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A gyakorlatban felmerülő igen sok fizikai és 

matematikai probléma számitógépes megoldása esetén

szükség van valamilyen véges lineáris egyenletrend­

szer megoldására. Ezen egyenletrendszereknek a

gyakorlati alkalmazás szempontjából - egy igen je­

lentős részét alkotják az un. szalag-Toeplitz rend­

szerek, azaz az olyan speciális lineáris egyenlet­

rendszerek, melyek együtthatója Toeplitz-tipusu sza­

lagmátrix. Néhány alapvető felhasználási terület:

[l3, 1б]- digitális szűrők tervezése

- képfeldolgozás fl8, I9J

[22, 2б] 

[29, 35]

[ll, 2S]

- spektrálanalizis

- jelfeldolgozás

idősorok elemzése

Jelenleg a gyakorlatban, a felmerülő Toeplitz- 

tipusu szalagmátrix együtthatójú lineáris egyenlet­

rendszerek megoldására az egyenletszám harmadik, ill. 

második hatványával arányos műveletszükségletű mód-
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szereket alkalmaznak. /Egy műveletnek egy szorzás 

vagy osztás és egy összeadás vagy kivonás együtte­

sét tekintjük./

A dolgozatban megmutatjuk, hogy megadható olyan 

megoldási algoritmus, amelynek műveletigénye O^nlog^n}* 

/Az n a megoldandó rendszer egyenleteinek a számát 

jelöli./ A továbbiakban megadunk egy ilyen megoldási 

algoritmust és annak számitógépes implementációját.

A szükséges műveletigény értékek összehasonlitása a- 

lapján látható, hogy a dolgozatban bemutatásra kerü­

lő eljárás nagy elemszámú egyenletrendszerek megol­

dása esetén számottevő müveletidő megtakaritást ered­

ményez.

Mivel az eljárás kialakításában és az elért ha­

tékonyságnövekedésben alapvető szerepet játszik a

a transzformá-diszkrét Fourier transzformáció, ill. 

ció hatékony végrehajtására - J. Cooley és J. Tukey 

által 1965-ben - kidolgozott un. gyors Fourier transz­

formációs algoritmus £l4^ * ezért a kidolgozott mód­

szert a gyors Fourier transzformáció egy újabb gyakor­

lati alkalmazásának tekinthetjük.
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A témakörben rejlő feladatokra és lehetőségek­
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2. A DOLGOZATBAN HASZNÁLT JELÖLÉSEK ÉS A LEGFONTOSABB 

FOGALMAK DEFINÍCIÓJA

2.1. Jelölések

A dolgozatban az egyes fogalmak világosabb meg­

különböztetése céljából egymástól eltérő betűtípu­

sokat alkalmazunk.

A mátrixokat nagybetűkkel, a skaláris mennyi­

ségeket kisbetűkkel, a vektorokat pedig aláhúzott 

kisbetűkkel jelöljük. Ezenkívül a következő jelö­

léseket és rövidítéseket használjuk:

©a diszkrét cirkuláris konvolució jele:

két vektor komponensenként képzett szor­

zatának a jele: *

két vektor komponensenként képzett há- *r •

nyadosának a jele:

az a vektor diszkrét Fourier transzfor-

máitja: DFT

az a vektor inverz diszkrét Fourier

(a)transzfоrmáltja: IDFT
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az a vektor gyors Fourier transzformáció­

val meghatározott diszkrét Fourier transz-

FDFT(a)formáltja:

az a vektor inverz gyors Fourier transz- 

formációval meghatározott inverz diszk­

rét Fourier transzformáltja: FIDFT(a)

A dolgozatban gyakran előfordul, hogy egy kü­

lönbséget valamilyen modulus szerint kell képeznünk. 

Erre a különbségképzésre a szokásos:

i-j /mod m/

jelölés mellett az

jelölést is alkalmazzuk abban az esetben, ha a kü­

lönbség egy indexkifejezésben szerepel. Ha a különb­

séget /mod n/ kell tekintenünk, akkor az i—j he­

lyett csak i—j -t Írunk.

A továbbiakban a log n mindig a kettes alapú loga-

log^n —t helyettesíti.ritmust jelöli, azaz a



9 “

2.2. A legfontosabb fogalmak definíciója

2.1. DEFINÍCIÓ: /ü.2.1./

Egy kvadratikus n-edrendü T mátrixot 

Toeplitz-tipusunak nevezünk [V] , ha elemeire 

teljesül a

/2.1./ i»t. = t. , . лi.J i-l,j-1

egyenlőség.

A definíció egy másik, szemléletesebb formája a követ­

kező £30] :

2.2. DEFINÍCIÓ: /D.2.2./

Ha egy mátrixban a fődiagonális és minden 

azzal párhuzamos "ferde sor" csupa megegyező e- 

lemből áll, azaz, ha a mátrix elemei csupán osz­

lop— és sorindexük különbségétől függnek, akkor 

a mátrixot Toeplitz-tipusunak nevezzük.

Tehát ezen definíció alapján az A mátrix Toeplitz-ti—

pusu, ha

1 £=i, jön ./2.2./ a. = a.
i-J



:

\

A =

2.1. LEMMA:

A most megadott két definíció ekvivalens.

BIZONYÍTÁS:

Tegyük fel, hogy egy T mátrix Toeplitz-tipusua.

a D.2.1. értelemben, azaz
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2 ^i, n .t. = t, 
i»J i-1. j-1

*41,jl eS ti2,j2 elemeket,ame—Tekintsük a

lyekre teljesül:

1 ^ il, i2 , jl, j2^ n és
/2.З./

il - jl = i2 j2 .

Legyen

il = i2L

Ekkor /2.3*/ alapján jl = j2, azaz

til,jl = *12^2

il> i2iL

/2.4./ /2.3*/ miatt 0 4.Í1-Í2 = jl—j2 = к .

/2.5./ /2.З./ és/2.4./ alapján

il = i2 +k

jl = j2 +k

2SilfjlSn
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elemre D.2.1.-t,azaz /2.1./Alkalmazzuk a t
iltjl

képletet k-szor egymás után:

/2.1.//2.1./
Vil-l/-l,/jl-l/-l ="il.ji = *11-1,01-1 =

/2.6./ /2.5*//2.1./
*12,j2 •*il-k,jl-k

i2 > il .iii.

A szimmetria miatt a /2.6./ egyenlőség ebben az

esetben is teljesül.

b. Legyen az A mátrix Toeplitz-tipusu D.2.2. érte­

lemben, azaz

1 - i» j - na.
0

= a
i-j

és aTekintsük az a elemeket, amelyre
i-1,j-1i» j

2 ú i , j ^n .

Az 1^ i,j,i-1,j-l^n feltétel most nyilván tel­

jesül, továbbá

/2.2.//2.2./ 

ai-l,j-1 = a. = a. 
i-Ja/i-l/-/j-l/ =

Q.e.d.
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2.3« DEFINÍCIÓ:

Egy A mátrixot szalagmátrixnak nevezünk,ha

csak a fődiagonálisában és a vele szomszédos pár-

"ferde sorban" tartalmaz mil-ill. qhuzamos p,

látói különböző elemet, azaz a főátlótól bizonyos

távolságra már valamennyi eleme zérus.

Tehát A szalagmátrix, ha minden i,j-re

(i-j)>q(i-j) <“P eseténvagy

a. = О
J

Az A szalagmátrix a következőképpen sematizálható:

p+1 oszlop

//
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2.4. DEFINÍCIÓ:

Egy n-edrendü kvadratikus C mátrixot cirku­

láris vagy ciklikus mátrixnak nevezünk, ha ele­

meire teljesül:

c. . = c. 
i»J i-J /mod n/

vagy a dolgozatbem. alkalmazott jelöléssel:

c. . =J

Tehát c. . = c. . ,1, J i-j+kn ./ vagy/k=0,1,2 • •

i-j I/2.7./ =3> c. . = c 
i, J

r-s r,s

A definició alapján nyilvánveűLó, hogy a mátrixot 

az első sor vagy az első oszlop elemei egyértel­

műen meghatározzák. A C mátrix a következő alakú:

C fc ,c1 v о ’ 1 Cn-l) =• • •



15 -

A definíció alapján az is látszik, hogy minden cirkulá- 

egyben Toeplitz—tipusu mátrix is. /Az állí­

tás fordítottja nem érvényes./

ris mátrix

2.5. DEFINÍCIÓ:

(ao’al ' an-1/ n-»elemű vektor,Legyen a = egy• •

[2]Ti/n] ,v = exp

i =\pr ,
A pedig egy n-edrendü kvadratikusaz

mátrix, melynek elemei:

jk 0 j ,k ^ n= wa . .J»k

U) = A.a n-elemü vektort, amelynek j—edikA DFT

komponense:

n-1= £ a* , Jkw 0^ j <n/2.8./

a vektor diszkrét Fourier transzformáltjánakaz

nevezzük.
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2.6. DEFINÍCIÓ:

Legyen a = ( aQ , a-1, an-l) "• • •

[2 Ji i/n] ,V = exp

i-Ti,

IDFT(a') n-elemü vektort, melynek j-edikaz

komponense
n-1

/2.9./ [iDFT(a)] Z - jk w 0 6 j < nakk=o

az a vektor inverz diszkrét Fourier transzfor­

máit jának nevezzük.

2.7. DEFINÍCIÓ:

Cao’al’ ésa 1) n—1'Legyen a = • • •

íbo’bl’ bb = . . . n-1

két n-elemü vektor. Diszkrét cirkuláris konvolució- 

juk - a (5) b egy n-elemü vektor lesz,amelynek

komponenseire teljesül:

n-12/2.10./ a .b 0 < i < n-1 .Ci = J=°

különbség /mod n/ tekintendő/ ./az i-j
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2.8. DEFINÍCIÓ:

Ha egy mátrixban a mellékdiagonális és minden 

azzal párhuzamos "ferde sor" csupa megegyező elem­

ből áll, azaz ha a mátrix elemei csupán oszlop- és

sorindexük összegétől függnek, akkor a mátrixot

Hankel—tipusunak nevezzük.

Tehát egy H mátrix Hankel-tipusu, ha elemeire tel­

jesül a

1 á ±tj < n/2.11./ h. . = h .
i»J i+J

egyenlőség.

2.9. DEFINÍCIÓ:

Egy mátrixot erősen nemszingulárisnak nevezunk,ha

egyetlen föminora sem szinguláris.

2.10. DEFINÍCIÓ:

a - (ao,alt a .) n— 1'

b .) n— 1'

ésAz • • •

£ = CW • • •



18

vektorok komponensenként képzett szorzata - a b -

az a £ vektor lesz, amelynek komponensei:

0^ i <£n ,= a., b.c. 
1

azaz

• bn-l) '= (a b , V о о ’ albl» an-lс • • •

a két vektor komponenseként képzett hányadosa

- а д, b - pedig az a d vektor, melyre teljesül:
Tv ~

di - ai/bi

vagyis

(a /b , 
о' о /b„-l) •al/bi,d = a 1 n-1• • •
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3. AZ ELJÁRÁS MATEMATIKAI MEGALAPOZÁSÁHOZ SZÜKSÉGES

TETELEK

Ebben a részben néhány olyan általános tételt ismer­

tetünk, amelyeknek alapvető szerepük van a későbbiekben 

megadandó algoritmus elméleti megalapozásában. Ezen téte­

lek egy része jól ismert a cirkuláris- és Toeplitz mát­

rixok elméletéből, ezért ezek bizonyítását nem ismertetjük.

3.1. LEMMA:

A cirkuláris mátrixok szorzása kommutativ és a

szorzat mátrix is cirkuláris. /А bizonyítás megtalál­

ható ^17]-ben./

3.2. LEMMA:

Egy nemszinguláris cirkuláris mátrix inverze is

cirkuláris £l7^J.

3.3. LEMMA:

Toeplitz-tipusu mátrixok összege és különbsége 

is Toeplitz—tipusu mátrix [17J *
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3.4. LEMMA:

A cirkuláris konvolució kommutativ, azaz

a @ b = b©a

BIZONYÍTÁS:

A lemma érvényességének belátásához azt kell megmu­

tatnunk, hogy minden

О é. i S n—1 esetén

[а®ь]. = |®а].

vagyis

n-1n—1

- 2l/3-1./ b. a. , к i-ka .b
j i-j k=oJ=o

/З.1./ egyenlőség jobb oldalán állóTekintsük a

kifejezést:

n-1
> bkai-k
k=o

Végezzük el a j=i-k helyettesitést.
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j./n-х/n-1 -1i
/З.2./ ■>b. a. к i-k a .ba .b a.b. .+

J i-J j i-j *j i-j
j=i-/n-l/k=o j = i J=o

Mivel az indexeket moduló n kell vennünk, igy az összegzés

második tagja:

n-1

2 alakban irható, s ezérta .b
j=i+l

iz n^l n—1
/3-2./= *> a .b >

j=i+lJ=° J=o

ez pedig éppen a /3*1./ egyenlőség bal oldala.

0 és ^n-1^ közé eső érték lehet, igyMivel i tetszőleges

a kommutativitás valóban teljesül.

f .

Q.e.d.

3.1. KOROLLÁRIUM:

Legyen C egy n-edrendü cirkuláris mátrix és jelölje 

c: a C első oszlopvektorát. Ha a egy n-elemü oszlop-

vektor, altkor

= _c (?) aC«a
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BIZONYÍTÁS:

Legyen г = С • а , 
n—1

azaz

О < к < nГк = 2 с. .а . к, j JJ=0

Mivel С cirkuláris, ezért és igyCk, j = c
klLÍ

L3.4f _ 1
= U®4c

n—1 D2.7
Гк c. .a . k-j J

SS к

Q.e.d.

3.5. LEMMA:

Tetszőleges a vektor esetén

IDFT^DFTfa)) = DFT ("iDFT^a))/З.З./ = a

[3]
3.6. LEMMA: /Cirkuláris konvuluciós tétel/

Legyen a és b két n-elemű vektor, ekkor

("üFT/a) X DFT(b))a @ b = IDFT/З.4./

azaz két vektor cirkuláris konvolucióját megkaphat­
juk a vektorok diszkrét Fourier transzformáltjai kom­

ponensenkénti szorzatának inverz diszkrét Fourier

transzformáltjaként.
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BIZONYÍTÁS:

О ^ s <C nLegyen

n-1 . n-1[dFTCjú * DFTo*].-5 sksj/3-5./ b. wa .w SSкJ
j=0 k='

s (j+k)a .b, w J к

n-1
[DFTCa©b)]s =5Z[a 0 b] .wSp

p=0
S/З.6./

n—1 n—1

=Z_ Z Spwa .b 
J P-Jp=0 j=0

A /3.6./-ban végezzük el а к = p-»j helyettesítést 

és cseréljük fel az összegzés sorrendjét.

n-1- jn-1n-1 n—1 sO+k) _sp.w ■ z гz z/3.7./ a .b, w J кa .b 
J P-J

j=0 k=-jp=0 j=0

n-1-jn-1n—1 — 1-z z z z+
k=0j=0j=0 k=-j

/З.8./

/3.8./-ban legyen к helyett az ("n+k) az uj indexvál­

tozó, igy
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n-1 n—1»о*юя fi X
j=0 k=n-j

n-1 -1

/Э.9./ XI X sCj+k-n)a .ba .b, w J к j k-nj=0 k=-j

Azonban

^2 Jl is (j+kj/n) 

(2fi3Có+k)/n):v30+k) -

^2TÍ is£j+k-n)/n)=WSCj+k-n)= expexp

Г~2 JL isn/n) = exp• exp

= 1

/З.9./ a következő alakban irható fel:Ezért a

n—1 n—1X г s(j+k)a .b, v J кj=0 k=n-j

/3-7./ pedigés a

n-1 n-.j—1 n-1 n-1

♦ X £ -XX
n—1 n-1

/3.10./ 3 C j+k)a .b. w J кj=0 k=0j-0 k=0j=0 k=n— j

/3.IO./ alapján felirható a következőА /З.5./ és

egyenlőség:

/З.И./ [DFTCa> * DFTCb3]g = [dFT( a @ bj] g О ^ s ^ n

miattL.3.5.Ez viszont az
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JlDFTfDFTCa) * DFT(b))]s =^a@bjg 0 ^ s ^ n

alakban is felírható, ami pedig éppen a cirkuláris

konvoluciós tétel érvényességét bizonyítja.

Q.e.d.

3.7. LEMMA s

Egy cirkuláris mátrix inverze létezésének szük­

séges és elégséges feltétele, hogy a mátrix első osz­

lopvektorának diszkrét Fourier transzformáltja ne tar­

talmazzon egyetlen nulla komponenst sem.

BIZONYÍTÁS:

i, Szükségesség

Legyen A egy cirkuláris mátrix, a pedig az A el­

ső oszlopvektorá. Tegyük fel, hogy

а, ЗА“1 és

o6i<n [üFTCa) J ± = 0b, 3i

Jelölje E az egységmátrixot, e és b pedig az E és A 1 

első oszlopvektorát. Ekkor felirhatjuk a következő 

egyenlőséget:
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L3.6
/3.12./ е = А-Ъ = а @ b = IDFT(DFTCa)* DFT(b)J .

K.3.I

Az L.3«5» felhasználásával /3.12./ a következő

alakban irható:

DFT(e) = DFJ^a)* DFT(b) ,

az i—edik komponensekre pedig

/3.13./ JoFTCe)] = [üFTCa) * DFTfb)] .

®, = С1,0 , 0) , igyMivel ♦ • • 9

[DFT(e)]. = Zl 
j

±J - 1e .w
3

és igy /3.13./ alapján

i -[мтС^-ГшгтСу]. . ! .

•;

- [DFTOú]i - 0

/3.14./ [üFTfa) * DFT(b)]

így azonban a kezdeíi feltevéssel

ellentmondásba kerültünk.

ii, Elégségesség

Tegyük fel, hogy az A cirkuláris mátrix első oszlopá­

nak diszkrét Fourier transzformáltja nem tartalmaz
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nulla komponenst.

Készitsük el a

•/1 * DFTfa))/3-15-/ b = IDF

vektort. L.3«6. felhasználásával az előbbi egyenlőség

DFTfb) = 1 * DFT(a)/3.16./

alakra hozható. A diszkrét Fourier transzformáció de- 

finiciója alapján az 1^ vektor helyett Írhatunk DFT^'j-t 

és igy a /3.16./ uj alakja:

DFT(b) = DFT(e)* DFT&Ü

és ezért

DFife) = DFT(a) * DFT^b)/З.17./

alapján a /3*17•/ fennálása miattAz L.3.5. és L.3*6.

érvényes a

e = a@b/3.18./ egyenlőség.

Legyen В olyan cirkuláris mátrix, melynek első oszlop­

vektora b. L.3*l* alapján A»B = B*A 

láris mátrix.

és a C cirku-= C
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Jelölje _c a C első oszlopát. Ekkor

/3.13./ 3L.3.1. a@b_c = A* b =

Tehát a C olyan cirkuláris mátrix, amelynek első osz­

lopvektora ej, azaz éppen az egységmátrix, vagyis

A'B - В*A = E

ami viszont éppen azt bizonyitja, hogy а В mátrix az

A inverze.

Q.e.d.

3.2. KOROLLÁRIUM:

Egy cirkuláris mátrix akkor és csak akkor nem­

szinguláris, ha első oszlopvektorának diszkrét Fourier

transzformálitja nem tartalmaz nulla komponenst.

3.3. KOROLLÁRIUM:

Ha A egy nemszinguláris cirkuláris mátrix, mely­

nek első oszlopa a, akkor az A inverze az а В cirkulá­

ris mátrix lesz, amelynek első oszlopvektora a követ­

kező képlettel határozható meg:
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IDFT^l * DFTfa))/3.19./ b =

BIZONYÍTÁS:

Az L.3‘2. miatt az inverz mátrix valóban cirkuláris 

lesz és a /3.19./ képlet érvényességét a 3*7* .lemma 

bizonyításának második részében mutattuk meg.
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4. A MEGOLDÁSI MÓDSZER LEÍRÁSA

4.1. Előzmények

Tekintsük a

/4.1./ Ax = £

lineáris egyenletrendszert, melyben A Toeplitz-tipusu 

mátrix /nem feltétlenül szalagmátrix/.

Korábban a felmerülő gyakorlati alkalmazások esetén 

а /4.1./ tipusu egyenletrendszerek megoldására leg­

többször az általános eliminációs — /pl: Gauss, Jor­

dan J27] / vagy iterációs - /pl: Jacobi, Seidel [27]/ 

eljárásokat használták. Ezen algoritmusok műveletigé­

nye az egyenletszám harmadik hatványával arányos /pl:

n^/3, Jordan: n^/2 /.Gauss:

A Toeplitz-mátrixok speciális tulajdonságai azon­

ban már régóta azt sugallták,hogy megfelelő algorit­

musokkal jelentősen csökkenthatő а /4.1./ egyenlet­

rendszer megoldásához szükséges műveletek száma.

A speciális tulajdonságok kihasználásával N. Levinson 

1947-ben adott egy, a fent emlitett eljárásoknál ha­

tékonyabb rekurziv módszert а /4.1./ feladat megoldá­

sára £24] .
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Lényegében az ő eljárását javította tovább W. Trench 

és 1964—ben, ill. 1967**ben algoritmust adott a Toeplitz— 

tipusu mátrixok inverzének meghatározására, valamint 

а /4.1./ tipusu egyenletrendszerek megoldására [31»32j. 

Trench rekurzív algoritmusai azonban csak abban a spe­

ciális esetben alkalmazhatók, ha a Toeplitz-tipusu mát­

rixok szimmetrikusak, ill. komplex esetben Hermit—szim­

metrikusak, továbbá erősen nemszingulárisak.

Trench algoritmusainak nemszimmetrikus, ill. nem

Henriit—szimmetrikus esetre való általánosítását S.Zohar

1969-ben és 1974-ben £36, 37]* Ezen algo-oldotta meg

ritmusok műveletigénye már csak az egyenletszám második

3n2.hatványával arányos;

A Toeplitz-tipusu szalagmátrixok a Toeplitz-tipusu

mátrixok speciális változatai. A

/4.2./ Tx = у

Toeplitz-tipusu szalagmátrix együtthatójú lineáris egyen­

letrendszer x megoldásvektora az - általános Toeplitz 

egyenletrendszerek megoldására N. Levinson, W. Trench és 

S. Zohar által megadott eljárások, valamint W. Trench

által 197^—ben publikált, már speciálisan a Toeplitz-ti- 

szalagmátrixokra kidolgozott módszer [ЗЗ] eredmé -pusu
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nyeit felhasználó - un. Levrinson-Trench-Zohar algorit- 

továbbiakban L-T-Z/

(n(p+q)) művelettel kapható meg.

/a alkalmazásávalmus

1 * 2 l,5n + 0

A. Jain 1978-ban publikált egy - az együttható-

- 0(nlogn)+C^(p+q)mátrix cirkuláris felbontásán alapuló

műveletezükségletü eljárást a /4.2./ egyenletrendszer 

megoldására

tipusu szalagmátrix együtthatójú lineáris egyenletrend­

szereknek csak egy - bizonyos feltételeket kielégito - 

részhalmazára alkalmazható. /А. Jain algoritmusának 

részletesebb elemzése az 1. mellékletben található./

Ы . Ez az algoritmus azonban a Toeplitz-

A dolgozatban a továbbiakban — a témakörben foly- 

vizsgálódásaim eredményeit ^4,5 »6 J 

algoritmusának olyan, O(nlogn)+ o((p+q)^) 

müveletigényü általánositását adom meg, amely már tet-

tatott korábbi ösz-

Jainszegezve

szőleges Toeplitz-tipusu szalagmátrix együtthatójú li­

neáris egyenletrendszerek megoldására alkalmas.

4.2. Az eljárás elméleti kidolgozása

Adott tehát a

/4.2./ Tx = x.
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lineáris egyenletrendszer, ahol T egy n—edrendü nem­

szinguláris Toeplitz-tipusu szalagmátrix, azaz

t. . = t.
J . i-J

3p,q<n t / 0 , q r

*k

*1

T =



- 34 -

A következőkben az együtthatómátrix cirkuláris 

kiterjesztésével a /4.2./ egyenletrendszert két e-

gyenletrendszerre bontjuk. Ezek közül az egyik 

n-edrendü cirkuláris mátrix együtthatójú lineáris 

egyenletrendszer, amelynek megoldása - a később meg­

adandó tételek alapján - 0 (nlogn} művelettel meghatá­

rozható. A másik pedig egy O^p+q) 

oldható (p+q^x ^p+q^-s

egy

művelettel meg-

Toeplitz egyenletrendszer lesz.

Legyen Tc a T mátrix n-edrendü cirkuláris kiter­

jesztése, azaz olyan n-edrendü mátrix, amely tartal­

mazza a T nem nulla elemeit és cirkuláris. /А kiter­

jeszthetőségnek az a feltétele, hogy (р+с^ф. telje­

süljön. Ha ez a feltétel nem teljesül, akkor a meg­

oldási algoritmusnak a 6.2. részben ismertetésre kerü­

lő általánosított változatát alkalmazhatjuk. /

A T mátrix n-edrendü cirkuláris kiterjesztésével

keletkezett T a következő lesz:c
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a következőképpen ábrázol—mátrixegyenletet. A 

hatjuk:

-t

Tb =

6. ábra

Ezen mátrixok segitségével a megoldandó /4.2./ egyen­

letrendszer

(Tc - Ть)^ = Z

alakban irható fel. Ebből átrendezéssel kapjuk a

T x = у + T. x c— 'í- b—

egyenletet.
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Tegyük fel, hogy a Tc nemszinguláris. Ezen feltétel 

mellett a fenti egyenlet a következő alakra hozható:

-1-1
x = T у + T — c . c T. xbe­

vezessük be a következő jelöléseket:

z = T_1y 
c *-

В = т“1/4.4./ ;c

Ezen jelölések mellett:

Л-5-/ x = z+BT. xtr=

meg a /4*5./ jobboldalán sze-A továbbiakban vizsgáljuk

replő T^x szorzatot.

xо

X1

ОT • x = ь —

Xn—1

7« ábra
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Jelölje F a T jobb felső sarkában, állá q-adrendü fel­

ső triangularis mátrixot, G pedig a bal alsó sarokban 

lévő p—edrendü alsó trianguláris mátrixot, x/ 

legyen az x első p és utolsó q komponenséből álló osz­

lopvektor. Ezen jelölésekkel a szózat:

tés x

tF xiF x

m 0О x SS

Tb* = t it G xG xI
a

8. ábra

Legyenek u, v és <z a következő p—, q—, ill. n—elemű

vektorok:

= G x*u = F x* , c = fu,/4.6./ Ю *és o.V

Ezen jelölések mellett a /4.5»/ egyenlet uj alakja:

u
Л-7-/ = _z + В _cx = js + В = z + В о

v

Az egyenletből jól látszik, hogy ha az u és v értékét 

ismernénk, akkor az x megoldásvektort a /4.7»/ alapján 

már könnyen meghatározhatnánk.
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Az u és v meghatározása érdekében partíciónáljuk а В 

mátrixot és а z vektort a következőképpen:

I
I

iii I im itВ В В Р z Р

пI
mi I mt mmm ВВ В z25 =В =

_ L- - Г
tti tttm ВВ В q qz

I I

q p

9« ábra

így a /4.7./ alapján x^-re és x* 

letek kaphatók:

a következő egyen—-re

i „ii „it x = В u + B i/4.8./ v + z

t „ti „tt x = В u + В tV + z

t .

Azonban az x^" és a /4.6./ egyenletek alapján is ki- 

fejezhetők, ugyanis az F olyan trianguláris mátrix, 

amelynek főátlójában minden elem t^-val egyenlő,s igy 

kezdeti feltevés miatt az F mátrixnak létezikf 0 q r
az inverze. Hasonló okok miatt

a t

t í О — 
-P

létezik a

G ^ is. Ezért a /4.6./ alapján:



40

i -1-1tЛ.9./ ésx = F u x = G v

A /4.8./ és /4.9./ szerint:

ti tt t-1tx = F u = В u+B v + _z

/4.10./
iii iti -1 В u+B v + zx = G v =

Az egyenleteket átrendezve kapjuk:

1 _ti ) ü = zt11 -B-B v +

/4.И./
ii iitСо-1 ~B + -B • u = z

Legyen

!I

ti11-1I/4.12./ В В:О F qI I
I N =M = ) it ii-1 I 0 ВВG P I
I I

P q

10. ábra
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tv q qz

;w = s =
iu pp 2.

11. ábra

és R = M - N

Ezekkel a jelölésekkel a /4.11./ -nek megfelelő mátrix—

egyenlet:

/4.13./ Rv = s

Г q)A /4.13»/ mátrixegyenlet nem más, mint egy 

egyenletből álló lineáris egyenletrendszer a v és u 

vektorokra, vagyis a vq, 

ismeretlenekre. Mivel a /4.2./ rendszerben T—ről fel­

tettük, hogy nemszinguláris, igy ez biztositja, hogy a 

kiindulási egyenletrendszernek létezik egyértelmű x 

megoldásvektora. Természetesen igy az x első p és utol­

só q komponense — x^", x^ — is egyértelműen meghatároz­

ható, ami viszont az eredeti egyenletrendszerből szár­

mazott /4.10./ alapján azt biztosítja, hogy a /4.13*/ 

egyenletrendszer R együtthtómátrixa sem lehet szingulá­

ris és igy létezik egyértelmű megoldás v -re és u —ra.

P +

vl* * vp-l’’ Uo’Ul’ • Uq—1• • • • • •
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így a következő főbb lépésekből álló eljárást tudjuk

összeállítani az x megoldásvektor meghatározására:

/4.3*/ alapjánTc meghatározásaI.

/4.4./

/4.12./

/4.12./

/4.4./

/4.13./

Л.7./

kiszámítása tiII. В

meghatáro zása tiIII. M

meghatározása иIV. N

jz kiszámítása иV.

kiszámítása иVI. w

meghatározásaVII. x

Ez az algoritmus a 4.2. pontban megadott eredmények 

alapján alkalmas a /4.2./ Toeplitz—t j.pusu szalagmát— 

rix együtthatójú lineáris egyenletrendszer megoldására.

4.3. Az algoritmus optimalizálása

Ha a /4.2./ kiindulási egyenletrendszer x megol­

dásvektorának meghatározására az előző részben ismer­

tetett algoritmust használjuk, és az egyes lépésekhez 

a gyakorlatban általánosan használt eljárásokat alkal­

mazzuk, azaz a mátrix invertáláshoz és a /4.13«/ line­

áris egyenletrendszer megoldásához a Jordan és Gauss

eliminációt használjuk és a mátrix—vektor szorzást is
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hagyományosan végezzük, akkor a teljes műveletigény jó­

val a jelenleg használt L-T-Z algoritmus müveletszükség-

lete fölötti érték lesz. Azonban a T mátrix cirkulárisc
voltának a kihasználásával és a gyors Fourier transzfor­

mációs algoritmus használatával a műveletigény jelentősen 

redukálható.

A továbbiakban megvizsgáljuk, hogy az összeállitott 

eljárás egyes lépéseiben milyen tevékenységeket kell vé­

geznünk és ezek végrehajtásában milyen hatékonyságnövelő 

algoritmusok alkalmazhatók.

I. AT mátrix meghatározása c

Jelölje

Cao’

b =(bQ,

és0 .a = al’ V • •л. л •

. 0)b , 0qV • •• • •

a megoldandó /4.2./ egyenletrendszer T együtthatómát­

rixának első sor-, ill. oszlopvektorát. Ekkor a kere­

sett mátrixot ábrázoló 5* ábra alapján a Tc
lopa:

első osz-

Ov al)/4.14./ q’ ° 0,V . b a , a , P P-lо = t • л*• • •• •
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Mivel a Tc cirkuláris, igy а 2.4. definíció értelmében 

a T -t a most megadott első oszlopvektora egyértelműen 

meghatározza.

A megoldási algoritmusnak ebben az első lépésében 

csupán p + q + 1 értékadást kell elvégeznünk, melynek

müveletszükséglete a dolgozatban használt müveletfoga-

/Ez valójában azt jelenti, hogy 

értékadás műveletigénye a multiplikativ műveletekéhez 

képest elhanyagolható./

lom értelmében 0. az

II. А В mátrix meghatározása

Mivel а В nem más, mint az n-edrendü cirkuláris Tc
mátrix inverze, igy a 3*3* korollárium alapján а В első

oszlopvektorát a következő képlettel kaphatjuk még:

b = IDFT^l Ä DFT(_t))/4.15./

ahol jt—vei jelöltük a Tc mátrix első oszlopát.

Mivel а В cirkuláris, igy az első oszlop egyértelműen 

meghatározza a teljes mátrixot.

Ha a /4.15«/ képlettel megadott b vektor meghatáro­

zásához szükséges diszkrét Fourier transzformációt és
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inverzét a gyors Fourier transzformációs algoritmussal 

számitjuk ki, amely egy n-edrendü vektor /inverz/ diszk­

rét Fourier transzformáltját n«logn művelettel határoz- 

, akkor a szükséges műveletek száma:za meg

FDFT(4)

(l * FDFTft))

FIDFT^l * FDFT

s zárnitására n•logn

számitása n

ufszámitására n•1о gn

azaz a teljes műveletigény

2nlogn + n

lesz. Ez az érték — elég nagy n esetén - jóval kisebb az
О

általános mátrix inverziós eljárások müveletszük-

ségle ténél.

XII. Az M mátrix meghatározása

A /4.12./ szerint definiált M mátrix meghatározásá­

hoz a G és F Toeplitz—tipusu alsó-, ill. felsó triangu- 

láris mátrixok inverzét kell kis zárnitanunk. A két mátrix

speciális tulajdonságait kihasználva az általános mátrix 

inverziós eljárásnál hatékonyabb algoritmussal tudjuk
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meghatározni az F és a G inverzét a következő tétel

eredményeinek a felhasználásával!

4.1. TÉTEL:

Legyen G egy nemszinguláris n—edrendü Toep- 

litz—tipusu alsó trianguláris mátrix, H pedig a 

G inverze. Jelölje j| és h a G, ill. H első oszlop­

vektorát. Ekkor

i, H is Toeplitz—tipusu alsó trianguláris mátrix

lesz.

ii, a h-t a következő rekurziós képlettel kaphat­

juk meg.

h = l/g о ' о
Л-16/

m
= -h У~о -ч— 0 <.m <n .h gk hm-km k=l

BIZONYÍTÁS

Ha E az n-edrendü egységmátrix és h^-vel és 

e^-vel jelöljük a H és E i-edik oszlopvektorát,ak­

kor érvényes a következő egyenlet:

i i 0 ^ i ú. n/4.17*/ G h = e
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A /4. 17*/ -et részletesen felirva - kihasználva, 

hogy a G alsó triangularis és Toeplitz-tipusu - a 

/4.18./ egyenletrendszert kapjuk:

=00gohl,i+

elhl,i+eoh2,i+ =00

/4.18./ =10gi_lhl,i+ei-2h2,i+ * * * + gohi,i+

. g h . =0 .
О ríjl

+ g . h. . +n-i x,xg ,h, ,+g 0h0 .+.&n-l 1,í n-2 2,í • •• •

Mivel G—ről feltettük, hogy nemszinguláris, igy a 

determinánsa,^go^n

/4.18./ első egyenlete alapján minden

nem lehet nulla, s ezért a

Kién ese­

tén

= 0h
l.i

Tegyük fel, hogy 0^,j-l^i^n esetén

j-l,i = °= h= hh 2, i = • • • }l.i
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és tekintsük a h elemet:

3 <ia,

A /4.18./ j-edik egyenlete és az indukciós felte­

vés alapján érvényes a

g h . . = О 
о J»i

egyenlőség. Viszont a g^-ról már korábban beláttuk, 

hogy nem lehet nulla, igy tehát

0 j ^ i n esetén./4.19./ h . .=0
J.i

A /4.19*/ feltétel teljesülése éppen azt bizonylt­

ja, hogy a H alsó trianguláris mátrix.

3 = ib,

A /4.18./ i—edik egyenlete és /4.19./ alapján

vagyisSohi,i = 1

/4.20./
hi,i = l/go '

0>ic,

A /4.18./ j-edik egyenlete alapján a /4.19*/ és
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/4.20./ eredmények felhasználásával felírhatjuk 

a következő egyenlőséget:

gj-i/go + gj-i-lhi+l,i + . . . + g h . . = 0 .bo J,1

Ezen egyenlet alapján a h —t a kisebb sorindexü
jf 1

i—edik oszlopbeli elemekkel a következő képlettel

tudjuk kifejezni:

= C-1/0-/4.21./ • h j-k,ih . . 
J.i gkk=l

Tehát a H mátrix i-edik oszlopának az elemei:

О < j Ci^n

О < j = i < n 

0 <i <j <n

/4.22./ 0

1//go 

-1/S'

h . . = 
J.i

gkhj-k,iо k=l

A 2.2. definició értelmében a H mátrix abban

az esetben Toeplitz-tipusu, ha tetszőleges 

О < i » j»t, s <n esetén

j — i = t — s h = h
j.i t, s
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Legyen 0^i,j,t,s^n és

j-i = t-s < 01,

ekkor a

/4.22./ alapján h . . = 0
J.i

= ht, s

2, j-i = t-s = О
/4.22.//4.22./

= VSo h. t, sh . . 
J.i

3» j-i = t-s = 1

alkalmazzuk újra a /4.22./ eredményeit

hj,i =C-1/go)sib

* C-1/so) ®л/eo ■ (-VsjSa-ba,, = C-l/í:o)glht-l,s=

j“l»i

= h4-t,s

4, Tegyük fel, hogy O^j-i = t—s = r-1 esetén

és legyenh . . 
J.i

= ht, s

0 ^ j-i = t-s = r .
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Alkalmazzuk az indukciós feltevést és a /4.22./-t:

■ c_1/° fi
- c-v<r

4 = 1

h . . 
J.i ekhj-k,i »

)•
gkhj-k,i + sj-ihi,i

-s-1
)

= (-l/g + g. h ° t—S s t s = h^ gkht-k,s t, s •

így tehát a H mátrix valóban Toeplitz-tipusu és 

ezért a /4.22./ képletben a h helyett h -t
j-i

is Írhatunk:

0 < j <i <n 

0(j=iín 

О <i <j<n .

/4.23./ о

-!/g0 *

h . . = 
j-i £ gkhj-k-i

V

Ha a /4.23./ képletben a j-i helyett egy m in­

dexváltozót alkalmazunk:

h = l/g o ' °o

m
= "h ZZ g, vо 4—_ °k m—к О ^ m <^nhm k=l

akkor éppen a bizonyítandó /4.16./ rekurziós kép­

letet kapjuk.
Q.e.d.
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4.1. KOROLLÁRIUM:

Egy n-edrendü nemszinguláris Toeplitz-tipusu 

felső trianguláris mátrix inverze is Toeplitz-ti— 

pusu felső trianguláris mátrix lesz, és az inverz

mátrix első sorának elemeit a mátrix első sorának

elemeiből a 4.1. tételben megadott /4.16./ rekur— 

ziós képlet alapján számíthatjuk ki.

Mivel az F egy q—adrendü nemszinguláris Toep— 

litz-tipusu felső trianguláris mátrix a G pedig 

egy p~edrendü nemszinguláris Toeplitz-tipusu alsó 

trianguláris mátrix, igy a 4.1. tétel és 4.1. ko- 

rollárium alapján az inverzeik is hasonló tulaj­

donságunk, és elemeiket a /4.16./ képlet felhasz­

nálásával határozhatjuk meg.

mátrixok el-Ha h és _s jelöli a G ^ ill. 

ső oszlopát, ill. sorát, akkor az M mátrixot a kö­

vetkezőképpen ábrázolhatjuk:
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I

О
q

м = o_ —h

О

Р

I

q

12. ábra

Az ábra alapján is jól látszik, hogy az M egy (p+q) — 

adrendü Toeplitz-tipusu mátrix.

Ha a /4.2./ kiindulási egyenletrendszert megoldó 

"hétlépéses" eljárásnak ebben a III. lépésében az M mát­

rix meghatározásakor a /4.16./ rekúrziós képletet alkal­

mazzuk, akkor a mátrix kiszámításának teljes müveletszük—

séglete:

p('p+l)/2+q (q+l}/2 = ( p2+ q2j/2 + Cp+qj/2
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IV. Az N mátrix meghatározása

A /4.12./ -ben definiált N mátrix а В cirkuláris 

mátrix 10. ábra szerinti particionálása alapján egysze­

rűen meghatározható. Azonban a következő tétel alapján 

az is belátható, hogy a létrejött N mátrix Toeplitz*»ti—

pusu.

4.2. TÉTEL:

Legyen C egy n—edrendü cirkuláris mátrix és p 

valamint q olyan pozitiv egész számok, hogy £p+q}£n 

teljesüljön. Particionáljuk a C—t a következőképpen:

I
I

C1 i
i -

' C2 _i _ .
P

C =
_ i_

I I сьC3 q
I
I

t.

q p

13« ábra

és készitsük el a
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I
I

сзC4 q
I

- - 4 - -T =
I
I cC2 P1
I

qp

14. ábra

(p+q) —adrendü mátrixot. Ekkor a kapott T mátrix 

Toeplitz—tipusu mátrix lesz.

BIZONYÍTÁS:

A T definíciója alapján nyilvánvaló, hogy min-* 

den T—beli elemnek van egy - vele megegyező — C-beli 

megfelelője. Vizsgáljuk meg, hogy mi a hozzárende­

lési szabály, azaz az egyes T—beli elemeknek mi a

C—beli "őse”.

Osszuk fel a T~t négy blokkra a következőképpen:
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41 q

т =
2 3 р

qр

15. ábra

és tekintsünk egy T—beli t elemet.
i» j

A T mátrix definíciója alapján:

/О <Д ^ q, 0 < j < p/, 

mátrixban ^i+n-q, j+n-p^ volt

az 1. blokkban vanha a t
i. j

akkor az eredeti C

az indexe, azaz

t. . 
J

= c i+n-q,j+n-p

Mivel azonban a C cirkuláris, igy a C—beli elem 

további C-beli elemekkel egyenlő, s ezért érvényes a

következő képlet:

t. . =
J

C C 35i+n-q,j+n-p “ i+n-q-j-n+p

= c .x—j+p-q ,
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a 2. blokkban van /q^i<p+q, О j ^.р/,ha a t
i* j

akkor az előzőekhez hasonlóan felírhatjuk a követ­

kező egyenlőséget:

t. .J i-q- Л—n+p “ Ci-,j+p-q *— c= c i-q,j+n-p

a 3. blokkbeli /q <^i ^ p+q, P*s.j^P+q/e ha t
i. 3

t. . = c .i-q»j~p = c j-j+p-q '

a 4. blokkban van /O^i^q, p^j<p+q/- ha pedig t.
J

t. . =
3 °i+n—q, j—p Ci—j+p^-q

Tehát függetlenül attól, hogy t melyik blokkban
i* 3

van, érvényes a

/4.24./ t. . = c .i, j i-j+p~q

képlet.

Legyen О <^i , j ,k, 1 < p+q és

/4.25./ i-j = k-1
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/4.25./ /4.24./

= Vl
/4.24./

/4.26./ c. =í-.l+p-q Ck~l+p-q

A /4.26./ egyenlőség azonban éppen azt bizonyltja, 

hogy a T Toeplitz-tipusu mátrix.

Q» e« d.

A most bebizonyított 4.2. tétel alapján az N mátrix 

Toeplitz-tipusu, mert kielégíti a tétel feltételeit. 

/Az N a /4.12./ alapján a cirkuláris В mátrixból pon­

tosan úgy keletkezik, mint a 4.2. tételben a T mátrix

is

a C—bői./

z vektor meghatározásaV. A

A z vektort a B*£ szorzattal definiáltuk. А В mát­

rix cirkuláris tulajdonságát kihasználva és a korábbi

segédtételek eredményeit felhasználva ebben a lépésben
2a hagyományos n müveletigényü mátrix- 

vektor szorzásnál — hatékonyabb eljárást alkalmazni.

is tudunk egy —

Legyen b а IX. lépésben már meghatározott В mátrix első

oszlopvektora. Ekkor

КЗ. 6.
= b (g) z = IDFT^DFTfb)* DFT(X)) •

K3.1.
/4.27./ z = B.£
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Ha ebben a képletben a szükséges DFT—к és IDFT végre­

hajtására az FFT algoritmust használjuk, akkor а ъ szor­

zatvektor meghatározásához szükséges műveletigény

3nlogn + n

lesz.

VI. A w kiszámítása

A w -t a /4.13./

Rw = s

lineáris egyenletrendszer megoldásaként kapjuk. A koráb­

biakban már beláttuk, hogy az R együtthatómátrix 

szinguláris, és igy a w —t egyszerűen megkaphatjuk 

Gauss eliminációs algoritmus alkalmazásával (p+q) /3 

művelet végrehajtásával.

nem—

a

Azonban az eljárásunknak ebben a részében is tu­

dunk egy hatékonyságot javitó algoritmust alkalmazni.

А III. és IV. lépésben meghatározott M és N mátrixok­

ról beláttuk, hogy ^p+q)—adrendü Toeplitz—tipusu mát-

lemma alapján az M és N mátrixok kü­

lönbségeként definiált R mátrix is Toeplitz—tipusu lesz.

rixok, igy a 3*3*
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így a /4.13«/ egy olyan lineáris egyenletrendszer 

a w-re, melynek együtthatója nemszinguláris Toeplitz- 

tipusu mátrix, s ezért a - 4.1. pontban emlitett és je­

lenleg az egész /4.2./ egyenletrendszer megoldására is al­

kalmazott - L—T-Z algoritmus felhasználásával a megoldás- 

3^'p+q')2 művelettel meghapható minden olyan e— 

setben, amikor az R erősen nemszinguláris. /Az együtt— 

hatómátrix erősen nemszinguláris volta az L—T—Z algo­

ritmus alkalmazhatóságának szükséges feltétele./

vektor

VII. Az x megoldásvektor maghatározása

A /4.7»/ képlet alapján ebben a lépésben már csak 

mátrix—vektor szozást kell elvégeznünk, s a ka—а В • c:

pott szorzatvektor és а összegeként a kiindulási /4.2./

egyenletrendszer megoldását kapjuk.

А В cirkuláris voltát kihasználva а В •<: szorzást is

egyszerűsíthetjük. Ugyanis

L3.6.КЗ. 1. 
В • c_ —/4.28./ bgc IDFT

A kapott képlet alapján — az FFT algoritmus alkalmazá­

sával - a B*c: szorzat meghatározásának teljes művelet­

igénye
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3nlogn + n

lesz*

Ezek után már csak n összeadást kell végrehajtanunk az 

x megoldásvektor meghatározásához.

így, ha a 4.2. részben kidolgozott "hétlépéses" eljá­

rás egyes lépéseiben a most megadott algoritmusokat al­

kalmazzuk, akkor teljesülnek a következő tétel állítá­

sai :

4.3. TÉTEL:

az eljárás а Тэс = nemszinguláris Toeplitz-ti— 

pusu szalagmátrix együtthatójú lineáris egyenlet­

rendszer megoldását számitja ki,

a megoldáshoz szükséges műveletek száma:ü,

3(p+q)2 +(p2+q2)/2 + o(n) /8nlogn +

ill. az eljárás VI. lépésében az L**T-Z algorit­

mus helyett Gauss eliminációt használva:

8nlogn + ([p+q^/3 +£p2+q2)/2 + 0(n)
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eljárás helyigénye O^n^iü* az

A helyigény azért lesz csak oQn) mert az eljárás során 

csak cirkuláris és Toeplitz—mátrixokat használunk, s igy 

egyetlen mátrix teljes tárolására, sincs szükség, min—

ésden esetben elegendő egyetlen oszlop vagy egy sor

egy oszlop elemeinek a tárolása.

A megadott módszer "gyorsaságát", azaz a viszonylag kis 

műveletigényt az biztositja, hogy a szükséges diszkrét

Fourier transzformációkat és az inverz transzformáció­

kat is a gyors Fourier transzformációs algoritmussal vé­

gezzük. Ezen algoritmus használatának szükséges felté­

tele, hogy a transzformálandó vektor komponenseinek szá­

ma kettő hatványa legyen, azaz a megoldandó egyenlet­

rendszer egyenleteinek a számát kettőhatványnak kell vá­

lasztani. Ez azonban a felmerülő gyakorlati alkalmazások 

esetén nem jelent erős megkötést. /Pl. különböző minta­

vételeknél a minták számát tetszőlegesen választhatjuk 

meg./ Ha azonban n mégsem választható meg kettőhatvány— 

nak, akkor az eljárás megfelelő kiterjesztésével lehet 

meghatározni a keresett megoldást. A módszer kiterjesz­

tését a nem kettőhatvány esetre a 6.2. rész tartalmazza.
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4.4. További műveletigény csökkentés minimális memória-

igény növeléssel

Az előző részben megadott eljárásban — nem túl 

jelentős memóriaigény növeléssel — a megoldáshoz szük­

séges műveletek számát mintegy 20 kai tovább tud­

juk csökkenteni a következőkben ismertetett módon.

Az eljárás IX. lépésében а В inverz mátrix meghatáro­

zása a feladat. А В cirlcularitása miatt csupán az el­

ső oszlopot számítjuk ki a

DFT(t))b = IDFT

képlettel három lépésben;

DFT(t)

' * DFT^Jt)

t(i * DFT(t))

kiszámításai*

meghatározásaü, 1 *

kiszámításaiii, IDF

Az ii, lépés után kapott érték a lemma alapján

nem más, mint a DFT^b^, ugyanis

• 5-
=/DFT(b) = 1 * DFT^jt)b = IDFT^l * DFT
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Ezen észrevétel alapján érhetjük el a műveletigény-

csökkentését a következő módon:

Az eljárás IX. lépésének végrehajtása közben tárol­

juk el egy n-elemü tömbbe az

r
i“ DFTCb) ;
i. J

1 * DFI^t) ■

vektor elemeit.

Az eljárás V. lépésében a z vektort kell meghatároz­

nunk a

z - IDFt(dFTQ£) * DFT(b'J)

képlet alapján. Mivel azonban a korábbi számitások so­

rán már meghatározott és eltárolt DFT^b} érték a ren­

delkezésünkre áll, igy a z meghatározásának menete so­

rán a DFT^b} érték kiszámitásától eltekinthetünk, s-igy 

a szükséges műveletigény az eljárás V. lépésében 

3nlogn + n, hanem csak

nem

2nlogn + n

lesz.
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Teljesen hasonlóan tudunk a VXI. pont végrehajtása« 

kor is - szintén a rendelkezésre álló DFT^b^segít­

ségével - további n.logn műveletigény csökkentést el­

érni .

így tehát a megoldási algoritmus teljes művelet­

igényét

8niogn + з(р+ч)2 + ^p2+q2) / o(n) -ről2 +

6nlogn + 3fp+cf)2 + ^p2+q2)/2 + 0 GO/4.29./

értékre tudtuk redukálni a tárolóigény minimális /n- 

szóval történő/ növelésével.

4.5* Az eljárás folyamatábrája

részben a Tx=_y lineáris egyen­

letrendszer megoldására kidolgozott algoritmus folya-

Ebben a

*■ .

matábráját adjuk meg a következő jelölések alkalmazá­

sával :

.0^ — a T első sorát,Cao’ 0,al*

Cv v
aa = • •• • • P’

°) a T első osz- 

lopáty
0. dd = , . . .• •

(V • a T első ősz-*„-i)t = c
lopát,
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Cv ) - а В első oszlopát,bb = n-1
-1“ (go’ ) első oszlopát,- a GSК P-l
-1

£ =(fo-

Ü - Cho-

első so rá t,) az Ffq-i

DFT(b)— raunkavektor ahn-0
tárolására.

FOLYAMATÁBRA

a, d, xInput:

T meghatározása
£

ai)CV 0 , a , а л 
P P-ld .0,I. dl’t = f ♦ • *• ■» •• • • q

/4.14./

В meghatározása

(l * FDFT(4})II. b = FIDFT

/4.15./

II“ Tr Il * FDFT(4) J = DFT^b^J 
■— л

h = 1 II
II

©
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M meghatározása

G ^ meghatározása

al)//G első oszlopa = (^ap> • • «

III.a
= l/a 

' Pgo

О <Cm <pa g= -ggm p—к m—ко

/4.16./

III.

F ^ meghatározása

/F első sora = ^d^, ••• d.^/

III. b f = l/d о ' q

m
f = -f У d 

k=l
°<m <(qq—к ^m—k

/4.16./

T
/lO. ábra/

N meghatározása

IV. П1» j bi-.j+p-q

/4.24./

I



68

0
z kiszámítása

fdft(x)')z = FIDFT^h *
V.

! h = DFT(b) 
l_ _____________

I
1

/4.27./ .

w kiszámítása

R = M - NVI. a

I
S = (z . ,V. n—q+1 z ) P JZn’ Zl’ • • •• • •

VI. b

/11. ábra /

megoldása azRYf = s
VI. c

L—T—Z algoritmussalVI.

Nem kaptunk meg­

oldást /R nem volt

Megkaptuk a meg­

oldást /R erősen 

nemszinguláris/. erősen nemszingu­

láris/ .

Rw = s_ megoldása 

Gauss eliminációval

T

©
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2

x meghatározása

с: = ^ w •w ) q'0, . ..0,w ,q+p
. .• • •

q+1*VII. a

/11. ábra/és /4.6./

I
= FIDFT^h X FDFT(c)^В

VII.
— I\-

I h = FDFI^b^i 

/4.28./

VII. b

I
x = z + В c

VII. c
Л-7-/

T

S top

az x megoldásvektorOutput:

16. ábra
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4.6. Az algoritmus bemutatása egy konkrét példán

A most következő részben a kidolgozott megoldá­

si algoritmus menetét egy konkrét példán is bemutat­

juk.

Legyen a megoldandó egyenletrendszer

= 2+ x"X1
/4.30./ 2Xl

2
= 4+ X + X2 3

= 42x2 + x^ + x^

4 = 3 •2x_ + x
3

Az egyenletrendszer egy megoldása:

/4.31./ l .= X_ = X_ = XX1 4 =2 3

Mivel a rendszer determinánsának értéke —1, igy 

a /4.31«/ az egyenletrendszer egyetlen helyes megol­

dása.

Nézzük most meg, hogy az uj eljárás segítségé­

vel hogyan kaphatjuk meg a /4.30./ lineáris egyenlet­

rendszer megoldását. A /4.30./ alapján, /az előző ré­

szekben használt jelöléseket alkalmazva/:
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2О О1 1

42 О1 1

т = ; х. = 4О 1 12

32О О 1

17. ábra

és q = 1Р =

А Т , Т, mátrixok és a t vektor pedig a következők eb
lesznek:

I
О О О ! 2 1О 21 1 I

2ОООО1 О2 1 és t=; тт =: ьс
О0 0 0 0о 1 12

I
_! ! О о о 12 1О1

18. ábra

azaz Т inverzének az első oszlopát a T c c
első oszlopvektorából, Jt —bői a

B—ne к,

(.í * DÍT( *))b = IDFT
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képlet alapján számítjuk ki a következő lépésekben:

(2,0); (0,0); (l,o)J 

(1,1) ; C-2>°) (i,-1)]

_t =1^1 ,o)

DFT(t) = J(.4,0)

(t))= J(l/4,0) ; (l/2,-1/2) ; (-1/2,6) ; (l/2,l/2)J

;

;

H * DFT

/Ezt a vektort eltároljuk egy h vek­

torba, mert erre még szükségünk lesz, 

hiszen ez nem más, mint a DFT(b)./

(l * DFT(t)) =|_(3/l6,o) ; (-1/16,6) ; (-5/16,0) ; (_7/l6,o|=bIDFT

és igy а В mátrix a következő lesz:

-13 7 -5

-13 7 -51B= 16 * .

-5 -1 3 7

-1 37 -5

19* ábra

A T. mátrix alapjánD

bl ,és G =
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s ezért

= I1/21 •-1-1 GF ;

így

1/20
M =

о1

20. ábra

А В megfelelő particionálása után:

I -13 7 “5J
-1 3 7 -5

в =
-1 3 7-5 I

-1 I 37 ' -5
II

21. ábra

az

3 7
1N • is

-l 3

22. ábra

lesz.
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1-3
1R=M-N “ 16

-317

23. ábra

A z vektort a

(b))z = IDFt(dFT(£) * DFT

képlettel számítjuk ki a következő lépésekben:

Z=[C2,0); (4,0) ; (4,o) ; (3,0)]

^) = [(13,0); (-2,1)! (-l,0);C-2.-l)]

( Ь) = [(1Л »о) ; (l/2, -1/2) ; (-1/2, о) ; (l/2,1/2)] -

DFT

DFT

ezt most nem kell

s zámolnunk!

(Ъ)>|(13Л,0) ; (-1/2,3/2) ; (l/2,o) ; (-1/2,-3/г)2 

(b))= f(ll/l6,0) ; (23/16,0); (19/16,0);

(-l/ló, 0)J = z .

(dft(x)* DFT

(DFT(x)IDFT * DFT

így a /4.13*/ -nak megfelelő Toeplitz egyenletrendszer

a következő lesz:
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-3 1 -1V1 1/4.32./ 16 " 1617 -3 11U

Mivel a /4.32./ egyenletrendszer R együtthatómátrixa 

erősen nemszinguláris /a főminorok értéke: -3 ás -8/ 

igy a megoldást az L~T-Z algoritmussal számíthatjuk ki.

A kapott megoldás

ésv = 1 u = 2 .

így
(2, 0, 0, l) .c =

A szorzatot az

IDFT^DFT^b)* DF

képlet alapján számítjuk ki.

DFT(c) =[(3,0) ; (2,-1) ; (1,0); (2,i)J

(b*) = [(l/4,Ö) ; (1/2,-1/2) ; (-1/2, o) ; (l/Z,lz)[

/= У
(b) =[(^3/4 ,o);(l/2, -3/2) ;£i/2 , o)}(i/2,3/2)]

DFT

DFT(V) X DFT
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(dFT(V) X DFT(b|= j(_5/l6,6) ; (-7/I6 ,o)i(-3/l6 to)j(l7/l6 , o)j=IDFT

В* c=

Ezek után a megoldás:

111 5X1
11 1-7= _z+B = +16x= 23X2 16

1-319x3

117-1x4

4 = 1Azaz = x„ = xX1 = X2 3
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5. A JELENLEG HASZNÁLT ALGORITMUSOK ÉS A BEMUTATOTT 

ELJÁRÁS ÖSSZEHASONLÍTÁSA

A

Tx = X

Toeplitz-tipusu szalagmátrix együtthatójú Lineáris egyen­

letrendszerek megoldására jelenleg a Gauss eliminációt 

vagy az L-T-Z.algoritmust használják. Hasonlítsuk össze 

ezeket az algoritmusokat a kidolgozott eljárással a szük­

séges műveletigény alapján. Az egyes értékek a következők:

n(p+qfA/5-1./ Gauss elimináció :

1,5n2~l, 5(p+of A+ 3n(p+ qj/2+C^i)/5.2./ L-T-Z algoritmus :

6niogn+3^p+<^f+ /2+0 (n)/5-3./ uj eljárás :az

Jelöljük d-vel a T együtthatómátrix szalagszélessé- 

gét^p+q^-t, valamint r-rel a relativ szalagszélességet 

^d/n)-t és vizsgáljuk meg, hogy milyen n és d értékek mel-

eljárásunk hatékonyabb az L-T-Z al—lett lesz az

goritmusnál.
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A 24. ábrán a megadott eljárásunk és az L-T-Z algo-

müveletigény-különbségét,(/5•3\/~/Ъ•2./)/n -t 

ábrázoltuk a relativ sávszélesség függvényében különböző 

n értékek esetén. Az ábráról jól látszik, hogy az n=l6 - 

hoz tartozik az első olyan különbséggörbe, amelynek már
4vannak pozitiv értékei is, azaz n = 2 esetén már van o- 

lyan p és q, amelyekre az eljárásunk hatékonyabb lesz az 

L-T-Z algoritmusnál.

ritmus relativ

-31r^+12r+12-48logn/n



79 -

A 25* ábrán az egyes n értékekhez tartozó "jó" re­

lativ sávszélesség-tartományokat ábrázoltuk, azaz az

egyes n, ill. logn pontokhoz tartozó függőleges szaka­

szok olyan intervallumokat jelölnek, amelyekbe ha bele-

értéke, akkor az eljárásunkat érdemes
4. Erről az ábráról jól látszik, hogy n = 2 —

(^p+q)/nesik a

alkalmazni

hez tartozik az első függőleges szakasz, mégpedig olyan, 

r^£o,0.4j pontok tartoznak bele, tehát n = 16 

esetén, ha 6, akkor már érdemes az uj módszert

használni. A 25* ábra függőleges szakaszainaik végpont­

jait az /5*3»/ós /5.2./ müveletigény-értékek különbsége 

alapján származtatott

hogy az

6+2 \ 6(*21-62 logn/n)y(n) =/5.4./
. 31

függvény értékei szolgáltatják.

Mind az /5.4./ képlet, mind pedig a 25« ábra alap—
t

ján látható, hogy az n növekedésével a "megfelelő" p és 

q értékek is nőnek egészen r = 0,84-ig, azaz ha n elég 

nagy, akkor minden^p+qj^O,84n esetén érdemes a dolgozat­

ban megadott eljárást alkalmazni.
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^ ^ d/n
p+q=0.84n

0.84

0.7

0.5

0.3

0.1 .

^ logn
123456789 10 13 15

25. ábra

Az /5.3./ és /5.2./ értékek alapján az is látszik, 

hogy ha n elég nagy és p,q kicsi, akkor igen jelentős lesz 

a műveletigények eltérése, ugyanis

1.5n2 -l,5d2/4 + l,5nd
2

6nlogn + 7d /2
lim = o=>
n->oo
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12így például, ha n = 2 és p = q = 

/5.1./. /5.2./ és /5-3./ érték 2 , 3-223és

27, akkor az

219 lesz,

tehát az eljárásunk a Gauss eliminációnál mintegy 120- 

szor,az L—T-Z algoritmusnál pedig kb. 50-szer gyorsabb

ebben az esetben.

Az ejárásnak — a korábbiaknál kisebb müveletidő 

szükségelete mellett — további nagy előnye az általános 

/eliminációs, iterációs/ eljárásokkal szemben, hogy ki­

használja az együtthatómátrix Toeplitz tulajdonságát és 

nem tárolja az egész mátrixot csupán annak első sorát 

és oszlopát, s igy igen komoly tárolóigény csökkenést

Ez azért jelentős, mert nagyméretű egyenlet­

rendszerek esetén az egész együtthatómátrix már "nem fér 

el" az operativ memóriában, ezért általában az eliminá-

biztosit.

ciós és iterációs eljárások csak disc terület igénybevé­

telével hajthatók végre, viszont a disc-hez fordulások mi­

att lényegesen lassul a megoldás meghatározásának menete.

A helyigény az eliminációs és iterációs eljárásoknál o(n^), 

mig az uj algoritmus esetében ez az érték csak °(n) lesz.

A most megadott eljárás komoly korlátjának tűnhet, 

hogy szemben a korábbi algoritmusokkal a kiindulási egyen­

letrendszer megoldhatóságához most nemcsác a T együttható­

mátrix nemszingularitása szükséges, hanem a T cirkuláris
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kiterjesztésével keletkezett Tc mátrixnak is nemszingulá— 

risnak kell lenni, s igy az algoritmus alkalmazhatóságá— 

hoz még egy — általában jelentős müveletigényü - szingu— 

laritásvizsgálatot is el kell végeznünk. Azonban a 3*rész- 

ben bebizonyitott 3*7* lemma hatékony eszközt ad a prob­

léma leegyszerűsítésére. Mivel a Tc cirkuláris, igy a lem­

ma eredményei alapján egyetlen FFT végrehajtásával el tud­

juk végezni a tesztelését.

Itt jegyezzük meg, hogy bár az L-T-Z algoritmus ál­

talánosabb eljárás, mivel olyan lineáris egyenletrendsze­

rek megoldására is alkalmas, melyeknek együtthatómát­

rixa nem szalagmátrix csupán Toeplitz—tipusu, bizonyos e- 

setekben azonban az uj algoritmus lesz az általánosabb. 

Ugyanis az L-T-Z algoritmus alkalmazhatóságának szükséges

feltétele, hogy az együtthatómátrix erősen neraszinguláris

legyen, mig a megadott eljárásunk alkalmazhatóságához csak 

a T mátrixnak és a cirkuláris kiterjesztésének, Tc -nek a 

nemszingularitása szükséges. így tehát minden olyan eset­

ben, amikor T és Tc nemszinguláris szalagmátrix, azonban 

nem teljesiti az erős nemszingularitás feltételét, az

L-T-Z algoritmus nem alkalmazható, viszont az uj eljárás­

sal meghatározható a keresett megoldás.
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6. TOVÁBBI HATÉKONYSÁGNÖVELÉSI ÉS ÁLTALÁNOSÍTÁSI LEHE­

TŐSÉGEK

6.1. Hatékonyságnövelés hardware és elméleti utón

A dolgozatban bemutatott eljárás egyes lépése­

inek a leírása alapján jól látszik, hogy a megoldás 

meghatározásához szükséges müveletvégzés szinte ki­

zárólag csak gyors Fourier transzformációk és inverz 

gyors Fourier transzformációk végrehajtásából áll. 

Ezért viszont minden,a gyors Fourier transzformáci­

ós algoritmus hatékonyságát növelő módszer a transz- 

formációéval majdnem azonos mértékben növeli az eljá­

rásunk hatékonyságát is. Mivel jelenleg a gyors Fou­

rier transzformációt már egyre inkább hardware utón 

oldják meg £9» 15^

hajtási időt nagyságrendekkel csökkentő un. gyors 

Fourier transzformációs processzorok £l0,

[2, 34] ,
ilyen módon oldjuk meg a szükséges transzformációk 

végrehajtását, akkor - a fenti meggondolások értel­

mében - algoritmusunk hatékonyságában is igen szá-

, s egyre elterjedtebbek a végre—

és

ezért ha az eljárásunkban isarchitektúrák

mottevő javulás várható.

A Toeplitz egyenletek megoldása területén elért 

újabb eredmények felhasználásával a módszerünk haté-
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konysága javításának egy másik útja is lehetséges. 

Sikerült ugyanis J. Jain kettőhatvány elemszámú 

Toeplitz egyenletrendszerek megoldására kidolgozott — 

az inverz mátrix egy speciális felbontását |^23j és 

a gyors Fourier transzformációs algoritmust felhasz-

£21^ egy olyan általánosítását 

megadnom £7^ » h°gy a kapott eljárás már tetszőleges 

elemszámú Toeplitz—tipusu /nem feltétlenül szalag-/ 

mátrix együtthatójú lineáris egyenletrendszer megol­

dására alkalmas. Az eljárás müveletszükségelete a
2jelenleg használt 3*1 

sóval szemben 2n^ + O^nlogn). Mivel a Toeplitz-tipu— 

su szalagmátrix együtthatójú lineáris egyenletrend­

szerek megoldására kidolgozott algoritmusunkban a /4.13*/ 

^P+q)-adrendü Toeplitz egyenletrendszer megoldására

az L-T-Z algoritmust használtuk, igy az újabb eljárás
\ 2alkalmazása esetén a /4.13»/ egyenletrendszert З^Р+Ч/ 

művelet helyett 2Qp+q^^ +O^Q>+q"^log^p+q^) művelettel 

tudjuk megoldani, és ez a javulás a teljes algoritmus 

műveletigényének csökkenésével jár.

náló - módszerének

müveletigényü L-T-Z algoritmu-

6.2. Altalánositási lehetőségek

A dolgozatban megadott megoldási algoritmus al­

kalmazhatósági körének kiterjesztésére a Toeplitz-
)
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és Hankel mátrixok közötti szoros kapcsolat nyújt

további lehetőséget. A dolgozatban megadott e— 

redmények felhasználásával ugyanis a Toeplitz-tipusu 

szalagmátrix együtthatójú lineáris egyenletrendsze­

rekre kidolgozott eljárásunk egyszerűen módösitható 

úgy, hogy a kapott algoritmus alkalmazható legyen 

Hankel tipusu szalagmátrix együtthatójú lineáris e— 

gyenletrendszerek megoldására.

Mivel jelenleg az általános lineáris egyenlet­

rendszerek megoldására alkalmazott programcsomagok ál­

talában az egyenletszám harmadik hatványával arányos 

eliminációs vagy iterációs algoritmusokat használnak, 

ezért esetleg nagyméretű egyenletrendszerek megoldá­

sa esetén érdemes lehet egy "elővizsgálatot" beépí­

teni a programcsomagba, annak eldöntésére, hogy a meg­

oldandó egyenletrendszer együtthatómátrixa nem Toep— 

litz vagy Hankel mátrix-e. Mivel ezt az elővizsgála-

egyszerü kivonással el lehet végezni, igytot

az esetlegesen elérhető igen számottevő műveletigény 

csökkenés miatt ezt a vizsgálatot akkor is érdemes el­

végezni, ha csak ritkán találunk Toeplitz vagy Hankel

mátrixot.
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Alihoz azonban, hogy tetszőleges alkalmazási te- 

tületen - ahol esetleg már nem választható meg megfe­

lelően az egyenletek száma — alkalmazható legyen a 

megoldási módszerünk, meg kell adni az algoritmus ki­

terjesztését arra az esetre is, ha a megoldandó egyen­

letrendszer egyenleteinek a száma nem ke.t tőhatvány.

Ebben a részben a továbbiakban a kiterjesztési folya­

matot és az általánosított algoritmust ismertetjük.

Tekintsük a

/6.1./ Tx = £

nemszinguláris Toeplitz-tipusu szalagmátrix együttha­

tójú lineáris egyenletrendszert és tegyük fel, hogy az 

egyenletek száma nem kettőhatvány. Legyen T rendje

n.

Keressünk egy olyan к számot, amelyre teljesül:

2*3t egész szám:i» n + к =

к £ max (P.q)ü,

к a legkisebb az i. és ii. feltételeketiii,

kielégítő számok közül.
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к) -adrendü Toeplitz-Legyen а Т mátrix £п + 

tipusu kiterjesztése:

О п

Те
\
\

ч \
ч ч х

Ч Ч Ч
ч ч ^ к 

N У

ч ч
ч

О ч
ч ччкп

26. ábra

А Т -ben а Т nem nulla elemein kivül csak ae
szaggatott vonallal jelzett sorokbeli elemek lehet­

nek nem nulla értékűek és a ’-ferde sorok" mentén to­

vábbra is csupa azonos elem áll.

)-Az x kiterjesztése pedig a következő ^n + к 

rendű vektor legyen:

ad-

0 < i < nx.
/6.2./ x

ei = n i <^n+k0
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-re való kiter-A T és T. mátrixokat T-nek T eb e
jesztése után a korábbiakhoz hasonlóan definiáljuk

/csak most T helyett Te~re/. így tehát Tc 

rix cirkuláris kiterjesztése /most а к definiciója 

miatt a p+q<^n+k feltétel biztosan teljesül/, a 

T -t pedig újra a

a T mát—e

TTb = T ec

képlettel definiáljuk.

A korábbi jelöléseket használva a Tc 

ku lesz:

q

T =c

к
P
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legyen a következő + к)-elemű vektor:Az у

Z n/6.3./ >*e =
*f к

ahol az olyan k-eleraü vektor, hogy a /6.3»/—mai 

-re teljesül adefiniált *e

/6.4./ T x c—e = 2e

egyenlőség.

Tegyük fel, hogy a Tc cirkuláris mátrix nemszin­

guláris. így létezik а В = inverz mátrix is és

a 3*2. lemma alapján а В is cirkuláris.

Particionáljuk а В mátrixot a következőképpen:

ВB11 12 n

/6.5./ В =
ВВ 22 к21

кп

28. ábra
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A В inverz mátrix létezése miatt a /6.4./ alapján fel­

írhatjuk a következő egyenletet:

/6.6./ —e M B*e >

amelynek"blokkositott" alakja:

ВВ Xx 1211

/6.7./

О В в yf2221

29. ábra

Elvégezve a kijelölt szozást, az

/6.8./ ésX = BllZ ♦ B12if

/6.9./ ° - B21z + В22^-f

egyenleteket kapjuk.

B^2 inverz mátrix,Tegyük fel, hogy létezik a 

/6.9./ alapján:

ekkor
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~B22 В21^ */6.10./ Zf =

А В~2 létezésének egy elégséges fel té­

tele,hogy В erősen nemszinguláris legyen,

Megjegyzés :

ugyanis а В felbontása alapján látszik,

megegyezik а В mátrix bal fel—hogy a B22

ső sarkában álló k-adrendü főminorral /a

В cirkuláris volta miatt/.

Helyettesitsük be a most kapott jr értéket a /6.8./— 

ba. így az

12 B22 B21 Z/6.11./ В2 = BllZ -

képletet kapjuk a keresett x megoldásvektorra, 

képlet alapján a szükséges műveletek /mátrix szorzás, 

inverz meghatározás/ elvégzésével а /6.1./ lineáris 

egyenletrendszer x megoldásvektora meghatározható.

Ezen

c. .

A szükséges műveletek száma:

n*^k+l} + 2 ^n+k} log^n+k) + 3nlogn + 3^ + (n+k^ ./6.12./

A számitási algoritmust nem részletezzük, ugyanis 

az x meghatározása lényegesen hatékonyabb lesz, ha a
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/6.10./ alapján meghatározott 

a /6.3*/-ba helyettesítjük vissza és az x 

a /6.6./ képlet alapján határozzuk meg.

vektort közvetlenül

vektort—e

Ez azért is előnyös, mert igy újra ki 

használni a szorzás egyszerűsítésére а В mátrix cir­

kuláris voltát. Mivel a 

/6.5./ felbontása alapján Toeplitz-tipusu mátrix,igy

Zohar-Trench féle inverziós algoritmus £зб]

2 ralapján 3k művelettel meghatározható, feltéve, hogy 

B^2 erősen nemszinguláris. Ha B^ csak nemszingulá­

ris, akkor Jordan vagy Gauss elimináció segitéségvel 

határozzuk meg a B^ inverz mátrixot /kJ művelettel/.

A módosított eljárás algoritmusában is alkalmazhatjuk 

részben használt összefüggést,azaz a DFT^b} -t 

most is tároljuk és ez, ebben az esetben (n+k) log^n+k) 

műveletigény csökkenést eredményez.

tudjuk

а В cirkuláris mátrix

inverze a

a 4.4.

Mindezek alapján a kiterjesztett algoritmus fő

lépései a következők lesznek:

1. Megfelelő к érték keresése

к + n= 2 *i.

(p>q)к maxii.

iii. min

műveletigény: log (n+k”)
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Tc meghatározása2.

Mivel Tc cirkuláris, csak egy oszlopot kell raegha- 

tá гоznunk.

Müveletvégzés: n + к értékadás

В = mátrix meghatározása3. A

b = FIDFT

Műveletigény: 2(n+k^ log(n+k) + 0 (n+k) .

4. számitása

-1 meghatározása4. а. В22

Zóhar-Trench algoritmus vagy Jordan elimináció .

33k2Műveletigény: vagy к

C= ВГ»4.b. • В22 21

mátrix szorzás

Műveletigény: k2n
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4. с. Оу kiszámítása

Mátrix-vektor szorzás

Műveletigény: nk

4.d. meghatározása

Xf = ~C'X

meghatározása5-

= [z. zf]Ze

Müveletvégzés: n + к értékadás .

6. x meghatározása

x = В • у —e ^~e

JjDFT(b) X FDFT(^e^Jx = FIDFT

/FDFT^b) ismert/

2Qa+k) log(n+k) + 0 (n+k^ .Műveletigény:

A megadott általánositott algoritmus teljes müve­

ié tigénye az egyes lépésekben megadott értékek alapján:
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4 Cn+lQ logCn+k4) + nk + k^f3+n)+ ОрЧ’к) vagy

4fn+lc) logfn+k) + nk 4 + k2n + ofn+iQ

a 4 .^.lépéstől függően.
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7. AZ ELJÁRÁS SZÁMÍTÓGÉPES IMPLEMENTÁCIÓJA

A Toeplitz-tipusu szalagmátrix együtthatójú li-

neáris egyenletrendszereknek a — dolgozatban megadott 

algoritmus alapján történő — megoldására készült

FORTRAN nyelvű program listáját a 2. melléklet tartal­

mazza.

Az eljárás használatakor egy főmodulban kell meg­

adni az egyenletrendszer paramétereit /Т első sorának 

első^p+1^ és első oszlopának első (fj+l) elemét, vala­

mint az vektort/. Ebben a modulban kell aktivizálni 

a TOPLEQ szubrutint, amely az egyenletrendszer megol­

dását szolgáltatja. Ez a rutin aktivizálja futása köz­

ben az LTZALG nevű szubrutint, amely a /4.13»/ — (p+4.^ 

egyenletből álló - egyenletrendszer megoldását számít­

ja ki az L—T-Z algoritmus alapján. A rutin futása so­

rán ellenőrizzük, hogy az együtthatómátrix kielégíti—e 

az erős nemszingularitás feltételét, s ha ez nem tel­

jesül, akkor kilépünk az LTZALG ritunból és aktivizál­

juk a GAUSEL szubrutint, amely a /4.13»/ egyenletrend­

szer megoldását Gauss eliminációval határozza meg.

A TOPLEQ rutin használja még az FFT diszkrét Fou­

rier transzformációt gyors algoritmussal számitó szub—
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rutint. Mivel az inverz transzformáció számításában

csak kis eltérés van a gyors Fourier transzformáció-

hoz képest, igy nem alkalmazunk külön INVFFT—t, hanem 

az FFT-t képeztük ki úgy, hogy egy paraméter értéké­

től függően vagy a transzformációt vagy pedig az in­

verzét hajtja végre.

IBM 370/145 gépen fut­

tatott — programok különböző méretű /4.2./ tipusu 

gyenletrendszerek megoldásához szükséges kerekített mü— 

veletidőit /CPU idő/ tartalmazza.

A következő táblázat

e—

Gauss elimináció L-T-Z algo­
ritmus

a bemutatott 

eljárás
N

/P=q=i2/
perc mpperc mp perc mp

432 1 1

128 9 22 59

256 23 11 32 3

62 01512

1024 8 03 11

1. táblázat
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1. Melléklet

ahogy azt már az "előzményeket" áttekintő 

4.1. részben említettük,a dolgozatban megadott eljá—

Mint

Mrás kiindulásául A.Jain 1978~ban közölt algorit­

musa szolgált.

Jain eredményei azonban a Toeplitz-tipusu szalag-

mátrix együtthatójú lineáris egyenletrendszereknek

csak egy részére alkalmazhatók, mivel Jain olyan fel­

tételezéseket használ,amellyel ugyan egyszerű megol­

dási algoritmust tud kialakítani, azonban igy az el­

járás vészit az általánosságából.

Ha a dolgozatban használt jelöléseket alkalmaz­

zuk, akkor a következőképpen tudjuk leirni a Jain ál­

tal tett feltételezéseket:

Tekintsük a T inverzének és az у vektornak a szór— c
9. ábra szerinti particionálásazatát az inverz mátrix

mellett:
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it „ii i „im m 
В X +B

ii im i ... it t 
2 +B Xqp/М.1./ в в в p2

Bmi i+Bmy+ ^m t^tmi mt mmmВ ВВ 2 —B2 =

„ti i „tm mВ X +в
. ... „tt t2 +B xti tt ttmВ В В qq 2 p

q p

30. ábra

Jain, algoritmusában az /М.1./ szorzatvektor első 

p komponenseként a

„ii 1 B 2
„it t + В £/М.2./

értéket használja, azaz elhanyagol ja a B^m^m értéket. 

A vektor utolsó q komponensének pedig a

ti t
В 2

„tt t + В %/М.З./

értéket tekinti, elhagyva a B^mjrm -et.

így viszont az algoritmus csak abban az esetben ad he­

lyes eredményt, ha a
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„im m В i = 0

/М.4. /
„tm m В % = 0

egyenletek egyszerre teljesülnek. Azonban ez egy nagyon 

erős feltétel és legtöbbször nem teljesül.

/Egy elégséges feltétel /М.4./ teljesülésére, hogy 

= О legyen, ami viszont szemléletesen azt jelen­

ti, hogy a kiindulási egyenletrendszer jobb oldalán 

az első p és utolsó q értéket kivéve csak nulla állhat/

Azt pedig, hogy az /М.4./ általános esetben nem 

érvényes, szemléletesen bizonyltja a. 

mutatott példa. Ugyanis a példában

4.6. részben be-

„im m В z =1/2*0

_ tm m В z = -3/2 ф 0 .

A /4.30*/ egyenletrendszerre a Jain által adott al­

goritmust alkalmazva megoldásként

-4.5 5 x3 = -10.5; x4 = 23.5= 9.5 ;X1 X2 =

adódik, ami a /4.30«/ egyenletrendszer egyértelmű meg­

oldhatósága miatt nem lehet jó megoldás.
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2. Melléklet

A mellékletben a következő FORTRAN nyelvű szubrutin

nők találhatók:

— a /4.2./ egyenletrendszert megoldó "főu1. TOPLEQ

szubrutin .

- gyors /inverz/ diszkrét Fourier transz­

formációt végző szubrutin.

2. FFT

- a Levinson-Trench-Zohar algoritmus alapján 

készült, S. Zohar által publikált ^38^ és 

szubrutin, amely Toeplitz

3. LTZALG

[39]j avit о 11

mátrix együtthatójú lineáris egyenletrend­

szerek megoldására szolgál.

4. GAUSEL — lineáris egyenletrendszert Gauss eliminá­

cióval megoldó szubrutin.
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Tiííííííííií-'tí TOPLEQ PAGE 1.C
C
C
C

SUBROUTINE TOPLEQ (L W у Pу Nу Qу Y у LP » LQ»NN у FQ » В у R у S у LT у Т)
víí'tííívс

с
с
с XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX«
С XX

THIS SUBROUTINE SOLVES THEС xx
С X*

AX=YС xх
С йй

SYSTEM UF LINEAR EQUATIONS у WHEN THE COEFFICIENT 
MATRIX /А/ IS A BANDED TOEPLITZ-TYPE MATRIX.

C ЙЙ
XC Й

c XЙ

c ЙЙ

PARAMETERS:C •XЙ
- IS THE NUMBER UF EQUATIONS.
- IS THE NUMBER OF NON-ZERO ELEMENTS IN THE # 

FIRST ROW OF THE COEFFICIENT MATRIX.
- IS THE NUMBER OF NON-ZERO ELEMENTS IN THE x 

FIRST COLUMN OF THE COEFFICIENT MATRIX.
- CONTAINS THE NON-ZERO ELEMENTS OF THE 

FIRST ROW OF THE COEFFICIENT MATRIX.
- CONTAINS THE NON-ZERO ELEMENTS OF THE 

FIRST COLUMN OF THE COEFFICIENT MATRIX.
- INITIALLY CONTAINS THE DATA VECTOR. ON 

RETURN» IT CONTAINS THF SOLUTION VECTOR. *
ARRAYS FQy В - ARE WORKING ARRAYS.
ARRAYS RуSуT - ARE WORKING ARRAYS.

= LP+LQ-2 
= LW#(LW+1)
= 2*N

NC XX
LPC x

C xX
L.QC x

C xX
ARRAY PC xX

C XX
ARRAY QC xx

C xX
ARRAY YC xX

C X
C XX
C XX
C LW xX

LTC xX
C NN xX
C X X
C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx
c
c
c

DIMENSION P(LW)уQ(N)уY(N)yFQ(NN)yB(NN)yR(LW)yS(LU)»T(LT).
C
C

KI=0
M=N
KI=KI+1 

MM-'2x (M/2) 
IF(M.NE.MM) 
M=M/2 
IF(M.NE.l)

1

GO TO 40

GO TO 1
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íiííííííííííííí TOPLEQ íítíiítí=ííííííií PAGE 2.C
C
c
c

I. COUNTING TC /FROM Т/C
C
C

DO 2 1=2?LP
Q(N+2-I)=P(I)2

DO 3 1=1? N
FQ <2*1-1)=0(1) 
FG<2*I)=0.3

C
II. COUNTING В /THE INVERSE OF THE TC MATRIX/C

C
C

CALL FFT(NN?FÜ?KI?1) 
ZE=10**<-10>
DO A 1=1?N

FN=FQ<2*I-1)**2+FQ(2*I>**2 
IF(EN.LE.ZE)
FQ <2» I■-1) =FQ ■:2*1-1) /EN 
FQ(2*1)=-FQ(2*1)/EN

GO TO 42

4
C

// DFT/B/ > FQ //C
C

DO 5 1=1,NN
В(I)=FQ(I)

CALL. FFT(NN»B,KI,-1> 
DO 6 1=1,N

5

6 В(I)=B(2*1-1)
C

III. COUNTING THE M MATRIXC
C
C

III.A. CALCULATION THE INVERSE OF THE 
G MATRIX /FROM Р/

C
C
C

LPF-LP-l 
DO 7 1=1, L.PP

S(I)=P(LP+l-I) 
DO 8 1=2,LPP 

P(I)=0. 
P(l)=l./S(l)
DO 9 M=2,LPP 

MM=M--1
DO 10 K=1?MM

7

8

10 P (M) =P <M) +S <K+1) *P (M-K) 
P(M)=-P(1)*P(M)9
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TOPLEQ ±£?$£*3£44££±ФФ«±± PAGE 3.С
С
С

III.В. CALCULATION THE INVERSE OF THE 
F MATRIX /FROM 0/

C
c
c

LQQ=LQ--1 
DO 11 I=1,LGQ

S (I) =Q (LG+1--I) 
DO 12 1=2?LOG 

Q(I)=0.
Q (1) =1 ./S' (1)
DU 13 M=2?LGQ 

MM=M-1
DO 14 K=1? MM

11

12

Q <M) =Q (M) -i-S (K+l) #Q (M-K) 
G (M)=-Q (1) *G (M)

14
13

C
IV. COUNTING N MATRIX /BY В MATRIX/C

C
C

IN=LPP-LQG+1 .
IF(IN.GT.O) GO TO 15 

IN=IN+N 
R2.ER0=B (IN)
LRS=LW-1 
DO 16 1=1»LRS 

IN--IN+1
IF(IN.LE.N) GO TO 16 

IN=IN-N 
R(I)=B(IN) 

IN=LPP-L0Q+1 
IF(IN.GT.O) GO TO 17 

IN=IN+N .
DO 18 1=1?LRS 

IN=IN-1
IF(IN.GT.O) GO TO 18 
IN=IN+1 

S(I)=B(IN)

15

16

17

18
C
C V. CALCULATION THE Z VECTOR
C
C

DO 19 1=1»N
B(2*I-1)=Y(I) 
B(2#I)=0.

CALL FFT(NN»BfKbl) 
DO 20 1=1>N

19

V=B(2*1-1)*FQ(2*1-1)-B(2*1)*F0(2*1)
В (2*1) =B (2* I) *FG (2* I -1) +B (2*1-1) «FQ (2*1) 
В(2*1-1)=V

CALL FFT(NN»B»KI»-1)
DO 21 1=1,N

20

21 В (I)=B(2*1-1)
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íiííitíiiíí-rTviti TOPLEQ írííííííiííííííí PAGE 4.C
C
C
c

VI. CALCULATION OF U VECTORС
С
С

VI.A. COUNTING THE R MATRIX /R=M-N/C
C

RZERO=-RZERO 
LQ1=LQQ-1 
DO 22 1=1»LQ1

R(I)=~R (I)
DO 23 1=1»LPP

R(LQ1+I)=P(I)-R(LG1+I)

22

23
LP1=LPP-1 
DO 24 1=1»LP1

S(I)=-S(I) 
DO 25 1=1»LQQ

24

S(LP1+I)=Q(I)-S(LP1+I)25
C

VI.B. CALCULATION THE S VECTOR /FROM 2/C
C

DO 26 1=1»LQQ 
IN=N-LQQ 
Q<I)=B(IN+I) 

DO 27 1=1»LPP
Ü(LQQ+I)=B(I)

26

27
C

VI.C. SOLUTION OF THE REDUCED SYSTEM OF /Р+Q/ 
LINEAR TOEPLITZ EQUATIONS

C
C
C

IF(ABS(RZERO).LE.ZE) GO TO 28
T(1)=RZER0
IN=1+LRS
INN=1+2#LRS
DO 29 1=1?LRS

T(I+1)=S<I)
T(IN+I)=R(I)
T(INN+I)=Q(I)
S(I)=T(I)
R(1+1)=T(IN+I)

S(LRS+1)=T(LRS+1)
R <1)=T (1)
T(3«LRS+2)=Q(LW>

29
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í ííiií i-ií iívííií TV T 0PL.EQ vvií-víí í ÍtvÍtvÍÍÍ PAGE 5.c
c
c

VI.C.A. SOLUTION THE TOEPLITZ SET OF 
LINEAR EQUATIONS BY THE LEVINSON- 
-TRENCH-ZOHAR ALGORITHM

/Р+Q/C
C
C
C

CALL LTZALG(LU»RZERO»R»S»Ü»P»Y) 
IF(RZERO.NE.0) GO TO 30

C
SOLUTION THE SYSTEM OF /Р+Q/ LINEAR EQU­

ATIONS BY GAUSS ELIMINATION ALGORITHM 
BECAUSE OF THE COEFFICIENT MATRIX 
DOESN'T STRONGLY NONSINGULAR

VI.C.B.C
C
C
C
c

DO 31 1=1»LRS
S(I)=T(I+1)
R(I)=T(IN+I)
Q(I)=T(INN+I)

Q(LU)=T<3*LRS+2)
CALL GAUSEL(T»LU»LW+1»Q»Q»R»S)

31

28
C

VII. CALCULATION THE SOLUTION VECTORC
C
C

COUNTING THE H VECTOR /BY MULTIPLICATION 
OF В MATRIX AND C VECTOR /Н=В*С/ /

VII.A.C
c
c

30 DO 32 1 = 1 fN 
Y <I)=0.

DO 33 1=1>LQQ
Y(I)=Q(LPP+I) 

DO ЗА 1=1»LPP
IN=N-LPP+I 
Y(IN)=Q(I)

DO 35 1=1. N
P(I)=B(I)

DO 36 1=1 i-N

32

33

34

35

В(2*I-1)=Y(I) 
В(2*1)=0.

CALL FFT(NN»B»KI»1> 
DO 3/ 1=1»N

36

V=B(2*1-1)*FU(2*1-1)-B(2*1)*FG(2*1)
В(2*1) =B(2*1)*FQ(2*1-1)+B(2*1-1)*FQ (2*1) 
В(2*1-1)=V 

CALL FFT(NN»B»Kb-l>
37
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тг тг Т: тг тгтг ií тгтг-1Г 41: тг í■ тг т!: í тг TOF’LEQ í:*a4rí: vTriri-'i1 v^-r-г í:-r •и-'в-'тгС PAGE 6.
С
(J
С

VII.В. CALCULATION THE X VECTOR /BY ADDITION OF 
Z AND H VECTORS / X=Z< B*C/ /

C
C
C

DO 38 I=LN
38 B<I)=B(2#I-1>

DO 39 1=1 »N
39 Y(I)=B(I)+P íI)

C
C
C NORMAL END:
C
C

RETURN
C
C
C
C END OP ROUTINE WITHOUT SOLUTION:
C
C
C El: THE N DOESN'T AN INTEGER-POWER OF 2
C

40 WRITE (0»41)
FORMAT(20X,’THE N DOES NOT AN INTEGER-POWER OF 2!’)41

C
C

RETURN
C
C
C E2: THE CIRCULAR MATRIX IS SINGULAR SOrTHE 

INVERSE MATRIX DOESN'T EXISTSC
C

42 WRITE (6»43)
WRITE <6»44)
FORMAT(20Х»'THE CIRCULAR MATRIX IS SINGULAR!’) 
F0RMATÍ2ÖX»'THE INVERSE MATRIX DUES NOT EXISTS!’)

43
44

C
RE I URN

END
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ФФФФФФФФФФФФФФФФФФ PAGE 1.Ф ф ф ф ф ф ф ф ф: ф: ф ф ф ф ф ф ф F F IС
С
С
С

SUBR0UT INE FFT (1..А?А?Н?КЮ
ФФФФФС

С
С
с •а#*####*##* к*#######*»###-###»*-*#*###*************«##*#*#

*¥

SUBROUTINE FOR THE COMPUTATION OF THE /INVERSE/ 
DISCRETE FOURIER TRANSFORM OF AN A VECTOR 

BYE THE FAST FOURIER TRANSFORM ALGORITHM.

к-u ¥

C *¥

C ¥¥

C tf¥

C ¥ft
* PARAMETERS 5
* ARRAY A -- INITIALLY CONTAINS THE DATA VECTOR.

ON RETURNr IT CONTAINS THE TRANS­
FORMED VECTOR.

LA/2 - IS THE NUMBER OF THE COMPONENTS OF 
KK - IS A POINTER. IF KK-1? THAN THE RO­

UTINE COMPUTES THE DISCRETE FOURIER 
TRANSFORM OF A? AND IF KK=-1? THAN 
ROUTINE COMPUTES THE INVERSE FOURIER 
TRANSFORM OF THE A-VECTOR.

M = LOG /ЕА/-1

C ¥

C ¥

C ¥¥

C ¥¥

A.c ¥¥

C ¥¥

C ¥¥

C ¥¥

C «•¥

C ¥¥
¥C ¥

C p ¥¥

C ¥¥

c ¥¥¥ ¥ ¥ ¥ ¥ «■ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X- ¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥¥¥¥¥¥¥ ¥ ¥ ¥ ¥¥¥¥¥¥¥ ¥ ¥ ¥
C
c

DIMENSION
XKK---KK
N=2**M
XN-N
NV2-N/2
NM1-N-1

A (LA)

J=1
IF(KK.NE.~1) 00 TO 2 
DO 1 ,JK=1»N

A(2#JK-1)=A(2#JK-1)/XN 
A (2*JK) =A <2*JK) /XN 

DO 5 1=1? NM1
IF(I.GE.J) GO TO 3 
TR=A<2*J-1)
TI=A(2#J)
A (2«J-1)=A(2*1-1)
A(2*J)=A(2*1)
A (2*1-1)=TR
A(2*1)=TI
K=NV2

IF(K.GE.J) GO TO 5 
J=J-K 
K=K/2 
GO TO 4 
J--J+K

1
2

3
4

5
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FR :«•. J £ £ * :■• * $:£ *: £ “: í: PAGE 2.с
с
U
С

Р1=3.141592 
DO 7 L-1? И 

LE=2*sL 
LEl=LE/2 
XLE1--LE1 
UR=1.
U 1=0.
UR=C05(PI/XLE1)
l'J I=X К К * SIN (PI / X L E1)
DO 7 J=bLEl

DO 6 I“-Jpi'bl..E
IP=I+LE1
TR=A<2#IP-1> *UR-A <2*IP>*UI 
TI=A<2*IP>*UR+A<2#IP-1)*UI 
A<2*IP-1)=A(2*I-1>-TR 
A(2#IP)=A(2«I)-TI 
A<2#I-1)=A<2*I-1>+TR 
A<2*I)=A<2«I)+7I6

X=UR
UR=X*UR-UI#WI
UI=UI*WR+X*WI7

RETURN
END

I
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LTZAL.GC PAGE 1.
C
C
C

SUBRÜUTINE LTZALü(M,RZERO»R»A»SD»E»G)
c
c
c
c XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C X X

THIS SUBROUTINE SOLOES A TOEPLITZ SET 
OF M LINEAR EQUATIONS BY THE 
LEV1NS0N-TRENCH-Z0HAR ALGORITHM.

C x x
C x X.
c x X
C * X
c * x
c PARAMETERSs 

RZERO
ARRAY R -• CONTAINS THE ELEMENTS OF THE # 

FIRST COLUMN OF THE TOEPLITZ * 
MATRIX.

ARRAY A - CONTAINS THE ELEMENTS OF THE « 
FIRST ROW 01- THE TOEPLITZ 
MATRIX.

INITIALLY CONTAINS THE DATA 
VECTOR. ON RETURN»IT CONTA- « 
INS THE SOLUTION VECTOR.

ARRAYS E1G - ARE WORKING ARRAYS.
- IS THE NUMBER OF EQUATIONS.
= H-l.

x x
IS THE MAIN DIAGONAL ELEMENT. #C X

C x
C x
C x X
C X
C X X
C X X
C ARRAY SDx x
C x
C x X
C X X
C Mx X

NC X x
C X X
C xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
и
C
c

DIMENSION R (M)г 3D(M),E(M)»A(M>»G(M) 
ZE=iOx*(-10)
IF(ABS(RZERO)„LE.ZE) GO TO 8 
N~M- 1
DO 1 1=1,N

A(I)=A(1+1) 
R(I)=R(I+1)1

T=l./RZERO 
DO 2 1=1,Ы

R(I)=T*R(I)
A <I)=T*A (I)
SD(I)=T*SD<I)

SD(H)=T#SD(M)
E(l)=-A(1)
G(1)=-RU)
FLAMDA-'l .-A (j) xR (1)
IF(ABS(FLAMDA).LE.ZE) GO TO 3

2
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LTZALGС í í: í í ■í :í :S: í V $ # 1Г í í í $ $ í PAGE 2.
C
C
C

DO 7 1=1,N 
П--1+1
'I ETL.Aii“SD (IP)
ETALAM=--A(IP)
GAMLAM=-R(IP)
DO 3 J=1,I

IMJ=IP-J
TETLArí=TETLAr1-R (J)*SD (IMJ) 
Ü A M L А И =•' G A H L. A M - R (J) #G (IM J) 
ETALAM=ETALAM -A (J) *E (IriJ) 

TETLAH“TETLAH/FL.AríDA 
DG 4 J=bl

IMJ=IP-J
SD(J)=SD(J)+TETLAM#E(IMJ) 

SD(IP)=7ETLAM 
IF(I-N) 5,7,7 

GAMLAM-GAMLAH/FLAMDA 
T=ETALAM
ETALAii=ETALAM/FLAMDA 
Fl.AMDA=FLAr1DA-T#GAi*ÍLAM 
IF (ABS (FLAHDA) .LE„ZE) GO TO 8 
DO ó J=1,I

IMJ=IP-J
T=E(J)
E (J) =E (J) +ETALAri#G (IMJ)
G(IMJ)=G(IMJ)+GAr1LAM*T 
CONTINUE 

E(IP)=E1ALAM 
Ü (IP) =GAMi_AM 
CONTINUE

3

4

5

6

7
RETURN
RZER0=0.
RETURN

8

END
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ííííííii-'íi ÜAÜSt'L ФФФФФФФФФ PAGE 1.С
С
С,
С

SUBROUTINE GAUSTIL. (A»NrM»YiX»R»S) 
ФФФФФФФФС

С
с
с XX X*X К-X -К X X КX X* XXX XX X К К-XXX «• * X X К- X * К- И-XXXX XXX И-X XXX
с XX

A SUBROUTINE FOR SOLUTION OF THEC xX
C X X

AX=YC xX
C XX

SYSTEM OF- N LINEAR EQUATIONS BY 
GAUSS ELIMINATION ALGORITHM.

C •XX
C XX
C XX
C XX

parameters;C xX
IS THE NUMBER OF EQUATIONS.NC xx

М - N+l
ARRAY A - IS THE COEFFICIENT MATRIX, x
ARRAY Y -- IS' THE DATA VECTOR.
ARRAY X - IS THE SOLUTION VECTOR.
ARRAYS R»S - ARE WORKING ARRAYS.

C xx
C X
C XX
C XX
C XX
C XX
C X X X X X X X XX X XX X X X XXXXXXXXXXXXXX XXXXXX XXXX XX XXXXX
c
c

A(NíM) ? Y (N) 7 X (N) >R (N) >S(N>DIMENSION 
LRS-N-1 
DO 1 I - J. a N

1 A(IiM)=Y(I)
DO 2 I=1tLRS

A(I+1íI+1)=AÍ1í1) 
DO 3 J=1tLRS 

r1J=N~J 
DO 3 1=1iMJ

A(I+JjI)-R(J) 
A<IiI+J)=S(J)

2

3
DO 5 1=1iN

T-l./А(I?I)
IJ--I + 1 
DO A J=IJiM

A (I ? J) -T-xA (I»J)
IF(I.EQ.N) GO TO 6
11=1+1
DO 5 K=IbN

DO 5 J=IIrri
А (К г J) =A (K í J) -A (I í J) xA (К»I)

A

5
6 X(N)=A(NrM)
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