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Bevezetés

Az utodobbi évtizedben széleskOri kutatas foglalkozik a tranziens
/iddben valtozdé/ egy- és kétfazisu aramlas leirasaval. Ezek is-
merete nagyon sok ipari, miiszaki probléma vizsgalatahoz elenged-
hetetlen. Kutatasuk része az atomreaktorok biztonsagi analizisé-
nek. Ahhoz, hogy a reaktorokat biztons&gosan lehessen lizemeltet-
ni, szlikség van a benniik lejatsz6ddé folyamatok és az elképzel-
hetd balesetek modellezésére. Erre a célra tObb nagy szamitdgé-
pes programrendszert hoztak létre kiilonb6zd kutatd intézetekben

s fejlesztésiik folyamatosan torténik ujabb, pontosabb modellek
beépitésével, hatékonyabb numerikus megoldasi mdédszerek kidolgo-
zasaval. Ezeknek a programrendszereknek fontos része az egy- és
kétfazisu aramlas modellezése. Tranziens egyfazisu aramlasi prob-
lémak a reaktorok inditéasakor, leallitasakor, egy-egy hiitokdér le-
zarasakor lépnek fel. Tranziens kétfazisu aramléas jon létre kii-
16nb6z86 lizemzavari jelenségek esetén. Pl. a nyomastartd rendszer
meghibasodasa esetén /primerkdri csdtdrés vagy valamilyen szelep
nyitva maradasa/ a nyomas leesik, emiatt a hiitéfolyadék elkezd
forrni. Ezt az aramlast le kell tudni irni az idd fliggvényében
ahhoz, hogy a feltételezett baleset esetén megfeleld vészhiitést
lehessen biztositani.

Ezeket a tranziens jelenségeket parcidlis differencidlegyenletek
irjadk le; a tOmeg, az impulzus és az energia megmaradasanak e-
gyenletei. Egy fazis és egy térdimenzid esetén 3 parcidlis dif-
ferenciadlegyenletre van sziikség, két fazis esetén egy dimenzi-
O0ban az alkalmazott fizikai modelltdl fiiggben 6-ra is ndhet a
felhasznalt megmaradasi egyenletek szama.

A modellek és a megoldasukra hasznalhatdé numerikus mddszerek Osz-
szefoglalasa eddig még nem tOrtént meg az irodalomban. A kildn-
b6z modellek mas és mas korlilmények koz6tt adnak a gyakorlat
szamara elfogadhatdé eredményt. A dolgozattal segitséget proba-
lok nyujtani a hazai felhasznaldknak, hogy mikor melyik modellel
érdemes szamolni. Bizonyos esetekben elegendd egy durvabb, vi-
szont kevesebb szamitasigényl modell alkalmazéasa, maskor viszont
sziikség lehet pontosabb, részletesebb modell kidolgozasara.

A fizikai modelleknek megfeleld matematikai modellek numerikus
megoldasa is sok problémat vet fel. Nem lehet altalanosan hasz-
nalhatdé mdédszert megadni, mindig a konkrét feladathoz kell iga-
zodni. Vannak viszont altalanos iranyelvek a médszerek felira-
sara, melyeknek egyrészt elméleti alapja van, masrészt gyakor-
lati tapasztalatok bizonyitjdk hasznossagukat. Ezeket is Ossze-
foglalom a dolgozatban.

A fizikai jelenségek, folyamatok nagy része parcialis differen-
ciadlegyenletekkel irhatd le. Ezek altalanos megoldasa még keve-
gebb esetben irhatdé fel, mint a kdzOnséges differencialegyenle-
tek esetében. Ha felirhatdé, akkor is ritkén segit a konkrétan

felmeriild fizikai kérdés megvalaszolédsaban. Az alkalmazasok te-



riletén altalaban olyan megoldasokat keresiink, melyek bizonyos
tovabbi feltételeknek is eleget tesznek. Ilyenek a kezdeti és
a peremfeltételek. Kbzonséges differencidlegyenletek esetében
a kivant megoldas gyakran eldallithatdé az altalanos megoldas-
ban szerepld tetszdleges konstans alkalmas megvalasztasaval.
Parcialis differencidlegyenletek esetében ez csak kivételes
esetekben lehetséges. Ennek oka, hogy az altalanos megoldéas
tetszdleges konstans helyett tetszdleges fliggvényt tartalmaz

/ha egyaltalan felirhatd/.

Kb6zbnséges differencidlegyenletek esetén a sziikséges feltételek
sokféleképpen megadhatdék. A feladatnak adltaldban lesz egyértel-
mi megoldéasa, ha szamuk megfelel az egyenlet rendjének. Ez azon-
ban parcialis differencialegyenletekre nem igaz, a feltételek
nem irhatdk fel tetszdleges mddon.

Mivel a matematikai fizika feladatai realis fizikai folyamatokat
irnak le, ezért ezeket a feladatokat ugy kell megfogalmaznunk,
hogy eleget tegyenek az alabbi természetes kdvetelményeknek:

Valamely M fliggvényosztalyban létezzék megoldas.

a./ 1

b./ Valamely M2 fiiggvényosztalyban a megoldas egyértelmi
i=2gyen.

c./ A megoldas folytonosan fiiggjdén a feladat adataitdl
/a kezdeti és peremfeltétel adataitdl, a differencial-
egyenlet jobb oldalatdl, az egyenlet egylitthatditél,
stbhl. {

Definicid:

Az olyan feladatot, amely eleget tesz az a./ - c./ kOvetelmé-
nyeknek, korrekt kitiizésli feladatnak nevezziik, a megfeleld Mln
M, fliggvényosztalyt pedig a korrekt kitlizés osztdlyanak. [4]

A megoldas folytonos fliggését az adatoktdl azért kell megkdve-
telnlink, mert a fizikai probléma adatai altalaban csak kisérleti
uton, kOzelitdleg hatarozhatdk meg; ezért nem engedhetd meg, hogy
a feladat megoldasa lényegesen fliggjon a mérési hibatédl.

A kiilonbdz0 tipusu parcialis differencidlegyenletek esetén ki-

16nb6z6 kezdeti és peremfeltételekre van szilikség ahhoz, hogy a

feladat korrekt kitlizésli legyen. Hiperbolikus egyenletek esetén
a karakterisztikdk elmélete nyujt segitséget az alkalmas felté-
telek megvalasztasaban.

A parcialis differencidlegyenleteknek csak kis része oldhatd meg
egzakt médon. A feladat bonyolultsaga miatt sziikség van olyan
numerikus megoldasi mdédszerek kidolgozéasara, melyek lehetdvé
teszik a szamitdégépes megoldést. Mivel az adatok altaldban méré-
sek eredményei és a szamabrazolds pontossaga is korlatozott a
szamitdgépen, az analitikus megoldasok is csak k&zelitd nume-
rikus eredményt adnak. Emellett sokszor bonyolultabb lenne az
analitikus megoldas numerikus kiértékelése, mint a numerikus moéd-
szer végigszamolasa. Altalaban a numerikus k&zelitd® mddszerek



adnak egyszeriibben és hatékonyabban megfeleld pontossidgu meg-
oldast. Emellett az integralds tartomdnyanak vagy a kezdeti és
peremfeltételeknek a megvaltoztatasa gyakran lehetetlenné teszi
az analitikus megoldast, wugyanakkor a numerikus mdodszereket nem
befolyasolja déntden.

A kétfazisu aramlas matematikai modelljei hiperbolikus ill. hi-
perbolikus jellegii parcidlis differencidlegyenletrendszer alkot-
nak. Hiperbolikus egyenletek esetén a karakterisztika&k modszere
gyorsan és aranylag egyszeriien ad viszonylag pontos kdzelitést.

Ennek a mddszernek az alkalmazhatdsadgi kdre azonban eléggé kor-
latozott, kiterjesztése kettdnél tdbb fliggetlen valtozdra bonyo-
lult. A szamitds nehézkessé valik, ezért nemigen hasznélatos.

A legaltalanosabban hasznédlhatdé és leginkabb elterjedt numerikus
moédszer a véges differenciak modszere, melyben a derivaltakat vé-
ges differencidkkal helyettesitjliik egy, az értelmezési tartomany-
ra helyezett racs segitségével. Az a mdédszer linedris és nemline-
aris egyenletekre egyarant haszndlhatd, s egyszeriien kifejezhetd
tObb dimenzidra is.

A dolgozat elsd részében roviden &sszefoglalom a karakterisztikak
modszerét hiperbolikus egyenletekre. Itt vizsgadlom, hogy a karak-
terisztikak segitségével hogyan lehet meghatarozni a szlikséges
peremfeltételeket ahhoz, hogy a hiper bolikus feladat korrekt ki-
tiizésli legyen.

Ezutan vizsgalom a véges differencidk mddszerét. Ennek alkalmaza-
sakor fellépd legfontosabb kérdések a pontossidg, a stabilitas és
a konvergencia. A Lax-féle ekvivalencia tétel szerint bizonyos
feltételek mellett a konvergencia és stabilitds ekvivalens fo-
galmak [2 ], ezért kiilénbsen fontos a stabilitds vizsgalata. Az
erre a célra legelterjedtebben hasznalt médszert Neumann dolgoz-
td ki f3d .

A folyadékaramlasi modellek egy része nem teljesen hiperbolikus.
Ezzel kapcsolatban ujabb problémé&k meriilnek fel, hogy mikor lesz
a feladat korrekt kitiizésii és hogyan lehet stabil megoldasi mdéd-
szereket megadni. Eddig még nem sikeriilt olyan altaldnos elméle-
tet kidolgozni, amely minden esetet magadba foglal. Ezzel a kér-
déssel kapcsolatban vizsgalom az elsd rész utolsd fejezetében,
hogy mi az Osszefliggés a karakterisztikak és a differencialegyen-
let-rendszer stabilitasa kozott.

A dolgozat masodik részében foglalom Ossze az egy- és kétfazisu
aramlasra kidolgozott legfontosabb modelleket és ezek numerikus
megoldasat a véges differencidk médszerével. Mivel a modellek egy
része nem teljesen hiperbolikus egyenletrendszert alkot, a hozza-
juk tartozd kezdeti érték feladat nem korrekt kitiizésii. Ezzel
kapcsolatban a kutatdk véleménye megoszlik. Egy résziik azt allit-
ja, hogy a feladat atalakithatd korrekt kitiizésiivé, ha figyelembe
veszilink bizonyos jelenségeket, melyeket eddig elhanyagoltunk. Te-
hat szerintiikk a modell eredetileg helytelen vagy hidnyos volt.
E csoport szerint minden fizikai jelenséget le kell tudni irpi—




korrekt kitilizésii feladat form&jaban. Az utdbbi iddben azonban
egyre tObb kutatas iradnyul olyan numerikus sémak meghataroza-
sara, melyek segitségével a nem korrekt kitlizési feladat megol-
dasa is k&zelithetd megfeleld pontossaggal annak ellenére,hogy
ez nem fligg folytonosan a kezdeti értékektdl. Erre példa a dol-
gozat masodik részének végén szerepld két modell numerikus sza-
mitasa.

I. Rész

1.1 A karakterisztikak médszere hiperbolikus

egyenletekre

A hiperbolikus parcidlis differencidlegyenletek megoldaséara
hasznalhaté numerikus médszer a karakterisztikak mddszere.
Lényege, hogy az egyenletet vagy egyenletrendszert a karakte-
risztika@k segitségével kozdnséges differencialegyenlet-rend-
szerre vezetjik vissza. Két fO lépésre bonthatd: az elsBben
meghatarozzuk a karakterisztikakat, a masodikban az igy ka-
pott k&zbnséges differencidlegyenleteket integraljuk a ka-
rakterisztikak mentén.

Ez a mbédszer szinte kizardlag csak két fliggetlen valtozd ese-
tén hasznalatos. Ilyenkor ez a legpontosabb és legkényelmesebb
eljaras. T6bb fliggetlen valtozd esetén azonban lényegesen bo-
nyolultabba valik, ezért nem szokas alkalmazni.

A karakterisztikadk vizsgalata segitséget nyujt annak elddnté-
sében, hogy milyen kezdeti és peremfeltételekre van sziikség
ahhoz, hogy a megoldas egyértelmi legyen.

Minden parcialis differencidlegyenlet atalakithatd egy elso-
rendli parcidlis differencidlegyenlet-rendszerré. A kdvetke-

zOkben csak elsOrendi rendszereket vizsgalunk. Ezek koziil is
azokat, melyek az aladabbi matrix alakban irhatd fel.

dur D
A’c)x+B§t—:—=C—" I Td

ahol R = [—C!,;,a']. 3’[[34;3]“,(“ az egylitthaté matrixok,

nxXmn )
Q::(C“C;,“~,CM)T a jobboldal vektora és 45:(”2\01,\.\,U}JT

a fliggd valtozodok vektora.

Definicid: Az /1l.1/ egyenletrendszer linedris, ha az Qu; és b@é
egylitthatdk csak az x,t fliggetlen valtozdék fiiggvényei,
s nem fliggnek a A fliggd valtozoktol.
Ha az egylitthatodk A -t0l is fliggnek, akkor az
egyenletrendszer kvazi-linearis.




Definicid: Az /1.1/ egyenletrendszer hiperbolikus, ha létezik
olyan nem-elfajuld lineédris transzformacid, mely-
nek M matrixaval /1.1/ baloldala az alabbi for-
mara hozhatéd:

/ DA ,, I : A R

M A ;%? + B = ) = jgé__+ :523
Ol ot el

oX ot

ahol D = diag(A;) / A; valds és kiilénbszd/, és w=M3B &

A fenti definicid jelentése, hogy ha az /1.1l/ egyenletrendszer
hiperbolikus,akkor linearis transzformacidéval olyan n differen-
cidlegyenletté valaszthatd szét, melyben az i-edik egyenlet
csak a #; valtozd Ay iradny szerinti derivaltjat tartalmazza.
Ha ugyanis A, adja meg az i-edik iranyt, azaz dx—_A;dt =-00
akkor egy tetszOleges u fliggd valtozd A& iradny szerinti deri-
valtja 5. 9u , oM

Adx | Dt
ez pedig megfelel /1.2/ jobboldalanak.

= , i ATy ¥ > : i o
Ha létezik ilyen transzformacid, akkor az M matrix /M,y sora-
nak ki kell elégitenie az T 7
9 M B :)\,\‘/W\il' B

egyenletet, ami azt jelenti, hogy a A; valds és kiilénbdzd ira-
nyok a

it (R-AB)Y=0 7139

dltalanositott sajatérték feladat sajatértékei. Ha tehat /1.1/
hiperbolikus, akkor az /1.3/ sajatérték feladatnak van n db
valds és kiilonbbzd sajatértéke, amely az /x,t/ sikon n valds
iranynak felel meg.

Megforditva, ha /1.3/-nak van n db valds és kiilonbdzd A{ gyoke,
kk T \ )
akkor az w; (R = Ay :B) =0

n db homogén linearis egyenletrendszernek van n db nem-trivialis

megoldéasa, melyek egymastdl linearisan filiggetlenek. Ezeket
egy matrix sorainak tekintve kapjuk az /1.2/ definicidban szerep-
16 transzformacids matrixot. Ezzel beldttuk az alabbi tételt:

Tétel: Az /1.1/ egyenletrendszer akkor és csak akkor hiperbolikus,
ha az /1.3/ altalanositott sajatérték feladat gytkei valo-
sak és kiilonbozoek.

Definicid: Azokat a gdrbéket, melyek érintdi minden pontban a Ay
irdnyok, az /l1.1/ egyenletrendszer karakterisztikai-

nak nevezzik.

Példaként vizsgdljuk meg, hogy mi a feltétele annak, hogy egy
masodrendl parcialis differencialegyenlet karakterisztikai valo-



sak legyenek.
Az altalanos kvazi-linearis egyenlet alakja a kovetkezd:

a‘c\.qu:b U et g pokt ity s =d
0 x? oxot gl sano .

Bevezetve a 4y = AL, =2% €5 US:EE— valtozodokat, a kovet-

kezd elsbOrendi rendszeré‘kapjuk:
SERS - %
A b
v A {
oAy G r
9t OX |

o, Y OV o Tl e 5 5 5 :
a & }"«-b(fr—v—i«— L})«»Qa__% i p.b2_+q'&»5 R !r ,r
o X ot X 9t

Ebben a rendszerben az A és B egylitthaté-matrixok a ko-
vetkezok :

)/l e 1)
= 0090 R

L B0 Ho

l
|
’ |
Proa =b Lo el -
Az [/1.3/ egyenlet alakja ebben az esetben:

.
2
'S c
p IRmE IR

a—-2Ab+ Ac=0

Ennek gydkei akkor valdsak és kiildnbdzdk, ha bi=ac > U, ae
tehat a rendszer hiperbolicitaséanak feltétele.

Ha A és B konstans, akkor a A;-k is rdgzitettek, a feladat
egyszerli. Altadban azonban /1l.1l/-ben az egyilitthatdék és a jobb-
oldal x-t81, t-tdl és a4~ -td1 is fiigg. Emiatt a A: irdnyok nem
konstansok az integralas tartomdnyan, pontrdél pontra valtozik
az értékik. Feltéve, hogy /1.3/ gydkei valésak és kiilonbdzok
az értelmezési tartomany minden pontjéaban, definidlni tudunk
egy un. karakterisztikus gbrbe haldézatot, amely mentén az /1l.1/
egyenlet alakja /1.2/ jobboldalanak megfeleld lesz, s ezt fel
tudjuk hasznélni k&zelitd megoldas meghatarozasara.

A valds karakterisztikdk létezését a fenti tétel szerint vehet-
jik a hiperbolikus rendszer definicidéjaként. Ezek elméleti és
gyakorlati szamitasi szempontbdl egyarant fontosak. A karakte-
risztikak mutatjak meg, hogy milyen peremfeltételekre van sziik-
ség ahhoz, hogy egy adott tartomdnyon egyértelmiien meg tudjuk
hatarozni a megoldast. Pl. n=2 esetén a sik minden pontjan két
karakterisztika halad at, melyet a A, és A, irany hatdroz meg.
Ezek &altalaban nem egyenesek, de a kiilénbbz& pontokon atmend,
azonos A -hoz tartozdé karakterisztikak nem metszik egymast
/mert akkor a metszéspontban egy A -hoz két kiildnbdzd karak-



terisztika tartozna/, ezért felhasznalhatdk koordindta-rend-
szerként. Az 1. abran feltessziik, hogy #; és 4;j ismert a Q,0Q,
szakaszon, amely nem karakterisztika. Ekkor a karakterisztikak
mentén integralva meg tudjuk hatarozni 43 és ¢; értékét a
PQ,Q, tartomany minden pontjaban. A P pontbeli megoldas csak a
0.0, szakaszon megadott feltételektdl fiigg, az ezen kiviili ada-
tok nem befolyasoljéak.

A\
P Lo - P
\ \ :\ ; : g ’_;*__,v_ e \\
A«’/'\ X, Qg\\( T ‘ 1
7 / \ - \

// / \ ‘\ T L
il = A o
Q /‘ o ’Q' : & L QL

1 1. abra z 2 - abra

A 2. abran feltessziik, hogy a Q,0, és Q,0, karakterisztikakon
adottak a peremfeltételek. Ha QfQL és 0,0, mindegyikén az egyik
valtoz6 értéke ismert és Q,-ben mindkettd, akkor a karakterisz-
tikadk mentén érvényes differencialegyenletek segitségével a ma-
sik valtozd értékét is meg tudjuk hatédrozni ezen gdrbék mentén.
Ezutan a teljes Q,Q, PO, tartomanyban meg tudjuk hatarozni a me-
goldast.

Egy n egynletbdl &l116 rendszer esetén az /x,t/ sik minden P
pontjan n karakterisztika halad at és a P-beli megoldast a fel-
tételt tartalmazd6 gdrbe azon szakaszan felvett értékek hataroz-
zak meg, melyet a P-n atmend legszélsd karakterisztikak metsze-
nek ki.

A karakterisztikdk és a peremfeltételek k&zti Osszefliggés fon-
tos kovetkezménye, hogy a tartomany hataran fellépd diszkonti-
nuitédsok a karakterisztikdk mentén terjednek a tartomany belse-
jében. Ilyenkor kiildn&sen eldnyds a karakterisztikus racson va-
16 szamitas. Nem—-linedris esetben azonban ez nem feltétleniil
igaz. Diszkontinuitédsok a tartomany belsejében is keletkezhet-
nek, s nem sziikségképpen terjednek a karakterisztikak mentén.
Az ilyen nem-linearis diszkontinuitéasok /lodkéshullamok/ kezelé-
se nagyban filigg az egyenletek konkrét alakjatdél. Altalaban o-
lyan fizikai jelenségnek felelnek meg, melyekrdl tovabbi in-
formacidink is vannak /pl. megmaradasi torvények/. Ezek segit-
ségével mar integralhatdk az egyenletek.

Ilyen nem-linedris rendszerre példa a kompre5521bllls adramlast
leirdé egyenletrendszer:



Az i-edik karakterisztika mentén a V. valtozdok a kovetkezd
egyenleteket elégitik ki:

N s i o~ v s
_3_" 3"5 db"';' = T, Jt 4,:'1,2\ =y N B
J oA
M ’ M
ahol §. = N, m_, b, . PP
d k=4 b e i

Az egylitthatdék &ltaldban x, t és y fliggvényei, ezért [/1.4/ és
/1.5/ megoldasakor iteradcidra van sziikség. A kbzelitést a
trapéz-szabaly segitségével szokads felirni. Ez [/1.4/ esetén a
kovetkezso:

\1

J ; I : [~ i1 fo) Ay
xu)\/ & '((QA‘) = —j- LA"(D\) * /\,\' (oL, /"-k LtU’)} =i U‘(«‘)J

Hasonld &sszefliggés irhatd fel /1.5/-re is.

QArQyreeerQn meghatdrozdsdhoz n ismeretlen mennyiséget kell ki-
szamitani, mivel ezek egy rdgzitett egyenes pontjai. Tovabbi n
ismeretlen a v, ,v3,...,Vs fliggvények P-beli értékei.

/1.4/ és [/1.5/ adja a sziikséges 2n egyenletet, s elég kis 1lé-
péshossz esetén ez az iteracidé konvergens.

A karakterisztikus hald nyomonkdvetése nagyon bonyolult lehet.
Még n=2 esetén is az integréaléas eldre haladasaval annyira el-
torzulhat a hald, hogy sziikség lehet egyes pontok tdrlésére,
vagy ujabbak beiktatdsédra azért, hogy a karakterisztikak e-
loszlasa a haldéban aranylag egyenletes legyen. Egyszerisithe-
t5 a szamitads, ha a karakterisztikus &sszefliggéseket derék-

szO6gli racson hasznaljuk fel /1lsd. 4. abra/.
P

i

4, abra

Tegyiik fel, hogy a megoldast ismerjik egy derékszdgl racson az
R,R, szakaszt tartalmazd egyenesig. A racs kodvetkezd, P pontja-
ban ugy kapjuk meg a fliggvényértékeket, hogy megkeressiik a P-n
atmend karakterisztikdk és az el6z06 racsvonal Q4,02,...,0m
metszéspontjait. Ezekben a pontokban a fliggvényértékeket inter-
polacidval nyerjik az R4 racspontokban kapott értékekbdl. Az
integralast ezutdn az eldzdekhez hasonldan végezziik az [/1.4/ és
/1.5/ egyenletek k&zelitett alakjaval.

Ennek a mdédszernek az az el6n§e, hogy kdnnyebben programozhatd,
mintha tisztan karakterisztika halét alkalmaznénk, s a 3 térdi-
menzids feladatokra is egyszeriibben kiterjeszthetd. :
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A karakterisztikak segitségével meg tudjuk vizsgadlni, hogy mi-
lyen peremfeltételeket kell megadni ahhoz, hogy a kezdeti érték
feladat korrekt kitilizésii legyen.

Az [/1.1/ rendszer értelmezési tartomanya altaldban legaldbb két
oldalr6l zart. Legyen ez a két perem az x=0 és a t=0 egyenes,
és telintsiik az I. siknegyedet. Gyakran adott még egy perem az

X iranyban, legyen ez x=1 és a tartomany nyitott a pozitiv t i-
ranyban. /5. &abra/
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(0,0) 5. abra (1,0)

Tegylik fel, hogy v értéke adott a t=0-n /kezdeti feltétel/, és a
masik két egyenesen adott peremfeltétel a kdvetkezd alaku:

Sa=qg x=0-n
T.a=h x=1-en

Ha ez az informadcid elég ahhoz, hogy mindenilitt egyértelmiien meg-
hatarozzuk a megoldast, akkor meg kell tudnunk hatérozni wv=t
Xx=0-n és x=l-en is.

Tegylik fel, hogy a karakterisztikus egyenletnek, /1.3/-nak, k
pozitiv és /n-k/ negativ gytke van. Ekkor az x=0-n k, az x=l-en
pedig /n-k/ feltételt kell megadni. Ezeknek a feltételeknek és

a karakterisztikakon érvényes differencialegyenleteknek egylitte-
sen meg kell hatarozniuk a v, értékeket a peremeken.

Az [/1.1/ egyenletrendszer karakterisztikus alakja /1.2/ alapjéan
a kovetkezo: i

Py
‘1)53; +

f=
g
il

ot

ahol D=diag/A;/ és w=MBv. Feltéve,hogy D elsd k eleme pozitiv
w elsd k komponensének a Tvy=h feltétellel egylitt minden v érté-
ket meg kell hataroznia x=1l-en. Legyen az M matrix elsd k sora-
b6l képzett matrix M,, akkor ha T egy /n-k/xn-es matrix, a sziik-
séges feltétel az, hogy x=l-re az {ﬂ;?]métrix ne legyen szingu-
laris. Hasonld feltétel nyerhetd x=O-ra. /Az M matrix sorai az
/1.3/ altalanositott sajatérték feladat baloldali sajatvektorai./

A vizsgéalatban feltettiik, hogy az /1l.1l/ rendszer linearis. Ha
nem az, akkor fel kell tenni, hogy a A;-k /melyek v-t8l is flig-
genek/ eldjele nem valtozik.

A karakterisztikdk elmélete kiterjeszthetd 3 térdimenzidra is,
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de ekkor a numerikus mddszer olyan bonyolultta valik, hogy el-
veszti eldnyét mas mbédszerekkel szemben.

A gyakorlatban sokszor eldfordul, hogy a rendszer nem teljesen
hiperbolikus. Ilyenkor kiilén megfontolast igényel, hogy mikor
lesz a feladat korrekt kitiizésli és a megoldasi médszer stabil.
Nincs olyan altalanos elmélet, amely minden esetben alkalmaz-
hatdé lenne. A szlikséges peremfeltételek meghatdrozasa altala-
ban a fenti mdédszer segitségével tOrténik azokra a karakterisz-
tikakra, melyek valdésak. A hidnyzd feltételek megadasaban az
eddigi szamitasi tapasztalatok adnak segitséget.

1.2. Véges differencia mdédszerek hiperbolikus egyenletekre

A hiperbolikus egyenletek megoldasardl nehéz altalanosan beszél-
ni, mivel nagyon sokféle fizikai jelenség huzddik mdgdttiik. Pl.
a meteoroldgidban kis sebességl kompresszibilis aramlassal fog-
lalkoznak és hosszu iddn at lezajldé nem-linedris hatasokat
vizsgalnak. Ugyanakkor a repiiléssel kapcsolataos problémakban a
stacionarius aramlas all az érdeklddés kdzéppontjadban, a sebes-
ség nagy, az aramlas turbulens és 1l8késhullamok terjednek benne,
tovabba nagyon fontos a peremek szerepe, a repilildgépszarnyak
vagy a turbinalapatok alakja. Ez a nagyfoku valtozatossag azt
jelenti, hogy altaldban az adott probléma megoldasara alkalmas,
apecialis mdédszert kell kidolgozni.

A masik nehézséget az jelenti, hogy a hiperbolikus egyenletek
analitikus elmélete sem teljes, nem beszélve az olyan rendsze-
rekrdl, melyek nem is teljesen hiperbolikusak. Nem mindig lehet
egzakt médon meghatarozni, hogy milyen feltételek sziikségesek
ahhoz, hogy a feladat korrekt kitiizésl legyen.

A gyakorlati szamitasokban legelterjedtebb és legaltaléanosabban
hasznalhaté numerikus megoldasi mdédszer a véges differencidk
moédszere. Ennek alkalmazasakor a feladat értelmezési tartoma-
nyat derékszogii raccsal fedjik le. A megoldast a racspontokban
keresslik ugy, hogy a derivaltakat a racson vett véges differen-
ciadkkal kozelitjiik. Ezzel a feladatot algebrai egyenletrendszer
megoldasara vezetjik vissza.

Hiperbolikus egyenletek esetén az értelmezési tartomany legaldbb
egy oldalrdl nyitott /altalaban ha az egyik filiggetlen valtozdé az
idd, akkor t =20/, s a kezdeti és peremfeltételek egyarant fel-
lépnek.

A véges differenciak alkalmazdsaval kiildnbdzd® hibakat k&vetiink el.
Kérdés, hogy milyen feltételek mellett tudjuk megfeleld pontos-
sdggal kozeliteni a differencidlegyenlet megoldasat a véges diffe-
renciaegyenlet megoldasaval. Ezzel kapcsolatban meriil fel a kon-



vergencia és stabilitas kérdése. A kOvetkezOkben ezeket tekintem
at,ismertetem a differencia sémak stabilitdsanak vizsgalatara ki-
dolgozott f&bb médszereket.Bemutatok néhany alapvetd véges diffe-
rencia sémat, megadom stabilitasuk feltételét és pontossagukat.

1.2.1. Pontossag, stabilitds, konvergencia

Legyen a vizsgalt parcialis differencialegyenlet
: Lu=£f,

ahol L a differencialoperéator, f pedig ismert figgvény.

A véges differencia mbédszer alkalmazasakor a feladat L értelme-

zési tartomanyat lefedjik egy réaccsal. A differencialegyenletet a

racspontokra felirt differenciaegyenlettel helyettesitjiik. Jeldl-

je ezt a véges differencia operatort Lp , amely olyan racson van
értelmezve, melynek lépéshosszai a h paraméterrel aranyosak. Le-
gyen U a parcialis differencialegyenlet, u a véges differencia-
egyenlet egzakt megoldasa, N pedig a véges differenciaegyenlet
numerikus megoldéasa.

Definicidé: Az Lg véges differencia operator konzisztens az L
differenciédl operatorral, ha a Tig = LgU-LU lokalis
képlethiba nulldhoz tart, ha h-=0. /A lokéalis képlet-
hiba azon pontokban értelmezett, ahol Lg/

A numerikus szamitasbdél eredd u-N kiildnbséget kerekitési hibéanak

nevezzik.

Definicib6: A véges differenciaegyenlet megoldasa konvergal a diffe-
rencidlegyenlet megoldasahoz, ha u/P/—=>U/P/, Pellés
h-=>0-ra. /Itt () az integrdlas tartomanyat jelenti a ha-
taraval egyitt./

A stabilitas fogalma arra vonatkozik, hogy az u-N kililonbség hogyan

viselkedik az integraléas teljes tartomanyaban.

Tegyiik fel, hogy a P, pontban az u/P,/ érték helyett az u/P,/+ £ /Ps/

értékkel szamolunk. Ez az £ a P, pontbeli hiba. Ha a megoldast ez-

zel az uj értékkel folytatjuk anélkiil, hogy a tovabbiakban ujabb
hibat k&vetnénk el, akkor az u*/P/ megoldashoz jutunk. Az u*/P/-u/P/
eltérés a P, pontbeli hibabdl ered. Ha tobb pontban is k&vetiink el
hibat, akkor az ezek altal egylittesen okozott eltérésrdl beszéliink.

Legyen <f ggxlclP/l a legnagyobb abszolut értékli pontbeli hiba. Az

idealis az lenne, ha d—=0 és h-»0-ra a megoldasban egylittesen oko-

zott eltérés nulladhoz tartana. Ez azonban linedris esetben nem le-
hetséges, mert az elkOvetett hibak hatéasa Osszegzddik a megoldas
soran.

A stabilitds definidladsara egy adott tartomanyon, adott d és h

esetén fellépd legnagyobb abszolut értékii eltérés szolgal.

Definicid: A véges differencia séma stabil, ha
a, rogzitett racs esetén a legnagyobb abszolut értéki

eltérés nulldhoz tart, ha d—0,

b, a racs finomitasakor /h—>0/ ez az eltérés nem nd
gyorsabban a megoldés sordn, mint h™% valamilyen
hatvanya.

Ha ez az eltérés h™! -ben exponencialisan nd, akkor
a séma instabil. [l] 5




Az, hogy egy véges differenciaegyenlet eleget tesz-e a stabilitéas
és konvergencia k&vetelményének az egyenlet alakjatdl, valamint a
kezdeti és peremfeltételektdl is fiigg. A gyakorlati esetek nagy
részében az eltérés nagysagrendje vagy h™* alacson rendii hatvanya,
vagy h™ exponencialis filiggvénye, tehat lényeges kiilénbség van a
stabil és az instabil mbédszerek viselkedésében.

A legtObbb esetben U-t és u-t nem ismerjiik, vagy csak jdval nagyobb
erofeszitéssel tudnank eldallitani, mint N-et. A parciadlis diffe-

rencialegyenletek numerikus megoldasénak f& feladata N meghataro-

zdsa ugy, hogy U-N kisebb legyen egy eldre megadott hibakorlatnal

az egész vizsgalt tartoményon.

Az U-N = /U-u/ + /u-N/ kiil6nbség akkor lesz kicsi, ha a numerikus
szamitast elegendden finom racson végezziik stabil és konvergens
séma segitségével. A képlethiba és a kerekitési hiba azonban a
racs finomitasakor ellentétesen valtozik, ezért a pontossdg nem
ndévelhetd tetszdlegesen.

A konvergenciat altalédban nehéz vizsgalni, mivel a képlethibaban

az ismeretlen fliggvények derivaltjai szerepelnek, melyek korlatait

nem mindig tudjuk megbecsiilni. Linedris egyenletek esetében azon-

ban a konvergenciahoz elég a stabilitast és konzisztenciat vizs-

galni. Erre vonatkozik a k&vetkezd

Lax-féle ekvivalencia tétel: Ha egy korrekt kitiizésli lineéaris kez-
deti érték feladatot egy vele konzisz-
tens véges differencia sémaval kozeli-
tink, akkor a séma konvergenciajanak
szliikséges és elegendd feltétele, hogy
stabil legyen. [2]]

A stabilitas vizsgalatara leginkabb elterjedt mdédszert Neumann dol-
gozta ki, s részletes leirasa [3] -ban talalhatdé. Az gljérés ere-
detilefy linearis, konstans egylitthatds egyenletekre keszglt, 2
gyakorlatban azonban hasznos eredményeket nyernek vele val?ozo
egylitthatés és nemlinearis esetekben is. Ilyenkor a megol@ast’egy
pont koriil linearizaljak, s a vizsgalt tartomanyt olyan kis ré-
szekre bontjak, ahol az egylitthatdk elhanyagolhatd hibaval‘kons—
tansnak tekinhetdk. Ezzel az un. lokalis linearis stabilitast
vizsgaljak, melynek eredményébdl az eredeti rendszerre vonatkozo-
an vonnak le kOvetkeztetéseket.

A Neumann-féle eljaras lényege, hogy a racs egy egyenesén elkdve-
tett hibak terjedését vizsgaljuk. Ezeket a hibakat Vége§ ?ourier
sorba fejtjiik, majd vizsgdljuk egy a&ltaléanos tag terjedését az
idd valtozd novekedésével.

Legyen a kezdeti egyenesen /[t = O/ elkdvetett hiba Bix/ . Bn—
nek komplex Fourier sora ; AP X
Eix) = jn___; N

Ennek az Osszegnek az egyenes racspotjaiban éppen az elkdvetett
hibdkat kell megadnia. Legyen a vizsgdlt intervallum hossza
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x iranyban L, a részintervallumok sz&ma N, hossza Ax, azaz L=N Ax.

Allitas: A fenti Osszeg megadhatdé ugy, hogy abban a tagok szama
N+1 legyen /amennyi pontban hibat kovethettiink el/. A

ﬁn frekvencidk valaszthatok ﬂ%:njr rnek Yn=0ta 0 s S LaIN
NAX
Bizonyitds: A fenti valasztds esetén a /jAXx,0/ pontbeli hiba a
N

kezdeti egyenesen : A
4 e § vb /x .
E/JAX/=%H,‘6 B v 1=05Y ;b BN
n=
Ez N+1 linearisan fliggetlen egyenlet, melyben az A,
Ay,...,Ay egylitthatbék az ismeretlenek. Ez az N+l e-
gyenletbdl 4116 linearis egyenletrendszer meghatéarozza az Aoy,A4,
.,A, egylitthatdkat, tehadt a kezdeti hibak tetszOleges eloszlasa
kifejezhetd ilyen komplex exponencialis alakban.

A tovabbiakban egy altalanos hibatag, az el/bX terjadését vizs-
galjuk, ahol /b a fenti {ﬂ%}—ek barmelyike lehet. [Az A, konstans,
a vizsgalat szempontjabdél elhanyagolhatdé./ A linearitas miatt a
hiba terjedését ugyanaz a véges differenciaegyenlet irja le, mint
ami megadja a kdzelitést. A véges differenciaegyenletnek olyan
megoldasat keressiik, amely t=0-ra ‘X -re redukalddik. Ilyen me-
goldas az Lty
e# 6“7 , ahol X komplex.
{ At ipx) i i . : S
e & o alaku megoldasok megadhatdok minden homogén linea-
ris konstans egylitthatés parcidlis differenciaegyenletre, melynek
fliggetlen valtozdi x és t. Ha az egyenlet t-ben N-edrendi, akkor
minden />-ra N db « taldlhaté.
i eI

Az te e [ filiggvények ilyen egyenlet esetén a megoldasok
egy alaprendszerét képezik abban az értelemben, hogy tetszdleges

v -

megoldas eldallithatd beldlik.

KES A

Az e e alaku megoldis segitségével az [x,t/=/iAx,kAt}
pontbeli hiba: N ! N Tl
KEAL AN e Ly K S AL
E/jz&x,k¢&t/=j§,e, e&'"l N e,/hj ¢-Aahal (=e

n=0 v\:é
A fentiekbdl kOvetkezik az alabbi tétel.

Tétel: /Neumann-féle stabilitas feltétel/

Annak sziikséges és elegendd feltétele, hogy a kezdeti
egyenesen elkOvetett hibak az iddvel ne ndvekedjenek expo-
nencidlisan az, hogy /gl £ [ legyen.

Ez a tétel két iddlépést tartalmazd sémakra igaz. Harom vagy an-
nidl t8bb iddlépéses sémék esetén ez a feltétel nem mindig elegen-
dd, de szikséges.
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Példaként alkalmazzuk a Neumann-féle stabilitds vizsgalatot a

Uip = YUxx parcialis differencidlegyenletre.

Legyen a k&zelitd véges differenciaegyenlet a kdvetkezO:

Ujiked = L Ujk ¥ U4 Ujeak = Lbjk * Ujak
A A
ahol Wk = u(jAx, kAt)
o : %ol AKX AL
Ebben helyettesitsilink ujk helyébe B g -et, és legyen r = A’
X

Ekkor a kovetkezd egyenletet kapjuk:

53 15 o2 (pAX)
g 05 _f Lf! sin \{ Z_/
o it AN
legyen A =2 /1-2v"s \nl(téé) . Ezzel a fenti egyenlet alakja:
§'“-—ZA§+/1=
so s - . FEE
Ennek gyodkei: $1 R—f‘A és §1=LA-\A-—4
Ugyanakkor a f -re kapott elsd egyenletbdl latszik, hogy \£1=i7.
Ha A1, akkor |80 > 1. Ha "A<=l, akkor ¢ | =1, 22
Ha viszont [al €1, akkor | 5;1 =15, ) = 4
A stabilitas feltétele tehat, hogy -14£A £1 legyen, azaz
A ;
& oz (BORY 2

Ennek jobboldala trividlisan teljesiil. A baloldal tetszdleges
/b ~ra akkor és csak akkor all fenn, ha r%1. Tehat a séma sta-
bilitasanak az a feltétele, hogy /At £ Ax legyen.

Ha ezt az eljarast egyenletrendszerre alkalmazzuk, akkor a kilon-
b6z86 egyenletekben elkOvetett hibak iddbeli novekedését az atme-

net matrix irja le. Ennek segitségével a Neumann-féle stabilitas

feltétel azt kOveteli meg, hogy az atmenet matrix sajatértékeinek
abszolut értéke ne legyen nagyobb 1-nél. L2'ﬂ

A stabilitds vizsgadlatédra hasznadlatos masik mdédszer a matrix moéd-
szer. Alkalmazasakor a véges differenciaegyenleteket matrix alak-
ban irjuk fel.

Legyen a véges differenciaegyenlet alakja /két idOlépéses moddszer
esetén/:

/ Uk = A Uk-4 + biy
ahol uy a t=k At iddpontbeli megoldast jeldli a racspontokban.
Tétel: A stabilitas szilikséges és elegendd feltétele, hogy

S(A) £/ ‘T'O'(At) legyen, ahol Q(A) jeldli az A matrix legna-
gyobb abszolut értékii sajatértékét [6].
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Ezekkel a mbédszerekkel elsGsorban a linearis, konstans egylittha-
tos véges differenciaegyenletek stabilitdsa vizsgalhatdé. A fizi-
kai szempontbdl érdekes egyenletek t&bbsége azonban nem linearis,
vagy valtozd egylitthatés, vagy mindkettd. Ezek stabilitasanak
vizsgadlatara javasol [ 8 ] egy heurisztikus médszert.

Az eljaras lényege, hogy a véges differenciaegyenletet differen-
cidlegyenletre vezetjik vissza azaltal, hogy minden tagjat
Taylor-sorba fejtjik. A legalacsonyabb rendi tagoknak a kifej-
tésben magat a kozelitendd differencialegyenletet kell adniuk.
Az Osszes tObbi tagot hibanak tekintjlik. A differenciaegyenlet
stabilitasa gyakran megadllapithatd ezeknek a képlethibdknak a
vizsgadlataval. Ezzel a mbédszerrel olyan instabilitasok is felis-
merhetdk, melyek a Neumann-félével nem.

1.2.2. Explicit és implicit véges differencia sémék

A véges differencia médszerek bevezetéséhez tekintsiik az alabbi
egyszerii elsSrendli konstans egylitthatds egyenletet:

U, + duy = f(xt), a >0 [1.6}

Az 1. tablazat tartalmazza az erre az egyenletre leggyakrabban
hasznalatos differencia sémakat a hozzajuk tartozd Neumann-féle
stabilitas feltétellel és a lokalis képlethiba rendjével. A dia-
gramok a felhasznalt racspontok elhelyezkedését mutatjak, a ko-
zelités kozéppontjat kereszt jeldli. A lokalis képlethibak fo-
tagjainak meghatdrozasa az A fliggelékben talalhatéo.

A k&zelitések alapvetden két csoportra oszthatdok, explicit és
implicit médszerekre. Az explicit mdédszerek alkalmazasakor ido-
lépésenként eldrehaladva kézvetleniil meg tudjuk hatarozni a me-
goldast az adott iddponthoz tartozd racspontokban a mar kiszami-
tott pontok és a perem pontjainak segitségével. Mivel iteracidra
nincs sziikség, ezért ezek a mdédszerek gyorsak, viszont stabilita-
suk biztositasa altaldban erdsen korlatozza a megengedhetd ido-
lépéseket.

Az implicit eljarésok egy-egy id6lépés szamitdsanal a mar ismert
értékeken és a peremeken felvett értékeken kiviil még eddig ki
nem szamitott fliggvényértékeket is felhasznalnak, ezért iteraci-
6ra van szilikség. Ez lassitja a szamitast, ugyanakkor a hozzajuk
tartoz6 séma altaléban feltétel nélkiil stabil. Ez azt jelenti,
hogy a stabilités biztositasahoz nincs szilikség az idd0lépés kor-
latozasara.

A tablazatbol kitiinik, hogy az explicit sémak stabilitédséanak
foltptelr G2iaid vagy |rafl 41, ahol r EZ\TT}— 2
X
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Véges differencia sémak az u +au = f(x,t) egyenletre
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Az ilyen alaku feltételek sziikségességére eldszOr Courant,

Friedrichs és Lewy mutatott ra [9].

A fliggési tartomany fogalmanak bevezetésével vizsgaltak a konver-

gencia feltételét.

Definicid: Az /[x,t/ pont fliggési tartomdnyanak a t=0 egyenes azon
pontjainak halmazat nevezzik /kezdeti értékek/, melyek
befolyasoljadk a megoldas értékét ebben a pontban.

Allitas: /Courant-Friedrichs-Lewy feltétel/
Annak szilikséges feltétele, hogy a véges differenciaegyen-
let megoldéasa a differencidlegyenlet megoldasdhoz konver-
galjon az, hogy a véges differenciaegyenlet megoldasanak
fliggési tartomanya magaba foglalja a differencidlegyenlet
megoldasanak fliggési tartomanyat.
Kiilbnben a kezdeti feltételek egy részének megvaltozasa modositana
ez utobbi megoldast anélkiil, hogy éreztetné hatasat a differencia-
egyenlet megoldasaban.

Az [/1.6/ egyenlet karakterisztikai az x-at=konstans egyenesek, igy
az [xq,to/ pont fliggési tartomanya az /x,—at,,0/ pont. A tablazat
A médszere esetében ennek a pontnak a fliggési tartoménya az
to / j

((o'—F"‘O)’ Sinite '(xo‘/xx‘o)’(xdlo)
pontok halmaza. A Courant-Friedrichs-Lewy feltétel teljesililéséhez
az utdbbi halmaznak tartalmaznia kell az /x,—-at,,0/ pontot. EbbsO1l a-
dédik, hogy ra £1 a konvergencia feltétele az A mdédszerre. Mivel
ez a modszer konzisztens a felirt differencialegyenlettel, a Lax-
féle ekvivalencia tétel miatt ez egyben a stabilitas feltétele is.

A tablazat mddszerei kdnnyen kiterjeszthetdk valtozd egylitthatods
rendszerre is [10].
Legyen az egyenletrendszer alakja a kbvetkezs:

Wt Abctio, = )

ahol u az ismeretlen fliggvényeket tartalmazé6 g komponensi vektor,
A pedig gxg-s matrix.

A D mbédszer kivételével mind trividlis mdédon kiterjeszthetd erre
a rendszerre, ha u helyébe u-t és "a" helyébe A-t irunk. Kicsit
bonyolultabb lesz abD /Lax—Wendroff/ médszer alakija. f£'#0-ra fel-
1rva.r n

ned | A z, 1-
U; LI -r/—\ [A,\ \,(,v—rzf V /~\ VA Ax):{
ahol 1 az egysegmatrlx, Ly (,; "UJM uJ v u - u £ u -

A Neumann-féle stabilités feltetelt ebben az esetben rdgzitett
egylitthatdékra kell vizsgdlni, azaz A/x,t/ helyett egy fix A/X,t/
értékkel szamolva.

A stabilitéas feltétele, hogy /F AS X t)‘ = 1 legyen s=1,2,...,q~
A shads AA, Lo az A/x,t/ matrix sajatértékei. A valtozd
egylitthatds feladatra ezutan azt koveteljiik meg, hogy ez a feltétel
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a vizsgalt tartomény minden /x,t/ pontjara teljesililjdn.

A nem-linedris egyenleteknek egy fontos osztalya megmaradasi tor-
vények alakjadban irhatdé fel. Pl. a folyadékaramlas elméletében a
tOmeg-, impulzus- és energia-megmaradas egyenletei s kdvetkezd a-

lakuak:
u, + [fw)] =0
e & X
iiﬁh ~et fh -nel jeldlve az 1. tablazat A mbédszere erre az
egyenletrendszerre: ntA n i LWy
(_M—J\ 2 .t.’i‘l)'f- r('___J -—}:J.—4/) = _(_-2

Ugyanilyen egyszeriien felirhatdé a tObbi mdédszer is. Valamivel bo-
nyolultabb lesz a Lax-Wendroff médszer, melyben sziikség van az
f-nek az u-ra vonatkozd Jacobi matrixanak bevezetésére. Jeldlje
ezt A/u/, melynek elemeire: A o Dol

e Un

Ennek felhaszndlasaval a séma a kOvetkezd lesz:

nA By g n) A e s e 7 V]
i T (tw Di o r [!_Aﬂ%(tf««_fjj o A\}.("J = )J
Az osztaspontok kozti kiértékelés elkerililésére AT+i—et
P g 2
et 47) n LT A") Sl
2Ty 43 -nel, Ay yq et pedig 3 ( = T 'ty ] -nel szokas klze-
liteni.

Z

A sémakat aszerint is osztalyozhatjuk, hogy disszipativak vagy sem.

Definicid: Egy séma akkor disszipativ, ha a Neumann-féle stabilitéas
feltételben szerepld A -k kielégitik a kdvetkezd egyen-
18tlenséget valamilyen Jd > O-ra és pozitiv egész m-re
/rendszerint m=1/ [10]: 1.7/

/ASJ £ 1-d | pAx Zm, minden |pAX/£T -re és minden s-re
P I

Ha }Asf=l minden s-re és fAAX -re, akkor a séma nem-
disszipativ.

Disszipativ séma esetén a k&zelitd megoldasok normadja fokozatosan
csBkken az iddvel. Ez azt jelenti fizikailag, hogy a nekik megfe-
leld energia az iddvel csdkken, nem marad meg.

Nem-disszipativ séma esetén az energia szigoruan megmarad. Ezeket
olyan problémak megoldasara szokas hasznalni, melyek hosszu iddo-
tartamot foglalnak magukba /pl. a meteoroldgidban/, és a rendszer
kivilrdl nem kap energiat.

Nagy sebességgel lejatsz6ddé jelenségek esetében viszont, ahol a
rendszerbe sok energia jut kiviilrdl, a disszipativ k&zelitések az
alkalmasabbak, mert ezek bizonyos fokig simitjak a megoldast. Kii-
16n6sen eldny6s a hasznalatuk, ha 1dkéshullamokat akarunk egysze-
riien kezelni.
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Az utdobbi két évtizedben széleskOri kutatas folyt és folyik le-
het8leg altalanos és a gyakorlati igényeket kielégitd véges dif-
ﬁerencia sémak kifejlesztésére a folyadékaramlads problémaira.
L;l] -ben szerepel a tranziens és stacioner aramlasra hasznala-
tos alapvetd véges differencia sémak vizsgalata, Osszehasonlita-
sa. A kililénb6zd sémak pontossagat és stabilitasat a numerikus és
az analitikus megoldas Osszehasonlitasaval vizsgalja a megolda-
sok nagysaganak és haladasi sebességének segitségével. A két me-
goldas k&zti kiildnbséget a numerikus sémakban fellépd "fals" ha-
ladasi sebesség és "fals" diffuzids paraméter segitségével jel-
lemzi. A vizsgadlat eredménye az aldbbiakban foglalhatd Ossze:

1. Az explicit kifejezések altaldban negativ "fals" diffuzidt o-
koznak, ami az algoritmus stabilitasanak cs8kkenésével jar.
Ellenkezd és stabilizald hatéasa van az implicit formulaknak.

2. A hely szerinti derivaltakban a centralis differenci&k hasz-
~nalata altalaban negativ "fals" diffuzidt okoz, amig az eldre
haladé differencidké altaldban pozitivat.

3. Ha az eldre haladdé differenciak explicit kifejezésekben for-
dulnak eld, akkor ez ndveli a numerikus megoldas haladasi se-
bességét, ugyanakkor implicit kifejezésekben csdkkenti.

4. A centralis differenciakra épiild formula altalaban pontosabb,
mint az eldre haladdé differencia, ha stabil. Viszont stabili-
tasi tartomanya kisebb, mint az utdbbié.

Kiilon problémat vet fel a peremfeltételek kérdése.

Az egyszeri u; +aux =0, x20, t=20 feladat esetén a karakterisz-
tikak, melyek mentén a megoldas ebben az esetben konstans, az
x—-at=konstans egyenesek. Nyilvanvald, hogy a> 0 esetén ahhoz,
hogy egyértelmii legyen a megoldas ismerni kell a fliggvény értékét
mind a pozitiv x, mind a pozitiv t tengelyen. Ha viszont a< o0,
akkor u értékét csak a pozitiv x tengelyen lehet eldirni.

Tekintsik most az u,-Aux=0, O&£xél, t=0. feladatot, amely g e-
gyenletbdl all. Ha az A matrix diagonalis és els® s fGatlodbeli
eleme pozitiv, a t8bbi /g-s/ negativ, akkor a karakterisztikak el-
méletébdl kévetkezik, hogy u/x,0/ értékét meg kell adni minden a
[0,1] intervallumba esd x-re, valamint u/O,t/ elsd s és u/l,t/
utolsdé /g-s/ komponensét minden t > O-ra.

Ha A nem diagonalis, akkor hasonldé megfontolasok vonatkoznak a po-
zitiv és negativ sajatértékekhez tartozd sajatvektorokra, de ne-
hezebb a helyes feltételeket megallapitani.

x=0-ban s, x=l-ben pedig /g-s/ linearisan fiiggetlen feltételt kell
megadni.

Az eddigiekben a véges differencidkat az értelmezési tartomény
belsd pontjaira irtuk fel. Amikor a peremfeltételeket kdzelitjiik
arra kell vigyazni, hogy ne rontsuk el a rendszer stabilitéasat
és pontossagat.
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A peremfeltételek k&zelitésének elméletét az utdébbi iddben kezd-
ték kidolgozni. Az eddigi eredmények elsGsorban a linearis e-
gyenletekre korlatozoédnak, azon belil is fdleg a konstans egylitt-
hatés esetre.

A vizgydlatok alapja a Neumann-féle Fourier analizis, melyet a pe-
remfeltételekre is kiterjesztenek. A linearis konstans egylittha-
tos kezdeti és peremérték feladat véges differencia kdzelitésére
a stabilitas sziikséges és elegendd feltételét [12] adja meg.
Ennek felhasznalasaval vizsgalja a kiilénbozd kozelitések pontos-
sadgat és stabilitasat [13,14]. [15]-ben olyan stabil kdzelitést
ad meg a szerzd, amely kiterjeszthetd® nem-lineadris feladatokra
is. Nem-linearis esetben azonban nem bizonyitott elméletileg a
stabilités.

Ezeknek a kutatasoknak az eredménye azt mutatja, hogy korililtekin-
tSen kell kezelni a peremfeltételeket, mert kozelitéslik elront-
hatja a teljes séma stabilitdsat. Ugyanakkor stabil k&zelités e-
setén sokszor elég alacsonyabb rendi sémaval kdzeliteni a perem-
feltételeket, mint a belsd pontokat. A teljes séma pontossaga a
belsd pontok kdzelitésére hasznalt séma pontossaganak fog megfe-
lelni.

1.2.3. Az egyenesek mddszere

A parcialis differencidlegyenletek numerikus megoldasénak egy ma-
sik csoportjaban a tér szerinti filiggetlen valtozdét diszkretizal-
juk, az idd folytonos marad. A térbeli derivaltakat véges diffe-
renciakkal helyettesitjiik, majd az igy kapott id®Gre vonatkozd
k6zOnséges differencidlegyenlet-rendszert oldjuk meg.

Numerikus szamitas esetén ez azt jelenti, hogy ebben az iranyban
is diszkretizaljuk a feladatot, s alkalmazzuk valamelyik, a ko-
zbnséges differencidlegyenletekre vonatkozdé numerikus integrala-
si médszert. Igy az egyenesek mddszere is tulajdonképpen a véges
differencia mdédszerek k&zé tartozik.

Ilyen médszerek Osszefoglalasa talalhato [lGJ—ban. A térbeli de-
rivaltak kozelitésére negyedrendii véges differenciadkat alkalmaz
a szerzd olyan megfontoldsok alapjan, hogy a pontossag rendjének
tovabbi névelése mar nem okoz jelentOsebb kiilénbséget az egész
séma pontossagaban. Az igy kapott k&zdnséges differencidlegyen-
let-rendszer megoldasara fix és valtoztathatd lépéshosszu mbéd-
szerek egyarant alkalmazhatdk /Runge-Kutta, Adams, prediktor-
korrektor médszerek/. Ezek hatékonysagat hasonlitja Ossze [16].

Optimalis séma itt sem adhatd meg adltaldnossagban, a konkrét fe-
ladat jellege dontden befolyasolja a differencia séma megvalasz-
tasat.



1.3. Osszefiiggés a karakterisztikdk és a stabilitds kozétt

A dolgozat masodik részében targyalom a kétfazisu folyadékaram-
las matematikai modelljeit. Ezek egy része nem teljesen hiperbo-
likus parcialis differencialegyenlet-rendszert alkot, az egyen-
letrendszer karakterisztikai kozoétt komplexek is eldfordulnak.

Linearis esetben ennek az a k&vetkezménye, hogy a kezdeti érték
feledat nem korrekt kitilizéslii, mert a megoldas nem fiigg folyto-
nosan a kezdeti értékektdl.

A kOvetkezd vizsgalat célja annak megéllapitéasa, hogy az egyen-
letrendszer karakterisztikai és stabilitasa kozott mi a kapcso-
lat.

Tétel: Tekintsiik a kdvetkezd n egyenletbdl 4116 elsdrendi kva-
zilinearis parcialis differencidlegyenlet-rendszert:

e — i u =
Ala) ot H4) BX ~C(u) =0 /1.8]
ahol g=(u4,u2,...,uh) a fliggd valtozdék n dimenzids

oszlopvektora, A és B nxn-es matrixok, ¢ n dimenzids
vektor, az un. forrasvektor. A, B elemei és ¢ komponen-
sei az u komponenseinek fliggvényei. Ha az /1.8/ egyen-
letrendszernek vannak komplex karakterisztikai, akkor a
megoldas nem stabil, a kezdeti értékekben elkdvetett kis
hiba a megoldas soran korlatlanul nsGhet.

Bizonyitéas:

Jeldljik az /1.8/ egyenletrendszer karakterisztikus gydkeit
/L—vel. Ezeket a

det (A - u4B) =0 /1.9

egyenlet  hatarozza meg.

Vizsgaljuk /1.8/ lokalis linearis stabilitéasat, azaz vizsgaljuk,
hogy ha a megoldast egy iddpontban kis du értékkel perturbaljuk,
akkor ez a perturbacidé hogyan terjed a megoldads soran.

Ehhez /1.8/-ban irjunk u helyébe (g+d?i) -t, s a kapott ered-
ményt lineariz&ljuk Jdu-ra vonatkozdan. Igy az aldbbi egyenlet-
rendszerhez jutunk, amely az u, %%-és %%; pillanatnyi &rtéké-
hez tartozd perturbacid nélkiili megoldas koriili kis Jg;pertur—
bacioét irja le:

A(Q\%(d‘g) + B%@@) +(d"_c1 %)%% +(d_9 %%) _g_)%. i %%. Sg 13200

Ezeket a pillanatnyi értékeket konstansoknak tekintve a Jﬁ per-
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turbacidra a kdvetkezd alaku megoldast keressiik:

— - r'

Ju = dug exp [i (kx - wt)] Friia

Ezt /1.10/-be irva kapjuk, hogy

o / : °
-iw AW ou, « Lk Buw)du, + (94 i?)g% /3
33 ) ou . A5G
(dg—o o );a__ + O, il 12

Ennek a Jup,-ban homogén lineadris egyenletrendszernek akkor van
nem-trividlis megoldéasa, ha

det '\/-—iwA +ikB + D) =0,

JE e ety
ahol
& T T 15
; \ /' AT /"\ K
D=<?fi-~%) wﬁ.,‘—é_yf(gg‘l /1.14/
ou 2t ou oXx/ ou /
Ha w :w(k) 4+ 0 , akkor /1.13/ a kdvetkezd alakba irhatd:
7 M g

// k :, \
det iA ‘é;fB +-&SjD/

Adott valds k értékhez kiilonbozd uﬂk) komplex gyodkodk tartoznak.
Az [1.11/ Osszefliggés alapjan a stabilitasnak az a feltétele,
hogy minden (k) gydkre Jm(w)40legyen. Ekkor lesz a per-
turbacidé iddbeli ndvekedése korlatos.

Ha D=0, akkor az w értékek /1.9/ és [/1.15/ Osszevetésébdl a

ﬁ"éﬁ Osszefliggésbdl meghatarozhatdk. Ha minden . gydk valéds,
akkor ezzel minden w 1is valds lesz, tehat teljesiil, hogy minden
w -ra Imw)£0.

Ha van komplex gydk, akkor az konjugaltjaval egylitt szerepel, s
ekkor az egyik w(k) -ra Im(w)>0 lesz, vagyis a perturbacidé kor-
latlanul nd.

Ha D#0, akkor vizsgaljuk a k—=>o0 és (w—= 00 esetet. Feltessziik,
hogy 'Ta%[ﬂ hatarértéke véges, ha k—=00./A valdésagban mindig
ez all fenn./ Ekkor OSZtrOVSZklj tételébdl kovetkezik £17J

hogy
!,u # 0 /1.16/
k->oO

Ha s komplex, azaz s = g + ‘f/“vr , M #0
akkor /1.16/-bdl kovetkezik, hogy

Lirmn = Imleo) k. = Mg T

k-»aa I“ﬁz



Mivel e -nak véges a hatarértéke /méghozza pozitiv vagy nulla/
140 - ,L&)lz
ha k—> 0o , ezért .R_.__,s-+oo, ha k=00

Mivel a komplex karakterisztikak konjugaltjukkal egylitt fordul-
nak eld, ezért feltehetjiik, hogy Aug <O. Ekkor /1.17/-bS1 az

kévetkezik, hogy Im(w) —=> 4+ o0, ha k-—=oo.

Ezzel kaptuk, hogy nagyon kis hullamhosszakra instabilitéas 1lép
fel. A ndvekedés nem korlatos, ha k—=o0.

Az eddigiekben Osszefoglaltam a hiperbolikus egyenletek numeri-
kus megoldasanak fObb kérdéseit. Ismertettem a karakterisztikak
moédszerét, néhany alapvetd véges differencia sémat, s a kilonbo-
z0 tipusu kOzelitések hatasat a kozelités pontossagara, stabili-
tasara. Bemutattam, hogyan haté&rozhaték meg a hiperbolikus e-
gyenletekhez sziikséges peremfeltételek a karakterisztikak se-
gitségével ugy, hogy a feladat egyértelmiien megoldhatd legyen.
Végiil pedig vizsgaltam az egyenletrendszer karakterisztikai és
stabilitasa kozti kapcsolatot.

A dolgozat masodik részében eldszOr ismertetem a kétfazisu aram-
las kiilonb6zd fizikai és a hozzajuk tartozd matematikai modell-
jeit. Az egyszeriibb modellek tiszta hiperbolikus parcialis dif-
ferencidlegyenlet-rendszert alkotnak, a hozzajuk tartozd kezdeti
és peremfeltételekkel egylitt korrekt kitilizésii feladatok. Az egy-
értelmiiséghez szilikséges peremfeltételek a karakterisztikak segit-
ségével meghatarozhatdk. Az altalanosabb, bonyolultabb matematikai
modellekrdl kiderilil, hogy nem korrekt kitiizésiiek, a kezdeti érté-
kektdl nem fliggnek folytonosan. E tekintetben a kutaték véleménye
két részre oszlik. Az egyik csoport szerint a feladat azért nem
korrekt kitilizésli, mert valamilyen fizikai jelenséget elhanyagol-
tunk. Ezzel kapcsolatban vizsgalok egy olyan modellt, amely ma-
gabanfoglal egy olyan hatast, mellyel a feladat korrekt kitiizésii-
vé valik. Masok szerint a nem korrekt kitiizésii feladatra is meg
lehet adni olyan véges differencia sémat, amely a k&zelités kii-
16nb6z6 stabilizdldé hatéasait kihaszndlva jd gyakorlati eredménye-
ket ad.

Ezeken az elméleti vizsgalatokon alapul a masodik rész végén is-
mertetett két modell numerikus megoldéasa.
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II. Rész

2.1 A tranziens folyadékaramlast leird fizikai és
matematikai modellek altalanos jellemzése

A folyadékhiitéses nukledris reaktorok zdénadjaban lejatszd6dd je-
lenségek leirasdhoz sok komplex folyamat hely- és iddfliggd mo-
dellezésére van sziikség. A kétfazisu aramlasi modellek a for-

rasban levd folyadék /vizhiitéses reaktorok esetén a viz és g0z
keverék/ aramlasat proébaljak leirni.

A nyomottvizes energetikai reaktorok megjelenése nagy lendiile-
tet adott a kétfazisu adramlas kutatdsanak. A meglévd bizonyta-
lansagokat meg kell sziintetni ahhoz, hogy gazdasagosan és biz-
tonsagosan miik6dd reaktorokat lehessen ilizemeltetni. Bar nagyon
kicsi a valdszinilisége, de eldfordulhat, hogy a primerkdrben el-
tOrik az egyik hiitSkdzeget tartalmazd csd. Mivel az ilyen bale-
setnek sulyvos kadr lenne a kdvetkezménye, ismerni kell a lejat-
sz6d6 folyamatokat, hogy biztosithassuk a reaktor zdénajanak meg-
feleld hiitését. A tSrés mentén kétfazisu folyadék aramlik ki a
primerkdrbdl. Ennek allapotat kell leirni az idd fliggvényében.

A gyakorlatban t6bb folyadékaramlasi modell is ismeretes, de e-
zek egyike sem egzakt. Felirasuknal a természeti tdrvények mel-
lett tapasztalati eredményekre is tamaszkodni kell. A kivalasz-
tott modell helyességét kisérleti eredményekkel vald Osszehason-
litads utjan tudjuk ellendrizni.

Az atomreaktorok termohidraulikai analizisére kidolgozott nagy-
méretli szamitdgépes programrendszerek eleinte egy viszonylag
egyszerli, un. homogén egyensulyi modellt alkalmaztak a reakto-
rok zdénadjaban tdrténd folyadékaramlas leirasara. Ez a modell
feltételezi, hogy a két fazis azonos sebességgel halad, s mind-
kettd telitési allapotban marad. Azonban a reaktorokban olyan
tranziens jelenségek is lejatszddnak, melyekben ezek a felté-
telezések nem érvényesek. Ennek ellenére bizonyos paraméterek
valtozd6 alakuléasanak leirasara még ekkor is alkalmas lehet ez a
modell, melynek eldnye egyszeriiségében, s az aranylag kis sza-
mitasigényében rejlik.

A folyadék allapotanak pontos leirasahoz sziikség van olyan je-
lenségek figyelembe vételére, mint a két fazis relativmozgasa,
vagy bizonyos nem-egyensulyi termohidraulikai folyamatok, pl.

fazisatalakulas. Az ujabb programrendszerek mar ilyen, fejlet-
tebb modellekkel szamolnak, melyek nem tartalmazzak a homoaén

egyensulyi modell megszoritasait.

Az aramlast leird6 matematikai modell egy egyenletrendszer, amely
a tomeg, az impulzus és az energia megmaradasanak tdrvényeit fe-
jezi Kki.



A matematikai modell feldllitadsdhoz a kdvetkezd lépésekre van
sziikséqg:

1. a megmaradasi egyenlet kivalasztasa;

2. az aramld kdzeg allapotegyenleteinek felirasa /ezek
irjadk le a folyadék jellemzdi kOzti kapcsolatot/;

3. segédegyenletek feladllitasa /ho-, impulzus-atadas,
surlodas, stb./;

4. kezdeti és peremfeltételek megadéasa.

A megmaraddsi tdrvényeket parcialis differencidl egyenletek ir-
jak le. Ezek szama a fizikai modelltdl fligg.A homogén egyensu-
lyi modell a legegyszeriibb, ez 3 megmaradasi egyenletet tartal-
maz, a keverék tdmegének, impulzusanak és energiajanak megmara-
dasara. Legbonyolultabbak a két-kdzeg modellek, amelyek a két
fazis mindegyikére tartalmazzak a 3 megmaradasi egyenletet.Ezek
nem kivanjak meg, hogy az egyes fazisok azonos sebességgel mo-
zogjanak, vagy azonos legyen a hOmérsékletiik. Viszont szilikség
van olyan matematikai Osszefliggésekre, melyek a fazisok kozti
tomeg, impulzus és energia atadast irjak le. Eppen ez az egyik
nehézsége ennek az altaldnos modellnek, mert ezek az atadasi fo-
lyamatok még nem eléggé ismertek.

Az egyenletek feldllitdsa mindig a fizikai rendszer idealizala-
sanak, egyszeriisitésének eredménye, ez korlatozza a modell érvé-
nyességi kdrét. A kapott parcialis differencial egyenletek megol-
dasédra gyakorlatilag csak numerikus mbédszerek jShetnek szamitéas-
ba. Igy az eredményt a tovabbiakban az is befolyasolja, hogy mi-
lyen a kivalasztott megoldasi mddszer. Kiildn problémat jelent
annak vizsgédlata, hogy a szamitas eredményében jelentkezd eset-
leges instabilitas, oszcilléacidé a fizikai folyamatot tilkr&zi-e,
a leirasra hasznalt egyenletrendszer pontatlansaganak kdvetkez-
ménye, vagy a rosszul megvalasztott numerikus médszer eredménye.
Mivel az eredmény vizsgdlata a legt&bb esetben nem oldhatd meg
minden kétséget kizardan matematikai diszkusszidval, feltétleniil
szliikséges megbizhatd mérésekkel vald Osszehasonlitasuk.

Az alkalmazandd numerikus mddszer kivalasztasanal déntd szempont,
hogy az a lehetd legmegbizhatdébban miikédjon a varhatdé alkalmaza-
sok esetén. Ezért a mdédellek és mdodszerek kivalasztasa eldtt meg
kell hatarozni, hogy milyen esetekben akarjuk felhasznalni. Pl.
ha az egész zd6nat modellezziik és a numerikus szamitasokhoz elemi
térfogatokra osztjuk, akkor a zdénabeli kétfazisu aramlas alkoto-
részei [gdzbuborékok, folvadékcseppek/ méretének kicsinek kell
lenni az elemi térfogatokhoz képest. A valtozdok értékei nagysza-
mu buborék, ill. folyadékcsepp egy-egy ilyen térfogatra vonatko-
z6 atlagaibdl adddnak. Ilyen modellen az elemi térfogatok mére-
ténél finomabb jelenségek nem oldhatdk meg.

A megoldasra haszndlt numerikus mdédszerek szinte kizardlag véges
differencia mdédszerek. Bar a homogén modellt leird egyenletrend-
szer hiperbolikus, igy a karakterisztikak mdédszerével is megold-
haté. A gyakorlatban azonban ma mar ezt nemigen hasznaljak, mert
fejlesztése nehézkes, t8bb dimenzidéra bonyolult kiterjeszteni.



A konkrét differencia séma megvalasztasanal tObb szempontot is
figyelembe kell venni. Ha a vizsgalt tranziens jelenség gyorsan
valtozd aramlas modellje, szilikség lehet arra, hoay nagyon kis
iddlépéssel szamoljunk a pontossag érdekében. Masrészt gyakran
kivanatos a nagy 1dohpes, ha a tranziens jelenség lassan megy
végbe és csbkkenteni akarjuk a szamitasigényt. Az iddlépést
dltaléban a “U'+C) At'<: A Osszefliggés /Courant-kritérium/kor-
latozza,

ahol: v - a folyadék aramlasi sebessége,
At - az iddlépés és
Ax — a racspontok tavolsaga.

Ez a korladt a numerikus stabilitas kdvetelményébdl ered.Ha azon-
ban a hangsebességet tartalmazdé kifejezéseket implicit mdédon
differencidljuk, akkor ez a korlat jelentdsen ndvelhetd. A fa-
zisok kozti atadasi Osszefiliggésekhez is rovid iddkonstansok tar-
toznak, ezért ezeket is érdemes implicit médon kezelni. Ugyanak-
kor a teljesen implicit egyenletek megoldasa nagyon szamitéasigé-
nyes, egynél t8bb térdimenzidban kiildndsen bonyolult. Az eldbbi
kifejezések implicit szamitdsa esetén a numerikus stabilitas fel-
tétele lg—?t’< A -re valtoztathatd.

X
Ez mat nem jelent tul erds megszoritast az id6lépés nagysagara.
/pl. 4 m/sec tengely iranyu aramlds és 0.3 m tavolsagra levd osz-
taspontok esetében a At < 0.075 sec lépéskorlat elfogadhatd ér-
ték nyomottvizes reaktorokra/. Az ujabb programrendszerek mar
ilyen, un. szemi-implicit véges differencia mbédszereket hasznal-
nak.

2.2 Homogén egyensulyi modell

Ez a modell olyan k&zeg aramlasanak leirasara alkalmas, amely
mechanikai és termikus egyensulyban van, azaz egy adott kereszt-
metszetben a sebesség mindeniitt, mindkét fazisnal azonos és a
kb6zeg telitési hOmérsékleten van. A keverékre harom megmaradasi
egyenletet tudunk felirni:

Tomegmegmaradas:

§%_ o ) e al O

Impulzus-megmaradas:
) o) oF L ol g :
- o i 4

ERSOULE g A aei i ge) 5_3_.) i ng gei i

ot X ot B x /[2.3]

Az egydimenzidés modellben a reaktor zdénajat elemi térfogatokra
osztjuk az x tengely mentén, s a valtozdk értékét egy-egy
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ilyen elemi térfogatra vett atlag adja. /2.1l/-ben az elsd tag
egy elemi térfogatban levd kbzeg siirliségének iddbeli valtoza-
sat irja le, a 2. tag pedig az ebbe a térfogatba be- és ki-
dramld kdzeg altal okozott silirliségvaltozast.

/2.2/-ben a baloldal elsd tagja egy elemi térfogatban levd
k6zeg impulzuséanak iddbeli valtozasat irja le, a 2. tagja a
be- és kiadramld kdzeg altal okozott impulzusvaltozast, a 3.
tagja pedig az elemi térfogat két végén fellépd nyomaskiildnb-
séget. A jobboldal elsd tagja a gravitacidé miatt fellépd nyo-
masvaltozasnak, 2. tagja pedig a surlddés okozta nyomasvalto-
zasnak felel meg.

/2.3/-ban a baloldal elsd tagja jelenti az elemi térfogatban
levd kdzeg teljes energiajanak iddbeli valtozasat, a 2. tag
pedig a belépd és kilépdkozeg altal okozott energia-valtozast.
A jobboldal elsd tagja az elemi térfogat két végén fellépd
nyomaskiilénbségbdl szarmazdé iddbeli energiavaltozast adja meg,
2. tagja a be- és kidramld kbzeg nyomaskiildnbsége miatti ener-
gia-valtozast, 3. tagja pedig a kdzeggel k&6z6lt energiat /ho-
vezetéssel, h@sugarzassal, hdatadassal/.

A keverék allapotegyenlete a fazisok fizikai allapotegyenlete-

ib61l k&nnyen eldallithatd a ¢ =«Qy + + (4 —m)gL Osszefliggés fel-

hasznalasaval. A fazisok allapotegyenleteil 9V=»gv(?‘ev) és
= Q¢ (P,e.) alakuak.

A modell eldnye egyszeriiségében rejlik, s kiiléndsen jol irja
le az aramlast, ha az egyik fazis dominans / « < 0.1 vagy

<« > 0.9/. A gyakorlatban akkor hasznalhatdé, ha nem varhatd
jelent3sebb sebességkiildnbség a fazisok k&zdtt. Lassu tranzi-
ensek leiradsara alkalmas, amikor kicsi a nyomasgradiens és
nincs c¢sOtdrés /pl. a teljesitmény valtoztatasa esetén/.

Az allapotegyenletek hozzavételével a [/2.1/ - [/2.3]/ egyenlet-
rendszer mar zart lenne. A megoldas eldtt azonban célszeri
atalakitani,mert a forras kezdetekor © és e értéke hir-
telen, nagy mértékben megvaltozik, a 2%  derivalt nem lesz
folytonos, s ez a numerikus szamitast megzavarja. Ezért cél-
szeriibb a G = ¢4 fajlagos tomegfluxust és a V:w% at-

lag fajtérfogatot haszndlni [19] . Ezek segitségével a [2.1/
és /2.3/ egyenletrendszer alakja a kdvetkezd lesz:
6 _ A [3V 9e . BV 32):0
Bx v2<aeat+m> 3t et
A4 26 LIe) (Bl/_g 3\/&_) A_’P__&_i
s A SOl S o o B e

+G%‘—;-—at GVM2 g /2.6/

<[>
Q)IQ)
o |®



A-/2.4/-/2.6
teszi zartta
nézve a rend

A megoldéasra
ki L2oT,

Jeldlje az x
valtozok ért

alaku tagok
/7
a (ng- ala

Itt R jeldli
haté. Az igy
cit; Tleokalis
Ez szikséges

e o e

| egyenletrendszert a V = V/P,e/ allapotfliggvény
. Az alapvaltozdék a P, G és e fliggvények. Ezekre

szer hiperbolikus.
hasznalt véges differencia sémat Turner dolgozta

1ranyban az egymast kovetd racspontokhoz tartozo

ékét j index, t iranyban pedig n. Ekkor a
n+4 n+4

kb6zelitésére hasznalt klfejezes _Jgﬁh___iﬁ_E;

G o s R )
24t

J4A
a P, G, e valtozdkat, Q pedig a megfeleld egyutt-
fellrt differencia séma az alapvaltozdkban impli-
stabilitaséanak bizonyitésa[}O]-ban megtalalhaté.
feltétele a stabilitasnak. A fenti k&zelitések

,.

ku tagokra pedig

alkalmazasaval /2.4/-/2.6/ véges differencia kozelitése a ko-

vetkezs:

m m
n +A r‘nH 'Ii aV) { nth a A av) n+l i "
Gf‘*" ) \:l \vl 55/) \Q’A &= &d > + {VL :3'—;' "V*/l (e\,}-\ @d*,,) 4
Ax Lat
ﬁ_ @_\L n nxtd n /1 (‘)V\ Dh+1 s 'Ph \
<\\4"“ 'a?‘); (,PJ _/PJ') b ( O?q»n (\‘4 +A \-”'} ia 12.7/
2At ;
/ 4‘." {..htd ~My !,-i 9 frnEy ATy N " AR ‘Anu. n+d
\‘;—‘d by iy J +{3}‘{+4 Lb,{*\ A bJ-H) i (\/3 S vi“”‘)(o,‘*d Pl ) '
2At AX
r/ﬁ AV c [~ oV \-M r n+d n+) i 6\'/ : /1 n A AV ‘l "\In [0l nkd
s ‘fgg)l, H\b a_::* (\“’Ji“A B! ) /s {(03" 2 C——)J 7 (Ua—'P ?/“JO),M o 5),‘ ) -
' 2 AX 2 Ax =
o Z9gx pé = i)
o S n n ~ N -
‘\Gv): * (GV);‘M GJ‘ £y GJH
GLY”( A h) ’4)h M m ) n+d a1
Vi & ¢ +(V ja (ef*" ~ € (b ik Gm)(eqﬂ =&z )
ZAL 2 Ax
nt! n ntd Vs ‘ il P n+q
S (/pa 5 /P.\ )+ (/P).‘M X ’P$+4) B &GV) ‘ +(bV),M] (,Ptﬁ —’Fj )
24t 7 Ax T IR




Ez a séma az I. rész 1. tablazataban Osszefoglalt véges dif-
ferencia médszerek k&ziil az F-nek felel meg, amely feltétel
nélkil stabil.

Ha a P, G, e fliggd valtozdkat egy u vektorba foglaljuk Ossze,
akkor a /2.7/-/2.9/ véges differenciaegyenlet-rendszer az a-
14bbi matrix alakba irhaté:

ht4 n ( n+4 nM

. =3 2 N-1,
Meelelleg 0 32,0

) 12.10/

ahol AQ és B; a valtozodk uj id6pontbeli értékeihez tartozo
3x3-as egyilitthatd matrixok, c"egy 3 komponensi vektor, N az

x iranyu osztéspontok szama.

A; : B? és cJ nem fiiggnek az alapvaltozok n+l idOpontbeli

értékeitdl. /2.10/-bBl az ismeretlen u- vektor kifejezhet®:

vn
uie = () (<) - A7) el

Ezzel algebrai egyenletrendszer megoldasara vezettiik vissza
a feladatot.

Hatra van még a kezdeti és peremfeltételek megadasa. Esetiink-
ben csdben aramldé folyadékrdl van szd. A kezdeti értékek az
u fliggvény eloszlasat jelentik a cs® mentén a t=0 iddpontban
/j=0/. Peremfeltételként P, G és e értékét kell megadni a csd
két végén az idd fliggvényében.

A karakterisztikdk elmélete szerint /1.1 fejezet/ az egyér-
telmiiséghez sziikséges peremfeltételek a karakterisztikak eld-
jelétdl fliggnek. Esetiinkben két karakterisztika eldjele egye-
zik meg, a harmadiké kiilénb6z&. Ezért a csd egyik végén kettd,
a masikon egy feltételt kell megadni.

A megoldas ugy t8rténik, hogy a csd mentén felvesziink valami-
lyen /&ltaldban konstans/ eloszlast u-ra.Ezutan konstans pe-
remfeltételekkel t8bb, hosszu iddlépéssel szamitast végziink
a rendszerre. Ekkor a nevezdben levd At nagy, ezért az in-
stacioner /iddfiliggd/ tagok értéke a stacioner /iddben allan-
dbé/ tagokhoz képest elhanyagolhatd. Az igy eldallitott staci-
oner eloszlas lesz a tranziens szamitas kezdeti értéke u-ra.

A tranziens megoldas kezdeti eloszlasanak meghatarozasa utan

a /2.10/ lineédris véges differenciaegyenlet-rendszer megolda-

sa a peremfeltételek felhasznalasaval az alabbi tételben va-

zolt eljaras alapjan torténik.

= ned nt4

Tétel: A [/2.10/ egyenletrendszer az u, és uy vektorok
barmely 3 komponensének ismeretében egyértelmiien meg-
oldhatb.



Ha tehdt a cs® végein 3 peremfeltétel adott /azaz a P, G és e
valtozdk értéke az idd fliggvényében valamelyik csdvégen/, akkor
a [2.7/-/2.9] véges differenciaegyenlet-rendszernek létezik
egyértelmiien meghatarozott megoldasa.

Bizonyitas:

Definidljuk a D matrixot és a v vektort az alabbiak szerint:

n4A ntA

u: + DJ“" L 9 Ny g [ e S 12,320

J
e S n+4
Eliminaljuk u ;

) -et [/2.10/ és /2.12/ felhasznalasaval

n+ r -4 o SbA L AN n
P_‘j-\»'\ ——LB’,\’ A_{ Di"ﬂ M/l ’\B_}‘\, \;J "AJ BLJ,,‘)
Ebbdl kovetkezik, hogy

fn -4 n
-k '(Ba'> A Dj1
- J=2, 3, Jii,N=1  f2.13]

% -4/ n "
es \‘/A - (B’> (C—a '/A\i 13‘_0
tovabba [/2.10/ és [/2.12] Osszevetésébdl j=2-re:

g /2.14/
= /N " i .

\'/'4 '\b".\ =4
/2.13/ és/2.14] felhasznalasaval Dy, €s yy-4 meghatarozhatd.
Ennek és a 3 ismert peremfeltételnek a segitségével [2.12/-t
j=N-re megoldva megkapjuk gﬁ” és gﬂy mindhdrom komponensét.
Ezutdn/2.12/-b681 mar minden k&zbiilsd gg” meghatarozhatd.

Ezzel az elimindcids mddszerrel egy-egy idOlépés szamitasigé-
nye 2N matrix szorzas éa /N-1/ inverzid 3x3-as matrixokra.

A homogén modellel végzett szamitasok és mérési eredmények
8sszehasonlitdsara [20]-ban és [19]-ben talalhatd példa. A
szamitédsok eredménye alatamasztja a mdédszer stabilitasat. A
mérések és szamitasok j6 egyezést mutatnak.

2.3. Véges differencia mbédszer egy egydimenzids, 4 egyenletes
modellre

A homogén egyensulyi modell alkalmazhatdésé&gat nagyban korla-
tozzak a benne szerepld megszoritdsok. Ha a folyadék allapo-
tanak pontosabb leirasara toreksziink, akkor sziikség van a két
fazis relativ sebességének és bizonyos nem-egyensulyi folya-
matoknak a figyelembe vételére, mint pl. a fazisatalakulés.
Az ilyen hatasokat is magukba foglald modellek k&ziil talan a
legegyszeriibb a [le—ben leirt un. "drift" modell.
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A modell 4 alapegyenletbdl &all, 3 megmaradasi egyenlet a két
fazis keverékére egy pedig kiildén a gdzfazisra vonatkozik. A
relativ sebességet és a fazisatalakulast megadd Osszefliggések
a segédegyenletek k&zbtt szerepelnek.

A megoldasra hasznalt véges differencia séma a kiildnb6zd a-
ramlasi problémdk numerikus szamitdsa soran szerzett tapasz-
talatokon alapszik. [22, 23, 24]

A médszer eldnye, hogy pontossaga kielégiti a gyakorlati ko&-
vetelményeket, stabil, kdnnyen programozhatd és egyszerilien
kiter je szthetd két vagy hadrom dimenzidés geometriara is. Ez a
médszer az alapja a késObb ismertetendd két-kdzeg modellekre
kifejlesztett moédszereknek is.

A matematikai modell 4 alapegyenlete a kOvetkezd:

Tomegmegmaradas a keverékre

2 AWpv)
5% ¥ - 0 /3.1]
Tomegmegmaradas a gozfazisra
dlwey) | xeyv) | 3 Txgvli-sdge V] r 13,34
ot oX ox L Q
Impulzus-megmaradads a keverékre
BN e o ne Sl eieusul T QP e
F 269« & | aoi e S UhE Bal S UL o

Energia-megmaradas a keverékre

a Ny ) /‘A' : ¥ 7 s ‘)U_r
a—t<ge)+§%(gu)+a%[x oom?gke e ]

ipev fpﬁ e (A=) (9¢ — §v) v ] i 154
ox Bx t % 2

Ha még beszamitjuk a T, ,T, és Ts valtozdkat, melyeket a fenti

egyenletrendszer implicit médon tartalmaz, akkor 17 valtozd

szerepel a 4 egyenletben. A gx gravitacids erd csak az x filig-

getlen valtozd filiggvénye, és ismertnek tételezziik fel.

Két Osszefiiggés adddik a keverék slirliségének és belsd energi-

&janak alabbi definicidjabol:

¢= A Qv +(4—x)§¢ 13.5¢

e xQvey + (1-%)9e e

g J3.6/



A hianyzd 10 Osszefliggést a négy allapotegyenlet és a segéd-
egyenletek adjadk. Az &llapotegyenletek a kdvetkezd alakuak:

0= 0 (Pres) /3.74
Tl“'Ti(Tﬂec) /3.8]
ill. feltessziik,hogy ebbdl kifejezhetd e, = e, (P T;)
ev=pviPe el
e ipe,) /3.10]/

ill. az ebbdl kifejezhets e, =e, (P Ty)

A segédegyenletek adjadk meg a g hdforras, a 7 falsurlddas,

a vy relativ sebesség, a [' fazisatalakulds, a Ts=Ts/P/ teli-
tési gbrbe szamitédsdhoz sziikséges Osszefliggéseket.

Ezeken kiviil szilikség van még egy termikus megszoritasra ahhoz,
hogy a keverék energidjat feloszthassuk a két fazis kozott.
Ilyen megszoritads lehet pl. a fazisok k&zti termikus egyensuly
feltételezése. Masik lehetdség, hogy vagy csak a gdz, vagy csak
a folyadék telitési allapotban van attél filiggben, hogy parolgas
vagy lecsapbddas jatszodik le.

Ezekkel az Osszefiiggésekkel mart zart a megmaradasi rendszer.

A differencia séma felirasa eldtt a /3.3/ egyenletet a szami-
tds szempontjabdl kényelmesebb alakra hozzuk. Részben elvégez-
ve a derivalasokat /3.1/ felhaszndléasaval a kovetkezd egyenle-
tet kapjuk:

Qm s £oa @'OQS%'X‘EVWLJ AR LU 11
ot +'U'ax+gax[ 9 R P lie R

A differencia sémat a /3.1/,/3.2/,/3.11/ és /3.4]/ egyenletekre
irjuk fel. Az egydimenzids modellben a reaktor zoénajat /a fela-
dat értelmezési tartomadnyat/ elemi térfogatokra osztjuk az x
tengely mentén, s a valtozdk értékeit egy-egy ilyen térfogaton
vett atlag adja. Az elemi térfogatok elrendezését a 6. abra
szemlélteti. A térfogatokat a folytonos vonalak jelentik, a
szaggatott vonal a k&zéppontjukon at huzddik.

A tOmeg és energia egyenleteket a folytonos vonallal jeldlt
térfogatok f616tt differencialjuk, az impulzus egyenletet pe-
dig a szaggatott vonalakkal jelzettek f5616tt. Ezt az elrende-
zést koréabbi szerzdk is sikeresen alkalmazték.l?Z, 24]
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A differenciaegyenleteket @l] alapjan a kovetkezd alakban
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A fenti egyenletekben az n és n+l indexek jeldlik a valtozodk
értékeit az egymast kovetd iddpontokban, At és Ax az /x,t/
derékszdgli rdcs racsvonalainak tavolsaga az idd és a helykoor-
dinadtak iranyaban. A x-rdl feltessziik, hogy konstans, bar a
moédszer szempontjabdél ez nem lényeges megszoritas.

A [/3.12/-/3.15/ egyenletek szemi-implicit rendszert alkotnak,
mivel egyes valtozdknak explicit, mésoknak pedig implicit
differencia hanyadosuk szerepel benne. A tOmeg és energia e-
gyenletekben a keverék sebességét tartalmazdé tagok, az impul-
zus egyenletben a nyomasgradienst tartalmazd tag, az energia
egyenletben a kompresszidmunkat kifejezd tag tartalmaz olyan
valtozdot, melynek értékét az uj idOpontban vessziik. Az Osszes
t6bbi tag értékét a régi iddpontban adjuk meg.



A [' fazisatalakulds, T falsurlédas és a g hdforras mindegyike
a folyadék allapotanak bonyolult fdggvénye lehet. Ha ez adott,
akkor altalaban lehetséges bizonyos résziiket az uj iddpontban
venni. Mivel ezek a kifejezések fontos, esetleg domindns je-
lenségeket /forrasokat, nyeldket/ jeldlnek, ezért minél inkabb
implicit médon kell kezelni Oket. A fenti mdédszerben alkalma-
zott explicit és implicit kifejezések megvalasztasat a koévet-
kezd szempontok indokoljak:

1. Mivel azokban az atomreaktorok biztonsagaval kapcsolatos
problémdkban, melyekre ezt a médszert alkalmazni akarjuk a
folyadék sebessége nagyon nagy hatarok kézott mozoghat
/5-120 m/sec/, olyan mdédszerre van sziikség, melyben az idd-
lépés nagysagat nem korlatozza a stabilitas feltételébdl
szarmazdé klasszikus ,(0—,\,(‘)54&_1?){‘ <

feltétel, ahol ¢ a hangsebesség. A [/3.12/-/3.15/ egyenletek-
kel végzett szamitdsok szerint a rendszer stabilitasanak fel-
tétele kozelitdleg IN—£§4 T

AX

feltéve, hogy a fazisok kozti relativ sebesség kisebb, mint
a keverék sebessége. Ez mar nem jelent tul erds korlatozast
a megengedhetd iddlépésnagysagra.

2. A fenti differencia séma a lehetd legtdbb implicit kifeje-
zést tartalmazza, amely mellett még aranylag egyszeriien meg-
oldhatdé. A kapott nemlinearis algebrai egyenletrendszerre
megadhatd egy kdnnyen programozhatd, gyorsan konvergald
megoldasi moédszer.

3. A pontossag rendje alacson ugyan, de nagy valdsziniliséggel
még elegendd a reaktor biztonsagi problémakra, melyekben a
segédegyenletek egyébként is pontatlanok. /Kiilénbsen sok a
bizonytalansag [ és v, kifejezésének megadasaban./

A 9,0, %, 6,2 és K valtozdk értékeit az elemi térfogatok
kézéppontjaiban ismerjik, v és v, értékét pedig a térfogatok ha-
tarédn. A fenti differenciaegyenletekben azonban a valtozdk egy
része olyan pontokban is szerepel, ahol nincs definialva az ér-
téke. Ahhoz, hogy az egyenletek minden racspontban értelmezve
legyenek meg kell adni olyan Osszefliggéseket, melyek a valto-
zoknak az egyes elemi térfogatok kozéppontjadban és a hataran
felvett értékeit kapcsoljak Ossze. Erre a célra szolgal az a-
labbi Osszefiiggés.

Definicidé: Az £ valtozd értékét a racspontok felezbpontjaiban a
kbvetkezd, un. donor Osszefliggés adja meg:

:‘!\.‘i"'] ha 'U,—‘.sii <O

fisl =
- &
{e, ha 4.l 20
Az elnevezést az indokolja, hogy ilyenkor a valtozd értékét ab-



ban az elemi térfogathan felvett értéke hatarozza meg, amely
feldl a kbzeg aramlik, vagyis az eldzd térfogat donorként vi-

selkedik.

A /3.12/-/3.15/ differenciaegyenletek a donor Osszefliggésekkel
és a segédegyenletekkel egy nemlinedris algebrai egyenletrend-
szert alkotnak a valtozdéknak az uj idOpontbeli értékeire vonat-
kozbélag. Ennek megoldadsdra a 21]-ben kifejlesztett mdédszer a
Newton és a Gauss-Seidel mddszer felhasznalasan alapszik.

/Ennek megfelel®en rdvid elnevezése NBGS: Newton és blokk-Gauss-

Seidel/

Az NBGS mbédszer két egymasba kapcsoldédd iteracidbdl all.
El18szdr végrehajtunk egy Newton iterdcidét az eredeti nemlinea-
ris rendszeren, majd az igy kapott linearis rendszert blokk-
Gauss-Seidel iteracidval oldjuk meg.

A blokk inverzidés eljards hasznalata azért kivanatos, mert az
alapegyenletek k&zt nagyon szoros a kapcsolat. Az egyik legszo-
rosabb kapcsolatot a [' fazisatalakulas jelenti, mivel ez adja
meg a g&z keletkezését, amely nagysagrendekkel is megvaltoztat-
hatja a keverék kompresszibililtdsat, s ezzel jelentSsen befo-
lyasolja a folyadék mozgasat.

A blokk inverzids eljaras lehetdvé teszi " kifejezésének vi-
szonylag nagyfoku implicit kezelését.

Az NBGS eljaras az alabbi négy lépésbdl all:

1. Minden egyenletet - a differencia- és segédegyenleteket
egyarant - linearizalunk az ismeretlenek legutdbbi ér-
téke koril.

2. A differencia-egyenletekben szerepld minden valtozot

elimindlunk &, P, v és ey kivételével a linearizalt
segédegyenletek és definicidk segitségével. Igy egy li-
nearis egyenletrendszert kapunk az « , P, v és e val-
tozdkra minden racspontban.

3. Ezekbdl az egyenletekbdl meghatarozzuk «, P, v és e uj
iddpontbeli értékeit minden racspontban.

4. A t6bbi valtozé értékét «, P, v és e, segitségével ha-
tarozzuk meg a definicidkbdl és segédegyenletekbdl. Eb-
ben a lépésben ismét az eredeti nem-linedris egyenlete-
ket hasznaljuk fel.

A fenti eljarasban a négy parcidlis differencidlegyenletre négy
alapvaltozot valasztottunk ki. Ez a kivalasztas sokféleképpen
Férténhet. Valaszthattuk volna példaul a két siiriliséget a nyoméas

isltérfogattért helyett. A fenti valasztast a kdvetkezdk indo-
oljak:

a./ a nyomas a tavolsagnak akkor is folytonos fiiggvénye le-
het, amikor a sliriiség nem az /pl. a két fazis érintke-
zésénél/;



b.]

Tl

a nyomds allapotegyenlete a silirliségnek nagyon érzékeny
fliggvénye, ha a rendszer csak folyadékbdél &ll. Ha a sii-

riiség lenne alapvaltozo,
masban nagy hibat eredményezne,

ritmus stabilitéasat.

akkor ennek kis hibé&ja a nyo-
ez csOkkentené az algo-

a termodinamikai Osszefliggések egyszeriibben kezelhetdk,
ha a nyomas és az egyik energia vagy honérséklet ren-
delkezésre &all.

Az eljaras elsd két lépésének végrehajtasat példaképpen vizs-
gadljuk meg a /3.12/ egyenleten. Ez az egyenlet madr linearis a

n+4

n+4 % I
g: ‘és 4&+% valtozdokban. A feladat az, hogy a

n+ A

oL sirliséget

fejezziik ki a négy alapvaltozdval. Ehhez a definicidk és a se-
gédegyenletek allnak rendelkezésre.

A /3.5/,/3.7/-/3.10/ egyenletekbdl és a termikus megszoritéasbodl

- S

_'\?Ll ?"'I evl T(_

ségével. Tegylk fel,

r

T, valtozdok kifejezhetdk &, P és e

e Segit=

hogy a segédegyenletek kozt szerepld termi-
kus megszoritds a hOmérsékletek egyenldségét fejezi ki, azaz

T Tk

N

J3.16/

Az allapotegyenletek alakjatdol fliggdben az Osszefliggések nagyon

bonyolultak lehetnek. Mivel a §

sliriiség és az alapvaltozodk ko-

z6tt analitikus Osszefliggést akarunk feldllitani, ezért a fenti

6 egyenletet linearizalijuk,

T¢ és T, valtozodkat.
arizalas torténik. A kivalasztott egyenletek linearizalt alakja
a kovetkezd:

¢=% * (%v

{

g = S+
‘—V:TL
() :€£+
ey = Cyt

~

s ezutédn eliminadljuk a ¢/, v, ey,

Jeldlje ~ azt a pontot, ami koril a line-
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320

3.8

13.22]

Az egyenletekben szerepld derivaltak az allapotfiiggvények deri-
valtjai, melyeket a /3.7/-/3.10/ egyenletek jobboldalai defini-

gP‘ég), illetve a (Tﬂec)

alnak,

s értékiiket a

pontokban vesszik.
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A [/3.20/-]/3.22] egyenletek és a 6} - f; feltételezés felhaszna-
lasaval az alabbi Osszefliggést kapjuk e, és e, kozdtt:

LY ~ ael ] 2€ ~ _ d€& ~]
e, -€ P-P = -ey - =(P-
5E, [ F ( ) 3% )}v v 37 (? 'P) 1323
}3.181:iés }3.19] behelyettesitésével /3.17/-be kapjuk, hogy

9= §+(v -9 )~ &X) + (A-&) [39‘(’? e a“(ei eﬁ]

de

LBP dey
(B4
Végil /3.24/-bo1l eliminéljuk e, <t /3.23/ segitségével:
Ea(E R - () [ 2P B) » Bfe, 5
=0l O HK =« P e e o
el bl TRl eslglas L
L % B 3 o) = N
~ (B%v(p_ ). 95 Ol &yl >y deepp \u,g_&_)g_ p_7)
: KIBP" /  de, Be aT, E_(V" 2l '3?( P oey oP ( j
163725

Ezzel megkaptuk a keresett linearis Osszefliggést a keverék ¢
slirlisége és a harom alapvaltozdé, «, P és e, kdzbtt. Az NBGS el-
jaras 2. lépésénel befejezéseként a 1359 5./ osszefug?es segitsé-

gével elimindljuk a /3.12/ egyenletben szerepld ¢; keverék
slirliséget.

Jeldlje k és k+l1 a valtozdk két egymast kdvetd iteréacidjat az
uj idOpontban, és a ~ vel jeldlt valtozdk értéke legyen a k-a-
dik iteré&alt érték. Ekkor /3.25/ felhaszndlasaval /3.12/ az a-
labbi alakba irhatd:

o - ¢+ ot (o ] (<5 - af)
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13,26
£ Tk n+l k4 R e ¥
Az egyszeriiség kedvéért az u = u jeldlést hasznaltuk,

mivel az iterdcidét mindig az uj iddlépésben hajtjuk végre.



2 A ka4 k+4 : k44 k+d kA
A /3.26/ egyenlet linearis az «; , P, ,(e/); , Vi1 €s N4
valtozdékban. Ezt az eljarast megismételve a megmaradt harom
differenciaegyenletre, /3.13/-/3.15/-re , minden réacspontban
kapunk egy linedris algebrai egyenletrendszert a négy alapval-
tozodra.

Az NBGS eljaras 3. lépésének végrehajtésdhoz vizsgaljuk meg en-
nek az egyenletrendszernek a szerkezetét egy adott iddpontban
az Osszes racspontra felirva. /7. abra/
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7. abra

A nemzérd egylitthatdokat x jeldli. Ezek egymasba kapcsolddd
5Xx5-8s blokkokat alkotnak a f6atldé mentén. Minden egyes blokk
egy elemi térfogathoz tartozdo valtozdk egylitthatdit tartalmaz-
za, beleértve a két hataron vett sebességeket. A blokk elsd és
O0tbdik sora az impulzus egyenleteknek, a tObbi az energia és a
tOomeg egyenleteknek felel meg. Az impulzus egyenletek révén
minden elemi térfogat kapcsolatban van a szomszédaival a nyo-



mason keresztiil. Egy adott elemi térfogat &t valtozdja igy a
szomszédos térfogatok valtozoi kozil csak a nyomasoktdl filigg,
a tobbitdl nem. Ezért ha a szomszédos térfogatokban rogzitjik
a nyomasokat, akkor az adott térfogathoz tartozdé Ot alapval-
tozb6 értékét meg tudjuk hatarozni egy olyan 5x5-0s linearis
egyenletrendszer megoldasaval, melynek szerkezetét a 7. abran
szerepld matrix egy blokkja szemlélteti.

Az NBGS eljaréas 3. 1lépését a kOvetkezd mbédon hajtjuk végre.
Kivalasztunk egy haladasi iranyt /ez az egymas utani iteraci-
6kban valtozhat/. Az 'elsd elemi térfogathoz tartozdé o6t valto-
z6 értékét kiszamitjuk a fenti mdédon a 2. elemi térfogathoz
tartoz6 nyomas eldzd iteracidbdl szarmazd értékének felhasz-
nalasaval. Ezutan a 2. térfogatra végezzik el a szamitast az
l-ben szamitott uj és a 3-beli régi nyomas értékek segitségé-
vel. K&zben a térfogatok k&zds hataran vett sebességet kétszer
is feliilirjuk, eldszdr az 1l:,utédna a 2. térfogat szamitasakor.
Az eljarast addig folytatjuk, amig minden alapvéaltozd értékét
minden elemi térfogatban ujra szamoljuk.

Az NBGS eljaras 4. lépésében az igy kapott alapvaltozdk segit-
ségével az Osszes tObbi valtozd értékét meghatarozzuk. Ehhez a
definicidk és a segédegyenletek eredeti alakjat hasznaljuk fel.

Miutan igy minden valtozdé uj értékét kiszamitottuk ellendrizni
kell, hogy teljesiil-e a konvergencia feltétele, s szilikség ese-
tén ujabb iteracidt kell végrehajtani.

A fenti eljaréas tovabbi egyszeriisitésére van még egy lehetOség.
Az impulzus egyenletek segitségével a sebességek eliminalhatodk
a rendszerbdl ugy, hogy helyettiik csak nyomasok maradnak. Ezt
elvégezve a kapott egyenletrendszer szerkezetét a 8. abra
szemlélteti.

Az egylitthatd matrix blokk-tridiagonalis 3x3-as blokkokkal. Ha
M-mel jeldljilk a matrixot, akkor elvégezhetd a kdvetkezd fakto-
rizacios

M=l D+ U F3:271

ahol L alsé, U felsd blokk-triangularis matrixok, D pedig az M
diagonalis blokkjaibal all.

Az NBGS eljaras 3. lépése a kovetkezd egyenlet megoldasat je-
lenti:

(L + D) yk+l = yk + B /3.28]/

ahol w a 8. abran szerepld valtozokbdl alld vektor. Az itt sze-
repld L + D matrixot kiilondsen egyszeri invertalni, mert csak a
3x3-as diagonalis blokkokat kell invertalni az egyes elemi tér-
fogatokra.



4 - &
r; L oAb R % GRS : ! <4?
‘\ G ) ; 7:'
X e e,
0 XofX X X|0 XO X3
O X OLK X X1y X 1) P
O XOPx X X100 X0 o B
0X .0 )(,K(O)(U? Xz
G OV o e P,
QX0 XA X (g e;
_ ] e
8. Abra

Lehetne invertalni az egész M matrixot az iteracidé minden l1lé-
pésében egy blokk-tridiagonalis matrixot invertald rutin se-
gitségével. Tobb térdimenzidban azonban, vagy bonyolult aram-
lasi kép esetén az M matrix bonyolultahbad valik, s a direkt
invertalas nehezebben végezhetd el.

Az NBGS eljaras eldnye, hogy kénnyen kiterjeszthetd tobb di-
menzidra is. Két dimenzidban pl. az M matrix blokk-blokk-tri-
diagonalis lesz 3x3-as blokkokkal és felbonthatdé /3.27/-hez
hasonlbéan. Az L + D matrixot ekkor is kdnnyen lehet invertalni
elemi térfogatonként egy 3xX3-as rendszer megoldasaval.

A gyakorlatban az allapotegyenleteket altaldban gdztablazat
formajaban adjadk meg. Ezekre kell figgvényeket illeszteni. A
és e, fliggvényeknek folytonosaknak kell lenniiik, de az elsd
derivaltjuk mar lehet szakadasos bizonyos pontokban.

Néhany derivaltnak nullatodl kiilénbézdnek kell lennie ahhoz,
hogy egy- és kétfazisu esetben egyarant legyen megoldas.
Ebben a modellben egyfazisu aramlas esetén =0 vagy =1, és
pl. egyfazisu folyadék esetében /X =0/ ennek siliriisége nem le-
het P-t8l és ey-td1l fliggetlen allandb.

A matrixok vizsgalata azt mutatja, hogy a rendszer rosszul
kondicionaltta valik, ha ¢ = 9¢v . Ez a termodinamikai kriti-
kus ponthoz k&zeli vagy afélsétti helyzetnek felelne meg. Fizi-
kailag azt jelentené, hogy térfogattdrtet prdbadlunk szamitani
olyan keverékben, amely egymastol megkiilénbbztethetetlen alko-
tdérészekbdl all. A reaktorokkal kapcsolatos problémékban azon-



ban ez nem fordulhat eld, mert a rendszer mindig a kritikus
pont alatt wvan.

Az ismertetett numerikus mdédszert a kétfazisu aramlasok szé-
les skalajara alkalmazték mind egy, mind t&Sbb térdimenzidban.
Ez a mdédszer az alapja az ujabb rendszerprogramokba foglalt
modellek megoldasanak. Alacsony rendii pontossaga ellenére a
gyakorlat szamara megfeleld pontossagot biztosit, s eldnye,
hogy gyorsan konvergdl. Altalaban 2-3 iteraciét elég végezni
idSpontonként. A [21]-ben ismertetett két példaban kapott e-
redmények jb6l1 egyeznek az elméleti szamitasokkal, illetve a
mérési eredményekkel.

2.4.1. Két-kozeg modellek

Az utdébbi néhany évben jelentds erdfeszitasek tdrténtek a
kétfazisu aramlds minél pontosabb modellezésére. Olyan mo-
dellt prdbaltak létrehozni, amely a lehetd legkevesebb meg-
szoritdst tartalmazza az aramlasra vonatkozdan és jol leirja
a lejatsz6dé jelenségeket. Pl. ha egy kisérletben olyanok a
koriilmények, melyek mellett mindkét fazis ugyanazzal a sebes-
séggel halad, akkor a matematikai modellnek fel kellene is-
mernie ezt a kényszeritd korilményt. Altalaban, ha a fazisok
valamilyen egyensulyba jutnak, akkor ne legyen szilikség arra,
hogy ezt eldre feltételezziik.

Egy teljes két-kdzeg modellnek le kell tudni irnia a teljes
nem-egyensulyi &llapotot, azaz a mechanikai, termikus és ké-
miai nem-egyensulyt.

Az eddig kidolgozott kiilonbdzd két-kdzeg modellek alapvetd
tipusait [25] foglalja &ssze. Teljesen kielégitd modellt a-
zonban még nem sikerililt létrehozni. Az eddigieknek legalabb
harom hianyossaguk vagy gyengéjlik van.

Az egyik, hogy szilikség van a fazisok ko&zti kdlcsdnhatas fligg-
vények megadasara. Ehhez ellre rogziteni kell az aramlasi ké-
pet, amivel sziikiil a modell érvényességi kére /bar még mindig
nem jelent olyan megszoritast, mint pl. a sebesség korreléci-
6k felallitéasa a 2.3.fejezetbeli modellben/.

A mésik, hogy a modell egyenleteinek szarmaztatasakor egyes
valtozoOk bizonyos atlagolas eredményei, masok értékét pedig
egyes pontokban ismerjiik. A kétfajta mennyiség kozti Ossze-
figgések felallitasaval hibakat kdvetilink el a rendszerben.

A harmadik probléma akkor jelentkezik, amikor egyensulyi a-
ramlast prdobalunk leirni. Altalaban ugyanis az egyensulyi al-
lapot nem megoldasa a nem—egyensulyi egyenleteknek.



A két-kOzeg egyenleteknek az a megfigyelés az alapja, hogy bar
mikroszkopikus szinten az aramlasi tartoma&ny monden pontjaban
csak az egyik fazis taladlhatdé meg egy adott pillanatban, mégis
kOzelitésként hasznos lehet az egyes fazisok mozgasat olyan
folytonos sebességmezdvel leirni, amely minden pontban defini-
alva van. Ezért az egyenletek szarmaztatasa a mikroszkopikus
mozgasegyenletek atlagolasaval tdrténik a térben kicsi, de vé-
ges tartomanyok és iddbeli intervallumok f5l6tt. Ez az atlago-
lds a tér-idd minden pontjaban folytonos sebességmezdt eredmé-
nyez mindkét fazisra.

A két-kbzeg modellek k&zds vonasa, hogy hat parcialis differen-
cidlegyenletet tartalmaznak /egy dimenzidban/: mindkét fazisra
a témeg, az impulzus és az energia megmaradasat kifejezd egyen-
leteket. Abban az esetben, amikor a fazisoknak kildnbdzd a se-
bességmezdjik a legdltalanosabban hasznalt modellek egyenletei
nem teljesen hiperbolikus rendszert alkotnak, a karakteriszti- °
kak kozdtt eldfordulnak komplexek is. Ez azt jelenti, hogy a
kezdeti érték feladat nem korrekt kitiizésii. Hidba megalapozot-
tak fizikailag az egyenletek, megoldasuk instabil, nem fiigg
folytonosan a kezdeti értékektdl.Ennek a problémanak az okait
és a megsziintetés lehetd3ségeit az utdbbi néhany évben proébaljak
megtalalni. [18, 26, 27, 28, 29]

A kérdés tisztazasa lényeges feltétele annak, hogy stabil és fi-
zikailag értelmes reaktor biztonsagi szamitasokat lehessen vé-
gezni. A kezdeti értékektdl vald folytonos fliggésnek a gyakor-
lat szempontjabol nagy a jelentOsége. Ez ugyanis azt jelenti,
hogy az adatok pontatlansdga nem fog ellendrizhetetlen hibakat
okozni a megoldas folyaman.

A gyakorlatban a kisérleti adatok megadasakor legalabb kétféle
hibat kovetiink el: az egyik a mérésekbdl adddik, a masik a sza-
mitdégépes szamadbrazolas pontossaganak korlatjabél. Ezért lénye-
ges az adatoktdl vald folytonos fliggés kovetelménye.

Az egyenletek és a nekik megfeleld fizikai jelenségek komplexi-
tasa miatt gyakorlatilag csak numerikus megoldasi mdédszerek jO-
hetnek szdéba. Véges differencidk alkalmazéasa esetén, ha a kez-
deti érték feladat nem korrekt kitilizési, akkor a feladattal
konzisztens differencia sémak nem lesznek stabilak [29]. A vé-
lemények megoszlanak arra nézve, hogy hogyan lehet mégis fizi-
kailag értelmes eredményeket kapni.

A valdsagos aramlasokban mindig fellép csillapitas /pl. a folya-
dékok viszkozitasa miatt/. Ez egy masodrendi tag figyelembe vé-
telét jelenti a mozgasegyenletben, mellyel a karakterisztikak
valdésakkavalnak. A kutatdk egy része szerint ilyen és ehhez ha-
sonld jelenségek /pl. felilileti fesziiltség [18] vagy virtualis-
tomeg hatas [30] | figyelembe vételével a feladat korrekt Kitli-




zésiivé tehetd, tehat azok a modellek, melyekben ezek nem szere-
pelnek hidnyosak, pontatlanok. Ez okozza instabilitasukat.

Masok szerint a nem korrekt kitilizésl feladattal is végezhetdk 5
jo eredményt add szamitédsok a véges differencidk médszerével.[?G}
Ennek oka, hogy a véges differencidk alkalmazasaval bizonyos
mesterséges csillapitast visziink a rendszerbe a donor differen-
cialas forméajaban.

A differencia sémdk stabilitdsa klasszikus értelemben finom ra-
csokra vonatkozik. Megadhatdk azonban olyan semak melyek durva
racson stabilak.

Ezekkel a problémakkal kapcsolatban vizsgalom a kdvetkezOkben,
hogy hogyan lehet korrekt kitilizéslivé tenni a két-kdzeg modelle-
ket, illetve hogyan lehet stabil differencia mdédszert megadni a
nem korrekt kitlizésl két-kdzeg modellekre.

2.4.2. A két-kdbzeg egyenletek stabilitdséanak vizsgalata

Az 1.3 fejezetbdl kideriilt, hogy a valds karakterisztak létezé-
se sziikséges feltétele az egyenletrendszer stabilitasanak. A
komplex karakterisztikaju egyenletek esetén a problémat a megol-
dés nagyfrkvencidju Fourier komponenseinek instabilitasa okozza.
Ezek a megoldds soran korlatlanul ndvekedhetnek. A hullamhossz
csbkkenésével [azaz a frekvencia novekedésével/ az eredmények
egyre nagyobb hibat fognak tartalmazni. Az ilyen instabilitasok
tisztan matematikai eredetiiek.

Ahhoz, hogy a két-kézeg modell jol irja le a folyamatokat olyan
fizikai hatasok beépitésére van sziikség, melyek legnagyobbrészt
elhanyagolhatdok, de a révid hullédmhosszaknal fontosakka valnak.
Ezek nem valtoztatjadk meg az alap-egyenletrendszer viselkedését
nagy hulléamhosszaknal, amikor az jol irja le a fizikai rendszer
viselkedését. Ilyen rovid hullamhosszu fizikai hatas a feliileti
feszliltség vagy a viszkozitads. Ezek figyelembe vételével a ka-
rakterisztikak valdsakka valnak, a rovid hullémhosszu Fourier
komponensek stabiliza&ldédnak, a kezdeti érték feladat korrekt ki-
tiizési lesz.

A kdvetkezbkben [iBJalapjén a feliileti fesziltség hatasat vizs-
galom az alapvetd két-kdzeg modell egyenleteire.
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Az alap-egyenletrendszer a kdvetkezd:

=(:9.) *é%@ngcvn -0, ik TE
') B LS s a ; AL = g 'r—l - " D’P o 3
Sl 1) v 520, =42 e
F ¥ X 2
s b [4.3]

A fenti egyenletek a szeparalt kétfazisu aramlast irjak le par-
huzamos sikok k&zd6tt zérd gravitacids erd mellett. Az egyszerii-
ség kedvéért feltettiik, hogy nincs viszkozitas és ezért surlé-
dasi nyoméasesés, valamint nincs fazisatalakulas sem. Az aramlas
szerkezetét a 9. abra szemlélteti.
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9. abra

A [4.1/-/4.3] egyenletrendszernek vannak komplex karakteriszti-
kai. Ha azonban figyelembe veszziik a felileti feszliltséget, ak-
kor ezek valdsakka valnak.

A felileti feszililtség beépitéséhez arra van sziikség, hogy a fa-
zisok nyomdsa kissé kiilénb6zd legyen. /4.2/ helyett ekkor a k&-
vetkez0 egyenlet fog szerepelni:

2o o) S qun?) + o

ahol P; az i fazis nyomasa. A feliileti fesziiltséget megadd e-
gyenlet pedig [18] szerint:

, izlhe A E)

e - o /4.5]
ahol 6§ a feliileti fesziiltség, R a fazisok k&z6s hatdranak goér-
blileti sugara. Erre az alabbi &sszefliggés ismeretes a parhuza-
mos sikok H tavolsaganak felhaszndléasaval: i_ i 3a4

oxz
Ezt /4.5/-be helyettesitve kapjuk, hogy

T
T iy o on /4.6]
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A /4.1/,/4.3/,/4.4] és |4.6]/ egyenletekre a tovabbiakban
6 -egyenletrendszer néven hivatkozunk.

Allitds: A 6 -egyenletrendszer karakterisztikus gydkei valdsak.

Bizonyités:
A karakterisztikus gydkdk meghatarozdsdhoz a 6 -egyenletrendszert
el6sz8r elsdrendiivé alakitjuk a _ 9y

ax

valtozd hevezetésével. Ezzel a [4.5/ egyenlet helyett az alébbi
két egyenlet 1lép fel:

sH 9f
PR # bH & =l Tl
39(4
A e N
.ax { /4.8/
Feltessziik, hogy a siirliségek csak a nyomas fliggvényei, azaz
& = fq(P4) és 0= i) /4.9/

ahol az f, és f, fliggvény ismert. Ezek segitségével «X,, ¢, é&s
9, eliminalhaté a rendszerbol.

Ezzel az egyenletrendszert felirhatjuk az aladbbi matrix alakban:
AQ%+B,§-§+d=O /4.10/
‘ot X T8 e ! AT
MZ"X4\/D>

ahol ¥ a fliggd valtozdk oszlopvektora, 4 =(P4,?L\UL

az A és B matrixok elemei pedig a kovetkezOk:

/X oA .

!/54%' @ Qs B _?:;f' 00,0, Oupey 0
x o5

I —i: Q- el a0 0 s 0 X, 0. R4, ¢

Eh e 3
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ce jeldli az i fazisban terjedd hang sebességét, amely /4.9/-bo1l
meghatarozhatdo a é? _dog

B

Osszefliggés alapjan.
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(0,0,0,0,B,-P, ,~p)

A d forrasvektor alakja: d

A karakterisztikus gyokdket a det (A - wB) = O egyenletbdl
kapjuk. Ezek a k&vetkezdk: iy i
O/kétszer/, (v £ c4) és (a4, c,)

Tehat 5#0 esetén a karakterisztikak valésak. /A 6§ =0 esetet a
kdvetkezd pontban vizsgalom. Ekkor a gydkdk csak a 94, p-=konst.,
azaz inkompresszibilis esetben hatarozhatdk meg analitikusan,
egyébként numerikusan kell megoldani a karakterisztikus egyen-
letet. A gydkdk kdzott mindkét esetben lesz komplex is./

Ezzel belattuk, hogy a felileti feszililtség beépitése a karakte-
risztikakat valdsakka tette.

Vizsgaljuk most meg a 6 -egyenletrendszer linedris stabilitésat.
Ezt analitikusan arra az esetre tudjuk elvégezni, amikor az a-
ramlds inkompresszibilis / ¢ nem fligg a nyomastdél/ és a pertur-
bacié nélkiili megoldas hely és idd szerinti derivaltjai nulléak
/azaz staciondrius és izotrdp az aramlas/. Ekkor a 6 -egyenlet-
rendszer alakja a k&vetkezd lesz:

arx.: D¢ LR N oy
at 5 O’L%i(j T o&;_%‘;{=o) c=4,2 i
Yo U 38 i :
S Al 5; . Z—f‘ =0, L=4,2 /4.12/
o(',‘ + ‘0(1 i e /4.13/
= = e,
G- P e -6HES /4.14]

ahol ﬁi =]¥ . A lineadris stabilitas vizsgalathoz ,minden u

(%
véltozd helyébe u + du exp[}(kx—cntﬂ -t irunk, s a kapott e-
gyenletrendszert linearizdljuk a Ju prturbacidéra vonatkozéan.
Az izotrdp és staciondrius perturbacid nélkilili megoldas azt je-
lenti, hogy u nem fligg x-t81 és t-tdl, ezért a kovetkezd ered-
ményt kapjuk:

(mieo + Lkay)dx, + tko,du, =0 /4.15/
- C—Lu) A th&)d}% + (k %,du; =0 /4.16/
(—Cw + Lko;)d—u; - Lk&_ﬁ =0 /4;17[
(-lw + Lku;_)d]rl + Lk d"t;?_ =0 /4.18/

-K'6Hdx, + ?4(5‘1-54 - ?1Jﬁ =0 /4.19]
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A /4.15/-/4.19/ homogén linedris egyenletrendszer a JR1,cf§;,
o4y, dv; és dx, valtozdkban. Ahhoz, hogy legyen a trividlistdl
kiildnb6z8 megoldasa az egylitthatd matrix determinansanak nulla-
nak kell lennie. Ez w=w(k)-ra a kdvetkezd egyenletet adja:

2

0(49,_(ku1—w)1+ 0(1_940&!);-—(») - x,%, 6 H k' = 0] /4.20]

Adott k-ra [/4.20/-bdl az wlk)gytksk a kdvetkezdk:

: Z Li
L koaoty {94“4—_‘_91‘01 + [S'Hk (0(194+0(4?2)-.&%((r1—/02)JL} FE21

Ky Q4+ X0, o g o &, %1%z

A stabilitds feltétele, hogy Im(w)£0 legyen minden w gy&kre.
Ekkor nem fog a perturbacid korlatlanul ndni. Mivel jelen eset-
ben az w -k egymds komplex konjugaltjai, ezért ez a feltétel
azt jelenti, hogy w -nak valdsnak kell lennie, azaz

GH K (e Qo + %4 92) = 9492 (W-47)" /4.22/

Ez az eredmény O tetszdleges értékére, tehat 6=0O-ra is érvé-
nyes. Ennek a vizsgélatnak az eredményei tehat mind az alap,
mind a § -egyenletrendszerre fennallnak.

A ¥, = A, esetben minden O = 0 éttékre teljesiil /4.22/ barmely
hullémhosszra. A tovabbiakban ezért feltessziik, hogy 4; ¥ 4 .

= O-t irva /4.22/-be a stabilitds feltétele semmilyen hul-
lamhosszra sem teljesiil, tehdt az alap-egyenletrendszer minden
perturbacidra nézve instabil.

A f7—egyenletrendszerre | §>0/ a [/4.22] feltételbdl az deriil
ki, hogy a révid hulléamhosszakra /nagy k/ stabil lesz, a na-
gyon nagy hullé&mhosszakra /kis k/ azonban instabil. Jeld&ljlk
ke-vel a kritikus hulldmszamot. Ennek értéke /4.22/-ben az e-

gyenldség teljesiilésekor: 3

alits R % 4.23
ke = |43 A&\[GH(O(Z?4+O‘AQ‘~,)] o s

Ezek szerint a ]T-—nél hosszabb hullamhosszakra a 6 -egyenlet-
<
rendszer instabil, az ennél nem hosszabbakra stabil. /A hosszu

hullamhosszakra kapott instabilitas a fizikailag értelmezett
Helmholtz-féle instabilitéas./

A /4.21/ egyenletbdl lathatd, hogy k<< k. esetén az alap és a
6 -egyenletrendszer lényegében azonosan viselkedik, mivel ekkor
a szbgletes zardjelben levd elsG tag elhanyagolhatd a 2.-hoz
képest ugyanugy, mintha 6 =0 lenne. Ezért a -ﬁi -hez képest

& <
hosszu hulladmhosszakhoz tartozdé fizikai instabilitdsok mindkét
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rendszerrel helyesen szamithatdk, vagyis a komplex karakte-
risztikaju rendszer is alkalmas ezek leirasara.

A hullamhossz csOkkentésével azonban a /4.21/-ben megadott co
egyre inkédbb kiildnbbz3 lesz 6§ >0 és 6 = O esetén, 2L -nél

kisebb hullamhosszakra pedig teljesen mas eredményt aé a két
egyenletrendszer. Amig a & -egyenletrendszer stabil viselke-
dést ir le, addig az alap-egyenletrendszer instabil megoldast
szamol. A valdésdghoz természetesen a 6 -egyenletrendszer all
kozelebb, mert a feliileti feszliltség egy ténylegesen fellépd
fizikai hatas, melyet egy pontosra tOrekvd fizikai modellezés-
nél figyelembe kell venni. Ez azt mutatja, hogy az alap-egyen-
letrendszer pontatlan, nem fizikai viselkedést tiikrdz rovid
hullamhosszakra. Ez a tény és a komplex karakterisztikak meg-
jelenése annak kovetkezménye, hogy elhanyagoltuk a felileti
feszliltséget [vagy mas olyan jelenséget, mely a r&vid hullam-
hosszakra gyakorol jelentdsebb hatast/.

A /4.21/-beli w-nak megfeleld novekedési tényezs:

Glk,t) = ‘exp[—iaﬂdt]‘ = exp[{hwgu)tj /4.24]

Ha w komplex, akkor [4.21/-ben a pozitiv eldjel felel meg a
ndvekedésnek. 6 =0-t irva /4.21/-be az alap-egyenletrendszer-
re kapjuk, hogy

kfﬂ’a'“?,, ( Ji_

Im(w) = “491“:91) J4.25]
K04 + Xy Q2 o
A O-egyenletrendszerre pedig L5 >O)
( O) f;\a k; "{Q’
g . ’
Im (w) K, %, 6 H (> Lj}L .
e L’c,*kj ha k< k¢

A feladat akkor korrekt kitilizésli, ha adott t iddpontban G(k,t)
k-ra nézve korlatos a O£k <O intervallumban, azaz, ha
Im(«) korlatos k-ra vonatkozdlag.

Ez igaz [/4.26/-ra, de nem igaz [/4.25/-re. Az alap-egyenlet-
rendszer tehat nem korrekt kitiizésli, a 6 -egyenletrendszer
viszont az.

Ezekutan tegylik fel, hogy a véges differencidk segitségével
akarunk numerikus megoldast keresni hosszu hullamhosszakra. Ha

a hullamhossz %—'—hez képest hosszu, akkor elvileg k&zOmbds,

<
hogy melyik egyenletrendszert hasznaljuk a fenti kettd kd&ziil,
mert ebben a tartomdnyban azonosan viselkednek. Ez azonban
csak akkor igaz, ha mas hullamhosszakra nem visziink a rend-
szerbe olyan perturbacidét, melynek ndvekedési sebessége na-
gyobb, mint a viszgalt hullamhosszé. A véges differencidk



felirasaval azonban a A x nagysagrendiének megfeleld hullam-
hosszu perturbacidt visziink a rendszerbe, ezért ilyen hulléam-
hosszakra nem engedhetd meg az instabilitéas.

Az alap-egyenletrendszerben minden hullamhossz instabil, ezért
a hosszu hulldmhosszu instabilitasok sem szamithatdk vele he-
lyesen, hacsak be nem vezetilink valamilyen mesterséges stabili-
zadlast a Ax nagysagrendii hullamhosszakra.

A S-egyenletrendszerben a A x nagysagrendii hulléamhosszak Ax,
© és a [4.22/-ben szerepld tdbbi valtozd értékétdl filiggden le-
hetnek stabilak vagy instabilak. A gyakorlatban eldforduld ti-
pikus értékek mellett ez a hulladmhossz még instabil, a stabil
hulladmhosszak Ax-nél lényegesen kisebb hullamhosszaknal kez-
dddnek. Ezt a problémat ugy lehetne megoldani, ha le lehetne

csbkkenteni Ax-et ugy, hogy k&zel .%l legyen. Ez viszont 1lé-

nyegesen megndvelné a szémitésigényt.cEzért altalaban a 6-e-
gyenletrendszer haszndlatakor is sziikség van mesterséges stabi-
1izal16 hatas bevezetésére a Ax nagysagrendii hullamhosszakra.
Mivel a racson felvehetd legkisebb hullamhossz 2Ax, a

k!zii valasztassal /4.22/ alapjan megadott

% @L&Y‘( 9t §2 ) B

O - by — Ay :

. c m2H \X:_91+0(4 Q=2 ( : L) b A
mesterséges feliileti feszliltség megfelel erre a célra. /C egy
dimenzié nélkiili konstans, értéke 1 ko&riil van./ Ez a 6% altala-
ban sokkal nagyobb, mint a feliileti feszliltség tényleges értéke.

Természetesen nem ez az egyetlen médja a stabiliz&lasnak. Mas
fizikai hatasok /viszkozitads, fazisatalakulas, impulzus-atadas,
virtuadlis-tbmeg hatas/ figyelembe vétele is hasonld eredményhez
vezethet. Ezenkiviil bizonyos differenciadléasi mdédszerek /[kiiloné-
sen a 2.3 pontban ismertetett donor differencidléas/ OSnmagukban
is mesterséges stabilizald hatéssal rendelkeznek anélkiil, hogy
kiildn stabiliz&ld tagot irtunk volna explicit médon az egyenle-
tekbe.

A most ismertetett vizsgalatnak elsGsorban elméleti jelentOsége
van a karakterisztikak, a stabilitéds és a révid hullamhosszu
jelenségek kapcsolatanak elemzésében a kétfazisu aramlas terén.
Fizikailag indokoltabb a viszkozitas figyelembe vétele, mint a
fellileti fesziiltségé, mert az nemcsak stabiliz&aldé, hanem csil-
lapitdé hatassal is rendelkezik. A viszkozitast tartalmazd e-
gyenletrendszer a fizikai valdsagnak jobb kdzelitését adja,
gyakorlati szamitéasokra alkalmasabb. Ennek alkalmazasakor fi-
gyelembe kell venni, hogy a numerikus stabilitashoz gyakran 1lé-
nyegesen nagyobb viszkozitdsi egylitthatdéra van sziikség, mint a-
mekkora a valdosagban fellép. A viszkozitéasra [28]—ban javasolt
érték » x~ vAx, ahol v a folyadék sebessége, Ax a racstavolsag.



Ez a vizsgadlat azt téamasztotta ala, hogy a kétfazisu aramlas
két-kbzeg modelljét leird egyenletek numerikus instabilitéasa
megsziintethetd, ha alkalmas fizikai jelenségeket beépitiink a
modellbe. Ezekkel a karakterisztikak valdsakka valnak, s rovid
hullamhosszak stabilizalddnak.

A kbvetkezd fejezetben azt vizsgalom, hogy a nem korrekt kitil-
zésli feladatra hogyan lehet j6 numerikus megoldast kapni.

2.4.3. Stabil differencia séma megadasanak feltételei a két-

kozeg modellekre

Annak ellenére, hogy a nem korrekt kitlizésli feladatra felirt
véges differencia sémdk a szokasos értelemben nem lehetnek sta-
bilak széles kdrben hasznaljak Oket a két-kdzeg modellek megol-
dasara.

Ebben a fejezetben azt vizsgalom [26] alapjan, hogy milyen ko-
rilmények k&zdtt varhatd, hogy egy adott véges differencia sé-
maval elfogadhatd numerikus eredményeket kapjunk annak ellenére,
hogy a hozza tartozd differencidlegyenlet-rendszer nem korrekt
kitlizési kezdeti érték feladatot alkot.

Az egyszeriiség kedvéért a tovabbiakban az egydimenzids két-ko-
zeg modell egyenletei k&zil csak a tomeg- és impulzus-megmara-
dasi egyenleteket tekintjiik /hasonldan az eldzd fejezethez/.
Ezek tartalmazzadk a vizsgalat szempontjabdél lényeges jellemzo-
ket.

Az impulzus egyenletekben vizsgdljuk az impulzusatadas szerepét
a stabilitas noveléséban. A modellre a 2.3 pontban ismertetett
numerikus sémat irjuk fel, s vizsgédljuk a stabilitasat az im-
pulzusatadast tartalmazd és nem tartalmazd egyenletekre.

A kOvetkezd egyenletrendszer az egyenes csOben torténd izoter-
mikus kétfazisu aramlast irja le, s a /4.1/-/4.3/ alap-egyen-
letrendszertdl csak annyiban kiildnb&zik, hogy az impulzus e-
gyenletek jobboldalai tartalmazzak a fazisok kozti impulzusata-
déas kifejezését. [/Ezek egyenld nagysaguak, de ellenkezd elGje-
liek. /

TOmegmegmaradas a gozfazisra:
s S Sy
b1 7, 4T R v,y = 0
o (%) + = (opy ) /4.28]

TOomegmegmaradads a folyadékfazisra:

2 I aidr oy ,
= dj‘?i}*-z—;(?[—(/‘ o(,PZU}_} «.0 /4.29]



- 52 -

Impulzus-megmaradas a godozfazisra:

o vy - o4y

Impulzus-megmaradas a folyadékfazisra:

LA ?i'i) L R 4.31
("'““7&(% + 4 + (4 o(),ax K (wy —072) /4.31/

Az egyenletek felirdsa azzal a feltételezéssel tortént, hogy az
egyes fazisok kiilénadlld folyadékként viselkednek, k6z8s nyomas-
mezd hat rdjuk és kitdltik a rendelkezésre alld térfogatot.

Az egyenletek baloldalainak elsd tagjai a tbmeg, illetve az im-
pulzus iddbeli valtozasat adjak meg egy adott pontban. A 2. ta-
gok a témeg, illetve impulzus konvekcidéjat jelentik ugyanabbdl
a pontbdél. Az impulzus egyenletekben a 3. tagok azokat a nyo-
masbdl szarmazd erdket foglaljak magukba, melyek a fazisokat
gyorsitijak.

A karakterisztikus gydkdk meghatarozasahoz fel kell irni az e-
gyenletrendszer karakterisztikus determindnséat. Az egyszeriiség
kedvéért feltessziik, hogy a folyadék Osszenyomhatatlan a gozfa-
zishoz képest. Ekkor a v karakterisztikus gydkdknek a kdvetke-
z0 egyenletet kell kielégitenitik:

= ! ‘ 2y 2 2
K€y (.,(«\.—KJE,) *(4'04)&/ (/M-A};,‘,L— ®p, Cy (u - ) (w— u;) = 0 /4.32]/
= 0%V il :
ahol cf‘= 5%— Beszorozva cf -tel és atrendezve azt kapjuk,

hogy két valdés gydk van: az egyik kevéssel kisebb, mint 4, - ¢y,
a masik kicsit nagyobb, mint vy + c,. A polinom vizsgalata azt
mutatja, hogy ha lenne még valds gydk, akkor annak ezek kozé
kellene esnie. Ez azonban Vv, ¥ v; esetén nem lehetséges, te-
hat a masik két gydk komplex, méghozza egymas konjugaltjai.

Ha vy, 4 <<c,, akkor a komplex gy&kdk kbzelitdleg:

2 @-d)?v

hol &£ z~—F"——
¥ o =

Vizsgaljuk meg egy kiilén egyenleten a komplex karakterisztikus
sebességeknek a véges differenciaegyenletre gyakorolt hatéasat.
Legyen ez az egyenlet:

S 2 :
dl- + 5 U’V * :’ 7

T
* b sntuge Hll i
1+ &% 4 &%

L

s

r X / :
%%+ u’d«—&da + Ku = 0 /4.33/

Feltessziik, hogy v, £ és K nemnegativ konstansok.
Kbzelitslik /4.33/-at az alabbi differenciaegyenlettel:

nt4 n " n :
Uil oelpea i Bia g il a0 B
At Ax ] i



Ez a differenciaegyenlet donor differencialast tartalmaz az
explicit konvektiv tagra, a Ku csillapité tag kifejezése impli-
cit.

Az 1.2.1 pontban ismertetett Neumann-féle linearis stabilitéas
vizsgalathoz tekintsik u- nak egy Fourier komponensét

A e\p(pkanj -et, ahol k= Ax -

m= 1,2,...,N. Ennek nagysidga egy iddpontrdl a kSvetkezOre lépve
)\ -szorosara nd, ahol

A= U+ Kkat)' [4 = AL (f+ 2 1)1 - exp(—-ckAx))]

Ha U\!)»l, akkor a megfeleld Fourier komponens u-ban korlatla-
nul névekszik, mig ha |A| £ 1 minden k-ra, akkor a megoldas
korlatos marad minden iddlépésre.

Ezért a stabilitas feltétele, hogy [A| £1 legyen minden k-ra.

N a racsintervallumok szama és

Ha K= £ =0, akkor = 4 — V‘At ]}1 - &Xp(-LkAX)]
vagyis a A értékek minden m-re a komplex sikbeli 4 — v‘f% KO=
zéppontu, Vv %; sugaru kdrén helyezkednek el. A k&r érinti az 1

pontba huzott filiggdlegest, s ha let < 1, akkor az egységkdrdn
beliil fekszik. AX

A 10. abra szemlélteti a A\ pontok mértani helyét. N&vekvd m-re
a pontok az 1 ponthoz kdzelednek.

-
//
4\ ¢
34
2
10. abra

Ebben az esetben /[/4.33/ megoldadsai halad6é hullamok, a kdzelitd
megoldasnak nem lehet korlatlanul ndvekvo komponense. A stabi-

1itas feltétele [Al£1, azaz v 2_3% <1

Ha K=0, de £#0 [azaz a sebesség komplex és nincs csillapitas/,
akkor az eldzd kort (L+€ﬂ% -szeresére nagyitjuk és arctan &
szbggel elforgatjuk az 1 pont koriil. Ha & negativ lenne a ka-
pott eredmény még mindig az egységkdrdn beliil lehetne, de ha £
akarmilyen kis pozitiv szam, akkor biztosan lesz olyan m, mely-



neX megfeleld A mar az egységkdrdn kiviilre esik /még akkor is,

ha VH§E<11/. Ilyen m-re a megfeleld Fourier komponens korlatla-
nul fog ndni. A numerikus megold&s viszont nem tartalmazza
sziikségképpen ezeket a komponenseket, ha csak néhany osztaspon-
tot vesziink fel, azaz ha elég durva a racs.

Végiil, ha K>0, akkor a kor tovabb médosul az origd koriili

(l+Kg§tT4—szeres kicsinyitéssel. Ha K elég nagy, akkor a teljes
kdr az egységkdrdn beliil lehet /még nagy m-re is/.

Ez az egyszeri példa szemlélteti a két-k&zeg modellekben fellé-
pd jelenségeket. Azoknak a konvektiv tagoknak a donor differen-
CAALLRE, PeLIRNES ‘f§§<<l stabilizaldé hatéssal van a legna-
gyobb frekvencidju komponensekre akkor is, ha a hozzajuk tarto-
z0 sebesség komplex. A komplex sebességnek az alacsony frekven-
cidju /nagy hulladmhosszu/ komponensekre gyakorolt destabiliz&ald
hatasat adott racsméret mellett elegendden nagy csillapitas be-
iktatasaval lehet ellensulyozni.

Ha a racsot finomitjuk, azaz m-=>00 , Ax >0, At->0 és
1+K At — 1, akkor a véges differencia mdédszer szilikségképpen ad
korlatlanul névekvd komponenseket is. Ha 5 §€ & akkeR

az ilyen komponensek el®szOr azoknal a hullamhosszaknal jelen-
nel meg, melyek Ax-nek nagyszamu tobbszdrbsei.

A két-kbzeg egyenletekben a csillapitas szerepét a fazisok ko&-
zo6tti impulzusatadas jatssza. A stabilitast nem a szokasos ma-
tematikai értelemben vessziik, amely bizonyos "jo viselkedést"
kivan meg Ax, At =0 estén. Ilyen értelemben a komplex karak-
terisztikaju két-kdzeg egyenletek nem lehetnek stabilak.
Fizikailag j6l1 viselkedd megoldast kapunk adott racsra, ha a
lokdlis stabilitads vizsgalat eredménye |A| £ 1 minden kompo-
nensre.

A kovetkezOkben a [/4.28/-/4.31/ egyenletekre felirt véges diffe-
rencia kozelitést vizsgadljuk meg. A séma alapja a 2.3 pontban
ismertetett szemi-implicit mdédszer, melyben a hang terjedésével
kapcsolatos hatasok kezelése implicit, a konvektiv jelenségeké

pedig explicit. Igy a At iddlépés korlatja: AR
R X
At;=mun(}UA, vz’)

A valtozdk definidlasa itt is a 6. abra szerint torténik: a se-
bességeké a fél osztaspontokban, a tdbbi valtozd6é az egészekben.
A hely szerinti differencidkban a donor Osszefliggéseket alkal-
mazzuk.
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A differencia séma alakja vv,vb‘> O esetén:
h+A n+4

LR ntA : n "o @
oy (?‘v\/; = ?(;(9-(\“ *, (?/)j(nj,)‘~+£ L X ,4(9‘,\ -4(4;\,/9_ o
i . Ax % {4.35]
; Ny, nt4 n h / n\/ n, & )hti
L’I—-F(J )LJDL\A —(/1—0(‘)(?2)‘ ¢ \4—dj -'(-ECL?\’U_ Hi __M o 4)(9(), (47 pi L -
At .
d j 5 n s
el S n tie X _-,?—’ -
d?(gv)? (Nv);+{ ( v)r»z s (”V)=+L (VV\Q*{ (OV)J L .
At 'z Ax |
nt n+4
Bas — Py n+A Lol
n a*“ 3
i A & Kd"'ji_ [(Uﬂué ’Urv)i.*%, [4.37]
L : 3 il ntl o n ’ = : -
%f—m;W(?L\T kaixj*i "(Ul>;téL + (U’\h L Welirt - pdi-4 +
: [ At (AL e
ntt ntf
(4 {n) pﬁ« r D,j K l_( \n+1 : )M1
= Al 55 S SR e AT i A — L,U’ N :{
AP S d 4 L]+
. : : ; /4.38/

A tdmeg egyenleteket a racspontok felezdpontjai koril, az im-
pulzus egyenleteket pedig a racspontok koriil differencialtuk.

A tSmegmegmaradasi egyenletekben a sebességet tartalmazdé tagok,

az impulzus egyenletekben a nyomasgradienst és az impulzusata-
dast tartalmazé tagok tartalmaznak olyan valtozdét, melynek ér-
tékét az uj iddpontban vessziik.

A kbvetkezdkben a felirt numerikus. séma stabilitésat vizsgaljuk.

Tekintslik eldszdr a K=0 esetet.

A Neumann-féle lokalis linedris stabilitas vizsgalathoz kife-
jezziik a /4.35/-/4.38/ egyenletekben eldforduldé differencidkat
a o, X, v,, v, négy alapvaltozdé differencidi segitségével.
Ezutan az egylitthatdkat konstansnak tekintve vizsgaljuk egy
Fourier komponens ndvekedését. Ezt a kOvetkezd atmenet matrix

irja le:
i?(A—4-%§@) ov(A- 4 +47) ‘A——-mgv k 0 %
0 o (A1 + 43 0 A%(A-@ww
AAL ¢y Lk 0 ov (A=A + &%) 0
ASE cr ik g . 0 o (A=A + &) s

39/
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Az oszlopok balrdél jobbra a Ovr X, Vy és v, valtozdknak felel-
nek meg,

)

T s A in A e At [7- it gl
k= 4. k = 251nzk4x, Vy —VVZZ‘_l exp ( 1kAx)], V5

TmAx
/4.39/ A sajatértékei kielégitik a kdvetkezd egyenletet:

Alcm[("/\” *"72)1* (’1-0()0%(/\'4 +A7‘V)1J & [ +E~V?Z(;\—4 + /FL)L: 0, /4.40/

ahol € = cV£E:ZSin_ﬂ;

sk AX 2Zm
Vizsgaljuk eldszdr a rendszerviselkedését nagy frekvencidkra
/kis m-re/. A fenti differencia séma hasznadlata akkor eldnyds
elsGsorban, ha At megkdzeliti felsd korlatjat, azaz

e ”‘”’( L U?,l
és lényegesen nagyobb, mint 4x/, vagyis v,,v,<<c . Ekkor
cy£->> 1 és kis m-re Cp,>> 1. Ekkor /4.40/ két gydke kozel
Cm<<1l nagysagu, masik két gydke pedig kdzelitBleg kielégiti az
alabbi Osszefliggést: - o N
r Le(A-1+AY), ahol g2z X

t‘(?z

e

A=A+ Ay
Ebb3l adsdik, hogy A XA~ B (4% ie TH)(1 = e)

Ezek a pontok a vbﬁﬁ sugaru és az 1 pontot érintd kordn he-
X

lyezkednek el a komplex sikon, mely az 1 pont koril el van for-

r

; A : y - 5
gatva -k arctan(a-éﬁ sz6ggel, majd visszafelé F arctan £ szOg-
gel. A pont koriili nagyitas 1 + %%

1-t31 legtadvolabb esd pontokra/ az ezen a k&rdn levd pontok nem

-szeres. Kis m-re [azaz az

esnek az egységkordn kiviilre, ha {Vb %%}<.l és FQ,§§!<: 1. Tehat

ha az id6lépés nem nagyobb, mint az ebbdl eredd ,; <'ML"(F¥L}%Q}

¢ v
korlat, akkor a legnagyobb frekvenciaju komponensek /azok, me-
lyek hulldmhossza Ax-nek kisszamu t8bbszdrdse/ nem ndnek expo-
nencialisan. /Még az impulzusatadads nélkiili nem korrekt kitlizé-
sii két-kbzeg feladat esetén sem./

Az alacsony frekvenciaju komponensek vizsgélatéhdz tekintsiik
/4.40/-et nagy m-ekre. Mivel m —= o0 esetén C,,> 0, ezért a

gyokdék A =1 - ek—hez partanak ‘Jketszer/ és X'=1 = GQ—hez

/kétszer/. Pontosabb vizsgdlathoz legyen A = 1 - 7, +d és ko-
zelitsiik d -t nagy m-re ugy, hogy /4.40/-et atirjuk dJd kifeje-
zéseként, s csak azokat a tagokat hagyjuk meg, melyek d-ban
legfeljebb masodfokuak. Az igy kapott d -ban masodfoku polinom
gytkei a kbvetkezd Osszefliggést elégitik ki: ;

i 5
iy Eaie A (v ~4e)/ c3 ]
(- ) (5—1) A+ € =iy - i Y/ 5

e



wh iy

Mivel /4.35/-/4.38/ hasznalatakor feltehetjiik, hogy [#v -+ |<K ¢,

igy ;
/ s ; = s, A rTAt ~ Sl
A V(/‘—VL) [ U(U LL)MAK ) é,z]
Mivel fl = vcf- g = U{m ) és azt szorozzuk egy olyan mennyi-

séggel, melynek nagysdga 1+ 0(m") , ahol O(m™") pozitiv lesz a
fenti * egyike esetén, ezért egy A gydk sziikségképpen az
egységkoron kiviilre esik nagy m-re.

Hasonld eredményre jutunk a A=) = vv + d helyettesitéssel.
Ezért a [/4.35/-/4.38/ séma K = O esetén nagy m-ekhez tartozd
hullamhosszakra instabil lesz.

A racsintervallumok N szamat kétféleképpen névelhetjlik. Az e-
gyik, hogy ndveljiik a fizikai hosszat, mikdzben Ax-et rdgzit-
jik. K = O esetén az egyenletek invariansak a tér- és iddbeli
azonos aranyu nagyitassal szemben, ezért N novelésének masik
médja lehet, hogy a fizikai hosszusag megtartasa mellett At-t
és A x-et aranyosan csotkkentjiik, azaz finomitjuk a racsot.

K = 0 -ra tehat azt kaptuk, hogy a /4.35/-/4.38/ sémaval vég-
zett numerikus szamitdsok kevés térbeli osztaspont esetén jol
viselkedd megoldast adnak. A racs finomitasaval azonban insta-
bilitasok lépnek fel, varhatdélag Ax-nek nagyszamu tSbbszdrd-
seinek megfeleld hullamhosszakra.

Vizsgadljuk meg ezutan a K > O esetet.

A [/4.37] és /4.38/ egyenletekben a sebességek implicit médon
szerepelnek, hogy ne legyen sziikség At tovabbi korlatozésara
az impulzusok kozti szoros kapcsolat miatt. A linearis stabi-
litds vizsgdlathoz felirt atmenet matrix /4.39/-t51 a jobb al-
sO 2X2-es sarokban kiilonb&zik, melynek alakja most:

gv[A(A+K)_-A—rG§] - Apyk
"Agv% ?Q(/,\—-/‘*A,FL)*- Agv"\

ahol w= Kk 4t /A sebességeket akkor ajanlatos implicit modédon

Ov
felirni, ha «w > 1./ Az igy kapott karakterisztikus 'polinomot
ismét meg kell vizsgdlni, hogy teljesiil-e ra a (Al £ 1 felté-
tel.

Tekintslik most is eldszdr a magas frekvenciakat, azaz legyen

m kicsi. Feltéve, hogy K >> 1 és mint az eldzbekben C,. > 1,
a pollnom két gyOke kozelitdleg i nagysagu, egy kozel u.‘
nagysagu, a negyedik pedig k&zelitdleg o~ =t g;

e

At £ M(n(\%l\%l)

Ez is az egységkdrdn beliilre esik, ha
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Kis m-re és nagyon kis &«-ra is mind a 4 gydk bellil van az
egységkdrdn, mert K= O -ra ezt az eldbbiekben belattuk / a

K = O eset/ és a gyOkdk folytonosan fiiggnek w-tdél. Ezzel
nagy és nagyom kis wK-ra bizonyitottuk, de jogosan feltéte-
lezhetjiik a k&zbililsG «-kra is, hogy a kis m-nek megfeleld
hulldmhosszak nem ndvekszenek, mivel az implicit mdédon kezelt
csillapitast tartalmazd egyenletek megoldasai nyilvan még ke-
vésbé ndvekednek, mint a csillapitas nélkiili egyenleteké.

A kis frekvencidju viselkedést most is az m—>o0 eset vizsga-
latdbdl kapjuk. Az N-—>o0 kiilonbozd értelmezése most kilildSnbd-
z8 megoldashoz vezet a K(vy - v,) tag jelenléte miatt.
Ha N ndvelése a racs finomitasat jelenti, akkor K= KAL—nek
nulldhoz kell tartania. A K(v, - v,) tag implicit mddon’ tar-
talmazza a fizikai hosszat.

Vizsgaljuk eldszdr az m —oO esetet ugy, hogy kdzben megtart-
juk w értékét. Ez értelmezhetd ugy, hogy finomitjuk a racsot
és feltessziik, hogy egy bizonyos pontnal (ax)™ és (At)™ minden
magasabb rendii kifejezése elhanyagolhatdé w« kivételével. Vagy
ugy, hogy Ax-et rdgzitjuk és a fizikai hosszat ndveljik. Fix
w -ra és m > o0 -re hatdrértékként a kovetkezd egyenletet
kapjuk:

(A-41+ 5 )XA-1447) [(u?\ * A=) g (A=1) + Ao i) .-f/'\lyvu"] &0

A szdgletes zardjelben levd masodfoku polinom gydkeirdl meg-
mutathatd, hogy valdsak, pozitivak és egynél kisebbek, ezért
elég nagy m-re a megfeleld gydkoknek az egységkdrdn bellilre
kell esniiik. A masik két gyok vizsgalatdhoz az eldbbiekhez
hasonléan legyen A =1 - ¥, + d , ezt helyettesitsiik az ere-
deti polinom egyenletébe, s csak a Jd-ban elsdfoku tagokat
hagyjuk meg. Az m ' magasabb rendii kifejezéseinak elhanyago-
lasaval és a

0ty — 4| << Z vk 2 4 8Y]
~y K
feltételezéssel a gydk értéke kbzelitdleg A=(ﬁ—4g) j;éi
k+ m

amely az egységkdrdn belil van. Ugyanezt kapjuk A =1 - 3; +d
helyettesitéssel, tehat a nagy hullamhosszu komponensek is
j61 viselkednek.

A /4.41] feltétel teljesililése fontos ahhoz, hogy nagy hullam-
hosszakra is j6 viselkedést kapjunk. Jelentése az, hogy az
impulzusatadas mértékének meg kell haladnia egy bizonyos ér-
téket ahhoz, hogy elkeriiljiik a koraltanul ndvekvd hosszu hul-
lamhosszu komponenseket. Ez a minimalis érték a racsméret és
az impulzusatadas fizikailag értelmezhetd kapcsolatabdol ado-
dik. Nagy m-re /[/4.41/ a kovetkezd Osszefiliggéssel ekvivalens:

¢
&%‘VA‘) > -m i /4.42]
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. : oy - 7|
A K-ra [26:[—ban javasolt alak: K = Cgp Qv S

lyadékcsepp vagy a buborék sugara, Cp pedig a kdzegellenallasi
tényezd. Ennek felhaszndlasaval a /4.41/ feltétel a kovetkezd
formaba irhaté: oe

mAx >€>‘§Vfg;ry

azaz az mAx hulldmhosszhoz tartozd komponens nem fog korlatla-
nul ndni, ha ez a hulladamhossz nagyobb, mint az egyes buborékok
vagy folyadékcseppek sugaranak bizonyos szamu tSbbszdrbse.

ahol r a fo-

Ezzel belattuk, hogy a /4.35/-/4.38/ differenciaegyenleteken a-
lapuld szamitasokban a nagy frekvenciaju komponensek nem nd-
vekvSk és azok a nagy m-hez tartozd kis frekvencidju komponen-
sek, melyek kielégitik /4.42/-t egy adott racs esetén szintén
joél viselkednek.

Ez azonban még nem biztositja, hogy egyaltalan ne legyen ndvek-
vO komponens. Ugy tiinhet, hogy ehhez /4.42/ teljesiilését kelle-
ne megkdvetelni egyészen m=1-t8l. Ekkor athidalnank a kis és a
nagy frekvencidk ko&zti rést. De [/4.42/ kifejezetten csak nagy
m-re érvényes. Viszont belattuk, hogy ha KA x elég nagy, akkor
az impulzusatadas stabilizdlja azokat a nagy hullamhosszakat,
melyekhez egyébként noévd komponensek tartoznanak.

A gyakorlatban a /4.35/-/4.38/ sémadkhoz hasonld sémakkal vég-
zett szamitdsok azt mutatjak, hogy minden hullé&mhosszra jol vi-
selkedd /azaz nem korlatlanul novekvd/ megoldast kapunk. Ha a-
zonban K értékét csdkkentjiik, akkor a hosszu hullamhosszu tar-
tomanyban n&évekvd osszcillacié léphet fel. [26]]

Osszegezve tehdt megmutattuk, hogy a kétfazisu a&ramlas két-ko-
zeg modelljével végzett véges differencia szamitasok jol visel-
kedd megoldast adnak, ha a fazisok k&zt fellépd impulzuséatadéas
elég nagy és a térbeli racs nem tul finom. Ez annak ellenére
igaz, hogy a két-k&zeg modell differencialegyenleteinek vannak
komplex karakterisztikai, tehat a kezdeti érték feladat nem
korrekt kitlizésli és az elegendden finom racson végzett szamita-
sok szilikségképpen insatbilak. Szarmaztattunk egy fizikailag ér-
telmezhetd kritériumot a racs méretére vonatkozdan: a buborék
vagy folyadékcsepp adramlasan alapuld impulzusatadasi modellben
a kritikus racsméret a buborék vagy folyadékcsepp sugaranak
tObbszbrbse. Ez azt jelenti, hogy a kozelitd szamitasok mindad-
dig jék lehetnek, amig nem prébaljuk olyan jelenségekre alkal-
mazni, melyek finomabbak, mint az impulzusatadasi tdrvényben
implicit médon tartalmazott méret. Ez fizikailag elfogadhatd,
mivel a két-kdzeg modell nagy mennyiségii folyadék és buborék
egylittes dramlasat vizsgdlja az egyes buborékok vagy folyadék-
cseppek altal okozott fluktuacidk elhanyagolasaval.

Igy a kétfazisu dramlds durva modellezése esetén annak ellenére
is jO0 a k6zelitd szamitasok eredménye, hogy a matematikai mo-
dell nem korrekt kitiizésii, ha nem prdobalunk tul finom megoldast



keresni.

Masrészt viszont abban az esetben, ha nincs impulzusatadas
/azaz szeparalt aramlas modellezésekor/ a térfogattdrtek valto-
zasa a fazisok érintkezési felililetének mozgasat tiikrdzi. Ezért
K=0 esetén minden olyan k&zelitd megoldas, amely megengedi a
térfogattdrtek valtozasat sziikségképpen finom megoldas. Ebben
az esetben az eldzd pontban leirtak szerint a felileti fesziilt-
ség figyelembe vételével a feladat korrekt kitlizési lesz.

Finom modellezés esetén tehat a megfeleld modell més, matemati-
kailag korrekt kitlizésl kezdeti érték feladat.

A [/4.28/-/4.31/ modell akkor alkalmas a szamitasokhoz, ha durva
modellezés is elegendd. Az, hogy a modell mennyire tiikrdzi a
fizikai valdésagot a kisérleti eredményekkel vald Osszevetésbol
deridl ki.

A kovetkezd fejezetben egy olyan két-kdzeg modellt ismertetek,
amely ilyen durva modellezés céljéra késziilt [31].

2.4.4. Egy 3-dimenzids két-k&zeg modell numerikus megoldasa

Az eld6z0 fejezet vizsgalataibdl kiderilt, hogy a komplex karak-
terisztikdju két-kbzeg modellekkel is kaphatunk jo eredménye-
ket, ha nem akarunk tul finom jelenségeket modellezni és a ko-
zelitéshez megfeleld véges differencia sémat hasznalunk.

Ebben a pontban egy olyan 3-dimenzids két-kdzeg modellt irok
le, melynek numerikus megoldasa ezeken az eredményeken alapul.

A modell a [31] szamitdgépes program része, amely a vizhité-
ses reaktorok zdénajédban lejatsz6dd kétfazisu aramlast és hoat-
adast irja le derékszodgli koordinata rendszerben. A hirtelen
nagy nyomascsOkkenéssel jard balesetek leirasa nem tartozik a
f6 alkalmazasai kozé. A rendszer nyomasa az lzemi szinten van,
ezért a benne tOrténd kétfazisu aramlas szerkezete /[buborékok,
cseppek, egy részik Osszeolvadva/ finom az egész zdna szerke-
zetéhez képest. A modell célja az egész zbna leirasa, amihez
ezt elemi térfogatokra osztjuk. Ezek méreténél finomabb jelen-
ségek nem oldhatdék meg vele. A folyadékot leird valtozdk érté-
két nagyszamu buborék, folyadékcsepp atlagabdél szamitjuk.

A modell 6 alapegyenletbdl all: kilon-kiilon parcialis differen-
cidlegyenletek az egyes fazisok tOmegének, impulzusanak és e-

nergidjanak megmaradasara. A problémat a tdmeg, impulzus és e-
nergiaatadast leird6 matematikai Osszefiiggések megadasa jelenti,
mert ezek az atadasi folyamatok jelenleg még nem egészen tisz-
tazottak fizikailag sem. A [Elj—beli modell ezekre olyan Ossze-
fliggéseket tartalmaz, melyek a tapasztalat szerint jol leirjak
a folyamatokat olyan korililmények kozott, melyek vizsgalatéara a
modell késziilt. A kutatas fejlddésével ezek pontosabb &sszefilig-



gésekre cserélhetdk ki.

A numerikus moédszer kivalasztasat tObb szempont hatarozza meg.
Mivel az alap-egyenletrendszerhez tartozd kezdeti érték fela-
dat nem korrekt kitlizésli a klasszikus értelemben, ezért a fel-
hasznalt racsot nem lehet tetszOlegesen finomitani.

Gyorsan valtozd tranziens esetén kis iddlépésekre van szikség,
hogy az aramlas alakulasat minél pontosabban leirhassuk.
Masrészt viszont lassu folyamatoknal csdkkenthetjilk a szamita-
si igényt, ha lehet®ség van nagy id6lépések vételére.

Olyan mdédszerre van tehat sziikség, amely kis és nagy iddlépé-
sekkel egyarant tud szamolni. Erre a célra szolgal a 2.3. pont-
ban ismertetett szemi-implicit véges differencia séma. Ennek
alkalmazasaval a stabilitas kovetelményébdl adodo
| 1
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ndvelhetd, ha azokat a kifejezéseket implicit médon differenci-
aljuk, melyek magukba foglaljak a hang terjedését. Ugyancsak
implicit médon t&rténik az atadasi tagok szamitasa, mivel ezek
szoros kapcsolatot teremtenek a fazisok allapotvaltozdéi kozt, s
ezzel csdkkentik a lehetseges iddlépés nagysagat.

A differencia séma felirasa utan egy nemlinearis algebrai egyen-
letrendszert kapunk, melynek id&lépésenkénti megoldasa adja az
adramlast leird valtozok értékét az uj iddpontokban. A megoldas-
ra kidolgozott eljaras két iteracids ciklusbdél &ll. Az elsd egy
Newton-iteracid, melyhez minden lépésben meg kell hatarozni a
Jacobi matrixot és meg kell oldani a kapott linearizalt egyen-
letrendszert. Ez a linedris egyenletrendszer atalakithatd ugy,
hogy minden valtozdét eliminalunk a nyomasok kivételével. A ka-
pott egyilitthatdomatrix blokk-tridiagonéalis lesz, melyet a 2.3.
pontban leirt blokk-Gauss-Seidel iteracidval meg lehet oldani.
Ez a masodik iteracid, melyet nyomas-iteracidnak neveziink.

Ennek a magoldasi mdédszernek az az eldnye, hogy a Newton-itera-
cid altaldban legfeljebb 3 ciklus utan mar konvergal, mig min-
den egyes Newton-iteraciodban sziikség lehet k&zel 100 nyomas-i-
teracidra is. Ez utdbbinak azonban nem tul nagy a szamitas-
igénye.

A Newton-iteracidé fontos tulajdonsdga, hogy minden olyan kezdo-
érték esetén, amely elég kozel van a tényleges értékhez konver-
gal, ha a Jacobi matrixot pontosan, elhanyagolas nélkiil szamit-
juk. A gyakorlatban kezddértékként vehetjiik a régi iddponban
kapott értékeket. Ha esetleg nem konvergalna az eljaras, akkor
az idolépés csdkkentésével mar biztosan jo kezdbértékek lesznek
a régi iddponthoz tartozd értékek. /Ha a differencia egyenletek
pontos megoldasa folytonosan fiigg az idotdl, akkor az uj érté-
kek a régihez tartanak, ha At —=0./ A konvergencianak ez az el-
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méleti biztositéka nagyon megbizhatdéva teszi a mdédszert szemben

masokkal, ahol esetleg rejtett fizikai feltevéseken mulik a kon-
vergencia, s ha varatlanul nem konvergal, akkor nehéz a hiba e-

redetét megtalalni.

A két-kb6zeg modellt 3 dimenzidban a kOvetkezd skalar és vektor
egyenletek irjak le:

Tomegmegmaradas az egyes fazisokra:
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A fazisok energidjanak megmaradasa:
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Az egyenletek felirasa azzal a feltételezéssel tdrtént, hogy az
egyes fazisok kiilénalld folyadékként viselkednek, k&zOs nyomas-
mezd hat rajuk, s kitdltik a rendelkezésre alld térfogatot.

Az egyenletek baloldalainak els® tagjai a témeg, az impulzus,
illetve az energia iddbeli valtozasat adjak meg egy adott pont-
ban. A 2. tagok a tdmeg, impulzus, energia konvekcidjat jelentik
ugyanabba, vagy ugyanabbdl a pontbdél. Az impulzus egyenletekben
a 3. tagok a nyomasbdl szarmazbd erdket foglaljadk magukba, me-
lyek a fazisokat gyorsitjak. Az energia egyenletek 3. tagjai a
belsS energia csdkkenését vagy nodvekedését fejezik ki a megfe-
leld fazis tagulasanak vagy Osszenyomasanak eredményeképpen.
Ugyanitt a 4. tagok annak a munkanak az ereményei, melyet az e-
gyik fazis taguléasa végez a masikon.
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Az egyenletek jobboldalai a fazisok kozti tOmeg, impulzus és
energiaadtadast fejezik ki, illetve az impulzusatadast a folya-
dék és a tartaly fala k&zott. Ezekrdl feltételezziik, hogy nem
tartalmazzadk az ismeretlen fliggvények derivaltjait. A fazisok
kdzti Atadadsi tényezOk azonos nagysaguak és ellentétes eldje-
liiek, mert a megfeleld egyenletek Osszeadasaval a teljes fo-
lyadékra érvényes megmaradasi egyenleteket kell kapni.

Az [/5.3/ és [/5.4/ impulzus egyenletek vektor egyenletek, s
ténylegesen 6 skaldr egyenletet jelentenek a sebesség 3 kompo-
nensére mindkét fazisban. Ezek az egyenletek egyszeriisithetdk,
ha részben elvégezziik a derivalast és felhasznaljuk az /5.1/,
/5.2 egyenleteket:
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A kapott egyenletrendszerben az x, y, z és t fliggetlen valtozdk
mellett a k&vetkezd 12 fiiggd valtozd szerepel:

az o térfogattdrt, a P nyomds, a §v _€s 9 *§ﬁrﬁségek, az- ey
és ¢, fajlagos belsd energidk és a #~, és 4 sebességek 3-3
komponense. Az atadasi tagok ezeken kivil még a T, és T, hOmér-
sékletektdl is fliggenek. Ezt a 14 ismeretlen filiggvényt tekint-
jlik alapvaltozdénak. Valdjaban az atadasi tényezdk a folyadéknak
még egyéb jellemzdit is tartalmazzdk, pl. a telitési hOmérsék-
letet, a viszkozitast, de ezekrdl feltételezzik, hogy a fenti
14 valtozd ismert filiggvényei, s beldliik meghatadrozhatodk.

Eddig 10 egyenletet irtunk fel. A zartsaghoz szilikséges tovabbi
4 Osszefliggést az allapotegyenletek adjak, melyek alakja a ko-
vetkezsd:

= (P TV) /5.91
0¢=0(P T}) /5.10/
ev= e, (P, T) /5.11/
e, = €,(P, T,) /5.12]

A modellt leird parcidlis differencialegyenleteknek vannak
komplex karakterisztikai, tehat a veliik felirt kezdet érték fe-
ladat matematikailag nem korrekt kitilizésli. A komplex karakterisz-



tikdk miatt tetszdlegesen kis perturbacidé a kezdeti adatokban a
megoldas soran tetszdlegesen nagy hibat eredményezhet egy bizo-
nyos idd utdn. Fizikai csillapitd kifejezések stabilizalhatjéak
a megoldasnak egy bizonyos frekvencia alatti Fourier komponen-.
seit, azaz a hosszu hullamhosszu komponenseket. A nagy frekven-
cidju komponensek azonban erGsen instabilak. A komplex karakte-
risztikadk miatt a komponensek frekvencidjukkal arényosan ndve-
kednek, vagyis a nagyobb frekvencidju komponensek abszolut ér-
téke gyorsabban nd, mint a kisebb frekvenciajuaké. A csillapi-
tas csak az alacsony frekvencidju komponensek ndvekedését tud-
ja megakadalyozni, egy bizonyos frekvencia f616tt minden kom-
ponens noni fog.

Ha a satbilizalt komponensek megfeleld frekvencia tartomanyt
képviselnek ahhoz, hogy a kivant jelenséget leirjuk, akkor a
feladatot meg tudjuk oldani ezek segitségével. Ez tdSrténik a vé-
ges differencidk alkalmazasakor: adott racs esetén a numerikus
megoldasban szerepld legrovidebb hullamhossz nem lehet r&videbb,
mint a racstavolsag kétszerese, azaz a megfeleld frekvencia nem
lehet ennél nagyobb. Ezzel a korlatlanul n&vo komponenseket ki-
zarjuk a megoldasbdl, ha a racs elég durva. Tehat a racs finom-
saganak és a csillapitasoknak egylittes hatasaként jo numerikus
kozelitést tudunk kapni. A kettd kbézt a kovetkezd az Osszefig-
gés: erdsebb csillapitds magasabb frekvenciaju komponenseket is
stabilizal, tehat valamivel finomabb racson is jo megoldast ka-
punk és megforditva.

Az [5.1/-/5.6/ két-kdzeg modellben a csillapitast az atadasi
tagok jelentik. Ha a zonadban levd két fazis nagymértékben keve-
redik, akkor az impulzusatadéas kiiléndsen nagy. Errdl az eldzd
fejezetben kimutattuk, hogy erdsen stabilizalja az alacsony frek-
vencidju komponenseket. Eredményként azt kaptuk, hogy az mAx
hulléamhosszu komponens m>> 1 esetén jol viselkedik, ha

P4 7 i F
mAx >>-l7 r, ahol r az impulzusatadasban imp-

licit mdédon szerepld hosszusag, adott esetben a buborék vagy fo-
lyadékcsepp sugara.

Emellett a 2.3. pontban ismertetett donor differencialasnak is
van stabiliz&l6 hatasa azokra a komponensekre, melyek hullam-
hossza a racstavolsag kisszamu tobbszOrbse. Ez azt jelenti, hogy
még csillapitas nélkil is kaphatnadnk j6 eredményeket, ha csak
néhé&ny osztaspontot vennénk fel. Nagyobb hib&k csak azokban a
komponensekben lépnének fel, melyek hullamhossza lényegesen na-
gyobb, mint a racstéavolsag.

Kiilén problémat jelent a helyes peremfeltételek megvalasztésa.
Teljesen hiperbolikus rendszer esetén /mint amilyen a 2.2. pont-
ban ismertetett homogén modell/ a megfeleld peremfeltételek sza-
ma és tipusa meghatdrozhatd a karakterisztikdknak az értelmezé-
si tartomadny hataran valdé vizsgalatabdél. Az olyan peremen, ahol
a folyadék befelé aramlik két értéket kell megadni /p. a sebes-
séget és hOmérsékletet/, az olyanon, ahol kifelé aramlik csak
egy informacidra van sziikség /pl.a kilépd nyoméasra/, ahol pedig
nincs aramlas, ott ez maga a feltétel. /aramlas=0/



A nem korrekt kitilizésli két-kdzeg modell esetén nem ilyen egyszerl
a helyzet. Ekkor a karakterisztikak valds részének vizsgalatabol
tudunk levonni kovetkeztetéseket.

Az [/5.1/-/5.6/ egyenletrendszer karakterisztikus gydkei a kovet-
kez8k: 2 valds gydk egyenld az egyes fazisok sebességével /v, v, /
2 valés gydk kozel egyenld vy + c, -vel,
2 komplex gydk egymds konjugdltja, valds részik v, és v,
k6zé esik.
Abban az esetben, amikor mindkét fézis kifelé aramlik a hataron
/azaz a zdéna tetején/ csak egy sebesség, a hangsebességet tar-
talmazd par egyike irédnyulhat vissza az értelmezési tartomany
belsejébe. Ez azt mutatja, hogy kétfazisu kidramlas esetén a ha-
taron csak egy értéket kell megadni. Mivel a befelé irényuld ka-
rakterisztika a hangsebességet foglalja magaba, ezért a nyomas
megadasa latszik alkalmasnak.

A zbnédban lejatsz6dd legtdbb tranziens egyféazisu aramlasként 1ép
be a zbnédba, erre pedig ismertek a korrekt peremfeltételek. Két-
fazisu aramlds altalaban csak kifelé torténik. Egy &ltalanos mo-
dellben azonban lehetdvé kell tenni a kétfdzisu bedramlds szami-
taséat is. Tovéabb bonyolitja a kérdést, hogy a numerikus megolda- .
si moédszerhez még tovabbi informacidkra is szilikség lehet a pere-
men. /Ez fliggetlen attdl, hogy a feladat korrekt kitiizésili-e vagy
sem./ Ebb3l a szempontbdél meg lehet kiildnbdztetni a lényeges /a
karakterisztikak vizsgalatabol addédd/ és a nem lényeges /a nume-
rikus séméhoz sziikséges/ peremfeltételeket.

Kétfazisu beadramlas esetén 6t karakterisztika valds része mutat
az értelmezési tartomény belseje felé. Ez azt jelzi, hogy ot val-
tozd értékét kell megadni a megfeleld peremen.

A gyakorlatban kétféle peremfeltételt szokas megadni.

Az egyikben a két fazis sebessége rogzitett /[sebesség-feltétel/.
Ekkor még tovabbi 3 lényeges peremfeltételt kell megadni, pl. a
térfogattdrtet és a fazisok hOmérsékletét.

A masikban a bemeneti nyomds a rdgzitett /nyomas-feltétel/, ekkor
tovabbi 4 feltétel megadasara van sziikkség. EbbSl 3 az eldzdhoz
hasonldan lehet a térfogattdrt és a fazisok hdmérséklete, a 4.
pedig a két fazis sebessége kdzti Osszefliggés a bemenetnél, ami
abb6l addédik, hogy az impulzus egyenleteket a perem koril diffe-
rencialjuk és az impulzuséatadas meghataroz egy ilyen Osszeflig-
gést.

A numerikus mdédszer még két mésik feltételt is felhasznal /a pe-
remen kiviili sebességeket/, de ezek nem lényeges peremfeltételek.

A differenciaegyenletek felirdsahoz térbeli és 1dobeli diszkre-
tizdcibra van sziikség. Meg kell adni egy térbeli racsot, melyen
a valtozdkat és a differencidkat értelmezni kell. Az iddbeli
diszkretizacidénal azt kell elddnteni, hogy az egyes valtozdk ér-
tékeit a régi, vagy az uj idBpontban vessziik-e, azaz implicit
vagy explicit kifejezéssel szamolunk.
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7¥-Vaz (i,3,k) elemi térfogat kdzéppontja
itt vannak értelmezve az &P,pviPereyier Ty, Ty valtozdk

A v} és vé X-iranyu sebesség komponensek az elemi térfogatok-

nak azon a lapjain vannak értelmezve, melyek merdlegesek az x
tengelyre. Hasonld az y és z-iranyu komponensek értelmezése.

12. abra
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A térbeli diszkretizacid elvileg sokféle lehet. A valasztast
altalaban az dénti el, hogy a tapasztalat szerint melyik bi-
zonyult kényelmesnek, kdnnyen kezelhetdnek. Arra kell vigyaz-
ni, hogy az explicit kifejezésekben szerepld térbeli differen-
cidk felirasakor biztositsuk a numerikus stabilitast /ezt a
célt szolgalja a donor &sszefliggések hasznalata/.

A térbeli diszkretizdcidhoz a 3 dimenzids értelmezési tarto-
manyt /a reaktor zdnat/ derékszogl racs segitségével bontjuk
fel. /A z tengely parhuzamos a zdéna hossztengelyével./ Sza-
balytalan hatarokat csak az x-y sikban engediink meg. Egy ilyen
racs lathatdé a 11. abran.

A valtozodk értelmezése a 2.3. pontban leirtakhoz hasonldan tor-
ténik. A sebességek komponenseit a hataroldé lapokon értelmez-
ziik, a tobbi valtozbot pedig a kapott elemi térfogatok k&zép-
pontjaban. A valtozdk értelmezését a 1l2. abra szemlélteti.

A tovabbiakban az egyszeriiség kedvéért az indexek k&ziil a ko-
zéppontra utaldkat elhagyjuk, igy pl. &:i+4 fogja jelenteni «
értékét az (i+4,3j,k) pontban. Az i,j,k indexek sorrendben az
X,y és z tengelyek menti elhelyezkedést jelentik.

EldszO0r a tOmeg és energia egyenletek véges differencia alakjat
irjuk fel. Ezekben a differencidkat az elemi térfogatok kozép-
pontja koril vessziik. Az n és n+l indexek az egymast kovetd
idopontokat jelolik. Az atadasi tagokban szerepld n+; index
arra utal, hogy ezekkel az értékekkel torténik a megoldéas sza-
mitadsa az n-edik iddlépésrdl az n+l-edikre. Ezek a tagok alta-
laban az alapvaltozodok régi és uj iddpontbeli értékeinek bonyo-
lult figgvényei.

Az egyenletekben A jeldli az aramlasi keresztmetszetet az adott
elemi térfogat megfeleld falan, V pedig benne a folyadék aram-
lasara rendelkezésre alld térfogatot. /A és V altalaban kisebb,
mint az adott térfogat egy lapjanak teriilete, illetve a térfoga-
ta, mivel a rendelkezésre alld tér egy részét szerkezeti anya-
gok toltik ki./

Az [/5.1/-nek megfeleld differenciaegyenlet:

nt4

(%gv) = ) . {[A(«QV)”(A@‘)MAJ ot [A(«gvj"(@)’”"] i

A (mgv)"(»-ﬁf”]}\_% .

+ LA( (agv) () )M:I ot

1
FEl. &
L

i [A (o(?v\,h ('U‘vz)hﬂ]w% o [A (O(S)v)n("rf.)hﬂj L1 > I—, ]15.13}

/5.2 /-nek ugyanilyen egyenlet felel meg, csak &« helyett 1-& ,
" helyett -[! és a v index helyett 1 szerepel.



- GB -

Az [/5.5/ egyenlet véges differencia alakja:

g e — (agee)” 4 [T o Gl
| . Vl[P t (gv evha] (e ] .

At

n B ner ] e i .; i
2

I5:147

Az [/5.6/-nak megfeleld egyenlet ugyanilyen, csak < helyett 1-«,
Qi helyett -Q; és a v index helyett 1 &ll.

A 2.3. pontban leirt modellhez hasonldan itt is el&fordulnak val-
tozdk olyan helyen vett értékiikkel, melyet a 12. abra nem defini-
al. Pl. az (x9v) szorzat /5.13/-ban az elemi térfogatok falan ve-
szi fel az értékét, de az X és ¢v valtozdkat eddig csak a tér-
fogat k&zéppontjaban értelmeztiik. Ezeknek az értékeknek a megha-
tarozasara ismét a donor Osszefiiggéseket hasznaljuk. A definicid
mindig az adott falra merdleges sebességkomponens segitségével
toérénik. Mindig annak a fazisnak a sebességét vesszik figyelembe,
amelyre az adott egyenlet vonatkozik. Igy pl. eldfordulhat, hogy

ohipd =g gdz egyenleteiben /ha(vv)w_ = 0/, a folyadékban vi-

szont ®Kis4 =&y /ha (VL3L*% << O/. A donor &sszefliggések a fenti
egyenletekben mindig a régi idOpontban szerepelnek, ahol a sebes-
ségek mar ismertek, tehat a definicid eyyértelmii.

Az impulzus egyenletek differencia k&zelitése valamivel bonyolul-
tabb. Csak az /5.7/ egyenlet egyik komponensére irjuk fel, a t&b-
bi a tengelyek és az indexek permutacidéjaval nyerhetd.

Az impulzus egyenleteket az elemi térfogatok falainak k&zépponja
koril differencidljuk. Az x iranyu komponensek esetén az x ten-
gelyre merdleges, az y és z komponensek esetén pedig az y és z
tengelyre merdSleges falakat hasznaljuk fel. Igy minden egyenlet-
hez mas kdzéppontot hasznidlunk, s ezek mimdegyike kiilénbdzik a to-
meg és energia egyenletekben hasznalt k&zéppontoktdl is.

Tekintsik az /5.7/ egyenlet x irényu komponensét :

x P X X
gy §F +ogy (7 B w3 o7 )4 BB B) jsasy
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Ezt az egyenletet az (i+1 ,j,k) pont koriil differencidljuk:

A ’ ‘\VMM y A\n x 2 h
. T led Ul gl , n A VS
(AQu)as e MR 4 (o) o JWR1) s (il-’i*v-)_ -
- At 7 2\ Ax Jiet
n / X\ihn ; AN
I { 4 n
ol (A) ey (AaEY ]
2 Ay [+t % Az Ji+d |
s _P?M 5, ,P"H‘l S h+-‘2-_ Fx )m-i /5.16/
t Kppt x : . FEN (r—wv)ui i ( v /ixl
& Ax‘,oi A &
Ax Ay
Az egyenletben szerepld C—l_l_)‘i alaku kifejezéseket még de-
finialni kell. Ax Jt

Itt is szerepelnek olyan helyen vett valtozdék, ahol még nincs
definidlva az értékiik. Az « €s ¢v valtozdk definicidja a ko-
vetkezso:

R ia AX(JM + & AX;

st /5.17/
o AXpy +AX;

(9y) i+ (Ov) e AXiea t(9W): AX:

?V Etgiss AX{-\k*AX‘L /5-18/

Ezek felhasznalasaval : /

(AP)id = & v () ind /5.19/
A sebességkomponensek k&ziil az (i++ ,j,k) pontban csak (Vf)é*ﬁ
értéke ismert. A masik két komponenst atlagképzéssel nyerjiik:

/ : , . ;
U}—‘\j)(,-t% :%[(U_vﬁ)j—i- +(U'\,‘j)‘+-}_ “'(U—f)iarﬁ'J-%zi_ +(Wd)i«4, )"é] /5'20/
v )eer= 2 [(U‘f)k-; 7oy IR /) BT 7 PN oy /5.21/
Véglil a differencia k&6zelitések definicidja:
il X X
U, Bt o=l
( V)L+2_ ( v)b z.) i (’V’v/‘)hl 2 0O
‘d Ar’( AxiM
L A i )it = ) ' /5.22/
X /el v )i+ Wy L"_' ha (ué)”;__ =0 ;
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(*ﬁ/) Wid viity e (’U'v%)hi <0
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Ny w7 % Jitt
( Ay oot R N /5.23
z v /ixA \ trz -4 f oy >
_A ) ha \;”v/;&}_:o
o S
A). B T e Z
A 'U,X ('U;/ )L*Ji_lkﬂ \A'V)" CISE (U’:)[&;_<O
2 V) = A2kai /5.24]
= 144 X\. XY - z
e Lind @fv‘)c+‘a"@"f)“*£““4> ha (W3 )it 20
L\Z‘k_.%_
A Ayj4 és Azy! racstavolsagok értelmezése a kdvetkezd:
Nev)s pims A'}j-""Ag-‘ = AZy + AZean :

Az egyenletek jobboldalain a kiilénb6zd atadasi tagok szerepel-
nek. Ezek koziil legfontosabb a fal altal a fazisoknak atadott
hd, valamint a fazisatalakulast klfejezo [' . Ez hatdrozza meg
déntBen, hogy a folyadéknak hanyad része alakul gdzzé, s ezzel
a nyomas és az Osszes t8bbi valtozd értékét jelentdsen befolya-
solja.
Mivel a fazisok atalakuldsa gyorsan jatszdédik le, ezért ezt a
tagot amennyire csak lehet implicit médon kell kezelni. Kilodn-
ben nagyon rdvid idoOlépéseket kellene vennl. B

nt n4._m4 n >n Sh
[7 altalanos alakja a kdvetkezd: ™ q&( 'P ,’v.“;P uL; 4lz'v_v)
["-nak az elsd 4 valtozdéjaban folytonos és dlfferencialhato

fliggvénynek kell lennie. A derivaltakra a Newton iteradcidban
van sziikség. Ha nincs rajuk zart formula, akkor numerikusan
kell differencidlni. A tObbi valtozdéjaban nem kell folytonos-
nak lennie, csak lassan valtozobnak.

A fazisok k&zti impulzusatadas hatarozza meg dontden a relativ
sebességeket. Ha nagy az értéke, akkor kdzel azonos sebességeket
kapunk. TObb dimenzidban még nem sikerlilt megadllapitani ra meg-
feleld Osszefiiggést. Az egydimenzids két-k&zeg modellek tObbsé-
gében aranyos a lvv—vlb(vv—vz) mennyiséggel.

F, &altaléanos alakja.
f L ht4 -;h ->h n n n n
nt ki 2 RS r)
A
AN (COMNT T,
Ennek is folytonosnak kell lennie az uj iddpontban vett valtozo-
iban és meg kell tudni hatarozni a derivaltjait. Az egydimenzids
modell alapjan felirhatd egy kevésbé altalanos alakja:
ntd X n+4 ht4 ~x/—=>n —=>n " __y\
=[(M’ )u— (A’},)ni] F,;V("/'V)U o ? TL)

(E:)Lt

i



A fazisok kozti Q; eneglaatadas dltalanos alakja I -hoz hason-
l6éan adhaté meg, az F és va falsurlodasoke pedig F -hez ha-
sonldan. A gyakorlatban ?;( féleg a Vz' Fw« pedig foleg a v
sebességtdl fiigg.

Az eddigiekben a bels® pontokra irtuk fel a differenciaegyen-
leteket. Mivel a modellt a rektorok zdénajaban lejatsz6dd fo-
lyadékaramlasra alkalmazzuk, ez meghatdrozza a peremfeltéte-
leket is. A zb6na oldalfalain keresztiil nem t&rténik aramlés.

Ez azt jelenti, hogy az itt levd elemi tértfogatok kiilsd falan
definialt normédlis sebesség komponensek nullak. A tOSmeg és e-
nergia egyenletekben - [/5.13/,/5.14/ - az ilyen kililsd falakra
olyan Osszefiiggések vonatkoznak, melyek a hely szerinti deri-
valtak részei. Ezekben a lapokon vett sebességet szorozzuk az
ugyanitt vagy a szemkdzti oldalon vett valamilyen donor meny-
nyiséggel. Mivel a sebességek nulldk a kiilsd lapokon, ezért a
tObbi valtozd értéke lényegtelen. Tehat a differenciaegyenletek
felirasahoz nincs sziikség az oldallapokon kiviil felvett értékek-
re, s itt az impulzus egyenleteket sem kell megadni.

Bonyolultabb a helyzet a zdéna aljan és a tetzgjén. Itt kétféle pe-
remfeltételt is meg lehet adni: a nyomas vagy a sebesség-felté-
telt.

A nyomas-feltétel esetén a peremen rdgzitjiik a nyomast, s meg
kell hatarozni a sebességet. A sebesség-feltétel azt jelenti,
hogy a sebességet valamilyen rdgzitett értéken tartjuk a tran-
ziens folyaman. Mindkét esetben ha a sebesség a zdna belsejébe
iranyul, akkor a folyadék jellemzdit meg kell adni a peremen,
hogy a belépd folyadékot le lehessen irni. Ha az aramléas kifelé
torténik, akkor ezeknek a jellemzdknek a megadasa felesleges.

Vizsgaljuk most meg ennek a kétféle peremfeltételnek a hatasat
a zb6na aljan és tetején elhelyezkedd elemi térfogatokra felirt
differenciaegyenletekre vonatkozdlag.

E1Gsz0r tekintsiik a sebesség-feltételt. Az [/5.13/ és [/5.14/ to-
meg és energia egyenletekben kidramlas esetén a donor differen-
cialashoz csak a belsd térfogatok k&zéppontjaiban felvett érté-
kek sziikségesek. A gyakorlatban azonban a megadott sebesség al-
taldban befelé mutat. Ilyenkor fiktiv elemi térfogatot is fel
kell venni a zdénan kiviil, melynek a k&zéppontja egy fél 1lépés-
kbzre van a fizikai peremtdl. Ezt szemlélteti a 13. abra.

TRety aienl zonahoz tartozd elemi térfogatok

térfogat
I * ; *- t e & * >
1 f 2 3 4 Z tengely

fizikai perem

13. abra



Ha a fizikai hatdron levd ténylegesen létezd elemi térfogatot
2-vel jeldljiik, akkor a fizikai perem indexe 1% ,a fiktiv tér-
fogat kiilsd lapjaé pedig /.

Ha a (vZ)4{', sebesség befelé mutat, akkor a 2 pont koériil diffe-
rencialt tOmeg és energia egyenletekhez ismerni kell (x9,) -t és
(kgvey) -t l-ben. Ezek értékét a fiktiv térfogatokra meg kell
adni.

Nyomas-feltétel esetén is szilikség van tovabbi informacidra attdl
fliggden, hogy az aramlas befelé vagy kifelé t&rténik a hataron.
Kidramlas esetén az a legegyszeriibb, ha a nyomast a fizikai pe-
remen fél 1épéssel kiviil elhelyezkedd fiktiv elemi tértfogatok
kbzéppontjaban, azaz a 13. abra szerinti 1 pontban adjuk meg.
Ekkor ugyanis a fa21sok impulzus egyenleteit a peremen levd tér-
fogatok kiilsd lapja /ll index/ koriil ugy tudjuk differencialni,
hogy k&zben csak az értelmezési tartomany belsejébdl vessziik az
értékeket. [Kivételt csak az /5.20/ és /5.21] atlagsebességek
jelentenek, melyeket a donor differencidlashoz hasznalunk. Az
atlagképzésbdl viszont kihagyhatdok a fiktiv x és y-iréanyu se-
bességek./ Ilyen nyomas-feltétellel tehat kidramlas esetén

nincs szikség tovabbi informéciodra.

Ha azt akarjuk, hogy a rendszer az aramlas megfordulasat is ke-
zelni tudja, akkor befelé torténd aramlas esetén is ugyanazon a
helyen /az 1 pontban/ kell megadni a nyomadst. Ellenkezd esetben
a peremfeltétel helyét minden esetben meg kellene valtoztatni,

valahanyszor megfordul az aramlas iranya. Az impulzus egyenle-

teket most is a peremen levo elemi térfogatok kililsd fala koriil

differencialjuk /l% index/. Ekkor 3 dologra kell vigyazni:

l. A tbmeg, az energia és az impulzus egyenletek a peremen levd
térfogatokra megkivanjak a bearamldé folyadék jellemzdinek
leirasat. Ehhez «, P, T, és T, értékét ismerni kell az 1
pontban ugyanugy, mint a sebesség-feltétel esetén.

2. A peremre felirt impulzus egyenletek z iradnyu komponenseihez
szukseg van a fizikai hatartdl egy teljes lépésre kivil /az
4 indexnél/ definidlt z iradnyu sebességekre a donor diffe-
rencidlas miatt. /A zdéndban torténd aramlas szamitasakor a
zOnan kivili nyomas-feltétel megadésa a gyakorlatban azt je-
lenti, hogy ott a z tengely 1ranyu sebesség derivaltak ki-
csik, ezért feltehetjik, hogy az % pontban a z irdnyu se-
bessegek megegyeznek az lZ pontbeli értékekkel./

3. A 2 indexi térfogatokra felirt keresztiranyu impulzus egyen-
letekhez sziikség van az 1 indexi térfogatokon definialt ke-
resztiranyu sebességekre. /ezekrdl feltehetjiik, hogy nullak/

A gyakorlatban ritkan fordul eld, hogy tisztan nyomas-feltételt
adnanak meg a zdna aljan és tetején egyarant.
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A differenciaegyenletek és a peremfeltételek felirasa utan
vizsgdljuk meg a megoldas menetét. A differencia séma részben
explicit, részben implicit. Egy adott iddlépés szamitasara egy
teljesen explicit mdédszer lenne a leggyorsabb, de a stabilitas
kdvetelményébdl eredd korlatok miatt csak nagyon kis iddlépé-
seket lehetne venni. Ezzel szemben a teljesen implicit mdédsze-
rek nagyobb iddlépéseket tesznek lehetdvé, viszont jelentOsen
megnd a lépésenkénti szamitdsigény a szilikséges iteracid miatt,

S a program is bonyolultabba valik.

A felirt egyenletrendszer atmenet e két szélsdséges eset kozott.
A stabilitds feltétele elfogadhatd korlatot jelent, s a lépésen-
kénti szamitasigény sem tul nagy. A modell &ltal leirt jelensé-
gek 3 fO csoportra oszthatodk.

Az elsBbe a lokalis jelenségek tartoznak. Ilyenek az atadasi
folyamatok, melyeket nem-differencidlis Osszefliggések irnak le.
A masodik a nyomads altal okozott zavarok terjedése a folyadék-
ban. Ez mar magaba foglal bizonyos differencialis tagokat is.
A harmadik pedig a tdmeg, energia és impulzus konvekcidja a fo-
lyadék mozgasa soran.

Adott racsméret esetén ezek minegyikének van egy jellemzd va-
laszideje. Ez a lokalis jelenségeknél a legrdvidebb, valamivel
hosszabb a hangsebességgel kapcsolatos jelenségeknél, s a leg-
hosszabb a folyadék aramléasanal /ez a folyadéknak az egyik tér-
fogatbdl a kdvetkezBbe jutasahoz sziikséges iddo/.

A felirt differnecia séma az elsd két csoportba tartozd folya-
matokra implicit, a harmadikra explicit. Ez a mddszer akkor jo,
ha a folyadék sebességek lényegesen alatta maradnak az egy-egy
fazisban terjedd hang sebességének. Az explicit tagokbdl eredd
stabilitasi feltétel:

max (

At At)
j 3 bl A, AL <
\/-/.\xi LAXI 4
A séma felirasaval minden elemi térfogatra kapunk egy bonyolult
nemlinedris algebrai egyenletrendszert. A feladat az, hogy az n
iddpontbeli valtozdértékek ismeretében hatarozzuk meg Sket az
n+l-edik iddpontban.

Az [/5.13/ és /5.14/ tOmeg és energia egyenletekbdl az deriil ki,

ho a benniik szerepld ntd _ n44 44 2 = w4
9y e R P és e valtozdok csak a v

uj iddpontbeli valtozdkkal vannak kapcsolatban. Az impulzus e-
gyenletekben, melyekre példa az /5.16/ egyenlet, ezek a sebessé-
gek ugyanezen és a szomszados hat térfogaton vett nyomasokkal
fliggnek 6ssze. Az n+l-edik iddpontban tehat az egyes elemi tér-
fogatokon definidlt valtozdk kdzti kapcsolatot a nyomas jelenti.
Ha minden térfogatban ismernénk a nyomast, akkor az Osszes tSbbi
valtoz6 meghatarozhatd lenne egyszeriien egy néhany egyenletbdl
4116 rendszer megoldasaval térfogatonként.

Az egyenletrendszernek ez a tulajdonsaga teszi lehetdvé, hogy a
2.3. pontban leirtakhoz hasonldan egyszeriisitsiik a megoldast.



A nemlinearis egyenletrendszer bonyolultsaga és nagy mérete
miatt csak iterativ megoldas johet szdba.

Az [5.9/-]5.12/ allapotegyenletek felhasznadlasaval eldszdr eli-

iy e nt ntA n44 +4 . > A i
minaljuk a 9v , S¢ , ey & er ~valtozodkat, majd az igy ka-

pott egyenletrendszeren Newton-iterd&cidt hajtunk vegre
Jeldlje az eliminacidval kapott egyenletrendszert

Pix) = 0O,
ahol x a 10 alapvaltozdobdl alldé vektor a kiilénbdzd racspontok—
ban. Az egyenletrendszert linearizaljuk az uj idopontban az m-
edik iteréaciodban kapott x™ értékek kdriil:

F(x)= F(xm+5= F(x") + J(x")(x - x) =0,

GX)XM
- 33 il Sl : m+1
Ezutéan a kovetkezd linedris rendszert megoljuk x -re:

I ™ = J(x™ x™ - F(x™)

F
ahol J(xm) a Jacobi matrix /vagyis (EL—

Az uj iddpontbeli elsd iterédcid kezdbértékét az eldzd iddpont-
ban kapott valtozdéértékek adjak. Roviden ez az eljaras a val-
tozdk n+l-edik iddpontbeli értékének meghatarozéaséra.

A hatékonysag névelésére a linearizalt egyenletrendszer tovabb
redukalhaté olyan rendszerré, melyben mar csak a nyomasok sze-
repelnek ismeretlenként.

Az impulzus egyenletek segitségével az [5.13/-/5.14/ egyenle-
tekbdl ki tudjuk kiiszébdlni a sebességeket. Mivel a fazisok
kozti impulzusdtadast implicit kifejezésként adtuk meg, ezért
a két fazis sebessége egymastdol is figg. Az elemi térfogatok
egyes falain az impulzus egyenletek az alabbi forméban irhatdk
fel:

m m+d
X X Am+4 a AP s ¢
ook e LAP. ' g

ahol a AP nyomaskulonbseget az adott falon keresztiil vesszik.

/Ha Fi;v , Fwv és Fye kifejezésében a vvM és v valtozdék line-

aris Osszefiiggése szerepel, akkor a fenti alak eldallitéaséhoz
nincs sziikség linearizaciodra./

Ezt a 2x2-es egyenletrendszert megoldva a sebességeket fel tud-
juk irni a nyomaskiilonbségekkel:

m+A m+A )
v, = cAP + £

A
= dAPM+ + g’



Itt az egylitthatdk csak az n iddpontbeli valtozdértékektdl
fliggnek. Az impulzus egyenleteknek ezzel az alakjaval kikili-
sz6bblhetdk a sebességek az /5.13/,/5.14/ egyenletekbdl. Vé-
glil a megmaradt 4 egyenletben szerepld atadasi tagokat line-
arizaljuk a megmaradt P, x ,T,,T, valtozdkban. Ezzel egy 4 e-
gyenletbdl 4116 4 ismeretlenes egyenletrendszert kapunk min-
den elemi térfogatra, melyekben az adott térfogat kdzéppont-
jadban definialt P, x,Tg,T,, valamint a szomszédos 6 térfogat
kézéppontjéban definidlt nyomdsok szerepelnek. Egy térfogat-
ra az egyenletrendszer alakja a kdvetkezd:

rx X X i] P X e e <] [P,] <1
ey e Ml & Wi X X y: X
X 4 > SHEE < i o g g TS el T Tg 5 X
RO R % XD KoK LR X
o g
’P

L'6 |
ahol az 1-6 indexek a szomszédos térfogatokra utalnak. A fenti
4X4-es matrix inverfdlasaval kapjuk a kovetkezd alakot:

Dl e et 5 Rk MG X FEW ]
) =0 0.0 X Sy ciges AR SR <A "%
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|
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Ebben a rendszerben az els® egyenlet mar csak az adott térfo-
gathoz és a szomszédaihoz tartozdé nyomésokat tartalmazza. A
masik 3 egyenlet a térfogattdrtet és a hOmérsékleteket adja
meg a nyomasok segitségével. A nyomasokra kapott egyenleteket
felirva minden térfogatra olyan linedris, algebrai egyenlet-
rendszert kapunk az Osszes térfogatban definidlt nyoméasra,
melynek egylitthatdéi egy szalagmatrixot alkotnak. Ennek a fdat-
16 mellett még 6 atléja van.

Ezzel a feladatot egy N egyenletbdl &lld6 rendszer megoldasara
vezettiik vissza /N az elemi térfogatok szama/ ugy, hogy k&zben
egy 2x2-es és egy 4x4-es matrixot invertaltunk N-szer.

Az N elemi térfogat koézti kapcsolatot a nyomasokra felirt e-
gyenletrendszer fejezi ki. Ez altalaban tul nagy ahhoz, hogy
direkt eljarassal oldjuk meg, ezért iterativ mdédszerre van sziik-
ség. Ilyen lehet pl. egy eldre haladd eliminécid és visszahe-
lyettesités egymas utani alkalmazasa. Ez a nyomas-iteracidé al-
taldban gyors, nem sok a szamitds igénye.

A nyomasok meghatarozasa utan a tobbi valtozd értékét behelyet-
tesitéssel nyerjiik.
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2.4.5. Egy egydimenzids, 5 egyenletes két-k&zeg modell nume-

rikus megoldasa

Ebben a fejezetben egy valamivel egyszeriibb két-kdzeg mo-
dellt ismertetek. A modell egydimenzids és 5 alapegyenletet
tartalmaz. Vizhiitéses reaktorok tranziens analizisére késziilt
a [32] progremrendszer részeként.

A RELAP program csalad fontos szerepet t&lt be a reaktor biz-
tonsagi szamitadsokban. A korabbi RELAP4 rendszerkédok B3,34]még
homogén egyensulyi modellt alkalmaztdk a hidrodinamikai sza- =
mitdsokra, az utdbbi néhany évben kifejlesztett RELAP5 valto-
zatok azonban mar a fejlettebb két-k&zeg modelleket tartal-
mazzak.

A RELAP5 programok célja gazdasagos és kdnnyen kezelhetd kod
létrehozéasa a vizhiitéses reaktorok hiitéskiesésbdl eredd felté-
telezett balesetének /LOCA - Loss Of Coolant Accident/ és a

nem LOCA tranzienseknek a lehetd legpontosabb szamitéasa.

A [32]—beli RELAP5 egy fejlett, egydimenzids, gyorsan futd
rendszerkdd. Alapja egy nem—-homogén, nem-egyensulyi hidrodi-
namikai modell. Kifejlesztésében az uj elméleti eredmények
mellett nagy szerepet jatszottak a RELAP4 programcsalad fej-
lesztése és felhasznalasa soran szerzett tapasztalatok.

A Three Mile Island-en tortént baleset 6ta [/1979/ a vizhlitéses
reaktorok biztonsadgi szamitasaban a hangsuly a nagy to&réses
LOCA balesetekrdl a kicsire helyezddott at. Az ilyen kisérle-
tek tranziens szamitasa tObb ezer masodperces iddtartamra is
kiterjedhet, ezért kiildndsen megndtt a szamitasi sebesség je-
lentdsége. Ez a program a sebesség és a modellezés pontossaga
tekintetében lényeges eldrelépést jelent elddeihez képest.

A hidrodinamikai modell egy Otegyenletes két-k&zeg modell. Tar-
talmazza a két tOmeg- és két impulzus-megmaradasi egyenletet
kiilon-kiilén a fazisokra és egy energia egyenletet a keverékre.
Két cseretag megadasara van sziikség: a fazisok kozti tSmeg- és
az impulzusatadasra. Egy tovabbi feltétel /[nevezetesen az, hogy
az egyik fazis lokéalis telitési allapotban van/ sziikségtelenné
teszi az energiadtadast. Sem a fazisok kozti, sem a fazisok és
a fal kozti energiaatadasra nincs sziikség. Elég azt megadni,
hogy a kisebb tdmegben jelen levd fazis telitési allapotban van,
azaz éppen keletkezik, vagy eltiinik. Igy csak egy fazishOmér-
sékletet kell definidlni, s ez lényegesen csOkkenti a pdétldla-
gosan sziikséges informacidk szamat. Minden energiaatadasi me-
chanizmust implicit médon a gbzgeneralas modellje foglal maga-
ba. Igy egy korrelacidé helyettesiti az Osszes energiadtadassal
kapcsolatos jelenségeket leird Osszefiliggéseket.
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A numerikus megoldads egy szemi-implicit véges differencia
modszerrel torténik. Az implicit kifejezéseket ugy adjuk meg,
hogy biztositjuk a stabilitast ardnylag nem tul kicsi iddlépé-
sekre is, és az uj iddpontbeli alapvaltozdkra linedris Ossze-
fliggést kapunk, ami lehetdvé teszi a direkt megoldast iddben.
Ez a két tényezd eredményezi a gyors szamitasi sebességet.

A mdédszer stabilitasat numerikusan tesztelték ugy, hogy a ko-
dot olyan feladatokra alkalmaztak, melyeknek ismert az anali-
tikus stacioner megoldasuk, s bebizonyitottak, hogy a tranzi-
ens szamitas ehhez a stacioner eredményhez konvergal.

A stabilitast ugy is tesztelték szamos esetben, hogy a pere-
men hirtelen valtozasokat adtak meg. Ekkor sem jelentkezett
numerikus instabilitds a tranziens szamitdsok eredményében.

A megmaradasi egyenletek felirasakor feltételezzilk, hogy az
adramlas szimmetrikus az x tengelyre merdleges sikokon. Az is-
meretlen valtozdk értékei elemi terfogatokon és idOben vett at-
lagértékek.

Az 5 alapegyenlet a kovetkezO:

%(‘*v?f)*Ai%(“v?v“"vA) o /6.1/
) A 4 g ¢ Pl A.0) ek el
;,-\1? b7 A 5;(* Do A oY) o /6.2
e 302 v
I g BT e T el S s gl - LIS v OREINEE S el oF
D(VSV '—\1 at *\—‘—7_—- \VSVAE)( (Xv/-\{ax .‘/_\JE_,LV) ‘_\r,v /6.3/
e 8

D A a,{,‘f : S = o

<P A SE s 3 RpATE =~ ASE —TAl—47) - AF /6.4]

Gl

5%k Wy By & “f?iee> *'_‘ GXVSVQ V'A'*A(Q(le A>::

A numerikus séma felirdsa eldtt atalakitjuk az egyenleteket.
/6.1] és [6.2] bsszeadasaval a keverékre kapunk tdmegmegmara-
dast:

9 A
%+K%(D<V9VU;A+0<LQLQA) - 0, 16.6/

ahol = ¢ = A, Qy + e RL



Ezutén /6.6/-ot végigszorozzuk X = RES s b kivonjuk
/6.1/-bS1: 3
X . 4-X 3 Yis
15t t T = gy A5 SR A) = T /6.7

/6.3] és |6.4] Osszeadasaval az A-val vald osztas utan kapjuk,
hogy:

B{r 6b¢__£_w_
v,—a-tx—' 5 x?l e F P(V,'V}_) 16.8]

Itt felhasznaltuk, hogy «,+ Xg,= 1. Ezutan /6.3/-at osztjuk
<y QvA-val, /6.4]/-et &, A-val és kivonjuk Oket egymasbol:

e s
9% 0 o AaNy a@na 4 ANEE Tt g /6.9/
ot ot Z-ax 28R lOv Q¢ 3x

A teljes energiara felirt /6.5/ egyenletet termikus energia

egyenletté alakitjuk. Ehhez az impulzus egyenletek felhaszna-

lasaval mechanikai egyenleteket irunk fel, melyet kivonunk

/6.5/-bd1l. Az igy kapott egyenlet:

1610}
ahol DISS az energia disszipacids tagok Osszegét jelenti.

A termikus energia egyenlet haszndlata azért eldnydsebb a tel-
jes energia egyenletnél, mert nem tartalmazza a kinetikus ener-
gia i1idd szerinti derivaltjait, ezért a numerikus kozelitésben
kevesebb valtozo értékét kell megadni az uj iddpontban.

A modell alapegyenletei tehat /6.6/-/6.10/, az alapvaltozodk
pedig ¢, X, v,, Vv, és Ui

Ahhoz, hogy az egyenletrendszer zart legyen meg kell adni az
allapotfliggvényeket, melyek a fazisok jellemzdit fejezik ki P,
X és U segitségével. A rendszer allapota azonban nem irhatd le
csupan ezzel & 3 valtozdéval, mivel a fazisok hOmérséklete alta-
laban kiilonbzd. A hatarozatlansag oka, hogy csak egy enegia
egyenletet irtunk fel, de megsziintethetd, ha feltételezziik,
hogy az egyik fazis telitési allapotban van. A gyakorlatban
ezt mindig a kisebb tOmegben jelen levd fazisrdl tessziik fel.

Ezek miatt viszont kevesebb segédegyenletre van sziikség. A 4
segédegyenlet a gdzgeneralast, a fazisok k&zti impulzusatadast,
a falsurlddast és a fal hdatadasat irja le. Ezek az Osszeflig-

4
N

\
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gések alawetoen empirikusak az alapegyenletekkel ellentétben.
Pontossdguk nagyban befolyasolja a modell egyezését a fizikai
folyamatokkal.

A numerikus megoldés soréan a differencidlegyenleteket olyan
véges differenciaegyenletekkel helyettesitjiik, melyek részben
implicitek, hasonldan a 2.3. és 2.4.4. pontban leirt moédsze-
rekhez. Az implicit kifejezéseket ugy valasztjuk meg, hogy az
uj idopontbeli valtozd értékekre linearis algebrai egyenlet-
rendszert kapjunk. Igy az egyes id0lépésekhez tartozd egylitt-
hatématrix direkt mdédon invertédlhatd egy ritka matrixot in-
vertald rutinnal. Tovabbi egyszeriisitésre ad lehetOséget az
implicit kifejezések olyan megvalasztasa, amely mellett az e-
lemi térfogatonkénti 5 differenciaegyenlet egy olyan egyenlet-
re redukalhatd, amely csak a nyomasokat tartalmazza. Ekkor min-
den lépésben egy NxXN-es rendszert kell megoldani.

Ez a két-kbzeg modell sem alkot korrekt kitilizésli feladatot ha-
sonldan az eldzd fejezetben ismertetett modellhez. Ahhoz, hogy
a felirt numerikus sémaval j6 eredméneket lehessen kapni az e-
16z8 fejezetbeli megfontolasokat kell alkalmazni a séma mega-
dasakor, vagyis bizonyos Osszefiiggéseket implicit mdédon kell
kiértékelni és fel kell hasznadlni a donor differenciélas sta-
biliz&ald hatéaséat. Az igy kapott véges differencia séma stabi-
litasat és pontossadgat numerikus teszteléssel bizonyitottak.

A térbeli diszkretizacidhoz itt is a gyakorlatban jol bevalt
elemi térfogatokra osztast hasznaljuk, ahol az aramlas skalaris
jellemzdit /nyoméds,energia, goztartalom/ a térfogatok kdzép-
pontjaban, a vektor mennyiségeket pedig /sebességek/ a hatarold
lapjukon adjuk meg. A kapott egydlmen21os térbeli felosztast a
14. abra szemlélteti.
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14. &bra

A véges differenciaegyenleteket ugy kapjuk, hogy a tOmeg és e-
nergia egyenleteket integraljuk az x valtozdra vonatkozdan a
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folytonos vonallal jelzett térfogatok f&l6tt, az impulzus e-
gyenleteket pedig a szaggatott vonallal jelzettek folott. Ez-
zel olyan differencidlegyenleteket kapunk elsd 1lépésben, me-
lyekben az elemi térfogatokon vett atlagértékek szerepelnek.

A hely szerinti integraléassal kapott egyenletek a kovetkezOk:
]6.6/-/6.10/~ bol

De XA r AR
V;t L“?' ”VA] + X 92 *LA.I = 0 16114
_l 34—1

: : 1“4
Ve =% + (4= X)'ﬂ v A ‘X\fz?{‘t S L e

vV 2 'C,'L'_'v o n’ 57 A [U-Q_JXL- ,1_ . [hz}XL
’AT O‘VXVBT’ (92 5t *‘2 Ay By | Uy Xk+l“£?“ A =

[Pl - Flu=-xd -Tln-m)(x - x)  /6.13/

n

% AT 27 7 e 8 4% ol :
Z'\Sf" ot ngljxk——ztullxkz-(§;—.ﬁ)[P]X:-(F__F“KxL*Xk)/6'l4/

XJ*4

: X344
v%‘?u\w [av?v -\)'v UVQ] { 7% [\l?ku u AJX =

XJ

- Plasy A= kegAL + QY+ Diss -V /6-15/
]

A fenti egyenletekben a szbgletes zardjelben levo kifejezések
értékét a jelzett pontokban kell meghatarozni, a tSbbi kifeje-
zés értéke a megfeleld elemi térfogaton vett atlag.

A szamitasi sebesség nbvelése érdekében a /6.11/-/6.15/ egyen-
letek numerikus kozelitésekor az alabbi szempontokat vessziik
figyelembe:

- Csak ott alkalmazunk implicit k&zelitést, ahal ezt a numerikus
stabilitéds és a hang terjedési sebességébdl szarmazd idoOlépés
korlat megsziintetése megkdveteli , valamint a kis iddkonstanst
tartalmazé jelenségekben. Ezek: a tOmeg és az enegia egyenle-
tekben a sebességek, az impulzus egyenletekben a nyomasgradi-
ens, valamint a fazisok kozti tOmeg- és impulzusatadéasi tagok.

- Ugy adjuk meg az uj idOpontbeli értékeket, hogy az implicit
kifejezések linedrisak legyenek rajuk nézve. Ahol ez nem old-
hatdé meg, ott a régi iddpont koriili Taylor-sorba fejtéssel és
a magasabb rendi tagok elhanyagolaséaval linearizalunk. Igy
nincs sziikség a nemlinedris egyenletrendszer iddéigényes itera-
tiv megoldésara.
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A véges differenciaegyenletek a k&vetkezdk:
n+4 n+4

VL(?EM"‘?L *‘{[’Xv ?v )M 25 ‘X{, 9¢( \M}A i

r'"-n s N e n+/l
l_V ?V v)) t Ay 95(“6) A@}uAt =20

/6.16/
ntA ayliog htd en e i
Vgt A - Xf)*U—&)[«C §¥ (0 Djan Ay = &V 87 W5, A, AL -
n; o N e «n s —n 4
X[ %y Ez (W)N’ i+ o(zS)z(AF) /-\]Lyc-‘/lj+ j6.17]
..t + n
(‘XVS’W ( v* >Az<3 + 0< 9&) (M )Ax-+
+%(%v9ﬂalwyk_—@R)K]At @Q?Q &Qh_ Ui>] -
5 ntA - :
:—(’PL‘ 7&() (.HZ rus !_f'; 7 r: (VV—V(\,).]A'X'At /6°18/
= ) = G v+ 4[N - ) Jae - A1), - Wil Jat
7 _J"i Tk ’ A 1 "“Wn !
2l Eé)a Yol o T «(F—P)J.A,xém /6.19/
f_o en Sl n+A i eniin nt4
Vil (‘QU) —(QWE} o SR i o] oy U Y ,MJJfM At —
° 1 -'v n+A s tn e.., \M v
= [[_”‘v Qv ’ (UV\/J + Ay Gy U L ]/1‘ At - (ut_+T>l>‘3 ) Y
_?L[( v?v *’O(t 95),@1 (’\v§1*°‘e9 ~‘Aa‘]/.\t /6.20]

A [/6.16/,/6.17/ és /6.20/ egyenletekben pontokkal jelzett val-
tozdk elemi térfogatokon vett atlag skaldr mennyiségek, melyek
értékét az alabbi donor Osszefiiggések adjadk meg a megfeleld se-
bességek ismeretében:

'u,+u ha 4=0
( K L}t

)~

5 V- e ; ’
uG%(MK-FUL\,-";:m(UK—ML\‘hq U‘*U es U=

Ahol nincsenek megadva a donor Osszefliggések, ott a valtozdk ér-
tékét a szomszédos térfogatok kézti linedris interpoléacidval ha-
tarozzuk meg.

A /6.18/ és [/6.19/ impulzus egyenletekben a térfogatokon vett at-
lagmennyiségeket a térfogatok hataran a szomszédos értékekbdl
linearis interpolacidéval kapjuk. Szilikség van a térfogatokon vett
atlagsebességekre is. Konstans keresztmetszetii elemi térfogatok
esetén erre a célra megfelel a ki- és bemeneti sebesség szamtani
k6zepe. Az olyan térfogatokndl azonban, amelyek elagazasnal he-
lyezkednek el és igy tObb kimenetiik vagy bemenetiik is van, vagy
gyorsan valtozik a keresztmetszetiik a sza&mtani k&zép nem felel
meg a fizikai folyamatoknak Ilyen térfogatot szemléltet a 15.
abra.
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15. abra

Ilyenkor sulyozott bemeneti és kimeneti sebességeket definia-
lunk, s ezek szamtani kdzepe lesz a térfogatokhoz tartozd at-
lagsebesség. Ha K a megfeleld térfogat indexe, akkor a defi-
nicié a kovetkezs:

n BT chgg ) EBJAJ

Tkt N o "
( L)K L c—-] X h : A +
._....J) \ Q 2 K
b= ~ bemenetek
e L T S R .2
41 24 k'-‘»9i~;.';Aa,Z,.Aa
P A e y aholii=v;l
2 20} l\(‘( :')L)‘ A.) AK : ’
- kimenetek

A /6.16/-/6.20/ alapegyenletekben 6 valtozdé fordul eld az uj
iddpontban felvett értékekkel: P, ¢ , X, U /a ¢U szorzatban/,
v és v . A zartsadghoz sziikséges 6. Osszefliggést az &allapot-
egynlet adja, mely a ¢ slirliséget fejezi ki P, X és U fliggvé-
nyeként. Ez az Osszefliggés nem linearis, ezért a régi ido-
pont koriil Taylor-sorba fejtjilik:

n+A N dg “*4_ " of "M__ WAt 8? nt4 . n
i w)xu(? P+ (fax>1>u(x X)+<§U)'p,x(u - )

Az egyenletekben U a ¢U szorzat formadjadban szerepel, ezért a
sorfejtésben U helyébe pU-t helyettesitilink. A léncszabaly al-
kalmazéasaval a kovetkezd Osszefliggést kapjuk:

£ 2 ) B O] o]

ahol a P, X és QU-ra vonatkozd derivaltak felirhatdk a P, X és
U-ra vonatkozd derivaltakkal:

E)o) n/9g B" n 4
¥ hol B =
(BAP x‘gu 3 ((ap)x u ’ a gn“_uh(%)n
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og . % n(?g) h

e L B 6.25
] KSU > B /6.25/

Ezek felhasznaléasaval /6.22/ segitségével az n+l iddpontban
vett 1§ slirliség elimindlhatd a /6.16/-/6.20/ egyenletekbdl. Igy
egy 5 egyenletbdl alldé rendszert kapunk minden térfogatra a ko-
vetkez® 5 valtozéra: P, X, (eU), vv 8 v, . Ez az SNXS5N-es line-
aris algebrai egyenletrendszer az implicit kifejezések specialis
megvalasztasa miatt redukalhatdé egy olyan NxN-es rendszerré, a-
mely mar csak a kiilonb6zd térfogatokon vett nyomasokat tartal-
mazza.

Az impulzus egyenletek csak a sebességeket é&s a nyomasokat tar-
talmazzak. Ezekbdl kifejezzlik a sebességeket az egymas melletti
térfogatokhoz tartoz6 nyomasokkal, majd ezzel az Osszefliggéssel
elimindljuk a sebességeket a tOmeg és energia egyenletekbdl.
Ezzel térfogatonként 3 egyenletet kapunk, melyek a nyomasokon
kiviil csak az adott térfogathoz tartozdé U-t és X-et tartalmaz-
zak. Ezért ezek egyetlen linedris egyenletre redukalhatdk, amely
mar csak a nyomasokra vonatkozik.

Ezt az eljarast minden elemi térfogatra megismételve egy NxN-es
egyenletrendszerhez jutunk. Ennek megoldasa uté&n a to&bbi valtozd
értékét visszahelyettesitéssel kapjuk.

Az alapegyenletekben csak a 9U szorzat szerepel, viszont az al-
lapotegyenletekhez sziikség van kidlbn a 9 és kiilén az U ismereté-
re. A nyomadsok ismeretében a sliriség meghatarozhatdé a tomeg-
megmaradasi egyenletbdl, /6.16/, s az et (S,u)"H

= —— Osszefliggés-

bS8l kapjuk U uj értékét. Ezutan az allapotegyenletbdl hatéaroz-
zuk meg a keverék ¢ slirliségét a mar ismert P, X és U valtozdk
segitségével.

Az igy kétféle médon szamitott siiriiség értéke &altaldban nem e-
gyezik meg. A kettd kiilénbsége a /6.21/ Taylor-sorfejtés képlet-
hibadjanak mértéke. Ez a hiba érzékeny a [/6.22/-/6.24/ siirliség
derivaltak vé&ltozéséra. Kétfézisu rendszerben a sliriség deri-
valtak nagymértékben szakadasosak lehetnek az egy- és kétfazisu
tartoményok talalkozasanal. Emiatt az ilyen pontokban nagy lesz
a numerikus séma képlethibadja hacsak nincsenek alkalmas ugras-
feltételek megadva, vagy az iddlépés nem elég kicsi ott, ahol az
atmenet torténik.
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A kétféleképpen szamolt slirliség kozti kiildnbség felhasznalhatd
automatikus lépés ellenbrzés bevezetésére. A hiba mértékét az
alabbi Osszefiiggés adja meg:

£ = (/&_'_9“/) PE S 00 ik (Y
s max

Az iddlépést ugy valasztjuk meg, hogy ez a hiba eldre megadott
korlatok k&zé essék. Ha egy At id6lépéssel eldre haladva a ka-
pott hiba atlépi ezt a korlatot, akkor kisebb iddlépéssel megis-
mételjlik a szamitast. Ha ez kisebb, mint az alsd korlat, akkor a
kovetkezd lépésben noveljilk At-t.

Emellett még az alabbi korlatok befolyasoljak az iddlépés nagy-
sagat:

1. At-nek ki kell elégitenie a Courant-féle feltételt, azaz

At < g% el 22,3 N
i= AL

(lu":htﬁil.')max min S o

2. Ha gyors fazisatalakulaskor a folyadék jellemzdinek extrapo-
lalasa negativ vagy nulla siiriiséghez vezet, akkor csdkkenteni
kell az iddolépést.

3. Ha P, X vagy U értéke olyan termodinamikai &allapotnak felel
meg, amely a folyadék jellemzdit szamitd szubrutinok értelme-
zési tartoméanyan kivil esik, akkor is meg kell ismételni az
utolsd lépést csdkkentett At-vel.

A peremfeltételek megadasa van még hatra. A sziikséges peremfel-
tételek szama és megengedhetd kombindcidja altalaban fizikai
megfontolasokbdl és a karakterisztikak vizsgalatabdél allapithatd
meg. Mivel ez a differencialegyenlet-rendszer nem teljesen hi-
perbolikus, a karakterisztikak nem alkalmazhatodok kdzvetlenil.
Szikség van az egyfazisu modellel végzett tapasztalatokra. A le-
hetséges peremfeltétel-kombindcidk meghatdrozasa a 2.4.4. pont-
ban ismertetett modellhez hasonldan torténik.

Zart végen itt is az a feltétel, hogy mindkét fazis sebessége
nulla. Ilyen peremen nincs szilikség az impulzus egyenletekre.

Ha nyomas-feltétel adott, akkor bedramlas esetén meg kell adni

a térfogathoz tartozd valtozdkat, hogy X és U értéke ismert le-
gyen a belépésnél. Kiadramlas esetén elég csak a nyomdst megadni.
Az impulzus egyenletekben sziikség van az adott térfogat mindkét
szomszédjan definialt sebességekre a [/6.21/ Osszefiiggésekhez.
Ezért ki- és bedramlas esetén egyarant sziikkség van a peremen ki-
vili informacidkra is. Ez a numerikus feltétel lehet az, hogy a
sebességek derivaltja a peremen kiviil nulla /azaz konstansok a
sebességek/.

Sebesség-feltétel esetén ha a sebességek nem nullak, akkor bea-
ramlasra definidlni kell a folyadék jellemzdit. Ha P, X és U



mellett mindkét sebesség adott, akkor a feladat tuldefinidlt,
mivel csak 5 egyenlet van. Ot feltételt csak szuperszonikus
aramlas esetén lehet magadni. Altaldban azonban az Aramlas se-
bessége ennél kisebb. Egy sebességet elég megadni, a masik az
impulzus Osszefliggésekbdl szamithatd.

A numerikus sémahoz azonban tovabbi peremfeltételek is sziiksé-
gesek a /6.21/ Osszefliggés kiszamitasahoz. Ezért lehetséges
mindkét sebességet megadni az allapotjelzdk mellett, s igy is
elfogadhatd eredményeket szamolni.

2.5. A kétfazisu aramlas szamitasanak alkalmazasi kore

Az atomerdmiivek novekvd szama miatt egyre tobb ember él1 miikddo
eromivek kdzelében, s ez a tendencia fokozdédni fog.

Az eromi mikoédtetésének legfdbb kritériuma a biztonsagos ilizeme-
lés, azaz akarmilyen baleset, vagy lizemzavar to&rténik, az a la-
kossagot ne érintse. A lakossagot csak akkor éri radioaktiv su-
garzas, ha az erdmi radioaktiv flitdanyagot tartalmazd zdnaja
megolvad, s ezt a sériilésen, tOrésen at tavozd, forrasban levd
hiitckbzeg magaval viszi.

A reaktorbiztonsagi kérdéseknek ezen tulmenden gazdasagi hatéasa
is van: baleset esetén a reaktor évekre, vagy Ordkre leall, ami
gazdasagilag hatalmas veszteség.

Mindezek miatt a reaktor lizemelésével és feltételezett meghiba-
sodasaval kapcsolatos jelenségeket, folyamatokat ismerni kell.
A baleset alatt és utan lejatszd6ddé folyamatokat a k8ltség és
biztonsagi kihatasok miatt nem lehet kisérlettel szimulé&lni,
csak szamitasokat lehet végezni. Laboratdériumi méréseket csak
egy-egy jelenség megismerésére lehet végezni. A gyakorlatban e-
18forduld baleseti allapotban sok jelenség és folyamat egyideji
kdlcsbnhatasat kell vizsgalni, s ezt csak szamitassal lehet el-
végezni.

A reaktorbaleseteket leird korszerii szamitdégépi programrendszer
ma a technikaban hasznalt egyik legbonyolultabb program, mert
rengeteg hatast kell egyidejlileg kdvetni szamitasokkal.

CsotOréses baleset esetén pl. a hiitdkdzeg forrasba jon, s egy-
szerre kell a folyadék és a g0z aramlasat szamitani, mikdzben
hdatadasi és hidrodinamikai hatésok sokasagat kell szimul&lni.
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Nemcsak baleseteknél, hanem a tervezésnél és a miikddési enge-
dély megadasahoz is el kell végezni az ilyen szamitasokat, meg-
vizsgalva feltételezett lzemzavari allapotok kdvetkezményeit.

A tervezésnél azért fontos a baleseti folyamatok ismerete, mert
ma mar a szigoru biztonsagi koévetelmények miatt az erdmii beru-
hazasi ko6ltségének kb. 30%-at forditjak biztonsdgi berendezé-
sekre. A folyamatok pontos ismerete lehetdvé teszi a tulbizto-
sitas elkerilését.

Magyarorszagon az lizemzavari szimuldcids szamitasokat a KFKI
Termohidraulikai Osztalyan végzik, ahol ez a dolgozat késziilt.

A szamitasok céljara felhasznalt programok elsSsorban az ameri-
kai eredetii RELAP kbédcsaladd tagjai. Az Idaho National Laboratory-
ban sok kutatdé évtizedes munkajaval kifejlesztett programcsalad
elsd publikalt tagja [33]. Ezt t&bb javitott valtozat kdvette. A
ma nemzetkdzileg legelterjedtebben alkalmazott valtozat a RELAP4/
MOD6 [34] 1978 6ta all rendelkezésre. A RELAP4 kédok aramléasi mo-
dellje egydimenzibds, homogén és egyensulyt feltételez. Az ezekkel
folytatott hazai szamitdsok attekintése [35]-ben talalhaté.

A nem-egyensulyi hatéasok figyelembe vételének igénye inditotta el
a RELAPS5 programcsalad fejlesztését. Ennek 1981 6ta mar két val-
tozata is ismert /a MODP és a MOD1l [32]/, de a fejlesztése és
tesztelése még nem fejezdddtt be. Hazai szamitdsokat ezekkel még
nem vegeztek, egyeldre csak az Egyesiilt Allamokban és Ny-Eurdpa-
ban allnak rendelkezésre.

A programokban felhasznalt fizikai Osszefliggések és matematikai
modszerek ismerete nélkiil az eredmények megbizhatésdgat nem lehet
értékelni. Hibas vagy gyanus, fizikailag nem magyarazhaté ered-
mények esetén a matematikus feladata, hogy a hibat megkeresse.

A megoldas pontossaga fligg a reaktort modellezd séma finomsaga-
t6l, a racsosztas nagysagatdl, az alkalmazott iddlépéstdl, a
programban felhasznalt fizikai modelltdl. A megfeleld input ada-
tok kivalasztasa nem egyszeri feladat.

Mivel a programok leiradsdban az input adatok viszonylag tag hata-
rok kozt mozognak, ezért sziikség van egy olyan optimdlis bemend
adatrendszer megvalasztasara, melyre az eredmény konvergens és
stabil, de a futasi idd nem tul nagy és a memdéria igény sem tul
sok. Ezeknek az ellentmondd kévetelményeknek a kielégitéséhez is-
merni kell a programba foglalt matematikai modell viselkedését.

A miiszaki haladas mind nagyobb kévetelményeit ujabb és ujabb biz-
tonsagi koédok hivatottak kielégiteni. Ezekben ujra és ujra meg

kell vizsgalni a kiilonb6zd fizikai jelenségek szimuldlasara fel-
hasznalt egyenletrendszert, annak matematikai sajatsagaibdl adddé
probléméakat, mint ez pl. a régebbi programvaltozatokban hasznalt



homogén modellrdl a két-kdzeg modell hasznalatara vald attérés-
kor torténik.

Ma az intézetiink birtokaban levd programokban kilénféle matema-
tikai megoldasi mbédszerek vannak beépitve. A megoldast, az input
adathalmaz Osszeallitasat, a futds kdzbeni mddositast ezek fi-
gyelembe vételével kell elvégezni.
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Jeldlések

fliggetlen valtozdk /hely/
fliggetlen valtozdé [idd/

sliriiség

sebesség

entalpia /teljes energia/
hOmérséklet

térfogattdrt

nyomas

tomegfluxus

fajtérfogat

gdztartalom

belsd energia

gravitacids er® a megfeleld iranyban
falsurlédas

hoforras

tomegatadas [fazisatalakulasnal/
aramléasi keresztmetszet

fazisok kozti impulzuséatadés

fal hdatadasa

fazisok k&zti energiaatadas

hangsebesség

goz
folyadék
telitési allapot
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A/ fliggelék

A lokalis képlethibdk fdtagjainak meghatarozéasédhoz eldszdr
Taylor sorba fejtjiik az u fliggvényt a kdzelitések kdzép-
pontjai koriil, s ennek segitségével irjuk fel a felhasznalt
racspontokban felvett filiggvényértékeket.

Az (x\,th) pont koriili sorfejtésbdl az T u(xa,t ) jelvléssel:
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(x‘,th* ) pont koriili sorfjtésbol:
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Ezek felhasznéaléasaval a lokalis képlethibakat .a k&vetkezCT mddon

irjuk fel az egyes séméakra:
Az A séma képlethibéja az (xa‘,th) pont koriil felirt sorfejtésbdl
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