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Bevezetés

Az utóbbi évtizedben széleskörű kutatás foglalkozik a tranziens 
/időben változó/ egy- és kétfázisú áramlás leírásával. Ezek is­
merete nagyon sok ipari, műszaki probléma vizsgálatához elenged­
hetetlen. Kutatásuk része az atomreaktorok biztonsági analízisé­
nek. Ahhoz, hogy a reaktorokat biztonságosan lehessen üzemeltet­
ni, szükség van a bennük lejátszódó folyamatok és az elképzel­
hető balesetek modellezésére. Erre a célra több nagy számitógé­
pes programrendszert hoztak létre különböző kutató intézetekben 
s fejlesztésük folyamatosan történik újabb, pontosabb modellek 
beépítésével, hatékonyabb numerikus megoldási módszerek kidolgo­
zásával. Ezeknek a programrendszereknek fontos része az egy- és 
kétfázisú áramlás modellezése. Tranziens egyfázisú áramlási prob­
lémák a reaktorok indításakor, leállításakor, egy-egy hűtőkör le­
zárásakor lépnek fel. Tranziens kétfázisú áramlás jön létre kü­
lönböző üzemzavari jelenségek esetén. Pl. a nyomástartó rendszer 
meghibásodása esetén /primerköri csőtörés vagy valamilyen szelep 
nyitva maradása/ a nyomás leesik, emiatt a hűtőfolyadék elkezd 
forrni. Ezt az áramlást le kell tudni Írni az idő függvényében 
ahhoz, hogy a feltételezett baleset esetén megfelelő vészhütést 
lehessen biztosítani.

Ezeket a tranziens jelenségeket parciális differenciálegyenletek 
Írják le; a tömeg, az impulzus és az energia megmaradásának e- 
gyenletei. Egy fázis és egy térdimenzió esetén 3 parciális dif­
ferenciálegyenletre van szükség, két fázis esetén egy dimenzi­
óban az alkalmazott fizikai modelltől függően 6-ra is nőhet a 
felhasznált megmaradási egyenletek száma.

A modellek és a megoldásukra használható numerikus módszerek ösz- 
szefoglalása eddig még nem történt meg az irodalomban. A külön­
böző modellek más és más körülmények között adnak a gyakorlat 
számára elfogadható eredményt. A dolgozattal segítséget próbá­
lok nyújtani a hazai felhasználóknak, hogy mikor melyik modellel 
érdemes számolni. Bizonyos esetekben elegendő egy durvább, vi­
szont kevesebb számitásigényü modell alkalmazása, máskor viszont 
szükség lehet pontosabb, részletesebb modell kidolgozására.

A fizikai modelleknek megfelelő matematikai modellek numerikus 
megoldása is sok problémát vet fel. Nem lehet általánosan hasz­
nálható módszert megadni, mindig a konkrét feladathoz kell iga­
zodni. Vannak viszont általános irányelvek a módszerek felírá­
sára, melyeknek egyrészt elméleti alapja van, másrészt gyakor­
lati tapasztalatok bizonyítják hasznosságukat. Ezeket is össze­
foglalom a dolgozatban.

A fizikai jelenségek, folyamatok nagy része parciális differen­
ciálegyenletekkel irható le. Ezek általános megoldása még keve- 
Stebb esetben irható fel, mint a közönséges differenciálegyenle­
tek esetében. Ha felírható, akkor is ritkán segít a konkrétan 
felmerülő fizikai kérdés megválaszolásában. Az alkalmazások te-
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rületén általában olyan megoldásokat keresünk, melyek bizonyos 
további feltételeknek is eleget tesznek. Ilyenek a kezdeti és 
a peremfeltételek. Közönséges differenciálegyenletek esetében 
a kivánt megoldás gyakran előállítható az általános megoldás­
ban szereplő tetszőleges konstans alkalmas megválasztásával. 
Parciális differenciálegyenletek esetében ez csak kivételes 
esetekben lehetséges. Ennek oka, hogy az általános megoldás 
tetszőleges konstans helyett tetszőleges függvényt tartalmaz 
/ha egyáltalán felírható/.

Közönséges differenciálegyenletek esetén a szükséges feltételek 
sokféleképpen megadhatók. A feladatnak általában lesz egyértel­
mű megoldása, ha számuk megfelel az egyenlet rendjének. Ez azon­
ban parciális differenciálegyenletekre nem igaz, a feltételek 
nem irhatok fel tetszőleges módon.

Mivel a matematikai fizika feladatai reális fizikai folyamatokat 
Írnak le, ezért ezeket a feladatokat úgy kell megfogalmaznunk, 
hogy eleget tegyenek az alábbi természetes követelményeknek:

a. / Valamely M^ függvényosztályban létezzék megoldás.
b. / Valamely M^ függvényosztályban a megoldás egyértelmű

legyen.
c. / A megoldás folytonosan függjön a feladat adataitól

/a kezdeti és peremfeltétel adataitól, a differenciál­
egyenlet jobb oldalától, az egyenlet együtthatóitól, 
stb. /

Definíció:

Az olyan feladatot, amely eleget tesz az a./ - c./ követelmé­
nyeknek, korrekt kitüzésü feladatnak nevezzük, a megfelelő М^Л 

függvényosztályt pedig a korrekt kitűzés osztályának. [Л 3

A megoldás folytonos függését az adatoktól azért kell megköve­
telnünk, mert a fizikai probléma adatai általában csak kísérleti 
utón, közelítőleg határozhatók meg; ezért nem engedhető meg, hogy 
a feladat megoldása lényegesen függjön a mérési hibától.

A különböző tipusu parciális differenciálegyenletek esetén kü­
lönböző kezdeti és peremfeltételekre van szükség ahhoz, hogy a 
feladat korrekt kitüzésü legyen. Hiperbolikus egyenletek esetén 
a karakterisztikák elmélete nyújt segítséget az alkalmas felté­
telek megválasztásában.

A parciális differenciálegyenleteknek csak kis része oldható meg 
egzakt módon. A feladat bonyolultsága miatt szükség van olyan 
numerikus megoldási módszerek kidolgozására, melyek lehetővé 
teszik a számitógépes megoldást. Mivel az adatok általában méré­
sek eredményei és a számábrázolás pontossága is korlátozott a 
számítógépen, az analitikus megoldások is csak közelitő nume­
rikus eredményt adnak. Emellett sokszor bonyolultabb lenne az 
analitikus megoldás numerikus kiértékelése, mint a numerikus mód­
szer végigszámolása. Általában a numerikus közelitő módszerek
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adnak egyszerűbben és hatékonyabban megfelelő pontosságú meg­
oldást. Emellett az integrálás tartományának vagy a kezdeti és 
peremfeltételeknek a megváltoztatása gyakran lehetetlenné teszi 
az analitikus megoldást, ugyanakkor a numerikus módszereket nem 
befolyásolja döntően.

A kétfázisú áramlás matematikai modelljei hiperbolikus ill. hi­
perbolikus jellegű parciális differenciálegyenletrendszer alkot­
nak. Hiperbolikus egyenletek esetén a karakterisztikák módszere 
gyorsan és aránylag egyszerűen ad viszonylag pontos közelítést. 
Ennek a módszernek az alkalmazhatósági köre azonban eléggé kor­
látozott, kiterjesztése kettőnél több független változóra bonyo­
lult. A számitás nehézkessé válik, ezért nemigen használatos.

A legáltalánosabban használható és leginkább elterjedt numerikus 
módszer a véges differenciák módszere, melyben a deriváltakat vé­
ges differenciákkal helyettesitjük egy, az értelmezési tartomány­
ra helyezett rács segítségével. Az a módszer lineáris és nemline­
áris egyenletekre egyaránt használható, s egyszerűen kifejezhető 
több dimenzióra is.

A dolgozat első részében röviden összefoglalom a karakterisztikák 
módszerét hiperbolikus egyenletekre. Itt vizsgálom, hogy a karak­
terisztikák segítségével hogyan lehet meghatározni a szükséges 
peremfeltételeket ahhoz, hogy a hiperbolikus feladat korrekt ki- 
tüzésü legyen.

Ezután vizsgálom a véges differenciák módszerét. Ennek alkalmazá­
sakor fellépő legfontosabb kérdések a pontosság, a stabilitás és 
a konvergencia. A Lax-féle ekvivalencia tétel szerint bizonyos 
feltételek mellett a konvergencia és stabilitás ekvivalens fo­
galmak \_2~] , ezért különösen fontos a stabilitás vizsgálata. Az 
erre a célra legelterjedtebben használt módszert Neumann dolgoz­
ta ki [3] .
A folyadékáramlási modellek egy része nem teljesen hiperbolikus. 
Ezzel kapcsolatban újabb problémák merülnek fel, hogy mikor lesz 
a feladat korrekt kitüzésü és hogyan lehet stabil megoldási mód­
szereket megadni. Eddig még nem sikerült olyan általános elméle­
tet kidolgozni, amely minden esetet magába foglal. Ezzel a kér­
déssel kapcsolatban vizsgálom az első rész utolsó fejezetében, 
hogy mi az összefüggés a karakterisztikák és a differenciálegyen­
let-rendszer stabilitása között.

A dolgozat második részében foglalom össze az egy- és kétfázisú 
áramlásra kidolgozott legfontosabb modelleket és ezek numerikus 
megoldását a véges differenciák módszerével. Mivel a modellek egy 
része nem teljesen hiperbolikus egyenletrendszert alkot, a hozzá­
juk tartozó kezdeti érték feladat nem korrekt kitüzésü. Ezzel 
kapcsolatban a kutatók véleménye megoszlik. Egy részük azt állit- 
ja, hogy a feladat átalakítható korrekt kitüzésüvé, ha figyelembe 
veszünk bizonyos jelenségeket, melyeket eddig elhanyagoltunk. Te­
hát szerintük a modell eredetileg helytelen vagy hiányos volt.
E csoport szerint minden fizikai jelenséget le kell tudni irnj^. ^

*

lj
Чс*
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korrekt kitüzésü feladat formájában. Az utóbbi időben azonban 
egyre több kutatás irányul olyan numerikus sémák meghatározá­
sára, melyek segítségével a nem korrekt kitüzésü feladat megol­
dása is közelíthető megfelelő pontossággal annak ellenére,hogy 
ez nem függ folytonosan a kezdeti értékektől. Erre példa a dol­
gozat második részének végén szereplő két modell numerikus szá­
mítása .

I. Rész

1.1 A karakterisztikák módszere hiperbolikus
egyenletekre

A hiperbolikus parciális differenciálegyenletek megoldására 
használható numerikus módszer a karakterisztikák módszere. 
Lényege, hogy az egyenletet vagy egyenletrendszert a karakte­
risztikák segítségével közönséges differenciálegyenlet-rend­
szerre vezetjük vissza. Két fő lépésre bontható: az elsőben 
meghatározzuk a karakterisztikákat, a másodikban az igy ka­
pott közönséges differenciálegyenleteket integráljuk a ka­
rakterisztikák mentén.

Ez a módszer szinte kizárólag csak két független változó ese­
tén használatos. Ilyenkor ez a legpontosabb és legkényelmesebb 
eljárás. Több független változó esetén azonban lényegesen bo­
nyolultabbá válik, ezért nem szokás alkalmazni.

A karakterisztikák vizsgálata segítséget nyújt annak eldönté­
sében, hogy milyen kezdeti és peremfeltételekre van szükség 
ahhoz, hogy a megoldás egyértelmű legyen.

Minden parciális differenciálegyenlet átalakítható egy első­
rendű parciális differenciálegyenlet-rendszerré. A követke­
zőkben csak elsőrendű rendszereket vizsgálunk. Ezek közül is 
azokat, melyek az alábbi mátrix alakban irható fel.

л Эаг -г, 9AT
A ÖT + ъ ~ ” ü /1.1/9t

az együttható mátrixok,ahol
Q. — ( C.g )•-■ ) 

a függő változók vektora.
a jobboldal vektora és = (лгл { lTt f r*)T' I

________ és b.c*.
együtthatók csak az x,t független változók függvényei, 
s nem függnek a AT függő változóktól.
Ha az együtthatók 
egyenletrendszer kvázi-lineáris.

Definíció: Az /1.1/ egyenletrendszer lineáris, ha az

4Г -tői is függnek, akkor az
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Definíció: Az /1.1/ egyenletrendszer hiperbolikus, ha létezik 
olyan nem-elfájuló lineáris transzformáció, mely­
nek M mátrixával /1.1/ baloldala az alábbi for­
mára hozható:

f . а .длГ 

~bt
D = diag(A^) / Д^ valós és különböző/, és АаГ M 3

A fenti definíció jelentése, hogy ha az /1.1/ egyenletrendszer 
hiperbolikus,akkor lineáris transzformációval olyan n differen­
ciálegyenletté választható szét, melyben az i-edik egyenlet 
csak a változó irány szerinti deriváltját tartalmazza.
Ha ugyanis adja meg az i-edik irányt, azaz dx- dt = 0, 
akkor egy tetszőleges u függő változó Д,* irány szerinti deri­
váltja

4 /1.2/

ahol

О U.к + 5t
ez pedig megfelel /1.2/ jobboldalának.

Ha létezik ilyen transzformáció, akkor az M. mátrix sorá­
nak ki kell elégítenie az r - 3/vn^ А

valós és különböző irá-egyenletet, ami azt jelenti, hogy a 
nyok a

dü. í A -;\5)=0 /1.3/

általánosított sajátérték feladat sajátértékei. Ha tehát /1.1/ 
hiperbolikus, akkor az /1.3/ sajátérték feladatnak van 
valós és különböző sajátértéke, amely az /x,t/ sikon n valós 
iránynak felel meg.

n db

n db valós és különböző Дд> gyöke,Megfordítva, ha /1.3/-nak van 
akkor az ( f\ - A; *■ 0
n db homogén lineáris egyenletrendszernek van n db nem-triviális 

megoldása, melyek egymástól lineárisan függetlenek. Ezeket 
egy mátrix sorainak tekintve kapjuk az /1.2/ definícióban szerep­
lő transzformációs mátrixot. Ezzel beláttuk az alábbi tételt:

Tétel: Az /1.1/ egyenletrendszer akkor és csak akkor hiperbolikus, 
ha az /1.3/ általánosított sajátérték feladat gyökei való­
sak és különbözőek.

Definició: Azokat a görbéket, melyek érintői minden pontban a \l 
irányok, az /1.1/ egyenletrendszer karakterisztikái- 
nak nevezzük.

Példaként vizsgáljuk meg, hogy mi a feltétele annak, hogy egy 
másodrendű parciális differenciálegyenlet karakterisztikái való-
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sak legyenek.
Az általános kvázi-lineáris egyenlet alakja a következő:

СМЛ
г'cTua t 

дхг
Bevezetve a =- Aá. , 
kező elsőrendű rendszf

Л-ч

c\- —-v s üt = £ 
I e>T

l. л- p —— 
dt7- , dx

O' u2Ь 4- C ЦгЭх. at 9 u. változókat, a követ­és -— 3 Bt:

r“\ Лd <A
bx

■uő 12 s r9
9 Кo' "t

Эх \3t Эх)
91 з í p S. + * s * 3 f- - I■*■ c j
at

A és В együttható-mátrixok a kö-

10 Ű 0|
2=0 4 ű

Ebben a rendszerben az 
vetkezők:

o o/I
A- e 0 0 -'I )

о b cGab
Az /1.3/ egyenlet alakja ebben az esetben:

a - 2Ab +- Xc - 0
Ennek gyökei akkor valósak és különbözők, ha 
tehát a rendszer hiperbolicitásának feltétele.

b~- ác A 0 , ez

2 ~k is rögzítettek, a feladatHa A és В konstans, akkor a 
egyszerű. Áltaában azonban /l.l/-ben az együtthatók és a jobb­
oldal x-től, t-től és 4Г -tői is függ. Emiatt а Дл‘ irányok nem 
konstansok az integrálás tartományán, pontról pontra változik 
az értékük. Feltéve, hogy /1.3/ gyökei valósak és különbözők 
az értelmezési tartomány minden pontjában, definiálni tudunk 
egy un. karakterisztikus görbe hálózatot, amely mentén az /1.1/ 
egyenlet alakja /1.2/ jobboldalának megfelelő lesz, s ezt fel 
tudjuk használni közelitő megoldás meghatározására.

A valós karakterisztikák létezését a fenti tétel szerint vehet­
jük a hiperbolikus rendszer definíciójaként. Ezek elméleti és 
gyakorlati számitási szempontból egyaránt fontosak. A karakte­
risztikák mutatják meg, hogy milyen peremfeltételekre van szük­
ség ahhoz, hogy egy adott tartományon egyértelműen meg tudjuk 
határozni a megoldást. Pl. n=2 esetén a sik minden pontján két 
karakterisztika halad át, melyet а X és irány határoz meg. 
Ezek általában nem egyenesek, de a különböző pontokon átmenő, 
azonos A -hoz tartozó karakterisztikák nem metszik egymást 
/mert akkor a metszéspontban egy A -hoz két különböző karak-
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terisztika tartozna/, ezért felhasználhatók koordináta-rend­
szerként. Az 1. ábrán feltesszük, hogy Vj és лу ismert a Q„ Qz 
szakaszon, amely nem karakterisztika. Ekkor a karakterisztikák 
mentén integrálva meg tudjuk határozni й'л és értékét a 
PQ4Q2. tartomány minden pontjában. A P pontbeli megoldás csak a 
QTQl szakaszon megadott feltételektől függ, az ezen kivüli ada­
tok nem befolyásolják.

\

••
\

\

Q̂2.

.. ábrán feltesszük, hogy a és Q/tQb karakterisztikákon
adottak a peremfeltételek. Ha és Q/, Q3 mindegyikén az egyik
változó értéke ismert és 0Л-ben mindkettő, akkor a karakterisz­
tikák mentén érvényes differenciálegyenletek segítségével a má­
sik változó értékét is meg tudjuk határozni ezen görbék mentén. 
Ezután a teljes QAQ,PQ5 tartományban meg tudjuk határozni a me­
goldást.

A 2 .

Egy n egynletből álló rendszer esetén az /x,t/ sik minden P 
pontján n karakterisztika halad át és a P-beli megoldást a 
tételt tartalmazó görbe azon szakaszán felvett értékek határoz­
zák meg, melyet a P-n átmenő legszélső karakterisztikák metsze­
nek ki.

fel-

A karakterisztikák és a peremfeltételek közti összefüggés fon­
tos következménye, hogy a tartomány határán fellépő diszkonti­
nuitások a karakterisztikák mentén terjednek a tartomány belse­
jében. Ilyenkor különösen előnyös a karakterisztikus rácson va­
ló számitás. Nem-lineáris esetben azonban ez nem feltétlenül 
igaz. Diszkontinuitások a tartomány belsejében is keletkezhet­
nek, s nem szükségképpen terjednek a karakterisztikák mentén.
Az ilyen nem-lineáris diszkontinuitások /lökéshullámok/ kezelé­
se nagyban függ az egyenletek konkrét alakjától. Általában o- 
lyan fizikai jelenségnek felelnek meg, melyekről további in­
formációink is vannak /pl. megmaradási törvények/. Ezek segit- 
ségével már integrálhatók az egyenletek.

Ilyen nem-lineáris rendszerre példa a kompresszibilis áramlást 
leiró egyenletrendszer:
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/ o'^2.Q,N
4. ábra

Tegyük fel, hogy a megoldást ismerjük egy derékszögű rácson az 
R,R3 szakaszt tartalmazó egyenesig. A rács következő, P pontjá­
ban úgy kapjuk meg a függvényértékeket, hogy megkeressük a P-n 
átmenő karakterisztikák és az előző rácsvonal Q/t ,Qa, . . . , Q^i 
metszéspontjait. Ezekben a pontokban a függvényértékeket inter­
polációval nyerjük az R-C rácspontokban kapott értékekből. Az 
integrálást ezután az előzőekhez hasonlóan végezzük az /1.4/ és 
/1.5/ egyenletek közelitett alakjával.

Ennek a módszernek az az előnye, hogy könnyebben programozható, 
mintha tisztán karakterisztika hálót alkalmaznánk, s a 3 térdi­
menziós feladatokra is egyszerűbben kiterjeszthető.
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A karakterisztikák segítségével meg tudjuk vizsgálni, hogy mi­
lyen peremfeltételeket kell megadni ahhoz, hogy a kezdeti érték 
feladat korrekt kitüzésü legyen.

Az /1.1/ rendszer értelmezési tartománya általában legalább két 
oldalról zárt. Legyen ez a két perem az x=0 és a t=0 egyenes, 
és tekintsük az I. siknegyedet. Gyakran adott még egy perem az 
x irányban, legyen ez x=l és a tartomány nyitott a pozitiv t i- 
rányban./5. ábra/

Tegyük fel, hogy лг értéke adott a t=0-n /kezdeti feltétel/, és a 
másik két egyenesen adott peremfeltétel a következő alakú:

s-y^g
T‘v=h

x-O-n
x=l-en

Ha ez az információ elég ahhoz, hogy mindenütt egyértelműen meg­
határozzuk a megoldást, akkor meg kell tudnunk határozni V"-t 
x=0-n és x=l-en is.
Tegyük fel, hogy a karakterisztikus egyenletnek, /1.3/-пак, к 
pozitiv és /п-к/ negativ gyöke van. Ekkor az x=0-n k, az x=l-en 
pedig /п-к/ feltételt kell megadni. Ezeknek a feltételeknek és 
a karakterisztikákon érvényes differenciálegyenleteknek együtte­
sen meg kell határozniuk a w értékeket a peremeken.
Az /1.1/ egyenletrendszer karakterisztikus alakja /1.2/ alapján 
a következő:

sjy Э Mr ^ d íü - К oЭх bt

ahol D=diag/Aa1/ és w=MBv. Feltéve,hogy D első к eleme pozitiv 
w első к komponensének a Tv=h feltétellel együtt minden v, érté­
ket meg kell határoznia x=l-en. Legyen az M mátrix első к sorá­
ból képzett mátriy. M 
séges feltétel az, hogy x=l-re az

akkor ha T egy /п-к/лп-es mátrix, a szük-
mátrix ne legyen szingu­

láris. Hasonló feltétel nyerhető x=0-ra. /Az M mátrix sorai az 
/1.3/ általánosított sajátérték feladat baloldali sajátvektorai./

4 '

A vizsgálatban feltettük, hogy az /1.1/ rendszer lineáris. Ha 
nem az, akkor fel kell tenni, hogy a -k /melyek v-től is füg­
genek/ előjele nem változik.

A karakterisztikák elmélete kiterjeszthető 3 térdimenzióra is,
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de ekkor a numerikus módszer olyan bonyolulttá válik, hogy el­
veszti előnyét más módszerekkel szemben.

A gyakorlatban sokszor előfordul, hogy a rendszer nem teljesen 
hiperbolikus. Ilyenkor külön megfontolást igényel, hogy mikor 
lesz a feladat korrekt kitüzésü és a megoldási módszer stabil. 
Nincs olyan általános elmélet, amely minden esetben alkalmaz­
ható lenne. A szükséges peremfeltételek meghatározása általá­
ban a fenti módszer segitségével történik azokra a karakterisz­
tikákra, melyek valósak. A hiányzó feltételek megadásában az 
eddigi számitási tapasztalatok adnak segítséget.

1.2. Véges differencia módszerek hiperbolikus egyenletekre

A hiperbolikus egyenletek megoldásáról nehéz általánosan beszél­
ni, mivel nagyon sokféle fizikai jelenség húzódik mögöttük. Pl. 
a meteorológiában kis sebességű kompresszibilis áramlással fog­
lalkoznak és hosszú időn át lezajló nem-lineáris hatásokat 
vizsgálnak. Ugyanakkor a repüléssel kapcsolataos problémákban a 
stacionárius áramlás áll az érdeklődés középpontjában, a sebes­
ség nagy, az áramlás turbulens és lökéshullámok terjednek benne, 
továbbá nagyon fontos a peremek szerepe, a repülőgépszárnyak 
vagy a turbinalapátok alakja. Ez a nagyfokú változatosság azt 
jelenti, hogy általában az adott probléma megoldására alkalmas, 
apeciális módszert kell kidolgozni.

A másik nehézséget az jelenti, hogy a hiperbolikus egyenletek 
analitikus elmélete sem teljes, nem beszélve az olyan rendsze­
rekről, melyek nem is teljesen hiperbolikusak. Nem mindig lehet 
egzakt módon meghatározni, hogy milyen feltételek szükségesek 
ahhoz, hogy a feladat korrekt kitüzésü legyen.

A gyakorlati számításokban legelterjedtebb és legáltalánosabban 
használható numerikus megoldási módszer a véges differenciák 
módszere. Ennek alkalmazásakor a feladat értelmezési tartomá­
nyát derékszögű ráccsal fedjük le. A megoldást a rácspontokban 
keressük úgy, hogy a deriváltakat a rácson vett véges differen­
ciákkal közelitjük. Ezzel a feladatot algebrai egyenletrendszer 
megoldására vezetjük vissza.

Hiperbolikus egyenletek esetén az értelmezési tartomány legalább 
egy oldalról nyitott /általában ha az egyik független változó az 
idő, akkor t>0/, s a kezdeti és peremfeltételek egyaránt fel­
lépnek.

A véges differenciák alkalmazásával különböző hibákat követünk el. 
Kérdés, hogy milyen feltételek mellett tudjuk megfelelő pontos­
sággal közelíteni a differenciálegyenlet megoldását a véges diffe­
renciaegyenlet megoldásával. Ezzel kapcsolatban merül fel a kon-
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vergencia és stabilitás kérdése. A következőkben ezeket tekintem 
át,ismertetem a differencia sémák stabilitásának vizsgálatára ki­
dolgozott főbb módszereket.Bemutatok néhány alapvető véges diffe­
rencia sémát, megadom stabilitásuk feltételét és pontosságukat.

1.2.1. Pontosság, stabilitás, konvergencia

Legyen a vizsgált parciális differenciálegyenlet
Lu=f,

ahol L a differenciáloperátor, f pedig ismert függvény.
A véges differencia módszer alkalmazásakor a feladat _CL- értelme­
zési tartományát lefedjük egy ráccsal. A differenciálegyenletet a 
rácspontokra felirt differenciaegyenlettel helyettesitjük. Jelöl­
je ezt a véges differencia operátort Lд, , amely olyan rácson van 
értelmezve, melynek lépéshosszai a h paraméterrel arányosak. Le­
gyen U a parciális differenciálegyenlet, u a véges differencia­
egyenlet egzakt megoldása, N pedig a véges differenciaegyenlet 
numerikus megoldása.
Definíció: Az L^, véges differencia operátor konzisztens az L 

differenciál operátorral, ha а = L^U-LU lokális 
képlethiba nullához tart, ha h-^0. /A lokális képlet­
hiba azon pontokban értelmezett, ahol L^/

A numerikus számításból eredő u-N különbséget kerekítési hibának 
nevezzük.
Definíció: A véges differenciaegyenlet megoldása konvergál a diffe­

renciálegyenlet megoldásához, ha u/Р/-a»-U/P/ , Peílés 
h^-O-ra. /Itt _fl_ az integrálás tartományát jelenti a ha­
tárával együtt./

A stabilitás fogalma arra vonatkozik, hogy az u-N különbség hogyan 
viselkedik az integrálás teljes tartományában.
Tegyük fel, hogy a P0 pontban az u/P0 / érték helyett az u/P0/+ £./P0 / 
értékkel számolunk. Ez az £. a Pa pontbeli hiba. Ha a megoldást ez­
zel az uj értékkel folytatjuk anélkül, hogy a továbbiakban újabb 
hibát követnénk el, akkor az u*7P/ megoldáshoz jutunk. Az u*7P/-u/P/ 
eltérés a P0 pontbeli hibából ered. Ha több pontban is követünk el 
hibát, akkor az ezek által együttesen okozott eltérésről beszélünk. 
Legyen d^=igax| £./P/1 , a legnagyobb abszolút értékű pontbeli hiba. Az 
ideális az lenne, ha d -^0 és h-^-O-ra a megoldásban együttesen oko­
zott eltérés nullához tartana. Ez azonban lineáris esetben nem le­
hetséges, mert az elkövetett hibák hatása összegződik a megoldás 
során.
A stabilitás definiálására egy adott tartományon, adott cT és h 
esetén fellépő legnagyobb abszolút értékű eltérés szolgál.
Definició; A véges differencia séma stabil, ha

a, rögzített rács esetén a legnagyobb abszolút értékű 
eltérés nullához tart, ha cf-^-O,

b, a rács finomításakor /h->0/ ez az eltérés nem nő 
gyorsabban a megoldás során, mint h_1 valamilyen 
hatványa.
Ha ez az eltérés h -ben exponenciálisan nő, akkor 
a séma instabil. £ 1J
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Az, hogy egy véges differenciaegyenlet eleget tesz-e a stabilitás 
és konvergencia követelményének az egyenlet alakjától, valamint a 
kezdeti és peremfeltételektől is függ. A gyakorlati esetek nagy 
részében az eltérés nagyságrendje vagy h*'* alacson rendű hatványa, 
vagy h
stabil és az instabil módszerek viselkedésében.

~A exponenciális függvénye, tehát lényeges különbség van a

A legtöbb esetben U-t és u-t nem ismerjük, vagy csak jóval nagyobb 
erőfeszítéssel tudnánk előállítani, mint N-et. A parciális diffe­
renciálegyenletek numerikus megoldásának fő feladata N meghatáro­
zása úgy, hogy U-N kisebb legyen egy előre megadott hibakorlátnál 
az egész vizsgált tartományon.

Az U-N =/и-u/ + /и-N/ különbség akkor lesz kicsi, ha a numerikus 
számítást elegendően finom rácson végezzük stabil és konvergens 
séma segítségével. A képlethiba és a kerekítési hiba azonban a 
rács finomításakor ellentétesen változik, ezért a pontosság nem 
növelhető tetszőlegesen.

A konvergenciát általában nehéz vizsgálni, mivel a képlethibában 
az ismeretlen függvények deriváltjai szerepelnek, melyek korlátáit 
nem mindig tudjuk megbecsülni. Lineáris egyenletek esetében azon­
ban a konvergenciához elég a stabilitást és konzisztenciát vizs­
gálni. Erre vonatkozik a következő
Lax-féle ekvivalencia tétel: Ha egy korrekt kitüzésü lineáris kez­

deti érték feladatot egy vele konzisz­
tens véges differencia sémával közeli­
tünk, akkor a séma konvergenciájának 
szükséges és elegendő feltétele, hogy 
stabil legyen. j_2J

A stabilitás vizsgálatára leginkább elterjedt módszert Neumann dol­
gozta ki, s részletes leirása Гз'З -ban található. Az eljárás ere­
detileg lineáris, konstans együtthatós egyenletekre készült, a 
gyakorlatban azonban hasznos eredményeket nyernek vele változó 
együtthatós és nemlineáris esetekben is. Ilyenkor a megoldást egy 
pont körül linearizálják, s a vizsgált tartományt olyan kis ré­
szekre bontják, ahol az együtthatók elhanyagolható hibával kons­
tansnak tekinhetők. Ezzel az un. lokális lineáris stabilitást 
vizsgálják, melynek eredményéből az eredeti rendszerre vonatkozó­
an vonnak le következtetéseket.

A Neumann-féle eljárás lényege, hogy a rács egy egyenesén elköve­
tett hibák terjedését vizsgáljuk. Ezeket a hibákat véges Fourier 
sorba fejtjük, majd vizsgáljuk egy általános tag terjedését az 
idő változó növekedésével.

/t = О/ elkövetett hiba E/х/. En-
vV * e

Ennek az összegnek az egyenes rácspotjaiban éppen az elkövetett 
hibákat kell megadnia. Legyen a vizsgált intervallum hossza

Legyen a kezdeti egyenesen 
nek komplex Fourier sora

Ы'х) = JC
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x irányban L, a részintervallumok száma N, hossza áx, azaz L=N Лх.
Állítás: A fenti összeg megadható úgy, hogy abban a tagok száma 

N+l legyen /amennyi pontban hibát követhettünk el/. A
_ n th 
~ Х/ЛХ

Bizonyítás: A fenti választás esetén a /j/Ax,0/ pontbeli hiba a 
kezdeti egyenesen ^

-nek /n=0,1,2,...,N/./Ъп frekvenciák választhatók

V*jЛх
е/j A x/= JA. Мгг e

n =0Ez N+l lineárisan független egyenlet, melyben az A0, 
együtthatók az ismeretlenek. Ez az N+l e-

, j =0,1, . . .,N

A А ц
gyenletből álló lineáris egyenletrendszer meghatározza az A0,A^, 

AM együtthatókat, tehát a kezdeti hibák tetszőleges eloszlása 
kifejezhető ilyen komplex exponenciális alakban.

• • Г

A továbbiakban egy általános hibatag, az e1^'X terjedését vizs­
gáljuk, ahol (b a fenti J/V]-eк bármelyike lehet. /Az An konstans, 
a vizsgálat szempontjából elhanyagolható./ A linearitás miatt a 
hiba terjedését ugyanaz a véges differenciaegyenlet Írja le, mint 
ami megadja a közelítést. A véges differenciaegyenletnek olyan

-re redukálódik. Ilyen me-megoldását keressük, amely t=0-ra e ; 
goldás az cd i iX , ahol komplex.e e,
{eÄt eiAx j alakú megoldások megadhatók minden homogén lineá­

ris konstans együtthatós parciális differenciaegyenletre, melynek 
független változói x és t. Ha az egyenlet t-ben N-edrendü, akkor 
minden fb -ra N db oc található.

f <jd iß* f függvények ilyen egyenlet esetén a megoldások 
egy alaprendszerét képezik abban az értelemben, hogy tetszőleges 
megoldás előállítható belőlük.

Az l £• e

ei,:>x alakú megoldás segítségével az /x, t/ = / j A x, к A t /

r-r k. t/?h j ЛХ
= h 5 e-

tAz e 
pontbeli hiba: y> <x к AtЕ/j A X,k At/= _Aj e 

n=-0
A fentiekből következik az alábbi tétel.

SbhjAx л At
5 =e, ahole

r\=0

Tétel: /Neumann-féle stabilitás feltétel/
Annak szükséges és elegendő feltétele, hogy a kezdeti 
egyenesen elkövetett hibák az idővel ne növekedjenek expo­
nenciálisan az, hogy j £ j £ \ legyen.

Ez a tétel két időlépést tartalmazó sémákra igaz. Három vagy an­
nál több időlépéses sémák esetén ez a feltétel nem mindig elegen­
dő, de szükséges.
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Példaként alkalmazzuk a Neumann-féle stabilitás vizsgálatot a

parciális differenciálegyenletre. 
Legyen a közelitő véges differenciaegyenlet a következő:

M*t * u XX

UjikH 2- Mjk f

Ai1
Wjk - u (jAX ( к At)

Ebben helyettesítsünk

i ЫД + u i-лЛ- ^tjn.k ~
/AX2*

ahol
j.k £^Í4x és legyen r =ÁLhelyébe -et,u •, Dk ziX

Ekkor a következő egyenletet kapjuk:
4i V- f

Legyen A = 4 — Z r^óih2" | ^ j . Ezzel a fenti egyenlet alakja:
iz-Zf\i + 4 » o

Ennek gyökei: ^ - ft + 'ÍAZ'~/'

Ugyanakkor a j; -re kapott első egyenletből látszik, hogy f = -7- 
Ha A> 1, akkor j I 1. Ha A<-1, akkor 
Ha viszont IАI é-1, akkor ji^ -1 \ = /1_
A stabilitás feltétele tehát, hogy -Iá A él legyen, azaz

u “ Aés
4
4*

)41-lé 4 — z r- bth1

Ennek jobboldala triviálisan teljesül. A baloldal tetszőleges 
jb -ra akkor és csak akkor áll fenn, ha rél. Tehát a séma sta­

bilitásának az a feltétele, hogy /jt = z\ x legyen.

Ha ezt az eljárást egyenletrendszerre alkalmazzuk, akkor a külön­
böző egyenletekben elkövetett hibák időbeli növekedését az átme­
net mátrix Írja le. Ennek segítségével a Neumann-féle stabilitás 
feltétel azt követeli meg, hogy az átmenet mátrix sajátértékeinek 
abszolút értéke ne legyen nagyobb 1-nél. [2,7l

A stabilitás vizsgálatára használatos másik módszer a mátrix mód­
szer. Alkalmazásakor a véges differenciaegyenleteket mátrix alak­
ban Írjuk fel.

Legyen a véges differenciaegyenlet alakja /két időlépéses módszer 
esetén/:

kik “ A kik.-4 V bk_4
a t=kAt időpontbeli megoldást jelöli a rácspontokban.ahol Uk

Tétel: A stabilitás szükséges és elegendő feltétele, hogy

й A d- O'(&t) legyen 
gyobb abszolút értékű sajátértékét jj6 J.

jelöli az A mátrix legna-, ahol
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Ezekkel a módszerekkel elsősorban a lineáris, konstans együttha­
tós véges differenciaegyenletek stabilitása vizsgálható. A fizi­
kai szempontból érdekes egyenletek többsége azonban nem lineáris, 
vagy változó együtthatós, vagy mindkettő. Ezek stabilitásának 
vizsgálatára javasol Гв^ egy heurisztikus módszert.

Az eljárás lényege, hogy a véges differenciaegyenletet differen­
ciálegyenletre vezetjük vissza azáltal, hogy minden tagját 
Taylor-sorba fejtjük. A legalacsonyabb rendű tagoknak a kifej­
tésben magát a közelitendő differenciálegyenletet kell adniuk.
Az összes többi tagot hibának tekintjük. A differenciaegyenlet 
stabilitása gyakran megállapítható ezeknek a képlethibáknak a 
vizsgálatával. Ezzel a módszerrel olyan instabilitások is felis­
merhetők, melyek a Neumann-félével nem.

1.2.2. Explicit és implicit véges differencia sémák

A véges differencia módszerek bevezetéséhez tekintsük az alábbi 
egyszerű elsőrendű konstans együtthatós egyenletet:

[A£ -f 01 M x =

Az 1. táblázat tartalmazza az erre az egyenletre leggyakrabban 
használatos differencia sémákat a hozzájuk tartozó Neumann-féle 
stabilitás feltétellel és a lokális képlethiba rendjével. A dia­
gramok a felhasznált rácspontok elhelyezkedését mutatják, a kö­
zelítés középpontját kereszt jelöli. A lokális képlethibák fő­
tagjainak meghatározása az A függelékben található.

Cl > 0 /1.6/I

A közelítések alapvetően két csoportra oszthatók, explicit és 
implicit módszerekre. Az explicit módszerek alkalmazásakor idő­
lépésenként előrehaladva közvetlenül meg tudjuk határozni a me­
goldást az adott időponthoz tartozó rácspontokban a már kiszámí­
tott pontok és a perem pontjainak segítségével. Mivel iterációra 
nincs szükség, ezért ezek a módszerek gyorsak, viszont stabilitá­
suk biztosítása általában erősen korlátozza a megengedhető idő­
lépéseket .

Az implicit eljárások egy-egy időlépés számításánál a már ismert 
értékeken és a peremeken felvett értékeken kivül még eddig ki 
nem számított függvényértékeket is felhasználnak, ezért iteráci­
óra van szükség. Ez lassitja a számítást, ugyanakkor a hozzájuk 
tartozó séma általában feltétel nélkül stabil. Ez azt jelenti, 
hogy a stabilitás biztosításához nincs szükség az időlépés kor­
látozására.

A táblázatból kitűnik, hogy az explicit sémák stabilitásának 

0 á rei é 1 vagy | ra j £ 1, ahol r 5 ÄEfeltétele
ЛХ
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lokális képlet- 
hiba fotagja

differencia séma és a 
stabilitás feltétele

! / пн■— пИ
) + rct (u j - U|_4) Ä /At 14О

if4-“4)- ú;jA
stabil, ha О Ä ra é 1Жл

i n+1
! ut -

ПoH
Mj +

+z ra(v .44+3 -О-дц?
I ra | á 1

2.
Жи -h *! '

stabil, ha
nt1 #

nH n-4 
— U;

I/ ■"К ) / о n \ h
x cTu 

Эх3,

•freiá
C % ;

stabil, ha |ra| 4 1♦
ArA / RTT

lu t J ra («!*< - u"_„)-

- ÍrV-(+ u",,) =

~ \75ír/>
stabil, ha /га/ ás

í); - u,-I iIn+1 t
3) \n !ЦП^xlj J

Ж *n > - a
Lax-Wendroff

э\<í AtÍM* f «+1 n\ [ лл/\!vwa 'UJ ) f r44WjЖ rv-t 1 МчГ + dQ; - UH z Этгt
h í

stabil, ha ra = 0 z

('t tra)uj+1 Г0\)и^- —[/\'Га)и.
- ъ•И6

•i4s
h-H cí и

+ Заéé !+■4i 3x3t: h+i-(xl + roT)u* * Zát{ -+1
feltétel nélkül stafeil‘.h4 flit

ЧаЭхь

nfi vvV 1 ’M |аДА^Эи

+ 4 J.f1

Wa0 tuá / Эх2 fí n+tц ra ^

feltétel nélkül stabil

G t h
Эиa3u+ U; -U; i41 1~1h-t а Э.<Э^ 423täi <$

H j + iJ
Crank-Nicolson•;

Atuj = и (xj , tn) s и (j Лх,п At),Jelölések: г г áx

1. táblázat
Véges differencia sémák az и + а и = f(x,t) egyenletret X
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Az ilyen alakú feltételek szükségességére először Courant, 
Friedrichs és Lewy mutatott rá £9].
A függési tartomány fogalmának bevezetésével vizsgálták a konver­
gencia feltételét.
Definíció: Az /x,t/ pont függési tartományának a t=0 egyenes azon 

pontjainak halmazát nevezzük /kezdeti értékek/, melyek 
befolyásolják a megoldás értékét ebben a pontban.

Állítás: /Courant-Friedrichs-Lewy feltétel/
Annak szükséges feltétele, hogy a véges differenciaegyen­
let megoldása a differenciálegyenlet megoldásához konver­
gáljon az, hogy a véges differenciaegyenlet megoldásának 
függési tartománya magába foglalja a differenciálegyenlet 
megoldásának függési tartományát.

Különben a kezdeti feltételek egy részének megváltozása módosítaná 
ez utóbbi megoldást anélkül, hogy éreztetné hatását a differencia­
egyenlet megoldásában.

Az /1.6/ egyenlet karakterisztikái az x-at=konstans egyenesek, igy 
az /x0,t0/ pont függési tartománya az /xo-at0,0/ pont. A táblázat 
A módszere esetében ennek a pontnak a függési tartománya az

(*о - ~ , o) , ... , (x0 -Ax, 0) . (Xc, o)
pontok halmaza. A Courant-Friedrichs-Lewy feltétel teljesüléséhez 
az utóbbi halmaznak tartalmaznia kell az /xo-ato,0/ pontot. Ebből a- 
dódik, hogy ra 41 a konvergencia feltétele az A módszerre. Mivel 
ez a módszer konzisztens a felirt differenciálegyenlettel, a Lax- 
féle ekvivalencia tétel miatt ez egyben a stabilitás feltétele is.

A táblázat módszerei könnyen kiterjeszthetők változó együtthatós 
rendszerre is [lő].
Legyen az egyenletrendszer alakja a következő:

ut + A (x,t) u* =
ahol u az ismeretlen függvényeket tartalmazó q komponensü vektor, 
A pedig qxq-s mátrix.

A D módszer kivételével mind triviális módon kiterjeszthető erre 
a rendszerre, ha u helyébe u-t és "a" helyébe А-t Írunk. Kicsit 
bonyolultabb lesz a D /Lax-Wendroff/ módszer alakja, f з O-ra fel­
írva : 

n+4 П+ T
'АЛ' Yx A: ÜL) n2 л

— J л n и
, - У j-м

n és vxy?-y*- у.]-,
A Neumann-féle stabilitás feltételt ebben az esetben rögzitett_ 
együtthatókra kell vizsgálni, azaz A/x,t/ helyett egy fix А/5Г, t/ 
értékkel számolva. , _ _ .
A stabilitás feltétele, hogy \ Y~_As ÍX,t ) | h 1 legyen s=l, 2 , . . 
ra, ahol A4 (Az, ... , Ajy az A/x,t/ mátrix sajátértékei. A változó 
együtthatós feladatra ezután azt követeljük meg, hogy ez a feltétel

ahol I az egységmátrix,

• ,q-
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a vizsgált tartomány minden /x,t/ pontjára teljesüljön.

A nem-lineáris egyenleteknek egy fontos osztálya megmaradási tör­
vények alakjában irható fel. Pl. a folyadékáramlás elméletében a 
tömeg-, impulzus- és energia-megmaradás egyenletei s következő a- 
lakuak:

=0Xm" £ -nel jelölve az 1. táblázat A módszere erre az-et
egyenletrendszerre: _ V)irM (e:$I n

aj ~ tu - 0t r
Ugyanilyen egyszerűen felírható a többi módszer is. Valamivel bo­
nyolultabb lesz a Lax-Wendroff módszer, melyben szükség van az 
f-nek az u-ra vonatkozó Jacobi mátrixának bevezetésére. Jelölje 
ezt А/u/, melynek elemeire:

<J U r\
Ennek felhasználásával a séma a következő lesz:

A m rt

-

i - z г(к»,-ípb , A vi n \ b /— У) * \r Ai+.(FM-F,) - Ан(ц -t;.JhH 4U : =• Ы :— J - J z
Az osztaspontok közti kiertekeles elkerülesere A - ^-et

w .. . V + x
0-nel, A • i -et pedig№. , 'rt n -V

(Ai~i f Aj))1 + A, i -nel szokás köze-Z z
liteni.

A sémákat aszerint is osztályozhatjuk, hogy disszipativak vagy sem.
Definició: Egy séma akkor disszipativ, ha a Neumann-féle stabilitás 

feltételben szereplő A -k kielégítik a következő egyen­
lőtlenséget valamilyen cT> 0-ra és pozitiv egész m-re 
/rendszerint m=l/ [_10j: /1.7/
/AJ ~ 1- c? 1/bAxj m, minden j/bAxj á JT ~ 

На /AJ =1
re és minden s-re 

minden s-re és föAX~re, akkor a séma nem-
disszipativ.

Disszipativ séma esetén a közelitő megoldások normája fokozatosan 
csökken az idővel. Ez azt jelenti fizikailag, hogy a nekik megfe­
lelő energia az idővel csökken, nem marad meg.

Nem-disszipativ séma esetén az energia szigorúan megmarad. Ezeket 
olyan problémák megoldására szokás használni, melyek hosszú idő­
tartamot foglalnak magukba /pl. a meteorológiában/, és a rendszer 
kivülről nem kap energiát.
Nagy sebességgel lejátszódó jelenségek esetében viszont, ahol a 
rendszerbe sok energia jut kivülről, a disszipativ közelítések az 
alkalmasabbak, mert ezek bizonyos fokig simitják a megoldást. Kü­
lönösen előnyös a használatuk, ha lökéshullámokat akarunk egysze­
rűen kezelni.
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Az utóbbi két évtizedben széleskörű kutatás folyt és folyik le­
hetőleg általános és a gyakorlati igényeket kielégitő véges dif­
ferencia sémák kifejlesztésére a folyadékáramlás problémáira. 
LllJ -ben szerepel a tranziens és stacioner áramlásra használa­
tos alapvető véges differencia sémák vizsgálata, összehasonlítá­
sa. A különböző sémák pontosságát és stabilitását a numerikus és 
az analitikus megoldás összehasonlításával vizsgálja a megoldá­
sok nagyságának és haladási sebességének segítségével. A két me­
goldás közti különbséget a numerikus sémákban fellépő "fals" ha­
ladási sebesség és "fals" diffúziós paraméter segítségével jel­
lemzi. A vizsgálat eredménye az alábbiakban foglalható össze:

1. Az explicit kifejezések általában negativ "fals" diffúziót o- 
koznak, ami az algoritmus stabilitásának csökkenésével jár. 
Ellenkező és stabilizáló hatása van az implicit formuláknak.

2. A hely szerinti deriváltakban a centrális differenciák hasz­
nálata általában negativ "fals" diffúziót okoz, amig az előre 
haladó differenciáké általában pozitívat.

3. Ha az előre haladó differenciák explicit kifejezésekben for­
dulnak elő, akkor ez növeli a numerikus megoldás haladási se­
bességét, ugyanakkor implicit kifejezésekben csökkenti.

4. A centrális differenciákra épülő formula általában pontosabb, 
mint az előre haladó differencia, ha stabil. Viszont stabili­
tási tartománya kisebb, mint az utóbbié.

Külön problémát vet fel a peremfeltételek kérdése.
Az egyszerű ut +au* =0, x = 0, táO feladat esetén a karakterisz­
tikák, melyek mentén a megoldás ebben az esetben konstans, az 
x-at=konstans egyenesek. Nyilvánvaló, hogy a>0 esetén ahhoz, 
hogy egyértelmű legyen a megoldás ismerni kell a függvény értékét 
mind a pozitiv x, mind a pozitiv t tengelyen. Ha viszont a<0, 
akkor u értékét csak a pozitiv x tengelyen lehet előirni.

oéxál, tiSO feladatot, amely q e-Tekintsük most az ut-Au^=0, 
gyenletből áll. Ha az A mátrix diagonális és első s főátlóbeli 
eleme pozitiv, a többi /q-s/ negativ, akkor a karakterisztikák el­
méletéből következik, hogy u/x,0/ értékét meg kell adni minden a 
[o,lJ intervallumba eső x-re, valamint u/0,t/ alső s és u/l,t/ 
utolsó /q-s/ komponensét minden t>0-ra.
Ha A nem diagonális, akkor hasonló megfontolások vonatkoznak a po­
zitiv és negativ sajátértékekhez tartozó sajátvektorokra, de ne­
hezebb a helyes feltételeket megállapítani.
x=0-ban s, x=l-ben pedig /q-s/ lineárisan független feltételt kell 
megadni.

Az eddigiekben a véges differenciákat az értelmezési tartomány 
belső pontjaira irtuk fel. Amikor a peremfeltételeket közelitjük 
arra kell vigyázni, hogy ne rontsuk el a rendszer stabilitását 
és pontosságát.
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A peremfeltételek közelítésének elméletét az utóbbi időben kezd­
ték kidolgozni. Az eddigi eredmények elsősorban a lineáris e- 
gyenletekre korlátozódnak, azon belül is főleg a konstans együtt­
hatós esetre.

A vizsgálatok alapja a Neumann-féle Fourier analizis, melyet a pe­
remfeltételekre is kiterjesztenek. A lineáris konstans együttha­
tós kezdeti és peremérték feladat véges differencia közelítésére 
a stabilitás szükséges és elegendő feltételét [Д2] adja meg.
Ennek felhasználásával vizsgálja a különböző közelítések pontos­
ságát és stabilitását [l3,14j. [l5j-ben olyan stabil közelítést 
ad meg a szerző, amely kiterjeszthető nem-lineáris feladatokra 
is. Nem-lineáris esetben azonban nem bizonyított elméletileg a 
stabilitás.

Ezeknek a kutatásoknak az eredménye azt mutatja, hogy körültekin­
tően kell kezelni a peremfeltételeket, mert közelítésük elront­
hatja a teljes séma stabilitását. Ugyanakkor stabil közelítés e- 
setén sokszor elég alacsonyabb rendű sémával közelíteni a perem- 
feltételeket, mint a belső pontokat. A teljes séma pontossága a 
belső pontok közelítésére használt séma pontosságának fog megfe­
lelni .

1.2.3. Az egyenesek módszere

A parciális differenciálegyenletek numerikus megoldásának egy má­
sik csoportjában a tér szerinti független változót diszkretizál- 
juk, az idő folytonos marad. A térbeli deriváltakat véges diffe­
renciákkal helyettesitjük, majd az igy kapott időre vonatkozó 
közönséges differenciálegyenlet-rendszert oldjuk meg.

Numerikus számitás esetén ez azt jelenti, hogy ebben az irányban 
is diszkretizáljuk a feladatot, s alkalmazzuk valamelyik, a kö­
zönséges differenciálegyenletekre vonatkozó numerikus integrálá­
si módszert. így az egyenesek módszere is tulajdonképpen a véges 
differencia módszerek kpzé tartozik.

Ilyen módszerek összefoglalása található (Д6_]-Ьап. A térbeli de­
riváltak közelítésére negyedrendű véges differenciákat alkalmaz 
a szerző olyan megfontolások alapján, hogy a pontosság rendjének 
további növelése már nem okoz jelentősebb különbséget az egész 
séma pontosságában. Az igy kapott közönséges differenciálegyen­
let-rendszer megoldására fix és változtatható lépéshosszu mód­
szerek egyaránt alkalmazhatók /Runge-Kutta, Adams, prediktor- 
korrektor módszerek/. Ezek hatékonyságát hasonlítja össze [16].

Optimális séma itt sem adható meg általánosságban, a konkrét fe­
ladat jellege döntően befolyásolja a differencia séma megválasz­
tását .

:*
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1.3. Összefüggés a karakterisztikák és a stabilitás között

A dolgozat második részében tárgyalom a kétfázisú folyadékáram­
lás matematikai modelljeit. Ezek egy része nem teljesen hiperbo­
likus parciális differenciálegyenlet-rendszert alkot, az egyen­
letrendszer karakterisztikái között komplexek is előfordulnak.

Lineáris esetben ennek az a következménye, hogy a kezdeti érték 
feledat nem korrekt kitüzésü, mert a megoldás nem függ folyto­
nosan a kezdeti értékektől.

A következő vizsgálat célja annak megállapitása, hogy az egyen­
letrendszer karakterisztikái és stabilitása között mi a kapcso­
lat .

Tétel: Tekintsük a következő n egyenletből álló elsőrendű kvá- 
zilineáris parciális differenciálegyenlet-rendszert:

m + £{«> |f - с(ц) - о /1.8/
..,un) a függő változók n dimenziósahol u=(u^,u

oszlopvektora, A és В nxn-es mátrixok, c n dimenziós 
vektor, az un. forrásvektor. А, В elemei és c_ komponen­
sei az u komponenseinek függvényei. Ha az /1.8/ egyen­
letrendszernek vannak komplex karakterisztikái, akkor a 
megoldás nem stabil, a kezdeti értékekben elkövetett kis 
hiba a megoldás során korlátlanul nőhet.

2.' *

Bizonyítás:
Jelöljük az /1.8/ egyenletrendszer karakterisztikus gyökeit 
убС-vel. Ezeket a

det (a - /X в) = О /1.9/
egyenlet' határozza meg.

Vizsgáljuk /1.8/ lokális lineáris stabilitását, azaz vizsgáljuk, 
hogy ha a megoldást egy időpontban kis cfu értékkel perturbáljuk, 
akkor ez a perturbáció hogyan terjed a megoldás során.

Ehhez /1.8/-ban Írjunk u helyébe íu+сГи) -t, s a kapott ered­
ményt linearizáljuk cTu-ra vonatkozóan. így az alábbi egyenlet­
rendszerhez jutunk, amely c)tL és pillanatnyi értéké­
hez tartozó perturbáció nélküli megoldás körüli kis cfu pertur­
bációt Írja le:

az
at

. Щ- J(Tu ® ^ + 4^-0У/ St V " Эи/ Эх Эи
/1.Ю/

сГи рег-Ezeket a pillanatnyi értékeket konstansoknak tekintve а
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turbációra a következő alakú megoldást keressük:

du * ou0 e-xp jt (kx - ujtj]

Ezt /1.10/-be Írva kapjuk, hogy

- i co A(u) du0 + i

/1.11/

к Ш<Ь. + (<й.§*)Э* +3t

(*• e)л2Й. + сГи„ „ О /1.12/4
id / Эх

Ennek a (fuo-ban homogén lineáris egyenletrendszernek akkor van 
nem-triviális megoldása, ha

A + t-кЪ + X1) * 0,det (-1(-60 /1.13/
ahol Гэа ,3u)T (ъъ . dk\T 

Эй £t/ ' l, 3u Эх/

(к) t 0 , akkor /1.13/ a következő alakba irható:

d c /1.14/D - t Эи

Ha Co — 60

/1.15/— 0

Adott valós к értékhez különböző co(k) komplex gyökök tartoznak. 
Az /1.11/ összefüggés alapján a stabilitásnak az a feltétele, 
hogy minden uu(k) gyökre ] m (Xo)áO legyen. Ekkor lesz a per­
turbáció időbeli növekedése korlátos.

Ha D=0, akkor az úg értékek /1.9/ és /1.15/ összevetéséből a
»-k.^ oo összefüggésből meghatározhatók. Ha minden ^gyök valós, 

akkor ezzel minden со is valós lesz, tehát teljesül, hogy minden 
со -ra lm(6o)á.O.

Ha van komplex gyök, akkor az konjugáltjával együtt szerepel, s 
ekkor az egyik oo(k)-ra Jvп/и_')>0 lesz, vagyis a perturbáció kor­
látlanul nő.

Ha D^O, akkor vizsgáljuk a k->oo és со
határértéke véges, ha к

oO esetet. Feltesszük,
К oö./A valóságban mindighogy |coOO|

ez áll fenn./ Ekkor Osztrovszkij tételéből következik /17j , 
hogy

;0

Ha yíA. komplex, azaz убг —
akkor /1.16/-ból következik, hogy

/1.16/

y«.r £ ű

— — 
- Xmfco) к

к -*• oO
/1.17/- Xй-1
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кMivel —— -пак véges a határértéke /méghozzá pozitiv vagy nulla/ 
ha k-> oo , ezért + qQ , ha k^»oO .

Mivel a komplex karakterisztikák konjugáltjukkái együtt fordul­
nak elő, ezért feltehetjük, hogy ^^<.0. Ekkor /1.17/-Ы51 az 
következik, hogy

Ezzel kaptuk, hogy nagyon kis hullámhosszakra instabilitás lép 
fel. A növekedés nem korlátos, ha к

к

4- oO. hot к oo.

oO .

Az eddigiekben összefoglaltam a hiperbolikus egyenletek numeri­
kus megoldásának főbb kérdéseit. Ismertettem a karakterisztikák 
módszerét, néhány alapvető véges differencia sémát, s a különbö­
ző tipusu közelítések hatását a közelítés pontosságára, stabili­
tására. Bemutattam, hogyan határozhatók meg a hiperbolikus e- 
gyenletekhez szükséges peremfeltételek a karakterisztikák se­
gítségével úgy, hogy a feladat egyértelműen megoldható legyen. 
Végül pedig vizsgáltam az egyenletrendszer karakterisztikái és 
stabilitása közti kapcsolatot.

A dolgozat második részében először ismertetem a kétfázisú áram­
lás különböző fizikai és a hozzájuk tartozó matematikai 
jeit. Az egyszerűbb modellek tiszta hiperbolikus parciális dif­
ferenciálegyenlet-rendszert alkotnak, a hozzájuk tartozó kezdeti 
és peremfeltételekkel együtt korrekt kitüzésü feladatok. Az egy­
értelműséghez szükséges peremfeltételek a karakterisztikák segít­
ségével meghatározhatók. Az általánosabb, bonyolultabb matematikai 
modellekről kiderül, hogy nem korrekt kitüzésüek, a kezdeti érté­
kektől nem függnek folytonosan. E tekintetben a kutatók véleménye 
két részre oszlik. Az egyik csoport szerint a feladat azért nem 
korrekt kitüzésü, mert valamilyen fizikai jelenséget elhanyagol­
tunk. Ezzel kapcsolatban vizsgálok egy olyan modellt, amely ma- 
gábanfoglal egy olyan hatást, mellyel a feladat korrekt kitüzésü- 
vé válik.
lehet adni olyan véges differencia sémát, amely a közelítés kü­
lönböző stabilizáló hatásait kihasználva jó gyakorlati eredménye­
ket ad.

model1-

Mások szerint a nem korrekt kitüzésü feladatra is meg

Ezeken az elméleti vizsgálatokon alapul a második rész végén is­
mertetett két modell numerikus megoldása.
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II. Rész

A tranziens folyadékáramlást leiró fizikai és
matematikai modellek általános jellemzése

2.1

A folyadékhütéses nukleáris reaktorok zónájában lejátszódó je­
lenségek leírásához sok komplex folyamat hely- és időfüggő mo­
dellezésére van szükség. A kétfázisú áramlási modellek a for­
rásban levő folyadék /vízhűtéses reaktorok esetén a viz és gőz 
keverék/ áramlását próbálják leirni.

A nyomottvizes energetikai reaktorok megjelenése nagy lendüle­
tet adott a kétfázisú áramlás kutatásának. A meglévő bizonyta­
lanságokat meg kell szüntetni ahhoz, hogy gazdaságosan és biz­
tonságosan működő reaktorokat lehessen üzemeltetni. Bár nagyon 
kicsi a valószinüsége, de előfordulhat, hogy a primerkörben el­
törik az egyik hűtőközeget tartalmazó cső. Mivel az ilyen bale­
setnek súlyos kár lenne a következménye, ismerni kell a leját­
szódó folyamatokat, hogy biztosíthassuk a reaktor zónájának meg­
felelő hűtését. A törés mentén kétfázisú folyadék áramlik ki a 
primerkörből. Ennek állapotát kell leirni az idő függvényében.

A gyakorlatban több folyadékáramlási modell is ismeretes, de e~ 
zek egyike sem egzakt. Felírásuknál a természeti törvények mel­
lett tapasztalati eredményekre is támaszkodni kell. A kiválasz­
tott modell helyességét kísérleti eredményekkel való összehason­
lítás utján tudjuk ellenőrizni.

Az atomreaktorok termohidraulikai analízisére kidolgozott nagy­
méretű számitógépes programrendszerek eleinte egy viszonylag 
egyszerű, un. homogén egyensúlyi modellt alkalmaztak a reakto­
rok zónájában történő folyadékáramlás leírására. Ez a modell 
feltételezi, hogy a két fázis azonos sebességgel halad, s mind­
kettő telitési állapotban marad. Azonban a reaktorokban olyan 
tranziens jelenségek is lejátszódnak, melyekben ezek a felté­
telezések nem érvényesek. Ennek ellenére bizonyos paraméterek 
változó alakulásának leírására még ekkor is alkalmas lehet ez a 
modell, melynek előnye egyszerűségében, s az aránylag kis szá­
mításigényében rejlik.

A folyadék állapotának pontos leírásához szükség van olyan je­
lenségek figyelembe vételére, mint a két fázis relativ mozgása, 
vagy bizonyos nem-egyensulyi termohidraulikai folyamatok, pl. 
fázisátalakulás. Az újabb programrendszerek már ilyen, fejlet­
tebb modellekkel számolnak, melyek nem tartalmazzák a homoaén 
egyensúlyi modell megszorításait.

Az áramlást leiró matematikai modell egy egyenletrendszer, amely 
a töm^, az impulzus és az energia megmaradásának törvényeit fe­
jezi ki.
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A matematikai modell felállításához a következő lépésekre van 
szükség:

1. a megmaradási egyenlet kiválasztása;
2. az áramló közeg állapotegyenleteinek felirása /ezek 

Írják le a folyadék jellemzői közti kapcsolatot/;
3. segédegyenletek felállítása /hő-, impulzus-átadás, 

súrlódás, stb./;
4. kezdeti és peremfeltételek megadása.

A megmaradási törvényeket parciális differenciál egyenletek Ír­
ják le. Ezek száma a fizikai modelltől függ.A homogén egyensú­
lyi modell a legegyszerűbb, ez 3 megmaradási egyenletet tartal­
maz, a keverék tömegének, impulzusának és energiájának megmara­
dására. Legbonyolultabbak a két-közeg modellek, amelyek a két 
fázis mindegyikére tartalmazzák a 3 megmaradási egyenletet.Ezek 
nem kívánják meg, hogy az egyes fázisok azonos sebességgel mo­
zogjanak, vagy azonos legyen a hőmérsékletük. Viszont szükség 
van olyan matematikai összefüggésekre, melyek a fázisok közti 
tömeg, impulzus és energia átadást írják le. Éppen ez az egyik 
nehézsége ennek az általános modellnek, mert ezek az átadási fo­
lyamatok még nem eléggé ismertek.

Az egyenletek felállítása mindig a fizikai rendszer idealizálá­
sának, egyszerűsítésének eredménye, ez korlátozza a modell érvé­
nyességi körét. A kapott parciális differenciál egyenletek megol­
dására gyakorlatilag csak numerikus módszerek jöhetnek számítás­
ba. így az eredményt a továbbiakban az is befolyásolja, hogy mi­
lyen a kiválasztott megoldási módszer. Külön problémát jelent 
annak vizsgálata, hogy a számítás eredményében jelentkező eset­
leges instabilitás, oszcilláció a fizikai folyamatot tükrözi-e, 
a leírásra használt egyenletrendszer pontatlanságának következ­
ménye, vagy a rosszul megválasztott numerikus módszer eredménye. 
Mivel az eredmény vizsgálata a legtöbb esetben nem oldható meg 
minden kétséget kizáróan matematikai diszkusszióval, feltétlenül 
szükséges megbízható mérésekkel való összehasonlításuk.

Az alkalmazandó numerikus módszer kiválasztásánál döntő szempont, 
hogy az a lehető legmegbizhatóbban működjön a várható alkalmazá­
sok esetén. Ezért a modellek és módszerek kiválasztása előtt meg 
kell határozni, hogy milyen esetekben akarjuk felhasználni. Pl. 
ha az egész zónát modellezzük és a numerikus számításokhoz elemi 
térfogatokra osztjuk, akkor a zónabeli kétfázisú áramlás alkotó­
részei /gőzbuborékok, folvadékcseppek/ méretének kicsinek kell 
lenni az elemi térfogatokhoz képest. A változók értékei nagyszá­
mú buborék, ill. folyadékcsepp egy-egy ilyen térfogatra vonatko­
zó átlagaiból adódnak. Ilyen modellen az elemi térfogatok mére­
ténél finomabb jelenségek nem oldhatók meg.

A megoldásra használt numerikus módszerek szinte kizárólag véges 
differencia módszerek. Bár a homogén modellt leiró egyenletrend­
szer hiperbolikus, igy a karakterisztikák módszerével is megold­
ható. A gyakorlatban azonban ma már ezt nemigen használják, mert 
fejlesztése nehézkes, több dimenzióra bonyolult kiterjeszteni.
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A konkrét differencia séma megválasztásánál több szempontot is 
figyelembe kell venni. Ha a vizsgált tranziens jelenség gyorsan 
változó áramlás modellje, szükség lehet arra, hogy nagyon kis 
időlépéssel számoljunk a pontosság érdekében. Másrészt gyakran 
kivánatos a nagy időlipés, ha a tranziens jelenség lassan megy 
végbe és csökkenteni akarjuk a számitásigényt. Az időlépést

|(vío)|i A
a folyadék áramlási sebessége, 
az időlépés és 
a rácspontok távolsága.

Ez a korlát a numerikus stabilitás követelményéből ered.Ha azon­
ban
differenciáljuk, akkor ez a korlát jelentősen növelhető. A fá­
zisok közti átadási összefüggésekhez is rövid időkonstansok tar­
toznak, ezért ezeket is érdemes implicit módon kezelni. Ugyanak­
kor a teljesen implicit egyenletek megoldása nagyon számításigé­
nyes, egynél több térdimenzióban különösen bonyolult. Az előbbi 
kifejezések implicit számítása esetén a numerikus stabilitás fel­
tétele

összefüggés /Courant-kritérium/kor­általában a
látozza,

ahol: v
Át
Ax -

a hangsebességet tartalmazó kifejezéseket implicit módon

Aí úí -re változtatható.
/IX

Ez mát nem jelent túl erős megszorítást az időlépés nagyságára, 
/pl. 4 m/sec tengely irányú áramlás és 0.3 m távolságra levő osz­
táspontok esetében a /lt < 0.075 sec lépéskorlát elfogadható ér­
ték nyomottvizes reaktorokra/. Az újabb programrendszerek már 
ilyen, un. szemi-implicit véges differencia módszereket használ­
nak .

2.2 Homogén egyensúlyi modell

Ez a modell olyan közeg áramlásának leírására alkalmas, amely 
mechanikai és termikus egyensúlyban van, azaz egy adott kereszt- 
metszetben a sebesség mindenütt, mindkét fázisnál azonos és a 
közeg telitési hőmérsékleten van. A keverékre három megmaradási 
egyenletet tudunk felirni:
Tömegmegmaradás:

dg v d _ q

Э^Аг) 4 Ь(олг) + ЭР s 

'Эх Эх

/2.1/
Эх

Impulzus-megmaradás:
T- /2.2 /at

Energia-megmaradás:
3íje.) + ais^e) = +<ГЭТ 

Эх dt Эх /2.3/ъ-t

Az egydimenziós modellben a reaktor zónáját elemi térfogatokra 
osztjuk az x tengely mentén, s a változók értékét egy-egy
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ilyen elemi térfogatra vett átlag adja. /2.1/-ben az első tag 
egy elemi térfogatban levő közeg sűrűségének időbeli változá­
sát irja le, a 2. tag pedig az ebbe a térfogatba be- és ki­
áramló közeg által okozott sürüségváltozást.

/2.2/-ben a baloldal első tagja egy elemi térfogatban levő 
közeg impulzusának időbeli változását irja le, a 2. tagja a 
be- és kiáramló közeg által okozott impulzusváltozást, a 3. 
tagja pedig az elemi térfogat két végén fellépő nyomáskülönb­
séget. A jobboldal első tagja a gravitáció miatt fellépő nyo­
másváltozásnak, 2. tagja pedig a súrlódás okozta nyomásválto­
zásnak felel meg.

/2.3/-ban a baloldal első tagja jelenti az elemi térfogatban 
levő közeg teljes energiájának időbeli változását, a 2. tag 
pedig a belépő és kilépőközeg által okozott energia-változást. 
A jobboldal első tagja az elemi térfogat két végén fellépő 
nyomáskülönbségből származó időbeli energiaváltozást adja meg, 
2. tagja a be- és kiáramló közeg nyomáskülönbsége miatti ener­
gia-változást, 3. tagja pedig a közeggel közölt energiát /hő­
vezetéssel, hősugárzással, hőátadással/.

A keverék állapotegyenlete a fázisok fizikai állapotegyenlete­
iből könnyen előállitható a £ -= úx§v összefüggés fel-
használásával. A fázisok állapotegyenletei 

= alakúak.
§v - §v IPi ev) és

A modell előnye egyszerűségében rejlik, s különösen jól irja 
le az áramlást, ha az egyik fázis domináns / t< < 0.1 vagy 
c< > 0.9/. A gyakorlatban akkor használható, ha nem várható
jelentősebb sebességkülönbség a fázisok között. Lassú tranzi­
ensek leírására alkalmas, amikor kicsi a nyomásgradiens és 
nincs csőtörés /pl. a teljesítmény változtatása esetén/.

Az állapotegyenletek hozzávételével a /2.1/ - /2.3/ egyenlet­
rendszer már zárt lenne. A megoldás előtt azonban célszerű 
átalakítani,mert a forrás kezdetekor 
télén, nagy mértékben megváltozik, a ^ 
folytonos, s ez a numerikus számítást megzavarja. Ezért cél­
szerűbb a G ® § aT fajlagos tömegfluxust és а V * % 
lag faj térfogatot használni [l9j . Ezek segítségével a^ /2.1/ 
és /2.3/ egyenletrendszer alakja a következő lesz:

és e értéke hir-o fc
derivált nem lesz

át-

li _ А (Ш Ъ +
Эх V2 \ Эе st

± 1G +2V lb , л/lY 
G dt r^v Эх I Эе Эх 3? Эх/

1 Эе , р, Эе. _
V dt b Эх ^ ° ~ '

эу ЭР 
ЭР St

= О /2.4/

+ А 1?_ _ _§Х
G Эх

7 12.51GV G

= су /2.6/dt Эх



29

A /2.4/-/2.6/ egyenletrendszert a V = V/P,e/ állapotfüggvény 
teszi zárttá. Az alapváltozók a P, G és e függvények. Ezekre 
nézve a rendszer hiperbolikus.

A megoldásra használt véges differencia sémát Turner dolgozta 
ki £20j.
Jelölje az x irányban az egymást kővető rácspontokhoz tartozó
változók értékét j index, t irányban pedig n. Ekkor a Q^--}n+/1 öx

közelitésére használt kifejezés f^j-n Ч-И
cSttr-T?i) + a;, l-C-O

alakú tagok 

a q|1
AX

alakú tagokra pedig3t Z Ab
Itt R jelöli a P, G, e változókat, Q pedig a megfelelő együtt­
ható. Az igy felirt differencia séma az alapváltozókban impli­
cit, lokális stabilitásának bizonyítása [2o]-ban megtalálható. 
Ez szükséges feltétele a stabilitásnak. A fenti közelítések 
alkalmazásával /2.4/-/2.6/ véges differencia közelítése a kö­
vetkező :

[4 3vj / »+* n \ 
\vz Эе- , ~~ “í ■

rlH VI И'± ЭД
kV2" Эе/j4-/1 - ZZИ (en +

Z Átáx

vn) +(± ЭИ" (?"’ -?r ) 
rj / ív2- ótÍjí/1 i

&

- 0 /2.7/1 At

-бгыаис-о А 4-1 - О------ 4--- 1 +
-1\ /г" 16 Л, К

л

2 At Ах

IM4 ш у А" у feí' + А" -?п")ej ' . Г ЭР gIj \ ЭР G/iH \ i+1 * /
Г,

Зе 4ч t 2 Ах2 Ах

-? <т~ /С JZgx
/2.8/— —

G" - Gu(SV)" t (GVK
^ Ji4 :

/л" /-A V ЛЧ1»
í^j * - (А; ) 

\

+- ZAxZ At

_ ЫныЖ-т?)
У /2.9/2At 2Ax
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Ez a séma az I. rész 1. táblázatában összefoglalt véges dif­
ferencia módszerek közül az F-nek felel meg, amely feltétel 
nélkül stabil.
Ha a P, G, e függő változókat egy u vektorba foglaljuk össze, 
akkor a /2.7/-/2.9/ véges differenciaegyenlet-rendszer az a- 
lábbi mátrix alakba irható: 

и л KH
Ai iij + ij И jM

ahol A1] és В; a változók uj időpontbeli értékeihez tartozó 
3x3-as együttható mátrixok, c" egy 3 komponensü vektor, N az 
x irányú osztáspontok száma.
Aj , Bj és gj nem függnek az alapváltozók n+1 időpontbeli 
értékeitől. /2.10/-ből az ismeretlen vektor kifejezhető:

/2.11/

....»-har-ítlCOh
—J )

. и nH \
A,y; )

пИ

Ezzel algebrai egyenletrendszer megoldására vezettük vissza 
a feladatot.

Hátra van még a kezdeti és peremfeltételek megadása. Esetünk­
ben csőben áramló folyadékról van szó. A kezdeti értékek az 

függvény eloszlását jelentik a cső mentén a t=0 időpontban 
/j =0/. Peremfeltételként P, G és e értékét kell megadni a cső 
két végén az idő függvényében.

A karakterisztikák elmélete szerint /1.1 fejezet/ az egyér- 
tdmüséghez szükséges peremfeltételek a karakterisztikák elő­
jelétől függnek. Esetünkben két karakterisztika előjele egye­
zik meg, a harmadiké különböző. Ezért a cső egyik végén kettő, 
a másikon egy feltételt kell megadni.

A megoldás úgy történik, hogy a cső mentén felveszünk valami­
lyen /általában konstans/ eloszlást u-ra.Ezután konstans pe­
remfeltételekkel több, hosszú időlépéssel számítást végzünk 
a rendszerre. Ekkor a nevezőben levő At nagy, ezért az in­
stacioner /időfüggő/ tagok értéke a stacioner /időben állan­
dó/ tagokhoz képest elhanyagolható. Az igy előállított staci­
oner eloszlás lesz a tranziens számitás kezdeti értéke u-ra.

A tranziens megoldás kezdeti eloszlásának meghatározása után 
a /2.10/ lineáris véges differenciaegyenlet-rendszer megoldá­
sa a peremfeltételek felhasználásával az alábbi tételben vá­
zolt eljárás alapján történik.

Tétel: A /2.10/ egyenletrendszer az u,,
bármely 3 komponensének ismeretében egyértelműen meg­
oldható .

u

h-Més uw vektorok
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Ha tehát a cső végein 3 peremfeltétel adott /azaz a P, G és e 
változók értéke az idő függvényében valamelyik csővégen/, akkor 
a /2.7/ — / 2- 9/ véges differenciaegyenlet-rendszernek létezik 
egyértelműen meghatározott megoldása.

Bizonyítás:
V vektort az alábbiak szerint:Definiáljuk a D mátrixot és a

nMП-И
/2.12/, j —2,3 , . . . , Nu;j

n-t 4 -et /2.10/ és /2.12/ felhasználásával
) Aj D

Elimináljuk u -1 n+1 HM

nS;' (fij-AjjgJ
Ebből következik, hogy

l-л

- -ís;í4 »h

továbbá /2.10/ és /2.12/ összevetéséből j=2-re:

=u:)
ъ = (в;г'

/2.13/ és/2.14/ felhasználásával és meghatározható.
Ennek és a 3 ismert peremfeltételnek a segítségével /2.12/-t 
j=N-re megoldva megkapjuk u0^
Ezután/2.12/-bői már minden közbülső u'’."1

Ezzel az eliminációs módszerrel egy-egy időlépés számításigé­
nye 2N mátrix szorzás éa /N-1/ inverzió 3*3-as mátrixokra.

A homogén modellel végzett számítások és mérési eredmények 
összehasonlítására r20J-ban és Г197-Ьеп található példa. A 
számítások eredménye alátámasztja a módszer stabilitását. A 
mérések és számítások jó egyezést mutatnak.

/2.13/• j=2,3,...,N-1
és V

-1
D.i

/2.14/
^/1

X ^ 'v+1es u^ mindhárom komponensét, 
meghatározható.

2.3. Véges differencia módszer egy egydimenziós, 4 egyenletes
modellre

A homogén egyensúlyi modell alkalmazhatóságát nagyban korlá­
tozzák a benne szereplő megszorítások. Ha a folyadék állapo­
tának pontosabb leírására törekszünk, akkor szükség van a két 
fázis relativ sebességének és bizonyos nem-egyensulyi folya­
matoknak a figyelembe vételére, mint pl. a fázisátalakulás.
Az ilyen hatásokat is magukba foglaló modellek közül talán a 
legegyszerűbb a [2l]-ben leirt un. "drift" modell.
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A modell 4 alapegyenletből áll, 3 megmaradási egyenlet a két 
fázis keverékére egy pedig külön a gőzfázisra vonatkozik. A 
relativ sebességet és a fázisátalakulást megadó összefüggések 
a segédegyenletek között szerepelnek.

A megoldásra használt véges differencia séma a különböző á- 
ramlási problémák numerikus számitása során szerzett tapasz­
talatokon alapszik. [22, 23, 24]

A módszer előnye, hogy pontossága kielégíti a gyakorlati kö­
vetelményeket, stabil, könnyen programozható és egyszerűen 
kiterjeszthető két vagy három dimenziós geometriára is. Ez a 
módszer az alapja a később ismertetendő két-közeg modellekre 
kifejlesztett módszereknek is.

A matematikai modell 4 alapegyenlete a következő:

Tömegmegmaradás a keverékre

/3.1/Bt ЭХ
Tömegmegmaradás a gőzfázisra

' ' ' ‘ §

4.ÍM+Í í(л-хК'-хуу 
Bx' ax L 5

4_ 'P + 'P CX ~ .9v)

= г /3.2/LЭхЭг cjX

Impulzus-megmaradás a keverékre

* Aic Я t i_31 SxvS J * L ^
KTr ^ 0 /3.3/

Energia-megmaradás a keverékre

/3.4/- ГЭх Эх

Ha még beszámítjuk a T4,TV és Ts változókat, melyeket a fenti 
egyenletrendszer implicit módon tartalmaz, akkor 17 változó 
szerepel a 4 egyenletben. A gx gravitációs erő csak az x füg­
getlen változó függvénye, és ismertnek tételezzük fel.
Két összefüggés adódik a keverék sűrűségének és belső energi­
ájának alábbi definíciójából:

^ t (4 -c<)

cXgyGy 4- (4 —

/3.5/

e. - /3.6/
S
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A hiányzó 10 összefüggést a négy állapotegyenlet és a segéd­
egyenletek adják. Az állapotegyenletek a következő alakúak:

У? • ft ("P, £»)
Tt * Р(-Р,е;)

ill. feltesszük,hogy ebből kifejezhető

/3.7/

/3.8/

e L = ("Pi Tt)

?V — Jv ßy) 

Ту - Ту (T, еу)

/3.9/

/3.10/

ill. az ebből kifejezhető ey - €.y ( Pv ly)

A segédegyenletek adják meg a q hőforrás, a T falsurlódás, 
a vy relativ sebesség, a P fázisátalakulás, a T5=T5/P/ teli- 
tési görbe számításához szükséges összefüggéseket.
Ezeken kivül szükség van még egy termikus megszorításra ahhoz, 
hogy a keverék energiáját feloszthassuk a két fázis között. 
Ilyen megszorítás lehet pl. a fázisok közti termikus egyensúly 
feltételezése. Másik lehetőség, hogy vagy csak a gőz, vagy csak 
a folyadék telitési állapotban van attól függően, hogy párolgás 
vagy lecsapódás játszódik le.

Ezekkel az összefüggésekkel márt zárt a megmaradási rendszer.

A differencia séma felirása előtt a /3.3/ egyenletet a számí­
tás szempontjából kényelmesebb alakra hozzuk. Részben elvégez­
ve a deriválásokat /3.1/ felhasználásával a következő egyenle­
tet kapjuk:

- A. *9у\ Aj - ' — _S 3x1
+ r + + A = 0§ Эх J 5

A differencia sémát a /3.1 / , / 3.2/,/3.11/ és /3.4/ egyenletekre 
Írjuk fel. Az egydimenziós modellben a reaktor zónáját /a fela­
dat értelmezési tartományát/ elemi térfogatokra osztjuk az x 
tengely mentén, s a változók értékeit egy-egy ilyen térfogaton 
vett átlag adja. Az elemi térfogatok elrendezését a 6. ábra 
szemlélteti. A térfogatokat a folytonos vonalak jelentik, a 
szaggatott vonal a középpontjukon át húzódik.

Ъаг /3.11/Эхэ-t 5

A tömeg és energia egyenleteket a folytonos vonallal jelölt 
térfogatok fölött differenciáljuk, az impulzus egyenletet pe­
dig a szaggatott vonalakkal jelzettek fölött. Ezt az elrende­
zést korábbi szerzők is sikeresen alkalmazták. {22, 24j

T
I
I
I
I
I

Ii
i + 41/-4

6. ábra
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A differenciaegyenleteket [2l] alapján a következő alakban 
Írjuk fel: Y) + \У\h 9^1 - Si-í-ti-j-LSl /3.12/- 0л-t /Ах

И4 - lÄ§v)t (°4^)о£
М4

4 44
*■ ++/At Ax

n
‘ft-*)?«.<*? (4— <к)^4_Х.Оу ty-viy>1 - p /3.13/Ax 5 9-M L

<4 -

LL z. j
m-1п-И

H Ti„ -к«i.i h

*4 ++■ ,n
94 Axat AX /3.14/

1*3

§i4i Ax (_ L §

, hH , .n n ivH У
(§e)c -(9&)l (?^)4 4

. [+Í3»)i.i+(|] t.1'0
V /

+" “П
9Í.+/)

in-M
XT- aл- x +'At AX

/ ч -in л)рг«ру(&у- St)^r^__j_! I H~^)??x9y(<?v s.j)xJ? _

Axil
Й-х

V t99 -U-± J
t ? " Г рчМ-<*Х^-$у) ХГгТ

Лх 1 .

L.
2-

Л>*]п

' l'í
+9 9 /3.15/

h+1

+ -p!” C-*t - "c-4 ^ Ax
A fenti egyenletekben az n és n+1 indexek jelölik a változók 
értékeit az egymást követő időpontokban, At és Ax az /x,t/ 
derékszögű rács rácsvonalainak távolsága az idő és a helykoor­
dináták irányában. Дx-ről feltesszük, hogy konstans, bár a 
módszer szempontjából ez nem lényeges megszorítás.

►vH

* °f

А /3.12/-/3.15/ egyenletek szemi-implicit rendszert alkotnak, 
mivel egyes változóknak explicit, másoknak pedig implicit 
differencia hányadosuk szerepel benne. A tömeg és energia e- 
gyenletekben a keverék sebességét tartalmazó tagok, az impul­
zus egyenletben a nyomásgradienst tartalmazó tag, az energia 
egyenletben a kompressziómunkát kifejező tag tartalmaz olyan 
változót, melynek értékét az uj időpontban vesszük. Az összes 
többi tag értékét a régi időpontban adjuk meg.
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ban az elemi térfogatban felvett értéke határozza meg, amely 
felől a közeg áramlik, vagyis az előző térfogat donorként vi­
selkedik .

A /3.12/-/3.15/ differenciaegyenletek a donor összefüggésekkel 
és a segédegyenletekkel egy nemlineáris algebrai egyenletrend­
szert alkotnak a változóknak az uj időpontbeli értékeire vonat­
kozólag. Ennek megoldására a 721J _t>en kifejlesztett módszer a 
Newton és a Gauss-Seidel módszer felhasználásán alapszik.
/Ennek megfelelően rövid elnevezése NBGS: Newton és blokk-Gauss- 
Seidel/

Az NBGS módszer két egymásba kapcsolódó iterációból áll.
Először végrehajtunk egy Newton iterációt az eredeti nemlineá­
ris rendszeren, majd az igy kapott lineáris rendszert blokk- 
Gauss-Seidel iterációval oldjuk meg.
A blokk inverziós eljárás használata azért kívánatos, mert az 
alapegyenletek közt nagyon szoros a kapcsolat. Az egyik legszo­
rosabb kapcsolatot а П fázisátalakulás jelenti, mivel ez adja 
meg a gőz keletkezését, amely nagyságrendekkel is megváltoztat­
hatja a keverék kompresszibililtását, s ezzel jelentősen befo­
lyásolja a folyadék mozgását.
A blokk inverziós eljárás lehetővé teszi H kifejezésének vi­
szonylag nagyfokú implicit kezelését.

Az NBGS eljárás az alábbi négy lépésből áll:

a differencia- és segédegyenleteket1. Minden egyenletet 
egyaránt - linearizálunk az ismeretlenek legutóbbi ér­
téke körül.

2. A differencia-egyenletekben szereplő minden változót 
eliminálunk c<, P, v és e^ kivételével a linearizált 
segédegyenletek és definíciók segítségével. így egy li­
neáris egyenletrendszert kapunk az iX. , P, v és e^ vál­
tozókra minden rácspontban.
Ezekből az egyenletekből meghatározzuk c< , P, v és e^ uj 
időpontbeli értékeit minden rácspontban.

3.

A többi változó értékét4 . P, v és e^ segítségével ha­
tározzuk meg a definíciókból és segédegyenletekből. Eb­
ben a lépésben ismét az eredeti nem-lineáris egyenlete­
ket használjuk fel.

r<- ,

A fenti eljárásban a négy parciális differenciálegyenletre négy 
alapváltozót választottunk ki. Ez a kiválasztás sokféleképpen 
történhet. Választhattuk volna például a két sűrűséget a nyomás 
és térfogattört helyett. A fenti választást a következők indo­
kolják :

a. / a nyomás a távolságnak akkor is folytonos függvénye le­
het, amikor a sűrűség nem az /pl. a két fázis érintke­
zésénél/ ;
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a nyomás állapotegyenlete a sűrűségnek nagyon érzékeny 
függvénye, ha a rendszer csak folyadékból áll. Ha a sű­
rűség lenne alapváltozó, akkor ennek kis hibája a nyo­
másban nagy hibát eredményezne, ez csökkentené az algo­
ritmus stabilitását.
a termodinamikai összefüggések egyszerűbben kezelhetők, 
ha a nyomás és az egyik energia vagy hőnérséklet ren­
delkezésre áll.

b. /

c. /

Az eljárás első két lépésének végrehajtását példaképpen vizs­
gáljuk meg a /3.12/ egyenleten. Ez az egyenlet már lineáris a

sűrűséget
r\-t ЛПЧ 4

és лГ^± változókban. A feladat az, hogy a
fejezzük ki a négy alapváltozóval. Ehhez a definíciók és a se­
gédegyenletek állnak rendelkezésre.

г\ч A
Sí fi

A /3.5/,/3.7/-/3.10/ egyenletekből és a termikus megszorításból 
ev , T4 , változók kifejezhetők <4, p és e^. segít­

ségével. Tegyük fel, hogy a segédegyenletek közt szereplő termi­
kus megszorítás a hőmérsékletek egyenlőségét fejezi ki, azaz

= Tt
Az állapotegyenletek alakjától függően az összefüggések nagyon 
bonyolultak lehetnek. Mivel a £ sűrűség és az alapváltozók kö­
zött analitikus összefüggést akarunk felállítani, ezért a fenti 
6 egyenletet linearizáljuk, s ezután elimináljuk a , ри , ev>,
T£ és változókat. Jelölje ~ azt a pontot, ami körül a line- 
arizálás történik. A kiválasztott egyenletek linearizált alakja 
a következő:

a ? ' / fv /

/3.16/T v

í * s + (?v - У*-«) + '■í'Sxfí-fV',
Ь’Ь+Щр-Ъ

Tv = \

/3.17/-v Л.

ftl
/3.18/-*■

/3.19/+
/3.20/

■rs- ч

-ё. + ркт-т)
+&£ - t /3.21/

+ /3.22/ev

Az egyenletekben szereplő deriváltak az állapotfüggvények deri­
váltjai, melyeket а /3.7/-/3.10/ egyenletek jobboldalai defini­
álnak, s értéküket , illetve a (T\pontokban vesszük.
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A /3.20/-/3.22/ egyenletek és a Tv = feltételezés felhaszná­
lásával az alábbi összefüggést kapjuk e^ és ev között:

Эву '
ЭГу

Э(P-P)j - || [e,
/3.18/ és /3.19/ behelyettesítésével /3.17/-be kapjuk, hogy

r(T-P)e£ - e£ - Л*'- C.v - /3.23/31? эр

S)>-('l-S)[||(T-/p) 

+ * [Цф-гЬ |& (e, -e„)
o6v

?= ?+(P-siX<*-x +4~ Se

ЭР
/3.24/

Végül /3.24/-ből elimináljuk ey-t /3.23/ segítségével:
J -s + (fv *('t-5)[!fL(T>-'P) - ||(ef-e£)]

r l'3£
Í9P

. rv-

5 bVЭу-v 'S!/ Эе 
Эе, 3w( ЭТУ l

(■p - p}(T-?)l?-V) ^ \ о )1 U -н■f ^ ^''ЭР Эву д?j
/3.25/

Ezzel megkaptuk a keresett lineáris összefüggést a keverék 5> 
sűrűsége és a három alapváltozó, <x, P és et között. Az NBGS el­
járás 2. lépésénél befejezéseként a /3.25/ összefüggés segítsé­
gével elimináljuk a /3.12/ egyenletben szereplő pb keverék 
sűrűséget.

Jelölje к és k+1 a változók két egymást követő iterációját az 
uj időpontban, és a ^ vei jelölt változók értéke legyen a k-a- 
dik iterált érték. Ekkor /3.25/ felhasználásával /3.12/ az a- 
lábbi alakba irható:

jí$*)í ”í?«í ] (l4:^ - «i ) +
Spy Sty Ъ~1 ЭвуК + Э^у 

ЭР del 3>TV Эёх ЭР " 3ev ЭР

Ы + ^ Эй Эв$"
Эву Зе^ Э1у

гП
Pi - §i
-i + CK-Í^ j CP-к.-Й Pb+ ('i-cp )
ЭР

te 1kt/
(■I - P) -feil И"+ Já t £

AI Лх v
k-И ^ \ ~- ?L~t *l-± J - 04

/3.26/
n+11 k-* 4 k-H jelölést használtuk,Az egyszerűség kedvéért az u 

mivel az iterációt mindig az uj időlépésben hajtjuk végre.
= u
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к-и к-НW.-H W.+4 . Л-НА /3.26/ egyenlet lineáris az о<- , Р- , (е4)^ , -4^+i es лп_^
változókban. Ezt az eljárást megismételve a megmaradt három 
differenciaegyenletre, /3.13/-/3.15/-re , minden rácspontban 
kapunk egy lineáris algebrai egyenletrendszert a négy alapvál­
tozóra .

Az NBGS eljárás 3. lépésének végrehajtásához vizsgáljuk meg en­
nek az egyenletrendszernek a szerkezetét egy adott időpontban 
az összes rácspontra felirva. /7. ábra/

л,-
"A0x00X

ÍX/)X X к x X
ЪЛ X X X X

л х х х X €1

о оО 0 X О Х'гО лX
X X X Л X

\I А X X X Л

X X х X X ь
0 0x0 О*\ о \ о о

X X X х X
х X х х л

*3

X X X X X

°но с х о О XX
X х X

L J

7. ábra

A nemzéró együtthatókat х jelöli. Ezek egymásba kapcsolódó 
5*5-ös blokkokat alkotnak a főátló mentén. Minden egyes blokk 
egy elemi térfogathoz tartozó változók együtthatóit tartalmaz­
za, beleértve a két határon vett sebességeket. A blokk első és 
ötödik sora az impulzus egyenleteknek, a többi az energia és a 
tömeg egyenleteknek felel meg. Az impulzus egyenletek révén 
minden elemi térfogat kapcsolatban van a szomszédaival a nyo-
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máson keresztül. Egy adott elemi térfogat öt változója igy a 
szomszédos térfogatok változói közül csak a nyomásoktól függ, 
a többitől nem. Ezért ha a szomszédos térfogatokban rögzítjük 
a nyomásokat, akkor az adott térfogathoz tartozó öt alapvál­
tozó értékét meg tudjuk határozni egy olyan 5x5-ös lineáris 
egyenletrendszer megoldásával, melynek szerkezetét a 7. ábrán 
szereplő mátrix egy blokkja szemlélteti.

Az NBGS eljárás 3. lépését a következő módon hajtjuk végre. 
Kiválasztunk egy haladási irányt /ez az egymás utáni iteráci­
ókban változhat/. Az első elemi térfogathoz tartozó öt válto­
zó értékét kiszámítjuk a fenti módon a 2. elemi térfogathoz 
tartozó nyomás előző iterációból származó értékének felhasz­
nálásával. Ezután a 2. térfogatra végezzük el a számítást az 
1-ben számított uj és a 3-beli régi nyomás értékek segítségé­
vel. Közben a térfogatok közös határán vett sebességet kétszer 
is felülírjuk, először az 1.,utána a 2. térfogat számításakor. 
Az eljárást addig folytatjuk, amig minden alapváltozó értékét 
minden elemi térfogatban újra számoljuk.

Az NBGS eljárás 4. lépésében az igy kapott alapváltozók segít­
ségével az összes többi változó értékét meghatározzuk. Ehhez a 
definíciók és a segédegyenletek eredeti alakját használjuk fel.

Miután igy minden változó uj értékét kiszámítottuk ellenőrizni 
kell, hogy teljesül-e a konvergencia feltétele, s szükség ese­
tén újabb iterációt kell végrehajtani.

A fenti eljárás további egyszerüsitésére van még egy lehetőség. 
Az impulzus egyenletek segítségével a sebességek eliminálhatók 
a rendszerből úgy, hogy helyettük csak nyomások maradnak. Ezt 
elvégezve a kapott egyenletrendszer szerkezetét a 8. ábra 
szemlélteti.

Az együttható mátrix blokk-tridiagonális 3x3-as blokkokkal. Ha 
M-mel jelöljük a mátrixot, akkor elvégezhető a következő fakto- 
rizáció:

/3.27/M = L + D + U,
ahol L alsó, U felső blokk-trianguláris mátrixok, D pedig az M 
diagonális blokkjaibál áll.
Az NBGS eljárás 3. lépése a következő egyenlet megoldását je­
lenti :

= U wk t b,k+1(L + Dj w

ahol w a 8. ábrán szereplő változókból álló vektor. Az itt sze­
replő L + D mátrixot különösen egyszerű invertálni, mert csak a 
Зхз-as diagonális blokkokat kell invertálni az egyes elemi tér­
fogatokra .

/3.28/
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8. ábra

Lehetne invertálni az egész M mátrixot az iteráció minden lé­
pésében egy blokk-tridiagonális mátrixot invertáló rutin se­
gítségével . Több térdimenzióban azonban, vagy bonyolult áram­
lási kép esetén az M mátrix bonyolultabbá válik, s a direkt 
invertálás nehezebben végezhető el.

Az NBGS eljárás előnye, hogy könnyen kiterjeszthető több di­
menzióra is. Két dimenzióban pl. az M mátrix blokk-blokk-tri- 
diagonális lesz 3\3-as blokkokkal és felbontható /3.27/-hez 
hasonlóan. Az L + D mátrixot ekkor is könnyen lehet invertálni 
elemi térfogatonként egy 3*3-as rendszer megoldásával.

A gyakorlatban az állapotegyenleteket általában gőztáblázat 
formájában adják meg. Ezekre kell függvényeket illeszteni. A^> 
és e^ függvényeknek folytonosaknak kell lenniük, de az első 
deriváltjuk már lehet szakadásos bizonyos pontokban.
Néhány deriváltnak nullától különbözőnek kell lennie ahhoz, 
hogy egy- és kétfázisú esetben egyaránt legyen megoldás.
Ebben a modellben egyfázisú áramlás esetén <x =0 vagy <X =1, és 
pl. egyfázisú folyadék esetében /сл=0/ ennek sűrűsége nem le­
het P-től és e^-től független állandó.

A mátrixok vizsgálata azt mutatja, hogy a rendszer rosszul 
kondicionálttá válik, ha ^ -*■ 
kus ponthoz közeli vagy afölötti helyzetnek felelne meg. Fizi­
kailag azt jelentené, hogy térfogattörtet próbálunk számítani 
olyan keverékben, amely egymástól megkülönböztethetetlen alko­
tórészekből áll. A reaktorokkal kapcsolatos problémákban azon-

. Ez a termodinamikai kriti-
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ban ez nem fordulhat elő, mert a rendszer mindig a kritikus 
pont alatt van.

Az ismertetett numerikus módszert a kétfázisú áramlások szé­
les skálájára alkalmazták mind egy, mind több térdimenzióban. 
Ez a módszer az alapja az újabb rendszerprogramokba foglalt 
modellek megoldásának. Alacsony rendű pontossága ellenére a 
gyakorlat számára megfelelő pontosságot biztosit, s előnye, 
hogy gyorsan konvergál. Általában 2-3 iterációt elég végezni 
időpontonként. A f21]-ben ismertetett két példában kapott e- 
redmények jól egyeznek az elméleti számításokkal, illetve a 
mérési eredményekkel.

2.4.1. Két-közeg modellek

Az utóbbi néhány évben jelentős erőfeszítések történtek a 
kétfázisú áramlás minél pontosabb modellezésére. Olyan mo­
dellt próbáltak létrehozni, amely a lehető legkevesebb meg­
szorítást tartalmazza az áramlásra vonatkozóan és jól leirja 
a lejátszódó jelenségeket. Pl. ha egy kísérletben olyanok a 
körülmények, melyek mellett mindkét fázis ugyanazzal a sebes­
séggel halad, akkor a matematikai modellnek fel kellene is­
mernie ezt a kényszerítő körülményt. Általában, ha a fázisok 
valamilyen egyensúlyba jutnak, akkor ne legyen szükség arra, 
hogy ezt előre feltételezzük.

Egy teljes két-közeg modellnek le kell tudni Írnia a teljes 
nem-egyensulyi állapotot, azaz a mechanikai, termikus és ké­
miai nem-egyensulyt.

Az eddig kidolgozott különböző két-közeg modellek alapvető 
típusait [_25j foglalja össze. Teljesen kielégítő modellt a- 
zonban még nem sikerült létrehozni. Az eddigieknek legalább 
három hiányosságuk vagy gyengéjük van.
Az egyik, hogy szükség van a fázisok közti kölcsönhatás függ­
vények megadására. Ehhez előre rögzíteni kell az áramlási ké­
pet, amivel szükül a modell érvényességi köre /bár még mindig 
nem jelent olyan megszorítást, mint pl. a sebesség korreláci­
ók felállítása a 2.3. fejezetbeli modellben/.
A másik, hogy a modell egyenleteinek származtatásakor egyes 
változók bizonyos átlagolás eredményei, mások értékét pedig 
egyes pontokban ismerjük. A kétfajta mennyiség közti össze­
függések felállításával hibákat követünk el a rendszerben.
A harmadik probléma akkor jelentkezik, amikor egyensúlyi á- 
ramlást próbálunk leírni. Általában ugyanis az egyensúlyi ál­
lapot nem megoldása a nem-egyensulyi egyenleteknek.
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A két-közeg egyenleteknek az a megfigyelés az alapja, hogy bár 
mikroszkopikus szinten az áramlási tartomány mondén pontjában 
csak az egyik fázis található meg egy adott pillanatban, mégis 
közelitésként hasznos lehet az egyes fázisok mozgását olyan 
folytonos sebességmezővel leirni, amely minden pontban defini­
álva van. Ezért az egyenletek származtatása a mikroszkopikus 
mozgásegyenletek átlagolásával történik a térben kicsi, de vé­
ges tartományok és időbeli intervallumok fölött. Ez az átlago­
lás a tér-idő minden pontjában folytonos sebességmezőt eredmé­
nyez mindkét fázisra.

A két-közeg modellek közös vonása, hogy hat parciális differen­
ciálegyenletet tartalmaznak /egy dimenzióban/: mindkét fázisra 
a tömeg, az impulzus és az energia megmaradását kifejező egyen­
leteket. Abban az esetben, amikor a fázisoknak különböző a se­
bességmezőjük a legáltalánosabban használt modellek egyenletei 
nem teljesen hiperbolikus rendszert alkotnak, a karakteriszti­
kák között előfordulnak komplexek is. Ez azt jelenti, hogy a 
kezdeti érték feladat nem korrekt kitüzésü. Hiába megalapozot­
tak fizikailag az egyenletek, megoldásuk instabil, nem függ 
folytonosan a kezdeti értékektől.Ennek a problémának az okait 
és a megszüntetés lehetőségeit az utóbbi néhány évben próbálják 
megtalálni. [l8, 26, 27, 28, 29]

A kérdés tisztázása lényeges feltétele annak, hogy stabil és fi­
zikailag értelmes reaktor biztonsági számításokat lehessen vé­
gezni. A kezdeti értékektől való folytonos függésnek a gyakor­
lat szempontjából nagy a jelentősége. Ez ugyanis azt jelenti, 
hogy az adatok pontatlansága nem fog ellenőrizhetetlen hibákat 
okozni a megoldás folyamán.

A gyakorlatban a kísérleti adatok megadásakor legalább kétféle 
hibát követünk el: az egyik a mérésekből adódik, a másik a szá­
mitógépes számábrázolás pontosságának korlátjából. Ezért lénye­
ges az adatoktól való folytonos függés követelménye.

Az egyenletek és a nekik megfelelő fizikai jelenségek komplexi­
tása miatt gyakorlatilag csak numerikus megoldási módszerek jö­
hetnek szóba. Véges differenciák alkalmazása esetén, ha a kez­
deti érték feladat nem korrekt kitüzésü, akkor a feladattal 
konzisztens differencia sémák nem lesznek stabilak £293• A vé­
lemények megoszlanak arra nézve, hogy hogyan lehet mégis fizi­
kailag értelmes eredményeket kapni.

A valóságos áramlásokban mindig fellép csillapítás /pl. a folya­
dékok viszkozitása miatt/. Ez egy másodrendű tag figyelembe vé­
telét jelenti a mozgásegyenletben, mellyel a karakterisztikák 
valósakkáválnak. A kutatók egy része szerint ilyen és ehhez ha­
sonló jelenségek /pl. felületi feszültség £18] vagy virtuális­
tömeg hatás [30] / figyelembe vételével a feladat korrekt k'itü-
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zésüvé tehető, tehát azok a modellek, melyekben ezek nem szere­
pelnek hiányosak, pontatlanok. Ez okozza instabilitásukat.

Mások szerint a nem korrekt kitüzésü feladattal is végezhetők _ 
jó eredményt adó számitások a véges differenciák módszerével. í_26J 
Ennek oka, hogy a véges differenciák alkalmazásával bizonyos 
mesterséges csillapítást viszünk a rendszerbe a donor differen­
ciálás formájában.

A differencia sémák stabilitása klasszikus értelemben finom rá­
csokra vonatkozik. Megadhatók azonban olyan sémák, melyek durva 
rácson stabilak.

Ezekkel a problémákkal kapcsolatban vizsgálom a következőkben, 
hogy hogyan lehet korrekt kitüzésüvé tenni a két-közeg modelle­
ket, illetve hogyan lehet stabil differencia módszert megadni a 
nem korrekt kitüzésü két-közeg modellekre.

2.4.2. A két-közeg egyenletek stabilitásának vizsgálata

Az 1.3 fejezetből kiderült, hogy a valós karakteriszták létezé­
se szükséges feltétele az egyenletrendszer stabilitásának. A 
komplex karakterisztikájú egyenletek esetén a problémát a megol­
dás nagyfukvenciáju Fourier komponenseinek instabilitása okozza. 
Ezek a megoldás során korlátlanul növekedhetnek. A hullámhossz 
csökkenésével /azaz a frekvencia növekedésével/ az eredmények 
egyre nagyobb hibát fognak tartalmazni. Az ilyen instabilitások 
tisztán matematikai eredetűek.

Ahhoz, hogy a két-közeg modell jól Írja le a folyamatokat olyan 
fizikai hatások beépítésére van szükség, melyek legnagyobbrészt 
elhanyagolhatók, de a rövid hullámhosszaknál fontosakká válnak. 
Ezek nem változtatják meg az alap-egyenletrendszer viselkedését 
nagy hullámhosszaknál, amikor az jól Írja le a fizikai rendszer 
viselkedését. Ilyen rövid hullámhosszú fizikai hatás a felületi 
feszültség vagy a viszkozitás. Ezek figyelembe vételével a ka­
rakterisztikák valósakká válnak, a rövid hullámhosszú Fourier 
komponensek stabilizálódnak, a kezdeti érték feladat korrekt ki­
tüzésü lesz .

A következőkben [l8jalapján a felületi feszültség hatását vizs­
gálom az alapvető két-közeg modell egyenleteire.

/
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Az alap-egyenletrendszer a következő:

/4.1/i = 4,2.I

- — =0 L ЭхО t. - 4, zc pc + CX /4.2/)

\ + = 4 /4.3/

A fenti egyenletek a szeparált kétfázisú áramlást Írják le pár­
huzamos sikok között zéró gravitációs erő mellett. Az egyszerű­
ség kedvéért feltettük, hogy nincs viszkozitás és ezért súrló­
dási nyomásesés, valamint nincs fázisátalakulás sem. Az áramlás 
szerkezetét a 9. ábra szemlélteti.

X -- x /•' /V

H

9. ábra

А /4.1/-/4.3/ egyenletrendszernek vannak komplex karakteriszti­
kái. Ha azonban figyelembe veszzük a felületi feszültséget, ak­
kor ezek valósakká válnak.

A felületi feszültség beépítéséhez arra van szükség, hogy a fá­
zisok nyomása kissé különböző legyen. /4.2/ helyett ekkor a kö­
vetkező egyenlet fog szerepelni:

Эх
ahol P; az i fázis nyomása. A felületi feszültséget megadó e- 
gyenlet pedig [l8] szerint:

/4.4/i=l, 2t

6ГЪ - tr /4.5/)

ahol & a felületi feszültség, R a fázisok közös határának gör­
bületi sugara. Erre az alábbi összefüggés ismeretes a párhuza­
mos sikok H távolságának felhasználásával: — « - И "R H Э^-
Ezt /4.5/-Ье helyettesítve kapjuk, hogy

Ъ - ^ ™ fe /4.6/
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А /4.1/,/4.3/,/4.4/ és /4.6/ egyenletekre a továbbiakban 
£> -egyenletrendszer néven hivatkozunk.

Állítás: A 6^-egyenletrendszer karakterisztikus gyökei valósak.

Bizonyítás:
A karakterisztikus gyökök meghatározásához а 6Г-egyenletrendszert 
először elsőrendűvé alakítjuk a (b = —
változó bevezetésével. Ezzel a /4.5/ egyenlet helyett az alábbi 
két egyenlet lép fel:

■p,-Ъ *

Эх

ьНр-0 /4.7/ЗХ

Эсч = О/ь /4.8/Эх
Feltesszük, hogy a sűrűségek csak a nyomás függvényei, azaz

h ?z=
ahol az f,, és fz függvény ismert. Ezek segítségével <X2, ^ és 

eliminálható a rendszerből.

/4.9/

^2.

Ezzel az egyenletrendszert felírhatjuk az alábbi mátrix alakban:

+ В d = О'bt ők - — /
ahol о a függő változók oszlopvektora, u —( м ( К

az A és В mátrixok elemei pedig a következők:

A^á /4.10/
*5,44 , /b)T2- \

«4 o\ (90 0 ^

о о

о 0 §40с г
»2_ № nО О 0 О

О О С
О о и

ООÖ */|О
I-А = I О ооО с4§.г. 0 О

О О О О
о о о о

оо
0 0 ос 

О 0 0 4
оо о

ооо\0

с^. jelöli az i fázisban terjedő hang sebességét, amely /4.9/-ből 
meghatározható a

összefüggés alapján.

rz = d9úCc
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d = (■о/о,о,о,р,-р2,-/Ь)г

det (А - /А.В) - О egyenletből

A d forrásvektor alakja:

A karakterisztikus gyököket a 
kapjuk. Ezek a következők:

О/kétszer/, [лгл ± c^) és (лг + cz)
-i

Tehát &f0 esetén a karakterisztikák valósak. /А 6" =0 esetet a 
következő pontban vizsgálom. Ekkor a gyökök csak a P*, Pi=konst 
azaz inkompresszibilis esetben határozhatók meg analitikusan, 
egyébként numerikusán kell megoldani a karakterisztikus egyen­
letet. A gyökök között mindkét esetben lesz komplex is./

Ezzel beláttuk, hogy a felületi feszültség beépítése a karakte­
risztikákat valósakká tette.

• /

Vizsgáljuk most meg a £T-egyenletrendszer lineáris stabilitását. 
Ezt analitikusan arra az esetre tudjuk elvégezni, amikor az á- 
ramlás inkompresszibilis / nem függ a nyomástól/ és a pertur­
báció nélküli megoldás hely és idő szerinti deriváltjai nullák 
/azaz stacionárius és izotróp az áramlás/. Ekkor a ö'-egyenlet- 
rendszer alakja a következő lesz:

Э o<i +
* Эх Эх

/4.11/'1,2— О L -)3t

ЭяГг о * SB . о - A, Z. /4.12/Iót Эх Эх

/4.13/X.! + <xz = А

A lineáris stabilitás vizsgálathoz,minden u
változó helyébe u + cTu exp fi(kx-cx>t)J -t Írunk, s a kapott e- 
gyenletrendszert linearizáljuk a cTu perturbációra vonatkozóan. 
Az izotróp és stacionárius perturbáció nélküli megoldás azt je­
lenti, hogy u nem függ x-től és t-től, ezért a következő ered­
ményt kapjuk:

/4.14/
Tiahol

(- ioo -v i к *Га)Ь<х1 t t к оц сЦ =■ О

- (-Luo -4 -f ok - 0

f-tío 4 С к ) d4 i к сГТ^

(-loo 4- -v i, к

-кг6"И ^ cTP, - сГ?, - 0

/4.15/

/4.167

= 0 /4.17/

ä 0 /4.18/

/4.19/
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A / 4.15/-/4.19 / homogén lineáris egyenletrendszer a cfP, , cf P 
cMTlf сЧу és cíb^ változókban. Ahhoz, hogy legyen a triviálistól 
különböző megoldása az együttható mátrix determinánsának nullá­
nak kell lennie. Ez со = io (k) -ra a következő egyenletet adja:

0

Z f

2. 2- 
- oo ) + - to) - /4.20/ос

Adott k-ra /4.20/-ból az oo(!t)gyökök a következők:

Eiüí + [ílü£
_ i 

2-11k iA*c<2 /4.21/60 -
«л °<i?2_

A stabilitás feltétele, hogy Im(co)áO legyen minden со gyökre. 
Ekkor nem fog a perturbáció korlátlanul nőni. Mivel jelen eset­
ben az со —к egymás komplex konjugáltjai, ezért ez a feltétel 
azt jelenti, hogy со -nak valósnak kell lennie, azaz

6ГН кг(*х у J ^ 5>„ 9*. ^ f /4.22/

Ez az eredmény ÉT tetszőleges értékére, tehát 6"=0-ra is érvé­
nyes. Ennek a vizsgálatnak az eredményei tehát mind az alap, 
mind a ЕГ-egyenletrendszerre fennállnak.

A esetben minden v ~ О éttékre teljesül /4.22/ bármely
hullámhosszra. A továbbiakban ezért feltesszük, hogy 4Г, ф лг^_.

о = о-t irva /4.22/-be a stabilitás feltétele semmilyen hul­
lámhosszra sem teljesül, tehát az alap-egyenletrendszer minden 
perturbációra nézve instabil.

А Ь -egyenletrendszerre / b>0/ a /4.22/ feltételből az derül 
ki, hogy a rövid hullámhosszakra /nagy к/ stabil lesz, a na­
gyon nagy hullámhosszakra /kis к/ azonban instabil. Jelöljük 
kc-vel a kritikus hullámszámot. Ennek értéke /4.22/-ben az e- 
gyenlőség teljesülésekor:

j.К- к-л$_! /4.23/
. + »ASi) _

-nél hosszabb hullámhosszakra a 6~-egyenlet-ЯТГEzek szerint a
rendszer instabil, az ennél nem hosszabbakra stabil. /А hosszú 
hullámhosszakra kapott instabilitás a fizikailag értelmezett 
Helmholtz-féle instabilitás./

К

A /4.21/ egyenletből látható, hogy к«кc esetén az alap és a 
& -egyenletrendszer lényegében azonosan viselkedik, mivel ekkor 
a szögletes zárójelben levő első tag elhanyagolható a 2.-hoz 
képest ugyanúgy, mintha 6” =0 lenne. Ezért a
hosszú hullámhosszakhoz tartozó fizikai instabilitások mindkét

£ -hez képest
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rendszerrel helyesen számíthatók, vagyis a komplex karakte­
risztikájú rendszer is alkalmas ezek leírására.
A hullámhossz csökkentésével azonban a /4.21/-ben megadott со
egyre inkább különböző lesz б” > О és ÉT = О esetén, -nél

ke.
kisebb hullámhosszakra pedig teljesen más eredményt ad a két 
egyenletrendszer. Amig a 6"-egyenletrendszer stabil viselke­
dést ir le, addig az alap-egyenletrendszer instabil megoldást 
számol. A valósághoz természetesen a ^-egyenletrendszer áll 
közelebb, mert a felületi feszültség egy ténylegesen fellépő 
fizikai hatás, melyet egy pontosra törekvő fizikai modellezés­
nél figyelembe kell venni. Ez azt mutatja, hogy az alap-egyen­
letrendszer pontatlan, nem fizikai viselkedést tükröz rövid 
hullámhosszakra. Ez a tény és a komplex karakterisztikák meg­
jelenése annak következménye, hogy elhanyagoltuk a felületi 
feszültséget /vagy más olyan jelenséget, mely a rövid hullám­
hosszakra gyakorol jelentősebb hatást/.

A /4.21 /-beli co-nak megfelelő növekedési tényező:

p[lna(co)tJGík ,t) = I exp [-tcoÖO t] ) /4.24/- ex

На со komplex, akkor /4.21/-ben a pozitiv előjel felel meg a 
növekedésnek. 5 =0-t Írva /4.21/-be az alap-egyenletrendszer- 
re kapjuk, hogy

lm (co) =
к í — xrj K?1 *x?x)^ 

í'o >o)

/4.25/
c<29< +

A ^-egyenletrendszerre pedig

ha к i0
ilm (со) - " c<j. 0 H (kj-d1к ha к < kc

A feladat akkor korrekt kitüzésü, ha adott t időpontban G(k,t) 
k-ra nézve korlátos a 0 áк <со intervallumban, azaz, ha 
lm (со) korlátos k-ra vonatkozólag.
Ez igaz /4.26/-ra, de nem igaz /4.25/-re. Az alap-egyenlet­
rendszer tehát nem korrekt kitüzésü, a ^-egyenletrendszer 
viszont az.

) /4.26/

Ezekután tegyük fel, hogy a véges differenciák segítségével 
akarunk numerikus megoldást keresni hosszú hullámhosszakra. Ha

-hez képest hosszú, akkor elvileg közömbös,
hogy melyik egyenletrendszert használjuk a fenti kettő közül, 
mert ebben a tartományban azonosan viselkednek. Ez azonban 
csak akkor igaz, ha más hullámhosszakra nem viszünk a rend­
szerbe olyan perturbációt, melynek növekedési sebessége na­
gyobb, mint a viszgált hullámhosszé. A véges differenciák

a hullámhossz
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felírásával azonban а Дх nagyságren<Jjének megfelelő hullám­
hosszú perturbációt viszünk a rendszerbe, ezért ilyen hullám­
hosszakra nem engedhető meg az instabilitás.
Az alap-egyenletrendszerben minden hullámhossz instabil, ezért 
a hosszú hullámhosszú instabilitások sem számíthatók vele he­
lyesen, hacsak be nem vezetünk valamilyen mesterséges stabili­
zálást а Дx nagyságrendű hullámhosszakra.

A 6"-egyenletrendszerben а Дх nagyságrendű hullámhosszak Дх, 
о és a /4.22/-ben szereplő többi változó értékétől függően le­
hetnek stabilak vagy instabilak. A gyakorlatban előforduló ti­
pikus értékek mellett ez a hullámhossz még instabil, a stabil 
hullámhosszak Дх-nél lényegesen kisebb hullámhosszaknál kez­
dődnek. Ezt a problémát úgy lehetne megoldani, ha le lehetne
csökkenteni Дх-et úgy, hogy közel ДА legyen. Ez viszont lé­

ke. _
nyegesen megnövelné a számitásigényt. Ezért általában a o-e- 
gyenletrendszer használatakor is szükség van mesterséges stabi­
lizáló hatás bevezetésére а Дх nagyságrendű hullámhosszakra. 
Mivel a rácson felvehető legkisebb hullámhossz 2Дх, a

íj~-
k sí -f- választással /4.22/ alapjan megadott AX

lD1~ C (Axf 9-
/4.27/TT2H

mesterséges felületi feszültség megfelel erre a célra. /С egy 
dimenzió nélküli konstans, értéke 1 körül van./ Ez a o* általá­
ban sokkal nagyobb, mint a felületi feszültség tényleges értéke.

Természetesen nem ez az egyetlen módja a stabilizálásnak. Más 
fizikai hatások /viszkozitás, fázisátalakulás, impulzus-átadás, 
virtuális-tömeg hatás/ figyelembe vétele is hasonló eredményhez 
vezethet. Ezenkívül bizonyos differenciálási módszerek /különö­
sen a 2.3 pontban ismertetett donor differenciálás/ önmagukban 
is mesterséges stabilizáló hatással rendelkeznek anélkül, hogy 
külön stabilizáló tagot irtunk volna explicit módon az egyenle­
tekbe .

A most ismertetett vizsgálatnak elsősorban elméleti jelentősége 
van a karakterisztikák, a stabilitás és a rövid hullámhosszú 
jelenségek kapcsolatának elemzésében a kétfázisú áramlás terén. 
Fizikailag indokoltabb a viszkozitás figyelembe vétele, mint a 
felületi feszültségé, mert az nemcsak stabilizáló, hanem csil­
lapító hatással is rendelkezik. A viszkozitást tartalmazó e- 
gyenletrendszer a fizikai valóságnak jobb közelítését adja, 
gyakorlati számításokra alkalmasabb. Ennek alkalmazásakor fi­
gyelembe kell venni, hogy a numerikus stabilitáshoz gyakran lé­
nyegesen nagyobb viszkozitási együtthatóra van szükség, mint a- 
mekkora a valóságban fellép. A viszkozitásra [28j-ban javasolt 
érték Д * vAx, ahol v a folyadék sebessége, Д_х a rácstávolság.
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Ez a vizsgálat azt támasztotta alá, hogy a kétfázisú áramlás 
két-közeg modelljét leiró egyenletek numerikus instabilitása 
megszüntethető, ha alkalmas fizikai jelenségeket beépitünk a 
modellbe. Ezekkel a karakterisztikák valósakká válnak, s rövid 
hullámhosszak stabilizálódnak.

A következő fejezetben azt vizsgálom, hogy a nem korrekt kitü­
zésü feladatra hogyan lehet jó numerikus megoldást kapni.

2.4.3. Stabil differencia séma megadásának feltételei a két-
közeg modellekre

Annak ellenére, hogy a nem korrekt kitüzésü feladatra felirt 
véges differencia sémák a szokásos értelemben nem lehetnek sta­
bilak széles körben használják őket a két-közeg modellek megol­
dására .

Ebben a fejezetben azt vizsgálom [26j alapján, hogy milyen kö­
rülmények között várható, hogy egy adott véges differencia sé­
mával elfogadható numerikus eredményeket kapjunk annak ellenére, 
hogy a hozzá tartozó differenciálegyenlet-rendszer nem korrekt 
kitüzésü kezdeti érték feladatot alkot.

Az egyszerűség kedvéért a továbbiakban az egydimenziós két-kö­
zeg modell egyenletei közül csak a tömeg- és impulzus-megmara­
dási egyenleteket tekintjük /hasonlóan az előző fejezethez /. 
Ezek tartalmazzák a vizsgálat szempontjából lényeges jellemző­
ket .
Az impulzus egyenletekben vizsgáljuk az impulzusátadás szerepét 
a stabilitás növeléséban. A modellre a 2.3 pontban ismertetett 
numerikus sémát Írjuk fel, s vizsgáljuk a stabilitását az im­
pulzusátadást tartalmazó és nem tartalmazó egyenletekre.

A következő egyenletrendszer az egyenes csőben történő izoter­
mikus kétfázisú áramlást irja le, s а /4.1/-/4.3/ alap-egyen­
letrendszertől csak annyiban különbözik, hogy az impulzus e- 
gyenletek jobboldalai tartalmazzák a fázisok közti impulzusáta­
dás kifejezését. /Ezek egyenlő nagyságúak, de ellenkező elője­
lűek . /
Tömegmegmaradás a gőzfázisra:

/4.28/

Tömegmegmaradás a folyadékfázisra:

- 0 /4.29/
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Impulzus-megmaradás a gőzfázisra:

* * v Is/3*4 зГ -t- i< r— * К (ir4 - iv) /4.30/Эх Э x
Impulzus-megmaradás a folyadékfázisra:

Э'Р » К -4Jt) /4.31/
á X

Az egyenletek felirása azzal a feltételezéssel történt, hogy az 
egyes fázisok különálló folyadékként viselkednek, közös nyomás­
mező hat rájuk és kitöltik a rendelkezésre álló térfogatot.
Az egyenletek baloldalainak első tagjai a tömeg, illetve az im­
pulzus időbeli változását adják meg egy adott pontban. A 2. ta­
gok a tömeg, illetve impulzus konvekcióját jelentik ugyanabból 
a pontból. Az impulzus egyenletekben a 3. tagok azokat a nyo­
másból származó erőket foglalják magukba, melyek a fázisokat 
gyorsitják.

A karakterisztikus gyökök meghatározásához fel kell irni az e- 
gyenletrendszer karakterisztikus determinánsát. Az egyszerűség 
kedvéért feltesszük, hogy a folyadék összenyomhatatlan a gőzfá­
zishoz képest. Ekkor a /^karakterisztikus gyököknek a követke­
ző egyenletet kell kielégíteniük:

<*• pt (/*• ■+ (4 — «к )^V ^
, - -i 3pvahol Cy = öp-

hogy két valós gyök van: az egyik kevéssel kisebb, mint Vv -cv, 
a másik kicsit nagyobb, mint \rv + С/. A polinom vizsgálata azt 
mutatja, hogy ha lenne még valós gyök, akkor annak ezek közé 
kellene esnie. Ez azonban \rv f vp esetén nem lehetséges, te­
hát a másik két gyök komplex, méghozzá egymás konjugáltjai.
Ha vp , «г c

A -1 ■ .1 . .2.
v' — cv - 4 )(,<*— -Чё) - /4.32/0— XT'

. Beszorozva c* -tel és átrendezve azt kapjuk,

akkor a komplex gyökök közelítőleg:v •

-4- <£. V/ . ,
—-------------------- _ 1,

4 -I- t1-
,.r_ (/!->x) JV£. г К ahol/X £

«PtA + <£
Vizsgáljuk meg egy külön egyenleten a komplex karakterisztikus 
sebességeknek a véges differenciaegyenletre gyakorolt hatását. 
Legyen ez az egyenlet:

Ъи_ + (4 + é-i) —— + K.U =• 0 V ' ЭХ /4.33/ЧГ3t
Feltesszük, hogy v, £. és К nemnegativ konstansok. 
Közelítsük /4.33/-at az alábbi differenciaegyenlettel:

nn+4 П h n+1Uj - U, ,W; /4.34/+ ДГ ■+ £_ l) = 0+ К u iAxÁt
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Ez a differenciaegyenlet donor differenciálást tartalmaz az 
explicit konvektiv tagra, a Ku csillapító tag kifejezése impli­
cit .
Az 1.2.1 pontban ismertetett Neumann-féle lineáris stabilitás 
vizsgálathoz tekintsük u-nak egy Fourier komponensét

e<p [ók j Дх) -et, ahol k= , N a rácsintervallumok száma és
N. Ennek nagysága egy időpontról a következőre lépvem= 1,2,.

A -szorosára nő, ahol
• • /

(ií-t - exp(-ökáx)jj<rAtA - (4 + К At) [y, - дх
Ha |A| > 1, akkor a megfelelő Fourier komponens u-ban korlátla­
nul növekszik, mig ha |A| é= 1 minden k-ra, akkor a megoldás 
korlátos marad minden időlépésre.
Ezért a stabilitás feltétele, hogy (Aj él legyen minden k-ra. 

[4 - e-Xp(-tkAx)]
vagyis а Л értékek minden m-re a komplex sikbeli A — xr
zéppontu, v Ab. sugaru körön helyezkednek el. A kör érinti az 1
pontba húzott függőlegest, s ha v 4Í. < 1, akkor az egységkörön 
belül fekszik.
A 10. ábra szemlélteti a A pontok mértani helyét. Növekvő m-re 
a pontok az 1 ponthoz közelednek.

A - 4 —Ha K= £=0, akkor
AX

kö-

10. ábra

Ebben az esetben /4.33/ megoldásai haladó hullámok, a közelitő 
megoldásnak nem lehet korlátlanul növekvő komponense. A stabi-

v At_ ^ \
AX -

Ha K=0, de АфО /azaz a sebesség komplex és nincs csillapitás/, 
akkor az előző kört (l+-szeresére nagyitjuk és arctan £ 
szöggel elforgatjuk az 1 pont körül. Ha £. negativ lenne a ka­
pott eredmény még mindig az egységkörön belül lehetne, de ha £ 
akármilyen kis pozitiv szám, akkor biztosan lesz olyan m, mely-

litás feltétele IMÁI. azaz
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nek megfelelő A már az egységkörön kivülre esik /még akkor is,
ha v-^-Cl/. Ilyen m-re a megfelelő Fourier komponens korlátla­
nul fog nőni. A numerikus megoldás viszont nem tartalmazza 
szükségképpen ezeket a komponenseket, ha csak néhány osztáspon­
tot veszünk fel, azaz ha elég durva a rács.

Végül, ha K>0, akkor a kör tovább módosul az origó körüli
(l+K A t)~1 -szeres kicsinyitéssel. На К elég nagy, akkor a teljes 
kör az egységkörön belül lehet /még nagy m-re is/.

Ez az egyszerű példa szemlélteti a két-közeg modellekben fellé­
pő jelenségeket. Azoknak a konvektiv tagoknak a donor differen­
ciálása, melyekre v 4t stabilizáló hatással van a legna-

AX
gyobb frekvenciájú komponensekre akkor is, ha a hozzájuk tarto­
zó sebesség komplex. A komplex sebességnek az alacsony frekven­
ciájú /nagy hullámhosszú/ komponensekre gyakorolt destabilizáló 
hatását adott rácsméret mellett elegendően nagy csillapítás be­
iktatásával lehet ellensúlyozni.

oű , 4x^0, At->0 és
1, akkor a véges differencia módszer szükségképpen ad

v АЁ

Ha a rácsot finomítjuk, azaz m 
l+K At
korlátlanul növekvő komponenseket is. Ha 1, akkor
az ilyen komponensek először azoknál a hullámhosszaknál jelen­
nel meg, melyek Ах-nek nagyszámú többszörösei.

<Ax

A két-közeg egyenletekben a csillapítás szerepét a fázisok kö­
zötti impulzusátadás játssza. A stabilitást nem a szokásos ma­
tematikai értelemben vesszük, amely bizonyos "jó viselkedést" 
kiván meg Ax, At
terisztikáju két-közeg egyenletek nem lehetnek stabilak. 
Fizikailag jól viselkedő megoldást kapunk adott rácsra, ha a 
lokális stabilitás vizsgálat eredménye jA j =1 minden kompo­
nensre .

О estén. Ilyen értelemben a komplex karak-

A következőkben а /4.28/-/4.31/ egyenletekre felirt véges diffe­
rencia közelítést vizsgáljuk meg. A séma alapja a 2.3 pontban 
ismertetett szemi-implicit módszer, melyben a hang terjedésével 
kapcsolatos hatások kezelése implicit, a konvektiv jelenségeké 
pedig explicit. így a 4t időlépés korlátja:

A változók definiálása itt is a 6. ábra szerint történik: a se­
bességeké a fél osztáspontokban, a többi változóé az egészekben. 
A hely szerinti differenciákban a donor összefüggéseket alkal­
mazzuk .
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A differencia séma alakja vv,v^ > О esetén:
>1 + 1 Ní' + /| П,- v" П У, ++•+'< * n .n+4

'AÓ^i ~ = 0 /4.35/At Ax

fe;)+l - (^р£)Ы?н(^У1И-ОыГ-^-^ /4.36/= О*- +At Ax

m4 / \h
K),4 ~иЦч « кЛ4 Ali íAs^í АхAt

itH n+1 пИnt-4Зч, - t AVt ' Ыч+ л? - К /4.37/Ai«• Д x
ri + 1 . h

teW - ftfrW (tr у , i^Vi - ^ v£ ++At A x
n+fn+<

- ?■M - Г П+1

i i^W
h+1 "

i -fe),.!
«■H

A x a
/4.38/

A tömeg egyenleteket a rácspontok felezőpontjai körül, az im­
pulzus egyenleteket pedig a rácspontok körül differenciáltuk.
A tömegmegmaradási egyenletekben a sebességet tartalmazó tagok, 
az impulzus egyenletekben a nyomásgradienst és az impulzusáta­
dást tartalmazó tagok tartalmaznak olyan változót, melynek ér­
tékét az uj időpontban vesszük.
A következőkben a felirt numerikus séma stabilitását vizsgáljuk.

Tekintsük először a K=0 esetet.
A Neumann-féle lokális lineáris stabilitás vizsgálathoz kife­
jezzük a /4.35/-/4.38/ egyenletekben előforduló differenciákat 
a 9V , vv, vc négy alapváltozó differenciái segitségével. 
Ezután az együtthatókat konstansnak tekintve vizsgáljuk egy 
Fourier komponens növekedését. Ezt a következő átmenet mátrix 
Írja le:

lAt^>v (A 4 t ) 

-£t(A-4 * íl)

*(A-4 + írv) i к 0A Ax

AtK4"°^k'00

£v (A-A + 00
/4.39/

рДА-Л-fC* i k' 0 0

—
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Az oszlopok balról jobbra a ^>v , <x, vv és vx változóknak felel­
nek meg,

vv|í[l-exp(-ikAx)], ^ ^

/4.39/ Л sajátértékei kielégítik a következő egyenletet:

jr 1 2sin ^ к A x, vv =k= , к =
^ ДХ

£ (4-^)+ (A
C = cv & 2sin JL
^ УДх

2 _2.
- 4 4- ATV) (A - 4 + ^) =0, /4.40/

ahol

Vizsgáljuk először a rendszer viselkedését nagy frekvenciákra 
/kis га-re/. A fenti differencia séma használata akkor előnyös 
elsősorban, ha át megközelíti felső korlátját, azaz

At = tmLiO
és lényegesen nagyobb, mint A\/Cv, vagyis v^,v4«c . Ekkor
c. ££ » 1 és kis m-re
C>^«1 nagyságú, másik két gyöke pedig közelítőleg kielégíti az 
alábbi összefüggést:

(Ш^|)
Cm» 1. Ekkor /4.40/ két gyöke közel

Д-А+^2 = — c£,(A_/I + ^v), o»kol г.2" -

Ebből adódik, hogy Д = 4- ^/| ± tá. j(/| ± U)

sugaru és az 1 pontot érintő körön he-v,_ 4*Ezek a pontok a
iiX

lyezkednek el a komplex sikon, mely az 1 pont körül el van for-
^£. szöggel, majd visszafelé t arctan E. szög­

gel. A pont körüli nagyitás 1 +
1-től legtávolabb eső pontokra/ az ezen a körön levő pontok nem

< 1. Tehát

gatva + afctan
-szeres. Kis m-re /azaz az

At! <. 1 és |vv Щ I v ДХ Iesnek az egységkörön kivülre, ha
ha az időlépés nem nagyobb, mint az ebből eredő át <C min (j^ß- J-rjJ
korlát, akkor a legnagyobb frekvenciájú komponensek /azok, me­
lyek hullámhossza Дх-пек kisszámú többszöröse/ nem nőnek expo­
nenciálisan. /Még az impulzusátadás nélküli nem korrekt kitüzé- 
sü két-közeg feladat esetén sem./

ÍV^ Zxl

Az alacsony frekvenciájú komponensek vizsgálatához tekintsük 
/4.40/-et nagy m-ekre. Mivel m -e- oO esetén С^-з^О, ezért a
gyökök A = 1 - vy-hez tartanak /kétszer/ és A = 1 ~ vv, -hez
/kétszer/. Pontosabb vizsgálathoz legyen X = 1 - vi +d és kö­
zelítsük сГ-t nagy m-re úgy, hogy /4.40/-et átirjuk cT kifeje­
zéseként, s csak azokat a tagokat hagyjuk meg, melyek cf-ban 
legfeljebb másodfokuak. Az igy kapott сГ-ban másodfokú polinom 
gyökei a következő összefüggést elégitik ki: ^

- ^^ - Vet/ Cv] ^cT
A + £*" - (xrv - xr^f/ci
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Mivel /4.35/-/4.38 / használatakor feltehetjük, hogy | | c v

A « (/t-ч) 'i - í (Я ' ч£
Mivel fi - vt| = 1 - <y(n\~z) és azt szorozzuk egy olyan mennyi­
séggel, melynek nagysága 1 + (Т(уу\~л) , ahol pozitiv lesz a
fenti -t- egyike esetén, ezért egy A gyök szükségképpen az 
egységkörön kivülre esik nagy m-re.
Hasonló eredményre jutunk a A = 1 -
Ezért a /4.35/-/4.38/ séma К = О esetén nagy m-ekhez tartozó 
hullámhosszakra instabil lesz.

igy U
4+
£. t L

+ cT helyettesítéssel.vv

A rácsintervallumok N számát kétféleképpen növelhetjük. Az e- 
gyik, hogy növeljük a fizikai hosszat, miközben Дх-et rögzít­
jük. К = О esetén az egyenletek invariánsak a tér- és időbeli 
azonos arányú nagyítással szemben, ezért N növelésének másik 
módja lehet, hogy a fizikai hosszúság megtartása mellett At-t 
és Дx-et arányosan csökkentjük, azaz finomítjuk a rácsot.

К = О -ra tehát azt kaptuk, hogy a /4.35/-/4.38/ sémával vég­
zett numerikus számítások kevés térbeli osztáspont esetén jól 
viselkedő megoldást adnak. A rács finomításával azonban insta­
bilitások lépnek fel, várhatólag Ах-nek nagyszámú többszörö­
seinek megfelelő hullámhosszakra.

Vizsgáljuk meg ezután а К > О esetet.
A /4.37/ és /4.38/ egyenletekben a sebességek implicit módon 
szerepelnek, hogy ne legyen szükség At további korlátozására 
az impulzusok közti szoros kapcsolat miatt. A lineáris stabi­
litás vizsgálathoz felirt átmenet mátrix /4.39/-től a jobb al­
só 2X2-es sarokban különbözik, melynek alakja most:

jv[A M+ «) - A -t írv] 

-A cv к.

- A jv*

ahol u = К 

felírni, ha
ismét meg kell vizsgálni, hogy teljesül-e rá a 
tel.

/А sebességeket akkor ajánlatos implicit módon 
?v

к. > 1./ Az igy kapott karakterisztikus polinomot
IA1 é 1 felté-

Tekintsük most is először a magas frekvenciákat, azaz legyen 
m kicsi. Feltéve, hogy к 1 és_mint az előzőekben СУУЛ>> 1, 
a polinom két gyöke közelítőleg Сл, nagyságú, egy közel u."1 
nagyságú, a negyedik pedig közelítőleg 7

4 - 4+ ^
Ez is az egységkörön belülre esik, ha I)
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Kis m-re és nagyon kis W. -ra is mind a 4 gyök belül van az 
egységkörön, mert tf.= О -ra ezt az előbbiekben beláttuk / a 
К = О eset/ és a gyökök folytonosan függnek к-tói. Ezzel 
nagy és nagyom kis u.-ra bizonyítottuk, de jogosan feltéte­
lezhetjük a közbülső i4-kra is, hogy a kis m-nek megfelelő 
hullámhosszak nem növekszenek, mivel az implicit módon kezelt 
csillapítást tartalmazó egyenletek megoldásai nyilván még ke­
vésbé növekednek, mint a csillapítás nélküli egyenleteké.

oo eset vizsgá- 
oo különböző értelmezése most különbö-

A kis frekvenciájú viselkedést most is az m 
latából kapjuk. Az N 
ző megoldáshoz vezet a K(vv - vc) tag jelenléte miatt.
Ha N növelése a rács finomítását jelenti, akkor u. = K-^-nek 
nullához kell tartania. А К (vv - vc) tag implicit módon tar­
talmazza a fizikai hosszat.
Vizsgáljuk először az m—oO esetet úgy, hogy közben megtart­
juk u. értékét. Ez értelmezhető úgy, hogy finomítjuk a rácsot 
és feltesszük, hogy egy bizonyos pontnál [Ax)"* és minden
magasabb rendű kifejezése elhanyagolható u. kivételével. Vagy 
úgy, hogy Ах-et rögzitjuk és a fizikai hosszat növeljük. Fix 
u. -ra és m oO -re határértékként a következő egyenletet 
kapjuk:

[%-A + ír;)(A--1ч +Apv«.)+A2jvkíJ =• 0
A szögletes zárójelben levő másodfokú polinom gyökeiről meg­
mutatható, hogy valósak, pozitívak és egynél kisebbek, ezért 
elég nagy m-re a megfelelő gyököknek az egységkörön belülre 
kell esniük. A másik két gyök vizsgálatához az előbbiekhez 
hasonlóan legyen A = 1 - vv + cT , ezt helyettesítsük az ere­
deti polinom egyenletébe, s csak a cf-ban elsőfokú tagokat 
hagyjuk meg. Az m-1 magasabb rendű kifejezéseinak elhanyago­
lásával és a

- ^vt«-
feltételezéssel a gyök értéke közelítőleg A -

x /4.41/
U. *+ 0 («Y*

U + ZCm
amely az egységkörön belül van. Ugyanezt kapjuk Л = 1 - v^ + cT 
helyettesítéssel, tehát a nagy hullámhosszú komponensek is 
jól viselkednek.

A /4.41/ feltétel teljesülése fontos ahhoz, hogy nagy hullám­
hosszakra is jó viselkedést kapjunk. Jelentése az, hogy az 
impulzusátadás mértékének meg kell haladnia egy bizonyos ér­
téket ahhoz, hogy elkerüljük a koráltanul növekvő hosszú hul­
lámhosszú komponenseket. Ez a minimális érték a rácsméret és 
az impulzusátadás fizikailag értelmezhető kapcsolatából adó­
dik. Nagy m-re /4.41/ a következő összefüggéssel ekvivalens:

К Ax) /4.42/
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\*Х, - ^l\A K-ra jj>6]-ban javasolt alak: К ^ CD §v , ahol r a fo-Г
lyadékcsepp vagy a buborék sugara, Cjd pedig a közegellenállási 
tényező. Ennek felhasználásával a /4.41/ feltétel a következő 
formába irható: .96mklx » ?vC3r'
azaz az тДх hullámhosszhoz tartozó komponens nem fog korlátla­
nul nőni, ha ez a hullámhossz nagyobb, mint az egyes buborékok 
vagy folyadékcseppek sugarának bizonyos számú többszöröse.

Ezzel beláttuk, hogy a /4.35/-/4.38/ differenciaegyenleteken a- 
lapuló számításokban a nagy frekvenciájú komponensek nem nö­
vekvők és azok a nagy m-hez tartozó kis frekvenciájú komponen­
sek, melyek kielégítik /4.42/-t egy adott rács esetén szintén 
jól viselkednek.
Ez azonban még nem biztosítja, hogy egyáltalán ne legyen növek­
vő komponens. Úgy tűnhet, hogy ehhez /4.42/ teljesülését kelle­
ne megkövetelni egyészen m=l-től. Ekkor áthidalnánk a kis és a 
nagy frekvenciák közti rést. De /4.42/ kifejezetten csak nagy 
m-re érvényes. Viszont beláttuk, hogy ha KÁx elég nagy, akkor 
az impulzusátadás stabilizálja azokat a nagy hullámhosszakat, 
melyekhez egyébként növő komponensek tartoznának.

A gyakorlatban a /4.35/-/4.38/ sémákhoz hasonló sémákkal vég­
zett számítások azt mutatják, hogy minden hullámhosszra jól vi­
selkedő /azaz nem korlátlanul növekvő/ megoldást kapunk. Ha a- 
zonban К értékét csökkentjük, akkor a hosszú hullámhosszú tar­
tományban növekvő osszcilláció léphet fel. ^26^j

Összegezve tehát megmutattuk, hogy a kétfázisú áramlás két-kö- 
zeg modelljével végzett véges differencia számítások jól visel­
kedő megoldást adnak, ha a fázisok közt fellépő impulzusátadás 
elég nagy és a térbeli rács nem túl finom. Ez annak ellenére 
igaz, hogy a két-közeg modell differenciálegyenleteinek vannak 
komplex karakterisztikái, tehát a kezdeti érték feladat nem 
korrekt kitüzésü és az elegendően finom rácson végzett számítá­
sok szükségképpen insatbilak. Származtattunk egy fizikailag ér­

telmezhető kritériumot a rács méretére vonatkozóan: a buborék 
vagy folyadékcsepp áramlásán alapuló impulzusátadási modellben 
a kritikus rácsméret a buborék vagy folyadékcsepp sugarának 
többszöröse. Ez azt jelenti, hogy a közelitő számítások mindad­
dig jók lehetnek, amig nem próbáljuk olyan jelenségekre alkal­
mazni, melyek finomabbak, mint az impulzusátadási törvényben 
implicit módon tartalmazott méret. Ez fizikailag elfogadható, 
mivel a két-közeg modell nagy mennyiségű folyadék és buborék 
együttes áramlását vizsgálja az egyes buborékok vagy folyadék­
cseppek által okozott fluktuációk elhanyagolásával, 
így a kétfázisú áramlás durva modellezése esetén annak ellenére 
is jó a közelitő számítások eredménye, hogy a matematikai mo­
dell nem korrekt kitüzésü, ha nem próbálunk túl finom megoldást
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keresni.
Másrészt viszont abban az esetben, ha nincs impulzusátadás 
/azaz szeparált áramlás modellezésekor/ a térfogattörtek válto­
zása a fázisok érintkezési felületének mozgását tükrözi. Ezért 
K=0 esetén minden olyan közelitö megoldás, amely megengedi a 
térfogattörtek változását szükségképpen finom megoldás. Ebben 
az esetben az előző pontban leirtak szerint a felületi feszült­
ség figyelembe vételével a feladat korrekt kitüzésü lesz.
Finom modellezés esetén tehát a megfelelő modell más, matemati­
kailag korrekt kitüzésü kezdeti érték feladat.

A /4.28/—/4.31/ modell akkor alkalmas a számításokhoz, ha durva 
modellezés is elegendő. Az, hogy a modell mennyire tükrözi a 
fizikai valóságot a kísérleti eredményekkel való összevetésből 
derül ki.

A következő fejezetben egy olyan két-közeg modellt ismertetek, 
amely ilyen durva modellezés céljéra készült [31].

2.4.4. Egy 3-dimenziós két-közeg modell numerikus megoldása

Az előző fejezet vizsgálataiból kiderült, hogy a komplex karak­
terisztikájú két-közeg modellekkel is kaphatunk jó eredménye­
ket, ha nem akarunk túl finom jelenségeket modellezni és a kö­
zelítéshez megfelelő véges differencia sémát használunk.

Ebben a pontban egy olyan 3-dimenziós két-közeg modellt Írok 
le, melynek numerikus megoldása ezeken az eredményeken alapul.

i3lj számitógépes program része, amely a vizhüté-A modell a
ses reaktorok zónájában lejátszódó kétfázisú áramlást és hőát­
adást Írja le derékszögű koordináta rendszerben. A hirtelen 
nagy nyomáscsökkenéssel járó balesetek leírása nem tartozik a 
fő alkalmazásai közé. A rendszer nyomása az üzemi szinten van, 
ezért a benne történő kétfázisú áramlás szerkezete /buborékok, 
cseppek, egy részük összeolvadva/ finom az egész zóna szerke­
zetéhez képest. A modell célja az egész zóna leírása, amihez 
ezt elemi térfogatokra osztjuk. Ezek méreténél finomabb jelen­
ségek nem oldhatók meg vele. A folyadékot leiró változók érté­
két nagyszámú buborék, folyadékcsepp átlagából számítjuk.

A modell 6 alapegyenletből áll: külön-külön parciális differen­
ciálegyenletek az egyes fázisok tömegének, impulzusának és e- 
nergiájának megmaradására. A problémát a tömeg, impulzus és e- 
nergiaátadást leiró matematikai összefüggések megadása jelenti, 
mert ezek az átadási folyamatok jelenleg még nem egészen tisz­
tázottak fizikailag sem. A [31j-beli modell ezekre olyan össze­
függéseket tartalmaz, melyek a tapasztalat szerint jól leírják 
a folyamatokat olyan körülmények között, melyek vizsgálatára a 
modell készült. A kutatás fejlődésével ezek pontosabb összefüg-
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gésekre cserélhetők ki.

A numerikus módszer kiválasztását több szempont határozza meg. 
Mivel az alap-egyenletrendszerhez tartozó kezdeti érték fela­
dat nem korrekt kitüzésü a klasszikus értelemben, ezért a fel­
használt rácsot nem lehet tetszőlegesen finomítani.
Gyorsan változó tranziens esetén kis idó'lépésekre van szükség, 
hogy az áramlás alakulását minél pontosabban leírhassuk. 
Másrészt viszont lassú folyamatoknál csökkenthetjük a számítá­
si igényt, ha lehetőség van nagy időlépések vételére.

Olyan módszerre van tehát szükség, amely kis és nagy időlépé­
sekkel egyaránt tud számolni. Erre a célra szolgál a 2.3. pont­
ban ismertetett szemi-implicit véges differencia séma. Ennek 
alkalmazásával a stabilitás követelményéből adódó

• 4 — At
í v ÁT

növelhető, ha azokat a kifejezéseket implicit módon differenci­
áljuk, melyek magukba foglalják a hang terjedését. Ugyancsak 
implicit módon történik az átadási tagok számítása, mivel ezek 
szoros kapcsolatot teremtenek a fázisok állapotváltozói közt, s 
ezzel csökkentik a lehetséges időlépés nagyságát.

;(v ± о ül < l-re< 1 időlépés korlát max

A differencia séma felirása után egy nemlineáris algebrai egyen­
letrendszert kapunk, melynek időlépésenkénti megoldása adja az 
áramlást leiró változók értékét az uj időpontokban. A megoldás­
ra kidolgozott eljárás két iterációs ciklusból áll. Az első egy 
Newton-iteráció, melyhez minden lépésben meg kell határozni a 
Jacobi mátrixot és meg kell oldani a kapott linearizált egyen­
letrendszert. Ez a lineáris egyenletrendszer átalakítható úgy, 
hogy minden változót eliminálunk a nyomások kivételével. A ka­
pott együtthatómátrix blokk-tridiagonális lesz, melyet a 2.3. 
pontban leirt blokk-Gauss-Seidel iterációval meg lehet oldani.
Ez a második iteráció, melyet nyomás-iterációnak nevezünk.

Ennek a magoldási módszernek az az előnye, hogy a Newton-iterá­
ció általában legfeljebb 3 ciklus után már konvergál, mig min­
den egyes Newton-iterációban szükség lehet közel 100 nyomás-i­
terációra is. Ez utóbbinak azonban nem túl nagy a számítás­
igénye .

A Newton-iteráció fontos tulajdonsága, hogy minden olyan kezdő­
érték esetén, amely elég közel van a tényleges értékhez konver­
gál, ha a Jacobi mátrixot pontosan, elhanyagolás nélkül számít­
juk. A gyakorlatban kezdőértékként vehetjük a régi időponban 
kapott értékeket. Ha esetleg nem konvergálna az eljárás, akkor 
az időlépés csökkentésével már biztosan jó kezdőértékek lesznek 
a régi időponthoz tartozó értékek. /На a differencia egyenletek 
pontos megoldása folytonosan függ az időtől, akkor az uj érté­
kek a régihez tartanak, ha At ->0./ A konvergenciának ez az el-
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méleti biztositéka nagyon megbízhatóvá teszi a módszert szemben 
másokkal, ahol esetleg rejtett fizikai feltevéseken múlik a kon­
vergencia, s ha váratlanul nem konvergál, akkor nehéz a hiba e- 
redetét megtalálni.

A két-közeg modellt 3 dimenzióban a következő skalár és vektor 
egyenletek Írják le:

Tömegmegmaradás az egyes fázisokra:
rv) = Г

-<*)?*] +

/5.1/V

/5.2/

Impulzus-megmaradás a fázisokra:
^ +■ V(*S>V KTW <v) -V- (X V P - _ p /5.3/' w V'

?. г
/5.4/

A fázisok energiájának megmaradása:

P tk ^ P T ff - ö-f к9v 5 v '' * V7('''w. i v LTV^ /5.5/wv

kv[(;i-4?feX]vP'v|i >4 /5.6/

d ЭъV = A- ' Эу *ahol Эгő x
Az egyenletek felirása azzal a feltételezéssel történt, hogy az 
egyes fázisok különálló folyadékként viselkednek, közös nyomás­
mező hat rájuk, s kitöltik a rendelkezésre álló térfogatot.

Az egyenletek baloldalainak első tagjai a tömeg, az impulzus, 
illetve az energia időbeli változását adják meg egy adott pont­
ban. A 2. tagok a tömeg, impulzus, energia konvekcióját jelentik 
ugyanabba, vagy ugyanabból a pontból. Az impulzus egyenletekben 
a 3. tagok a nyomásból származó erőket foglalják magukba, me­
lyek a fázisokat gyorsitják. Az energia egyenletek 3. tagjai a 
belső energia csökkenését vagy növekedését fejezik ki a megfe­
lelő fázis tágulásának vagy összenyomásának eredményeképpen. 
Ugyanitt a 4. tagok annak a munkának az ereményei, melyet az e- 
gyik fázis tágulása végez a másikon.
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Az egyenletek jobboldalai a fázisok közti tömeg, impulzus és 
energiaátadást fejezik ki, illetve az impulzusátadást a folya­
dék és a tartály fala között. Ezekről feltételezzük, hogy nem 
tartalmazzák az ismeretlen függvények deriváltjait. A fázisok 
közti átadási tényezők azonos nagyságúak és ellentétes elője­
lűek, mert a megfelelő egyenletek összeadásával a teljes fo­
lyadékra érvényes megmaradási egyenleteket kell kapni.

Az /5.3/ és /5.4/ impulzus egyenletek vektor egyenletek, s 
ténylegesen 6 skalár egyenletet jelentenek a sebesség 3 kompo­
nensére mindkét fázisban. Ezek az egyenletek egyszerüsithetők, 
ha részben elvégezzük a deriválást és felhasználjuk az /5.1/, 
/5.2/ egyenleteket:

Э ц

+ +(/l-c07P = - Fwt -

ív - í + Г4 

~ ~ Ft- -

/5.7/
3t

Ъ d
at /5.8/

és F.^ átadási tagokra:ahol az F-tv

A kapott egyenletrendszerben az x, y, z és t független változók 
mellett a következő 12 függő változó szerepel:
az c< térfogattört, a P nyomás, a ^és sűrűségek, az ev
és e*. fajlagos belső energiák és a лés t-l sebességek 3-3 
komponense. Az átadási tagok ezeken kivül még а Т/ és Ti hőmér­
sékletektől is függenek. Ezt a 14 ismeretlen függvényt tekint­
jük alapváltozónak. Valójában az átadási tényezők a folyadéknak 
még egyéb jellemzőit is tartalmazzák, pl. a telitési hőmérsék­
letet, a viszkozitást, de ezekről feltételezzük, hogy a fenti 
14 változó ismert függvényei, s belőlük meghatározhatók.
Eddig 10 egyenletet irtunk fel. A zártsághoz szükséges további 
4 összefüggést az állapotegyenletek adják, melyek alakja a kö­
vetkező:

$v(P| ív)

= $>í(p| u) 

Ъу - е^Т| Tv) 
* e4(P, Tj

/5.9/

/5.10/

/5.11/

/5.12/

A modellt leiró parciális differenciálegyenleteknek vannak 
komplex karakterisztikái, tehát a velük felirt kezdet érték fe­
ladat matematikailag nem korrekt kitüzésü. A komplex karakterisz-
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tikák miatt tetszőlegesen kis perturbáció a kezdeti adatokban a 
megoldás során tetszőlegesen nagy hibát eredményezhet egy bizo­
nyos idő után. Fizikai csillapító kifejezések stabilizálhatják 
a megoldásnak egy bizonyos frekvencia alatti Fourier komponen­
seit, azaz a hosszú hullámhosszú komponenseket. A nagy frekven­
ciájú komponensek azonban erősen instabilak. A komplex karakte­
risztikák miatt a komponensek frekvenciájukkal arányosan növe­
kednek, vagyis a nagyobb frekvenciájú komponensek abszolút ér­
téke gyorsabban nő, mint a kisebb frekvenciájuaké. A csillapí­
tás csak az alacsony frekvenciájú komponensek növekedését tud­
ja megakadályozni, egy bizonyos frekvencia fölött minden kom­
ponens nőni fog.
Ha a satbilizált komponensek megfelelő frekvencia tartományt 
képviselnek ahhoz, hogy a kivánt jelenséget leirjuk, akkor a 
feladatot meg tudjuk oldani ezek segítségével. Ez történik a vé­
ges differenciák alkalmazásakor: adott rács esetén a numerikus 
megoldásban szereplő legrövidebb hullámhossz nem lehet rövidebb, 
mint a rácstávolság kétszerese, azaz a megfelelő frekvencia nem 
lehet ennél nagyobb. Ezzel a korlátlanul növő komponenseket ki­
zárjuk a megoldásból, ha a rács elég durva. Tehát a rács finom­
ságának és a csillapításoknak együttes hatásaként jó numerikus 
közelítést tudunk kapni. A kettő közt a következő az összefüg­
gés: erősebb csillapítás magasabb frekvenciájú komponenseket is 
stabilizál, tehát valamivel finomabb rácson is jó megoldást ka­
punk és megfordítva.

Az /5.1/-/5.6/ két-közeg modellben a csillapítást az átadási 
tagok jelentik. Ha a zónában levő két fázis nagymértékben keve­
redik, akkor az impulzusátadás különösen nagy. Erről az előző 
fejezetben kimutattuk, hogy erősen stabilizálja az alacsony frek­
venciájú komponenseket. Eredményként azt kaptuk, hogy az т/\х 
hullámhosszú komponens т» 1 esetén jól viselkedik, ha

A WmAx » — r,
licit módon szereplő hosszúság, adott esetben a buborék vagy fo- 
lyadékcsepp sugara.

ahol r az impulzusátadásban imp-

Emellett a 2.3. pontban ismertetett donor differenciálásnak is 
van stabilizáló hatása azokra a komponensekre, melyek hullám­
hossza a rácstávolság kisszámú többszöröse. Ez azt jelenti, hogy 
még csillapítás nélkül is kaphatnánk jó eredményeket, ha csak 
néhány osztáspontot vennénk fel. Nagyobb hibák csak azokban a 
komponensekben lépnének fel, melyek hullámhossza lényegesen na­
gyobb, mint a rácstávolság.

Külön problémát jelent a helyes peremfeltételek megválasztása. 
Teljesen hiperbolikus rendszer esetén /mint amilyen a 2.2. pont­
ban ismertetett homogén modell/ a megfelelő peremfeltételek szá­
ma és tipusa meghatározható a karakterisztikáknak az értelmezé­
si tartomány határán való vizsgálatából. Az olyan peremen, ahol 
a folyadék befelé áramlik két értéket kell megadni /р. a sebes­
séget és hőmérséxletet/, az olyanon, ahol kifelé áramlik csak 
egy információra van szükség /pl.a kilépő nyomásra/, ahol pedig 
nincs áramlás, ott ez maga a feltétel. /áramlás=0/
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A nem korrekt kitüzésü két-közeg modell esetén nem ilyen egyszerű 
a helyzet. Ekkor a karakterisztikák valós részének vizsgálatából 
tudunk levonni következtetéseket.

Az /5.1/—/5.6/ egyenletrendszer karakterisztikus gyökei a követ­
kezők: 2 valós gyök egyenlő az egyes fázisok sebességével /vV{ / 

2 valós gyök közel egyenlő vv + cv -vei,
2 komplex gyök egymás konjugáltja, valós részük vv és v^

közé esik.
Abban az esetben, amikor mindkét fázis kifelé áramlik a határon 
/azaz a zóna tetején/ csak egy sebesség, a hangsebességet tar­
talmazó pár egyike irányulhat vissza az értelmezési tartomány 
belsejébe. Ez azt mutatja, hogy kétfázisú kiáramlás esetén a ha­
táron csak egy értéket kell megadni. Mivel a befelé irányuló ka­
rakterisztika a hangsebességet foglalja magába, ezért a nyomás 
megadása látszik alkalmasnak.

A zónában lejátszódó legtöbb tranziens egyfázisú áramlásként lép 
be a zónába, erre pedig ismertek a korrekt peremfeltételek. Két­
fázisú áramlás általában csak kifelé történik. Egy általános mo­
dellben azonban lehetővé kell tenni a kétfázisú beáramlás számí­
tását is. Tovább bonyolítja a kérdést, hogy a numerikus megoldá­
si módszerhez még további információkra is szükség lehet a pere­
men. /Ez független attól, hogy a feladat korrekt kitüzésü-e vagy 
sem./ Ebből a szempontból meg lehet különböztetni a lényeges /a 
karakterisztikák vizsgálatából adódó/ és a nem lényeges /a nume­
rikus sémához szükséges/ peremfeltételeket.

Kétfázisú beáramlás esetén öt karakterisztika valós része mutat 
az értelmezési tartomány belseje felé. Ez azt jelzi, hogy öt vál­
tozó értékét kell megadni a megfelelő peremen.

A gyakorlatban kétféle peremfeltételt szokás megadni.
Az egyikben a két fázis sebessége rögzitett /sebesség-feltétel/. 
Ekkor még további 3 lényeges peremfeltételt kell megadni, pl. a 
térfogattörtet és a fázisok hőmérsékletét.
A másikban a bemeneti nyomás a rögzitett /nyomás-feltétel/, ekkor 
további 4 feltétel megadására van szükség. Ebből 3 az előzőhöz 
hasonlóan lehet a térfogattört és a fázisok hőmérséklete, a 4. 
pedig a két fázis sebessége közti összefüggés a bemenetnél, ami 
abból adódik, hogy az impulzus egyenleteket a perem körül diffe­
renciáljuk és az impulzusátadás meghatároz egy ilyen összefüg­
gést .
A numerikus módszer még két másik feltételt is felhasznál /a pe­
remen kivüli sebességeket/, de ezek nem lényeges peremfeltételek.

A differenciaegyenletek felírásához térbeli és időbeli diszkre- 
tizációra van szükség. Meg kell adni egy térbeli rácsot, melyen 
a változókat és a differenciákat értelmezni kell. Az időbeli 
diszkretizációnál azt kell eldönteni, hogy az egyes változók ér­
tékeit a régi, vagy az uj időpontban vesszük-e, azaz implicit 
vagy explicit kifejezéssel számolunk.
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11. ábra

*>(<rs)rí

* az (i,j,k) elemi térfogat középpontja
itt vannak értelmezve az c<,P,fv , ,е^,ел ,ТИ ,T^, változók

A Vy és v£ x-irányu sebesség komponensek az elemi térfogatok­
nak azon a lapjain vannak értelmezve, melyek merőlegesek az x 
tengelyre. Hasonló az у és z-irányú komponensek értelmezése.

12. ábra
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A térbeli diszkretizáció elvileg sokféle lehet. A választást 
általában az dönti el, hogy a tapasztalat szerint melyik bi­
zonyult kényelmesnek, könnyen kezelhetőnek. Arra kell vigyáz­
ni, hogy az explicit kifejezésekben szereplő térbeli differen­
ciák felírásakor biztosítsuk a numerikus stabilitást /ezt a 
célt szolgálja a donor összefüggések használata/.

A térbeli diszkretizációhoz a 3 dimenziós értelmezési tarto­
mányt /a reaktor zónát/ derékszögű rács segítségével bontjuk 
fel. /A z tengely párhuzamos a zóna hossztengelyével./ Sza­
bálytalan határokat csak az x-y síkban engedünk meg. Egy ilyen 
rács látható a 11. ábrán.
A változók értelmezése a 2.3. pontban leírtakhoz hasonlóan tör­
ténik. A sebességek komponenseit a határoló lapokon értelmez­
zük, a többi változót pedig a kapott elemi térfogatok közép­
pontjában. A változók értelmezését a 12. ábra szemlélteti.

A továbbiakban az egyszerűség kedvéért az indexek közül a kö­
zéppontra utalókat elhagyjuk, igy pl. fogja jelenteni <x
értékét az (i+^-,j,k) pontban. Az i,j,k indexek sorrendben az 
x,y és z tengelyek menti elhelyezkedést jelentik.

Először a tömeg és energia egyenletek véges differencia alakját 
Írjuk fel. Ezekben a differenciákat az elemi térfogatok közép­
pontja körül vesszük. Az n és n+1 indexek az egymást követő 
időpontokat jelölik. Az átadási tagokban szereplő n+y index 
arra utal, hogy ezekkel az értékekkel történik a megoldás szá­
mítása az n-edik időlépésről az n+l-edikre. Ezek a tagok álta­
lában az alapváltozók régi és uj időpontbeli értékeinek bonyo­
lult függvényei.
Az egyenletekben A jelöli az áramlási keresztmetszetet az adott 
elemi térfogat megfelelő falán, V pedig benne a folyadék áram­
lására rendelkezésre álló térfogatot. /А és V általában kisebb, 
mint az adott térfogat egy lapjának területe, illetve a térfoga­
ta, mivel a rendelkezésre álló tér egy részét szerkezeti anya­
gok töltik ki./

Az /5.1/-nek megfelelő differenciaegyenlet:

И,Г n+4 ■ X 1

U 2.

+ Uy)At •4

[At^vfí^n

[AC«*)Vf4. ,
J JL

+ A +

- Г л4Гu+i /5.13/

/5.2/-nek ugyanilyen egyenlet felel meg, csak helyett 1-c* ,
Г helyett ~P és a v index helyett 1 szerepel.
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Ezt az egyenletet az fi+£ , j,k) pont körül differenciáljuk 

puy\+l - (<)>.!

:

X v nn
:+ ~ *4 t
í AxAt

X i n n
Ait (лг* )i,+ iV t

AzAy c-Ai*í

- (o::jht 1 /5.16/n-M
t>, - Ti = - (A)+ <x í+z Axí+í

Ax ^ .+ < alakú kifejezéseket még de-Az egyenletben szereplő 
finiálni kell.
Itt is szerepelnek olyan helyen vett változók, ahol még nincs 
definiálva az értékük. Az ex és <^y változók definíciója a kö­
vetkező:

Ax

C<L+/t Ax,;r^ + 0Í í A X i.
/5.17/= A*üh +AX:

^v) L-v/i Ax c-m + [ §v) j AX;V

/5.18/ЛХсла + AXi
Ezek felhasználásával

L*$v)l+í e /5.19/

A sebességkomponensek közül az (i+£ , j,k) pontban csak 
értéke ismert. A másik két komponenst átlagképzéssel nyerjük:

№)c4ÍaJi i^h-z +W)i>i '►(xA%»,AÍ

(^v )i>i = I/ К )KA +1^v)'k*-L + ^v)l+i, k+1 + ^ l-h, k-£ J

/5.20/

/5.21/

Végül a differencia közelítések definíciója:

+ ! " (iTy ) L + ^
W)£.i ^ оha)Ax í

cA ) №)í+j - U-yh-jAx /5.22/
Ka (v*)- + i>0í

A*í
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f к ).>£, j-m - Wi+i
k)i>£ <0ha

Aa^i 
] k*);« - W)i

451 
Ay /lA

=. /5.23/
[OjA^OL+I I 1-1

)Л!*Н
(У)МЛи - (kkl ha Ct>v)i*í < О 

Ьл кк+£ ^0
Aa «у

/5.24/=:
A2 I^y)í*Í - (0>Ч)й1»к-'*Ai

A 2-k_i 
*■ 2-

í rácstávolságok értelmezése a következő:А Ayi+i_ és Azk

АЦ; h- Дц ^
+ t

Агк * Дзьи /5.25/A*k.i =Д3>*3. ) АА

Az egyenletek jobboldalain a különböző átadási tagok szerepel­
nek. Ezek közül legfontosabb a fal által a fázisoknak átadott 
hő, valamint a fázisátalakulást kifejező f1 . Ez határozza meg 
döntően, hogy a folyadéknak hányad része alakul gőzzé, s ezzel 
a nyomás és az összes többi változó értékét jelentősen befolyá­
solja .
Mivel a fázisok átalakulása gyorsan játszódik le, ezért ezt a 
tagot amennyire csak lehet implicit módon kell kezelni. Külön­
ben nagyon rövid időlépéseket kellene venni.
Г általános alakja a következő : p'1+í_ П|^'тИ'рм1 Г

Г-nak az első 4 változójában folytonos és differenciálható
függvénynek kell lennie. A deriváltakra a Newton iterációban 
van szükség. Ha nincs rájuk zárt formula, akkor numerikusán 
kell differenciálni. A többi változójában nem kell folytonos­
nak lennie, csak lassan változónak.

1 и и M
л I / It / ! v I I /

h+4 _ h-И
V II

A fázisok közti impulzusátadás határozza meg döntően a relativ 
sebességeket. Ha nagy az értéke, akkor közel azonos sebességeket 
kapunk. Több dimenzióban még nem sikerült megállapítani rá meg­
felelő összefüggést. Az egydimenziós két-közeg modellek többsé­
gében arányos a lvv-v^l'(vy~vl) mennyiséggel.
Fi általános alakja:

(Ad - * 'p’1 тл ги ) I t , 1 у 1 I/ Jh

Ennek is folytonosnak kell lennie az uj időpontban vett változó­
iban és meg kell tudni határozni a deriváltjait. Az egydimenziós 
modell alapján felirható egy kevésbé általános alakja:

- к )a£ -kbij'»4к v I к I I v I 11 j(A);



fizikai perem

13. ábra

\
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Ha a fizikai határon levő ténylegesen létező elemi térfogatot 
2-vel jelöljük, akkor a fizikai perem indexe lVz. , a fiktiv tér­
fogat külső lapjáé pedig Vz.
Ha a (vv^Vi sebesség befelé mutat, akkor a 2 pont körül diffe­
renciált tömeg és energia egyenletekhez ismerni kell (/*sv) -t és 
(c^SvevO ~t 1-ben. Ezek értékét a fiktiv térfogatokra meg kell 
adni.
Nyomás-feltétel esetén is szükség van további információra attól 
függően, hogy az áramlás befelé vagy kifelé történik a határon. 
Kiáramlás esetén az a legegyszerűbb, ha a nyomást a fizikai pe­
remen fél lépéssel kivül elhelyezkedő fiktiv elemi tértfogatok 
középpontjában, azaz a 13. ábra szerinti 1 pontban adjuk meg. 
Ekkor ugyanis a fázisok impulzus egyenleteit a peremen levő tér­
fogatok külső lapja /ly index/ körül úgy tudjuk differenciálni, 
hogy közben csak az értelmezési tartomány belsejéből vesszük az 
értékeket. /Kivételt csak az /5.20/ és /5.21/ átlagsebességek 
jelentenek, melyeket a donor differenciáláshoz használunk. Az 
átlagképzésből viszont kihagyhatok a fiktiv x és y-irányú se­
bességek. / Ilyen nyomás-feltétellel tehát kiáramlás esetén 
nincs szükség további információra.

Ha azt akarjuk, hogy a rendszer az áramlás megfordulását is ke­
zelni tudja, akkor befelé történő áramlás esetén is ugyanazon a 
helyen /az 1 pontban/ kell megadni a nyomást. Ellenkező esetben 
a peremfeltétel helyét minden esetben meg kellene változtatni, 
valahányszor megfordul az áramlás iránya. Az impulzus egyenle­
teket most is a peremen levő elemi térfogatok külső fala körül 
differenciáljuk /l£ index/. Ekkor 3 dologra kell vigyázni:

1. A tömeg, az energia és az impulzus egyenletek a peremen levő 
térfogatokra megkívánják a beáramló folyadék jellemzőinek 
leirását. Ehhez ос, P, Tv és értékét ismerni kell az 1 
pontban ugyanúgy, mint a sebesség-feltétel esetén.

2. A peremre felirt impulzus egyenletek z irányú komponenseihez 
szükség van a fizikai határtól egy teljes lépésre kivül /az 
£ indexnél/ definiált z irányú sebességekre a donor diffe­
renciálás miatt. /А zónában történő áramlás számításakor a 
zónán kivüli nyomás-feltétel megadása a gyakorlatban azt je­
lenti, hogy ott a z tengely irányú sebesség deriváltak ki­
csik, ezért feltehetjük, hogy az jr pontban a z irányú se­
bességek megegyeznek az l| pontbeli értékekkel./

3. A 2 indexű térfogatokra felirt keresztirányú impulzus egyen­
letekhez szükség van az 1 indexű térfogatokon definiált ke­
resztirányú sebességekre, /ezekről feltehetjük, hogy nullák/

A gyakorlatban ritkán fordul elő, hogy tisztán nyomás-feltételt 
adnának meg a zóna alján és tetején egyaránt.
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A differenciaegyenletek és a peremfeltételek felirása után 
vizsgáljuk meg a megoldás menetét. A differencia séma részben 
explicit, részben implicit. Egy adott időlépés számítására egy 
teljesen explicit módszer lenne a leggyorsabb, de a stabilitás 
követelményéből eredő korlátok miatt csak nagyon kis időlépé­
seket lehetne venni. Ezzel szemben a teljesen implicit módsze­
rek nagyobb időlépéseket tesznek lehetővé, viszont jelentősen 
megnő a lépésenkénti számitásigény a szükséges iteráció miatt, 
s a program is bonyolultabbá válik.
A felirt egyenletrendszer átmenet e két szélsőséges eset között. 
A stabilitás feltétele elfogadható korlátot jelent, s a lépésen­
kénti számitásigény sem túl nagy. A modell által leirt jelensé­
gek 3 fő csoportra oszthatók.
Az elsőbe a lokális jelenségek tartoznak. Ilyenek az átadási 
folyamatok, melyeket nem-differenciális összefüggések Írnak le.
A második a nyomás által okozott zavarok terjedése a folyadék­
ban. Ez már magába foglal 
A harmadik pedig a tömeg, energia és impulzus konvekciója a fo­
lyadék mozgása során.
Adott rácsméret esetén ezek minegyikének van egy jellemző vá­
laszideje. Ez a lokális jelenségeknél a legrövidebb, valamivel 
hosszabb a hangsebességgel kapcsolatos jelenségeknél, s a leg­
hosszabb a folyadék áramlásánál /ez a folyadéknak az egyik tér­
fogatból a következőbe jutásához szükséges idő/.

bizonyos differenciális tagokat is.

A felirt differnecia séma az első két csoportba tartozó folya­
matokra implicit, a harmadikra explicit. Ez a módszer akkor jó, 
ha a folyadék sebességek lényegesen alatta maradnak az egy-egy 
fázisban terjedő hang sebességének. Az explicit tagokból eredő 
stabilitási feltétel:

^ )

A séma felírásával minden elemi térfogatra kapunk egy bonyolult 
nemlineáris algebrai egyenletrendszert. A feladat az, hogy az n 
időpontbeli változóértékek ismeretében határozzuk meg őket az 
n+l-edik időpontban.

Az /5.13/ és /5.14/ tömeg és energia egyenletekből az derül ki, 
hogy a bennük szereplő n-H M+

íA f X:

uj időpontbeli változókkal vannak kapcsolatban. Az impulzus e- 
gyenletekben, melyekre példa az /5.16/ egyenlet, ezek a sebessé­
gek ugyanezen és a szomszédos hat térfogaton vett nyomásokkal 
függnek össze. Az n+l-edik időpontban tehát az egyes elemi tér­
fogatokon definiált változók közti kapcsolatot a nyomás jelenti. 
Ha minden térfogatban ismernénk a nyomást, akkor az összes többi 
változó meghatározható lenne egyszerűen egy néhány egyenletből 
álló rendszer megoldásával térfogatonként.

Az egyenletrendszernek ez a tulajdonsága teszi lehetővé, hogy a 
2.3. pontban leírtakhoz hasonlóan egyszerűsítsük a megoldást.

At( c Amax AX

rt-M hrMváltozók csak a vés e
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A nemlineáris egyenletrendszer bonyolultsága és nagy mérete 
miatt csak iterativ megoldás jöhet szóba.
Az /5.9/-/5.12/ állapotegyenletek felhasználásával először eli-

vi-Hт-Л п+И n+'l változókat, majd az igy ka-mináljuk a , e *
pott egyenletrendszeren Newton-iterációt hajtunk végre. 
Jelölje az eliminációval kapott egyenletrendszert

, e jl

Fix) = О,
ahol x a 10 alapváltozóból álló vektor a különböző rácspontok­
ban. Az egyenletrendszert linearizáljuk az uj időpontban az m- 
edik iterációban kapott xm értékek körül:

F(x) = F(xm+1J= F(xm) + J(xm)(x - xm) = 0,

ahol JÍxm) a Jacobi mátrix /vagyis

Ezután a következő lineáris rendszert megöljük x

= j(xm)xm - F(xm)

Az uj időpontbeli első iteráció kezdőértékét az előző időpont­
ban kapott változóértékek adják. Röviden ez az eljárás a vál­
tozók n+l-edik időpontbeli értékének meghatározására.
A hatékonyság növelésére a linearizált egyenletrendszer tovább 
redukálható olyan rendszerré, melyben már csak a nyomások sze­
repelnek ismeretlenként.

Az impulzus egyenletek segítségével az /5.13/-/5.14/ egyenle­
tekből ki tudjuk küszöbölni a sebességeket. Mivel a fázisok 
közti impulzusátadást implicit kifejezésként adtuk meg, ezért 
a két fázis sebessége egymástól is függ. Az elemi térfogatok 
egyes falain az impulzus egyenletek az alábbi formában irhatok 
fel:

m+1-re:

m+1J (xm) x

rrt-M
- IoAVX X

rr\+4ьд?X X 4 ♦ 9

ahol а ДР nyomáskülönbséget az adott falon keresztül vesszük. 
/Ha Fiv , Fwv és Fwt kifejezésében a Vy4/1 és vAm4 változók line­
áris összefüggése szerepel, akkor a fenti alak előállításához 
nincs szükség linearizációra./
Ezt a 2x2-es egyenletrendszert megoldva a sebességeket fel tud­
juk Írni a nyomáskülönbségekkel:

у*\ 4-Л + f*

+ g’

= CáP 

vt = d ДР
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Itt az együtthatók csak az n időpontbeli változóértékektől 
függnek. Az impulzus egyenleteknek ezzel az alakjával kikü­
szöbölhetők a sebességek az /5.13 /, / 5.14/ egyenletekből. Vé­
gül a megmaradt 4 egyenletben szereplő átadási tagokat line- 
arizáljuk a megmaradt P, <* ^ ,TV változókban. Ezzel egy 4 e-
gyenletből álló 4 ismeretlenes egyenletrendszert kapunk min­
den elemi térfogatra, melyekben az adott térfogat középpont­
jában definiált P, <x,T£,TV, valamint a szomszédos 6 térfogat 
középpontjéban definiált nyomások szerepelnek. Egy térfogat­
ra az egyenletrendszer alakja a következő:

V <к x к к x x
XXX X X X

x x x x x x
X X X X X X

X X X x
X<xX X X x

■ + X?r3TVX Xx x
XLrdX xX x

ahol az 1-6 indexek a szomszédos térfogatokra utalnak. A fenti 
4X4-es mátrix invedálásával kapjuk a következő alakot:

0 0 

о 0
4 0

4 0 X x X X x TVX X
X0 X X x X X XtXA

+tv00 X < X < X xк
Xч x ч x X0 0 4 x0 x

Vг
Ъ

Ebben a rendszerben az első egyenlet már csak az adott térfo­
gathoz és a szomszédaihoz tartozó nyomásokat tartalmazza. A 
másik 3 egyenlet a térfogattörtet és a hőmérsékleteket adja 
meg a nyomások segítségével. A nyomásokra kapott egyenleteket 
felirva minden térfogatra olyan lineáris algebrai egyenlet­
rendszert kapunk az összes térfogatban definiált nyomásra, 
melynek együtthatói egy szalagmátrixot alkotnak. Ennek a főát­
ló mellett még 6 átlója van.
Ezzel a feladatot egy N egyenletből álló rendszer megoldására 
vezettük vissza /N az elemi térfogatok száma/ úgy, hogy közben 
egy 2*2-es és egy 4x4-es mátrixot invertáltunk N-szer.
Az N elemi térfogat közti kapcsolatot a nyomásokra felirt e- 
gyenletrendszer fejezi ki. Ez általában túl nagy ahhoz, hogy 
direkt eljárással oldjuk meg, ezért iterativ módszerre van szük­
ség. Ilyen lehet pl. egy előre haladó elimináció és visszahe- 
lyettesités egymás utáni alkalmazása. Ez a nyomás-iteráció ál­
talában gyors, nem sok a számitás igénye.
A nyomások meghatározása után a többi változó értékét behelyet­
tesítéssel nyerjük.
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2.4.5. Egy egydimenziós, 5 egyenletes két-közeg modell nume­
rikus megoldása

Ebben a fejezetben egy valamivel egyszerűbb két-közeg mo­
dellt ismertetek. A modell egydimenziós és 5 alapegyenletet 
tartalmaz. Vízhűtéses reaktorok tranziens analízisére készült 
a [3 2J progremrendszer részeként.

A RELAP program család fontos szerepet tölt be a reaktor biz­
tonsági számításokban. A korábbi RELAP4 rendszerkódok {33,34jmég a 
homogén egyensúlyi modellt alkalmazták a hidrodinamikai szá­
mításokra, az utóbbi néhány évben kifejlesztett RELAP5 válto­
zatok azonban már a fejlettebb két-közeg modelleket tartal­
mazzák.
A RELAP5 programok célja gazdaságos és könnyen kezelhető kód 
létrehozása a vízhűtéses reaktorok hütéskiesésből eredő felté­
telezett balesetének /LOCA - Loss Of Coolant Accident/ és a 
nem LOCA tranzienseknek a lehető legpontosabb számítása.

A [^32l-beli RELAP5 egy fejlett, egydimenziós, gyorsan futó 
rendszerkód. Alapja egy nem-homogén, nem-egyensulyi hidrodi­
namikai modell. Kifejlesztésében az uj elméleti eredmények 
mellett nagy szerepet játszottak a RELAP4 programcsalád fej­
lesztése és felhasználása során szerzett tapasztalatok.

A Three Mile Island-en történt baleset óta /1979/ a vízhűtéses 
reaktorok biztonsági számításában a hangsúly a nagy töréses 
LOCA balesetekről a kicsire helyeződött át. Az ilyen kísérle­
tek tranziens számítása több ezer másodperces időtartamra is 
kiterjedhet, ezért különösen megnőtt a számítási sebesség je­
lentősége. Ez a program a sebesség és a modellezés pontossága 
tekintetében lényeges előrelépést jelent elődeihez képest.

A hidrodinamikai modell egy ötegyenletes két-közeg modell. Tar­
talmazza a két tömeg- és két impulzus-megmaradási egyenletet 
külön-külön a fázisokra és egy energia egyenletet a keverékre. 
Két cseretag megadására van szükség: a fázisok közti tömeg- és 
az impulzusátadásra. Egy további feltétel /nevezetesen az, hogy 
az egyik fázis lokális telitési állapotban van/ szükségtelenné 
teszi az energiaátadást. Sem a fázisok közti, sem a fázisok és 
a fal közti energiaátadásra nincs szükség. Elég azt megadni, 
hogy a kisebb tömegben jelen levő fázis telitési állapotban van, 
azaz éppen keletkezik, vagy eltűnik. így csak egy fázishőmér­
sékletet kell definiálni, 5 ez lényegesen csökkenti a pótlóla­
gosan szükséges információk számát. Minden energiaátadási me­
chanizmust implicit módon a gőzgenerálás modellje foglal magá­
ba. így egy korreláció helyettesíti az összes energiaátadással 
kapcsolatos jelenségeket leiró összefüggéseket.
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A numerikus megoldás egy szemi-implicit véges differencia 
módszerrel történik. Az implicit kifejezéseket úgy adjuk meg, 
hogy biztosítjuk a stabilitást aránylag nem túl kicsi időlépé­
sekre is, és az uj időpontbeli alapváltozókra lineáris össze­
függést kapunk, ami lehetővé teszi a direkt megoldást időben. 
Ez a két tényező eredményezi a gyors számítási sebességet.
A módszer stabilitását numerikusán tesztelték úgy, hogy a kó­
dot olyan feladatokra alkalmazták, melyeknek ismert az anali­
tikus stacioner megoldásuk, s bebizonyították, hogy a tranzi­
ens számitás ehhez a stacioner eredményhez konvergál.
A stabilitást úgy is tesztelték számos esetben, hogy a pere­
men hirtelen változásokat adtak meg. Ekkor sem jelentkezett 
numerikus instabilitás a tranziens számítások eredményében.

A megmaradási egyenletek felírásakor feltételezzük, hogy az 
áramlás szimmetrikus az x tengelyre merőleges sikokon. Az is­
meretlen változók értékei elemi térfogatokon és időben vett át­
lagértékek.

Az 5 alapegyenlet a következő:

-i & = Г
A oX

Jy К + д ^ = " Г1

/6.1/-6

/6.2/

3 Ч- iЛ V \ V A ' AFV /6.3/öl

A ír + Ir s'^At? ■ - А
^ (*VSv«■v + <XX$г ег) 4- i- A (oívey irv A -+ <x, ^ ^ A) -

1 A(^vv?/\ +^9e?A) + a

/6.4/

/6.5/:= —

A numerikus séma felirása előtt átalakítjuk az egyenleteket. 
/6.1/ és /6.2/ összeadásával a keverékre kapunk tömegmegmara­
dást:

It* + - 0,
£ = «4 + «í §г

/6.6/

ahol
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& V Jv -val és kivonjukEzután /6.6/-ot végigszorozzuk X = 
/6.1/-bol: 5>

sf + ^ A) . Г /6.7/

/6.3/ és /6.4/ összeadásával az A-val való osztás után kapjuk, 
hogy:

í *'' Ir ■* r** * Ы* - £ -F -r ^ ^ ><xvov + (X/ 0. +э-t л T at /6.8/

Itt felhasználtuk, hogy <XV + <a^ = 1. Ezután /6.3/-at osztjuk 
ocv(^V A-val, /6.4/-et A-val és kivonjuk okét egymásból:

'd'tfr _ ^ i d.try2 _ Эл£_ _ Ц__
bt dt 2- Эх 2. Эх l$v ?t/"dx

/6.9/

A teljes energiára felirt /6.5/ egyenletet termikus energia 
egyenletté alakitjuk. Ehhez az impulzus egyenletek felhaszná­
lásával mechanikai egyenleteket Írunk fel, melyet kivonunk 
/6.5/-bői. Az igy kapott egyenlet:

A A) =

■7- (<* у \ v A ■+- <xz Pt A ) »■ Q + DI SS
A

£(sü> +- -Г-

— —
/6.10/

ahol DISS az energia disszipációs tagok összegét jelenti.

A termikus energia egyenlet használata azért előnyösebb a tel­
jes energia egyenletnél, mert nem tartalmazza a kinetikus ener­
gia idő szerinti deriváltjait, ezért a numerikus közelítésben 
kevesebb változó értékét kell megadni az uj időpontban.

A modell alapegyenletei tehát /6.6/-/6.10/, az alapváltozók 
pedig ^ , X,

Ahhoz, hogy az egyenletrendszer zárt legyen meg kell adni az 
állapotfüggvényeket, melyek a fázisok jellemzőit fejezik ki P, 
X és U segítségével. A rendszer állapota azonban nem irható le 
csupán ezzel a 3 változóval, mivel a fázisok hőmérséklete álta­
lában különböző. A határozatlanság oka, hogy csak egy enegia 
egyenletet irtunk fel, de megszüntethető, ha feltételezzük, 
hogy az egyik fázis telítési állapotban van. A gyakorlatban 
ezt mindig a kisebb tömegben jelen levő fázisról tesszük fel.

vt és U.vy ,

Ezek miatt viszont kevesebb segédegyenletre van szükség. A 4 
segédegyenlet a gőzgenerálást, a fázisok közti impulzusátadást, 
a falsurlódást és a fal hőátadását Írja le. Ezek az összefüg-
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«1Ц Ux/p.u

(Ъ)" 

9(sU)J?ix l3U/?;x

«3h= 5 /6.24/эхгр,$и
nr\

• Ъп /6.25/

Ezek felhasználásával /6.22/ segítségével az n+1 időpontban 
vett ^ sűrűség eliminálható a /6.16/-/6.20/ egyenletekből. így 
egy 5 egyenletből álló rendszert kapunk minden térfogatra a kö­
vetkező 5 változóra: P, X, (gU), vv és V/ . Ez az 5NX5N-es line­
áris algebrai egyenletrendszer az implicit kifejezések speciális 
megválasztása miatt redukálható egy olyan NxN-es rendszerré, a- 
mely már csak a különböző térfogatokon vett nyomásokat tartal­
mazza .

Az impulzus egyenletek csak a sebességeket és a nyomásokat tar­
talmazzák. Ezekből kifejezzük a sebességeket az egymás melletti 
térfogatokhoz tartozó nyomásokkal, majd ezzel az összefüggéssel 
elimináljuk a sebességeket a tömeg és energia egyenletekből. 
Ezzel térfogatonként 3 egyenletet kapunk, melyek a nyomásokon 
kivül csak az adott térfogathoz tartozó U-t és X-et tartalmaz­
zák. Ezért ezek egyetlen lineáris egyenletre redukálhatok, amely 
már csak a nyomásokra vonatkozik.
Ezt az eljárást minden elemi térfogatra megismételve egy NxN-es 
egyenletrendszerhez jutunk. Ennek megoldása után a többi változó 
értékét visszahelyettesitéssel kapjuk.

Az alapegyenletekben csak a jU szorzat szerepel, viszont az ál­
lapotegyenletekhez szükség van külön a $ és külön az U ismereté­
re. A nyomások ismeretében a sűrűség meghatározható a tömeg­
megmaradási egyenletből, /6.16/, s az (su)'"1un+1= összefüggés­
ből kapjuk U uj értékét. Ezután az állapotegyenletből határoz­
zuk meg a keverék § sűrűségét a már ismert P, X és U változók 
segítségével.

Az igy kétféle módon számitott sűrűség értéke általában nem e- 
gyezik meg. A kettő különbsége a /6.21/ Taylor-sorfejtés képlet­
hibájának mértéke. Ez a hibci érzékeny a /6.22/-/6.24 / sűrűség 
deriváltak változására. Kétfázisú rendszerben a sűrűség deri­
váltak nagymértékben szakadásosak lehetnek az egy- és kétfázisú 
tartományok találkozásánál. Emiatt az ilyen pontokban nagy lesz 
a numerikus séma képlethibája hacsak nincsenek alkalmas ugrás­
feltételek megadva, vagy az időlépés nem elég kicsi ott, ahol az 
átmenet történik.
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A kétféleképpen számolt sűrűség közti különbség felhasználható 
automatikus lépés ellenőrzés bevezetésére. A hiba mértékét az 
alábbi összefüggés adja meg:

5c - 9L
£ = i=l,2,3,...,N

max
Az időlépést úgy választjuk meg, hogy ez a hiba előre megadott 
korlátok közé essék. Ha egy At időlépéssel előre haladva a ka­
pott hiba átlépi ezt a korlátot, akkor kisebb időlépéssel megis­
mételjük a számítást. Ha ez kisebb, mint az alsó korlát, akkor a 
következő lépésben növeljük At-t.
Emellett még az alábbi korlátok befolyásolják az időlépés nagy­
ságát :
1. At-nek ki kell elégítenie a Courant-féle feltételt, azaz

ÁXi

_ fi^Ví l,Kc|)maX_ mLn
2. Ha gyors fázisátalakuláskor a folyadék jellemzőinek extrapo­

lálása negativ vagy nulla sűrűséghez vezet, akkor csökkenteni 
kell az időlépést.

3. Ha P, X vagy U értéke olyan termodinamikai állapotnak felel 
meg, amely a folyadék jellemzőit számitó szubrutinok értelme­
zési tartományán kivül esik, akkor is meg kell ismételni az 
utolsó lépést csökkentett At-vel.

ЛЬ < i=l,2,3,...,N

A peremfeltételek megadása van még hátra. A szükséges peremfel­
tételek száma és megengedhető kombinációja általában fizikai 
megfontolásokból és a karakterisztikák vizsgálatából állapítható 
meg. Mivel ez a differenciálegyenlet-rendszer nem teljesen hi­
perbolikus, a karakterisztikák nem alkalmazhatók közvetlenül. 
Szükség van az egyfázisú modellel végzett tapasztalatokra. A le­
hetséges peremfeltétel-kombinációk meghatározása a 2.4.4. pont­
ban ismertetett modellhez hasonlóan történik.

Zárt végen itt is az a feltétel, hogy mindkét fázis sebessége 
nulla. Ilyen peremen nincs szükség az impulzus egyenletekre.

Ha nyomás-feltétel adott, akkor beáramlás esetén meg kell adni 
a térfogathoz tartozó változókat, hogy X és U értéke ismert le­
gyen a belépésnél. Kiáramlás esetén elég csak a nyomást megadni. 
Az impulzus egyenletekben szükség van az adott térfogat mindkét 
szomszédján definiált sebességekre a /6.21/ összefüggésekhez. 
Ezért ki- és beáramlás esetén egyaránt szükség van a peremen kí­
vüli információkra is. Ez a numerikus feltétel lehet az, hogy a 
sebességek deriváltja a peremen kivül nulla /azaz konstansok a 
sebességek/.

Sebesség-feltétel esetén ha a sebességek nem nullák, akkor beá­
ramlásra definiálni kell a folyadék jellemzőit. Ha P, X és U



85

mellett mindkét sebesség adott, akkor a feladat tuldefiniáit, 
mivel csak 5 egyenlet van. Öt feltételt csak szuperszonikus 
áramlás esetén lehet magadni. Általában azonban az áramlás se­
bessége ennél kisebb. Egy sebességet elég megadni, a másik az 
impulzus összefüggésekből számítható.
A numerikus sémához azonban további peremfeltételek is szüksé­
gesek a /6.21/ összefüggés kiszámításához. Ezért lehetséges 
mindkét sebességet megadni az állapotjelzők mellett, s igy is 
elfogadható eredményeket számolni.

2.5. A kétfázisú áramlás számításának alkalmazási köre

Az atomerőmüvek növekvő száma miatt egyre több ember él működő 
erőmüvek közelében, s ez a tendencia fokozódni fog.

Az erőmű működtetésének legfőbb kritériuma a biztonságos üzeme­
lés, azaz akármilyen baleset, vagy üzemzavar történik, az a la­
kosságot ne érintse. A lakosságot csak akkor éri rádioaktiv su­
gárzás, ha az erőmű rádioaktiv fűtőanyagot tartalmazó zónája 
megolvad, s ezt a sérülésen, törésen át távozó, forrásban levő 
hűtőközeg magával viszi.

A reaktorbiztonsági kérdéseknek ezen túlmenően gazdasági hatása 
is van: baleset esetén a reaktor évekre, vagy örökre leáll, ami 
gazdaságilag hatalmas veszteség.

Mindezek miatt a reaktor üzemelésével és feltételezett meghibá­
sodásával kapcsolatos jelenségeket, folyamatokat ismerni kell.
A baleset alatt és után lejátszódó folyamatokat a költség és 
biztonsági kihatások miatt nem lehet kísérlettel szimulálni, 
csak számításokat lehet végezni. Laboratóriumi méréseket csak 
egy-egy jelenség megismerésére lehet végezni. A gyakorlatban e- 
lőforduló baleseti állapotban sok jelenség és folyamat egyidejű 
kölcsönhatását kell vizsgálni, s ezt csak számítással lehet el­
végezni .

A reaktorbaleseteket leiró korszerű számítógépi programrendszer 
ma a technikában használt egyik legbonyolultabb program, mert 
rengeteg hatást kell egyidejűleg követni számításokkal.

Csőtöréses baleset esetén pl. a hűtőközeg forrásba jön, s egy­
szerre kell a folyadék és a gőz áramlását számítani, miközben 
hőátadási és hidrodinamikai hatások sokaságát kell szimulálni.



86

Nemcsak baleseteknél, hanem a tervezésnél és a működési enge­
dély megadásához is el kell végezni az ilyen számításokat, meg­
vizsgálva feltételezett üzemzavari állapotok következményeit.
A tervezésnél azért fontos a baleseti folyamatok ismerete, mert 
ma már a szigorú biztonsági követelmények miatt az erőmű beru­
házási költségének kb. 30%-át fordítják biztonsági berendezé­
sekre. A folyamatok pontos ismerete lehetővé teszi a tulbizto- 
sitás elkerülését.

Magyarországon az üzemzavari szimulációs számításokat a KFKI 
Termohidraulikai Osztályán végzik, ahol ez a dolgozat készült.
A számítások céljára felhasznált programok elsősorban az ameri­
kai eredetű RELAP kódcsalád tagjai. Az Idaho National Laboratory- 
ban sok kutató évtizedes munkájával kifejlesztett programcsalád 
első publikált tagja [33]. Ezt több javitott változat követte. A 
ma nemzetközileg legelterjedtebben alkalmazott változat a RELAP4/ 
MOD6 [34] 1978 óta áll rendelkezésre. A RELAP4 kódok áramlási mo­
dellje egydimenziós, homogén és egyensúlyt feltételez. Az ezekkel 
folytatott hazai számitások áttekintése [35]-ben található.

A nem-egyensulyi hatások figyelembe vételének igénye inditotta el 
a RELAP 5 programcsalád fej lesz tését._ Ennek 1981 óta már két vál­
tozata is ismert /a MOD0 és a MODI [32]/, de a fejlesztése és 
tesztelése még nem fejeződött be. Hazai számításokat ezekkel még 
nem végeztek, egyelőre csak az Egyesült Államokban és Ny-Európá- 
ban állnak rendelkezésre.

A programokban felhasznált fizikai összefüggések és matematikai 
módszerek ismerete nélkül az eredmények megbizhatóságát nem lehet 
értékelni. Hibás vagy gyanús, fizikailag nem magyarázható ered­
mények esetén a matematikus feladata, hogy a hibát megkeresse.

A megoldás pontossága függ a reaktort modellező séma finomságá­
tól, a rácsosztás nagyságától, az alkalmazott időlépéstől, a 
programban felhasznált fizikai modelltől. A megfelelő input ada­
tok kiválasztása nem egyszerű feladat.

Mivel a programok leírásában az input adatok viszonylag tág hatá­
rok közt mozognak, ezért szükség van egy olyan optimális bemenő 
adatrendszer megválasztására, melyre az eredmény konvergens és 
stabil, de a futási idő nem túl nagy és a memória igény sem túl 
sok. Ezeknek az ellentmondó követelményeknek a kielégítéséhez is­
merni kell a programba foglalt matematikai modell viselkedését.

A műszaki haladás mind nagyobb követelményeit újabb és újabb biz­
tonsági kódok hivatottak kielégíteni. Ezekben újra és újra meg 
kell vizsgálni a különböző fizikai jelenségek szimulálására fel­
használt egyenletrendszert, annak matematikai sajátságaiból adódó 
problémákat, mint ez pl. a régebbi programváltozatokban használt
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homogén modellről a két-közeg modell használatára való áttérés­
kor történik.

Ma az intézetünk birtokában levő programokban különféle matema­
tikai megoldási módszerek vannak beépitve. A megoldást, az input 
adathalmaz összeállitását, a futás közbeni módositást ezek fi­
gyelembe vételével kell elvégezni.
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Jelölések

független változók /hely/ 
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tömegfluxus
fajtérfogat
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belső energia
gravitációs erő a megfelelő irányban
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hőforrás
tömegátadás /fázisátalakulásnál/ 
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А/ függelék

A lokális képlethibák főtagjainak meghatározásához először 
Taylor sorba fejtjük az u függvényt a közelítések közép­
pontjai körül, s ennek segítségével Írjuk fel a felhasznált 
rácspontokban felvett függvényértékeket.
Az pont körüli sorfejtésből az

n+i . . ЭйВ u(xá',t„+4t) - uíx^tJ +

u? = ufx^ ,tn) jelöléssel:

— + ...-■Лг dt3

* зЭЧ ,

±.Л^Í+--
Эх*

-А А±Х~и
и> 2! St2- 3'

UH U^XJ ^К^ь) uCx^ty,) ЛхЭх +JiAX ЭД J,

tXjV/i =iAÍy^Axt О - uíx,\ tj -t Дх|^ + JT Axz

= !л( X j (t и -At) •- u 0^-, tv,) ~~ At ^ + Jj ^ ~ Jl ^ <3^ 4 " '
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