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A gyakorlatban felmeriiléd igen sok fizikai és
matematikai probléma szdmitdégépes megolddsa esetén
szilikség van valamilyen véges linedris egyenletrend-
szer megolddsara. Ezen egyenletrendszereknek - a
gyakorlati alkalmazds szempontjdbél - egy igen je-
lentds részét alkotjdk az un. szalag-Toeplitz rend-
szerek, azaz az olyan specidlis linedris egyenlet-
rendszerek, melyek egyiitthatd ja Toeplitz-tipusu sza-

lagmidtrix. Néhany alapvetd felhaszndldsi teriilet:

~ digitdlis sziir6k tervezése [13, 16]
~ képfeldolgozds [iS, lé]

~ spektridlanalizis [22, 26]

~ jelfeldolgozas [59, 33]

~ id8sorok elemzése gil, Zé]

Jelenleg a gyakorlatban,a felmeriilé Toeplitz-
tipusu szalagmdtrix egyiitthaté ju linedris egyenlet-
rendszerek megolddsdra az egyenletszim harmadik, ill.

misodik hatvdnydval ardnyos miiveletsziikségletii méd-



.szereket alkalmaznak. /Egy miiveletnek egy szorzas
vagy osztds és egy Osszeadds vagy kivonas egylitte-

sét tekint jiik./

A dolgozatban megmutat juk, hogy megadhaté olyan
megolddsi algoritmus, amelynek miiveletigénye O(nlogzno.
/Az n a megoldandd rendszer egyenleteinek a szdmat
jeldli./ A tovidbbiakban megadunk egy ilyen megolddsi
algoritmust és annak szamitdgépes implementacié jat.

A sziikséges miiveletigény értékek Osszehasonlitdsa a-
lap jén l4thaté, hogy a dolgozatban bemutatdsra kerii-
18 eljaras nagy elemszamu egyenletrendszerek megol-
ddsa esetén szdmottevd ﬁﬁveletid& megtakaritdst ered-

ményez.

Mivel az el jdrds kialakitdsdban és az elért ha-
tékonysagnovekedésben alapvetd szerepet jdtszik a
diszkrét Fourier transzformdcié, ill. a tr;;szformé-
cié hatékony végrehajtdsdra - J. Cooley és J. Tukey
dltal 1965-ben - kidolgozott un. gyors Fourier transz-
formdcids algoritmus (14] , ezért a kidolgozott mdéd-
szert a gyors Fourier transzformdcidé egy ujabb gyakor-

lati alkalmazidsédnak tekinthet jiik.



A témakdrben rejld feladatokra és lehetd3ségek-
re dr. Méricz Ferenc és Sebestyén P4l hivta fel a
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ni.
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kiilonosen Simonfai Lédszldénak és Szalay Imrének hasz-

nos észrevételeikért és tandcsaikért.



2. A DOLGOZATBAN HASZNALT JELOLESEK ES A LEGFONTOSABB

FOGALMAK DEFINICIOJA

2.1. Jelolések

A dolgozatban az egyes fogalmak vildgosabb meg-
kiilonboztetése cél jdbdl egymdstdl eltérd betiitipu-

sokat alkalmazunk.

A mdtrixokat nagybetiikkel, a skaldris mennyi-
ségeket kisbetiikkel, a vektorokat pedig aldhuzott
kisbetiikkel jelol jiilk. Ezenkiviil a kovetkez8 jelo-

léseket és roviditéseket haszndl juk:

a diszkrét cirkuldris konvolucid jele: ®

két vektor komponensenként képzett szor-

zatdnak a jele: *
két vektor komponensenként képzett ha- "
nyadosdnak a jele: 2%

az a vektor diszkrét Fourier transzfor-

maltja: DFT(a

az a vektor inverz diszkrét Fourier

transzformidlt jas IDFT(E)



az a vektor gyors Fourier transzformacid-

val meghatdrozott diszkrét Fourier transz-

formdlt ja: : FDFT(Q

"az a vektor inverz gyors Fourier transz-
formdcidval meghatdrozott inverz diszk-

rét Fourier transzformdltja: FIDFT(E)

A dolgozatban gyakran eléfordul, hogy egy kii-
lonbséget valamilyen modulus szerint kell képezniink.

Erre a kiilonbségképzésre a szokdasos:
i-j /mod m/
jelolés mellett az
ie i
jelolést is alkalmazzuk abban az esetben, ha a kii~
lﬁnbség egy indexkife jezésben szerepel. Ha a kiilonb-

séget /mod n/ kell tekinteniink, akkor az i~j he~-

lyett csak i-~j ~t irunk.

A tovidbbiakban a log n mindig a kettes alapu loga-

ritmust jeloli, azaz a logzn ~t helyettesiti.



2.2. A legfontosabb fogalmak definicid ja

2.1. DEFINICIO: /p.2.1./

Egy kvadratikus n-edrendii T matrixot

Toeplitz~tipusunak neveziink [l], ha elemeire

tel jesiil a
/2.1./ t, . = t 1<i,jgn

egyenldség.

A definicid egy mdsik, szemléletesebb formaja a kovet-

kez8 [30]:

2.2. DEFINICIO: /D.2.2./

Ha egy matrixban a f8diagondlis és minden
azzal parhuzamos "ferde sor" csupa megegyezd e-
lembdl 411, azaz, ha a mdtrix elemei csupdn osz~
lop- és sorindexiik kiilonbségétdl fiiggnek, akkor

a matrixot Toeplitz~tipusunak nevezziik.

Tehdt ezen definicidé alapjédn az A matrix Toeplitz-ti-

pusu, ha

/2020/ a. . - a. . lsi’jsn
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Az A midtrixot a kovetkezdképpen dbrazolhat juk:

1. 4bra

2.1. LEMMA:

A most megadott két definicié ekvivalens.

BIZONYITAS:

a. Tegyiik fel, hogy egy T mdtrix Toeplitz-tipusu

a D.2.1. értelemben, azaz



-1l -~

i,J i-1, Jg-1

Tekintsiik a til,jl é tiZ,jZ elemeket,ame-
‘lyekre teljesiil:
1<€11,i2,j1,j2<n és

/2.3./

il = j1 = i2 - j2 .

Legyen
i il = i2 -

Ekkor /é.B./ alapjan jl = j2, azaz

Yi1,50 % Yiz,52 .

ii. i1> iz .
/2.4./ /2.3./ miatt 0 4£il-i2 = jl-j2 = k .
/2.5./ /2.3./ és/2.4./ alapjdn

il = i2 +k

jl = j2 +k

2<il, j1<n



/2.6./
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Alkalmazzuk a t., 51 elemre D.2.1.-t,azaz /2.1./
?

képletet k-szor egymas utan:

‘./2.1./ /2.1./ '

ti1,51 = Yi1-1,j1-1 % Ysi1-1/-1,/51-1/-1 =

/2.1./ /2.5./
=0 5 Y-k - Yiz, g2 -

iii. i2 > il

A szimmetria miatt a /2.6./ egyenl8ség ebben az

esetben is tel jesiil.

Legyen az A mdtrix Toeplitz-tipusu D.2.2. érte-

lemben, azaz
a, .=a, . 14i,;4n

Tekintsitk az a. . és

5,9 ai—l,j—l elemeket, amelyre

2€i,;<n

Az 1<€i,j,i-1, j~1¥n feltétel most nyilvdn tel-

jesiil, tovabba

/2.2./ /2.2./

qi-1,5-1 T %i-1/-/5-1/ T Fi-j i,d

Qoeod-



2.3. DEFINICIO:

Egy A miatrixot szalagmatrixnak neveziink,ha

csak a f8diagondlisdban és a vele szomszédos pdar-
huzamos p, 1ill. q "ferde sorban" tartalmaz nul-
14td1 kiilonbozd elemet, azaz a f84tlétél bizonyos

tdvolsdgra mar valamennyi eleme zérus.

Tehdt A szalagmdtrix, ha minden i, j-re

(i—j) L -p vagy (i-j)>q esetén

Az A szalagmdtrix a kovetkezdképpen sematizdlhaté:

p+l1 oszlop

« o . —
7

q+l sor
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2.4, DEFINICIO:

Egy n-edrendii kvadratikus C matrixot cirku-

laris vagy ciklikus mdtrixnak neveziink, ha ele-

meire tel jesiil:

®i,5 T %i-j /mod n/

vagy a dolgozatban alkalmazott jeloléssel:

i, i-j -
Tehdt c; o = ¢ siun /k=0,1,2 .../ vagy
. . n
/2.7./ i-§ = r-s =P e =

A definicidé alap jdn nyilvdnvaldé, hogy a matrixot
az els8 sor vagy az elsd oszlop elemei egyértel-

miien meghatdrozzdk. A C matrix a kdvetkezd alaku:

[
Co cn—l n-2 °* °* ° 02 Cl
N N .
cl cO cn-l . L) L] C
2
NN\
C C C - o L L]
Clegreg-eee, )= | 2 1 %
cn-lcn-2 o o o Co
A J




A definicidé alapjdn az is ldtszik, hogy minden cirkuld-

ris matrix egyben Toeplitz~tipusu mitrix is. /Az 41lli-

tds forditottja nem érvényes./

2.5. DEFINICIO:

Legyen a

(ao,al oo an—l) egy n-~elemi vektor;'

exp [21Ti/n] )
i::Vﬁ:f',

az A pedig egy n-edrendii kvadratikus

£
n

matrix, melynek elemei:

ik - .
a. = W 0 £3j,k<n .
Jrk =Jd»
A DFT (g) = A.a n-elemii vektort, amelynek j-edik
komponense:
n~1

/2.8./ [DFT(E):IJ = ZT—' a. v 0£j<n

az a vektor diszkrét Fourier transzformdltjdnak

nevezziik,



2.6.

2.7.
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DEFINICIO:

Legyen a = (ao,al, ces an-l) 7
(\/
exp [ZJli/n],

i =V -1,

)
I

az IDFT(E) n=elemi vektort, melynek j~edik

komponense
n-1

F2:9+/ [IDFT(E)]J. =% E ay e 0£j<¢n
k=0

az a vektor inverz diszkrét Fourier transzfor-

malt jdnak nevezzik.

DEFINICIO:
Legyen a = (ao,al, A an—l) és
b = (bo,bl, eee b 1)

két n-elemii vektor. Diszkrét cirkuldris konvolucid—

juk = a @ b =~ egy n-elemi vektor lesz,amelynek
komponenseire tel jesiil:

n-—1

/2.10./ c, = a.b, . o

IN
N

i n-1 ,

/az i-j kiilonbség /mod n/ tekintendd/ .



2.8. DEFINICIO:

Ha egy matrixban a mellékdiagondlis és minden
azzal parhuzamos "ferde sor® csupa megegyezd elem-
b8l 411, azaz ha a matrix elemei csupdn oszlop- és
sorindexiik osszegétdl fiiggnek, akkor a matrixot

Hankel~tipusunak nevezziik.

Tehidt egy H mdtrix Hankel-tipusu, ha elemeire tel-

jesil a

. . = é i j S
/2.11./ hi,j hi+j 154i,j&n

egyenl8ség.

2.9. DEFINICIO:

Egy mdtrixot erdsen nemszinguldrisnak neveziink,ha

egyetlen fominora sem szingularis.

2,10. DEFINICIO:

Az a = (ao,al, oo an—l) és

o
il

(bo,bl, ces b 1)
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vektorok komponensenként képzett szorzata - a ¥
az a ¢ vektor lesz, amelynek komponensei:

c, = a.+ b, 0€idn ,

azaz

c =(ab,, ajbyy «voa b 1),

a két vektor komponenseként képzett hanyadosa

- a ;E(_E - pedig az a d vektor, melyre teljesiil:
= Z;
di al/bl 0] by 1< n ,
vagyis

2 = (ao/bo, al/bl' v e an—l/bn—l)

b
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AZ ELJARAS MATEMATIKAI MEGALAPOZASAHOZ SZUKSEGES

TETELEK

Ebben a részben néhany olyan Altaldnos tételt ismer-
tetiink, amelyeknek alapvet8 szerepiik van a kés8bbiekben
megadandd algoritmus elméleti megalapozdsdban. Ezen téte-
lek egy része jél ismert a cirkuldris-— és Toeplitz mat-

rixok elméletébdl, ezért ezek bizonyitdsdat nem ismertet jik.
3.1. LEMMA:

A cirkuldris mdtrixok szorzdsa kommutativ és a

szorzat mAdtrix is cirkuldris. /A bizonyitds megtaldl-

haté [17] -ben./
3.2. LEMMA:

Egy nemszinguldris cirkuldris mdtrix inverze is

.

cirkuldris [17].
3.3. LEMMA:

Toeplitz-tipusu midtrixok Osszege és kiilonbsége

is Toeplitz-~tipusu mdtrix [173.
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3.4. LEMMA:

A cirkuldris konvolucid kommutativ, azaz
a®r = p®Pa

BIZONYITAS:

A lemma érvényességének beldtdsahoz azt kell megmu-

tatnunk, hogy minden

0 £i S n-1 esetén
[2®r]; = p®a];

vagyis

-1 n-1

™
Y
(=)
o3
)
g
|
o

/3.1./ k ik
=0 —_—

-

Tekintsiik a /3.1./ egyenl8ség jobb oldaldn 4116

kife jezést:

n-~1
z bkal—k .
k=0

Végezziik el a j=i~k helyettesitést.
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n-1 i-/n-3/ i -1
/3-2./ ; ba, = a.b, .=; a.b, .+; a.b, .
i-k J i=Jj J i-=j J i=J
k=o0 J=1i j=o Jj=i~/n~1/

Mivel az indexeket moduldé n kell venniink, igy az Osszegzés

masodik tagja:

n-1
a.b, . alakban irhaté, s ezért
J 1=J
J=i+1l
/3.2./= +> => a.b, .
5 J i=j )
Jj=o Jj=i+l Jj=o

ez pedig éppen a /3.1./ egyenl8ség bal- -oldala.

Mivel i tetsz8leges O és (n—l) kozé esd érték lehet, igy

a kommutativitds valdban tel jesiil.

Q.e.d.

KOROLLARIUM:

Legyen C egy n-~edrendii cirkuldris matrix és jeldlje
c¢ a C els8 oszlopvektorat. Ha a egy n-elemii oszlop-

vektor, akkor
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BIZONYITAS:
Legyen r =Cea , azaz
n-1 <
r, = c .a . O>k<dn
e <
J—
Mivel C cirkuldris, ezért c . = C és igy

n-l D2.7

L3.4
T = g;; CE:JaJ = EEC)EJk: = LE(:X&]k

chodo
3.5. LEMMA:
Tetszbleges a vektor esetén
/3.3./ IDFT(DFT(E)) = DFT (IDFT(E)) = a

[3]

3.6. LEMMA: /Cirkuldris konvulucids tétel/

Legyen a és b két n~elemii vektor, ekkor

/3.4./ a®p = IDFTCDFT(E) * DFT(_Q))

azaz két vektor cirkuldris konvolucié jit megkaphat-

juk a vektorok diszkrét Fourier transzformdltjai kom-
ponensenkénti szorzatdnak inverz diszkrét Fourier

transzformdlt jaként.



BIZONYITAS:

Legyen 0£s<n

n-1 . n—-1

- Z sJ sk _
= aJ.w E bkw =
j=0 k=
n-1 n-1
= E E a .bkws (J+k)
J= k= J

/3.5./ [bFTCg) * DFT(Q)]S

n-1
/3.6./ [DFT(_§®£)]S =§_=;[2 @ .}2]p-WSP =
n~1 n-l
= a.b . wsp

p=0 j=0 J PzJ)

A /3.6./~ban végezziik el a k = p»j helyettesitést

és cseréljiik fel az Osszegzés sorrendjét.

/3.7./ 3;? Eif WP = &= 3flrja b ws(j+k)
p=0 j=0 % k=~ j I
n~1 n=1 n=l-=j s
-2 > .2 S
=-3 j=0 k=0
\_.._\,____,
/3.8.7

/3.8./~ban legyen k helyett az (‘n+k) az uj indexvdl-

tozé, igy
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n-1 =1 n-1 n-1

E E s(g+k) z z s(j+k-n)
/3:9./ . ajbk-—nw

J=0 k==j j=0 k=n-j — .
Azonban

ws(j+k—n)= exp(ZjTis(j+k—n)/n>= exp(27ris(j+@yn)

e exp ~27risn/n> = egp(zﬂriscj+k)/n):ws(ﬁ+k) .
=1

Ezért a /3.9./ a kovetkezd alakban irhatdé fel:

n-1 n-l

jZ Z ajbkws(j-o-k)

és a /3.7./ pedig

n-1 n-1 n—l ne j=~1 n-1l n-~l1l .
310/Z Z E Z }_-ab sCJ+k)
j=0 k=n-j J_O k=0 j=0 k=0

A /3.5./ és /3.10./ alapjdn felirhaté a kdvetkezd

egyenldség:

/3.11./ [pFI(a) % DFT(R)], =[DFT(a @ 1)], 0{s{n -

Ez viszont a2z L.3.5. miatt



[IDFT(DFT(_a_) 3 DFT(_p_))]s = [g@ g]s 0¢s<{n

alakban is felirhatdé, ami pedig éppen a cirkuldris

konvolucids tétel érvényességét bizonyitja.

Qoeodc

3.7. LEMMA:

Egy cirkuldris mdtrix inverze létezésének sziik~
séges ¢és elégséges feltétele, hogy a matrix elsd osz~
lopvektordnak diszkrét Fourier transzformaltja ne tar-

talmazzon egyetlen nulla komponenst sem.

BIZONYITAS :

i, Sziikségesség

Legyen A egy cirkuldris mdtrix, a pedig az A el-

s oszlopvektora. Tegyiikk fel, hogy

a, BA—l és

b, Ji 0%iln [DFT(g_)Ji = 0 .

- ’, e . rd . ’, —1
Jelolje E az egységmatrixot, e és b pedig az E es A
els8 oszlopvektordt. Ekkor felirhat juk a kidvetkezd

egyenldséget:
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K3.1 _  L3.6
/3.12./ e =4Ab = a@®p = IpFT(DFI(2)* DFT(Y)) .

Az L.3.5. felhaszndldsival /3.12./ a kovetkezd

alakban irhaté:
DFT(e) = DFT(a)%* DFT(b) * ,

az i-edik komponensekre pedig

/3.13./ [orrce)], = [prrca) = oPr(e)],

Mivel e =(1,0, ..., 0) ,igy

z eJ.wl‘] = 1 2
J .

[DFT(E)] i

és igy /3.13./ alapjdn

/3.115./ [DFT(E) * Dm(g)]i =[DFT(_a_)]i'[DFTG_)_)]i =1 .

Igy azonban a kezdeti feltevéssel - [pFT(g)}i =0 -

ellentmonddsba keriiltiink.

ii, Elégségesség

Tegyiikk fel, hogy az A cirkuldris mdtrix els8 oszlopa-

nak diszkrét Fourier transzformdltja nem tartalmaz
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nulla komponenst.

Készitsiik el a

*
/3.15./ b = IDFT(_J__ % DFT(E))
vektort. L.3.6. felhaszndlasdval az eldbbi egyenldség

/3.16./ bm(_g) =1 i DFT(2)

alakra hozhaté. A diszkrét Fourier transzformdcid de-
finiciéja alapjdn az 1 vektor helyett irhatunk DFT(e)-t

és igy a /3.16./ uj alakja:

DFT(b)= DFT(_g)gz DFT(2)

és ezért

/3.17./ DF1I(e) = DFT(a) * DFT(b)

Az L.3.5. és L.3.6. alapjén a /3.17./ fenndldsa miatt

érvényes a
/3.18./ e = 2_@2 egyenldség.

Legyen B olyan cirkuldris mdtrix, melynek els8 oszlop-
vektora b. L.3.1: alapjédn A*B = B°A = C ¢és a C cirku-

ldris matrix.



3.3.

- 28 -

Jelolje ¢ a C elsé oszlopat. Ekkor

p—

¢ = Ab L3.1. 2@_9 /3:18./ e -

Tehdt a C olyan cirkuldaris matrix, amelynek elsd osz-

lopvektora e, azaz éppen az egységmatrix, vagyis

ami viszont éppen azt bizonyitja, hogy a B mitrix az

A inverze.

Q.e.d.

KOROLLARIUM:

Egy cirkuldris matrix akkor és csak akkor nem—~
szinguléris,’ha elsd oszlopvektordanak diszkrét Fourier
transzformdlt ja nem tartalmaz nulla komponenst.

s

KOROLLARIUM:

Ha A egy nemszinguldris cirkularis mitrix, mely-
nek els8é oszlopa a, akkor az A inverze az a B cirkuléd-~
ris mdtrix lesz, amelynek elsé oszlopvektora a kiovet~

kez8 képlettel hatdrozhatd meg:



/3.19./ b = IDFT(1 2 DFT(a)) -

BIZONYITAS :

Az L.3.2. miatt az inverz madtrix valdban cirkuldris
lesz és a /3.19./ képlet érvényességét a 3.7. lemma

bizonyitdsdnak mdsodik részében mutattuk meg.



4. A MEGOLDASI MODSZER LEIRASA

4.1. El8zmények

Tekintsik a

/4.1./ Ax = y

linedris egyenletrendszert, melyben A Toeplitz-tipusu

midtrix /nem feltétleniil szalagmdtrix/.

Kordbban a felmeriilSd gyakorlati alkalmazdsok esetén
a /4.1./ tipusu egyenletrendszerek megolddsdra leg-
tobbszor az dltaldnos elimindciés - /pl: Gauss, Jor-
dan [27] / vagy iterdciés - /pl: Jacobi, Seidel [27]/
el jArdsokat haszndltidk. Ezen algoritmusok miiveletigé-
nye az egyenletszdam harmadik hatvédnyaval ardnyos /pl:

Gauss: n3/3, Jordan: n3/2 /.

A Toeplitz-matrixok specidlis tulajdonsdgai azon-
ban mdr régéta azt sugalltdk,hogy megfeleld algorit-
musokkal jelentdsen csdkkenthatd a /h.l./ egyenlet-

rendszer megolddsdhoz sziikséges miiveletek szama.

A specidlis tulajdonsdgok kihaszndlasdval N. Levinson
1947-ben adott egy, a fent emlitett el jardsoknal ha-
tékonyabb rekurziv médszert a /4.1./ feladat megoldd-

sara [2&] .
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Lényegében az 8 el jadrdasdt javitotta tovabb W. Trench

és 1964-ben, ill. 1967-ben algoritmust adott a Toeplitz—
tipusu matrixok inverzének meghatdrozasdra, valamint

a /4.1./ tipusu egyenletrendszerek megolddsdra [31,32].
Trench rekurziv aigoritmusai azonban csak abban a spe~
cidlis esetben alkalmazhatdk, ha a Toeplitz~tipusu mat-
rixok szimmetrikusak, ill. komplex esetben Hermit-szim-

metrikusak, tovdbbd erdsen nemszinguldrisak.

Trench algoritmusainak nemszimmetrikus, ill. nem
Hermit-szimmetrikus esetre valdé Adltaldnositdsat S.Zohar
oldotta meg 1969-ben és 1974—-ben [36, 37]. Ezen algo-
ritmusok miiveletigénye mir csak az egyenletszam masodik

hatvanydval ardnyos: 3n2.

A Toeplitz~tipusu szalagmatrixok a Toeplitz~tipusu

madtrixok specidlis vAdltozatai. A

/4.2./  Tx =y

Toeplitz-tipusu szalagmétrix egyiitthaté ju linedris egyen-
letrendszer x megolddsvektora az -~ d4ltaldnos Toeplitz
egyenletrendszerek megoldasara N. Lewinson,-w. Trench és
S. Zohar éital megadott el jdrdsok, valamint W. Trench
dltal 1974-ben publikdlt, mdr specialisan a Toeplitz-ti~

pusu szalagmdtrixokra kidolgozott médszer [33] eredmé -~



nyeit felhasznalé - un. Lewinson-Trench-Zohar algorit-
mus /a tovdbbiakban L-T-Z/ alkalmazdsaval

l,5n2 + O(n(p+q)) miivelettel kaphatd meg.

A. Jain 1978-ban publikalt egy - az egylitthaté-
mdtrix cirkuldris felbontdsdn alapuld - O(nlogn)-rq(pd»q) 2)
miveletsziikségletii eljdrdst a /4.2./ egyenletrendszer
megoldasara [éb]. Ez az algoritmus azonban a Toeplitz-
tipusu szalagmdtrix egylitthatéju linedris egyenletrend-
szereknek csak egy - bizonyos feltételeket kielégitd -
részhalmazdra alkalmazhaté. /A. Jain algoritmusédnak

részletesebb elemzése az 1. mellékletben taldlhatéd./

A dolgozatban a tovdbbiakban — a témakdrben foly-
tatott kordbbi vizsgdldéddsaim eredményeit [4,5,6] osz-
szegezve - Jain algoritmusdnak olyan, O(nlogn)+ O«b+q)2)
miiveletigényii d1taldnositdsat adom meg, amely mér tet-
sz8leges Toeplitz~tipusu szalagmdtrix egyiitthatéju 1li-

nedris egyenletrendszerek megolddsdra alkalmas.

Az el jdrds elméleti kidolgozadsa

Adott tehat a

/h.2./ Tx = y



linearis egyenletrendszer, ahol T egy n~edrendi nem-

szinguldris Toeplitz-~tipusu szalagmiatrix, azaz

i, = ti-j 0<i,j&n
dp,a<n tg ¥ 0 t_, #0 és

t, =0 minden k>q vagy k< -p esetén.

A T mdtrix a kovetkez8 lesz:
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A kovetkez8kben az egyiitthatématrix cirkuldris
kiterjesztésével a /4.2./ egyenletrendszert két e-
gyenletrendszerre bont juk. Ezek kozilil az egyik egy
n-edrendii cirkuldris mdtrix egyiitthatdé ju linedris
egyenletrendszer, amelynek megolddsa - a késd8bb meg-
adandd tételek alapjan - O(nlogn) miivelettel meghatda-
rozhaté. A mdsik pedig egy 0«p+q)2) miivelettel meg-

oldhaté (p+d)x (p+q)-s Toeplitz egyenletrendszer lesz.

Legyen T_ a T matrix n-edrendii cirkuldris kiter-
jesztése, azaz olyan n-edrendii matrix, amely tartal-
mazza a T nem nulla elemeit és cirkuldris. /A kiter-
jeszthet8ségnek az a feltétele, hogy (p+®(p tel je-
siiljon. Ha ez a feltétel nem tel jesiil, akkor a meg-
olddsi algoritmusnak a 6.2. részben ismertetésre kerii-

18 4ltaldnositott vdltozatdt alkalmazhat juk. /

)
.

A T mdtrix n-edrendii cirkuldris kiterjesztésével

keletkezett Tc a kOovetkez8 lesz:



5. abra

s

A Tc matrix t-vel jelolt elsd oszlopvektora pedig:

/ho?o/ _t. = (to’ t—l’ o o0 t 9 O’ o.o- 0, t‘-p e o0 t-l)'

q

Legyen T. egy olyan madtrix, mely kielégiti a

b
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matrixegyenletet. A Tb -t a kovetkezd8képpen dbrazol-

t
q

—l - L] * ~p

6. éabra

Ezen matrixok segitségével a megoldandd /4.2./ egyen-

letrendszer
alakban irhaté fel. Ebb3l Atrendezéssel kap juk a
Tx=y+ T

c= b=

egyenletet.
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Tegyiik fel, hogy a Tc nemszinguldris. Ezen feltétel
mellett a fenti egyenlet a kdvetkezd alakra hozhaté:

-1 -1

Tc.x + Tc Tbé

1%
1

Vezessiik be a kovetkezd jeloléseket:

[l / B=T7" ; z=T:lX .

c -—

Ezen jelolések mellett:

L}

/4.5./ x = z+BT x .
A tovdbbiakban vizsgdljuk meg a /4.5./ jobboldaldn sze-

repld Tbi szorzatot.

™~ : - r- —
tq « o tl xo
. xl
t o
q
(0]
Tb-§ = .
t .
ad %
t-.l L] * L d t..p -J xn—l
e b -

7. dbra
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Jelolje F a Tb jobb felsd sarkdban 4116 g-adrendii fel-

s8 trianguldris mdtrixot, G pedig a bal alsdé sarokban

. . . f . ; . i t
1év3 p-edrendii alsd trianguldris mdtrixot. x~ és X

legyen az x els8 p és utolsé q komponensébd8l 4116 osz-

lopvektor. Ezen jelolésekkel a szozat:

L .
'F 51 F ﬁt
0 x" = |0
T.x= [~
t
o G | x G x'

8. dbra

rd

Legyenek u, v és ¢ a kdvetkezé p-, q-, ill. n-elemi

vektorok:

/4.6./ _g:F}_t, y_:ch_i és c =(u, o, v) .

Ezen jelolések mellett a /4.5./ egyenlet uj 51akja:

u
Jh.7./ Xx=2z+BT x=z+B|ol=z+Bg¢c -
v

Az egyenletbdl j6l1l 1ldtszik, hogy ha az u és v értékét
ismernénk, akkor az x megoldasvektort a /4.7./ alapjan

mar konnyen meghatdrozhatnink.
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Az u és v meghatdrozdsa érdekében particiondljuk a B

matrixot és a z vektort a kdvetkezlképpen:

r ' 7 ]
|
pit | gim | Blt P El p
l |
- -7 = - - == —_—
B = Bml ; Bmm ! Bmt z= ZW
- — - - - L - _ -
I | .
Btl ' Btm ' Btt aQ Et a
| A | _J L]
q P
9. &abra

Igy a /4.7./ alapjdn 51~re és it-re a kovetkez8 egyen-—

letek kaphatdk:

J4.8./ x' = Y1y & Bty 4 gi

Azonban az éi és ét a /4.6./ egyenletek alapjdn is ki-
fejezhet8k, ugyanis az F olyan triangularis matrix,
amelynek f84tld jdban minden elem tq~va1 egyenld,s igy
a tq £ O kezdeti feltevés miatt az F mdtrixnak létezik
az inverze. Hasonldé okok miatt - t_p $ O - 1létezik a

™1 is. Ezért a /4.6./ alapjdn:



A /4.8./ és /4.9./ szerint:

/4.10./

Az egyenleteket dtrendezve kapjuk:

-Bttx + (F—l_Bt1> u = Et
/4.11./
(G—l "B1F>X + _Bll.g = 21 oo
Legyen
o~ ' - [~
/4h.12./ | o ‘gl q ptt
I
M = ' ; N o=
¢t 1o p ptt
| | - L
P q

10. abra




B . - -
t
vy q z q
w=|"""7° j s= """
i
u P z p
. el o -Jb
11. &abra
és R=M~-N .

Ezekkel a jelolésekkel a /4.11./ -nek megfeleld matrix-

egyenlet:
/ll».13./ RE=§_ .

A /4.13./ mdtrixegyenlet nem mds, mint egy(,p + q)

egyenletbd8l 4116 linedris egyenletrendszer a v és u

vektorokra, vagyis a Vor Vir eeen vpul; U sUyy oo, uq~l

ismeretlenekre. Mivel a /4.2./ rendszerben T-r8l fel-
tettiik, hogy nemszingularis, igy ez biztositja, hogy a
kiinduldsi egyenletrendszernek létezik egyértelmii x

megolddasvektora. Természetesen igy az x elsd p és utol-

i t . .
sé q komponense - x , x - is egyértelmiien meghatdroz~-

haté, ami viszont az eredeti egyenletrendszerbdl szdr-~
‘mazott /4.10./ alapjédn azt biztositja, hogy a /4.13./

egyenletrendszer R egyiitthtémdtrixa sem lehet szinguld-

ris és igy l1létezik egyértelmii megoldds v ~re és u -ra.

’



Igy a kovetkezd f8bb 1lépésekb8l 4116 el jardst tudjuk

Usszedllitani az x megolddsvektor meghatdrozdsdra:

I. T, meghatdrozdsa /4%.3./ alapjén
II. B kiszdmitdsa J4.b./ n
III. M meghatdrozdsa Jh.12./ "
Iv. N meghatdrozdsa /h.12./ "
V. z kiszdmitdsa /bl / "
VI. w kiszdmitdsa /4.13./ "
VII. x meghatdrozdsa 4.7,/ n

Ez az algoritmus a 4.2. pontban megadott eredmények
alapjdn alkalmas a /4.2./ Toeplitz~tipusu szalagmit-

rix egylitthatdju linedris egyenletrendszer megoldasdara.

4.3. Az algoritmus optimalizdldsa

Ha a /4.2./ kiinduldsi egyenletrendszer x megol-
ddsvektordnak meghatdrozdsdra az el8z8 részben ismer-
tetett algoritmust haszndl juk, és az egyes lépésekhez
a gyakorlatban dltaldnosan hasznalt el jirasokat alkal-
mazzuk, azaz a midtrix invertdldshoz és a /4.13./ line-

Adris egyenletrendszer megolddsahoz a Jordan és Gauss

elimindcidét haszndl juk és a matrix-vektor szorzdst is
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hagyomdnyosan végezziik, akkor a teljes mﬁveletigéhy jé-
val a jelenleg haszndlt L-T-Z algoritmus miiveletsziikség-
lete folotti érték lesz. Azonban a Tc matrix cirkularis
voltanak a kihaszndlasdval és a gyors Fourier.transzfor-
midcids algoritmus haszndlatdval a miiveletigény jelentésen

redukdalhatd.

A tovdbbiakban megvizsgdljuk, hogy az Osszeallitott
el jirds egyes lépéseiben milyen tevékenységeket kell vé-
gezniink és ezek végrehajtdsdban milyen hatékonysdgnoveld

algoritmusok alkalmazhatdk.
I. AT, matrix meghatdrozdsa

Jelol je

a=<a°, ajy ese a, 0 ... 0) és

p

o

=(bo, b1. ® e bq’o.oo O)
a megoldandd /4.2./ egyenletrendszer T egylitthatémat-
rixdnak els8 sor-, ill. oszlopvektorat. Ekkor a kere-
sett mdtrixot dbrdzolé 5. dbra alapjan a Tc elsd osz-
lopa:

/h'lho/ 2 = (bo, bl, ¢ e e b y O e e e O, ap, ap—l’u)A al)

q



Mivel a T_ cirkuldris, igy a 2.4. definicid értelmében
a Tc—t a most megadott elsd oszlopvektora egyértelmiien

meghatdrozza.

A megolddsi algoritmusnak ebben az elsd lépésében
csupdn p + q + 1 értékaddst kell elvégezniink, melynek
miiveletsziikséglete a dolgozatban hasznalt miiveletfoga-—
lom értelmében O. /Ez valdjidban azt.jelenti, hogy az
értékadds miiveletigénye a multiplikativ miiveletekéhez

képest elhanyagolhatd./

II. A B mdtrix meghatdrozisa

Mivel a B nem mds, mint az n-~edrendii cirkularis Tc
matrix inverze, igy a 3.3. korolldrium alapjdn a B elsd

oszlopvektordt a kovetkezd képlettel kaphatjuk meg:

J4.15./ b = IDFT(1 ;EDFT(_E))

ahol t-vel jeldltiikk a T mdtrix els$ oszlopat.

Mivel a B cirkuldris, igy az els8 oszlop egyértelmiien

meghatdrozza a teljes mdtrixot.

Ha a /4.15./ képlettel megadott b vektor meghatdro-

zdsdhoz sziikséges diszkrét Fourier transzformicidt és
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inverzét a gyors Fourier transzformicidés algoritmussal
szamit juk ki, amely egy n-edrendii vektor /inverz/ diszk~
rét Fourier transzformdltjdt nelogn miivelettel hatdroz-

za meg [12], akkor a sziikséges miiveletek szdma:

FDFT(L) szdmitdsira n-logn
(1 o FDFT( t szamitdsa n
1x 1))
* \ F 4 . ’ ’
FIDFT|(1 X FDFT(i)szamltasara n-logn

azaz a teljes miiveletigény
2nlogn + n

lesz. Ez az érték - elég nagy n esetén -~ joval kisebb az
dltaldanos matrix inverzids eljarasok O(n%) miiveletsziik-~

ségleténél.

III. Az M madtrix meghatdrozdsa

A /4.12./ szerint definidlt M mdtrix meghatdrozdsd-
hoz a G és F Toeplitz~tipusu alsé-, ill. felsé triangu-
ldris mdtrixok inverzét kell kiszdmitanunk. A két mdtrix
specidlis tulajdonsdgait kihaszndlva az dltaldnos matrix

inverzids el jdrdsndl hatékonyabb algoritmussal tudjuk



meghatdrozni az F és a G inverzét a kovetkezd tétel

eredményeinek a felhaszndldsdval:

4.1. TETEL:

Legyen G egy nemszinguldris n-—-edrendii Toep-
litz-tipusu alsdé trianguldris matrix, H pedig a
G inverze. Jeldlje g és h a G, ill. H elsé oszlop-

vektordat. Ekkor

i, H is Toeplitz~tipusu alsdé trianguldris mdtrix
lesz.

ii, a h~t a kdvetkez8 rekurzidés képlettel kaphat-

Jjuk meg.
hO = l/go
/.16
m
hm = —ho . gk'hm-k O(m <n .

BIZONYITAS
Ha E az n~edrendii egységmdtrix és El—vel és

gl~ve1 jeloljilk a H és E i-edik oszlopvektorat,ak-

kor érvényes a kovetkez8 egyenlet:

/b.17./ G ht = et 0{in
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A /4. 17./ -~et részletesen felirva -~ kihaszndlva,
hogy a G alsé trianguldris és Toeplitz~tipusu - a

/4.18./ egyenletrendszert kap juk:

gohl, it 0 =0

glhl,i+goh2,i 0 =0
/4.18./ _

gi~lh1,i+gi—2h2,i+' . .+gohi,i+ 0 =1

gn—lhl ’i+gn"2h2,i+. . o+gn—ihi,i+o L) gohn’ i=0

Mivel G-1r31l feltettiik, hogy nemszinguldris, igy a
.. n ;o
determinansa, (go\) ‘nem lehet nulla, s ezert a

/4.18./ els8 egyenlete alapjdn minden l<i <n ese-

Tegyiik fel, hogy 0< j=1<i<n esetén

o2
"
=2
]
]
i

P11 =9
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és tekintsiik a hj i elemet:
’

a, ,j(i .

A /4.18./ j-edik egyenlete és az indukcidés felte-

vés alapjan érvényes a

ghj,1 = ©

egyenld8ség. Viszont a go—rél mar kordbban belattuk,

hogy nem lehet nulla, igy tehdat

/4.19./ h. .=0 0 £ j <i%fn esetén.

Jri

A /4.19./ feltétel teljesiilése éppen azt bizonyit-

ja, hogy a H alsé trianguldris matrix.

I
e

b, J

A /4.18./ i~edik egyenlete és /4.19./ alapjin

egh., . =1 vagyis

C; J i .

A /4.18./ j-edik egyenlete alapjdn a /4.19./ és
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/4.20./ eredmények felhaszndldsdval felirhat juk

a kovetkezd egyenldséget:

g. ./8

j~i’ "o €

1

.. .h. .
J=i=1l"i+l,i + ... + gohj,i

Ezen egyenlet alapjan a hj i—t a kisebb sorindexii
?

i~edik oszlopbeli elemekkel a kovetkez8 képlettel

tud juk kifejezni:

- .-i
J4.21./ hy oy =(-1/go)-kt=l RS S

Tehdt a H mdtrix i-~edik oszlopdnak az elemei:

Jh.22./ 0 0{j<ién
h ;= /e, 0<{j=iln
=1 0<i<{j&n

...l/go- ktdgkh[j"k.i .

A 2.2. definicié értelmében a H métrix abban
az esetben Toeplitz-tipusu, ha tetszlleges

0<i,jyty,s<n esetén

j~~1 =1t - s ::%- hj,i = ht,s .
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Legyen 0<i,j,t,s<n és

1, j~i = t=-s {0

ekkor a
/4.22./ alapjdn h‘].’i =0 = ht,s .
2, j=i = t-s =0 ‘
/4.22./ /4.22./
hjoi = l/go = h1:,5

alkalmazzuk ujra a /4.22./ eredményeit

h, 3 = (-1/egy8y b 1.5 =(-Ye) e s -

(—l/go) g1/go = (-l/go> 8y’ hs,s = C-l/go) glht-l,s=

t,s
4, Tegyiik fel, hogy 0< j=i = t=-s = r-1 esetén

h . = h és legyen



Alkalmazzuk az indukcids feltevést és a /U4.22./-t:

~i

h, . = (—l/go)

a1 8P jok,i =

j=i-1
(-1/s 7( E 8P jk,i * gj—ihi,i> =
t-s—l

l/g()( gk t-k,s + 8- shs,s) = ht,s

Igy tehdt a H mdtrix valédban Toeplitz-tipusu és
ezért a /4.22./ képletben a hj ; helyett hj-i -t
?

is irhatunk:

/h.23./ 0 0{j<{ién
h., . = l/go . 0<j=i§_n

i -t
- ; i <<
ey 2 &My 0<idj<En |

Ha a /4.23./ képletben a j-i helyett egy m in-

dexvdaltozdt alkalmazunk: o

e
0

/s,

m

hm = -'-ho E gkhm-k O< m<n
k=1
akkor éppen a bizonyitanddé /4.16./ rekurzids kép-

letet kap juk.
Qo e.d.



4.1. KOROLLARIUM:

Egy n~edrendii nemszinguldris Toeplitz-tipusu
felsd trianguldris matrix inverze is Toeplitz-ti-
pusu felsd trianguldris matrix lesz, és az inverz
mdtrix elsd soranak elemeit a matrix elsd soranak
elemeib8l a 4.1. tételben megadott /4.16./ rekur-

zidés képlet alapjdn szdmithat juk Kki.

Mivel az F egy g~adrendii nemszinguldris Toep-
litz-tipusu felsd trianguldris mdtrix a G pedig
egy p-edrendii nemszinguldris Toeplitz~tipusu alsé
trianguldris mdtrix, igy a 4.1. tétel és 4.1. ko~
rolldrium alapjdn az inverzeik is hasonldé tulaj-
donsdguak, és elemeiket a /4.16./ képlet felhasz~
naldsaval hatarozhat juk meg.

Ha h és s jeldli a G T ill. F ! mitrixok el-

s8 oszlopdt, ill. sordt, akkor az M mdtrixot a ko-

vetkez8képpen dbridzolhat juk:



[~ i
|so Sl- . .Sq_l
!
' L ]
(6] | :
I ) !
| 0] S,
! s
M = u_h_.__...___._l——__.—._—.&—-.
o
N I
1 (0] 1 0]
t
. I P
. |
|
hp__1 o o o hl ho \
L —
P q
12. &4bra

Az dbra alapjan is jél latszik, hogy az M egy (p+q) -
adrendii Toeplitz~tipusu mdtrix.

Ha a /4.2./ kiinduldsi egyenletrendszert megoldd
"hétlépéses" el jadrdsnak ebben a III. 1lépésében az M mdt-
rix meghatd rozdsakor a /4.16./ rekiurzids képletet alkal-
mazzuk, akkor a madtrix kiszamitdsdnak teljes miiveletsziik~-

séglete:

p(p+1)/2+q (q+1)/2 =(;’£‘2+ qz) /2 + (p+q)/2 .



IV. Az N mdtrix meghatdrozdsa

A /4.12./ -ben definidlt N mdtrix a B cirkuldris
matrix 10. dbra szerinti particiondldsa alap jan egysze-—
riien meghatdrozhaté. Azonban a kovetkez8 tétel alapjén
az is beldthatd, hogy a létrejott N métrix Toeplitz-ti-

. pusu.
4.2, TETEL:

Legyen C egy n—~edrendii cirkuldris matrix és p
valamint q olyan pozitiv egész szdmok, hogy (p+q)§n

tel jesiil jon. Particiondljuk a C-~t a kovetkezdképpen:

F ) ! 7
! !
|
C 1 C P R
N S T R -
|
I
C = ] '
G J |_._._
(o] | C
3 | b d
] ]
. ! ! -
q P
‘13, dbra

és készitsiik el a



- 1 -
I
Ch | C3 a
I
T = - - ==
|
c ¢
2 | 1 P
L i R
P q
14, &bra

(p+q) —~adrendii midtrixot. Ekkor a kapott T madtrix

Toeplitz~tipusu matrix lesz.
BIZONYITAS:

A T definicidéja alapjdn nyilvanvald, hogy min—
den T~beli elemnek van egy ~ vele megegyez8 - C~beli
megfeleld je. Vizsgdljuk meg, hogy mi a hozzdrende-
lési szabaly, azaz az egyes T-beli elemeknek mi a

C~beli "8se'".

Osszuk fel a T~t négy blokkra a kévetkezlképpen:



- 55'_

| T
1 : L qQ
|
T = - — = == - - -
|
2 | 3 P
! ' J
P q
150 a,-bra

és tekintsiink egy T-beli t, j elemet.
’

A T mdtrix definicid ja alap jan:

~ ha a t, ; a2 1. blokkban van /0<ifq, 0<j<p/,
14

akkor az eredeti C métrixban.(i+n~q, j+n~p> volt

az indexe, azaz

t. . = c. .
i, Jd i+n~q, j+n~p

Mivel azonban a C cirkuldris, igy a C-~beli elem
tovdbbi C-~beli elemekkel egyenld, s ezért érvényes a
kovetkez8 képlet:

t., . = c, . = C. .
i, Jd i+n-q, j+n~p i+n~g~j=-n+p

C. .
Ti=J+p=q



- ha a t, ;@ 2. blokkban van /q<i$p+q, 0< i<p/,
?»
akkor az el8zd8ekhez hasonldan felirhatjuk a kdvet-—

kezd egyenllséget:

t. . = cC. . = C. . = Cc. .
i, i~q, j+n-p i~-g-j-n+p i-j+p—q

)

= ha t, . a 3. blokkbeli /q<i<p+q, p<j<p+a/

t. . = c. . = c . . ’
1, 1-=q, J~P 1=J+p—q

- ha pedig t, j @ 4. blokkban van /0<i<q, p {j<p+a/
?

t. . = c. . = Cc. .
1, 1+n~q, J~p 1~3+p—q .

Tehdt fiiggetleniil attél, hogy ty j melyik blokkban
1

van, érvényes a

a2,/ b, .= c

képlet.
Legyen 0<i,j,k,1{p+q és

/4.25./ jej = k-1 .



/b.24./ /4.25./ J4.24./

J4.26./ ti’j = Ci e irpm = Yl apm = tk,-l .

A /4.,26./ egyenld8ség azonban éppen azt bizonyitja,

hogy a T Toeplitz-tipusu matrix.

Q.ead-

A most bebizonyitott 4.2. tétel alapjén az N matrix
is Toeplitz—~tipusu, mert kielégiti a tétel feltételeit.
/Az N a /4.,12./ alapjdn a cirkuldris B mdtrixbél pon-
tosan ugy keletkezik, mint a 4.2. tételben a T matrix

V. A z vektor meghatdrozdsa

A z vektort a B:y szorzattal definidltuk. A B mdt-
rix cirkuldris tulajdonsagat kihaszndlva és a kordbbi
segédtételek eredményeit felhaszndlva ebben a lépésben
is tudunk egy ~ a hagyoményos n? miiveletigényli mdtrix-

vektor szorzdsnil -~ hatékonyabb eljdrast alkalmazni.

Legyen b a II. lépésben mdr meghatdrozott B midtrix elsé

oszlopvektora. Ekkor

K3.1. K3.6.
/4.27./ =z =By = b & xy = IDFT(DFT(b)% DFT(y)) .



Ha ebben a képletben a sziikséges DFT-k és IDFT végre-
hajtdsdra az FFT algoritmust haszndl juk, akkor a z szor-

zatvektor meghatdrozdsdhoz sziikséges miiveletigény
3nlogn + n

lesz.

VI. A w kiszamitdsa

Aw-~-ta/h.13./

’ Rw = s
linedris egyenletrendszer megolddsaként kapjuk. A korab-
biakban mdr beldttuk, hogy az R egylitthatémdtrix nem-—
szinguldris, és igy a w ~t egyszeriien megkaphat juk a
Gauss elimindcids algoritmus alkalmazdsaval (p+q)3/3

miivelet végrehajtasaval.

Azonban az el jdrdsunknak ebben a részében is tu-
dunk égy hatékonysdgot javité algoritmust alkalmazni.
A III. és IV, lépésben meghatidrozott M és N mdtrixok-
rél beldttuk, hogy (p+q)~-adrendii Toeplitz~tipusu mdt-
rixok,.igy a 3.3. lemma alapjdn az M és N matrixok kii-

lonbségeként definialt R matrix is Toeplitz-~tipusu lesz.
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Igy a /h.lj./ egy olyan linedris egyenletrendszer
a w-re, melynek egyiitthatdéja nemszinguldris Toeplitz~
tipusu matrix, s ezért a -~ 4.1. pontban emlitett és je~
lenleg az egész /4.2./ egyenletrendszer megolddsdra is al-
kalmazott ~ L~-T-Z algoritmus felhaszndldsdval a megoldds-
vektor 3(p+q)2 miivelettel meghaphaté minden olyan e-
setben, amikor az R erdsen nemszinguldris. /Az egyiitt-
hatémdtrix erdsen nemszinguldris volta az L-T-Z algo-

ritmus alkalmazhatdésdgdnak sziikséges feltétele./
VII. Az x megoldasvektor maghatdrozasa

A /4.7./ képlet alapjidn ebben a lépésben midr csak
a B.¢ matrix~vektor szozdst kell elvégezniink, s a ka-
pott szorzatvektor és a z Osszegeként a kiinduldsi /4.2./

egyenletrendszer megolddsat kap juk.

A B cirkuldris voltat kihaszndlva a B.c szorzdst is

egyszeriisithet jiik. Ugyanis

K3.1. L3.6.
Bec = b@c = IDFT(DFTC_Q)*DFT(Q) .

— —

/4.28./

A kapott képlet alapjdn -~ az FFT algoritmus alkalmaza-

sdval - a B'c szorzat meghatdrozdsanak tel jes miivelet~-

igénye



4.3.

dnlogn + n

lesze.

Ezek utin mdr csak n Osszeaddst kell végrehajtanunk az

x megolddsvektor meghatdrozdsdhoz.

Igy, ha a 4.2. részben kidolgozott "hétlépéses" el ja-
rds egyes l1lépéseiben a most megadott algoritmusokat al-

kalmazzuk, akkor tel jesiilnek a kovetkezd tétel dllita-

sai:

TETEL:

i, az eljidrds a Tx = ¥ nemszinguldris Toeplitz-ti-
pusu szalagmdtrix egylitthatédju linedris egyenlet-
rendszer megolddsdt szdmitja ki,

ii, a megolddshoz sziikséges miiveletek szdma:

8nlogn + 3<p+q)2 +<p2+q2)/2 + O(n) ’

ill. az el jdrds VI. lépésében az L=T~Z algorit-

mus helyett Gauss elimindciét hasznalva:

8nlogn + (p+q)3/3 + <P2+q2>/2 + 0(“) ’
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iii, az el jaras helyigénye O(ﬁ)

A helyigény azért lesz csak O(F) mert az el jdrds soran
csak cirkuldris és Toeplitz-matrixokat haszndlunk, s igy
egyetlen matrix teljes taroldsdra. sincs sziikség, min-
den esetben elegendd egyetlen oszlop vagy egy sor és

egy oszlop elemeinek a tarolasa.

A megadott médszer "gyorsasagat", azaz a viszonylag kis
miiveletigényt az biztositja, hogy a sziikséges diszkrét
Fourier transzformdcidkat és az inverz transzformacid—~
kat is a gyors Fourier transzformdcids algoritmussal vé-
gezziik. Ezen algoritmus hasznidlatdnak sziikséges felté-
tele, hogy a transzformdlandd vektor komponenseinek sza-
ma kettd hatvdnya legyen, azaz a megoldaﬂdé egyenlet—~
rendszer egyenleteinek a szdmdt kett8hatvdnynak kell va-
lasztani. Ez azonban a felmeriild gyakorlati alkalmazdsok
esetén nem jelent er8s megkotést. /Pl. kiilonbszd minta-
vételeknél a mintdk szdmdt tetszélegesen vdlaszthatjuk
meg./ Ha azonban N mégsem vdlaszthatdé meg kettdhatvidny-
nak, akkor az eljidrds megfeleld kiterjesztésével lehet
meghatdrozni a keresett megolddst. A médszer kiterjesz-

tését a nem kettdhatvdny esetre a 6.2. rész tartalmazza.
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L.4. Tovabbi miiveletigény csokkentés minimdlis memdria-

. rd . ’
igény noveléssel

Az el8z8 részben megadott el jidrdsban - nem tul
jelent8s memdériaigény noveléssel ~ a megoldashoz sziik-
séges miiveletek szdmdt mintegy 20 %-kal tovdbb tud-

juk csokkenteni a kdvetkezdkben ismertetett mdédon.

Az el jadrids II. l1épésében a B inverz midtrix meghatdro-
zdsa a feladat. A B cirkularitdsa miatt csupan az el-

s8 oszlopot szamitjuk ki a

b =10FT (1 ¥ DFT(t))

képlettel harom lépésben:

i, DFT(t) , kiszamitdsa
ii, 1 : DFT(;) meghatarozasa
iii, IDF’I( 1 % orr( _t_)) kiszdmitdsa °

Az ii, 1épés utan kapott érték a 3.5. lemma alapjan

nem mas, mint a DFT(E), ugyanis

b = IDFT(_}_ ;: pFT(_t_))Ie—.——)S.DFT(E) =1 ;g DFT(t)



Ezen észrevétel alapjan érhetjiik el a miiveletigény

csokkentését a kovetkezd8 mddon:

Az el jaras II..lépésének végreha jtdsa kozben tdrol-

juk el egy n-—-elemii tombbe az

q

1 % PPI()

pe--

-
= DFT(b) )
(&)
-4

vektor elemeit.

Az el jdrds V. lépésében a z vektort kell meghatdroz-~

nunk a

z = IFT(DFT(y) * DFT(R))

képlet alapjdn. Mivel azonban a kordbbi szamitdsok so~
rdn mir meghatdrozott és eltdrolt DFT(R) érték a ren-
delkezésiinkre 411, igy a z meghatdrozdsdnak menete so-
rdn a DFT(p_) érték kiszdmitdsdtdél eltekinthetiink,s igy
a sziikséges miiveletigény az el jardas V. lépésében nem

3nlogn + n, hanem csak
2nlogn + n

lesz.
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Tel jesen hasonldan tudunk a VII. pont végrehajtasa~
kor is ~ szintén a rendelkezésre all¢ DFT(E)segit-
ségével - tovdbbi n.logn miveletigény csokkentést el-

érni.

Igy tehdt a megoldasi algoritmus tel jes miivelet-

igényét
\2 2 .
8nlogn + 3(p+q) + (p +q?>/2 + O(p) ~-r8l

/4.29./  6nlogn + 3(p+q)? + Cp2+q2)/2 + 0(m)

értékre tudtuk redukdlni a tdroldigény minimilis /n-

széval torténd/ novelésével.

Az el jAras folyamatdbra ja

Ebben a részben a Tx=y 1linedris egyen-
letrendszer megoldasira kidolgozott algoritmus folya-

matdbrd jdt adjuk meg a kidvetkezd jelolések alkalmazd-

saval:

=:(a°, ai, ese ap, O,...O) ~ a T elsé sorat,

a

2 =(do, dl, . o0 dq’ O,oo.O) - a T elS6 0SZ=—~
lopaty,

t = (to’ o e tn—l ) - a Tc elsd osz~-

lopat,



Input:

II‘

o

o)

=

=(o_, « .« « b__.)

a B elsd oszlopat,

-1 " ,
= (go, . . . gp—l) - a G elsd oszlopat,
= (f . f - az Frl elsd sorat
O, “o ° q—l) [y
=(hgr - + - B ;) - munkavektor a DFT(b)
taroldasara.
FOLYAMATABRA
4, ¥

T, meghatdrozdsa

E =<do’ dl, R dq’o’.“o’ap’ap—l"'.al)

/414, /

B meghatdrozasa

¥*
FIDFT(i % FDFTQgﬁ

=3
n

/4.15./

AR N
h=13% FDFTQ;):= DFT(g}i :

— om o e o e - o - e e e -

®




IIT.

Iv.
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b

IIT.a

ITI.b

M meghatdrozdsa

¢t meghatdrozdsa

els8 oszlopa = (ap’ e ai)/

il
-
~
Y

i
1
q

S0 %:]_ ap-k gm—-k 0<m<p

/4.16./

Ft meghatirozasa

elsd8 sora = (dq, e dl)/

= --fo Z dq-—k fm-k O<m <q

/4.16./

1 .
/10. &bra/

N meghatdrozdsa

n. . =05bO

i,d i-j+p—-q

/h.24./

6
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z kiszdmitdsa

z = FIDFT(h ¥ FDFT(x ))
“““““““ ]
1 h = DFT(Db
—_ _._EL2_;
/h.27./
w kiszdmitdsa
Vi.al R=M~N
S = (Zn—q+l, * o 0 zn’ zl’ e s e Zp)
VI.b
/11. &bra /
Rw = s megolddsa az
Vi.c

L-T=Z algoritmussal

Megkaptuk a meg-

olddst /R er8sen

Nem kaptunk meg-..

oldidst /R nmem volt

nemszinguldris/. er8sen nemszingu-
laris/.
Rw = s megolddsa

Gauss elimindcidval




VII.
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x meghatdrozdsa

ViI.a |< % (WQ+1’ ** Ya+p’
'/11; dbraj/és [4.6./
|
B.c = FIDFT(h ¥ FDFT(_Q))
II "h = FDF( b l
VII.b h = FDFY b \!
(b = FOFY(b),
/4.28./
|
x=2z+Bg
VII.c
/be7./
!
Stop
Qutput: az x megolddsvektor

16. &bra

O0,...0, wl...wq)




4.6. Az algoritmus bemutatdsa egy konkrét példén

A most kdvetkezd részben a kidolgozott megoldd-
si algoritmus menetét egy konkrét példdn is bemutat-

Juk.

Legyen a megoldanddé egyenletrendszer

N
ol
+
Lol
&
]
(W]

Az egyenletrendszer egy megolddsa:

/u.Blo/ xl = x2 = x3 = xl‘ =1 .

Mivel a rendszer determindnsdnak értéke ~1, igy

a /4k.31./ az egyenletrendszer egyetlen helyes megol-~

déasa.

Nézziik most meg, hogy az uj el jards segitségé-~
vel hogyan kaphat juk meg a /4.30./ linedris egyenlet-
rendszer megolddsdt. A /4.30./ alapjdn, /az el6z8 ré-

szekben haszndlt jeloléseket alkalmazva/:
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- - - -
1 1 0 0 2
2 1 1 0 L

T = o 2 1 1 ’ X = 4
0] (0] 2 1

L— - ;.-3_4
17. &bra
és Pp=qgq=1 .

A Tc’ Tb midtrixok és a t vektor pedig a kdvetkezdk

lesznek:
[ T [~ ! 1
1 1 o0 2 000;2
T o= |2 1 0 0 40 O 0 0Olgs o
c b -
(0] 2 1 1 (0] 0] (0] 0]
- T
l
1L_1 6] 2 1 B Ll . O 0] O_

18. abra

B-nek, azaz Tc inverzének az elsd8 oszlopat a Tc

elsé.ogzlopvektorébél, t -bdl a

3
b = IDFT<_1_ ¥ DFT( 1:_))

L
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képlet alapjdn szamitjuk ki a kdvetkezd8 lépésekben:

t =[(1,0); (2,0); (©,0); Q,o)]

3

DFT(Q:[(L;,O) i (1,15 (-2,0 (1,-1)]
[_1;_:] (_1_ : DFT(ﬁ)): [(1/&,0) ; Q/z,-l/z) ; Q-l/z,o) ;(1/2,1/2)]
/Ezt a vektort eltdroljuk egy h vek-

torba, mert erre még sziikségiink lesz,

hiszen ez nem mds, mint a DFT(E)./

IDFT(l ; DFT(;c_)) =[@/16,0); (-1/16,0) ;(—5/16,0) ; (7/16,0)]:_13

és igy a B mdtrix a kdvetkezd lesz:

19. 4bra

A Tb matrix alapjin

F=[1] és G=[2] ,



s ezért
Fl o= [1] ; ¢t = [1/2] )
Tegy
0 1/2
M =
1 0
20. 4bra
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A B megfeleld particiondldsa utdn:

3 7 -5 ~1
AR R B
-x 1 3 7 | -5
P= |- |
-5 -1 3 7
R E N AU
7 s -1 I 3
L | B
21. 4bra
az - T
’ 3 7
1
N = Iz
‘ -1 3
JL—. ..JL
22. 4bra

lesz.



- ~
-3 1
VT
R=M-~N = 16
17 -3
oo -
23. abra

A z vektort a

z = IDFT(DFT(y) * DFT(b))

képlettel szdmitjuk ki a kdvetkez8 lépésekben:

y =£(2,0); (y,o);(y,o);(;,@ﬂ
DFT (x)=[(13,o); (-2,1); (—-1,0);(-2,-1)]
DFT ( b)= [(1/14 0)s (2/2, -1/2) (-1/2,0); (1/2, 1/2)]

- ezt most nem kell

szamolnunk!

(DFT():>* DFT(p_))=[(13/u,o) s (-1/2,3/2) s (1/2,9) 5 (—-1/2,—-3/2)1_

1oFT (DFT(y)* DFT(E))= [(11/16,0) : (23/16,0);5 (19/16,0);
(-1/16,0)] =z

Igy a /4.13./ -nak megfeleld Toeplitz egyenletrendszer

a kovetkezd lesz:
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-3 1 v -1

1 1
/4.32./ T = =
16 17 =3 a 16 11

Mivel a /4.32./ egyenletrendszer R egyiitthatdmdtrixa
erdsen nemszinguldris /a f8minorok értéke: -3 és -8/

igy a megolddst az L-~T-Z algoritmussal szdmithatjuk ki.

A kapott megoldas

Igy

c=<2, o, O, 1} .

A B-¢c szorzatot az

1oFT(DFT(R)% DFT(c )

képlet alapjdn szamitjuk ki.

DFT(c) =[Q,o) 3'(2,-1) 5 (2,0); (2,1)]

DFT@) = [Q/u,o) ; (1/2,-1/2); Q—l/Z,O) ; (1/2,12)]
/= b/

DFT(c) * DFT(2) =[(3/u,o);@/z,-3/2);(—1/2,0)5(1/2,3/2)]
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IDFTQ)FT(g) * DFT(_Q)):[(s/ls,o) ; (-7/16,o);(—3/16,o);@7/16,6)]=

= B-c
Ezek utan a megoldis:

x4 11 5 1

1 1
xX= = 2z+4Bc = —¢ + -7 = 1

X, 16| 23 1€

1 -
x3 9 3 1
L I L L

Azaz x, = x2 = x3 = xh = 1 .
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5. A JELENLEG HASZNALT ALGORITMUSOK ES A BEMUTATOTT

ELJARAS 0SS ZEHASONLITASA

Toeplitz~tipusu szalagmidtrix egyiitthatéju linedris egyen-—
letrendszerek megolddsdra jelenleg a Gauss elimindcidt
vagy az L-T-Z. algoritmust haszndl jak. Hasonlitsuk Ossze
ezeket az algoritmusokat a kidolgozott el jardssal a sziik-

séges miiveletigény alapjdn. Az egyes értékek a kovetkezdk:

/5.1./ Gauss elimindcid : n(p-o-q)z/l&
/5.2./ L-T-Z algoritmus : 1,5n2-1,5(p+q)2/l&+3n(p+qy2+('(n)
/5.3./ az uj el jdrds : 6nlogn+3(p+q)2+ (p2+q2)/2+0(n)

Jeldl jiik d-vel a T egylitthatémdtrix szalagszélessé-
gét(p-i-q)—t, valamint r-rel a relativ szalagszélességet
(d/n)—t és vizsgdljuk meg, hogy milyen n és d értékek mel~-
lett lesz az el jArdsunk hatékonyabb az L-T-Z al-

goritmusndl.
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A 24, dbrdn a megadott eljdrdsunk és az L-T-Z algo-
ritmus relativ mﬁveletigény—kﬁldnbségét,(/5.3,/—/5.2./)/n -t
dAbrdzoltuk a relativ savszélesség fiiggvényében kiilonbozd
n értékek esetén. Az dbrdrdél jol l1ldtszik, hogy az n=16 -
hoz tartozik az els8 olyan kiilonbséggdrbe, amelynek mar
vannak pozitiv értékei is, azaz n = Zh esetén mar van o-
lyan p és q, amelyekre az el jarasunk hatékonyabb lesz az

L-T-Z algoritmusnal.

-
£
o)

-31r2+12r+12-4810gn/n

24 . &bra
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A 25, abrdn az egyes n értékekhez tartozd " jé" re-
lativ savszélesség~tartomanyokat dbrdzoltuk, azaz az
egyes n, ill. logn pontokhoz tartozdé fiigglleges szaka-~
szok olyan intervallumokat jelolnek, amelyekbe ha bele-
esik a.<p+q)/n értéke, akkor az el jdrdsunkat érdemes
alkalmazni. Errél az abrdrél jél l1latszik, hogy n = 2 =
hez tartozik az elsd filggfleges szakasz, mégpedig olyan,
hogy az r€ [0,0.h] pontok tartoznak bele, tehdt n = 16
esetén, ha (p+q)§ 6, akkor miar érdemes az uj médszert
haszndlni. A 25. dbra fiigglleges szakaszainak végpont-
jait az /5.3./és /5.2./ miiveletigény~értékek kiilonbsége

alap jAn szarmaztatott

/5.4./ y(n) - 642\[6(2;;62 logn/n),

fiiggvény értékei szolgdltat jdk.

Mind az /5.4./ képlet, mind pedig a 25. 4dbra alap~
jan l4thatd, hogy az n novekedésével a "megfeleld" p és
q értékek is nének egészen r = 0,84-ig, azaz ha n elég
nagy, akkor minden(p-t—q)éO,Bl&n esetén érdemes a dolgozat-

ban megadott el jardst alkalmazni.
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p+q=0.84n
—0.84 > 1
0.71% .
0.5‘
)
003’
0.1}
7 logn
i1 2 3 4 5 6 7 8 9 10 13 15

25. dbra

Az /5.3./ és /5.2./ értékek alapjin az is ldtszik,
hogy ha n elég nagy és p,q kicsi, akkor igen jelentds lesz

a miiveletigények eltérése, ugyanis

lim  1,5n° -1,5a%/4 + 1,5nd _ o4
n >0 6nlogn + 7d2/2
da<{n




Igy példaul, ha n = 212 45 P=4q-=
/5.1./, /5.2./ és /5.3./ érték 226, 3-223és 2

27, akkor az

19 lesz,
tehdt az el jdrdsunk a Gauss elimindciéndal mintegy 120-

szor,az L-T-Z algoritmusndal pedig kb. 50-szer gyorsabb

ebben az esetben.

Az e jadrdsnak - a kordbbiakndl kisebb miiveletid§
sziikségelete mellett ~ tovdbbi nagy eldnye az altalanos
/elimindcidés, iterdcidés/ el jdrdsokkal szemben, hogy ki-
haszndl ja az egyiitthatémdtrix Toeplitz tulajdonsagat és
nem tirolja az egész matrixot csupdn annak els8 sorat
és oszlopat, s igy igen komoly tdroldigény csokken ést
biztosit. Ez azért jelentds, mert nagyméretﬁ'egyenlet—
rendszerek esetén az egész egylitthatématrix mar "nem fér
el" az operativ memdéridban, ezért dltaldban az elimind-
cidés és iterdcids el jardsok csak disc teriilet igénybevé-~
telével hajthatdk végre, viszont a disc-hez forduldsok mi~
att lényegesen lassul a megoldds meghatdrozadsdnak menete.
A helyigény az elimindcidés és iterdcidés eljdrdsokndl O(n%>,

mig az uj algoritmus esetében ez az érték csak O(n) lesz.

A most megadott eljdrds komoly korldtjanak tiinhet,
hogy szemben a korabbi algoritmusokkal a kiinduldsi egyen—
letrendszer megoldhatdésdgdhoz most nemcs&k a T egyiitthaté-

mdtrix nemszingularitdsa sziikséges, hanem a T cirkuldris
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kiterjesztésével keletkezett Tc madtrixnak is nemszinguld-
risnak kell lenni, s igy az algoritmus alkalmazhatdsdga-—

hoz még egy - adltaldban jelentd8s miiveletigényii -~ szingu-

laritdsvizsgdlatot is el kell végezniink. Azonban a 3.rész=~
ben bebizonyitott 3.7. lemma hatékony eszkbzt ad a prob-
1éma leegyszeriisitésére. Mivel a T, cirkuldris, igy a lem-
ma eredményei alapjan egyetlen FFT végrehajtasaval el tud-

juk végezni a Tc tesztelését.

Itt jegyezziikk meg, hogy bar az L-T-Z algoritmus al-
taldanosabb el jards, mivel olyan linedris egyenletrendsze-~
rek megolddsdra is alkalmas, melyeknek egyiitthatémat-
rixa nem szalagmdtrix csupan Toeplitz~tipusu, bizonyos e-
setekben azonban az uj algoritmus lesz az dltaldnosabb.
Ugyanis az L-T-Z algoritmus alkalmazhatdsdgdnak sziikséges
feltétele, hogy az egyiitthatédmatrix er8sen nemszingularis
legyen, mig a megadott el jdrdasunk alkalmazhatésdgdhoz csak
a T mdtrixnak és a cirkuldris kiterjesztésének, Tc -nek a
nemszingularitdsa sziikséges. Igy tehdt minden olyan eset~
ben, amikor T és T, nemszingularis szalagmdtrix, azonban
nem teljesiti az erds nemszingularitds feltételét, az
L-T-Z algoritmus nem alkalmazhatdé, viszont az uj eljaras-—

sal meghatdrozhaté a keresett megoldas.
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6. TOVABBI HATEKONYSAGNOVELESI ES ALTALANOSITASI LEHE-

TOS EGEK

6.1. Hatékonysdgnovelés hardware é€s elméleti uton

A dolgozatban bemutatott el jdrds egyes lépése-
inek a leirdsa alapjan jél1 1ldtszik, hogy a megoldds
meghatdrozdsdhoz szilkséges miiveletvégzés szinte ki~
zdrdlag csak gyors Fourier transzformdcidk és inverz
gyors Fourier transzformdcidk végrehajtdsabol &all.
Ezért viszont minden,a gyors Fourier transzformdci-
6s algoritmus hatékonysdgdt noveld médszer a transz-—
formdcidéval majdnem azonos mértékben noveli az elja-
rdsunk hatékonysdgat is. Mivel jelenleg a gyors Fou-
rier transzformdcidét mdr egyre inkdbb hardware uton
oldjdk meg‘[9, 15] , 85 egyre elterjedtebbek a végre-
hajtdsi idd8t nagysdgrendekkel csdkkentd un. gyors
Fourier transzformdcids processzorok [10, 251 és
architekturik [2, 34] , ezért ha az el jardsunkban is
ilyen médon oldjuk meg a sziikséges transzformacidk
végrehajtdsat, akkor - a fenti meggondolasok értel-
mében - algoritmusunk hatékonysdgdban is. igen szd-

mottevd javulds varhaté.

A Toeplitz egyenletek megolddsa teriiletén elért

ujabb eredmények felhaszndldsdval a mdédszeriink haté-
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konysdga javitdsdnak egy mdsik utja is lehetséges.
Sikeriilt ugyanis J. Jain kettdhatvany elemszamu
Toeplitz egyenletrendszerek megolddasdra kidolgozott -~
az inverz matrix egy specidlis felbontasdat [23] és

a gyors Fourier transzformidcids algoritmust felhasz-
naldé - mdédszerének [21} egy olyan dltaldnositdsat
megadnom [7] , hogy a kapott el jdrds mar tetszdleges
elemszdmu Toeplitz~tipusu /nem feltétleniil szalag-/
matrix egyiitthatéju linearis egyenletrendszer megol-
ddsdra alkalmas. Az el jdrds miiveletsziikségelete a
jelenleg hasznalt 3n2 miveletigényi L-T-Z algoritmu-—
séval szemben 2n2 + O(nlogn). Mivel a Toeplitz-tipu~
su szalagmatrix egylitthatd ju linedris egyenletrend-
szerek megolddsdra kidolgozott algoritmusunkban a /4.13./
(P+€>—adrendﬁ Toeplitz egyenletrendszer megolddsdra
az L-T-Z algoritmust haszndltuk, igy az ujabb el jdras
alkalmazdsa esetén a /4.13./ egyenletrendszert 3(p+q>2
miivelet helyett 2(P+d>2 +0(§P+d>log(p+i» miilvelettel
tud juk megoldani, és ez a javulas a tel jes algoritmus

miveletigényének csokkenésével jar.

Altaldnositdsi lehetdségek

A dolgozatban megadott megolddsi algoritmus al-

-

kalmazhatésdgi korének kiterjesztésére a Toeplitz-~
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és Hankel mdtrixok kdzotti szoros kapcsolat nyujt
tovabbi lehetdséget. A [8] dolgozatban megadott e=
redmények felhaszndldsdval ugyanis a Toeplitz-tipusu
szalagmatrix egyiitthatéju linedris egyenletrendsze-
rekre kidolgozott el jdrdsunk egyszeriien médosithatéd
ugy, hogy a kapott algoritmus alkalmazhaté legyen
Hankel tipusu szalagmdtrix egyiitthatéju linedris e~

gyenletrendszerek megolddsdra.

Mivel jelenleg az Altaldnos linedris egyenlet-
rendszerek megolddsdra alkalmazott programcsomagok dl~
taldban az eg&enletszém harmadik hatvdnydval aranyos
elimindcids vagy iterdcids algoritmusokat haszndlnak,
ezért esetleg nagyméretii egyenletrendszerek megolda~-
sa esetén érdemes lehet egy "el8vizsgalatot" beépi-
teni a programcsomagba, annak elddntésére, hogy a meg-
oldandé egyenletréndszer egylitthatédmiatrixa nem Toep-
litz vagy Hankel mdtrix~e. Mivel ezt az e;6vizsgéla—
tot O(?%> egyszerii kivondssal el lehet vééezni, igy
az esetlegesen elérhetd8 igen szamottevd mﬁveletiéény
csdkkenés miatt ezt a vizsgdlatot akkor is érdemes el-~

végezni, ha csak ritkdn taldlunk Toeplitz vagy Hankel

matrixot.
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Ahhoz azonban, hogy tetszl8leges alkalmazasi te-~
tilleten -~ ahol esetleg mdr nem vdlaszthatd meg megfe~
leléen az egyenletek szdma - alkalmazhatd legyen a
megolddsi mdédszeriink, meg kell adni az algoritmus ki-
terjesztését arra az esetre is, ha a megoldandd  egyen-—
letrendszer egyenleteinek a szdma nem kettdhatvany.
Ebben a részben a tovdbbiakban a kiterjesztési folya-~

matot és az Adltaldnositott algoritmust ismertet jiik.
Tekintsik a

/6.1./ TX = ¥y

nemszinguldris Toeplitz~tipusu szalagmatrix egylittha-

téju linedris egyenletrendszert és tegyiik fel, hogy az

egyenletek szdma nem kett8hatvdny. Legyen T rendje

n.
Keressiink egy olyan k szamot, amelyre tel jesiil:

i, 3t egész szam: n+k=2"

ii, k 2 max (p,q)

iii, k a legkisebb az i. és ii. feltételeket

kielégitd szdmok koziil.
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Legyen Te a T matrix Cn + k) ~adrendii Toeplitz~-

tipusu kiterjesztése:

(0]
(0]
n
T = T
e
AN
0 N
NN
NN N N Y
AN N NN
0] N\ NN YNk
— \\ \\_\_
n k
26. abra

A Te—ben a T nem nulla elemein kiviil csak a
szaggatott vonallal jelzett sorokbeli elemek lehet-
nek nem nulla értékiiek és a "ferde sorok" mentén to-

vdbbra is csupa azonos elem all. .

Az x kiterjesztése pedig a kidvetkezd (n + k) ~-ad~
rendii vektor legyen:

X, 0;5i<(n
/602./ x 1

* 0 n<i {n+k
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AT, és T, matrixokat T-nek Te—re valdéd kiter-
jesztése utan a kordbbiakhoz hasonldan definidl juk
/csak most T helyett Te—re/. Igy tehdt T  a T mat-
rix cirkuldris kiterjesztése /most a k definiciéja
miatt a p+q<n+k feltétel biztosan teljesiil/, a

Tb-t pedig ujra a

képlettel definidl juk.

A kordbbi jeldléseket hasznalva a Tc a kbvetkezd ala-

ku lesz:

27. abra
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Az y legyen a kovetkezd (n + k) ~elemii vektor:

/6.3./

ahol az y. olyan k-elemii vektor, hogy a /6.3./-mal

definidlt Y, ~re tel jesiil a
/6.4./ T X, = X,

egyenldség.

Tegyiik fel, hogy a Tc cirkuldris midtrix nemszin-

gularis. Igy létezik a B = T: inverz madtrix is és

a 3.2. lemma alapjdn a B is cirkuldris.

Particiondljuk a B matrixot a kovetkezdképpen:

- —

11 12 n

/6.5./ B

21 22 k

28. &abra
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A B inverz mdtrix létezése miatt a /6.4./ alapjdn fel-

irhat juk a kovetkezd egyenletet:

/6.60/ X = Bxe )

-e

amelynek"blokkositott" alakgja:

I -1 r 7] [~ ]
x Bi1 Bi2 b
/6.7./ = .
0 Ba1 Ba2 Y
- p - o - -
29, 4bra

Elvégezve a kijeldlt szozdst, az

/6.8./ x = B + B

11£ 12%f

21% 22Lf

egyenleteket kap juk.

Tegyik fel, hogy ;étezik a B;; inverz matrix, ekkor

/6.9./ alapjdn:
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-1
/6.10./ Ye = =By, Byyy
Megjegyzés: A B;; létezésének egy elégséges felté-

tele,hogy B - erdsen nemszingularis legyen,
ugyanis a Bfelbontdsa alapjan latszik,

hogy a B megegyezik a B mdtrix bal fel~

22
s8 sarkdban 4116 k-~adrendii féminorral /a

B cirkuldris volta miatt/.

Helyettesitsiik be a most kapott y. értéket a /6.8./-

ba., Igy az

1

/6.11./ x = By,¥ - By, By, By, ¥

képletet kapjuk a keresett x megoldasvektorra. Ezen
képlet alapjdn a sziikséges miiveletek /mitrix szorzds,
inverz meghatdrozds/ elvégzésével a /6.1./ linedris
egyenletrendszer x megolddsvektora meghatarozhaté.

&

A sziikséges miiveletek szdma:
/6.12./ n2(k+l) + 2(p¥k>log(h+k) + 3nlogn + 3k° +(nvk) .

A szdmitdsi algoritmust nem részletezziik, ugyanis

az x meghatdrozasa lényegesen hatékonyabb lesz, ha a



/6.10./ alap jdn meghatdrozott Y, vektort kozvetleniil
a /6.3./-ba helyettesitjiik vissza és az x, vektort

a /6.6./ képlet alapjin hatdrozzuk meg.

Ez azért is el8nyds, mert igy ujra ki tudjuk
haszndlni a szorzds egyszeriisitésére a B matrix cir-

kuldris voltadt. Mivel a B22 a B cirkuldris matrix

/6.5./ felbontdsa alap jdn Toeplitz-tipusu mdtrix,igy
inverze a Zohar-Trench féle inverzids algoritmus [36]
alapjan 3k2 miivelettel meghatdrozhaté, feltéve, hogy

B22 er8sen nemszingularis. Ha B, csak nemszinguld-

ris, akkor Jordan vagy Gauss eliminacid segitéségvel

22

A mdédositott el jdrds algoritmusdban is alkalmazhat juk

hatdrozzuk meg a B inverz mdtrixot /k3 miivelettel/.
a b.4. részben haszndlt Osszefiiggést,azaz a DFT(Q) -t
most is tdroljuk és ez, ebben az esetben (n+k)1og(n+k)

miiveletigény csdkkenést eredményez.

Mindezek alapjan a kiterjesztett algoritmus fd

S

lépései a kovetkezdk lesznek:

1. Megfeleld k érték keresése

i. k + n=2°
ii. kZmax(p,q)
iidi. min (k)

miiveletigény: log(n+k) .
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2. Tc meghatdrozasa

Mivel T cirkuldris, csak egy oszlopot kell megha~

td roznunk.
Miiveletvégzés: n + k értékadas .
3. A B = T:l mitrix meghatdrozdsa

-

3*
b = FIDFT L; % FOFT( Q] .

Miiveletigény: 2(n+K)log(n+k) + O(n+k) .

L, Yf szamitdsa

h.,a. B;z meghaférozésa

Zohar-Trench algoritmus vagy Jordan elimindcid .

Miiveletigény: 3k2 vagy k3.

22 21

midtrix szorzds .

Miiveletigény: k2n .
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4.c. C+y kiszdmitdsa

Matrix-vektor szorzas

Miiveletigény: nk

4.d. Y meghatdrozasa

Yo = -Crx

5. 1e_meghatérozésa

D l_X’ Xf]

Miiveletvégzés: n + k értékadas

6. x meghatdrozdsa

Boxe

1%
"

FIDFT|FDFI(b) % FDFT(ze):[ 3
/FDFTC_Q) ismert/

Miiveletigény: 2(?»k)1og(n+k) + O(n+k) .

A megadott dltaldnositott algoritmus tel jes miive~

letigénye az egyes lépésekben megadott értékek alapjan:
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4(n+k)log(n+k) + nk + k2(3+n2+ 0 (n+k) vagy

4(n+k) log(n+k) + nk & ko + kon + 0(n+k)

a h.adépéstdl fiigglen.
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7. AZ ELJARAS SZAMITOGEPES IMPLEMENTACIOJA

A Toeplitz-~tipusu szalagmatrix egylitthatdéju li-
nearis egyenletrendszereknek a - dolgozatban megadott
algoritmus alapjdn torténé - megolddsara késziilt
FORTRAN nyelvii program listd jat a 2. melléklet tartal-

mazza.

Az el jidrds haszndlatakor egy fémodulban kell meg-
adni az egyenletrendézer paramétereit /T els8 sordnak
e156<b+1) és elsd8 oszlopanak elsd @ud) elemét, vala-
mint az y vektort/. Ebben a moduiban kell aktivizdlni
a TOPLEQ szubrutint, amely az egyenletrendszer megol-
didsdt szolgdltatja. Ez a rutin aktivizédlja futdsa koz~
ben az LTZALG nevii szubrutint, amely a /4.13./ - (P+q)
egyenletb8l 4116 - egyenletrendszer megoldasiat szamit-
ja ki az L-T-Z algoritmus alapjdn. A rutin futdsa so-
ran ellendrizziikk, hogy az egylitthatématrix kielégiti~e
az erds nemszingularitgs feltételét, s ha ez nem tel-
jesiil, akkor kilépiink az LTZALG ritunbdl és aktivizdl-

juk a GAUSEL szubrutint, amely a /4.13./ egyenletrend-

szer megolddsat Gauss elimindcidéval hatdrozza meg.

A TOPLEQ rutin haszndl ja még az FFT diszkrét Fou-

rier transzformidcidét gyors algoritmussal szdmité szub-
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rutint. Mivel az inverz transzformdcidé szdmitdsdban
csak kis eltérés van a gyors Fourier transzformacié-
hoz képest, igy nem alkalmazunk kiilon INVFFT-t, hanem
az FFT-t képeztiikk ki ugy, hogy egy paraméter értéké-
t81 fiiggben vagy a transzformidcidt vagy pedig az in-

verzét hajtja végre.

A kbvetkezd tablazat -~ IBM 370/145 gépen fut-
tatott -~ programok kiilonbz8 méretii /4.2./ tipusu e-
gyenletrendszerek megolddsdhoz sziikséges kerekitett mii-

veletid8it /CPU id8/ tartalmazza.

N . Gauss elimindcié L-T-Z algo- a bemutatott
/p=q=12/ ritmus el jiras
perc mp perc mp perc mp
32 L 1 1
128 2 59 9 - 2
256 23 11 32 3
512 2 01 6
1024 8 03 11

1. tablazat
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1. Melléklet

Mint ahogy azt midr az "eldzményeket" Attekintd
4.1. részben emlitettiik,a dolgozatban megadott el ja-
ras kiinduldsdul A.Jain 1978-=ban kozolt [20] algorit-

musa szolgdlt.

Jain eredményei azonban a Toeplitz-tipusu szalag-
matrix egyilitthaté ju linedris egyenletrendszereknek
csak egy részére alkalmazhatdk,mivel Jain olyan fel-
tételezéseket hasznal,amellyel ugyan egyszerii megol-
ddasi algoritmust tud kialakitani, azonban igy az el-~

jdrds veszit az Altaldnossdgdbdl.

Ha a dolgozatban haszndlt jeloléseket alkalmaz-
zuk, akkor a kovetkezdképpen tudjuk leirni a Jain al-
tal tett feltételezéseket:

Tekintsiik a T inverzének és az y vektornak a szor~
zatdt az inverz matrix 9. 4bra szerinti particiondldsa

mellett:



[ 7] B ] B ]

/M.l./ Bll pim Blt P z1 q B11X1+B1mxm+Bltxt

mi mm mt m mi i mm m _mt t
By = B B B . | X =|B "y +B y +B 'y
Btl Btm Btt a Zt p Bt1X1+Btmxm+BttXt
o - - - o -
q P
30. 4bra

Jain, algoritmusdban az /M.l./ szorzatvektor elsd

p komponenseként a
M.2./ " ©opiiyt 4 pltyt

értéket haszndlja, azaz elhanyagolja a Blmxm értéket.

A vektor utolsé q komponensének pedig a
/M.3./ Byt 4 BUY, T

. . . . . tm_m
értéket tekinti, elhagyva a B 'y -~et.

Igy viszont az algoritmus csak abban az esetben ad he-

lyes eredményt, ha a
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/M.b./

w
ot
3
3
I
o]

egyenletek egyszerre tel jesiilnek. Azonban ez egy nagyon
er8s feltétel és legtobbszdr nem tel jesiil.

/Egy elégséges feltétel /M.L./ tel jesiilésére, hogy

1? = 0 1legyen, ami viszont szemléletesen azt jelen~

ti, hogy a kiinduldsi egyenletrendszer jobb oldalédn

az elsd p és utolsdé q értéket kivéve csak nulla dllhaty

Azt pedig, hogy az /M.4./ A4ltaldnos esetben nem
érvényes, szemléletesen bizonyitja a. 4.6. részben be-
mutatott példa. Ugyanis a példdban

B ™y™ = 1/2 £ 0

tm m

By =—3/2#0. .
A /4.30./ egyenletrendszerre a Jain Altal adott al-

goritmust alkalmazva megolddsként

adédik, ami a /4.30./ egyenletrendszer egyértelmii meg-

oldhatésdga miatt nem lehet Jj6 megoldias.
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2. Melléklet

A mellékletben a kovetkez8 FORTRAN nyelvii szubrutie

nok taldlhatdk:

1. TOPLEQ - a /bh.2./ egyenletrendszert megolddé "f4"

szubrutin .

2. FFT -~ gyors /inverz/ diszkrét Fourier transz-

formacidét végzd szubrutin.

3. LTZALG - a Levinson-Trench-~Zohar algoritmus alapjan
késziilt, S. Zohar dltal publikdlt [381 és
javitott [39] szubrutin, amely Toeplitz
midtrix egyiitthatéju linedris egyenletrend-
szerek megolddsdra szolgal. -

L. GAUSEL ~ linearis egyenletrendszert Gauss elimind-

ciéval megolddé szubrutin.
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ARRAY P -
ARRAY Q -
ARRAY Y -

ARRAYS FQ» B
ARRAYS R»SsT
LW

LT
NN

onono
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DIMENSION P (LW QN 5

KI=0

=N

KI=KI+1
MM=2% (i{/2)
IF(M.NE.MM) GO TO
M=rM/2
IF(M.NE.1) GO TO 1

THIS SUBROUTINE SOLVES THE

AX=Y

SYSTEM UF LINEAR EQUATIONS,WHEN THE COEFFICIENT

/IS A BANDED TOEPLITZ-TYPE MATRIX.

15 THE NUMBER UF EQUATIONS.

1S THE MUMBER 0OF MON-ZERO ELEMAENTS IN THE
FIRSY ROW OF THE COEFFICIEMT MATRIX.

IS THE NUMBER OF NON-ZERU ELEMENTS IN THE
FIRST COLUMN OF THE COEFFICIENT MATRIX.
CONTAINS THE MOWN-ZERQ ELEMENTS OF THE
FIRST ROW OF THE COEFFICIENT HMATRIX.

CONTAINS THE NON-ZERU ELEAENTS OF THE
FIRST COLUMN OF THE COEFFICIENT MATRIX.
IMITIALLY COWTAINS THE DATA VECTOR. O
RETURM: IT COWNTAINS THE SULUTION VECTOR.
ARE WORKING ARRAYS.

ARE WORKING ARRAYS.

LF+LQ-2

L= (LW+1)

2%N

Y(N)!FQ(NN)!B(NN)7R(LU)7S(LH)!T(LT’T
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I. COUNTING TC /FROM T/

Do 2 I=2:LF
G{NH2-1) =F (1)

0o 3 I=iei
FQiZ#I—~1)=0<¢I)
FQ(2%#1)=0,

II. COUNTING E /THE INVERSE OF THE TC MATRIX/

CALL FFT(NNsFU»KIs1)

ZE=10#x(-10)

0o 4 I=1,si
FN=FQ{2#I~1)#n2+FQ (2% T) %%2
IF(EN.LE.ZE)Y GO TO 42
FU{Z#I-15=FQ<2xI-1) /EN
FRE2#D)=-FQ(ZxI) /EN

// DFT/B/ ==) FQ 7/

D0 5 I=1yiMN
BL(I) =FQ I
CALL. FFT(NsByRKIy-1)
iy 6 I=1sN
B(I)=R(2%I-1)

ITI. COUNTING THE #f MATRIX

ITT.A. CALCULATION THE INVERSE OF THE
G ®ATRIX /FROM P/

LFF=LF-1
0o 7 I=1sLFF

S =F(LP+1-1)
g 8 I=2,LFF

F(CI)=0.
F(1)=1./5(1)
0o ¢ M=2,LFF

MM=pM--1

[0 10 K=1,iiM

B (M) =F (R 45 (K1) %P (MR
F (rf) =—F (1) #F (i)

FAGE 2.
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CALLCULATION THE I
F MATRIX /FROW

ITI.B.

LAQ=LA--1
0o 11 I=1.L00
S =R0+1-1)
0o 12 I=2.LuR
Q{I)=0.
Ay =1./5
nu 13 M=2,L00
MM=M-1
DO 14 K=1,iiM
QD =R (M) +5 (K+1) =Q (i~
Q) =-Q{1) #Q (M)

IV, COUNTING N MATRIX /RY

IN=LFP-LQG+1
IF (IN.GT.0) GO TO 15
Ind=1Tp+n
RZERO=E (In)
LRS=L4-1
00 16 I=1:LRS
Ind=IM+1
IF (IN.LE.D
IN=IN-N
R4IY=R(IM)
IN=LFF-LO0+1
IF (IN.GT.O)
IN=IN+N
00 18 I=15LRS
Ind=IM-1
IF(INLGT.0)
IN=Ti+1
S(I)=E(IN)

GO TO 16

GO TO 17

GO T0 18

V. CALCULATIUN THE Z VECTOR

DO 19 I=1si
B(2%I-1)=Y (D)
B(2%1)=0.
CALL FFT(NNsBsKI»1)
0o 20 I=1si
U=R (2% T-1}%FQ (2%I-1) -B(2#1)

2AARLENDAREALABLLENL
n W TR W R W W

Fevredresresves  TOPLEQ  fdsswwws

MUERSE OF THE
s

K)

B MATRIX/

AFQ(2%T)

B (2%1) =R (2%1) XFU (26 T-1) +F (2% T~1) #FQ (22 1)

R(2%I-1)=V
CALL FFT(NNsBsyKIs-1)
[0 21 I=1sN

B(D) =R (2*I-1)

FAGE 3.
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VI. CALCULATION OF W VECTOR

VI.A. COUNTING THE R HATRIX /R=i-N/

RZERO=-RZERO

LR1=LAG-1
Do 22 I=1sL01
R(I)=-R(I)

o 23 I=1sLFF
RLQL+I) =F (D) -R{LAL+ID

LP1=LFF-1
00 24 I=1,LF1
S(I)=-8(I)

no 25 I1=1.L06Q
SILFL+I) =Q (1) -5 (LF1+1)

UI.E. CALCULATION THE S VECYOR /FROM 2/

0o 26 I=1,L04Q
IN=N~LQQ
Q(I) =B (IN+D)

00 27 I=1sLFF
H(LAR+I) =R(I)

VI.C. SOLUTION OF THE REDUCED SYSTEM OF /F+Q/
LINEAR TOEFLITZ EQUATIONS

IF(ARS(RZERO) .LE.ZE) GO 70 28

T<1)=RZERD

IN=1+LRS

IrN=1+2%_KS

0o 29 I=1-LRS
T{I+1)=8(I)
T(INHI) =R (DD
TCINNFI)=Q(I)}
S(DH=T(I)
RAI+1) =T (IN+I)

S(L.RS+1) =T (LRS+1)

R =T(1)

T (3%LRS+2)=Q (LW

448 TOFLEQ  H8338833883i4ed FAGE 4.
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VI.C.A. SOLUTIOM THE TOEFLITYZ SET OF /F+Q/
LINEAR EQUATIONS BY THE LLEVINSON-
~TRENCH-ZOHAR ALGOKITHi
CaALL LTZALG(LWyRZEROsRsS: Qe FsY) )
IF(RZEFC.NE.Q) GO TO 30

VI.C.E. SOLUTION THE SYSTEM OF /F+Q/ L.INEAR EQU-
ATIONS RY GAUSS ELIMINATION ALGORITHM
BECAUSE OF THE COEFFICIENT HMATRIX
DOESN’T STRONGLY NONSINGULAR

00 31 I=1ysLRS
S(I)=T(I+1)
R =T (IN+I)
QI =T (INN+T)
QLW =T (3%LRS+2)
CALL GAUSEL (TyLWsLW+1+QsQyRsS)

VII. CALCULATION THE SOLUTION VECTOR

VII.A. COUNTING THE H VECTOR /RY MULTIFLICATION
UF B HMATRIX ANl C VECTOR /H=RxC/ /

[0 32 I=1+N
Y(I)=0.
oo 33 I1=1,L04
YLy =Q(LPF+I)
00 34 1=1,LFF
Ind=N-LFF+1
Y (I =Q(I)
00 35 I=1lsi
F(ID =R
0o 36 I=1sn
R(2xI-1)=Y (1)
B(2#1)=0.
CALL FFT(NNsBsKIs1)
0o 37 I=1si
V=B (2%1-1) #F U (2%I-1) ~RB (2% 1) *FQ (2%])
TBRxI)=R(2%T) #FO{23#1-1) +B(2%I-1) ¥FQ (2%1)
R(2¥I-~1) =Y
CALL FFT(rNsBsKIs~1)
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VII.B. CALCULATION THE X VECTOR /BY ADODITION OF
Z AMD H O VECTORS / X=Z:iRBxL/ /
ng 38 I=1snN

BC(I) =R (2%I-1)
00 39 I=1si
Y (D) =R(I)+F (1)

NORMAL END:

RETURH

END OF ROUTINE WITHOUT SOLUTION:

El: THE N DOESN’T AN INTEGER-FUWER OF 2
WRITE (&6s41)
FORMAT (20X ?THE W DOES NOT AN IN(EGER-FOUER OF 2!7)
RETURN
E2: THE CIKCULAR MATRIX IS SINGULAR SO»THE
INVERSE MATRIX DOESNYT EXISTS

WERITE (46943)

WRITE (4544)

FORMAT (20X» *THE CIRCULAR HMATRIX IS SINGULAR!?)
FORMAT (Z20Xy ?THE INVERSE MATRIX DOES NOT EXISTS!?)

RETURRN
END
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SUBROUTIRE FOR THE COMPUTATION OF THE AJIMVERSES

OISCRETE FOURIER TRAMSFORM OF AN A VECTOR

BYE THE FAST FOURIERE TRAMEFORM ALGORITHHM.

FARAMETERS S

A - INITLALLY CONTAINS THE DATA VECTOR.

O RETURM: IT CONTAINSG THE TRANS-

FORMED VECTOR.

I8 THE HUMEBER OF THE COMFONENTS OF A,

KK ~ I8 A FOIMTER. IF  KK=1l, THAM THE RU-
UTINE COMFUTES THE DISCRETE FOURIER
TRANSFORM OF A Apll ITF  KK=-1, THAN
ROUTINE COMFUTES THE TMVERSE FOURIER
TRANSFURK OF THE A-VECTOR.

100 /AS-1

)

iy
it

k4

b3S LTI LSO LL TR EEEEESDDLTELTLL LT TLEIE T LSS TR E ST

DIMENSION A
ARK=-KK
N=Zxxr

XM=

]

HU2=R/2
HiML=H-1

J=1

IF(RKLHE.~1) GO 70 2

g

0o

1 JK=1si
A (2% K1) =A (2% IK-1) /XN
A (2%K) =/ (2# JK) /XN
9 I=1siil
IF(I.GE.) GO TO 3
TR=A(Z%¥J-1)
TI=A(2%))
A2xJ-1)=A{2%I-1)
A% =AZ*T)
A2%I-1)=TR
AZ*I)=T1
K=NVU2

IF(K.GEL)Y GO TO 5

J=J-K
K=K/2
GO TO 4
J=J4+K
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FI=3.141592
nn 7 L=1yit
LE=2%u%(.
LEi=LE/2
XLEL=LE1
Uk=1.
UI=G.
WR=COS (PT/XLEL)
WI=XRExSIN(FT/XLEL)
ng 7 J=1iyLE1L
o & I=JeidsLE
IF=I+E1
TR=A(2#IP-1) #UR-A {28 1) #UT
TI=a (2uIF) sUR+A 25 TR-1) =01
AlZaTF-1)=8{EnI-1)~-TR
AZRIF)=A {221 ~T1
ARHI-1) =A2e]~1)+TR
AP =A(2nI)+TT
K=
UR=%WR~-UI %01
UL=UTaldR+Xs T
RETURN
END
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THIS SUBROUTIME SOLMVES A TOERLITZ SET

oF i

LIMEAR EQUATIONS BY THE

LEVINSON-TRENUH-Z0HAR ALGORITHM.

FARAMETERS S
RZERD
ARRAY R -

ARRAY  SD -

ARRAYS EsG -
i} -

¥

3

®

.)(.

*

*

R.3

X

*

*

*

* ARRAY & -~
%

*

¥*

3

»

*

E.3

¥ N =
»*
*

MATRIX.

MATRIX.

VECTOR.

I8 THE ralnd DIAGONAL ELEHENT.
CONTATNS THE ELEMENTS OF THE
FIRST COLUMM OF THE TOEFLITZ

CONTATNG THE ELEMERNTS OF THE
FIRSGT Ruld OF

THE TOEPLITZ

INIVIALLY CONTAINS THE DA1A

ON RETURNSIT CONTA-

ING THE SOLUTION VECTOR.
RE WORKING ARRAYS.

IS THE HUMBER OF EQUATIONS.
rM-1.

FOHKOR & & R OE OE R K KR H B X

JE 366 H W MV B 3 3 FIE 6 I3 36 IF I I 6 I I3 R M IO A I I MWK

DIMEMSION R Cfy » SDM) s ECMD v A (i) 2 G GH)

ZE=101% (-1

IF (ABS(RZERD) LLELZE) GO TO 8

=it -1
Do 1 I=1sN
AL =Add+1)
R(D =R{I+1)
T=1./RZERU
00 2 I=1sil
ROy =T#R{I)
AL =T*A (1)
SO(I)=T*5D(I)
SO =T*SD (M)
E(1)=-A(1)
G (1) =-R(1)
FLAMMA=1 . —-A (1) #R (1)}

IF(ARS (FLAMDA) JLELZEY GO Tu 8

FAGE 1.
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00 7 I=1sN
IP=I+1
TETLAM=S0 (1)
ETAL.aM=-4 (TF)

GaArMLAaM=~R (IF}
I 3 J=1y1
Tidd=TF-J
TETLAM=TETLAM-K () #50 (IM.D
GAMLAM=GAMLAR-F (D #5 (TH.DD
ETaLAM=ETALAM ~A (J) wE(It{d)
TETLAM=TETLAM/FLARNDA
00 4 J=1-1
THJ=IF-J
SO{Jy =80 +TETLAM=E (IM))
SOCIP)Y =TETLAM
IFI-My 59797
GaMLAM=GAMLAH/FLAMIA
T=ETAL A
ETaALAM=CTAaLAM/FLARMDA
FLAMDA=FLAMIA- T2 GAMILAM
IF (ARS (FLAMDMA) JLELZEY GO TO 8
00 &6 J=1-1
THJ=1F~J
T=E ()
E(D =E(D+ETALAM®G (IMD
G I =G (IMid) +GATLAM*T
CONTINUE
E(IF) =ETALAM
G (IF) =GAMILAH
CONTINUE
RETURN
RZERO=0.
RETURN
END
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* #*
* A SUBROUTINE FOR S0LUTION OF THE ¥
3#* *
# AX=Y *
* #
* SYSTEM OF W LINEAR EQUATIONS BY #
#* GAUSS ELIMINATION ALGORITHM. %
-}{- ————————————————————— .R'.
* ¥
* FARAMETERS k3
# fo- 185 THE WNUABER OF EGL&r I0NS. %
¥* M o= =+l #
* ARRAY A - IS5 THE COEFFICIENT MATRIZ. ¥
* ARRAY Y ~ IS THE DATA VECTOR. ¥
# ARRAY ¥ - IS THE SSLUTION VECTOR. 3
* ARRAYS FRy& - ARE WORKING ARRAYS. *
#* ¥

P22 TSI LE LS ELETERLRELSILIT P RIS POTE RIS

DIMENSION AWM s Y GD 2 X () s RN 2 S (WD)
LRS=pf-1
0o 1 I=1ed
AT ) =Y (D)
Nu 2 I=1-LKES
ACT+HL I+ =4{1-1)
0o 3 J=1sLRS
Md=i-J
Bl 3 I=1siJ
AT+ I) =R
ATy I+ D) =500
0o 5 I=1sn
T=1./74C1+1)
TJ=I+1
0 4 J=IJyi
ATy D=T*AIy.)
IF(I.EQ.t) GO TO &
II=+1
00 5 R=II.N
00 5 J=IlsH
ARy D =A Ky D -A (T D *A(Ks I
XD =AM M)

FAGE

1.



cooaon

00 8 I=1.LRS
ITN=N-T
IT=Ip+1
W=,
9 7 J=IIvd
W=ld+A Iy Y X D)
X I =A I ~UW .
RETURH
END

FaGE 2.
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