/0 ' e

Amennyiben A sajátértékproblémája gyengén meghatározott /pl.

A közel defektiv/, A) és nagy, és ilyenkor mind a

sajátértékek, mind a sajátvektorok csak nagy hibával számol­

hatók még stabil módszer /pl. a Q.”R,-algoritmus C 543 / alkalma­

zása esetén is. Ugyanis az alkalmazott módszer numerikus stabi­

litása csak azt biztosítja, hogy a számolt sajátértékek és 

sajátvektorok pontosak lesznek egy olyan A+E mátrixra, amely 

közel van A-hoz Г 54], de gyengén meghatározott sajátprobléma 

esetén a két mátrix sajátértékei és sajátvektorai közt igen 

nagy eltérés lehet kis E mellett is. Ez utóbbi önmagában nem 

lenne probléma, mivel végső célunk exp(-tA) közelítése.

Tegyük fel tehát, hogy a számolt sajátértékekből és sa­

játvektorokból képzett A /diagonális/ és V mátrix egy A+E 

mátrix
rv. rv r* __iA + E = V А V /3.2.4/

spektrálfelbontását adják, ahol 11Е/1/ЦАЦ kicsiny. Ekkor a re­

lativ hiba nagysága a 2.2.5. tétel szerint

ti AU J J
./А ,4 HEH ,= v (A+) |дТ| +<{>(*) /3.2.5/l|etAll 1
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tehát elsősorban az A mátrix exponenciális kondiciós számá­

tól függ. Mivel IÍFÍ//IIAII kicsiny, а ф (-t) relativ hiba csak a 

mátrix-exponenciális kiszámítására nézve gyengén meghatáro­

zott mátrixok esetén lehet nagy. Ez azt jelenti, hogy a 

spektrálfelbontási módszer numerikusán stabil módszer lenne,

ha a /3.2.3/ képletet, pontosan tudnánk számolni. 

Azonban, ha X(V) nagy, azaz a számolt sajátvektorok
~ Amátrixa gyengén meghatározott mátrix, akkor V" képzésekor

a kerekítésekből eredő hiba igen nagy lesz. Például a rész­

leges főelemkiválasztásos Gauss-elimináció alkalmazása ese­

tén az inverz kerekítési hibaanalizisből ismert T52j, hogy V
^ ^ r"inverze helyett egy perturbált V-V+F mátrix inverzét kap-

/V

juk meg, ahol

IIFIU clIVil } c = 0 (u) /3.2.6/

és ahol u a lebegőpontos aritmetika relativ pontossága /pl. 

f?> alapú számábrázolás és i-jegyű mantissza esetén u*Jr(3*^/.

V exp(-tA)V 4
fejezést számoljuk, és az ebből adódó hiba becslése /3.2.6/

így exp (1CA+F])=-v expí-tA) V"1 helyett a ki­

felhasználásával

l|Ve*p(a)[V-,-V-',]ll é l|Ve„pCa)V-4l llX-VV'tl

- llexp(-tCA+Б])II HF V”"4ti

á |(еШ,0||с115!111И« lle4Allcx(v) /3.2.7/)

vagyis, ha 'K(v)>>'1, akkor V közelitő inverzének alkalmazá­

sa durván cx(\7)»*^ 

exponenciális kondiciós számától. Ez az eredmény megegyezik

relativ hibát okoz, és ez független A
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Moler és Van Loan t38] bizonyítás nélkül közölt megjegyzé­

sével a módszer pontosságával kapcsolatban.

Jí(V)>> 1 esetben a kerekítési hibák halmozódásának egy 

további tényezője а V tpf 6Ь-Л-)\/ -A szorzat kiszámítása. Még ha
^ __ j

Vpontosan ismert lenne is, a mátrixszorzás során elköve-

Cz || \7 Í| li e)tp 6fcА')И llVH|| =tett kerekítési hiba korlátja

'K (9) C2 , ahol C2-0(u-) . Látjuk, hogy az emlitett mátrixszor­

zásnál fellépő hiba korlátja ismét а К ) kondíciós számmal

arányos.

Az előzőekben elemzett okok miatt a spektrálfelbontás

módszere csak jól kondicionált sajátértékfeladat mellett ja­

vasolható. A sajátértékfeladat megoldásának egyik legjobb

módszere hatékonyság és numerikus stabilitás szempontjából a

QR-algoritmus, melynek megbízható programjai hozzáférhetők a

szakirodalomban L54J.

Művelet- és memóriaigény

A spektrálfelbontási módszer egy számitógépre orientált 

algoritmusának sémáját Moler és Van Loan adták meg, a 

goritmusra alapozva £38]. Ez a séma magában foglalja a HÍV) 

kondíciós szám nagyságának, azaz a módszer adekvát voltának 

ellenőrzését is. Az eljárás műveletigénye a következő. 

Előkészitő szakasz. A mátrix spektrális felbontásának megha­

tározása QR.-algoritmus segítségével /beleértve V~* meghatá­

rozását exp(fA) számítása ill. с = V”* b meghatározását €хрб+Л)Ь 

számítása esetén/ átlagosan R^^Ofn1) műveletet igényel, 

ahol а К konstans egy jó becslése a C383 cikk szerint К ^15.

Gfó-al-
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Második szakasz, -t tetszőleges értékére d/pCbA) kiszámítása

•n?t 0(u‘) expC&A) b kiszámítása 

szerint pedig műveletet igé-

a / 3.2.3 / képlet szerint

ехр(ЬА)Ь = V expUjl) c
nyel, az к számú skaláris exponenciális kiértékelésén kivül.

Ha t több értékére is el kell végezni a számításokat, 

akkor láthatjuk, hogy a vektor-probléma műveletigénye egy 

nagyságrenddel kisebb, mint a mátrix-problémáé, szemben az 

előző pontban tárgyalt négyzetelési módszerrel. További elő­

nye a spektrálfelbontásnak a négyzetelésen /vagy hatványozá­

son/ alapuló módszerrel szemben, hogy a műveletigény itt gya- 

kolatilag független lltAII nagyságától, mig az előző pont mód­

szerében általában t-vel együtt nőtt a szükséges méveletek

száma.

A spektrálfelbontási módszer t-Xp Ct A)-ra való alkalmazá­

sa esetén szükség van A, V( tárolására, igy a memóriaigény

3 nz + 0(n). -<expCt A) b számolása esetén V 

tárolása elkerülhető, ezért itt csak In^+Ofa) memória-re-

kiszámitása és

keszre van szükség.

3.3. Minimálpolinom-módszer

Az e pontban kifejtendő módszert elsődlegesen exp££A)b 

kiszámítására fejlesztettük ki С12Ц, tekintettel az olyan ese­

tekre, amikor A sajátértékproblémája gyengén meghatározott

és a spektrálfelbontás módszere nem alkalmazható, 

másrészt mivel a négyzeteléssel kombinált Taylor-soros módszer 

számítására túlságosan müveletigényes. Az un. poli-

/^(A) nagy/
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nomiális módszereket - melyekhez az alábbiakban megadott mód­

szer is sorolható - Moler és Van Loan összefoglaló cikke C383 

elveti, mint amelyek nem hatékonyak, mivel OCn1*) a művelet­

igényük és О (*л3) a memóriaigényük /e/p(-tA) számitása esetén/, 

szemben más módszerekkel, ahol a nagyságrend eggyel kisebb /pL 

az előző két pontban tárgyalt módszereknél/. Azonban az 

e.Xjp6tA)b vektor-problémára az előkészítő szakaszban e művelet­

igény általában О (ю^-ге csökken, a különböző t értékekhez 

tartozó későbbi számításokban pedig már csak 0(,n-x') művelet­

re van szükség, hasonlóan pl. a spektrálfelbontás módszeréhez; 

ezenkívül a memóriaigény is О (ог1) -re redukálódik.

Eljárásunk lényege expCiAjb kiszámításának visszaveze­

tése egy Frobenius-alaku /kompanion-/ mátrix exponenciálisá­

nak kiszámítására, amely utóbbi feladat megoldására Kammler 

dolgozott ki egy hatékony eljárást Г 283.

Az eljárás levezetése

Legyen -p(X) =r/\.Mt cm'Ahl V.,. + C2A + C/1 AelR, mát­

rix bé(Rn vektorhoz tartozó minimálpolinomja, azaz a legki-

az

sebb fokszámu egy főegyütthatós polinom, melybe az A mát­

rixot behelyettesitve fennáll a

CA) b =■ 0 /3.3.1/

egyenlőség. Mivel x « e~xpftA)b idő szerinti deriváltjai 

x •= A x x = A2x és általában (d/dl)< _X ■= А X. . *=0.4.2 ígyI • •* 1)-)
-tA /jó(A) b - 0-jo (dl/cL-k )х.=/|оГА)У - в 

/ahol a jp (d/dt) - (d/dl)m+ (d/cft)™ + ., . + c2 (d/di) +

/3.3.2/

diffe­

renciáloperátor az •=. x (1) vektorra komponensenként alkalma­

zandó/. /3.3.2/-bŐl látható, hogy X bármely eleme kielé-xa
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giti a

p (d/cLi) Xj - 0 ( 4 éjé*,) /3.3.3/

'ba-edrendü homogén egyenletet.

A bevezetés 1.2. pontja alapján //1.2.22/ formula/ a 

/3.3.3/ egyenlet megoldása

te (A á jé *0X^ÍO) /3.3.4/I

ahol
,T(»n-4>_ _ % ~I

* * ) Xj C0)Jх#'(0) = [*,• lo),i/c)i .

és C a ( . ) polinom kompanion-/kisérő/

0 Л 0 " ■ 0

/3.3.5/

mátrixa:

C = ■ о /3.3.6/
‘ A0 . . . . 0 

L-C* . - .. -c
A /3.3.5/-ben specifikált kezdetiértékeket az

-c*,

xJ'WeJW- ej A43 о "* ~з -
>n — 4 /3.3.7/• I

reláció adja meg (4é j*1*). Ezzel -exp6fcA)b kiszámításának fel­

adatát visszavezettük az A mátrix b vektorhoz tartozó mini-

málpolinomjának meghatározására és CXpfcC) kiszámítására, 

ahol C a minimálpolinom kisérő mátrixa.

Világos, hogy a fenti levezetés érvényes akkor is, ha 

'р(-) az A mátrix b vektorhoz tartozó tetszőleges annulláló 

polinomja /amelyre /3.3.1/ fennáll/. Ezt a levezetést 

Kolodner [33] alkalmazta annak igazolására, hogy -p(A)=0 ese­

tén -expCtA) minden eleme megoldása a -p (d/d-t) x =0 egyenletnek; 

bonyolultabb bizonyítást Putzer C433 és Bierman C 7 3 adott a 

karakterisztikus polinom esetére. Azonban ezek a cikkek nem 

kapcsolják össze a homogén magasabbrendü differenciálegyen­

let megoldását a kisérő mátrix exponenciálisával, ill. nem
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foglalkoznak a p>(.) polinom és expCtC) numerikus meghatáro­

zásának kérdésével sem. Az alábbiakban e két fontos részfel­

adatra gyakorlati szempontból is kielégitő megoldási eljárá­

sokat ismertetünk.

A vektor-minimálpolinom meghatározása

A jp(.) polinom választására egy lehetőség az A mátrix 

karakterisztikus polinomja, melynek meghatározására a műsza­

ki cikkekben általában Le Verrier módszerét /melyet a mérnö­

kök "Bocher formulája" néven ismernek/ javasolják [37j. Azon­

ban Le Verrier módszerének nemcsak az a hátránya, hogy (У(п^) 

műveletet igényel /lásd Г39]/, hanem az is, hogy a kerekíté­

sek gyakran katasztrofális jegyveszteséget okoznak, mint azt 

Wilkinson kimutatta /C533, 434. о./. Ezért mi inkább Krülov

módszerének alkalmazását javasoljuk.

A klasszikus Krülov-módszer /lásd pl. [53J, 364. o./ al­

kalmazásával éppen egy mátrixnak egy vektorhoz tartozó mini- 

málpolinomja adódik eredményül. A b vektorhoz tartozó minimál- 

polinom m fokszámát a Krülov-vektorok

Ь.-аЧ, .. А" кk„ = к , /3.3.8/= Ab , • )

sorozatában az első olyan vektor indexe adja meg, amely li­

neárisan függ az előzőektől; együtthatói pedig előjeltől el­

tekintve megegyeznek ezen lineáris függés együtthatóival, s

igy kielégítik a

C1
/3.3.9/

- Сю.

lineáris egyenletrendszert. Ez az egyenletrendszer hatéko-
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nyan oldható meg a részleges főelemkiválasztásos Gauss-eli-

mináció módszerével. Mivel a /3.3.9/ egyenletrendszerben 

szereplő oszlopok m száma előre nem ismert, Wilkinson kidol­

gozta e feladat megoldására az un. oszloponkénti Gauss-eli-

mináció módszerét /lásd C533, 370. о./ melyben a fe.-adik lépés 

kezdetekor a il+i. indexű Krülov-vektorok még nem vet-\

tek részt a számításokban. Az eljárás akkor ér véget, ha már

nem találunk nemzérus főelemet.

A számítások folyamán elkövetett kerekítési hibák ter­

mészetesen "elronthatják" a pontos számitás mellett zérus 

részeredményeket, és igy tévedhetünk a minimálpolinom fok­

számát illetően. Wilkonson elemezte ezt a problémát és meg­

mutatta, hogy eljárása általában olyan polinomot eredményez,

melyre az

+ 2. p (A) bY' := bt —ГЛ /3.3.10/
Г=4

reziduál-vektor igen kicsiny /itt jp-vel már a számolt mini- 

málpolinomot jelöltük/.

Megjegyezzük még, hogy bár a mátrix sajátértékeinek /a

minimálpolinom gyökeinek/ kiszámítására gyengén meghatáro­

zott polinom esetén a Krülov-módszer nem alkalmas még kis 

reziduál mellett sem /lásd Wilkinson [53], 377. о./, a mi 

céljainknak megfelel, ha az r reziduál kicsiny, mint azt az 

alábbi vizsgálat megmutatja.

Közelítőleg annulláló polinom alkalmazásának hibája

Legyen a továbbiakban az A mátrix b vektorhoz tartozó 

számolt minimálpolinomja = Я V.. . + c2 A+c és C 

ennek kisérő mátrixa. Mivel a számolt polinom a kerekítési
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hibák miatt általában csak közelítőleg annulláló, igy az 

£ -A) b reziduál-vektor általában kicsiny, de nem nulla.

A következő tételben egy becslést adunk arra, hogy ennek kö­

vetkeztében a minimálpolinom-módszerrel adódó megoldás

/minden további számolást pontosnak feltételezve/ mennyire 

tér el az eredeti X 6fc) = eyp(*7l) b megoldástól.

Tétel. Legyenek érvényesek a 2.1.3. lemma jelölései,

x(l) = expQrA)b és Xj =£ e.xp(iC)xj(o)f 

rw-edfoku polinom kisérő mát-

3.3.1.

és legyen

n, ahol C a p (. )

11 X (.1) - x (1) \\xé ПГ11г^л(Ш112)

■ 'i

rixa és /3.3.5/ szerint definiált. Akkor
t мах^СА)^ CC) j

-t >0 .>

A tétel bizonyításához szükségünk lesz az alábbi két

segédtételre.

3.3.1. Lemma. A 3.3.1. tétel jelölései mellett
(t-s)Cx tfc) = S (ej eо 1 §J &sAr •X c-t) -

Bizonyítás . Legyen d(-fc):-= X 6fc)-x (-fc) 

edik komponensére a pCci/cl-t) differenciáloperátort:

djfr) = p(dM±) éj etA b - jpCd/d-í) ej -£o)

= eT f (А)Ь - ej e^CO^-ío) = ej etAr

Tehát c|-(.) megoldása egy m-edrendü inhomogén differen-d
ciálegyenletnek, mégpedig zérus kezdeti feltétellel, mivel

l/L) = eJ X-
= x^’ío)- *,«>)=0

ahol felhasználtuk x- (o) definícióját ill. a C kompanion-
<J

mátrix azon tulajdonságát, hogy ej C = }

Tehát d-(-t) az /1.2.22/ formula alapján a о

és alkalmazzuk ennek r

(o) - C*- x- (o)

t-0, 4 /Wl-4 •
I ‘

• •Ij /

1=4. . <т-4 .I ' " I
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•b i*-s)C т sA

alakban adható meg, melyből közvetlenül adódik a lemma sze­

rinti előállitás. О

3.3.2. Lemma. Legyenek a C 6 (C'm*rn kompanion-mátrix /nem fel­

tétlenül különböző/ sajátértékei Яп . .» , . Akkor

el: (+) - íé о
r ds

§T t*p(±C)e„ = P,;V, iU expí-t)t « * t

expC^-"t)-nek, mint A- függvényének a 

. .A.^ pontokhoz tartozó (тп-<i)-edrendü osztott diffe- 

renciája.

Bizonyítás. írjuk fel a mátrix-exponenciálisra vonatkozó 

Newton-féle osztott differenciás interpolációs formulát C-re:

ahol a jobboldal

Я
'll ■'

'УЛ.

= XO-te
■t I "-|e /3.3.11/

C =4

m-3s’JC'-elC./, , ...,eyC TMivel ej C = eJ , = e így->«i

«Т = §T C e 4 . .. vnI;

Ezt felhasználva,

■frCej e
/mivel az osztott differenciás alakban C (m-<)-nél kisebb hat­

ványai kiesnek/, és ezzel igazoltuk a lemmát.

A tétel bizonyítása. A 3.3.2. lemma és az osztott differen­

ciák integrálelőállitása /£4J, 188. o./ alapján Ь ЪS-re

ej eCi s)Cem = [^-r..-lXm]ea's) = S ...S fr-s) e*p(Ct-sX ...dca>(
i ~ 1 •vt ;

ahol

Я = R+m i«r<j

72



‘

.}

iEbből

| е((-°Се J á «-0 

- 6t-0

$ $I e/p ([*-*!£<*>< 1
Я

Í...Í exp(tt-s]ZTto^ReAi)

... AüJ
УЛ

vn- A

...du)^
&

Y*-\ Ct-s)(■t-s)a-iUCC) j(w-1 Ь)л ...<Í(a)
Ъ\4 (*-s) " Ы-O!

Az igy nyert becslést, valamint a 2.1.3. lemmát alkalmazva a 

d t±) -/ti) - X (-b) különbség 3.3.1. lemma szerinti integrál-

előállitására,
r*1-1 L-b-sU(C) ИГ Пг

db j4 II Г ll^

és az utóbbi éppen a tételben megadott korlát. □

A 3.3.1. tételben megadott hibakorlát egyenesen arányos 

az Г reziduál-vektor normájával. Az arányossági tényező egy 

polinom és egy exponenciális szorzata, ahol az exponenciális 

tényező kitevőjében szereplő együttható cxCC) 'ftiotCA) esetben 

közel egyenlő magának az x (t) megoldásnak a korlátjában fel­

lépő Ы. (A) együtthatóval. Ilyen esetben, ha IIГ Uz kicsiny, 

akkor várhatóan X ti) relativ hibája sem lesz túl nagy.

Stabil A mátrix esetén >0 /•b^*oo /- viszont dU)-^0

ex ik)<0 mel­

lett W.(C)xO is teljesül, azaz, ha a jp(.) számolt minimál- 

polinom gyökei is mind negativ valós részüek. Az utóbbi fel­

tétel viszont teljesül, ha a számolt minimálpolinom elég jó 

közelítése a tényleges minimálpolinomnak.

a fenti korlát alapján csak úgy garantálható, ha
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ч
Kompanion-mátrix exponenciálisának meghatározása:

Kairanler módszere

expftA)b minimálpolinom-módszerrel való számításához 

a -pí.) minimálpolinom meghatározása után szükség 

megfelelő módszerre exp&C) kiszámítására "t különböző érté­

keire, ahol C a f)(.) polinom kisérő mátrixa. Elvileg a sa­

játértékek ismeretében tXp(iC) explicite is megadható, akár 

a /3.3.11/ osztott differenciás képlettel, akár C Jordan-fé- 

le felbontása segítségével, ahol a fővektorok V mátrixa a 

sajátértékekhez tartozó /esetleg konfluens/ Vandermonde-féle 

mátrix, melynek inverzére is vannak explicit képletek [32, 40]. 

Azonban, ha az A mátrix sajátértékproblémája gyengén megha­

tározott, a sajátértékek nem számíthatók ki megfelelő pontos­

sággal. De ha még pontos sajátértékekből indulnánk is ki, 

közeli sajátértékek esetén mind az osztott differenciás, 

mind a Vandermonde-mátrixon alapuló Г 38j explicit képletek 

igen érzékenyek a számolás során elkövetett kerekítési hibák­

ra, ezért ezek alkalmazása nem javasolható.

A probléma megoldására jelenleg ismert leghatékonyabb 

eljárás Kammler módszere C 283. Ez a módszer tulajdonképpen 

egy négyzeteléssel kombinált Taylor-soros módszer, speciáli­

san kompanion-mátrixra kifejlesztve. Az eljárás fő szakaszai 

a következők.

A. Előzetes transzformációk a polinom-együtthatók (^ ~ ) 

normájának redukálására a C mátrix kompanion-strukturájának 

megtartása mellett.

van egy
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В. Taylor-sor-módszer.

С. Négyzetelés.

D. utólagos transzformációk.

Rammler cikkében elvégezte az eljárás részletes kerekí­

tési hibaelemzését, valamint az egyes lépések érzékenységi

analízisét.

Mielőtt Rammler módszerének egyes lépéseit ismertetnénk,

kitérünk a kompanion-mátrix egy olyan tulajdonságára, amely

kulcsfontosságú az eljárás hatékonysága szempontjából.
тяглLegyen F € C felcserélhető а Сб(С3.3.3. kompa-

nion-mátrixszal. Ekkor C-nek, és F utolsó oszlopának 

ismeretében F összes többi eleme egyértelműen meghatá-

Lemma.

rozható az alábbi, un. Thomson-féle relációk segítségé­

vel :
=l л.м ~ ^ \ f v-1 C-l. . ' 'I **7Iй I

■fi.i = { *Ч<Г2г^=á4V* •П.гН. m » »'I I7 /3.3.12/
c- \+ с,-d ] J I

Bizonyítás. A C kompanion-mátrix szerkezete /lásd /3.3.6//

alapján érvényesek az alábbi összefüggések:

T r T = e..^ -t ~ Cl' — ЬЛ )

valamint F és C felcserélhetőségét felhasználva,

с е1 = -с, , 'C- 2. OVI .
I ■ * • I

Ezeket,

esetén

f TT C F e - ■=Fe. FC e •
C

= e - e
4 - Л.--1 ■a

-sej, Fe^ - ~S 7-A, wv

-c.eT„FeM=fe-T-.F«r< av~ Л
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Megj egy zés. Mivel egy kompanion-mátrix mindig nemderogatóri- 

us /karakterisztikus és minimálpolinomja egybeesik/, igy a 

lemma FC=CF felcserélhetőségi feltétele ekvivalens azzal, 

hogy F kifejezhető C polinomjaként /lásd T45J, 6.2.2. tétel/.

A /3.3.12/ relációkat F=^expCfcC) esetére Thomson П49Ц és 

F = £ (C ) ( I C, ) analitikus függvény esetére pedig 

Kaufman С32^ igazolták, de a fentinél bonyolultabb utón.

Az alábbi ábrán az = esetben nyilak segítségével szem­

léltetjük a /3.3.12/ rekurziós relációk alkalmazásának sor­

rendjét; egyik elemből a másikba mutató nyil azt jelenti, 

hogy az egyik elemet előbb kell kiszámítani, mint a másikat. 

Amelyik elembe nem mutat nyil, annak kiszámításához egyedül 

az utolsó oszlop /ismert/ elemeire van szükség.

Kammler C 28 3,

fit

f N NTi-t Tw

tH Ы Ьз f 34
í„'4f,lN45N4fw

Ezekután rátérhetünk a Kammler-módszer egyes lépéseinek

ismertetésére.

A D. Elő- és utótranszformációk. Kammler háromféle előzetes

transzformációt adott meg, de ezek közül az elsőt, a 

spektrum-eltolást nem vette figyelembe hibaanalizisében. 

Egy A0 nagyságú eltolásra igazolta, hogy ha

C*= e~A-HC в*-* -ХД ;
ahol

0 0^ 0 -([№*)AHH = (ü-4) s..)>> Jvnxm г 0 és e
^ (пгм) 0_ tövem
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/itt a binomiális együtthatók kiterjesztett értelmezése sze-

(£)■ o, ha a^kor C" arint

3,+c* = .rri>-(hA,)]
polinom kisérő mátrixa, ahol a c.; = ) 1 (\ - 4 )

hatók az általánosított Horner-séma szerint számolhatók. Ha 

már meghatároztuk C* exponenciálisát, akkor ebből C exponen­

ciálisa a következőképpen transzformálható vissza:

együtt­

se еЯ*Н e^cVAoHtee * e

Megjegyezzük, hogy e*A b minimálpolinom-módszerrel való

számításához e lehetőségre nincs szükségünk, mivel a spekt­

rum-eltolást még a minimálpolinom meghatározása előtt elvé­

gezhetjük, ha szükséges, és a továbbiakban az A-A0I mátrix­

szal számolhatunk /ezt a transzformációt a 3.1. pontban emli- 

Я0 (A)/n. esetben/.tettük a

Fontosabb szerepe van viszont a második fajta transzfor­

mációnak, melynek célja a polinomegyütthatók nagyságának re­

dukálása. Könnyen belátható a következő összefüggés: ha

С «or* D'4CD 1

diagonális mátrix, és akkor C a
*>\

Я” t- c„ Г-" +.... cP * с, « .TT (% -*„• Ы)
t к 1

, ahol (5 a számításokhoz hasz­

nált számitógép lebegőpontos aritmetikájának alapszáma /pl. 

a Rjad-10 gépen (4=46; ß másik gyakori értéke 2/, és

i-4 X.-l X'VVLahol D =

"p бЯ) =
Az <X paraméterpolnom kisérő mátrixa, ahol 

választása a következő: = e

;= />vllvl I Iz. e^csi ésí;

77



E választással a polinom együtthatóinak redukálása ill. a 

mátrix exponenciálisának az

exp (-ьс4) = T>-e-xp(«tc)D-4

képlet szerinti visszatranszformálása során nem követünk el

kerekítési hibát.

A D diagonális mátrixszal való hasonlósági transzformá­

ció célja a számításokban részt vevő polinom-együtthatók 

normalizálása és ezáltal a kerekítési hibák terjedésének 

csökkentése volt. Azonban az a-tC mátrixra W i > \ esetben nem

alkalmas a Taylor-sor módszer, ezért ilyenkor a négyzetelés­

re is szükség van. Jelölje M azt a legkisebb nemnegativ e-
M

. Akkor Rammler eljárása sze­gész számot, melyre |<X-fc| á í

rint Taylor-sor-módszerrel meghatározzuk az exp 

mátrixot, majd ebből M-szeri négyzetre emeléssel kapjuk az

(2-McítC)

■C-Xp (őrt C) mátrixot.

B. Taylor-sor-módszer. Legyen az egyszerűség kedvéért

F:= exp (t C ). Mivel F kommutál a C kompanion-mátrix- 

szal, a Thomson-féle /3.3.12/ relációk birtokában elég F 

utolsó oszlopát meghatározni a Taylor-sor módszerrel, amely

' kTo fc! C -»* •
A kompanion-mátrix-struktura alapján különösen egyszerű az 

egymást követő CeW/CZem 

nyen belátható, hogy

t— 2 Moí i és

Fe- ГМ

vektorok képzése, mivel köny-itt/

fk+1 I • 7J• * •

ahol

= 4■= 0■■ ■ =? ь/
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1!

és
vr\-4

-2_ c A->n+ 4, »n+-Z

Ez alapján exp(-fcC)

?k-i I . /3.1.13/M-C I t • IIt = 0

utolsó oszlopának -edik eleme:

£ Fe^ = £ (íVfc'.)?t(,
fc=bi-c

Ш .•)II

Kammler szerint a közelítésnél utolsónak figyelembe vett tag 

legyen a K-adik, ahol

1?Г7с«-'0! IHlVt1. ^ «•l*К := <Ya.L*\ У, 'Vw

és U a lebegőpontos kerekítési egység. Ha feltesszük, hogy 

N1 akkor alapján belátható, hogy

$t>Zrri + N indexű ^együtthatók sehol sem szerepelnek a szá­

mításokban. /N minimális értéke általában nem nagy; pl. a 

Rjad-10 gépen U. = ^iG'5 mellett N=<0./
nt

Mivel az előzetes transzformációk következtében ^L|ct-|
L-i

igy a íj^ sorozat tagjaira a /3.3.13/ rekurzív képletből

& = 4; 2. j ...

következik. Ebből К definícióját figyelembe véve a Taylor- 

sor csonkításából származó képlethibára az

azaz

4 4 »

l<jí H ^ ;

№.. I - 2
}l* é

<Ü!Ü -4 mlíl" (e-Z) ó u л,- 4 7П
-t){í m- О l • • •К ! I I I

becslés adódik, azaz a képlethiba nem haladja meg a sor első

nemzérus tagjának lebegőpontos gépi reprezentációból eredő 

kerekítési hibáját.

Miután F-txpCtCj utolsó oszlopát meghatároztuk, ebből a 

teljes mátrix a Thomson-féle /3.3.12/ relációk alapján konst-
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ruálható meg. /Valójában, ha a kerekítési hibáktól eltekinte- 

Thomson-féle relációk exp(iC) helyett annak K- 

adfoku Taylor-polinom-ját.adnák. / Mivel nem a teljes mátrixra 

alkalmaztuk a Taylor-sor módszert, és a Thomson-relációk mű­

veletigénye csak W-fö(m), igy exp(-tC) előállításának műve­

letigénye a kompanion-struktura következétben 0(w*) helyett 

csupán 0 (m2-) . Ebből тг lOi**) a ^ sorozat képzése 

/ k.= ,,.( 2« N /

részletösszegének kiszámítása.

C. Négyzetelés. Az 

sor-módszerrel számolt közelítéséből kiindulva M-szeri négy-

nénk, akkor a

és hasonlóképpen vr?~ + ö(ni) a Taylor-sorI

вхр(оitC) mátrixot expC-2 *o(lC) Taylor-

zetreemeléssel, az

p = [exp k = f . .. , 'l, 0ex■j ;

rekurzió alapján határozhatjuk meg. Egy tw-edrendü mátrix
anégyzetre emelése általában műveletet igényel. Viszont

jelen esetben, a Thomson-féle relációk felhasználásával ez a 

műveletigény 2. írv.2- + Óim)-re csökkenthető, ha először meghatá­

rozzuk a négyzetmátrix utolsó oszlopát úgy, hogy a négyzetre 

emelendő mátrixot szorozzuk saját utolsó oszlopával:

^ejГ 2~fe«lC -IIе J e e [e
majd ebből a /3.3.12/ relációk szerint rekonstruáljuk az

exp ) mátrix összes elemét.

A minimálpolinom-módszer művelet- és memóriaigénye

A művelet- és memóriaigény megadásánál az alábbiakban 

feltételezzük, hogy a minimálpolinom fokszáma maximális,

azaz Ekkor az előkészítő szakaszban a Krülov-vektorok
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képzése tT*- 4гг, a vektor-minimálpolinom meghatározása 'Я^/З 

+ 0(пг) és a Kammler-módszerhez szükséges ^ j sorozat képzé­

se 1i3+0f'n) műveletet igényel. A módszer e kezdeti szakaszá­

nak műveletigénye / ^W^ + ÖC'h1') / tehát jóval kisebb, 

előző pontban tárgyalt spektrálfelbontásé Ifi Á5W* / .

mint az

Ezután

"fc bármely értékére Kammler módszere expCtC) meghatározására

műveletet igényel, ahol M értéke függ *fc 

nagyságától. További У\У aritmetikai művelet szükséges *££) = 

exp C-fcA) b képzéséhez a /3.3.4/ képlet szerint. Ebben a máso­

dik szakaszban tehát a spektrálfelbontási módszer gyorsabb.

A Taylor-soros módszerhez hasonlóan, -fc =• .. .

disztáns pontsorozat esetén itt is csökkenthető a művelet­

igény. Ugyanis, ha 6XpO\.C) meghatározása után annak utolsó

(ЛМ+2) 0 (n)

ekvi-

oszlopát megőrizzük, akkor e*p(&&C) utolsó oszlopa megkap-

exp ([fc-Щс) -bői az |exp(feKC)en13= €*р(С&-4] &c) jexpCftC)ható

mátrix-vektor szorzással, majd ebből a /3.3.12/ Thomson-féle 

relációk alapján exp(fe.^C) minden eleme meghatározható. Ez­

által egy-egy újabb pont esetén a szükséges aritmetikai müve- 

letszám már csak

Az eljárás memóriaigénye Ъ'пУ' + ОСп) memóriarekesz; ebből 

az A mátrix tárolásán kivül “ft1 rekeszt igényel a Krülov-vek- 

torokból képzett mátrix tárolása, további “»t^-et az utóbbi 

mátrix LU -felbontása /Gauss-elimináció/, amely később expCtC) 

számításánál is felhasználható. így a minimálpolinom-módszer 

memóriaigénye körülbelül másfélszer akkora, mint a spektrál- 

felbontásé.

3 -n.1 + 0 (n).
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4. ELJÁRÁSOK A MÁTRIX-EXPONENCIÁLIS PARAMÉTEREK

SZERINTI PARCIÁLIS DERIVÁLTJAINAK KISZÁMÍTÁSÁRA

A mátrix-exponenciális paraméterek szerinti parciális 

deriváltjai az /1.1.7/ érzékenységi egyenletek megoldásai, 

melyek speciális szerkezete lehetővé teszi az előző fejezet 

módszereinek kiterjesztését a parciális deriváltak számolá­

sára. E kiterjesztéseknek általában ugyanazok a gyenge pont­

jai, mint maguknak az eredeti módszereknek.

Mivel a Taylor-sor és négyzetelés, valamint a spektrál-

felbotnás módszereinek kiterjesztését e problémára már elvé­

gezték, ezért ezeknek csupán rövid leirására szorítkozunk.

Viszont részletesebben adjuk meg a spektrálfelbotnás alkal­

mazását expC-tAC.)) második parciális deriváltjainak meghatá­

rozására, valamint a minimálpolinom-módszer kiterjesztését 

Bxp(-bA(.))b parciális deriváltjainak kiszámítására, melyeket 

mi dolgoztunk ki.

4.1. Taylor-sor és négyzetelés módszere

A Taylor-sor módszerének alkalmazását a mátrix-exponen­

ciális paraméter szerinti deriváltjainak kiszámítására 

Kanyár és mtsai Г 30, 3lJ, valamint Feldman Cl63 javasolták. Az 

eljárás a következő.

Tegyük fel, hogy fR.

ható a ©06 !RV pont egy környezetében, és legyen r tetszőle-

folytonosan differenciál-
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ges /rögzitett/ paraméter-index /46ré V/. Az egyszerűség ked­

véért vezessük be a kővetkező jelöléseket:

t АШ e~3fr(e«). ZW:=A •■= A(G0) X í-t).= e 9GrI § = 60 •
Ekkor érvényes az

IA 0 X(0)x
0z V ’В А Y(o)

■*» j

kibővített differenciálegyenlet-rendszer, melynek megoldása

A 0x(t) It- exp IB AJ D

Ebből a keresett 2 (-t) parciális derivált mátrix

Ft]A 02 M = [о; I ] exp 0В AJ

Legyen

’At] ,= Га o]*Ti‘ 
.•Bt J' В AJ L°.

Akkor
00 fe.

Z (-t) - 2 ír В /4.1.1/
4 = 4

ahol A4 és "^o- a következő rekurziv képletekkel számolhatók:&

At= А АЬи
А4-л ^ АЪ4.4

Ao-I
•в,-О

*.^.2........... /4.1.2/

II* [ö a] I > АIsmét érvényes, hogy esetben a sor kon­

vergenciája lassú, és jegyveszteséggel számolhatunk. Ezért
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itt is ajánlatos a mátrix-exponenciális multiplikativitásán 

alapuló hatványozást vagy négyzetelést alkalmazni. A |[16, 30, 

31] cikkekben csak a hatványozást /azaz szukcessziv mátrix- 

szorzást/ javasolták, amely azonban csak akkor hatékony, ha 

a számításokat "t ekvidisztáns értékeire kell elvégezni; kü­

lönben a négyzetelés hatékonyabb.

Könnyen belátható, hogy a négyzetelés ill. hatványozás 

alapjául szolgáló multiplikativ tulajdonság a Z (i) parciális 

deriváltra a következő formulát adja:

2 (и+Аг) = Z (aa) X Ы) + x (.<*) ~í (**■) /4.1.3/

A négyzetelés módszere esetén e képletben u-W = 2^^ /^j *• • >

к/; hatványozásnál pedig u = ahol

A /4.1.3/ képletből látható, hogy 2.(0 meghatározása csak

X (ibex kiszámításával egyidejűleg történhet.

A /4.1.1/ sor véges részletösszeggel való közelítésére,

valamint az ebből származó öröklött hiba hatványozás //4.1.3/ 

alkalmazása/ során való terjedésére Kanyár és Tóth adott meg

hibakorlátokat 31 ; ezekkel itt nem foglalkozunk.

Művelet- és memóriaigény

A Taylor-sor-módszer N számú tag figyelembe vétele ese-

aritmetikai műveletet igényel 

exp(fcA) és a V számú parciális derivált kiszámításra. Ezu­

tán a /4.1.3/ reláció egyszeri alkalmazása az összes parciá­

lis deriváltra Zvn^ műveletet jelent; a négyzetelés módsze­

re esetén e relációt K-szor kell alkalmazni, ahol

tén (N+- 2vN-4) t 0 (“n1))
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/у*гСк. ^ J 2. -í íj £А 01 II - ^ ^ -fer(@o), ;1< = ß A

k-4hatványozás /szorzás/ esetén pedig legalább 2. 

feljebb

A memóriaigény /feltéve, hogy az összes parciális deri­

váltat egyidejűleg számitjuk/ a “B * (d/B9r) A (90) mátrixok táro­

lását is figyelembe véve 2. 4 ) тг1 memóriarekesz.

-szer és leg-

-szor.

4.2. Spektrálfelbontás módszere

A spektrálf elbontás alkalmazását evcp Gfc A (.)) parciális 

deriváltjaira Atherton és de Gance LlU, valamint Jennrich és 

Bright C25J javasolták. Mi kiterjesztettük a módszert a máso­

dik parciális deriváltak számítására is CHJ-

Induljunk ki az előző pontban használt jelölésekből és 

legyen az A = A (£0)diagonalizálható mátrix spektrálfelbontása

A = VAV"1 Л- (Я<0
ahol TV a sajátértékek diagonális mátrixa. Ekkor az 1. feje-

j

zet /1.2.23/ képlete alapján

'-r /, \ f ^ Ot-s) A
о

В ihis

Alkalmazva erre spektrális felbontást,

£ (í-s)A V^BVe^ds v~ AZ(i)= V í e /4.2.1/»о

azaz

= VG(i)V-‘lZft)» /4.2.2/Ъ 0r 8*0o
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Gr ti ) = ( íi) ) 

gcjíO- fe^V^s a-híjaié*

h*(SU»v-'bv.
9е*А(§>к

ahol elemei:HXTi

/4.2.3/

és

/4.2.4/

zTovábbá, a parciális derivált

a
V c = |j>2(u = VG a) c

/4.2.5/

relációk alapján határozható meg.

A spektrálfelbontás alkalmazása itt is igen hatékony- 

eljárás műveletigény szempontjából, mivel az előkészítő sza-

ill. H és c meghatározása/ után (4-) ill. 

z(-fc) kiszámítása /rendre/ csak két mátrix-mátrix- ill. mát- 

rix-vektor-szorzást igényel. Azonban numerikus pontosság 

szempontjából kétszeresen is problémát okoz, ha а х(У) kon­

díciós szám nagy, mivel а V'1 tényező kétszer is szerepel 

(4r) /4.2.1/ előállításában. Ezért x(V)»/l esetben a mód­

szer alkalmazása nem javasolható.

4kasz /A., V . V~/

Művelet- és memóriaigény

Előkészítő szakasz műveletigénye: / V=paraméterszám/

(i) Spektrálf elbontás /beleértve t is/ meghatározása

^ V. 'n1

(ii) a H mátrixok képzése minden paraméterre:

/К» 4C(a QR-algoritmus felhasználásával:

2vn5 + О Ыъ)

Második szakasz műveletigénye Ь egy-egy uj értékére:

(iii) 2Gt) kézése minden paraméterre a /4.2.2-3/ képletek

Z v n3 f О ('»г* Jalapján:
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(iii) ' г (í) képzése minden paraméterre a /4.2.5/ képlet

( Ъ V+ л/х ) 'n.1 + 0 (^) .alapján:

Az itt megadott műveletigény csak az aritmetikai műveletekre 

vonatkozik; szükség van ezen kivül az exjp A;) exponenciáli­

sok kiszámítására is Jí-i,.

A módszerhez szükséges a sajátvektorok V mátrixának és 

inverzének, valamint az egyes paraméterekhez tartozó H mát­

rixoknak a tárolása, ami /valós sajátértékek esetén/ (v+2)<nz

A-nak komplex sajátérté­

kei is lehetnek, akkor kétszer ekkora memóriaterületet kell

-л /.• I

memóriarekeszt igényel. Azonban, ha

lefoglalni.

Második parciális deriváltak számitása

Bizonyos esetekben - pl. a másodrendben konvergens 

Newton-módszerrel történő paraméterbecslés esetén - szükség 

€ У p (i AC.)) vagy exp C-t A (.)) b paraméterek szerinti második 

parciális deriváltjainak kiszámítására [11]. Az alábbiakban 

megmutatjuk, hogyan valósítható ez meg a spektrálfelbontás

van

segítségével.

Tegyük fel, hogy А (.V- IRV—’>IR 

ferenciálható a öoe IRV pont egy környezetében, és legyen

(p.'V)

rutn
kétszer folytonosan dif-

<• I I >
ЭгАA •- A (0O) оD = T)) :•=;

;

■b Afe)

'Э&рЭ^

ahol p(cy, rögzített indexek/lép,cyé \)/. Ekkor pl. a p index-

1— A.......VЭ0, ■ I) /e=0o

hez tartozó első parciális deriváltra vonatkozó érzékenységi 

egyenlet 9^ szerinti parciális deriválásával és a 0^ és i 

szerinti differenciálás sorrendjének felcserélésével belát-
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I

ható a következő inhomogén mátrix-differenciálegyenlet érvé­

nyessége :

YtO - A Ytt) + +B<vI(,(t) + 'DelA
Y(o).o

Ebből a konstansvariációs formula alapján

VCt) = S>-i>A[^Z^)t^Zp(5) + De!A] <b /4.2.6/

adódik. /4.2.6/-ba behelyettesitve a mátrix exponenciálisnak

és első parciális deriváltjainak /vö. 14.2.111 spektrális

előállításait, a

Gv Cs) = V"1 HtCs> V 4, -n.

jelölés alkalmazásával azt kapjuk, hogy

f C-t-s)A [v-1BpV G (5Hr,B^VGpfs)*V-,lDVe5AJsV'/4Y (i ) = V I e
о

.2.7/

Legyen
hm=U^) 

:= jV‘'5>A
:= V'*DVк = (feli) r=p.%n*í\ /)

L (t)r ( ■) 
0 К oU , 

e H G (s)«ls

»X» ‘

- (r, wY •- S*
о

F r,Wr:p|^ .1\Xh

Ekkor /4.2.7/-bői

Y (t) = V [ F1'м0а) + F1ív’:i A) + L w] V"1 /4.2.8/

ahol L (-t) elemei /4.2.3/-hoz hasonlóan az

W-b)= kír[V,Xj]e,t /4.2.9/УУ

^ 'TV

elemei /rtvJ- jo, ej, / pedigképlettel;
p(r,w)

hí C fij<*> ■*«

4±<X7-

Ai(t-s)- S 2_e
о 6.=4

/4.2.10/
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szerint számithatók ki.

Mivel igen sok gyakorlati alkalmazásnál - mint pl. a

következő fejezetben tárgyalt biológiai kompartment-rendsze- 

rek esetében /vö. CllU/ - az A(0) mátrix elemei maguk a 6^ 

paraméterek, vagy azok lineáris függvényei, igy a második 

parciális derivált D =DÍÍ>|C^ mátrixok /az L l-fc) mátrixokkal 

együtt/ eltűnnek és csupán a H (O mátrixokra van szükség,

mely utóbbiak amúgy is kellenek az első parciális deriváltak 

számításához. Ilyen esetben a számitásigény egyetlen második

parciális derivált esetén relative nem sokkal több /kb. más­

félszer akkora/, mint egy első parciális derivált mátrixnál. 

/Vegyük azonban figyelembe, hogy összesen \)(''>+'4)/2 számú 

különböző második parciális derivált van./

4.3. Minimálpolinom-módszer

E pontban megadjuk az általunk kifejlesztett minimál- 

polinom-módszer kiterjesztését -exp (-fc A (..)) b parciális deri­

váltjainak kiszámításra /cf. Ц123/. A módszer alkalmazása

akkor javasolt, amikor a spektrálfelbontási módszer gyengén

meghatározott sajátérték-probléma miatt nem ad pontos ered­

ményt .

Legyen r rögzített ind ex/'lérév/ és alkalmazzuk az
-fcA(e)

■fcA(Sc) QeA;= A(§„), •В=Цй,) °'bx (A:)- e. z&)= -Э&ГI - ) §=e0
jelöléseket. Ekkor célunk a parciális derivált meghatá­

rozása. Fennáll az alábbi /az érzékenységi egyenlettel/ ki­

bővített differenciálegyenlet-rendszer:
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ifxl"
Ai L ? J=.

Га oi г:*,i, ivsj-ш ■ /4.3.1/В А

Legyen 'р (Я )= + X* + A mátrix minimálplinom-... + с2Л+
ja /vagy tetszőleges annulláló polinomja/, melyre

az

'p f A) = 0
<\ (Я):~ [р(Я)12- X + d2w Я +...+• «^ * ^4 '

c^(. ) polinom annullálja a /4.3.1/ rendszer mátrixát,

i([L])-R"°

és legyen

Ekkor a

ugyanis

í= В Sí- 0.p(A)

így a 3.3. pont eredményei alapján

2^(0= e| et<T) 2^(0) /4.3.2/ár ;i

ahol *D a (Я) polinom kompanion-mátrixa, és a
(Zrri-0 T(0)3f^ío>-C^.tO) , ijío), . • • I

vektorok elemei megkaphatok a

'А О Iе fbг>)=Сет,^] <= 0.1.......
■ tВ A о I

relációkbó A gyakorlati számitás céljára az utóbbiaknál

alkalmasabb к a

zKV)=-6.A к + Az (i-4)z'0,(o)=? (0) , ä.= 1, ..., 2m--í; I

rekurziós képletek.

A D 2m-edrendü kompanion-mátrix exponenciálisa ismét

hatékonyan számitható ki Kammler módszerével /lásd 3.3. pont/. 

A mátrix-minimálpolinom meghatározására két lehetőségünk is 

van. Az egyik, hogy egy / ÍR.’*' feletti folytonos eloszlásból/

véletlenszerűen választott vektorhoz tartozó minimálpolino- 

mot határozunk meg Krülov módszerével. Ekkor "egy valószinü- 

séggel" a mátrix-minimálpolinomot kapjuk. Ez az eljárás rejt 

magában egy bizonytalansági tényezőt, melyet viszont lénye-
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gesen csökkenthetünk, ha az eljárást egy második véletlen 

vektorral megismételjük. Azonban, ha ellenőrizni is akarjuk, 

hogy mennyire jó a számolt 'p (. ) minimálpolinom, 

mitjuk az R~p{A) reziduál-mátrixot, akkor ez már OfV-*) mű­

veletet igényel.

A második lehetőséget mátrix-Krülov-módszérnék is nevez­

hetjük. Ez abban áll, hogy az An

Пг-е1етй oszlopvektorokba 

kiválasztásos Gauss-eliminációval meghatározzuk az első olyan 

moszlop közötti lineáris függést, ahol az első w-4 oszlop 

még lineárisan független. A mellékletben megadott programban 

lényegében az utóbbi eljárást valósítottuk meg; ennek műve­

letigénye ^ W* + 0 (no4 ) .

További lehetőség lenne még a mátrix karakterisztikus

azaz kiszá-

mátrixok elemeit

rendezzük, majd részleges főelem-

polinomjának közvetlen meghatározása. A LeVerrier-módszer a 

3.3. pontban már emlitett hiányosságai / (УЫ**) műveletigény, 

jegyveszteség/ miatt a karakterisztikus polinom meghatározá­

sára nem javasolható. Egyelőre nincs tudomásunk más, haté­

kony és numerikus szempontból /a kerekítési hibákat is fi­

gyelembe véve/ stabil eljárásról egy általános mátrix karak­

terisztikus polinomjának meghatározására.

Megemlítjük még, hogy a közelitő annulláló polinom al­

kalmazásából eredő hibára itt is hasonló hibabecslés érvé­

nyes, mint amit a 3.3.1. tételben megadtunk.

Művelet- és memóriaigény

Előkészítő szakasz műveletigénye:

(i) Krülov-módszer, maximális fokszámu minimálpolinomot

1.H0W) ; 
t-CC«*);

feltételezve, vektor-Krülov-módszer esetén:

mátrix-Krülov-módszer esetén:
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(ii) a z“1

/ ч) számú / párámé térré:

Második szakasz műveletigénye "fc bármely újabb értékére: 

(iii) expCtD) számítása Kammler módszerével: (lM +2) пг +- ö(n)? 

ahol M a szükséges négyzetelések száma;

(iv) parciális deriváltak képzése a /4.3.2/ képlet alap­

ján, az összes &r /r-4(. v/ paraméter esetén:

Összehasonlitva a spektrálfelbontási módszerrel, megál­

lapíthatjuk, hogy ha 2Mnagyobb /kisebb/, mint akkor

a minimálpolinom-módszer második fázisa több /kevesebb/ művele­

tet igényel az előbbinél, feltéve, hogy A sajátértékei való­

sak /komplex sajátértékek jelenléte esetén a komplex aritme­

tika használata miatt durván a műveletigény megkétszereződé­

sével számolhatunk a spektrálfelbontási módszernél/.

memóriaigényének nagyságrendben legnagyobb 

tételei a következők. Kammler módszeréhez e/pOtD) számításá­

nál szükség van egy (2 п)г= 4 n1 méretű tömbre. A Z^Cü) vekto­

rok tárolásához 2vn?" számú memóriarekesz szükséges. A mátrix-

(o) / t= 0, \ . (2м-4/ vektorok képzése az összes

< (tj v+l) re*

2 v n.2-

Az eljárás

Krülov-módszer alkalmazásához az eljárás előkészítő fázisá­

ban i rekeszre van szükség, melyek azonban átfedésben 

lehetnek az utána kiszámítandó 2 CvJ(o) vektorokhoz használt
7.

Zvn számú rekesszel; igy a kettő együttes memóriaigénye 

csupán Vi" wax Megjegyezzük, hogy komplex sajátérté­

kek esetén nagyságrendben ugyanennyi a spektrálfelbontási 

módszer memóriaigénye is.
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5. ALKALMAZÁS A BIOLÓGIAI REKESZ-/KOMPARTMENT-/

RENDSZEREK MODELLEZÉSÉBEN

E fejezetben megvizsgáljuk az előző két fejezet módszere­

inek alkalmazhatóságát ill. alkalmazási módját az orvosi bio­

lógiában gyakran használt un. kompartment-modellekre. Ehhez 

először bemutatjuk, hogy milyen feltevések mellett lépnek fel 

ilyen rendszereknél a lineáris állandóegyütthatós differenciál­

egyenletek, valamint ismertetjük a kompartment-rendszerek in­

verz /paraméterbecslési/ problémájával kapcsolatos kérdéseket

és eljárásokat.

Az 5.3 pontban elemezzük a kompartment-rendszerek mát­

rixainak /un. kompartment-mátrixok/ és azok exponenciálisai­

nak speciális tulajdonságait, majd erre alapozva tárgyaljuk 

a 3. és 4. fejezetbeli módszerek lineáris kompartment-rend-

szerre való alkalmazásának szempontjait. E pont leglényege­

sebb konklúziója, hogy alkalmas spektrum-eltolással kombinál­

va a Taylor-sor és négyzetelés módszere várhatóan numeriku­

sán igen stabil eljárás kompartment-mátrix exponenciálisának 

meghatározására /bár az схр(1А)Ь vektor-problémára a nagy 

műveletigény miatt továbbra sem hatékony/.

Végül az 5.4. pontban egy numerikus példán mutatjuk be

a minimálpolinom-módszer kompartment-rendszerre történő al­

kalmazását .
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5.1. A biológiai kompartment-analizis alapjai

E pontban először megadjuk egy általános /nemlineáris/

rekeszrendszer leirását és modell-egyenleteit, utalva az

utóbbiakra vonatkozó elméleti eredményekre. Ezután bemutat­

juk, hogy egy egyensúlyi helyzetben levő idő-invariáns /auto­

nóm/ nemlineáris rendszerbe beadott radioaktiv nyomjelző

áramlása igen jó közelitéssel lineáris állandóegyütthatós

differenciálegyenlet-rendszerrel irható le, melynek együtt­

hatói az egyensúlyi helyzet relativ sebességi együtthatói.

Végül egy konkrét biológiai példát mutatunk be egy egyszerű

kompartment-rendszerre, és ennek segítségével illusztráljuk 

a kompartment-analizis inverz, paraméterbecslési feladatát

és az ezzel kapcsolatos kérdéseket.

Kompartment-rendszerek modell-egyenletei

Egy kompartment-rendszer vagy rekeszrendszer alatt /vé­

ges/ rí számú, bizonyos anyagot tartalmazó kompartmentet /vagy 

rekeszt/, és ezek egymásközti, valamint a rendszer környeze­

te felé irányuló anyagáramlásait értjük. Jelölje a i. időpont­

ig -edik rekeszhez tartozó anyagmennyiséget C^)t az 

anyagnak az i-edik rekeszből a ^-edik felé való kiáramlási

ahol

ban az

sebességét

és az <i'j = 0 esetek a környezet 

- mint "O-dik rekesz" - irányában történő be- és kiáramlás­

nak felelnek meg. A következő oldalon látható ábra a rend­

szer t-edik és J-edik rekeszt tartalmazó részének sémáját 

mutatja.

4 = °I/II I

- 94



környezet

frfco

ÍÜáramlások а 

többi rekesz" 

irányában

$ áramlások a 

többi rekesz 

irányában
Yi

Í4*

f°í
környezet

5.1.1. Ábra. Egy kompartment-rendszer i-edik és

j-edik rekeszének sémája

Látható, hogy egy kompartment-rendszer tulajdonképpen 

egy irányított gráffal reprezentálható, ahol a csúcsoknak az

függvények ill. a környezet /"O-adik csúcs"/ 

feleltethetök meg, az éleknek pedig az 

besség-függvények /ahol az élnek (. j

• I«t I

fjy ( . ) áramlási se­

felel meg,

0,-ij .. . ) n/, Ha f ) S 0 , akkor a »c él elhagyható a gráf­

ból .

Egy biológiai rendszerben az egyes kompartmentekhez tar­

tozó vizsgált anyag lehet fizikailag /pl. membránnal/ szepa­

rált a többi rekesz anyagától, de lehet akár kémiailag is, 

ha más vegyület formájában van jelen esetleg ugyanazon a he­

lyen. Tehát, ha egy rekeszben levő anyagmennyiségről beszé­

lünk, az nem jelent feltétlenül térbeli elkülönítettséget, 

bár az utóbbit könnyebb szemléletesen elképzelni.

A rekeszrendszerek modell-egyenletei lényegében az

alábbi feltevésekre épülnek:
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(i) A t időpontban az i. -edik rekeszben levő anyag mennyi-

A ■= 4 j ... , , -t^-0.

(ii) A t időpontban az anyag -C-edik rekeszből a £ -edik 

felé való kilépési sebessége 

megfelelően sima függvény, i, ^ = 0, A, ...} Vi.

(iii) A t időpillanatban az i-edik rekeszből a 

felé kilépő anyag ugyanabban a pillanatban belép a ^-edik re­

keszbe .

(iv) Ha a "t időpontban az i-edik rekesz üres / (Ь) «= 0 Jf

akkor

sége ^ 0 )

ahol

-edik*

bármely | ) kilépési sebesség nulla / i=Hr. ')

Mivel a "t időpontban az v-edik rekeszben levő anyag-

mennyiség változásának sebessége egyenlő a be- és kiáramlási

sebességek különbségével, igy a fenti feltevések alapján ér­

vényes a következő differenciálegyenlet-rendszer E 2 4 3 :

<■=4.. /5.1.1/• ■>1.I

Mivel az ’■fífOt..') függvények csak nemnegativ elemű vek-
J 1

torokra értelmezettek, igy /5.1.1/ megoldása alatt egy olyan

differenciálható Со,©0) -en és kielégíti /5.1.1/-et. Ilyen 

megoldás egzisztenciáját és unicitását az ^ • (t . } függvé-
C

nyék Lipschitz-folytonossága esetén bebizonyították /vő. C 4бД , 

275. о./.

függvényt értünk, amely /komponensenként/

Mielőtt továbbmennénk, megjegyezzük, hogy több bioló­

giai rendszerben /lásd pl. [39]/ a (iii) feltevés nem teljesül
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/még közelítőleg sem/, vagyis az anyagnak az egyik rekeszből 

való kilépése és a másikba való belépése között eltelt idő 

gyakran nem elhanyagolható. Ilyen un. idő-késleltetéses kom- 

partment-rendszerek modell-egyenleteit Győri és Eller £21, 20, 

193 vezették le és vizsgálták /lineáris esetben/; egy konkrét 

biológiai rendszer modellezésére pedig E29}-ben alkalmazták.

Nyomjelzők alkalmazása idő-invariáns egyensúlyi

rends zerekben

Most rátérünk annak bemutatására, hogyan irható le egy

/nemlineáris/ időinvariáns, egyensúlyi helyzetben levő re­

keszrendszerbe beadott kis mennyiségű radioaktiv nyomjelző

anyag /'tracer'/ kinetikája /jó közelitéssel/ lineáris állan­

dóegyütthatós kompartment-egyenletek segítségével. A gyakor­

latban vizsgált rendszerekről általában feltételezhető, hogy

vagyis ax áramlási sebességek explicite 

nem függnek az időtől: | c • (t, ^ (-t) ) . Ilyen bioló­

giai rendszerek normális körülmények között általában dina-

idő-invariánsak,

mikus egyensúlyi állapotban /'steady state'/ vannak, azaz

(-fe ) = AT = konstans /e IR+ /

Különféle, nem túl szigorú feltételek mellett Sandberg 

£46] bebizonyította az idő-invariáns rekeszrendszerek egyen­

súlyi helyzetének létezését, unicitását és stabilitását.

A V" egyensúlyi vektor megoldása a következő nemlineáris 

egyenletrendszernek:

o= z: [kiír)-fii te)] /5.1.2/I

Í*C
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/5.1.2/-Ьб1 a (iv) feltétel és Vf nemnegativitása alapján

= 0 -f^(¥)--0 —> 21-f^(\r) = Q ^ ^ tvrb0(4-
n :* I

tehát, ha valamely kompartment egyensúlyi helyzetben üres, 

akkor az összes feléje irányuló be- és kiáramlási sebesség

nulla. Mivel az egyensúlyi helyzet nagyon kis perturbációja

esetén az ilyen rekeszek irányában történő áramlások /az 

egyensúlyi helyzet stabilitása következtében/ elhanyagolható­

an kicsik, ezért e rekeszek gyakorlatilag elhagyhatók a rend­

szerből. Ennélfogva a továbbiakban feltehetjük, hogy a vizs­

gált idő-invariáns rendszer 'VT egyensúlyi helyzetére teljesül

a ЛГ > o

feltétel.

Egy radioaktiv nyomjelzővel végzett kisérlet abban áll, 

hogy az időskála t=D pontjában az egyensúlyi rendszer t-edik 

rekeszébe beadunk mennyiségű radioaktivan jelzett anyagot 

/pl. injekció formájában; leggyakrabban csak egyetlen rekesz­

nél van /pozitiv/ input/, majd alkalmas mérőeszközzel figyel­

jük a nyomjelző mennyiségének időbeli változását az egyes

rekeszekben.

A beadott nyomjelzőre vonatkozóan a következő feltevé­

seket tesszük:

(i) a nyomjelző pillanatszerüen egyenletesen elkeveredik a 

rekeszben levő jelzetlen anyaggal, és igy a kiáramlásnál 

mindig olyan arányban áramlik ki egy rekeszből, mint amilyen

arányban az illető rekeszben jelen van;
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(il) a beadott jelzett anyag mennyisége olyan kicsiny a bent 

levő jelzetlen anyagéhoz képest, hogy a rendszer "észre sem 

veszi", vagyis az egyensúly gyakorlatilag nem változik meg

<<.£YÄ'rO-
Jelölje a t időpontban az -i-edik rekeszben levő jelzett 

anyag mennyiségét Mivel az t-edik rekeszből a ^-edik

felé a jelzetlen anyag kiáramlási sebessége (il') miatt gya­

korlatilag az egyensúlyi Cjf') sebesség, és (i) alapján a 

nyomjelző gyakorlatilag arányban áramlik együtt a

jelzetlen anyaggal, igy a nyomjelző kilépési sebessége a 

időpillanatban az t-edik rekeszből a j-edik felé 

x,(t) UO. 1.... ,VLtH,...,-* )Iv<£

ahol
a-.» fjdy) V /5.1.3/

Tehát a nyomjelző áramlását jó közelítéssel a következő se­

bességi egyenletek Írják le:
rí VI

- ZL x4. Cl) + x ^ Xj to ,X,; a) = <и /5.1.4/
X-Cű) ^ 1oc VT. ,

Az /5.1.3/ relációval definiált ü állandókat relativ sebes-

ségi állandóknak vagy /frakcionális/ transzportegyütthatók-

nak nevezzük.

Bevezetve a transzportegyütthatókból képzett A = (o.^)nxri 

mátrixot, ahol

-z>
L=0t:№
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az /5.1.4/ rendszer vektor-mátrix-alakba írható:

* (•£) - A x (-b) 
x (o) - ]p

ir>0) /5.1.5/

/5.1.5/ lineáris állandóegyütthatós differenciálegyenlet­

rendszer, melynek numerikus megoldására felhasználhatók a

3. fejezetben tárgyalt eljárások.

A nyomjelzők alkalmazásának idő-invariáns, dinamikus 

egyensúlyban levő rekeszrendszerek vizsgálatában két szem­

pontból is óriási jelentősége van: £l) különösebb /pl. mű­

téti/ beavatkozás nélkül megfigyelhetővé válnak más utón ne­

hezen vagy egyáltalán nem megfigyelhető folyamatok; (2) a meg­

figyelt nyomjelző-áramlás az egyensúlyi transzport együtthatók

segítségével megadott lineáris állandóegyütthatós differen-

ciálegyenlet-renszerrel irható le, annak ellenére, hogy az 

alapvető transzportfolyamat általában ismeretlen nemlineáris 

természetű. A megfigyelési adatok alapján lehetőség van az 

egyensúlyi transzportegyütthatók becslésére, amelyek az or­

vos számára diagnosztikus értékűek lehetnek.

Megjegyezzük, hogy általában nem maguk az (t) mennyi­

ségek mérhetők, hanem a Z. ^ (t) = г- 60/in­

aktivitások, melyek lényegében a jelzett anyagnak a jelzet­

un . specifikus

len anyag egyensúlyi mennyiségéhez viszonyított koncentráci­

ói, szorozva az Г- fizikai konverziós faktorokkal, amelyek 

a koncentrációról a radioaktivitásra való átszámítás miatt

szerepelnek /lásd С24Д, 4. o./.
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Példa: a kálium megoszlása a sejtek és a plazma között

A fentiek illusztrálására megadunk egy, Jacquez könyvé­

ből /Г24H, 121. о./ vett példát, amely a kálium egyensúlyi meg­

oszlásának vizsgálata ^2K izotóp segítségével. A kálium egy 

aktiv transzportfolyamat utján épül be az emberi vörösvér- 

sejtekbe, amely ezzel együtt nátriumot von el a sejtekből.

A transzportfolyamat nemlineáris, és energiaráfordítást igé­

nyel a sejtektől egy magas sejtközi káliumszint fenntartásá­

hoz .

Tegyük fel, hogy a i:-0 időpillanatban egy kis £ mennyi­

ségű jelzett káliumot adunk a plazmába A jelzett kálium el­

oszlása az ábrán látható rekeszrendszerrel modellezhető:

£ mennyiségű input 

a i=0 időpillanatban

a 21
Plazma Sej tek

*1 *2

5.1.2. Ábra. ‘il ^ izotóp eloszlásának rekeszmodellje

A nyomjelző áramlását leiró differenciálegyenletek:

Cl) -

xza)
*^2 1 ^1

кд (0) = E

xz Co) - 0

+ °42. )

I
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melyek megoldása

ex4Ct)= £
°-лг * Ö-24

—-t С®^г+0я')~ Q.Z4 6(."t ) — £
ft«Z +■ Лц

Mint már említettük, megfigyelni általában csak a 2t- L-b) 

= rcxcL±)/ir< specifikus aktivitásokat tudjuk, amelyek itt

-tfan+a2<)'

-1 (o»x+aí

= r,£ ^(an+a2^

]!>z2(-t)* r2e - e(а1гЛ^2«')

A X<(*) függvény ismeretében egyértelműen meghatározha­

tó Соп+а2„')( (»ц/'О és С«цАО /feltéve, hogy £, és r2 is­

mertek/, amelyekből az és transzportegyütthatók ki­

számolhatok. Ha csak a 2г(.) függvény t ismerjük, akkor abból 

csupán és (q2ц/Wi) határozható meg. Ha viszont mindkét

specifikus aktivitási függvényt ismerjük, akkor az említet­

teken túl még a egyensúlyi térfogatarány is megkapha­

tó, amely az orvos számára szintén fontos információt jelent­

het /pl. egy normálértéktől való lényeges eltérés valamilyen 

rendellenesség jele lehet/.

Rekeszrendszerek paraméterbecslési feladata

A kompartment-analizis legfontosabb gyakorlati feladata 

az un. inverz probléma /[24}, 102. o./, amely alatt a rend­

szer ismeretlen paramétereinek meghatározását /becslését/

értjük mérési adatok alapján. A paraméterbecslési módszerek

alkalmazásához feltesszük, hogy a keresett paraméterek iden-
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tifikálhatóak a megfigyelendő görbékből, azaz, ha e görbéket

pontosan ismernénk, úgy azok egyértelműen meghatároznák a

keresett paramétereket. Az identifikálhatósághoz az szüksé­

ges, hogy a tekintett mérési függvény ténylegesen függjön az 

összes keresett paramétertől, ill. hogy paraméter-transzfor-

mációval ne legyen csökkenthető a függvény paramétereinek 

száma. így fenti példánkban az X.,(.) függvényből a paramé­

ter nem identifikálható, mivel attól M -) nem függ; másrészt 

az 1 ^2 paraméterhármas sem identifikálható belőle,

mert а Ö4 = EY\ Qz / 4)3

formációval a függvény a 

alakra hozható.

9 2 - a42_ + Q 2 \

~Zz (t) = 0Л [4kétparaméteres

paraméter-transz-I

Egy kompartment-rendszer transzportegyütthatói identi- 

fikálhatóságának kérdése általában a rendszer struktúrája 

/gráfja/ és a mérési ill. input konfiguráció alapján már a 

megfigyelés előtt eldönthető. E problémának már eléggé kiter­

jedt irodalma van; a kérdés egy logikai megközelitése és re­

ferenciák találhatók f22]-ben.

A gyakorlatban a paraméterek az identifikálhatósági fel­

tétel teljesülése esetén sem azonosíthatok pontosan, mivel 

egyrészt a matematikai modell sem felel meg száz százaléko­

san a tényleges biológiai folyamatnak, másrészt a mérés so­

rán elkövetett megfigyelési hibák is zajossá teszik az out­

put függvényt. Ezen okok miatt csupán a paraméterek közelitő

értékeinek meghatározására, azaz paraméterbecslésre van le­

hetőségünk .

Az alkalmazások során egy vagy több időfüggvényt figyel­

te -adik megfigyelésinek meg diszkrét időpontokban, ahol a
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függvény, , általában a rekeszekben levő &) nyom­

jelző-mennyiségek lineáris kombinációja:
vt

.... КI

zt- (-t)Mivel közvetlenül csak a specifikus aktivitások fi­

gyelhetők meg, ezért i-edik eleme tartalmazza az /-0^

tényezőt. Egy megfigyelés leggyakrabban egyetlen rekesz spe­

cifikus aktivitásának mérését jelenti, és ilyenkor egy kivé- 

összes eleme nulla.

Tegyük most fel, hogy mind a C^ vektorok, mind az A mát­

rix tartalmaz ismeretlen paramétereket, és foglaljuk az ösz- 

szes paramétert egy 9 ■= £ (RV paramétervektorba. A

vektorok paraméterei pl. a rekesztérfogatotk, az A mátrix 

paraméterei általában a nemzérus transzportegyütthatók.

Legyen a 9 paramétervektor keresett /"elméleti"/ értéke 9* 

és tegyük fel, hogy a íz.-adik‘ output függvénynek a
U

pontban történő mérésekor £^ hibát követünk el, vagyis a 

ténylegesen mért érték

telével CEL

idő-

+ £ ))

ahol
tA(6)0) = ct(e) e 9 /5.1.6/

Az ismeretlen 9*paraméter-érték csak pontos mérések, 

azaz £^=0 /Vj,& / esetén lenne meghatározható, egyébként 

csak egy 9 becslés adható rá, amely közel lesz 9* -hoz, ha

mérési hibák elég kicsik. A paraméterbecslés módszerei-az £áb
vei a következő pontban foglalkozunk, előtte csupán két tech­

nikai szempontra térünk ki.
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A leghatékonyabb paraméterbecslő módszerek /'gradiens 

tipusu' módszerek/ alkalmazásához a megfigyelési függvénye­

ken kivül szükség van ezek paraméterek szerinti parciális 

deriváltjainak kiszámítására is. Esetünkben az /5.1.6/ out­

put függvény parciális deriváltjai:
■fcA(e)tisÄJJ, «*>«>, . £,(!) 9e - к,9©r )

Tehát a paraméterbecslési feladat megoldásához szükség van 

6x.p(iA(Öjj t gS parciális deriváltjai számítására, ami megold­

ható a 3. és 4. fejezetben tárgyalt módszerekkel.

A paraméterbecslési módszerek tárgyalásához az egyszerű 

ség kedvéért célszerű a mérési adatokat lineáris sorozatba 

rendezni. Legyen az összes mérési adat számain, és ha az i- 

edik akkor legyen a hozzá tartozó mérési hiba =

megfelelő output függvény pedig (0 ) = J 0 .

a paraméterbecslési feladat az egyszerűbb (9 ) +

4 , ... . ovi alak segítségével adható meg.

és a Ezzel

t

■ I

5.2. Nemlineáris paraméterbecslési módszerek

Tegyük fel, hogy bizonyos /biológiai, kémiai, stb./ in­

put-output rendszerek egy osztálya egy 0€(h)c{R,V paraméter­

vektorral jellemezhető, és bármely input /pl. mérési konfigu­

ráció, stb./ esetén ismerjük egy ilyen rendszer válaszának 

függési módját az inputtól és a 9 paramétervektor értékétől. 

Legyen a megfigyelni kivánt konkrét rendszerre a 9 paraméter 

értéke 9 •= 9* és tartozzék Ш számú kiválasztott input közül

output, ahol

paraméter-függvény /melyről feltesszük, hogy elegendően si-

■i -edikhez az ismertaz
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t -edik inputhoz tartozó vá­

lasz megfigyelésekor mérési hibát követünk el, és igy az 

outputok helyett az

ma/. Végül tegyük fel, hogy az

i * ..., vn /5.2.1/I

hibával terhelt értékeket figyeljük meg.

A paraméterbecslési feladat abban áll, hogy ©*ismeret-
>\ ^

len értékére minél jobb В becslést adjunk a mért adatok 

és az függvények /a továbbiakban mode 11-függvények/

ismeretében. Ha az hibákról semmit sem tudunk, akkor 

semmiféle 9 becslésről nem mondhatunk semmi érdemlegeset.
A

Egy 0 becslés jóságát az E^. hibák viszonylatában legszeren­

csésebben statisztikailag jellemezhetjük; ehhez az E^ hibá­

kat valószinüségi változóknak tekintjük és bizonyos feltevé­

seket teszünk ezek eloszlására.

Gyakori feltevés, hogy az E^ hibák függetlenek, azonos 

eloszlásuak és nulla várható értékűek. Mivel mérési hibákról

van szó, szokásos feltenni, hogy ez az eloszlás a normális

eloszlás. Azonban radioaktiv méréseknél, ahol a mért érték a 

beütésszám, jogosabb lehet annak feltételezése, hogy 

Я = paraméterű Poisson-eloszlást követ. A továbbiakban

csak e két eloszlásra leszünk különös tekintettel.

E pontban két paraméterbecslési eljárást ismertetünk: 

a /súlyozott/ legkisebb négyzetek módszerét és a maximum-

likelihood-módszert Poisson-eloszlás esetén. Mindkét módszer­

rel kapcsolatban kitérünk a 0 paraméterbecslések numerikus

meghatározására szolgáló eljárásokra is; de az utóbbiak kö­

zül csak olyanokra szorítkozunk, melyeknél csak az első par­

ciális derivállak kiszámítása szükséges.
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Legkisebb négyzetek módszere

A nemlineáris függvények paramétereinek becslésére leg­

gyakrabban alkalmazott eljárás a /súlyozott/ legkisebb négy­

zetek módszere, amely a 8 paraméterbecslést az
V-\ ,

s (9 )-=2I wvD'jfc /5.2.2/

súlyozott négyzetösszeg minimalizálása utján határozza meg. 

Itt a VT >,0 sulyok általában az ^ megfigyelések pontosságát, 

megbizhatóságát reprezentálják. Például ha az 6^ hibák Т)г(£«:)

= G'J' varianciája /esetleg egy konstans szorzótól eltekintve/
- 2.akkor a W^-=0'^ sulyok alkalmazása célszerű /'általá­

nosított legkisebb négyzetek módszere'/.

Statisztikai szempontból a legkisebb négyzetek módsze­

réről, mint paraméterbecslési módszerről, a következők mond­

hatók el. Amennyiben az hibák független, nulla várható 

értékű normális eloszlású valószinüségi változók, az általá­

nosított legkisebb négyzetek módszere egybeesik a maximum- 

likelihood-módszerrel /vö. [2}, 63. o./; és ha még az azonos

ismert,

hibavariancia feltétele is áll, akkor mindkettő a "közönsé­

ges" legkisebb négyzetek módszerére /ahol ty-с/ redukáló­

dik. Ilyen esetekben tehát érvényesek a maximum-likelihood-

becslések kedvező tulajdonságai, azaz a becslés bizonyos vi­

szonylag enyhe feltételek mellett konzisztens, aszimptotiku­

san hatásos és aszimptotikusan normális eloszlású, továbbá, 

ha létezik elégséges becslés, úgy az /az egyetlen/ maximum- 

likelihood-becslés [2, 8].

Abban az esetben, ha a hibák normalitásának feltétele

nem teljesül, szintén érvényesek bizonyos aszimptotikus tu-
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lajdonságok, melyeket pl. a [83 cikk foglal össze. Bebizonyí­

tották, hogy ha az hibák korrelálatlanok, nulla várható 

értékűek és azonos szórásuak, akkor az ^(.) függvényekre 

vonatkozó regularitási feltételek mellett a /közönséges/ leg-
Л

kisebb négyzetek módszerével nyert 0 paraméterbecslés erősen 

konzisztens és aszimptotikusan normális.

Sajnos a fentiekben felsorolt aszimptotikus tulajdonsá­

gok csak az lm mintelemszám eléggé nagy értékeire vonatkozóan 

mondanak valamit. A gyakorlati problémák nagy részében a mé­

rések száma általában elég kicsi, legtöbbször 10 és 40 közt

mozog. Ilyen kis minták esetére a legkisebb négyzetes becs­

lések tulajdonságai csak lineáris ^ LB ) modell-függvényekre 

ismertek /lásd a lineáris regresszió jólismert Gauss-Markov-

féle elméletét; pl. [2l, 58. о./.

Most rátérünk a legkisebb négyzetek módszerének numeri­

kus megvalósításával kapcsolatos eljárásokra. Bár többválto­

zós függvények minimalizálására többféle módszer is ismeretes, 

/5.2.2/ minimalizálására azok az eljárások a leghatékonyabbak, 

amelyek figyelembe veszik az S(.) függvény négyzetösszeg- 

-strukturáját C23. E módszerek alapja a négyzetre emelendő 

^ "-fi (§) függvények linearizálása az aktuális, mondjuk 

közelítés/ 9^ / körül. Ezáltal a minimalizálandó S(. ) függ­

vényt helyettesítjük Gauss-Newton-féle közelítésével:

&.-adik

Sfe(e4S)= £«*[v --Z íj]" /5.2.3/

amely már /a £ növekményben/ lineáris függvények négyzetösz- 

szege. Vezessük most be az alábbi jelöléseket:

1 iß“ .-{.«‘Я •i- \ •iv;; % ЩIIЫ
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«- £ •» йм Ц<лM.i- w ...V.I -к

Ekkor az /5.2.3/ kvadratikus függvény minimumhelye

S — M -1
к f

alakban áll elő, feltéve, hogy nemszinguláris.

A klasszikus Gauss-Newton-féle iterációs módszernél ki­

indulva egy kezdeti 9° közelítésből, minden újabb közelítést

екИ» e\ í"-a

reláció alapján számítunk. Azonban az eljárás ilyen formájá­

ban nem mindig konvergens, még jó kezdőérték esetén sem /vö. 

[34j, 72. o./. A divergencia oka lehet az ^í.) függvények 

nagymértékű nemlinearitása a 0 minimumhely környezetében, 

vagy rossz illeszkedésük a mérési adatokhoz /S(9) nagy/.
r-kIlyen esetben szokásos eljárás a ö korrekciós vektornak 

olyan relaxációs tényezővel való szorzása, hogy a

n ít <rk-9 f

helyen már kisebb legyen S (. ) értéke, mint 9b-ban. Mivel S (.) 

negativ gradiense 9 ^-ban Z , és fezzel bezárt szöge фО 

hegyesszög / ■= mert pozitiv defi­

nit/, igy S(.) a helyen lokálisan csökken a £* irányban,

s ezért ilyen tényező létezik. célszerű választására

különféle stratégiák ismertek /lásd pl. £2], 110. o./.

A relaxációs Gauss-Newton-tipusu módszerekkel kapcsola­

tos fő probléma az /pozitiv szemidefinit/ mátrixok szin­
titközel-szingularitása. Ilyenkor a számolt b

egy

0кИ

esetben

gularitása ill.
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korrekciós vektor igen nagy hibát tartalmazhat, mivel gyen­

gén meghatározott lineáris egyenletrendszer megoldásából 

származik. E nehézség áthidalható Levenberg-Marquardt-tipusu 

módszerek alkalmazásával, melyek általános alakja

еы bö.f...I

ahol alkalmas nemnegativ szám és £ (0, 42 relaxációs té­

nyező. На akkor M^-í-A^I mindig pozitiv definit /tehát

nemszinguláris/, és elég nagy Aj^-ra nem gyengén meghatáro- 

megválasztására szintén többféle stratégia létezik 

/lásd pl. tl3]/ .

Az emlitett módszerekre az ill. a Ártényezők alkal­

mas választása esetén un. szemilokális konvergenciatételek 

mondhatók ki /lásd £422, 14.4 pont/. E tételek szerint, ha a 

6° kezdőértékhez tartozó £ 0 € IR^ | S (0 ) £ S(9°) Jc (rj) 

máz kompakt és egyetlen 0 /lokális/ minimumhelyét tartalmaz, 

akkor az (.) függvények /kétszeri/ folytonos differenciál-
Л

hatósága esetén az iteráció /első rendben/ konvergál a 6 mi­

nimumhelyhez .

zott.

szinthal-

Maximum-likelihood-módszer Poisson-eloszlás esetén

Tegyük fel, hogy az ^ | ( ^tn megfigyelések független

Poisson-eloszlásu valószinüségi változók, rendre £,(©*) 

várható értékkel, azaz
* Iк •

e ---- ,
ч) = 4, .. - j ,

/\
A 0 maximum-likelihood-becslést az alábbi likelihood-függ- 

yény maximalizálásával nyerjük:

V (c - ^= • •
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Ш*)-ТГ [«pC-lifeOftte^/fS«!)"
^ 4 — л Í. u

(-^[^(в)-5Л^])4 e.xp /5.2.4/■wv

.TT *!
c~A

A maximum-likelihood-becslések statisztikai tulajdonsá­

gait a legkisebb négyzetek módszerével kapcsolatban már em-
A

és most már csak 0 numerikus meghatározásának kér-litettük,

désével foglalkozunk.

Világos, hogy /5.2.4/ maximalizálása ekvivalens a kö­

vetkező ф(.) függvény minimalizálásával:

V- A

ф(.) negativ gradiense a 0U helyen ^ = (<^

^ = £ [< - fe] Ц* tó*) = [*,-*«<«] $(8*)
ahol

Látható, hogy ф(.) negativ gradiense a 0k helyen forma­

ilag megegyezik az /5.2.2/-vel definiált SC.) négyzetösszeg

negativ gradiensével abban az esetben, ha a W%- súlyokat a

-4
/5.2.5/ow

relációval definiáljuk /és rögzítettnek tekintjük deriválás­

nál/. E felismerés, amely Jennrich és Moore eredménye [26j, 

lehetővé teszi a legkisebb négyzetes nemlineáris paraméter-

becslő programok felhasználását a maximum-likelihood-becslés

meghatározására; csupán annyit kell tennünk, hogy minden 

egyes újabb 0k közelítés meghatározása után /5.2.5/ szerint

újradefiniáljuk a wa- súlyokat. Ezen szukcessziye módosított 

súlyozás alkalmazásával a Gauss-Newton-tipusu módszerek min­

dig lejtőmódszerbe mennek át.
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A parargéterbecslés pontossága és az illeszkedés jósága

A
Az iterációs eljárással nyert £ paraméterbecslés megha­

tározása után felmerül a kérdés, hogy mennyire jól illeszked­

nek a becsült ^(б) output értékek az ^ mérési adatokhoz 

ill., hogy mennyire megbizhatóak, pontosak a számolt paramé­

terek. Sajnos e kérdésekre nem adhatunk kielégítő választ,

mivel a nemlineáris regressziós modellek statisztikai elméle­

te e téren jelenleg még nem kidolgozott. Bizonyos kvantita­

tív mórőszámok megadhatók, de ezek csak kellő óvatossággal 

veendők figyelembe.

A paraméterbecslés pontosságára vonatkozóan követett

|^(.) függvények linearizálása a számolt 6 para­

méterbecslés körül, majd a kapott linearizált modell alapján

a lineáris regressziónál szokásos statisztikai vizsgálatok
л

elvégzése /pl. 9 becsült kovariancia- ill. korrelációmátrixá­

nak megadása, ennek főkomponens-analizise, konfidenciatarto­

mányok és hipotézisvizsgálat az egyes paraméterekre ill. a

eljárás: az

teljes paramétervektorra/. A linearizált modellel való köze­

lítés megbizhatóságát két, egymással összefüggő tényező is 

ronthatja: ha 0 nincs elég közel a valódi 9 értékhez ill., 

ha az $«;(•) függvények erősen nemlineárisak 0* környezetében. 

Ezért a linearizálás utján nyert eredmények gyakran csak 

durva közelítésnek tekinthetők.

A modell-függvények illeszkedésének jóságát két szem­

pontból is jellemezhetjük. Az egyik szempont, hogy mennyire

illesztett ^ (6 ) függvényértékek az 

rési adatokhoz, azaz, hogy mennyire kicsik az == ^ (£ )

reziduálok. E közelség kvantitative jellemezhető például az

mé~vannak közel az
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hibák becsült szórásával /abszolút mérőszám/, vagy különfé­

le korrelációs tipusu mutatókkal /relativ mérőszámok/; egyéb 

mérőszámok találhatók £l3j-ban.

Amennyiben az /5.2.1/ regressziós modellben az hibák 

független N(0,Cl) valószinüségi változók, és a 9 «0* közelí­

tés elég jó, akkor az r. reziduáloknak véletlenszerűen kell 

ingadozniuk a nulla körül. Ha ez az ingadozás szisztematikus, 

pl. valamilyen görbe alakját követi, akkor az C.) modell- 

függvények hibás specifikációjára gyanakodhatunk. A rezidu- 

álokban levő szisztematikus tendencia, trend jelenléte jól 

jellemezhető a reziduálokból számolt sorozatkorrelációs 

együttható segítségével Г13]. A reziduálok előjelei sorozatá­

nak véletlenszerűsége a run-szám-próba segítségével ellenő­

rizhető /[8l, 201. o./. Annak tesztelésére, hogy valóban az 

adott ^ ) függvényekkel érvényes-e az /5.2.1/ regressziós

modell, jelenleg még nem ismert elméleti szempontból adekvát 

eljárás.

5.3. Mátrix-exponenciális módszerek kompartment-rendszerre

történő alkalmazásának speciális szempontjai

Bizonyos mátrix-exponenciális módszerek lineáris kom-

partment-rendszerre való alkalmazásánál jól kihasználhatók

az ilyen rendszerek együtthatómátrixai, az un. kompartment-

mátrixok speciális tulajdonságai. így például megmutatjuk,

hogy a Taylor-sor és a négyzetelés módszerénél a kerekítési

hibák terjedését elősegítő bizonyos tényezők nincsenek jelen

ill. könnyen kiküszöbölhetők. Ehhez először megvizsgáljuk,
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hogy milyen tulajdonságokkal rendelkezik egy kompartment-

mátrix és exponenciálisa.

Kompartment-mátrixok tulajdonságai

Emlékeztetünk arra, hogy egy kompartment-mátrix egy 

olyan A = (4^)^

összefüggéseknek tesznek eleget:

6 ÍR mátrix, melynek elmei a következő

< = o
/5.3.1/

l-OAI V‘4iS I

/ahol az ac^ számok maguk nem mátrixelemek, csupán defi­

níciójában szerepelnek/.

Tehát az A kompartment-mátrix egy un. lényegében nemne- 

gativ mátrix /153, 146. о./, mivel főátlón kivüli elemei nem-

negativok. Egy ilyen mátrix spektrum-eltolással nemnegativ

mátrixba vihető át:

^ A + ЯI ^ 0'X — wo,*
4 -je у\.

Ebből közvetlenül következik, hogy e.xp6tA) nemnegativ t} 0 -ra:

/5.3.2/

©o
21 4т (A+XI) 3>0.tA /5.3.3/e — e t'.í.~o

Továbbá, ha A irreducibilis, akkor /és csak akkor/ £>0-ra 

ex.p A)>0 /elemenként/ is érvényes /C5j, /3.11/ tétel/.

A Gersgorin-tétel /£413, 289. o./ segítségével könnyen 

belátható, hogy egy kompartment-mátrix bármely sajátértéke 

vagy negativ valós részű, vagy nulla. Ugyanis az AT mátrixhoz 

tartozó Gersgorin-körök vagy teljesen a képzetes tengelytől
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balra helyezkednek el, vagy /ha 3 j : d0j‘ - 0 1 balról érintik 

a képzetes tengelyt az origóban, mivel középpontjuk a;,- -±a(i<W
00.

sugaruk pedig .2Í , Ebből következik, hogy egy nemszingulá-

ris kompartment-mátrix mindig stabil tipusu / 0 /.

A szingularitás kompartment-mátrixoknál bizonyos érte­

lemben "természetes" módon léphet fel. Ha például az A kom­

partment-mátrix zárt, azaz az összes környezetbe való kiáram-

n. /, akkorlási transzportegyüttható zérus/ 0^=0, ^ 4 

szinguláris, mivel sorvektorainak összege a zérus sorvektor.
I “ * I

Sőt az is nyilvánvaló, hogy zárt kompartment-mátrix nulla 

sajátértékéhez tartozó baloldali sajátvektora az ^ •• 4 3

összegző vektor:

/1T A = o- iTa0<j = 0 /5.3.4/I

A következő lemma kompartment-mátrixok spektrális absz­

cisszáján fontos tulajdonságait adja meg.

5.3.1. Lemma. Egy A kompartment-mátrixnak oí (A) mindig egyet­

len /bár nem feltétlenül egyszeres/ maximális valós részű 

sajátértéke, és érvényes rá a következő becslés:

•VЛЛ*
44 jé П.

Ha Д-ról még azt is feltesszük, hogy irreducibilis, 

akkor Oí(f\) egyszeres sajátérték, és léteznek hozzá csu­

pa pozitiv elemet tartalmazó bal- és jobboldali saját­

vektorok, továbbá /5.3.5/ két egyenlőtlensége közül bár­

melyikben csak akkor érvényes egyenlőség, ha a04=... = a

'Vvu.n. (- 0.0 ■ ) 4 & (A) 4. 
*4^ * /5.3.5/

от. •

Bizonyítás: Először tegyük fel, hogy A irreducibilis. Ekkor 

az /5.3.2/-vel definiált А+-Й1 nemnegativ elemű mátrix is ir-
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reducibilis, és igy Frobenius tétele /[451, 524. o. / alapján 

p(A+/\l) egyszeres sajátértéke, pozitiv elemű bal- és jobbol­

dali sajátvektorokkal. Nyilvánvaló, hogy Oí (A ) = oi (A + Xl) - X ~ 

p (А+Д1) -Л, igy «(A) egyetlen és egyszeres maximális valós 

részű sajátértéke A-nak. Ezenkívül a [”45] könyv 9.1.5. téte­

léből következik, hogy

(.21 a,v f A) p (AtXl)
i-i * >

ahol bármelyik egyenlőtlenségben egyenlőség csak akkor lehet 

érvényes, ha az alsó és felső korlát egybeesik. Az előzőek­

ből látható, hogy Я. levonásával az utóbbi egyenlőtlenség épp 

/5.3.5/-be megy át. Mivel A és A+XI sajátvektorai megegyez­

nek, igy a lemma állítását irreducibilis mátrixra beláttuk.

Ha A nem irreducibilis, továbbra is sajátértéke

(A-t-Al)-nek /Г 4 5 3, 9.2.1. tétel/, és nyilván nem lehet ettől 

eltérő, p(A+Xl) valós részű sajátértéke. Ebből ismét cK (f\) — 

р(А+Д1)-Я alapján kapjuk, hogy c* [A) A-nak egyetlen maximá-

k <W\CXX * )0=1

lis valós részű sajátértéke. /5.3.5/ igazolásához képezzük 

A-ból azt az A^ = )

az <&?
kompartment mátrixot, melyben'r>x 'Л.

Ct) egyenlőséggeltranszportegyütthatót az át­

definiáljuk /<4^1 , ahol £>0 . Ekkor Af£^ irreducibilis /mi-

•• ■= a ; г +• í.é

vei főátlón kivüli elemei pozitivok/, tehát &(Af£^) -ra ér­

vényes az /5.3.5/ alakú becslés. Ebből £-^0 határátmenettel 

adódik /5.3.5/, tekintettel a sajátértékeknek a mátrixelemek­

től, ill. a spektrális abszcisszának a sajátértékektől való

folytonos függésére. □

Könnyen látható, hogy az /5.3.5/-ben szereplő felső kor­

lát éppen az A kompartment-mátrix E -normához tartozó loga-
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ritmikus normája:

M-j ( A) =• oviax (-Q0;) -
1 46/*» 4

— Ovi irt. Q.0:
*

yu^íA") logaritmikus norma mindig nempozitiv, és csak

/5.3.6/

Tehát a

akkor negativ, ha Qo^>0( ^=4Г. 

mátrix diagonálisan domináns.

amikor is a kompartment-•."i

A logaritmikus norma nempozitivitása a 2.1.1. következ­

mény szerint maga után vonja, hogy kompartment-mátrix esetén

IU5ftIUIUtAIUh
Л * /5.3.7/

/5.3.5/ alapján egyszerű becslés adható egy kompartment- 

mátrix logaritmikus inefficienciájára /^-norma mellett/:

•v, =NA1 -“(A) á ,т -£рл<)
Az 5.3.1. lemma értelmében egy irreducibilis kompartment-mát­

rix (A) logaritmikus inefficienciája akkor és csak akkor

nulla, ha minden Q ■ kifolyási transzportegyüttható egyenlő.
о

Továbbá egy szinguláris kompartment- mátrixra & (A) é. ДЦ (A) é. 0 

miatt /i^Ö-га/

/5.3.8/

ll.***«-'1-o((/\)-0 y.A (A) = <fyA (A)-0 es /5.3.9/

Ha A reducibilis, akkor a (A) lehet többszörös sajátér­

ték is. (XfA)-O esetben ey-pOtA) korlátosságából /lásd /5.3.7// 

következik /lásd £41], 402. o./, hogy egy többszörös nulla 

sajátérték nem lehet defektiv. 0£fA)<íö esetben viszont előfor­

dulhat, hogy oí ГА ") defektiv sajátérték, mint azt a követke­

ző példa mutatja:

]~-Z \
о -гA =
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A nulla sajátérték multiplicitása Foster és Jacquez alábbi 

eredménye alapján egyértelműen meghatározható a kompartment-

mátrix struktúrája /gráfja/ alapján. 

5.3.2. Lemma Cl73. Legyen az A kompartment-mátrixnak a nulla 

"V -szőrös /0 / sajátértéke. Ekkor A egy alkalmas "P 

mutációmátrixszal elvégzett hasonlósági transzformáció­

val a következő reducibilitási normálalakra hozható:

per-

А-и 0
/5.3.10/A# 4 • • • ^otuA*« - A A

I » 0
A l-V+4, tl-V+4!

j 0 '•A.А и • • • Afeot ьл J
van olyan <>(j' , hogy Aj-fO,

О

. j A*fc négyzetes

ahol 0 é tí.<Si£ tv ; t

és a főátló mentén elhelyezkedő A 

blokkok irreducibilis kompartment-mátrixok, melyek kö­

zül A,-,-

esetén

• •A\ I

pontosan akkor zárt kompartment-mátrix, hogyha 

é ^ ^ 4 . Továbbá szükségképpen teljesül l.

/Л particionálás úgy értendő, hogy оL=0 esetben csak a 

jobb alsó blokk-diagonális rész szerepel./

Bizonyítás. Lásd [l7j-ben. Kiegészítésül csak azt jegyezzük

) Afe-»,4-v

izolált blokkokat /melyek alatt és felett csupa 0 blokk szere­

pel/ nem különítették el. /Lásd а Г45] könyv 9.2. pontját, 

amely sorok szerint izolált blokkokkal definiálja egy reduci- 

bilis mátrix normálalakját/. О

Megjegyzés. Ha A irreducibilis, akkor ot = 0 , 4 , és a

reducibilitási normálak egyetlen blokkja lehet maga az A mát­

rix /ha P = I / .

meg, hogy Cl7}-ben az A /oszlopok szerint/• •
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A reducibilitási normálalak segítségével /5.3.7/-nél

élesebb eredmény bizonyítható egy kompartment-mátrix exponen­

ciálisának £4-normájára.

Legyen A kompartment-mátrix. Akkor5.3.3. Lemma.

t^O II exp •= 4 ;(i) c/ÍA)=0 esetén 

(11) ol(A)*0 esetén S>t>0 -=^> Це/р ($А)НЛ ^ llexp(-kA)U^ < 4 .

Bizonyítás . (i): lásd / 5.3.9/-et. (il) : Mivel az E,,-norma

permutációra nézve invariáns, igy 11-e.yp (t A) 11^ = ll€/p (MA) П 

ahol A az

л 1

/5.3.7/ reducibilitási normálalak mátrixa, és U(A)<

0 miatt V = 0. Tudjuk, hogy l{ expOt A ) Z^OO ahol —

^Texp(-tA)e£ (^,0). Legyen ae:«(*et)n ,

cionáljuk az Sio vektort ugyanúgy, mint A-ot /5.3.10/-ben:

és parti-

ёок 3 • Tegyük fel, hogy A £.-edik oszlopa az fő-

átlómenti blokkot metszi, mégpedig annak \-edik oszlopában.

e/p (tÄ) ^ 0, e/p ftA ) ^ -edik főátlómenti blokkjaésMivel

ехр(*Ай) igyI

tA ee=-?oe eeé-
-tAf.~Ta'. e(*) = iTA e ii /5.3.11/

Mivel irreducibilis kompartment-mátrix, igy £>0 -ra

exp ("tA^píO/elemenként / ; továbbá mivel nem zárt, igy az a0j

ben szereplő kiáramlási transzportegyütthatók valamelyike ha­

tározottan pozitiv. E két utóbbi tényből /5.3.11/ alapján kö­

vetkezik, hogy fc > 0 -ra %£&)< 0 , tehát szigorúan mono­

ton csökkenő [0,0°) /'íé^é'h/. E monotonitás a 'may Z«(.)'fé £ c -n *•

függvényre is igaz, ami maga után vonja (il) érvényességét. □

-en

Végül megemlítjük, hogy bizonyos strukturális feltéte­

lek mellett garantálható, hogy egy kompartment-mátrix saját-

С233, hogy haértékei valósak legyenek. Hearon bebizonyította 

egy A kompartment-mátrix előjel-szimmetrikus, azaz
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azaz nincs olyan, 1>/Ъ 

sorozat, hogy az Л* {

üy>0 4=5 O--c>0 , ^=4,...,* és körmentes,

különböző indexből álló г «t 4

mátrix-elemek mindegyike pozitiv, akkor A diago-

• «< / • * » I j

I
nális— hasonló egy szimmetrikus mátrixhoz, és ennélfogva nem-

defektiv és sajátértékei valósak. Mivel A sajátértékeinek 

összessége megegyezik reducibilitási normálalakjában szereplő 

blokkjai sajátértékeinek összességével, igy az 

5.3.2. lemma alapján belátható, hogy ha az előjel-szimmetria 

feltételét elhagyjuk, akkor is valósak lesznek a sajátérté­

kek. /Ugyanis körmentes esetben az Aj-j diagonális-menti blok­

kok irreducibilitása maga után vonja azok előjel-szimmetriá­

ját./ Az utóbbi eredményt Smith és Möhler [47j bizonyította 

be más utón. Azonban az előjel-szimmetria feltételének elha­

gyása esetén már nem garantálható A nemdefektivitása. Viszont 

akár előjel-szimmetrikus a mátrix, akár nem, mindkét esetben 

lehet közel-defektiv, ami a sajátértékprobléma megoldásánál 

majdnem ugyanolyan kellemetlen, mint ha defektiv volna.

A 44 / • • * / ^ tk

exp(-tA) és expft-A) b kiszámítása kompartment-mátrix

esetén

Mielőtt az egyes módszerekre rátérnénk, megemlítjük azt 

az érdekes tényt, hogy szinguláris kompartment-mátrix ^-nor­

mához tartozó exponenciális kondíciós száma mindig optimális. 

Ugyanis a 2.2.1. következmény, 

alapj án

a 2.2.3. tétel és /5.3.9/

U(f\)=0 ^ (A,-fc ) =-Ь IIAll •fc 0.л I /5.3.12/

Sajnos a(A)<0 esetben ez általában nem áll fenn, sőt v(A,t)
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nagyságrendje nagy t -re 0('t)-nél nagyobb is lehet /amikor az 

U (f\) sajátérték defektiv/.

aj Taylor-sor-módszer. Mint azt a 3.1. pontban említettük, 

a Taylor-sor-módszerben komoly jegyveszteség léphet fel el­

lenkező előjelű számok összeadásánál. E probléma kompartment- 

mátrixoknál kiküszöbölhető, ha elvégezzük az /5.3.2/ képlet 

szerinti spektrumeltolást, amellyel egy nemnegativ

elemű AtÄI mátrixhoz jutunk. e>£p(tA) közelítése ezután az

bo
■fc Ae ~ € /5.3.13/

képlet szerint történhet, ahol N értéke a pontossági krité­

riumtól függ.

Az /5.3.13/ jobboldalán szereplő összeg tagjainak ill.

részletösszegeinek számítása során mindvégig nemnegativ szá­

mokon végzünk szorzásokat és összeadásokat, és ez a jegyvesz­

teséget igen nagy mértékben csökkenti. Ugyanis a számolás

közben elkövetett kerekítési hibák relative kicsik az aktuá­

lis részeredményekhez viszonyítva, és még kisebbek a végered­

ményhez viszonyítva, mivel a nemnegativ tagok hozzáadásával 

a mátrix-részletösszeg-sorozat elemenként nemcsökkenő.

Látjuk tehát, hogy kompartment-mátrixoknál az /5.3.13/

képlet szerint alkalmazott Taylor-sor-módszer pontossági 

szempontból kedvező tulajdonságokkal bir. Továbbra is hát­

rány azonban, hogy esetén a Taylor-sor konvergenciá­

jának lassúsága miatt túl sok műveletet igényel. Ezért ilyen­

kor a módszert a négyzeteléssel célszerű kombinálni.
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KANégyzetelés módszere. E módszernél C 

soros módszerrel számolt/ közelítéséből indulunk ki, ahol

és teljesül pl. II & A tl^£ 4 ; majd szukcesszív négyzete-

egy /pl. Taylor-

ÍU2"'r4
léssel kapjuk az expCfr^A) mátrixok közelítéseit, ahol -

2^*4 «Jz4. Mivel egy kompartment-mátrix exponenciálisa min­

dig nemnegativ, igy itt minden módosítás nélkül biztosított 

a számításokban részt vevő 6Xf(^A) mátrixok nemnegativitása. 

így a Taylor-sor-módszerel kapcsolatban már emlitett okok 

miatt a kerekítési hibák hatása relative igen kicsiny lesz,

ami biztosítja a módszer numerikus stabilitását.

Hogy utóbbi állításunkat méginkább alátámasszuk, megem­

lítjük, hogy mivel kompartment-mátrix esetén ЦехрСЬ А)1Ц 

ben vagy állandó /ha A szinguláris/, vagy monoton csökkenő /ha 

Astabil; lásd az 5.3.3. lemmát/, igy a 3.1. pontban emli­

tett pup-jelenség itt nem léphet fel. Ezenkívül, szinguláris 

kompartment-mátrix esetén fcXp(AA) ijedik hatványának €xpC^.A) 

öröklött relativ hibáira való érzékenysége -normában mini­

mális, hasonlóan a normális mátrixok és 6^-norma esetéhez. 

Ugyanis, ha A szinguláris kompartment-mátrix, akkor exp(^A) 

hatványozásra vonatkozó /^-normához tartozó/ kondíciós számá­

ra /3.1.12/ és /5.3.8-9/ alapján azt kapjuk, hogy

N„(e,'A,2"') = 2wv .

■fc-

/5,3.14/I

Összefoglalva megállapíthatjuk, hogy a négyzeteléssel 

kombinált spektrum-eltolásos Taylor-sor-módszer mind haté­

konyság /műveletigény/, mind pontosság szempontjából igen al­

kalmas kompartment-mátrixok exponenciálisának meghatározásá­

ra. Amennyiben csak &Хр^А)Ь kiszámítására van szükség, az 

0 (v&'j műveletigény /bármely fc-ге/ miatt a módszer nem haté-
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копу, kivéve а t ekvidisztáns pontsorozat esetét, 

amikor a műveletigény С-хр(^А) meghatározása után már 0(пг)-

0*0

re redukálódik.

cj Spektrálfelbontás módszere. E módszer kompartment-mát-

rixra történő alkalmazásával kapcsolatban megemlíthető, hogy 

a nulla sajátérték sohasem lehet defektiv, bár a többi saját­

értékek azok lehetnek. Ezenkívül semmi sem biztosítja, hogy 

egy kompartment-mátrix ne legyen közel-defektiv, illetve,

hogy Jordan-kondiciós száma ne legyen nagy.

expOtA)b kiszámítása a célunk, akkor csak a módszer 

előkészítő szakasza igényel 0(n^) számú műveletet. E szakasz- 

műveletigénye esetenként lényegesen redukálható a mátrix re- 

ducibilitási normálalakjának figyelembe vételével. Ugyanis

Ha

£Xp(tA) = P A )P"^j ahol A /5.3.10/ szerint adott; és A

spektrálfelbontásának QR-algoritmussal való meghatározásánál 

elég csupán a főátlómenti Ablokkokra elvégezni a QR-ite- 

mert ha meghatároztuk ezek = 04j L.^ Qj1 

bontását, ahol Q. unitér és Lц alsó trianguláris, akkor 

A alsó Schur-alakja:

rációt, Schur-fel­

ett

-,H
ОлU. О Ок Оо к • *Qv* It-VVA = • L а0VM. VH VM

00 0 'k.'•a*. Qj-k'l •••

ahol a főátló alatti blokkok már egyszerű mátrixszorzás­

sal megkaphatok:

к

I .. = Q н /\.. Q . i > г •4 >
mátrixok főátlóelemei adják A sajátértékeit,Az L,\- a saját-
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vektorok pedig a szokásos módon, inverz iterációval vagy egy­

szerűen háromszögmátrixu egyenletrendszerek megoldásával kap­

hatók meg. /Megjegyezzük, hogy az elterjedt számítógépi prog­

ramok /lásd pl. £54j-ben/ általában felső Hessenberg- és fel- 

ső háromszögmátrixokkal dolgoznak; ilyenek alkalmazásához A 

transzponáltja vehető, vagy definiálhatunk egy felső reduci- 

bilitási normálalakot./

Amennyiben az A kompartment-mátrixnak a nulla V-szőrös 

/v>0/ sajátértéke, az A mátrix A A^ blokkjai-) * ' * )

ra - melyek egyszeres nulla sajátértékkel rendelkező zárt

kompartment-mátrixok - meggyorsítható a spektrálfelbontás,

ugyanis a következő lemma alapján a nulla sajátérték egyet­

len elemi Householder-transzformációval leválasztható. 

5.3,4. Lemma. Legyen Ag IR^^zárt kompartment-mátrix. Legyen

Q:= * *+•;* - -T>

Akkor Q, ortogonális és Q.TAQ> első sora zérus. 

Bizonyítás. Az, hogy Q, /szimmetrikus/ ortogonális mátrix,

következik abból, hogy Q elemi Householder-transzformációs 

mátrix /lásd pl. С39Д, 86. o./, mivel X - 2.W wT alakba irható,
(2л + 2\ГЯ)~1/г U ? wT w - 4 . Továbbá,ésahol v/ :=

(«и) -1 4T
+• Vn Vn — )

és mivel 4 az A mátrix nulla sajátértékéhez tartozó balolda-

eJQT-
“ n eT --1

li sajátvektora /lásd /5.3.4//, igy

ej QTA Q = '4 1TA 0. = °T,
amivel az állítást igazoltuk. □

A lemmában megadott elemi Householder-transzformációt 

elvégezve A
v1

A^Q‘>fc-v) blokkjaira, a kapott almátrixoknak D
í
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már csak a jobb alsó részét képező eggyel kisebb rendű blokk­

ját kell alsó háromszög alakúra transzformálni a QR-algorit- 

mus segítségével.

Megemlítjük még, hogy az A=VJ\.V"^ spektrálfelbontás 

határozása után az exp (t A V ехр(^Л) V

mitásakor is csökkenthető a műveletigény a reducibilitási 

struktúra figyelembe vételével.

meg-

mátrixszorzat kiszá-

dj Minimálpolinom-módszer. Ennél a módszernél a Taylor-sor- 

módszerhez hasonlóan csökkenthető a kerekítési hiba az 

/5.З.2./ spektrum-eltolás segítségével, ha A helyett az 

mátrix b vektorhoz tartozó Krülov-sorozatát képezzük és 

zel számolunk tovább. Itt a b vektor fizikai jelentése /kezde­

ti anyagmennyiség az egyes kompartmentekben/ miatt nemnega- 

tiv, és ezt a nemnegativ A+AI mátrixszal szorozgatjuk. Ha 

meghatároztuk exp (t £A +AI]^ b -h, akkor ebből x (£) = е.хр(£М b az

А + Я1
ez-

képlet szerint kapható meg.

exp(tA) és вхр(ЬА)Ь paraméterek szerinti derivált­

jainak számítása

A paraméterek szerinti parciális deriváltak vonatkozásá­

ban sajnos nem használható ki az, hogy A kompartment-mátrix, 

mivel az érzékenységi egyenlettel kiegészített /4.3.1/ rend­

szer mátrixa már nem kompartment-mátrix. Azonban általában 

lehetőség van a műveletek számának lényeges csökkentésére, 

ha figyelembe vesszük a 9A/30r parciális derivált mátrixok 

ritka voltát. Ugyanis lineáris kompartxaent-rendszer esetén 

a 9r paraméterek általában maguk a /nemzérus/ transzport-
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együtthatók, és 6r <i , í+j , esetén•= a

- e. e?
“(J- > £ = 0

2 Gr
-c > 0fei-s-p6i .

tehát ЭА/&&r

talmaz. ^nnélfogya а ЪА(дОг 

szorzásánál a müveletszám 0С'Ьг)-г51 0 (4)-re csökkenthető. 

Tehát a 9 A/96 parciális deriváltakkal kapcsolatos számítá­

sok műveletigénye két nagyságrenddel csökken, ha figyelembe 

vesszük a parciális derivált mátrixok ritkaságát.

általában csak egy vagy két nemnulla elemet tar­

mátrixnak egy vektorral való

5.4. Példa a minimálpolinom-módszer alkalmazására

Befejezésül illusztráció gyanánt bemutatjuk az általunk

kifejlesztett minimálpolinom-módszer alkalmazását egy egysze­

rű numerikus példán.

Tekintsük az 5.4.1. ábrán látható, négy rekeszből álló 

kompartment-rendszert. Tegyük fel, hogy a rekeszek kezdetben 

üresek, és a t=0 időpontban impulzusszerüen egységnyi mennyi­

ségű anyagot adunk be a második rekeszbe. Ekkor a rekeszek­

ben levő anyagmennyiségek változását a következő differenci- 

ál~egyenlet-rendszerrel Írhatjuk le:

*,(*)

хц(4)

% 0

*2U)
*3tt>

-e3 0

О ©6 ©2
0 0 -Br-B2 0

О, -Л
/5.4.1/

^3 e*
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ahol a kezdeti feltétel

X(0)*b=[0,4, o,o]T. /5.4.2/

m

5.4,1. Ábra. Egy négyrekeszes kompartment-rendszer 

a t=0 időpillanatban a 2. rekeszbe

beadott egységnyi inputtal

A fenti kezdetiérték-problémát a paraméteryektor 0o =

[_ 3, 4, 9, 3, 1, 5, 2 értéke mellett oldottuk meg a i- 0.4( 0.2

...jG ekvidisztáns pontsorozaton a minimálpolinom-módszernek a 

mellékletben található programja segítségével. A b kezdeti 

vektorhoz tartozó minimálpolinom harmadfokú:

= гояЧт я+ 54 .
A megoldások grafikonja az 5.4.2. ábrán látható, X3(.) 

kivételével, amely azonosan nulla /ami természetes a rend­

szer struktuája alapján, hiszen a 3. rekeszbe sohasem kerül
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5-4-2.Ábra. Az /5.4.1-2/' kezdetiérték-probléma 

megoldásainak grafikonja /х^зО/



anyag/. A program által számolt értékek a mellékletben csa­

tolt számítógépi listán találhatók.

Ezután a minimálpolinom-módszerrel megoldottuk az 

/5.4.1/ rendszerhez tartozó érzékenységi egyenleteket is,

ugyanazon paraméter-érték mellett és ugyanazon a pontsoroza­

ton. A rendszer mátrixának minimálpolinomát a mátrix-Krülov- 

módszerrel /lásd a 4.3. pontban/ határoztuk meg, és ez egybe­

esett a karakterisztikus polinommal:

^ (a)= хЧ .

Az érzékenységi függvények számolt értékeit a melléklet­

ben található output lista tartalmazza, grafikonjaik pedig 

az 5.4.3. ábrán láthatók, kivéve parciális deriváltja­

it, valamint a Ch és paraméterekre vonatkozó parciális 

deriváltakat, amelyek ismét azonosan nullák.

Megemlítjük még, hogy az /5.4.1/ rendszer mátrixa nem­

szinguláris reducibilis kompartment-mátrix, melynek reducibi-

litási normálalakja:

00

0 :-8j

о

»1 0
A = P'V\? =

«G t0 -QfOh

b ! ^3 9H -B2-95 J

ahol T* = e J permutációmátrix, és az 5.3.2. lemma

jelölései mellett V = U-2. és <x- ‘J .
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Melléklet:

A MINIMÁLPOLINOM-MÓDSZER FORTRAN NYELVŰ PROGRAMJA

Az alábbiakban megadjuk a minimálpolinom-módszer megva­

lósítására kifejlesztett programunk szubrutinjainak használa­

tához szükséges információkat, csatolva a szubrutinok Fortran

forrásnyelvi listáit. E szubrutinokban használt utasítások

megfelelnek a hivatkozási Fortran nyelvnek. A melléklet végén

megadjuk a program próbafuttatásához felhasznált tesztfelada­

tokat, valamint az input-output tevékenységet és a szubruti­

nok meghajtását végző foprogramot, továbbá a futtatás eredmé­

nyeit.

M.l. A Krülov-módszer szubrutinjai

A /mátrix-/ Krülov-módszert a KRYLOV nevű szubrutin va­

lósítja meg, amely a minimálpolinom fokszámának meghatározá­

sára ill. a módszerben fellépő lineáris egyenletrendszer meg­

oldására felhasználja a DECOMP és ITSOLV szubrutinokat. Az

utóbbi rutin ezenkivül még egy háromszögmátrixu egyenletrend­

szereket megoldó TRSOLV nevű szubrutint is hiv.

A KRYLOV nevű szubrutin tevékenysége

ttXVL
A szubrutin adott Aeí& Ъе R>

X



szám esetén a 4.3. pontban emlitett mátrix-Krülov-módszerrel 

meghatározza az (А-Д1) mátrixnak а В mátrixhoz tartozó mini- 

málpolinomját, azaz azt a legkisebb/m. / fokszámu olyan CÄ-)

^ polinomot, amelyre p(A-XT}B = 0 fennáll.

Ehhez a szubrutin először képzi a B, (A-XT)ß B,

. (A-AI^B Krülov-mátrixsorozatot, amely a sorozat tagjainak 

oszlopait egymás alá helyezve egy -лк x (yh-4) méretű mátrixszá 

rendezhető át. /Mivel a b’ortranban a kétdimenziós tömbök /mát­

rixok/ ábrázolása oszlopfolytonos, tényleges átrendezésre 

szükség/. E mátrixra a DECOMP szubrutin segítségével 

végezzük el a Wilkinson-féle oszloponkénti Gauss-eliminációt 

/lásd a 4.3. pontot/, melynek eredményeként megkapjuk a Krülov-

<• «

nincs

sorozat első /lineárisan független/ tagja által alkotott
nfcx-nfe.méretű mátrix PLU-felbontását, ahol 6 ÍR 

mátrix, L6lR,"W

egyesek, és Ut ÍR.

permutáció-

főátló feletti elemei nullák, főátlóelemei 

felső trianguláris mátrix, és ahol (A-AI^B

már lineárisan függ a sorozat előző tagjaitól. Ezután a line­

áris függés, azaz a minimálpolinom együtthatóit a megfelelő

egyenletrendszer mátrixának PLU-felbontására támaszkodva, az

iterativ javitás módszerével, Forsythe és Moler könyvében

leirt módon határozzuk meg az ITSOLV szubrutin segítségével

/lásd: G.E. Forsythe-C.В.Moler: Lineáris algebrai problémák

megoldása számitógéppel. Műszaki Könyvkiadó, Bp. 1976/.

Л KRYLOV nevű szubrutin paraméterei

A SUBROUTINE utasitás a következő:

KRYLOV ( N,A,NA,AB,К,SHIFT, P , M,RN,WORK rIW )SUBROUTINE

A megfelelő aktuális paramétereket az alábbiak szerint kell

II



megadni:

- /input/ az A mátrix rendje /яг/ /egész tipusu/;

- /input/ az Л mátrixot tartalmazó, 

kétdimenziós valós tömb, melynek a hivó szegmensbeli 

deklarációjában az első indexhatár =WAfcN és "bal felső"

részében tartalmazza az A mátrixot;

N

legalább NA *■ N -eleműA

N x N -es

- /input, egész tipusu/ lásd A;

- legalább N+k*2N-elemü háromdimenziós valós tömb a

NA

AB

Krülov-sorozat mátrixa és annak LU-felbontása tárolására. 

Inputként AB (л-1^,/l)-nek а В mátrix b^-

; <j = V /
АВ^г(^(С) tartalmazza a Krülov-sorozat ß -edik tagjának 

(г,^) indexű elemét /■?- 4, •• “Л I)

-/input/ а В mátrix oszlopainak száma/4/ /egész tip./ 

-/input/ elvégzendő spektrum-eltolás//W értéke /valós/; 

-/output/ legalább N-elemü valós tömb, melynek első M 

eleme tartalmazza kimenetkor a számolt minimálpolinom 

együtthatóit /

-/output/ a számolt minimálpolinom fokszáma /**/ /egész/; 

-/output/ számitott reziduál-norma /lásd 3.3. pont/:

mátrix elemei abszolút értékének 

maximuma /valós tipusu/;

- legalább N* IZ*4-elemű valós munkatömb;

- legalább N* К-elemű egész munkatömb.

elemét kell tar­

talmaznia /1 - Л ; visszatéréskor pedig"Л/) ■

к ;

SHIFT

P

m/;-írd Г“/)

M

RN

a számolt

WORK

IW

A DECOMP nevű szubrutin tevékenysége

téglalapmátrix első oszlo­

pából álló A0 részmátrix A01S?LU faktorizációját határozza meg,

A szubrutin egy Аб IR

ahol íi.0t=: A első 4-Л oszlopa lineá-

III



risan független és а 4г. -adik oszlop /ha van ilyen/ lineárisan
1Л/ trxvelőzőektől!; TglRfügg az permutációmátrix; 

föátlóelemei egyesek, főátló feletti elemei nullák, továbbá

felső trianguláris. Az alkalmazott módszerx Í4.-4)UefR
Wilkonson oszloponkénti Gauss-eliminációja. A részleges fő­

elemkiválasztási eljárás által megkivánt sorcseréket a haté­

konyabb működés érdekében a szubrutin nem végzi el, hanem a

szükséges permutációkat egy IP egész tömbben megjegyzi, és az 

LjU. mátrixok /informativ/ elemei egy UL tömbben /sorok szerint/ 

permutált alakban adódnak.

A DECQMP nevű szubrutin paraméterei

A SUBROUTINE utasitás a következő:

DECOMP (M,N,A,MA,UL,MUL,IP,K0,SC,DP)SUBROUTINE

A megfelelő aktuális parajméterek a következőképp adandók meg

- /input/ az A mátrix sorainak száma/írv/ /egész tip./;

- /input/ az A mátrix oszlopainak száma /и/ /egész tip./;

- /input/ legalább MA*N-elemü kétdimenziós valós tömb,

melynek hivó szegmensbeli deklarációjában az első index­

határ és amely "bal felső" M*N-es részében tar­

talmazza az A mátrixot;

- /input, egész tipusu/ lásd A;

- /output/ legalább MUL*N-elemü kétdimenziós valós tömb,

melynek hivó szegmensbeli deklarációjában az első index­

határ = MUL>^M, Kimenetkor UL első oszlopa tartalmaz­

za A megfelelő részének permutált LU-felbontását. Neveze­

ti

N

A

MA

UL
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tesen, UL IPCO -edik sora i >, esetén az L mátrix 

t-edik sorát tartalmazza, esetén pedig rendre az

• • j ^ | i I

- /input, egész tip./ lásd UL;

- /output/ a P permutációmátrixnak megfelelő permutáció 

megjegyzését biztositó /legalább/ M-elemü egész tömb 

/lásd még UL leirását/;

- /output/ kimenetkor értéke ít 

ha ■= 'n + A ’

- legalább M-elemü valós munkatömb;

- legalább M-elemü dupla pontosságú munkatömb.

4 ) • ’ í elemeket;• •

MÚL

IP

hogha és nulla,K0 о /

SC

DP

Az ITSOLV nevű szubrutin tevékenysége

mxnLegyen adott az A 6 (R

b clR.^ vektor, ahol 'гль n = rank (A), Legyen A £ IR 

mátrix első u sorából képzett nemszinguláris mátrix, és kéíR*- 

a P^b vektor első n eleméből álló vektor, 

az A x = b lineáris egyenletrendszert oldja meg az iterativ ja-

mátrix PLU-felbontása és egy

a LU.nxh

Ekkor a szubrutin

vitás módszerével, mely az alábbi képletekkel adható meg:

A d(s)2 rís)г^Л-Ах(5)*lo)=0 . fSl+r , S-0,4,2,= x- / * • •i I I

X(S)
5-x oo

ahol = az illető egyenletrendszer közelitő .megoldására utal, 

melyhez a szubrutin felhasználja az A mátrix /DECOMP segítsé­

gével meghatározható/ PLU-felbontását. Hogy az iteráció való­

ban javitsa az egyes közelítéseket, szükséges az rezidu-

álok dupla pontosságú kiszámítása. Az eljárás gépi konvergen­

ciájához általában 3-4 javitás elegendő.

Amennyiben A annyira gyengén meghatározott, hogy az eljá­

rás divergál, pontosabban, hogy nem konvergál bizonyos ITMAX

X -
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számú /pl. 20/ lépésben, úgy a szubrutin ezt jelzi /lásd ITNO 

paraméter/, és azt az X= közelítést adja vissza megoldás

gyanánt, amelyre az jfs b - A^éIRm reziduálvektor ^^-normája 

a legkisebb volt /'tírSé 1ТМАХ/.

Az ITSOLV nevű szubrutin paraméterei

A SUBROUTINE utasitás a következő:

SUBROUTINE ITSOLV(M,N,A,MA,UL,MÚL,IP,В,X,ITNO,COND,RNORM,R,DX)

Az aktuális paraméterek az alábbiak szerint adandók meg:

- /input/ az A mátrix sorainak száma /egész tip./;

- /input/ az A mátrix oszlopainak száma, éM /egész tip./;

- /input/ legalább MA*N-elemü kétdimenziós valós tömb, 

melynek hivó szegmensbeli deklarációjában az első index­

határ =MA>M, és "bal felső" MxN-es részében tartalmazza 

az A mátrixot. Feltételezzük, hogy az A mátrix rangja af\| 

és PLU-felbontását /e rutin hivása előtt/ a DECOMP nevű 

szubrutin segítségével már meghatároztuk;

- /input, egész tip./ lásd A;

- /input/ legalább MUL*-N-elemü kétdimenziós valós tömb, 

melynek hivó szegmensbeli deklarációjában az első index­

határ =MUL>M, és MxN-es "bal felső" része tartalmazza az 

A mátrix sorok szerint permutált LU-felbontását, ahogy 

azt DECOMP produkálja;

- /input, egész tip./ lásd UL;

- /input/ az A mátrix PLU-felbontásához tartozó permu­

tációt tartalmazó M-elemű egész tömb;

M

N

A

MA

UL

MÚL

IP
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- /input/ az egyenletrendszer jobboldalának b vektorát 

tartalmazó /legalább/ M-elemü valós tömb;

- /output/ egyenletrendszer számolt megoldásvektora, 

N-elemü valós tömb;

- /output/ ha \ é ITNO akkor az iteráció ITNO

számú lépésben konvergált; ITNO<0 esetben pedig diver­

gált és X kimenetkor a legkisebb reziduálhoz tartozó, 

(-ITNO') sorszámú közelitést tartalmazza /egész tip./;

- /output/ az együtthatómátrix kondiciós számának egy 

becslése /valós tip./;

- /output/ a számolt reziduálvektor £ -nor­

mája /valós tip./;

- /output/ a számolt r reziduálvektort tartalmazó leg-

B

X

ITNO

COND

RNORM

R

alább M-elemü valós tömb;

- legalább N-elemü valós munkatömb.DX

Л szubrutinnak egy adott számitógépen való használatához

egy DATA utasításban három olyan konstanst kell megadni, ame­

lyek függenek a gép lebegőpontos számábrázolásától. Ezeket a 

következőképpen kell megadni:

- a számitógép lebegőpontos számábrázolásának alapszáma 

/valós tip./ /R-10-еп BETA=16./;

- a lebegőpontos aritmetika relativ pontossága: az a 

legkisebb pozitiv lebegőpontos szám, melyet 1-gyel le­

begőpontosán összeadva 1-et kapunk eredményül. Értéke

kerekitéses, és

ß=BETA és d a mantissza jegyeinek száma 

/valós tip./ /R-10-еп EPS = -j^6

- maximális iterációs lépésszám. Javasolt értéke Forsythe 

és Moler könyve alapján •x % 1<^(Л/Е PS}. /egész tip./

BETA

EPS

4-ct4P
esetén, ahol

csonkitásos aritmetika

4-G
= 2-27;

ITMAX
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Л TRSOLV nevű szubrutin tevékenysége

Ez a szubrutin egy LUx = b alakú lineáris egyenletrend­

szert old meg, ahol L alsó és U felső háromszögmátrixok, L 

főátlóelemei 1-esek, M főátlóelemei pedig nemnullák. L és U- 

sorait és b elemeit permutált alakban lehet /és kell/ megad­

ni a szubrutin számára.

A TRSOLV nevű szubrutin paraméterei

A SUBROUTINE utasitás a következő:

SUBROUTINE TRSOLV (N,UL,NUL,IP,В,X )

Az aktuális paramétereket az alábbiak szerint kell megadni:

- /input/ a megoldandó egyenletrendszer rendje /egész/;

- /input/ legalább NUL#N-elemü kétdimenziós valós tömb,

N

UL

melynek hivó szegmensbeli deklarációjában az első index­

határ = NUL > 'm.ax|]P(0 ) í 4 J f és amelynek IPC-O -edik 

sora az L és U mátrixok ( ( c,; (

meit tartalmazza /ilyen sorrendben/;

í ele-

- /input, egész tip./ lásd UL;

- /input/ legalább N-elemü egész tipusu vektor; UL 

azon N sorát és Ъ azon N elemét jelöli ki, melyek a szá­

mításokban részt vesznek /lásd ÜL}% /;

- /input/ az egyenletrendszer b jobboldalát tartalmazó, 

legalább ->no.x j lP(v) | N j - elemű valós tömb, ahol

IP (.r)-edik eleme tartalmazza -t;

- /output/ megoldásvektor; N-elemü valós tömb.

NUL

IP

В

X
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M.2. A Kammler-módszer szubrutinja

•р(Я) = X*1 +■ l?m Я**1 +... + 1>2Я-t Ц

polinomhoz és "t idő-értékhez kiszámítja a ) polinom C kom- 

panion-mátrixának ex^(tC) exponenciálisát a 3.3. pontban le­

irt Kammler-féle módszerrel.

A szubrutin IT nevű paraméterén keresztül jelezni kell 

azt, hogy adott polinom esetén az első i-értékkel hiv-

juk-e, ugyanis a szubrutin csak ilyenkor végzi el az előké- 

szitü számításokat.

A KAMLER nevű szubrutin adott
i

A szubrutin paraméterei

A SUBROUTINE utasitás a következő:

SUBROUTINE KAMLER (м,В,T,IT,EBT,MEBT,ALFA,BB,E,GTl,GT2)

Az aktuális paramétereket az alábbiak szerint kell megadni:

- /input/ a /p(.) polinom fokszáma /ул/ /egész tip./

- /input/ a joC.) polinom együtthatóit tartalmazó M- 

elemü valós tömb

- /input/ a £ idő-érték /valós tipusu/;

- /input/ ha IT<í A , akkor a szubrutin csak az előkészítő, 

■t-től független számításokat végzi el, ha IT> A , akkor 

ezeket feltételezi és csak a i-vei kapcsolatos második 

szakasz számításait hajtja végre, IT-=.'| esetben pedig 

mindkettőt. /IT általában a KAMLER szubrutin hívásának 

sorszáma egy adott polinom mellett./ /egész tip./;

- /output/ legalább MEBTííM-elemü kétdimenziós valós tömb, 

melynek hivó szegmensbeli deklarációjában az első index­

határ —MEBTíM. Visszatéréskor EBT "bal felső" MxM-es

M ;

в

T

IT

EBT

IX



része tartalmazza a számolt CXpOtC) mátrix-exponen­

ciálist.

- /input, egész tip./ lásd EBT;

- a szubrutin adott polinom melletti első / IT é 'í / hi- 

vása során számolt skálaparaméter, amely az esetleges 

további hivásokhoz változtatás nélkül megőrzendő /va­

lós tip./;

- a szubrutin adott polinom melletti első hívásakor 

számolt skálázott polinomegyütthatókat tartalmazó M- 

elemü valós tömb, amely az esetleges további /uj T-vel 

való/ hivásokhoz megőrzendő;

MEBT

ALFA

BB

/legalább/ M-elemü valós munkatömb;E

GT1 - a szubrutin adott polinom melletti első hívásakor 

számolt hatványsor-együtthatókat tartalmazó И4* -

elemű valós tömb; uj T-vel való hivásokhoz megőrzendő

/NGT értékét a szubrutin DATA utasítása adja meg/;

/legalább/ MtN&T elemű valós munkatömb, ahol NGTGT2

értéke a szubrutin DATA utasításában spéciiikált.

A szubrutinnak egy adott számitógépen való használata

előtt a szubrutin DATA utasításában két, a gép lebegőpontos 

számábrázolásától függő konstanst kell megadni az alábbiaknak

megfelelően.

-a számitógép lebegőpontos számábrázolásának alapszá-BETA

/valós tip./ /R-10-еп BETA=16./;ma

:= ] I > (f } ahol ß=ß£TA és A a 

mantissza jegyeinek száma a gép lebegőpontos számábrázo­

lásában, továbbá \ csonkitásos és ^=-2 kerekitéses 

aritmetika esetén /egész tip./ /R-10-еп NGT=10/.

NGT NGT
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pCfcA)b számolásáraM.3. ETAB: szubrutin ex

x exp(iA)b vektort számolja adott t 

mátrix és béíR,'*'' vektor esetén, a 3.3. pont-

A szubrutin az

idő-érték, Ae IR 

ban leirt minimálpolinom-módszerrel. A szubrutin feltételezi 

az A-AI mátrix b vektorhoz tartozó minimálpolinomjának isme­

retét /ahol X adott valós szám/, amely az M.l. pontban leirt

rvxn.

KRYLOV szubrutin segitségével határozható meg.

ETAB hivja az M.2. pontban ismeretetett KAMLER nevű szub­

rutint, igy azonos A(b de különböző £ melletti hívásnál az 

IT paramétert az ott leírtak szerint kell megadni.

A szubrutin paraméterei

A SUBROUTINE utasítás a következő:

ETAB (Т,AB,N,M,P,SHIFT,IT,XT,ALFA,SAVE,WORK)SUBROUTINE

Az aktuális paraméterek az alábbiak szerint adandók meg:

- /input/ a t idő-érték /valós tip./;

- /input/ méretűnek deklarált kétdimenziós valós 

tömb, melynek ATJOijp eleme a Krülov-sorozat ^ -edik,

b vektorának i -edik elemét tartalmazza /ahogy a 

KRYLOV szubrutin produkálja/;

- /input/ az A mátrix rendje /гл/ /egész tip./;

- /input/ az A~AI mátrix b vektorhoz tartozó minimál­

polinomjának fokszáma /egész tip./;

- /input/ az A-AI mátrix b-hez tartozó minimálpolinomjá­

nak együtthatóit tartalmazó M -elemű valós tömb;

- /input/ a A spektrum-eltolás értéke /valós tip./;

T

AB
i

N

M

P

SHIFT

XI



- /input/ adott A(b esetén 1-re állitandó be az el­

ső t-vel való hivásnál és > 4 -re a további t-knél 

/egész tip./;

- /output/ a számolt x (1) =r exp (-tA) b 

tartalmazó, (V-elemü valós tömb;

- a KAMLER szubrutin által számolt skálaparaméter; 

értéke megőrzendő azonos A-val és b-vel, de különböző 

t-vel való hívásokhoz /valós tip./;

- legalább 2 M + NGT-elemü valós tömb a KAMLER szubru-

IT

XT vektort

ALFA

SAVE

tin részeredményeinek tárolására; tartalma megőrzendő 

azonos A, b de különböző t melletti hívásokhoz /NGT 

értékére nézve lásd az M.2. pontot/;

- legalább M к- (M + 2. ) + hl G-T elemű valós munka-WORK

tömb; NGT-re vonatkozóan lásd az M.2. pontot.
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M.4. GRETAB; szubrutin ехр(ЬА)Ь paraméterek szerinti

parciális deriváltjainak számítására

Л szubrutin az ) *= 2^, (t, 0O ) vektorokat számolja, ahol

is >1 V és V a 0 paraméter-

ey-p (t A (6)) b

kiszámításra kerül, de ennek meghatározása az ETAB rutinnal

):= (d/99^) exp(-fc A(€>)) b »

vektor elemeinek száma. Kérés esetén isIS

pontosabb. Az alkalmazott módszer a 4.3. pontban tárgyalt mi- 

nimálpolinom-módszer. A szubrutin feltételezi az A-XI mátrix 

/ adott szám/ minimálpolinomjának ismeretét, amely az M.l.

pontban leirt KRYLOV szubrutinnal határozható meg.

Ha a vektorok kiszámítása egynél több t-re is szük­

séges, akkor az IT paraméteren keresztül közölhetjük a szubru­

tinnal, hogy ne ismételje meg az előkészítő /t-től független/ 

szakasz számításait.

A szubrutinnak inputként meg kell adni a 90/90^(6^

t-vel való

hiváskor felülir bizonyos, újabb t-vel való hivásnál is szük-

par-

ciális derivált mátrixokat, melyeket ő az első

séges részeredményekkel.

A szubrutin paraméterei

A SUBROUTINE utasitás a következő:

SUBROUTINE GRETAB (т,А,В,N,NA,IT,IX,XT,ZT,NZT,NPAR,P,M,

,P 2,GRA,MGRA,NGRA,SHIFT,ALFA,WORK,SAVE)*

Az aktuális paraméterek az alábbiaknak megfelelően adandók meg:

- /input/ a t idő-érték /valós tip./

- /input/ legalább -elemű kétdimenziós valós tömb,

melynek hivó szegmensbeli deklarációjában az első index-

T

A
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határ i^A ^ N, és amely N*N-es "bal felső" részében 

tartalmazza az A ■= A (§0) mátrixot;

- /input/ a b vektort tartalmazó N-elemü valós tömb;

- /input/ az A mátrix rendje /egész tip./;

- /input, egész tip./ lásd A;

- /input/ ha a 2t(t) vektorokat az első t-értékre szá­

moltatjuk, akkor IT 1-re állitandó be, későbbi £-kre 

pedig >i-re /egész tip./;

- /input/ ha IX=0, akkor a szubrutin nem nyúl az XT 

tömbhöz; különben XT tartalmazza /kimenetkor/ az * Ct) 

exp(tA)b vektort /egész tip./;

- /output/ IX=0 esetben XT aktuális értéke bármi lehet, 

mert a szubrutin nem használja output céljára; 1X^0 eset­

ben N-elemü valós tömb, mely visszatéréskor a számolt

X (t) vektort tartalmazza;

- /output / kétdimenziós, legalább NHT*NPAR-elemü valós 

tömb, melynek hivó szegmensbeli deklarációjában az első 

indexhatár =N2T^N. Visszatéréskor a 2T(^|IL) tömbelem 

tartalmazza a számolt (-tr) vektor ^ -edik elemét;

- /input, egész tip./ lásd ZT;

- /input/ A(.) paraméterei /változói/ száma /V/ /egész/;

- /input/ az А(§0)~Я1 mátrix minimálpolinomjának együtt­

hatóit tartalmazó M-elemű valós tömb;

- /input/ A (60) minimálpolinomjának fokszáma /egész/;

- a minimálpolinom négyzetének együtthatóit tartalmazó

2M-elemü valós tömb, melynek a szubrutin az első £-vei 

való hiváskor/1Т-i /ad értéket, és ezt uj £-vei való 

hivásnál /1Т > / felhasználja;

В

N

NA

IT

IX

XT

ZT

NZT

NPAR

P

M

P2
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- legalább M GR А * NG-RA * max. ^N(2Mj-elemü, háromdimen­

ziós valós tömb, melynek hivó szegmensbeli deklaráció­

jában az első és második indexhatár rendre = M&RA^N és 

= N(?RA^NPAR. IT=1 esetén bemenetkor a Cj-RA (á ) tömb-

,9A/30^(§O) mátrix

indexű elemét. A GRA tömb IT=1 esetben kimenetkor felül­

íródik a /4.3.3/ képlet szerint számolt Zlx\o) - (0)

v /,
hívásokhoz megőrzendők;

- /input, egész tip./ lásd GRA;

- /input, egész tip./ lásd GRA;

- /input/ értéke а Я spektrum-eltolás /valós tip./;

- IT=1 esetén a hivott KAMLER szubrutin által számolt 

skálaparaméter, mely az IT>1 esetekre megőrzendő /valós/;

- legalább W*(4+ N£T -elemű valós munkatömb; NGT 

értékére nézve lásd az M.2. pontot;

- legalább N* ) + NG-T
hiváskor számolt részeredmények tárolsára, amelyekre IT>1 

esetben is szükség van: NGT értékére vonatkozólag lásd

GRA

elemnek kell tartalmaznia a

<
;
:■

vektorokkal / 6.c/í, . amelyek az IT?1 mellett való'•/

MGRA

NGRA

SHIFT

ALFA

WORK

-elemű valós tömb az IT=1SAVE

az M.2. pontot.
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M.5. A tesztadatokon való futtatás leirása és eredményei

A minimálpolinom-módszer tesztadatokon való kipróbálásá­

hoz egy PRETAB nevű főprogramot irtunk, amely beolvassa az

adatokat, hivja az M.l-4. pontokban ismeretetett szubrutinokat 

és sornyomtatón megjeleníti az eredményeket. Mátrixok és vek­

torok kiírására egy, a SZOTE R-10 számitógépén belövéseknél 

részeredmények nyomtatására alkalmazott MXWRT nevű szubrutint 

használtunk fel, amely a kinyomtatott tömb előtt egy csupa M, 

utána pedig egy csupa W karakterből álló sort ir ki. Az input­

output utasításoknál nem ragaszkodtunk a hivatkozási Fortran 

nyelvhez, és kihasználtuk az R-10-en működő Fortran-reprezen- 

táns által biztosított speciális lehetőségeket is.

A PRETAB főprogram segítségével lehetőség van egymás után 

több feladat megoldására /a program újraindítása nélkül/. Itt 

egy feladat alatt vagy (l) exp(iA)b kiszámítását értjük egy

to+-&.( ... I

Ae fR°'vxu tetszőleges mátrix és b vagy nb számú kivülről meg-

§<»•••» -<»v
/ha 0 /; vagy pedig (2) expíiA) b és paraméterek szerinti 

deriváltjai egyidejű kiszámítását ugyanolyan pontsorozaton, de 

ekkor A csak kompartment-mátrix lehet és \ . A program jelen­

legi verziójában az A mátrix rendje és paramétereinek száma egy­

aránt legfeljebb 9 lehet, de ez a korlát a DIMENSION,EQUIVA­

LENCE és MAX—9 utasítások cseréjével módosítható. A program 

adatait lyukkártyán kell megadni.

£l) e/p(fA)b kiszámításának feladata esetén a megfelelő 

input sorozat a következő:

ekvidisztáns pontsorozaton, aholt = t0 (

egységvektorokat futja beadott vektort, vagy az
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1. Cimke-kártya: tetszőleges 80-karakteres szöveg a feladat

megjelölésére.

NT-= uT0 = 4to>uH= 

vib 12

<^b>2. Adatkártya, formája: Uuuuu

ahol H t t0 F^.^j FS.4 formátummal olvasódik.

3. Mátrix-rend és sor-formátum kártya, formája: N =4*"> ^ >

I

ahol az A mátrix К rendjét 12, a mátrix soraira és az esetle­

ges b vektor/ок/га vonatkozó 'format' input formátumot pedig 

19 A4 formátummal olvassa a program.

4. Az A mátrix sorai /u számú/, mind uj kártyán kezdődően, az 

előzőleg beolvasott 'format' formátumnak megfelelően.

C5.j А Ь vektorok / számú/, mind uj kártyán kezdve, a 'format' 

formátumnak megfelelően. - 0 esetén e tétel kimarad és a

egységvektorokat generálja b gya-program rendre az . 

nánt.
- -h.‘ 4

6. Adatvégjel-kártya, formája: %EOD

(2 ) Ha A kompartment-mátrix, és €*p A) b -n kivül annak pa­

raméterek szerinti parciális deriváltjait is számoltatni akar­

juk, akkor a megadandó input sorozat 1-5. tételei megegyeznek 

a fentivel, de ilyenkor a program a parciális deriváltakat 

csak egyetlen b vektorra számolja /ha п^ФA , akkor az utolsó­

ra/. Az input sorozat további része itt a következő:

^npar>6. Paraméterszám-kártya, formája 

az A mátrix azon paramétereinek száma, amelyek szerinti par-

ahol npar
)

ciális deriváltak számítandók; olvasás formátuma: 13.

7. Sorindex-kártya /kártyák/: az npar számú paraméter, mint

transzportegyüttható, első indexe /0 is lehet, lásd az 5.1. 

pontot/; 2013 formátummal olvasódik.
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8. Oszlopindex-kártya /kártyák/: ugyanúgy adandók meg, mint 

az előbbiek, csak a megfelelő transzportegyütthatók második 

indexére vonatkoznak.

Az utolsó feladat input sorozata után egy /újabb/ adat- 

vég jel-kártya a program futásának szabályos befejeződését 

eredményezi.

A program sornyomtatón megjelenő outputja a következőket

tartalmazza: input adatok, vektor-minimálpolinom együtthatói,

8 ‘b megoldásvektor értékei a megadott pontsorozaton, mátrix-
■с Aminimálpolinom együtthatói, továbbá G b paraméterek szerinti 

parciális deriváltjai /a legutóbbit csak 2 tipusu input ese­

tén/ .

A próbafutás során a következő feladatokat oldottuk meg,

az itt megadott sorrendben.

1. Az 5.4. pontban leirt rekeszmodell egyenletének megoldása 

és annak a 0 ^b' paraméterek szerinti parciális derivált-i I • * * /

jának kiszámítása. Itt

-*
3 0 0 о-9

a24

04=a42

0l"al2

Ü3=a41

^5=a04

0-654 1
b= ésA=

0 0-70 О

9 3 2 -5 О

eA meghatározása, ahol2. Ward Г513 1. sz. teszt-példája:

4 2 0

14 1A=

114

A . +AG t-edik oszlopát G

ahol

nemderogatórius defektiv mátrix, 

kiszámítása utján kapjuk meg /t- ^z. 3 /
и

>

%\
szeged § í'
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д
3. Ward С51Ц 3. sz. teszt-példája: e meghatározása, ahol

-131 19 18

-390 56 54A =

-387 57 52
д

Itt е oszlopait az előzővel azonos módon nyerjük.

E három feladat megoldására a program inputja a követke­

ző volt:

AZ 5.4. PONTBAN MEGADOTT REKESZMODELL EGYENLETEINEK MEGOLDÁSA
NT= 60 T0= 0.0 H= 0.1 
N= 4

1
(4F4.0)

-9 3
-6 5 4

-7
-59 3 2

1
5
1 2 4 4 0
2 4 12 4

WARD l.SZ. TESZT-PELDAJA (NEMDEROGATORIUS DEFEKTIV MATRIX) 
NT= 1 T0= 1.0 H=0.0 
N= 3 (3F3.0)

4 2 0
14 1
114

%EOD
WARD 3.SZ. TESZT-PELDAJA 
NT= 1 T0= 1.0 H= 0.0 
N= 3 (3F5.0)

-131 19 18
-390 56 54
-387 57 52

%EOD 
%EOD

A PRETAB főprogram és az MXWRT mátrixkiiró rutin forrás- 

nyelvi listája, valamint a szerkesztési és futtatási listák 

a következő lapokon találhatók.
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^ETERMINATION OF THE MINIMAL POLYNOMIAL OF AN N-BY-N MATRIX A 
WITH RESPECT TO AN N-BY-K MATRIX 3 BY KRYLOV'S METHOD,

Cc
c

THAT MINIMAL POLYNOMIAL IS THE SMALLEST ORDER POLYNOMIAL PC.) 
SATISFYING P C A)*8 = 0,

C
cc

I Ft 3 IS THE IDENTITY MATRIX THEN THE MATRIX MINIMAL POLYNOMIAL OF A 
dlLL. RESULT

Cc
cc

KRYLOV (N,A,NA#AB,К,SHIFT,P#M,RN,WORK,IW)3J9R0UTINE
C ssssaa
C
C

DIMENSION A(NAfN),AB(N*К,1},P(N),WORK(N#K,tt),IW(N,КJ
C
C

PARAMETERS*Ccc
TWO-DIMENSIONAL REAL ARRAY (N.LE.NA) CONTAINING 
THE MATRIX A
THREE-DIMENSIONAL REAL ARRAY WITH THE THIRD (ACTUAL! 
DIMENSIONING PARAMETER NOT LESS THAN 2*N, AB(I,J,1 
MUST 8£ SET TO THE (I,J) ENTRY OF THE MATRIX В

L) CONTAINS THE L-TH MEMBER OF THE KRYLOV
N. THE OTHER HALF

C A(NA»N) INPUT* 

C A3(N#K#•) INPUT*
C

ccc AN (OUTPUT*
SEQUENCE, A**(L-l) *B, FOR L = 1 
OF ARRAY AS CONTAINS INTERMEDIATE RESULTS.
VALUE OF EIGENVALUE-SHIFT TO BE USED (REAL) 
DEGREE OF THE MINIMAL POLYNOMIAL 
IF BsO THEN MSO IS RETURNED (ANY POLNOMIAL IS 
ANNIHILATING WITH RESPECT TO В
THE FIRST M ELEMENTS ARE THE MINIMAL POLYNOMIAL 
COEFFICIENTS, THE MINIMAL POLYNOMIAL IS GIVEN BY 
X**M ♦ P(M)*X**CM-n +
RESIDUAL NORM, E.G., MAXIMAL MAGNITUDE IN P(A)*B

C » • • • »c
C SHIFT 
C M

INPUT*
OUTPUTS

C
C
C P(N) OUTPUT*c

+ P(2)*X + PU)c • • •
C RN OUTPUT*c
C WOR*;( N» К» «) 
C IW(N#K)

REAL FORKING ARRAY WITH AT LEAST N*K*4 ELEMENTS 
INTEGER WORKING ARRAY WITH AT LEAST N*K ELEMENTScc

DDU3LE PRECISION SUM,AlJ
Cc

IFKN.LE,QfOR,K,LE.O) GO TO «0 
NP1 «NM

C
C FORM KRYLOV'S SEQUENCE 

DO 10 L = 1,N 
DO Ю 1=1,N 
DO 10 J=1,K 
SUMsO.DO 
DO 11 IJ = 1# N 
AIJ=ACI,IJ)
IFiClJ.EQ.I) AIJsAjJ-DBLECSHIFT) 

11 3UM?SUMtAIJ*DBLE(AB(IJ,J,L))
10 A3 СI,J,L + l)sSUM

c
C STORE N+l-ST MEMBER OF THE SEQUENCE 

DO 20 1=1,N 
DO 20 J=1,K

20- WORKCI, Jd)*»AÖ(b Jf NP1)
MsN

C
C GAUSSIAN ELIMINATION BY COLUMNS FOR THE DETERMINATION
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C OF! MINIMAL POLYNOMIAL DEGREE# M
C

NK=N*K.
CALL! DECOMP(NK,N,AB,NK,AB(1,1,NPt3,NK,IW#MPt 

WOftK(bböi#WO»K(i,b2))»»
IFlCMPl ,EQ,0) GO TO 50

C
MINIMAL POLYNOMIAL degree « N

MSMP1* 1 
DO 50 1 = 1,N 
DO 50 J = 1,K
rfQRKCl,J,l)=»AB(I,J,Mpn 
IPiCM.NE.O) GO TO SO

c

50*
c
Cl 8*0: any polynomial of a is annihilating hiTH RESPECT то в 

40* MsO
RN«0,0 
ITNOsO 
COND=1,0 
50» TO 99

C
C FIND COEFFICIENTS
C

CALL- XT80LV(NK#M,AB#NK»AB(1,1#NP1)#NK,IW,WORK, P,ITNO#COND 
RN»WORK Cl,1,2),WORK(1,1,53)

50
•t

C
9?' RETURN

END
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P*L*U DECOMPOSITION OF AN M-BY-N RECTANGULAR MATRIX

IF THE RANK OF THE MATRIX IS LESS THAN N AND КО IS THE NUMBER 
DFl THE, FIRST COLUMN THAT LINEARLY DEPENDS ON THE PRECEDING ONES 
THEN ONLY THE FIRST (KO-1) COLUMNS ARE INCLUDED IN THE DECOMPOSITION

DECOMP (M,N,A,MA,UL,MUL,IP,KO,SC#DP)SUBROUTINE

DIMENSION A(MA,N),ULCMUL,N3,IP CM),SC СМ3 
D0U3LE PRECISION DR ,DPCM3

parameters:

input: NUMBER OF ROWS AND COLUMNS, RESP 
OF THE MATRIX TO BE DECOMPOSED

M , N ■ >

TWO-DIMENSIONAL REAL ARRAY (M,LE'.MA1 
CONTAINING THE MATRIX TO BE DECOMPOSED 
TWO-DIMENSIONAL REAL ARRAY (MSEIMÜL) CONTAINING 
THE L*U DECOMPOSITION OF THE 
APPROPRIATELY PERMUTED INPUT 
MATRIX, PLACED - APART FROM 
PERMUTATIONS - ACCORDING TO 
THE FOLLOWING PATTERN:
CMS, N*3)

A С M A, N3 input:
ul(mul,ni output:

UC1,3 
U<2, 3 
UC3,3 
LC«,3 
L (5,3

U(1,2)
U C2,23 
L(3,2)
LC4,23 
L CS,23

INTEGER ARRAY DESCRIBING THE PERMUTATION MATRIX P 
OF THE P*L*U DECOMPOSITION
EITHER ZERO OR THE NUMBER OF THE FIRST COLUMN 
FOUND TO BE LINEARLY DEPENDENT ON THE PRECEDING ONES 
REAL AND DOUBLE PRECISION WORKING ARRAYS, RESP.

UCl, 1) 
L(2, 1) 
LC3,n 
LC4#l) 
L(5,n

IPCM3 OUTPUT:

OUTPUT:ко
SCCm3,DPCM3

<0 = 0
IFCN,LE.O.OR.M,LE,0) GO TO 100

INITIALIZE IP,UL,SC AND DP 
DO 10 1=1,M 
IPCI)=1
DPCI3=DBLECACI,13)
3IG=0.0 
DO 20 J= 1, N
IFIC3IG.lt, ABSC A (I, J3 ) ) BIG = ABSCA(I, J3 3 
JUliJ)=ACI#J)
IFiCBIG.NE.0,0) BIG=1,/BIG 
SCCI3=BIG

20

10

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING 
<?1=1 

30 <=KP1
<P1=K+1

FIND PIVOT ELEMENT 
31G = 0 » 0 
DO 40 I=K,M 
I3I=IPCI)
SIZEPABSCSNGLCDPCIPI)33 *SC CIPI3 
IFiCSlZE.LE.BIG) GO TO 40 
3IG=SIZE 
IPIV=I 
CONTINUE40



SlZEs3IG+l,0
IFltSlZE.LE.UO) GO TO 90

EXCHANGE
<?31PCIPIV)
IP-(IPIV)=IP£K)
1Р(Ю=КР
J j(«P, K)sSNGL(OPCKP) ) 

GO ТО 51
IFl('1*Lír,N) K0 = KP1
so то íoo

FORvj THE K-TH COUUMN OF L 
00 50 IsKPbH 
IPIpIPCI)
JuClPl#K)=SNGt(DP£IPI)/DP(KP)} 
IFlCК.GC,NO GO ТО 100

51

50

PROCESS THE KP1-TN COLUMN 
00 í>0 Isi, M 
OPiClJsDBLEÍULCbKPl))
00 70 Jsl,K 
JPlsJf1 
IPJsIPCJ)
00 30 I=JP1,H 
I?I = IPCn
OSCIPDsDPCIPD-OBUECULCIPI, J) )*OPCIPJ) 
JUítXPJiKPl)=SNGtCDPCIPJ))
30 то 50

ьо

30
70

ZERO PIVOT FOUND 
90: <3=<

TERMINATE 
00 PETJRN

END
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SOLUTION OF A DECOMPOSED LINEA« ALGEBRAIC SYSTEM BY ITERATIVE REFINElC
C
c

SUBROUTINE ITSOLV (M,N,A*MA,UL,MUL#IP#8#XЛTNO,CQND,RNORM,R,DX)
C s
C
c

DIMENSION ACMA#NbULCMUL»NbIPCMbBCMbXCNbRCMbDXCN)
cc

PARAMETERS:c
c T •
c

NUMBER OF EQUATIONS IN THE SYSTEM, ALU OF WHICH ARI 
INCLUDED IN RESIDUAL NORM COMPUTATION(SEE «RNORM») 
BUT ONLY N OF WHICH TAKE PART IN OTHER COMPUTATION, 
CN.LE.M, SEE PARAMETER * N')
NUMBER of UNKNOWNS IN THE SYSTEM OF EQUATIONS 
REAL TWO-DIMENSIONAL ARRAY CN,LE.M .LE.MA) 
CONTAINING THE M BY N COEFFICIENT MATRIX OF THE SY 
REAL TWO-DIMENSIONAL ARRAY CM.LE.MULJ CONTAINING 
THE PERMUTED TRIANGULAR MATRICES U,L OF THE 
P*L*U DECOMPOSITION OF THE COEFFICIENT MATRIX,
AS PRODUCED BY DECQMP
INTEGER ARRAY DESCRIBING THE PERMUTATION MATRIX P 
OF THE P*L*U DECOMPOSITION OF THE COEFFICIENT MATR 
ONLY THE FIRST N ELEMENTS OF IP ARE USED HERE 
RIGHT-HAND SIDE OF THE SYSTEM 
SOLUTION VECTOR OF THE SYSTEM 
О<1TNQs:THE NUMBER OF ITERATION STEPS TAKEN 
IN CASE OF CONVERGENCE WITHIN ITMAX STEPS, WHERE 
1TMAX IS GIVEN IN THE DATA STATEMENT! OTHERWISE 
ITN0«0 AND -ITNO IS THE NUMBER OF THAT APRROXIMATI 
WITH THE SMALLEST RESIDUAL NORM /IN SUCH A CASE, 
THE NUMBER OF ITERATION STEPS TAKEN IS ITMAX-ITNO, 
BECAUSE THE FIRST -ITNO STEPS ARE REPEATED 
ESTIMATE OF THE CONDITION NUMBER OF THE COEF. MATR 
MAGNITUDE OF THAT EQUATION RESIDUAL WITH MAXIMUM 
ABSOLUTE VALUE 
REAL WORKING ARRAYS

INPUT:C M
ccc
c INPUT:

input:
N
A C MA# N)

ULMULM) INPUT:

c
cc
cc
c

I P C M)c INPUT:
cc

9( M) INPUT:
output:
output:

c
к c м3c

c ITNOc
c
c
cc
c
C COND
C RNORM

output*
OUTPUT:

c
R(M),0X(N)c

c
C BETA RADIX BASE IN FLOATING POINT REPRESENTATION 

ROUNDOFF UNIT OF THE FLOATING POINT REPRESENTATION
on the computer/approximately;
£PSs(1/2)*BETA**(1-ND) WHERE ND:«NO.OF MANTISSA DI 
MAXIMUM NUMBER OF ITERATIONS. A VALUE NOT LESS THA 
2WALOG10Cl/EPS) IS USED

DATA:
DATA:C E 9 3

C
£c ITMAX DATA:
ccc ЗЕТ A,EPS AND ITMAX ARE MACHINE DEPENDENT**** * **
C
c
c

DATA 3ETA,EPS,lTMAX/lb,,ZJB800000,20/ 
EPSsCl/2)*1Ь**(1-6)cc
DOUBLE PRECISION SUM

C
I TEND*ITMAX 
I T N 0*0
CALL. TRS0LVCN,UL,NUL,IP,9,X)

10

c
C SET INITIAL VALUES 

XNORMsO.O 
DO 20 1=1,N

20 KNORMsAMAXHAÖSCXCI)) , XNORM)
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COND«!,0
DXNQRMeXNORM
OXEPS=EPS*XNQRM

с
C COMPJTE RESIDUALS WITH DOUBLE PRECISION ACCUMULATION 

50 RN0RM*0,0
00 50 1=1,M 
SJN=D3LE(3CI))
00 40 J = 1, N

4 0 SjmsSJM-DBLE(A(I,J)0 *03LE(X cJO)
RIsSNGLCSUM)
RMQRM = AMAX 1(ABSC RI0, RNORM)

50 R (I) *R I
IFiilTNQ.EQ.O) GO TO 55 
IFitRNHIN.LE.RNORM) GO TO 60 

55 ITmIN=ITNO 
RNMINsRNORMc

C TEST FDR CONVERGENCE
b0 IPi(DXNORMfLE,DXEPS) GO TO 100

IF(IT NO,EQ.1) C0ND = 3ETA*DXN0RM/0XEPS 
IFl(ITNO,LT,ITEND) GO TO 70 
IFKITNO,EQ.ITMIN) GO TO 99 
I TEND*ITNIN 
SO TO 10

C
70 ITNO*ITNO+1

CALLI TRS0LVCN,UL,MUL,IP,R,DX)
c
C FORM REFINED SOLUTION VECTOR 

OXNORMsO.O 
00 30 I = 1, N 
XI=XtI)
XCl)=XItDX(I)

90 0XN0RM=AMAX1(ABSCX(I)*XI),DXNORM) 
30* TO 30c

C FI NI 3 N
ITNOs’ITMIN
IFf(lTN0,EQ,0) C0ND = 1,E30 
RETURN

99

100
C

END
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}• - . •л.i ■ Г':;

triangular systems solvercc
c

SUBROUTINE TRSOLV CN,UL#NUL,IP,В,X)
c
c

DIMENSION UL(NUL#NbIP(N),BCN),X(M)e
c

parameters:c
c ттттшттш тттштщ

С
input:

C ULiCNUL»N) INPUT:
ORDER OF THE SYSTEM TO BE SOLVED 
TWO-DIMENSIONAL REAL ARRAY CONTAINING A PERMUTED 
L *U DECOMPOSITION OF A NONSINGULAR MATRIX, AS 
PRODUCED BY DECOMp, (N.LE.NULl*,
INTEGER ARRAY CONTAINING THE PERMUTATION OF THE 
L*U DECOMPOSITION 
RIGTH-HAND SIDE OP THE SYSTEM 
SOLUTION VECTOR OF THE SYSTEM

c N

Cc
С I PC N) input:
c

input:
OUTPUT;

c э C N J
X C N )cc

c
THE SUBROUTINE SOLVES THE SYSTEM 
P,L AND U DENOTE PERMUTATION, UNIT LOWER TRIANGULAR 
AND UPPER TRIANGULAR MATRICES GIVEN IN IP AND UL, RESP, 
BY MEANS OF FORWARD SUBSTITUTION FOLLOWED BY SACK 
SUBSTITUTION

P*L*U*X*B, WHEREc M Si T и 0 D :
C тшт mmmm

C
c
cc
c
C FORWARD SUBSTITUTION

IsO
10 1*1+4

IFlCl.ST.N) GO TO 20 
IPIsIP(I)
SUMsB(IPI)
JsQ

30 JsJU
IF|W,GE,n GO TO 40 
SUMsSUM-ULCIPI#J3*XCJ) 
GO TO 30 xdJssuM 
GQi TO 10

4 0

c
C SACK 3U3STITÚTION
c

20 I ai*i
IF:(I#LEf0) RETURN 
I PI si РКП 
SJM=X(I)
Jsl

50 JsJH
I Fii J , GT , N) GO TO 60 
SJMsSJM*UL(IPIiJ)*X(J) 
GO TO 50
xmsSUM/ULCIPl, I)
SO TO 20

60

c
END
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COMPUTATION OF EXP(T* A) WHERE A IS A COMPANION MATRIX BY KAMMLER'S METHt

KAMUER CM,B,T,IT,EBT,MEBT,ALFA,BB,E,GTl,GT2)3JBR0JTINE

DIMENSION 8CM),EBTCMEBT,M) ,8B(M) , E CM) , GT К 1 b GT2 U )

PARAMETERS:
тттшттшфтщтшттшштттщ

INPUT: ORDER OF THE COMPANION MATRIX A
INPUT: COEFFICIENTS OF THE

CHARACTERISTIC POLYNOMIAL 
OF A WHICH OCCUR WITH 
OPPOSITE SIGN IN A AS IN 
THE FOLLOWING PATTERN/M=4/: -0(1) -BCR) -B(3) -B(4)

INPUT: TIME-VALUE FOR WHICH EXP(T*A) IS TO BE COMPUTED
INPUT: INTEGER PARAMETER CONTRQLlNG PROGRAM FLOW

IF IT<1 ONLY COMPUTATIONS INDEPENDENT OF T ARE DONE; 
IF IT>1 THE ABOVE ARE ASSUMED AND ONLY THE SUBSEQUÉN 

COMPUTATIONS ARE DONE.
AT FIRST CALL (WITH A NEW COMPANION MATRIX)
IT SHOULD NORMALLY BE SET TO 1 

OUTPUT, IF IT«=1, INPUT, IF IT>1 : SCALE PARAMETER
TWO-DIMENSIONAL REAL ARRAY (MERT.GE.M) CONTAINING 
THE MATRIX EXP(T*A) IN THE RELEVANT PART

M
B( M)

01 00
1 000

0 0 10

T
IT

AU-iA
DAS'LDAS+L) OUTPUT:

BBC M) 
ECM) 
Gil (.)

AUXILIARY REAL VECTOR TO SAVE SCALED COEFFICIENTS 
REAL WORKING ARRAY
AUXILIARY REAL ARRAY TO SAVE TAYLOR SERIES
coefficients, gti must have at least m+ngt
ELEMENTS, WHERE NGT IS MACHINE DEPENDENT AND IS 
GIVEN IN A DATA STATEMENT OF THE PRESENT ROUTINE 
REAL WORKING ARRAY WITH AT LEAST H+NGT ELEMENTSGT2(,)

DATA BETA,NGT/1b,,10/

MACHINE-BASE(RADIX) OF FLOATING POINT ARITHMETIC 
THE SMALLEST INTEGER SATISFYING

BETA DATA:
DATA:NGT

FACTQRIALCNGT) > P*BETA**NDIGIT 
WHERE NDIGIT IS THE NUMBER OF MANTISSA DIGITS IN THE 
FLOATING POINT REPRESENTATION OF THE MACHINE

DOUBLE PRECISION SUM 
REAL! LN2
DATA LN2/Q, 693 147 ISO 559 945/

Ш.ЧМ) 900,1 10,1 
MPlsM+l 
MPNGT sM + NGT 
IFi(IT.GT.t) GO TO 50

1

DETERMINE ALFA,B8 
ALFA=1,0 
SO TO 11 
ALFA=ALFA*BETA 
33NORM=0*0
6 V — 1 * 0
DO 20 J=1,M 
J 3 ®M P1-J 
3C=SC*ALFA

10
1 1



33CJB)=8CJ8)/SC 
38N3RMs8BN0RM+ABSCBB(J8)) 
IFSC38N0RM.GT fi ,0} GO Tü 10 
CONTINUEго

GENERATE TAYLOR SERIES COEFFICIENTS GÍM) 
AND STORE THEM AS GCM + K-1)=:GTl(К), K = 1 

SiTlCDal.O

,G(2*M+NGT~1} 
M + NGT

, • • • 
I •••!

K = 1
3 0 К а К + 1

I FiC К , GT „ MPNGT) GO TO 49 
SjMaO,DO 
<3 = K
DO 40 J = 1,M 
J3=MP1»J 
<3 = KBM
IFiCKB.LE.O) go TO 41

40 SjMsSyn.DBLECB8CJB))*DBLECGTl(KB))
41 3TKKÍSSUM 

30 TO 30

4? IFi(IT) 900,900,50

COMPJTATIONS INVOLVING T

DETERMINE N 
50 AT=ALFA*T 

SC=A8SCAT)
N a 0-
IFlCSC, LE,1,0) GO TO 60 
NsIFIX(AL0G(SC)/LN2)+l 
AT=AT/FL0AT(2**N)

FORM POWER SERIES TERMS IN GT2C.) 
3T2(K+1)=AT**K/Ki , M+NGT-1K = 0, 1 f • • m t

60 ЗТ2СПаЬ0
DO 61 KP1=2,MPNGT 
.<ак Pl * 1

Ы 3T2(KP1)=AT*GT2(K)/FL0AT(K)

COMPOTE LAST COLUMN OF EXP(AT*A) AND STORE IT IN E 
00 70 1=1,M 
3JM=0,D0 
<1=NGT+I 
<2=MPNGT
3UM=SUM+DBLE(GT1CK1))*DBLE(GT2(K2))
< I = К Д * 1
< 2 = К 2 * 1
IF С К1) 70,70,71 
EU) =SUM

71

70

< = 0
90 < = K + 1

IF!(K,LE,N,0R,ALFA,E9,1 ,0) GO TO 90

RESCALE e 
J3 = Msc = 1 • о
J3=JB«1
IF(JB,LE,0) go TO 90 
SC=SC*ALFA 
Ei( J3) =E(JB)/SC 
80 TO 81

31

A3PLT THOMPSON'S RELATIONS



90 30 91 1 = 1,М 
ЗТ2(I)=ВВ(I)
IFIК,GT,N) GT2(n=8(n

91 EQTCI,M)=ECI)

ja=H 
J 3 = J В щ 1
I Fit J8, LE „ 0) GO TO 94 
00 93 1=1,JB
E3T(I#JB)=EBT(I+l,J8+l)+GT2(JB+l)*E(I) 
30 TO 92

92

93

94. 1 = 1
95 I Ml = 1 

1 = 1*1
IFlCl.GT.MJ GO TO 99
J = 1
E8T (1 f 1)=*"GT2C1)*E(IM1)
JM1=J 
J = J*1
IFlCJ.GE.I) GO TO 95
E3TCI,jjsEBTÍIMl,JM1)-GT2(J)*EC141)
30 TO 9b

9b

IFi 4 = 0 40 SQUARING IS REQUIRED 
IFi(K,GT,N) GO TO 90099

squaring

00 100 1=1,M 
SjMsO.DO
oo loi j=i,m
SJN=SUM+DBIE(EBTCI,J))*DBLECEBT(J,M)) 
E(I)=SUM 
30 TO 80

01
00

SOLVE! THE MATRIX EXPONENTIAL PROBLEM FOR M=1 
IFfClT.GE.13 EBT(l,l)=£XPOB(l)*T)10

TERMINATE 
00 RETURN

END



3J8RQUTINE ETAS 
ss”

С
С
Сс
С COMPUTES ХТ = ЕХР(?*А)*В, INHERE A IS SQUARE MATRIX AND В IS A COLUMN VECTO
C
c
c

SUBROUTINE ETAS (T#A8#N,M#P,SHIFT#IT,XT#ALFA,SAVE,WORK)
c
c

DIMENSION A8(N#M),PCM),XT(N)fSAVECM,l)#WOPKCM#i)c
c

PI ARAMETERSsc
c
c

INPUT; TIME-VALUEC* T
C

ORDER OF MATRIX AINPUT;
INPUT:

C N
C

ORDER OF THE MINIMAL (OR ANNIHILATING) POLYNOMIAL 
OF THE MATRIX A WITH RESPECT TO THE VECTOR В

C M
C
c

A3(N#M) MATRIX FORMED BY THE KRYLOV SEQUENCE OF COLUMN 
VECTORS B, A*9, A**2*8,

INPUT:c
# A**(M-1)*Bc 9 • •

c
VECTOR OF MINIMAL (OR ANNIHILITINS) POLYNOMIAL 
COEFFICIENTS# WHERE THE CORRESPONDING POLYNOMIAL 
IS X**M+P(M)*X**(M-l)+.,.+P(2)*X*P(l)

C P(M) INPUT;
Ccc

EIGENVALUE-SHIFT THAT HAS BEEN PERFORMED BEFORE 
THE COMPUTATION OF THE MINIMAL POLYNOMIAL. 
(SHOULD BE' SET TO ZERO IF NOT USED)

INPUT:SHIFTc
c
cc

INTEGER; SHOULD 8E SET TO 1 AT FIRST CALL AND 
GREATER THAN 1 AT SUBSEQUENT CALLS WITH THE SAME 
MATRIX A

INPUT;ITc
Cc
c

OUTPUT: REAL ARRAY CONTAINING EPX(T*A)*B ON EXITC XT(N)c
OUTPUT: IF IT«=1# INPUT# IF IT>1 ; SCALING PARAMETER

REAL SAVE ARRAY WITH AT LEAST 2*M+NGT ELEMENTS 
WHERE THE VALUE OF NGT IS GIVEN IN A DATA 
STATEMENT OF SUBROUTINE »KAMLER*

***** IN THE PRESENT VERSION NGT=12 *****
REAL WORKING ARRAY WITH AT LEAST M*(M+2)+NGT 
ELEMENTS. FOR THE ACTUAL VALUE OF NGT# SEE THE 
SUBROUTINE «KAHLER

AL"'A

SAVEXM# .)

cc
c
cc
c
c w О R К ( M #,)
c

Ic
cc

double- precision sumc
c

I Fs( N # LE , 0) GO TO 99

C COMPUTE THE EXPONENTIAL OF THE COMPANION MATRIX 
C Ofi THE POLYNOMIAL P BY KAMMLER’S METHOD

C

c
CALL KAMLER

* (M# p# T # IT, WORK# M, ALFA# SAVE »WORK a, H+U# SAVE (1,2), WORK tl,^)) % 

M 3 T IT E8T HEBT ALFA BB
-s' B-C SZEgBD g —кGT2WST Ic e

c
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C FORM ЕХР(Т*А)*В
С

*TSsEXP(T*SHIFT) 
)Э 20 1*1,N 
3JM=0.00
JsO

10 JsJtl
IFiCj.ST.M) GO TO 20
3jMsSUM*DBlE(wQRK(l,J))*DBUE(AÖÍI, 0)) 
$0 TO 10

20< XTCDsSUMaETS
c

99 RETURN
ENO
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subroutine gretabcc ssssss
C
C COMPUTES THE GRADIENT ZT OF XT=EXPCT*A)*B WITH RESPECT TO A PARAMETER V 
C U?DN WHICH THE N BY N MATRIX A DEPENDS, XT IS ALSO COMPUTED ON REQUEST I

‘1Ccc
SUBROUTINE GRETAS CT,A,8#N,NA,IT,IX,XT,ZT,NZT,NPAR,P,M,P2

,GRA,MGRA,NGRA,SHI FT,ALFA,WORK,SAVE)»cc
DIMENSION ACNA,N),B(NbXT(N),ZT(NZT,NPAR),P(M),P2(1) 

,GRA(MGRA,NGRA,1) ,WORK(N,1),SAVECN,1)r
C
C
C »ARAMETERSi
Cc
Ct T INPUT: TIME-VALUE

INPUTS ORDER OF MATRIX A
INPUT: TWO-DIMENSIONAL REAL array (N.LE.NA) containing 

THE MATRIX a
INPUT: QNE-DIMENSIONAL REAL array containing THE VECTOR в 
INPUT: CONTROL PARAMETER (INTEGER)-(SEE BELOW)
INPUT: FOR IX*0 XT SHOULD NOT BE COMPUTED

OUTPUT: XT = EXP(T*A)*B, PROVIDED IT>M AND IX'.NE.O
INPUT; NUMBER OF PARAMETERS OF* THE MATRIX A 

OUTPUT: TWO-DIMENSIONAL REAL* ARRAY (N.LE.NZT). ON EXIT THE
K*TH COLUMN OF ZT CONTAINS THE PARTIAL DERIVATIVE 
VECTOR OF XT WITH RESPECT TO THE K-TH PARAMETER,
K = l,

INPUT: value of eigenvalue-shift to be used in COMPUTATIO

c N
A(N A,N)cc

C 3 ( N)c ITc IX
C XT
C NPAR
C 2TInZT»NPAR)ccc NPAR• f • 9
C SHIFT
C

INPUT? DEGREE OF THE MINIMAL COR ANNIHILATING) POLYNOMIAL 
OF THE MATRIX A

INPUT: MINIMAL POLYNOMIAL COEFFICIENTS
OUTPUT, IF IT«=1, INPUT, IF IT»l, REAL ARRAY WITH AT LEAST 

2*M ELEMENTS TO STORE THE COEFFICIENTS OF THE 
SQUARED MINIMAL POLYNOMIAL *

C GR A(MGR A,NGRA,,) INPUT: THREE-DIMENSIONAL REAL ARRAY WITH N,LE,MG
NPAR.lE.NGRA AND WITH THE THIRD ACTUAL DIMEMENSIONG 
PARAMETER NOT LESS THAN MAX(N,2*M). ON ENTRY GRA(I,$ 
SHOULD CONTAIN THE PARTIAL DERIVATIVE OF A(I,J) WITH 
RESPECT TO THE K-TH PARAMETER, THE INPUT MATRIX IS 
OVERWRITTEN BY AUXILIARY QUANTITIES NEEDED SUBSEBUEN 

OUTPUT: IF IT«=1, INPUT, IF IT>1 » SCALING PARAMETER

C M
c
C« PCM) 

P2(.)ccc
cccce
c; Ai^piA

c WORK(N,»)
C

WORKING AREA WITH AT LEAST N* U*N + 4)+NGT ELEMENTS, 
WHERE THE ACTUAL VALUE OF NGT IS GIVEN IN SUBROUTI 
’KAMLER'
IN THE PRESENT PROGRAM, NGT=12 
AUXILIARY REAL ARRAY WITH AT LEAST N* (2*M + íl) +NGT 
ELEMENTS TO SAVE RESULTS OF THE FIRST CALL CIT««1) 
NEEDED ON LATER CALLS WITH DIFFERENT T CITM)

Ccc ***** *****
SAVECN,,)Ccccc

DOUBLE PRECISION SUM,AlLcc
IFi(N.LE.O) GO TO 99 
M2*MtM
IFKIT,GT,l) GO TO 50 

M2.SM + M
c
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Cl <RYLOV»S SEQUENCE IN SAVE

I Fi( M * LE * 0 ) GO TO 51 
00 20 Jel,М2 
00 20 Irl,N 
IF(J,NE,1) GO TO 10 
SAV£<(I,n=öCn 
so TO 20

c

c to SJM?0,00 
og 19 U=1#N 
4IL=A(I,L)
I F;tL« E3f I) AlUsAlL*OBLEtSHlFT) 
5UMsSUM+AIl*08UÉ(SAVE(t#J*l)) 
3AV?C J, JJsSUM 
CONTINUE

19

20c
C FORM COEFFICIENTS OF SQUARED MINIMAL POLYNOMIAL IN P2
C

00 50 Кг 11 М2 
SUMsO.OO
1=0
I3*K
IFfClG.LE.HO GO TO 31 
I*K«M
SjMs2e00*0BLE(P(D)
I3 = M

31 J = K.-I 
I«*M
IPsCl.3T.IG0 GO TO 30 
SJMsSUM+D8LE(PCI))*03lE(P(U)) 
SO TO 31 

30 32 C KÍ =SUMc
C SET INITIAL CONDITIONS FOR HIGHER ORDER DERIVATIVES
c

00 ao Кг 11NPARc
C COPY 3RA( К,,) INTO WORK(•,«) 7 ZERO GRA( K,i)* #• •

00 41 IebN 
00 42 J = 1,N 
WORKCI,J)*GRA£I,K,J) 
3RAU,K,1)=0,0

42
«1

C
00 40 Js2,M2
JMlsJ-1
00 44 Iг 1,N
SUMeO.OO
oo 45 Lsl,N
AIL»A(I,L)
IFiC^EO.I) AILsAIL*D3LE(SHIFT)
SJMsSjM + AIL*DBlECeRA(L#K, JMD)

45 3JMsSg4+DBLE(N0RKCX#H)*DBLE(8AVEU, JM1))
44 SRACliK,J)=SUM 
40 CONTINUE

C PARTIAL DERIVATIVE MATRICES IN GRA ARE OVERWRITTEN NOW
Cc
C FORM THE. EXPONENTIAL OF THE COMPANION MATRIX OF THE SQUARED MINIMAL 
C polynomial^ IN WORK USING KAMMLER'S METHODccc KAMlER *«•■>> ( M В T IT E3T MEBT ALFA

50 CALL! KAMLERСМ2/P2,T,IT#WORK,2*N,ALFA,SAVE(1#M2+1),WORK£b«*N+l)
,SAVECl,M2+3),WORK£l,4*N+3))

8B E
C

,
SZOV Nyomda 78.2462



с
)с GT1 GT2I

С
С
С COMPUTE 1Т AND OPTIONALLY XT
С

IFCIT.LE.O) SO TO 99 
EITS = EXP(T*SHIFT)
DQ bO 1 = 1,N 
IFi(IX#EQf0) SO TO fal

51

C
SOHsO f DO
J = Q

6 2, J=JH
IFÍJ.ST.M2J SO TO 63
$UM*SOM*DBLECWORKC1,2*J«-1)3*DBLEC5AVECI,U3) 
so TO 62

65 XTCU =SUM*ETS
c

fa 1 DO fa« K = i,NPAR 
SOMsO.DO
J*0

65* J = JM
IPi(J,GT,N2) GO TO 64
SJM*SU4fDBLC<WORK(l,2*J*1)3*DBLEC®«ACI,K,J3) 
30 TO fa5

64 ZTCI#K)=SUM*ETS 
60 CONTINUE 
99 RETURN

C
end

SZOV Nyomda 78,2462



( .í ■■ . н í :» , ;* ."í'‘ ■ é£ ? 'MATRIX WRITING ROUTINEСс
SUBROUTINE MXWRT (NAME,MATRIX,MQIM,М#N)

is:::
DOUBLE PRECISION NAME
DIMENSION MATRXXClbROWC10)#IROHCSObF9020Ca)
EOUIVALENCE(ROW(l),I ROWCl))
DATA KOEZ/2H /,F1,F2,F3,F4/<IH1,3X,0H2#2X, 4H3, IX,«H« 

DATA F9020/32H

C

/
C * 0 *f U(A6#(/*#I2#2X# 2X )) /

C
PRINT 900 
FORMAT C/66C'MM')) 
IF'(MOIMfLE,OJ GO TO 1 
REAL CASE

9f 0

c
Xfc-2
INCR=2*MDIM 
NRslO 
sg TO 2 
INTEGER CASEC

i <3-1
INCRb»MOIH 
NR = 20
LOOP: FOR COLUMNS
J2 = 0
J1*J2M
IFI(JI.ST.N) GO TO 9 
J2 = J2<-NR

C
2
5

c
IFitj2,GT,N) J2=N 

IF!CK.EQ,2) GO TO 200 
PRINT 90 1 0,NAME 
FORMAT(* 0'# Ab# ' : ' )
IFUJ3,GT,1) PRINT 90100»(JfJ«Jl,J2) 

901000FORMAT(’ + 1,9X,20 CIS,', »)) 
IF!(J2,GT,1) PRINT 9011 

9011 FORMAT('•
30 TO 100 

2öö F|9D20(6)sF1
IFKJ2,LE,9) GO TO 201 
Fs9020(b)sF3
I-ICJ2.LE.99) F9020Cb)sF2 
lFtCJ2.SE, 1000) F9020Cb)=F4 

201 WRITE*106»F9Q20)CNAME,J»JsJl,J2) 
PRINT 9021,(KDEZ,JsJl,J2)

9ft21 FORMAT C10 (А2» '............. ',SX)J

9010.

Фш * )mm- m m m

C
c LDOP FOR ROWS 

DO* 10 1 = 1,M100
c

LOOP FOR ELEMENTS 
JR = 0
DO a J s J11 J2 
L2=Cj-l)#rINCR + K*I 
Ll:L2 + l<»K 
DO 5 L=L1,L2 
JRsjR+i
I.ROWt JR)sMATRIX(L) 
CONTINUE

C

5
4
C

JDbJ2*J1+1 
IFiCK.EQ.2) GO то b 
INTEGER CASE
3 ЯI N T 90bCIROWCJ),Jsl,JD) 
FDRMATC10X,20Ib)
IFlCM,6T,n PRINT 9001,1

c

SZÜV Nyomda 78.2462



FORMATC',»)
30 ТО 10 
*EAU: CASE
3RINT 902, CROM C J) # 0=1, JD) 
FORMAT(IX,10613,6)
continue
IFí£N,GT,NR) PRINT 903 
FORMAT (66( ■ 1 ) )
30 TO 3

c
b
9Í2
lé
9é3

с
*RINT 909
FORMAT C/febC’WW')/) 
RETURN

9
9ö9

ENO

SZOV Nyomda 78,2462



VIAIN PRETAB

DIMENSION FORMA (19)

0 DIMENSION AC9,9bBC9),ABC9,9,2)#P(9),P2C9,2bXTC9bZTC9,9)
1,3RA(9,9,18),AA(9,9,18),WORKl(9,4),lWl(9),SAVE2(4,4),WnRK2C9,9,2) 
2, WQRK3 C 9,9, a) , 1*3(9,9) , W0RK4 !9,9,5),SAVE4(9,9,3) , AIAU)
3# ПС9)# JJC9)

0 EQUIVALENCE CXT(1),IW 1 С 1)), (ZTС l r1),I*3 СЫ))
1, CSRA(bl#lbAA(l,bl),AIACn), CSAVE2(1,1),SAVE4C1,1,1)) 
2 , C WORK 1 С1#1)»W0RK2C1,1,1), WORKS (l,l#i), WORM (1, 1,D)

equivalence table
WORK 1(N,4) 
W0RK2(N,N,1 
W0RK3(N,M 
W0RK4(N,N,2

KRVlOVIi IW1CN) 
ET A3 : XT(N)
KRYlOV2:
знетаз ;

SAVE2(N,4)
IW3 CN» N)

XT(N) ZT(N,NPAR)
AACN,N,2*N)
GRA(N,NPAR,2*N) SAVE4(N,N,3)

DATA SHIFT/0,0/

M A X s 9 
M3T=12

THE VALUES of max AND (2*MAX) OCCUR IN THE DIMENSION STATEMENT ABOVE 
AND 3QTH STATEMENTS (DIM„AND MAX= ) MAY BE CHANGED CORRESPONDINGLY

HOWEVER# NGT,LE.2*MAX AND NGT,LE„MAX *CMAX-4) MUST HOLD, WHERE THE VALUE 
OF| NST SHOULD NOT LESS THAN THAT IN SUBROUTINE KAMLER (DATA STATEMENT)

FURTHERMORE, MAX,GE,2 MUST ALSO BE FULFILLED 

MAX,GE,b SHOULD BE SATISFIEDWITH NGT=12,

IF|(NGT,GT.2«MAX,0R,NGT,GT, (MAX-4)*MAX) STOP

LABEL' CARD INPUT

READ(105,905,END=9999) FQRMl,FORMA 
FORMAT( 2 0 A 4)
WRITE!108,90S) F0RM1,FORMA 
FORMAT!•1 *,20A4/)

iO

I

CONTROL PARAMETER INPUT

READ 907,NT,T0,H,NB
FORMAT(«NTs',13, » T0s',F4el,' H=»,F8.4,5X,I 2) 

PRINT 910*NT,TQ*H,NB
FORMAT(,0NT*,,|3,’ T0='rF4,l,* H=',F8.4,' NB=',I2) 

MATRIX ORDER AND ROW FORMAT INPUT

READ 906,N,FORMA 
FPRMAT('N=',12,19A4) 
PRINT 909,N,FORMA 
FORMAT! <0N=‘,I2,19A4)I



** N,L£.MAX mm hold *** 
X F{СN * ST , MAX) STOP

ATRIX INPUT

DO 100 1 = 1,N
READUQ5,FORMA) ( A (I, J) , J= 1, M) 
WR1TEU08,FORMA) ( А С I, J) , Ja 1 , N ) 
PRIST 900 
FORMAT! »0*' , 65 C '

CALL MXWRTC6H A 
M3 = N3
I Fl( S3.» LE» 0) MB = S

'))m ш
, A,MAX,N,N)

DO 1 13*1,MB 
IFKNa.LE.O) GO TO 102

READ VECTOR 8
READC105,FORMA) CBCI),I=1,N) 
SO TO 101

CHOOSE NATURAL USIT VECTORS FOR 8

DO 1010 1=1,S 
0 3Cl)=0»0

3(I8)el,0

NTlsNTtl
IFI(ST,LE,1) NT1=NT 

IFI Clá.GT.l) PRIST 901 
FORMAT (»14 
CALM MXWRTC6H a 

DO 1 JTsbSTl 
IT=JT*1

lFi(ST,LE.l) IT = NT 
T=TO+FLOAT(IT)*H 

IFICST.lE.I) t = to 
Ir!(JT,3T,l) GO TO 600

,8,1,1,N)

***************************************************************************

DETERMINATION OF THE MINIMAL POLYNOMIAL OF A WITH RESPECT TO THE VECTOR В
USING KRYLOV'S METHOD

DO 50 0 I = 11N 
A3(1,1*1)=B(I)
CALL1 KRYLOV(N,A,MAX,AB,1,SHIFT,P,H,RN,tfORKi,!W I)

00

***************************************************************************

,P,l,t,M)CALL MXWRH6H P

***************************************************************************

COMPUTATION OF XT=EXP(T*A)*8

í CALL' ETABCT, A8,N,M, P, SHIFT, JT, XT, ALFA, SAVE2,«V0RK2)00



************************* **************************************************

IFKJT.GT.I) GO TU 200 
UH *1
IFI (MT.LE.n Ll=0 
PRINT 920,11#CJ,Jsl,N) 
FORMAT С11,» IT*,5X,'TIME 

PRINT 921 
FORMATC66C ' — '))

',9(SX,»X'fIl#6X))

PRINT 922#IT#T,CXTCJ)#J=1,N)
F0RMATÍI4,F11.4,9Gl3eb)
CONTINUE

***************************************************************************

DETERMINATION OF THE MINIMAL POLYNOMIAL OF A BY THE MATRIX KRYLOV METHOD

PJT THE N-8Y-N IDENTITY MATRIX INTO THE FIST N*N LOCATIONS OF THE 
ARRAY 'AA I

NIN=N* N
00 700 1=1,NN
AIA(I)=0.0
NP1=N*1
03 710 J=1,NN#NP1 
AIA CJ)=1,0

00

10

L KRYLOV’S METHOD

CALL! KRYLQVCN,A,MAX,AA#N,SHIFT,P,M,RN,WORK3,IW3)

***************************************************************************

CALL MXWRTC6H PCA) ,P#1,1,M) 
PRINT 921

INPUT COMPARTMENT MATRIX PARAMETER STRUCTURE

READC1Q5,904,END=1000) NPAR 
FORMAT C 2013)
PRINT 903# NPAR 
FORMAT С I 1 NPAR?',12/)

** N3AR#L£.MAX MUST HOLD *** 
IFiCNPAR, GT.MAX) STOP 

READ(1 05,904) (11 СIЫsi,NPAR) 
PRINT 904,(11(1),Isl,NPAR)
READ(105,904) CJJ(J),Jsl,NPAR) 
PRINT 904,(JJ(J),J=1,NPAR)

SET PARTIAL DERIVATIVE MATRICES 
00 300 K=1,NPAR 
00 301 Isi,N 
00 301 Jsl,N 
SRACbK, J)=0,0 
I < = 11 ( К )
J < = J J С К )
SRAtJK,K,JK)=-1,0
I F l( I К « N E f 0) GRACIK,K, JK)?1,0
CONTINUE



LOOP FOR TIME VALUES 
03 3 JT=1,NT1 
JT=JT-1
ifknt.le.u it=nt
T=TQ+FLQATCIT)*H 
IPKNT,LE , 1J T?T0

***************************************************************************

COMPUTATION OF THE GRADIENT, ZT, OF XT=EXP(T*AJ*8

CALL GRETA3CT,A,B,N,MAX,JT,1,XT,ZT,MAX,NPAR,P,M,P2 
,GRA,MAX,MAX,SHIFT,ALFA,WORK«,SAVE4)I

***************************************************************************

I FtC J T , ST, 1) GO TO 30 
PRINT 930,CJ,J=1,N) 
FORMAT( 1 1 IT»,5X,'TIME 
PRINT 921

I ,9 С 5X,'Y',11,ЬХ))

PRINT 922, IT,T,CXTCJ),J=1,N) 
PRINT 931 
DO 33 Kje 1 , NP AR 
PRINT 933,K, (ZTCJ,K),J=1,N) 
FORMAT C 1 
PRINT 931 
FORMATClX)
CONTINUE

D 1,II, I :»,ax,9Gi3.6)

30 TO 1000

9 STOP
END



IXJQ8 'UXNKD 
/ Q / 0 /12, /59

ХС/318/COPY# UU.30# (PRETAB) 
BI3 0003

6C36 6012 3544

XC/LINKD/3L# ÜU SG,CL#FR#(PRETAB) 
LINKD 0060

6CB6 6036 83C'4 V ■■l

*** SEGMENT RELOCATION TABLE *** 
FjCOS 

RET A3
1 PRETA3 

IF I INI
2 F; IN И
3 F;3TP
4 F;STPN 

LF: R3£i
5 FsREW
6 F j 3KS3i
7 F:EMD"I 

LF: RE C'
8 FjRECa 

LF l RDF!
9 f:rof

L F: 10
10 F;I3 

LFsFIO
11 FiFIO 

LF: NRFi
12 F;NRF

XWRT 
15 MXWRT 

LOSCIR
14 FSCVIR

RYLOY
15 KRYLOV

0000 
0124 
298C 
5 2 A6 
32C0 
3 2C4 
32F8 
5302 
5312 
3344 
3354 
ЗЗВЬ 
333A 
33E4 
33EÖ 
33EE 
3406 
3490 
3494 
3 4 AO 
34 A4 
34 A A 
35A4 
333E 
33C4 
3 8F6 
3 9 A 2 
3CC4 
3034 
3E96 
3E9A
3 EA 2 
3FA 4
4 4 F A 
4503 
4Ы2 
4653 
4 6 7 A 
469 A 
4794 
5482 
548E 
54CC 
54E6 
54F A 
551E 
5522 
553 E 
555C 
5562 
55 7 6 
557C 
5590 
5594 
559C

ТАЗ
16 E T A3 

LOSQPR
17 FJOPPR

RETA3
18 GRETA3 

LF: ES
19 FíÜENR
20 FíFESlR 

LF: £RF|
21 FiERFO 

LFíESF,
22 F:ESF
23 F:OEC I
24 FjSABU
25 F : I \|Эц,|
26 F SI MC N
27 F:TA3 

LF:ESC
28 F:GETCi
29 F;PUTCi 

LOSLOPi
30 F:LOOP! 

L03 30 Pi
31 F:STDPI 

LOSCRO
32 F:CVR9 

LOSFSJ

\



33 F:qfsJ 
XLDS

34 F:dfmj 
dfa^ds

35 F;DFAD 
LDSCDR

3b FiCVD« 
ECOHP

37 0£С0ИЭ
TSULV

38 ITSQUV
AHLEP

39 KAHlEP 
LOSEXPi

55a2
55C2
55F0
576E
5774
5786
578A
5 7 8E 
5833 
53C6 
5C93 
5F12 
6003 
6540 
659C 
66E4 
66EA 
673C 
6740 
674C 
6753 
6340 
684 A 
63E8 
6SEC 
68F A 
63FE 
6920 
6924 
6928 
693C 
6A6C 
6AC0 
6C02 
6C0C 
6C2£.
6 C 7 6 
603A 
6p3E 
608E 
60AC 
6E54 
6E9E 
6F3 6 
6F50 
6F54

40 EXP
LOQVFO

41 FlOVFO 
OFCOH

42 DFSF4C 
LOFASJ

43 FAOFSJ 
LOSMO

44 DNÜRH 
LOSA3 3

45 A3S
LOSCHP

46 F:CHPR 
LÜSNGl

47 SSIGL 
OVLOS

48 F;OFDV
RSDLV

49 TRSQL V 
LOS 1 R

50 AHAX1 
LOSLOG

51 AL03 
LDSCRI

52 FíCVRl 
VELOS

53 FiEXIX 
LFjcRR

54 FjERR
55 DEBUG

LUS
56 USERR

*** LIST OF СОННОМ UTILISER * **

UNSATISFIED REFERENCES #**ft**

*** LIST OF СОННОМ SP CALLED *** 
MIEXIT
h: 10
MiWAlT 
M S ŐMHX
m: bmoci 
HSMOVEI 
Mj A3RT
h:imdi 
H: Flo 3! v ■

szc
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х<ШZ9fS'SL сршоЛм ACIZS ~Ь

TIMEt.1
5.6000 0.000000
6.1000 0.146078 
Ő.2O0Q 0,155020 
0,3000 0.158042 
1,4000 0,122329 
1,5000 0.111314 
0,6000 0.103568 
0,7900
4.8000 
0,9000 
1,0000 
t,1000 
1,2000
1.3000
1.4000
1.5000 
1,6000
1.7000
1.8000
1.9000 
2,0000
2.1000 
2,2000
2.3000
2.4000
2.5000 
2,6000
2.7000
2.3000
2.9000 
3,0000
3.1000
3.2000
3.3000
3.4000
3.5000
3.6000
3.7000
3.8000
3.9000 
4,0000
4.1000
4.2000
4.3000
4.4000
4.5000
4.6000
4.7000
4.3000
4.9000 
5,0000
5.1000
5.2000
5.3000
5.4000
5.5000
5.6000
5.7000
5.8000
5.9000 
6,0000

X 4 XX2XI X3IT

0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0.000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0.000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 
0,000000 

,954689E"01 0,000000 
,9Q7754E"01 0.000000 
.8631 UE-01 0,000000 
,82Q743E-01 0,000000 
.780419£*01 0.000000 
,742Q51E-01 0,000000 
.705613E-01 0,000000 
.670931E-01 0,000000 
,637972E"01 0,000000 
f 606656E»01 0,000000 
,S7b810E«01 0,000000 
.548473E.01 0,000000 
,S21449E»-01 0,000000 
,495896E*01 0,000000 
,471480E*01 Ü.OOO0OO 
.448305E-01 0,000000 
.«26264E-01 0,000000 
.4053ЦЕ-01 0,000000 
.385444E-01 0,000000 
.366488E-01 0,000000 
,34844lE«01 0,000000 
,331365E«01 0,000000 
,315055E-01 0.000000 
,299564E-01 0,000000 
.284865E-01 0,000000 
.270879E-01 0,000000 
,257557E-01 0.000000 
«244893Е-01 0,000000 
,232887E*01 0,000000 
,221429E»01 0,000000 
,210551 E**01 0.000000 
.200201E-01 0,000000 
.190365E-01 0,000000

0,000000
0.247789 
0,375850 
0.421558 
0,426401 
0,414429 
0.396798 
0,377970 
0,359476 
0.341769 
0.324942 
0.308952 
0.293757 
0.279317 
0,265590 
0,252536 
0,240134 
0,228331 
0,217115 
0.206442 
0,196302 
0,186647 
0,177472 
0,168760 
0,160455 
0,152575 
0,145080 
0,137951 
0.13117ft 
0,124729 
0,118595 
0,112773 
0,107233 
0,101961 

.969541E-01 

.921887E-01 

.876599E-01 

.833570E-01 

.792559E-01 
,753624E»01 
.716491Ё-01 
«681384Е-01 
.647832E-01 
,615989E-01 
.585705E-01 
.556914E-01 
,529615E»01 
.503570E-01 
.478773E-01 
.455309E-01 
.432898E-01 
.411612E-01 
,39l416£«01 
,372198£*Q1 
, 353893E**01 
.336494E-01 
.319996E-01 
.304252E-01 
.H89306E-01 
,275085E«01 
.261570E-01

1.00000 
0,592752 
0,423671 
0,354570 
0,322834 
0,303684 
0,288470 

.97S794E-01 0,274563 
,924687E-01 0,261298 
.378281E-01 0,248578 
,33491OE^O1 0,236422 
.793855E-01 0,224826 
,754851E*01 0,213784 
.717769E-01 0,203279 
.682507E-01 0,193291 
.648963E-01 0,183791 
,617095E"01 0,174765 
.S8676SE-01 0,166174 
.557942E-01 0,158012 
.530515E-01 0,150245 
,504456E-01 0,142864 
.479645E-01 0,135838 
.456067E-01 0,129160 
,433679E*01 0,122820 
.412338E-01 0,116776 
.392086E-01 0,111041 
.372827E-01 0,105587 
,3545Q7£wQ1 0,100398 
,337102E*01 
.320529E-01 
,304765E*01 
, 289805E«*0 1 
, 275567E*01 
,262019E-01 
,249153E"»01 
.236906E-01 
,225268E*01 
,214211E«01 
,203672£-01 
.193666E-01 
,184124E*01 
,175102£*01 
.166480E-01 
,158297E*01 
.15Q514E-01 
,143116E*0i 
,1361QQEWQ1 
.129407E-01 
,125035E^01 
.U 7005E-01 
.111246E-01 
, 1 05776E**0 1 
, 1 00586E*01 
.956474E-02 
.909435E-02 
.364720E-02 
,322325E*02 
.7B1B66E-Q2 
.7454S7E-02 
,706912E*02 
,672181E*02

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2Q
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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г mfBL AQZS

YY2 Y4IT TIMEt Y3Yi
mm*

0.0000 0,000000

0,000000 
ö', 000000
01, oooooo
QhOOOOOO 
0.000000

1 S.lOOO [0,146078

[Г.41 26 46Е-01, *, 544501E-01 ,0,000000 
C ,369991E-03, ,9688S2E-02, 0,090000 . 

С*,Ь73275Е-02, .835219E-03,0,000000, 
t>,6 59277E-Q2,-,46013SE-01, 0,000000, 
[-.955590E.04,*,141481E-02,0,OOOOOO,

Ő,2000 0,155019

.367649E-Q1 »,b09391E-01 0,000000 
,3 95669E-Q2 .241780E-01 0,000000

**tl263bSE-01 »2821 19E-02 0,000000
*,120871E-01 463869E-0 1 0.000000
•,964997E»03 -,784889E-02 0,000000

0,3000 0,138042

. 234846E-01 *,553Q56E«01 0,000090 
,750792£-O2 .340909E-01 0,000000

•»', 1 401 72E-0 1 ,411880E-02 0,OOOOOO
•Л Ш05Е-01 -,404901E-01 0.000000 

S09642E-Q2 -И84010Е-01 0. OOOOOO

0,4000 0,122330

.234133E-01 », 493526E-Q 1 0,000000 
Л04658Е-01 .390528E-01 0,000000

*,133205E-01 .439379E-Q2 0,000000
-Л 29696E-01 -,36S145E*01 0.000000 

05: *>„ 628532E-02 -,307158E-01 0,000000

0,5000 0,111311

,20 7740 £<»01 *,452767E-Q1 0.000000 
,122231E^O1 .409338E-01 0,000000

»,122034E-01 ,407824E-02 0,000000
*, 122513E-Q1 -.34S708E-01 0,090000 
«•, 10044SE-01 -e43Q896E-Qi 0,000000

0,6000 0,103587

.192422E.01 -.426543E-01 0,000000 
,131272E*01 .413151E-01 0.000000

•Л 12448Е-01 ,357414E*02 0,000000
*.11706ie»01 -.336S67E-01 0,000000 
*,13?393E*01 -»54674 3E-Q 1 0,000000

§,7000 .975827E-01 0,274539

,130976E*01 -.40BQ05E-0Í O.OOüOOO 
,154Ő32£»01 .41Ö743E-01 0.000000

-,105171£-01 ,307853E*02 0,000000
»,1l3515E-Q1 *,331072E»01 0.000000 
-.176918E-01 -,6S1625E*Ö1 0,000000

1,8000 ,924703E*01 0,261292

Q.OOO'QO1,00000 0,0000000

0,000000
0.000000
0,000000
0,000090
0,000000

0,000000
0,000000
0,000000
0,000000
0,000000

0,000000
0,000009
0,000900
0.000000
0,000000

Dl:
D2:
D3:
D4;
D5:

r
0,24778ft] ^xCi^etAk

,126Sü9EpOtlT=32^e<
-Л О18О9£*О1Лг=‘Э><«О/0©г 

. 57 ОIО 2£- 0 /0 ©3
,49435BE«0UT=9x 0:)/9Qu 

- Л 14 5 7 О E - 0 13T*Ö2C LV/Wf.

0,375847

.218283E-Q1
-,2593l2£*0t

.879827E-02

.501442E-01
-,339691E.Q1

0,421554

• 222232E-01 
-.363245E-01 

,802252E*02 
.41QQ12E-01 

-,570922E«01

0,592750 0.000000)J
Dl: >
D2:
D3:
D4:
D5:

0,423668 0,0000002

Dl:
02:
D3:
D4:
DS:

0,354569 0,0000003

Dl:
02:
03:
D4:
05:

0,4263960,322826 0,OOOOOO4

, 192571E-0 1 
• , 402682E-0 1 

« 633318E-02 
.329102E-01 

-.774475E-01

Dl:
D2:
03:
04:

,<■. •

0,4144220,303675 0,0000005

,160589E-01 
-.398785E-Q1 

,497075E*02 
.2725B0E-O1 

-,947958E-О 1

Dl:
02:
03:
04:
05:

0.3967950,288464 0.0000006

Л34964Е-01 
-.372689E-01 

.U06761E-02 

.232819E*01 
-0,109658

oi:
02;
03:
04:
05;

0,3779550,0000007

Л15399Е-01 
-.3384B9E-01 
,346107E-02 
, 202094E-01 

-0,122527

Dl:
021
03;
04:
05:

0,3594590,0000008



.997738E-02
-.3Q2S17E-01

.299804E-02

.17595QE-01
-0.135751

W0-|Z JOP^N AQZS ,17Q620£*01 -f 392765E-01 0,000000 
,1S55BSE»01 ,40612QE-Q1 0.000000

-.995249E-02 .265420E-02 0,000000
*■1i1073E-Ű1 -,326250E-0l 0,000000 
-, 2.1 1 627E-0 1 -,745U5E-Ű1 0.000000

02:
03:
04:
05:

-'14

0.3417490,9000 ,378279E-Q1 0,248585

.150701E-01 -,378922E-01 0,000000 
,134842E-01 ,400635E-01 0,000000

-.943134E-02 .229483E-02 0,000000
«,10 911OE-Q1 -.321227E-01 0.000000 
»*, 242932E-01 -, 827742E-0 1 0,000000

0,0000009

.865423E-02 
-.267796E-01 
.260599E-02 
.152557E-01 

-0.143531

01:
02:
03:
04:
05:

0.324900

•747654E-02 
-.235331E-01 

.224846E-02 
,131201E-01 

»0,152013

1.0000 , 835034E-01 0,236413

,151228E-01 -,365734E-01 0.000000 
.133409E-01 .394731E-01 0,000000

*-,905844E-02 .198642E-02 0.000000
*,107253E-01 -,3i5890E-01 0,000000 
•.270916E-01 -,900320E-01 0.000000

1,1000 »793419E-01 0,224847

, 1418 48E-0 1 *,352844E-01 0,000000 
, 1 31Ы7Е-01 .388582E-01 0,000000

•*,3576016*02 . 171267E-02 0,000000
105498E-01 -.309968E-01 0.000000 

-,295531E-0l -.963705E-01 0.000000

1,2000 ,754382E-Q1 0,213808

,133t 37E-01 -»340340E-01 0,000000 
,129632E-01 ,582118E-01 0.000000

•-, 33041 3E-02 , 1 46974E-02 0,000000
*-, 103577E-01 -.303976E-01 0,000000 
-.317166E-01-0,101862

1,3000 .717708E-01 0,203281

,125217E-Q1 -,32827bE-0i 0,000000 
,127S23E-01 ,375340E-01 0,000000

•*, 794258E-02 . 124895E-02 0,000000
*,101530E-01 -.297971E-01 0,000000 

335914E-01-0,1065B0

0,00000010

Dl:
D2:
D3:
D4:
05:

0.3089480,00000011

.643151E-02 
205378E-01 
,193125E-02 
.1113856*01 

-0,159321

Dl:
02:
D3:
D4:
05:

0.2937450.00000012

.545463E-02 
-.177804E-01 

.162501E-02 

.932473E-02 
-0.165539

Dl:
02:
03:
04:
05: 0,000000

0.2792760.00000013

.454576E-02 
-,152435E-0 1 

.133Ы6Е-02 
,76721SE-02 

-0,170759

Dl:
02:
03:
04:
05: 0.000000

0,2655891,4000 ,682429E-01 0,193292

,1175026*01 -.316582E-01 0,000000 
, 1 25308E-01 , 368356E-01 0,000000

*', 75061 8E-02 , 104344E-02 0,000000
*', 995402E-02 -,291688E-01 0,000000 
".3520S4E-01-0,110597

0,00000014

.373413E-02 
*,129151E-Ö t 

.108448E-02 
,615266E-02 

-0,175081

Dl:
02:
03:
04:
05: 0.000000

0.2525581,5000 ,648363E-01 0,183814

.1100246*01 -.305087E-01 0,000000 
,122934E-0 1 .361181E-01 0.000000

*-, 7287406-02 .Э56573Е-03 0.000000
»,975316E-02 -.285096E-01 0.000000 
-,ЗЬ5Б22Е-01-0,Ц3951

1,6000 ,617043E-01 0,174772

,1034726-01 -.294052E-01 0,000000 
.120613E-Q1 ,353807E*01 0.000000

-,696426E-02 .691921E-03 0,000000
*-, 952901 E-02 273814E-01 0.000000
-,377367E-01-0,116713

0,00000015

,2998felE-02 
-,1Q7833E-01 
,856878E-03 
.474761E-02 

-0.178556

ot:
02:
03:
04;

0.00000005:

0,2401040,00000016

.228571E-02
-.882960E-02

.623915E-03

.348484E-02
-0.181272

01:
02;
03;
04;

0,00000005:



г l<m'ZL opiíio*N AOZS •-W

1.7000 ,586570E-01 0,166203 0,2283170.00000017

,l6629«E-02 
-.7C4170E-Q2 

.429279E-03 
•232328E-02 

«.0,18329«

.969963E-02 -, 283325E««0 1 0.000000 

.U3171E-01 .346300E-Q1 0,000000
-, 6'666B8E-ö 2 .536254E-03 0,000000
**, 931645E-02 -» 272239E««01 0,000000 
«,336906Е-О1-О,118931

1,8000 , 558047E-Q 1 0,158018

,9U165EW02 -,2729bBE-01 0.000000 
.115674E-01 ,338641E-01 0,000000

6 3 7331E-Q2 .S9733SE-03 0,000000 
-.909257E-Q2 -,2b5782E-01 0,000000 
-.394563E-01-0,120640

1 ,9000 ,530184E-Qi 0,150269

,352S66E«.02 -, 262920E-0 1 0,000000 
,1131322-01 , 330 930E-01 0,000000

-.610757E-02 .264964E-03 0.000000
3 33416E-Q2 «.259061E-01 0,000000 

•,400S85£^0Í-0,121902

2,0000 ,50 4 280E-01 0.142865

, 7 99859E-02 -.253243E-01 0.000000 
.П 0561Е-01 ,323U2E«0t 0.000000

«•. 334179E-02 » 147919E-03 0,000000
->,3S6283£-Q2 -,2S2552E-0l 0,000000 
-,4Ö4991Ei»01-0t 122739

2,1000 .479241E-01 0,135840

,743640£f02 -.243854E-01 0.000000 
,1 О 7966E-01 .31S271E-01 0,000000

-,539424E*02 f388092E-04 0.000000
*, 344949E-02 -.245921E-Ö1 0.000000 
-‘.403Q17E-O1-0,123200

2,2000 .455891E-01 0,129160

Dl:
D2:
03*
D4:
05; 0.000000

0,000000 0,21706118

,Ю7791 E»Q2 
-.540742E-02 

.240953E-Q3 
, 127665E-02 

«■0,184664

DU
02:
03:
D4:
05: 0,000000

0,2064350.00000019

.578846E-03
-.391666E-02

.907OÖ4E-04

.314822E-03
-0.185470

01:
02:
03:
04:
05: 0,000000 -

*&■ H,;

0.1962730.00000020

.103590E-03 
-,2S5777E-02 
-,591443E-04 
-.543379E-03 

-0,165735

0U
02:
03:
04:
05: 0,000000

9 .

0,18664221 0,000000

-.310146E-03
-.132329E-02
-.184180E-03
-.132492E-02

-0,185527

DU
02:
03:
04:
05: 0.000000

0.1774620.00000022

-.701637E-03 
204654E-03 

",3Ö8540E-03 
-.202219E-02 

-0,184903

,7 02456E-02 -.234809E-01 0,000000 
• 105372E-01 „307440E-01 0,000000
534972E-02 -.563720E-04 0,000000 
322817E-02 -,239487E-01 0.000000 
409790Sb»01-0,123327

01:
02:
03:
04:
05: 0,000000

2,3000 .433186E-01 0,122822 0,1687470.00000023

,656850E-02 -,22S979E-01 0,000000 
.102757E-01 .299625E-01 0,000000

• -.512205E-02 -.143683E-03 0,000000 
*,801471E-02 -.232907E-01 0,000000 
-.4Ю378Е-01-0,123135

2,4000 .412119E-01 0,116784

-,103916E-02 
.805071E-03 

-.411818E-03 
-.265857E-02 

-0.183881

Dl;
02:
03:
04:
05i 0,000000

0.1604510.00000024

,616196E-02 •,217538E-01 0,000000 
.100162E.Ü1 .291841E-01 0.000000
4997602W02 -.220581E-03 0,000000 

-.779593E-02 -.226585E-01 0,000000 
*,4Q9958£-01-0.122677

2,5000 ,391637E-0 1 0,111067

.575946E-02 -.209318E-01 0.000000 
,9 7 56 9 3 E-0 2 .284130E-01 0,000000

-.135697E-02
.171791E-02

-.51305QE-Q3
-.321710E-02

-0,182530

DU
02:
03:
04:
05: 0,000000

'ft-ri'-

0,15258925 0.000000

v 4162718E-02 
•253723Е-0Й

01;
02:



nuí*',Qb!i4£üt*Qd d91Qbbt*U.5 O.QUÖOOQ 
-, 7S8617E*02 -,220166E-Q1 0,000000 
-»403599£*01-0,121969

2,6000 .372822E-01 0,105573

,5U353E*Q2 *,20l464E-01 0,000000 
.949849E-02 .276367E-01 0,000000

-,447869E-02 -,S52575E-03 0,000000 
»,7S8646£*Q2 *, 214055E-0 1 0,000000 
-•.4Q6305E-01-0,121013

2,7000 .354193E-Ű1 0,100388

.505231E-02 -.193849E-01 0,000000 
,924130£-02 .268746E-01 0,000000

4 292Q3E-02 -,412200E«03 0,000000 
7 1 6631 £*»02 -.207774E-01 0.000000 

»•, 403315£>01*0,119873

2,3000 ,336811E-Q1 ,95464бЕ»01 0,000000

,472837E-02 -,186470E-01 0,000000 
,39S799E-02 ,261232E*01 0,000000

*‘t 41 0537f>02 *, 460663E-03 0,000000 
* * Ь 95933E-02 -,2Q1696E-Q1 0,000000 
-t399648E»01-0,118557

2,9000 .320297E-Q1 ,907884E-01 0,000000

,442610£-02 *,179327E-01 0,000000 
,373756E*02 .253805E-01 0.000000

*•, 392479E-02 -,50282lE-03 0,000000 
**, 6753ЗОЕ*02 •,195719E-01 0,000000 

J.95358£*01*0,117079

3,0000 .304417E-01 .863199E-01 0.000000

,413363E-02 -.172447E-01 0,000000 
.343737E-02 ,246437E-Q1 0,000000

«,3 75657E-02 -,5«1948E-03 0,000000 
*,65S554Eb02 *,189772E-Q1 0,000000 
*',390432E*01-0,1 15446

3,1000 .289597E-01 ,820640E-01 0,000000

,337130£*02 -,165869E-01 0,000000 
, 3 24272E-02 .239174E-01 0,000000

*,359215E-02 -.575864E-0S 0,000000 
*‘,Ь35779£«02 -, 184Q45E-0 1 0,000000 
•*, 335154E*01*0,113698

3,2000 .275224E-01 .780415E-01 0,000000

-.372507E-02
-0,180674

04:
05: 0,000000

>' 1
0,1450490,00000026

-, l 88859E-02 
,327555E-02 

-.679865E-03 
-,4156S0E-02 

-0,178903

01:
02:
03:
04:
05: 0,000000

0,1379630,00000027

-,208867E-02 
«393501Е-02 

-.735184E-03 
455078E-02 

-0,176715

0.131189

01:
02:
03:
04:

0,00000005:

28

• , 228378E-02 
,451921E-02 

-«796394E-03 
-, 489536E-02 

-0.174319

01:
02:
03:
04:
OS: 0,000000

0,12473329

-.245883E-02 
«50356ВЕ-02 

-.852300E-03 
-,5i9583E-02 

-0.171729

01:
02:
03:
04:
OS: 0.000000

'
0,11860830

-.259880E-02
.549187E-02

-.892938E-03
-.S4S383E-02

-0,168951

Dl:
02:
03:
04:
05: 0,000000

0,11277831

-.272650E-02
,589326E-02

-.931353E-03
-.566741E-02

-0,166040

Dl:
02:
03:
04:
05: 0,000000

0,10724532

-.283026E-02
.623904E-02

-.961610E-03
565599E-02

-0.163014

.ЗЫ241Е-02 -, 1 59453E-0 1 0,000000 

.Э00ПЗЕ-02 , 232068E-0 1 0.000000
-,343767E-02 6Q4694E-03 0,000000
*•* Ы 66 42E-02 -, 1 78321E-0 1 0,000000 
-.379417E-01-0,111846

5,3000 .262099E-01 .741898E-01 0,000000

, 35 9493E-Q2 -.153332E-01 0.000000 
,776451E-02 ,225042E-01 0,000000
323089E-02 -.627417E-03 0,000000 

-.396912E-02 -.172907E-01 0,000000 
-.373296E-01-0,109698

.705439E-01 0,000000

01:
02:
03:
04:
05: 0,000000

0,10194533

-.293627E-02
»653821E-02

-.997571E-03
-.599983E-02

*0.159877

Dl:
02:
03:
04:
05: 0,000000

•969265E-013,4000 .249289E-0134



г IWZL оршоАм ADZS

,317509Е-02 -.147383E-Q1 0,000000 
,7S3Q60£-02 ,2181Ь9Е*01 0,000000

—, 313637Е-02 -.647Q47E-Q3 0.000000 
»•* 573160£*02 -.167477Е-01 0,000000 
»,36685SE-01-0,107871

3,5000 ,236595Е-01 .671046Ё-01 0,000000

-.301407Е-02
.679193Е-02

-.102175Е-02
-.612292Е-02

-0.156656

D1:
02*
03*
04*
05: 0,000000

.921983Е-0135

-.30579SE-02 
.700444Е-02 

»,102941Е-02 
-.623094Е-02 

-0.153383

,294462Е-02 -,141Ь05Е-01 0,000000 
,730076Е-02 ,211470Е«01 0,000000

—, 50Ö694E-Q2 -.666089Е-03 0,000000 
*,5Ь0795£*02 161992Е-0 1 0,000000

ЗЬ0204£**01-0,105789 0,000000

3,6000 .225022Е-01 .637882Е-01 0.000000

, 275193Е-02 -.136П7Е-01 0,000000 
.707503Е-02 ,20482ЬЕ-01 0.000000

-.237570Е-02 -.681092Е-03 0.000000 
542990Е-02 -.156805Е-01 0.000000 

-,35'3248Е-01-0,103633

3,7000 .214140Е-01 «606548Е-01 0.000000

01 5
02 *
03*
04*
05*

1И
, 876660Е-0136

-.310321E-Q2 
,718178Е-02 

Ю4079Е-02 
-.629837Е-02 

-0,150024

01 *
02*
03*
04*
05* 0,000000

.833372Е-0137

-.314852Е-02 
,732254Е-02 

-.105671Е-02 
-.634692Е-02 

-0.146638

,257720Е-02 -. 130789Е-01 0,000000 
.635514S-02 ,198360Е-01 0,000000

»,274579Е-02 -.690066Е-03 0,000000 
-.525055Е-02 -.151779Е-01 0,000000 
-.346151Е-01-0.101442

01*
02*
03*
04*
D5* о.оооооо

38 3,8000 ,203509Е-01 .5769ЦЕ-01 0,000000 ,792456Е-01

, 239927Е-02 -, 125б22Е-01 0,000000 
,663923Е-02 ,192070Е-01 0,000000

-,2.62661 Е-02 -.697123Е-03 0,000000 
»,503148Е-02 -.146769Е-01 0,000000 
—, 333886Е-01 -,992219Е-01 0,000000

3,9000 .193166Е-01 ,548639Е-01 0,000000

,222140E-Q2 -,120678Е-01 0,000000 
.642742Е-02 .185899Е-01 0,000000

•, 25'1852Е-02 -.705722Е-03 0.000000 
-.492319Е-02 -.141812Е-01 0.000000 
*•, 33151 5£-01 -, 969738Е-0 1 0,000000

4,0000 ,184021E-Q1 .521210Е-01 0.000000

-,317204Е-02 
.743Í36E-02 

-.10631SE-02 
•,638292Е-02 

-0,143234

01*
02;
03*
0«*
05*

, 753862Е-0139

-.317016Е-02
.7S1399E-02

-.10S579E-02
-.640031Е-02

-0,139807

01*
02*
03*
04*
D5*

,716576Е-0140

, 2D3797E-Q2 -.П6010Е-01 0,000000 
• Ь — 1989Е-02 . 179759Е-01 0.000000

».240402Е-02 -.7Ю410Е-03 0.000000 
*,475650£-02 -.137216Е-01 0,000000 
—, 3239SDE-01 -.946798Е-01 0,000000

4,1000 ,175 097Е-01 .495858Е-01 0.000000

.195032Е-02 -,111383Е-01 0,000000 
,601988Е-02 »173944E-01 0,000000

-.229495Е-02 -.707774Е-03 0,000000 
459401 Е*0 2 -,132655Е-01 0.000000 

—, 316474E-Q1 -, 9241 95Е-0 1 0,000000 -0,132919

-.318103Е-02
.7S7290E-02

-.105771Е-02
-.637972Е-02

-0,136326

01*
02*
03*
04*
05*

.681272Е-01, 41

-.319079E-02 
.760246Е-02 

*, 106456Е-02 
-,636628Е-02

01 *
02*
03*
04*
05*

4,2000 .16630ВЕ-01 .471395Е-01 0,000000

.Í90955E-02 -,10Ь953Е-01 0,000000 
,532101Е-02 „168151Е-01 0,000000

—, 21971QЕ-0 2 -.708846Е-03 0,000000 
—, 444290E-Q2 -, 128095E*01 O.QOOOOO

.647794Е-0142

-.317127Е-02
.761256Е-02

-.105400Е-02
-.633316Е-02

01*
02*
03*
04*



»93ГшоА* ло«., з о $ 816 E » 0 i *e901128E-0l 0,000000

4,5000 .158053Е-01 .448327Е-01 0,000000

-0,12945b
/■Ч r-J--.1

.Ы6019Е-0143

315261E-02 
, 76035QE-02 

-.1Q4644E-Q2 
-.629131E-02 

-0.126049

,163032E»Q2 -, I 02690E-01 0.000000 
, 562B98E-Q2 ,162568E-0i 0,000000

»,2191 ЗОЕ-02 706482Е-03 0,000000
*.429409£-02 -.123708Е-01 0,000000 
«,3Q1233Е-01 -,878341Е-01 0,000000

Öli
02:
03s
04 i
D5i

4,4000 ,1 SO 441E-Q1 ,426324E-01 0,000000

,157178E*02 -.986309E-02 0.000000 
.344314E-02 .157114E-01 0,000000

*,200634E-02 -.702724E-03 0.000000 
-,4l4565£»02 -,119538E-01 0,000000 
*,2936Ы £-01 -,85567iE-0i 0,000000

,585688E-0144

-.3136ЮЕ-02 
, 7S7874E-02 

-,104t0lE-02 
623265E-02 

-0.122670

01 i
02:
03:
D4s
05:

4,5000 ,143090E-01 .405324E-01 0,000000

,l46395£-02 946903E-02 0,000000
.526008E-02 ,151796E-01 0,000000

*, 1 П735Е-02 696820E-03 0.000000
«, 40Q254E-02 -.П5420Е-01 0,000000 

2860 61 E-01 -.832963E-01 0,000000

4,6000 ,135835E-Ű1 ,385360E-01 0.000000

, 1 35196£s»02 908962E-02 0.000000
, 5081 08E*"02 , 1 46590E-01 0,000000

-.1 3374-0E-02 692956E-03 0,000000
-.336833E-02 -t 1 11330E-0 1 0,000000 

273467E-01 -,3l032bE-0i 0.000000

4,7000 ,12921QE-Q1 »366314E-01 0,000000

,125760E-02 -.872916E-02 0,000000 
.490793E-02 .141555E-01 0,000000

•'* 1 75747E-02 -,686383E-03 0,000000 
«,373578E-02 -,1074b2E-01 0.000000 

270981 E-0 1 -.788054E-01 0.000000

4,8000 ,122765E-01 .348544E-01 0,000000

.U8387E-02 -,837l91E-02 0.000000 
,474008E*02 .136710E-01 0,000000

•* 1 Ь7933E*»02 -.675722E-03 0.000000 
-,ЗЬ0402Е-02 -.103643E-01 0,000000 

263568E-0 1 *, 766QSQE-01 0,000000

4,9000 ,116688E-01 ,331478E-0I 0.000000

,107772E-02 -.803534E-02 0.000000 
,437697E-02 »131978E-01 0,000000

1 60844E-02 -.666917E-03 0,000000 
-.347831E-02 999717E-02 0.000000
•■» 258243E-01 -.744342E-01 0,000000

5,0000 .111167E-01 .315067E-01 0.000000

.101017E-02 -.771Ы2Е-02 0,000000 
,441831E-02 .127333E-01 0,000000

153254E-Q2 «,657572E-03 0.000000 
335297Е-0Э -.965044E-O2 0.000000 
243967E-01 -.722829É-01 0.000000

5,1000 ,105817E-Q1 .299516E-01 0,000000

.941913E-03 -.740238E-02 0,000000

,556848E-01

-,310943E-02 
,753589E-02 

-.103210E-02 
-.616626E-02 

-0,119300

45

01:
02:
03;
04:
05:

.529586E-0146

-.306501E-0H 
.747970E-02 

-.101279E-02 
-,609272E-02 

-0,115950

01 :
02:
03;
04:
05:

«5036МЕ-0147

-,30255lE-02 
,741247E-02 

-.997966E-03 
-.600794E-02 

»9*112662

01:
02:
03:
04:
05:

.478830E-0148

*,298865E-02 
.732931E-02 

- , 987535E-03 
-.592692E-02 

-0.109427

01:
02;
03:
04:
05:

.A
.455392E—0149

-.294274E-02
.723984E-02

«■.97UB4E-03
-,583429E-02

-0,106240

01:
02:
03;
04:
05:a

.432903E-01SO

-, 290149E-02 
,714277E-02 

-.957564E-03 
-.572787E-02 

-0.103087

01:
02:
03:
04:
05i

". ■>'

.4Ц454Е-0151

».285791E-0201:



г г^.оршо^м aqzs# 4263 ЬЪ£-Ой ,122347Е*01 0.000000 
-.146225Е-02 *,Ь448ЫЕ»03 0,000000 
•>323028£-02 -,930766Е*02 0.000000 

2.41754E-Q1 -.701S27E-Q1 0,000000

5,2000 .10Ö340E-01 ,2В4812Е-01 0.000000

.85Q303E-03 -.710319Е-02 O.OOQOQO 

. 411306Е-02 ,П8486Е*01 0.000000
*’• 1 4Q336E-Q2 -.637Q65E-03 0.000000 
-.312144Е-02 -.896417Е-02 0,000000 

234678Е-01 ». 680649Е-0 1 0.000000
1 -i.'l )

5.3000 .954882Е-02 ,270947Е»01 0,000000

,30Q1ОЬЕ-03 »,681346Е»02 0,000000 
, 3 96838Е-02 ,Ц4303Е»01 0,000000

1 33890Е-02 -.623841Е-03 0.000000 
3.0065ВЕ*02 ».864387Е-02 0,000000 

", 2277S9E-01 ».660276Е-01 0.000000

5.4000 ,911095Е»02 .257455Е-01 0,000000

,7э‘3985Е-03 *,Ь54399Е-02 0,000000 
,332856E»02 .И0198Е-01 0.000000

*, 1 27Ь36Е**02 -.612000Е-03 0.000000 
*■,239500Е-02 *,83425бЕ«02 0,000000 
•*, 220939Е-01 -.640221Е-01 0,000000

5,5000 .863804E-02 ,244920Е»01 0,000000

,637084Е*03 -.627217Е-02 0,000000 
,35910ВЕ»02 ,106233Е"01 0,000000

", 122249Е-02 ».60Q277E-03 0,000000 
», 279254Е*02 -,802862Е»02 0.000000 
", 24 4134Е«О 1 -,620372Е-01 0,000000

,7033б8£-02
".945311Е-03
-.562270Е-02
-.999756Е-01

03:
04:
05;

г'>

.391480Е-0152

-.279147Е-02 
• 692152Е»02 

-.917935Е-03 
».551786Е-02 
»,969297Е»01

01:
02:
03:
04;
05:

.372153Е-0155

»,27«562Е"02
.680169Е-02

*,904931Е*03
»,540980Е*02
-.939649Е-01

.353В04Е-01

01:
02:
03:
04;
05:

54

».269786Е-02
.668052Е-02

-,889933Е»03
-.528853Е-02
»,910474Е»01

01:
02:
03:
04:
05:

.336440Е-0155

-.263468Е-02 
,Ь54951£-02 

• , 867133Е»03 
•.517925Е-02 
-.881698Е-01

01:
02;
03:
04;
05:

«319788Е-015,6000 ,323982Е»02 ,232Ь83Е*01 0,000000

, 54641 О Е»03 -.602082Е-02 0.000000 
.355833Е-02 ,Ю2368Е»01 0,000000

«,11 651ЗЕ-02 ».587005Е-03 0,000000 
**, 268720Е-02 -.774349Е-02 0,000000 
«,207571Е*01 ».600968Е-01 0.000000

56

».25В400Е»02
.641833Е-02

-,851746Е*03
».505546Е-02
».853579Е-01

01;
02:
03;
04;
05:

5,7000 ,780582Е*02 ,221398Е»01 0.000000

,532987Е»03 -.577199Е-02 0,000000 
,342960Е«02 ,986324E»02 0,000000

", 111864Е-02 -.575547Е-03 0,000000 
-.259450Е-02 -,744870Е"02 0,000000 
», 2011 42£»0 1 -,582Ю7Е»01 0,000000

5,3000 .742675Е-02 ,2Ю450Е»01 0,000000

,304312Е»0157

".251505Е-02 
,628340Е»02 

».825866Е-03 
•,«9«574Е"02 
*,826317Е»01

01:
02:
03:
04:
05:

Rj.ii

,289476Е»0I58

,539110Е»03 -,554077Е-02 0.000000 
.330569Е-02 .950749Е-02 0,000000

",197011Е»02 ».564356Е-03 0,000000 
*’» 250083Е-02 -.717673Е-02 0.000000 
-.194844E-01 -.563659Е-01 0,000000

*.245394Е»02
.Ы4938Е-02

».803703Е-03
-.«82465Е-02
*,799649Е»01

”• •' ?1 -л. • ,

.274953Е-01

01:
02:
03:
04:
05:

5,9000 ,708599Е"02 ,200079Е*01 0,000000

.503237Е-03 »,531159Е»02 0,000000 

.313536Е-02 ,915913Е"02 0,000000
-.Ю1699Е-02 », 547917Е-03 0,000000 
",24D168E»02 -,691755E-02 0.000000 

1 33625Е-01 »,545470Е*01 0,000000

59

-,240894Е»02
.600788Е-02

-.793534Е-03
-.470388Е-02
».773430Е-01

is,; I,

Dl;
D2;
03;
04:
05:

”«r f ••ví-V ,



оршфдевО ,670 393E*Q 2 fX9Q434E*01 0,000000

,453530Е*03 -,5Q8726E«02 0,000000 
,50Ь807Е»02 .882307Е-02 0,000000

■», 9739Ь5£»03 ",535752Е«»03 0,000000 
-,231ЬЗЬЕ»02 -,6Ь«737Е-02 0.000000 
*,132554Е»01 -.527719Е-01 0,000000

,2Ы542Е-0Х

-.234016Е-02
,5885Ь9Е-02

*,7682Ь8Е»03
*.459353Е*02
•.747880Е-01

ОХ:
02:
03;
04:
05:
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