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1. BEVEZETÉS

1.1. Az LCAO módszer alapjai

A kvantummechanika alapvető feladata a

h4>= E? (1)

SCHRÖDINGER egyenlet megoldása. A megoldást bizo­

nyos egyszerüsitő feltevések mellett keressük. A 

BORN-OPPENHEIMER közelítésnél Cl] az atommagokat 
rögzítettnek tekintjük. Ez a feltevés jó közelí­
téssel teljesül tetszőleges molekula esetén. Az e- 

lektronok mozgását ezért általában rögzített atom­
magok terében vizsgáljuk. Az elektronok igen nagy 

sebessége miatt mozgásukat pontosan csak a relati­
vitáselmélet keretei között lehet leirni. A számí­
tások során igen gyakran eltekintenek a relati- 

visztikus tárgyalástól. A relativitáselmélet kö­
vetkezményei ugyanis csak olyan molekulák esetén 

fontosak, melyekben nehéz atomok is vannak. Ezek­
nél is csak az atommagok közvetlen környezetében 

vannak lényeges hatások, igy a kémiai tulajdonsá­
gokat csak közvetve és kis mértékben befolyásolják.
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А BORN-OPPENHEШЕИ közelítésnél nem rela- 

tivisztikus esetben az (l) egyenlet csak 1 mag és 

1 elektron, ill. 2 mag és 1 elektron esetén oldha­
tó meg egzaktul, az összes többi esetben numerikus 

úton kell keresnünk a megoldást.
A hullámfüggvényt SLATER determinánsok li­

neáris kombinációiként állítjuk elő:

кФк .V = (2)C

A legegyszerűbb esetben Y egyetlen 

mináns, melynek elemei a molekulapályák. Ezek ún. 

spinpályák, melyek felbonthatók helykoordináták és 

spinkoordináták függvényeinek szorzatára.
Az atomoknál is jól ismert HARTREE-POCK 

módszer [2] molekuláknál is jól használható válto­
zatát ROOTHAAN dolgozta ki 1951-ben C33 . A *f± HF- 

-pályákat sorba fejtette atomi pályák szerint:

deter-

,X-fi- (3)G.

Ez az LCAO (LINEAR COMBINATION OP ATOMIC ORBITALS) 

módszer.
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1.2. Az EXTENDED HÜCKEL közelítés

Az összes vegyérték pályát figyelembe vevő 

legegyszerűbb módszer, melyet angol nevéről rövi­

den EHMO módszernek is neveznek DJ .
Ebben a közelitésben nem számolunk az e-

lektron taszitási kifejezésekkel. A nem-diagonális 

mátrix elemeket az általánositott ,fIvnJLLIKEIín formu­
la szerint [4J közelitjük:

v»=íkCCV +<*v)s (4)

ahol 0( a fi pályához tartozó ionizációs potenci-

értékét 1,75-nek szokás választani, 

átfedési integrál definíciója

r
ál, К állandó,
az Sfi»

s/uv = SX^X (5)

pedig definició szerintH/и»

(6)dv .
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A (6) egyenletben T az elektron kinetikus energiá­
jának az operátora, az elektronnak az A atom­

magtörzs vonzásából származó potenciális energiá­
nak az operátora.

A diagonális mátrixelemek nagyon egyszerű 

módon adhatók meg:

H/iyu “ &px * (7)

Az EHMO módszernek ismeretesek töltés ite­
rációs változatai is, melyeknél a px pályához

parciális töltés lineáris
tar­

tozó atomon levő Qr
vagy kvadratikus függvényét is hozzáadjuk a (7) e- 

gyenlet jobb oldalához, azaz:

^ px px Qpx + • (8)

1.3. А СЖЮ közelités

A (3) egyenletben szereplő C együttha-k,i
tók meghatározása variációs módszerrel történik,
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mely a következő egyenletre vezet:

EX (9)

ahol I? a HARTREE-FOCK operátor.
Az F mátrix nem diagonális elemeire C53-C73 szerint 

a következő kifejezés adódik:

ZZpm c(/uvl^b •s s 2
(10)F/uV 11 fa V +,

occ
2- °kj Cv«S (11)Itt a = 2

к

mátrixelem a sűrűségmátrix elemei segitségével 
nyerhető, ahol az összegzés az összes betöltött ^ 

molekulapálya fölött történik.
■

2
(/uv|já)=J[^u(l)Xv(1) —X}( 2)1^2) ^1^2 (12)

a jól ismert elektron kölcsönhatási integrál, ahol
pedig az első és második e-e az elemi töltéSjr-^
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lektron egymástól való távolsága, 

A CNDO tipusú közelítéseknél a szorza-

* V
mazik a módszer neve is: COMPLETE NEGLECT OF DIF-

esetén. Innen szár-tokát zérusnak tekintik

FERENTIAL OVERLAP.
A módszer POPLE, SAÍTTRY és SEGAL nevéhez fűződik 

([S3-[11]).

A (5 ^

ütésben az F mátrix nem-diagonális elemeire az

jelölést bevezetve a CUDO köze-yuV

1
pxV H/uV " 2 P/UV (13)F

egyszerű kifejezés adódik.
Az F mátrix diagonális elemei az

1
P/u/u = И/uyu “ 2 Py*yi ‘fyyu + (14)

kifejezéssel adhatók meg, А С1Ш0 közelítés külön­
böző változatai széles körben elterjedtek a számí­
tások viszonylagos egyszerűsége és az általuk 

nyerhető jó eredmények miatt.
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Itt jegyezzük meg, hogy a CM)0 közelítés 

tulajdonképpen a ZDO (ZERO DIFFERENTIAL OVERLAP) 
közelítés következetesen végigvitt változata. Ké­
sőbb más változatok is elterjedtek, melyek nem 

minden olyan integrált hanyagolnak el, amelyeket 
а СЖЮ módszer elhanyagol. A legismertebb ilyen 

változatok a PNDO, 1ЖЮ, М1ЖЮ, ШШО módszerek.

-

»
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2. KOMPLEX MOLEKULÁK ELEKTRONSZERKEZETI SAJÁTSÁ­

GAINAK VIZSGÁLATA KVANTUMKÉMIAI MÓDSZEREKKEL

2.1• Problémafelvetés

Ismeretes, hogy az átmeneti fém komplexek 

bizonyos típusai szerves kémiai szintézisekben i- 

gen eredményesen használhatók mint katalizátorok. 

Ilyenek például az átmeneti fémek egyes karbonil- 

komplexei.
Az is jól ismert tény, hogy a periódusos 

rendszer V. és VI. főcsoportjának elemei, különö­
sen a 3. periódustól kezdődően katalizátormérgek. 

Az utóbbi években jelentős erőfeszítések történtek 

ilyen tipusú komplexek előállítására, tulajdonsá­
gaik megismerésére és elméleti úton való értelme­
zésére .

'

A József Attila Tudományegyetem Általános 

és Pizikai Kémiai Tanszékén működő elméleti kémiai 
csoport a Veszprémi Vegyipari Egyetem Petrolkémiai 
Kutató Csoportjával szorosan együttműködve már ko­
rábban is végzett hasonló kvantumkémiai számításo­
kat.
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A vizsgálatok tárgya kezdetben az 

S2C°2(CO)6 típusú komplexek voltak.

Ezeknél X2 = C2H2, C2H(CH3), C2(CH3)2 

ill.
( [12] , [13] ),
([14] , [15] ).X2 — C2H2, 1T2, ?2, Ás 2

A számítások ezeknél a CLiCK-féle С1Ш0 módszer se­
gítségével történtek [16] . E számítások eredményei 
azt mutatták, hogy a módszer nem ad helyes képet a 

töltéseloszlásra azokban az esetekben, melyeknél 
erős viszontkoordinációval kell számolni. A fémen, 
ill. heteroatomon kialakuló nettó töltés előjele 

általában nem felel meg a várakozásnak. E számítá­
soknál viszont az előbb említett hiányosságok el­
lenére is a különböző fizikai mennyiségek trendjei 
mindenkor helyesen adódtak, a kísérleti eredmé­
nyekkel teljes összhangban.

Érdekesnek ígérkezett a tetraéderből le­

vezethető ^n^°(4_n)(C0)3(4_n^ típusú vegyületek

kvantumkémiai vizsgálata is (n = 1,2,3>4). Ezek 

formálisan úgy vezethetők le az alapmolekulából, 

hogy egy vagy több foszfor atomot Co(CO)3 csoport­

tal helyettesítünk.
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A kvantumkémiai számítás elvégzéséhez elő­
ször is módszert kellett kiválasztani. Karbonil 
vegyületek tulajdonságainak értelmezésére használ­
tak már EXTENDED HÜCKEL tipusú közelítést ( [173 - 

-[22]) és Хы- SW (szórt hullámú módszer) szá­
mításokat ([233, [24]). A legalkalmasabb módszernek 

azonban a FREUND és munkatársai által kidolgozott 

és általuk elsősorban karbonil komplexekre alkal­
mazott СШЮ közelítés tűnt ([253-DO]). E módszer­
rel helyesen lehet megkapni a komplex molekula a- 

tomjain kialakuló nettó töltés előjelét is, szem­
ben a korábban emlitett CLACK-féle СЖЮ módszerrel.

Felvetődött továbbá az a lehetőség is, 

hogy a CLACK-féle СЖЮ módszerben a paraméterek 

alkalmas megválasztásával (a program nem-standard 

paraméter megválasztásra lehetőséget nyújt) meg 

tudjuk-e közelíteni más programok által - elsősor­
ban a FREUND programra gondolunk itt - számított 

eredményeket.
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2.2. A FKEUiro-féle módosított СЖРО program

2.2.1. Korábbi СЖЮ változatok

А С1Ш0 változatok közül még ma is a legel­
terjedtebb a P OPLE -SB GÁL -féle СХШ0/2 ( [3] - C113 ). 

Invariancia okok miatt a (l3)-ban szereplő -yuy
-ről feltételezik, hogy csak azoktól az M és N a-
tomoktól függ értéke, melyeken a px és }) pálya

igу jelölhetjük *1$centrálva van, -nel is • H/uy”

átfedési
Ш

-ről feltételezik, hogy arányos az S

integrállal, igy (13) a következőképpen irható fel 

(31) alapján:

1
?yuv =^MKS/uV " 2 уЛ (15)Ш *

ahol = |(ß° + (3j)« ßS és ßS az M ®s 11 a"
tómra jellemző értékek, melyeket úgy választottak 

meg, hogy a lehető legjobb egyezést adja а СЖЮ és 

kétatomos molekulákon végzett ab initio számitások 

között. (14) a következőképpen irható fel а С1Ш0/2 

közelítésben:
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11
ИМ_2М)_ 2 (íu/a-1)AfM+}>у - - (уу+т

+ S (Р""^ • (16)

а утл pályára vonatkozó ionizáci-

j elenté-

Itt I . ill. Arr
ós potenciál, ill. elektronaffinitás. PAÁ

se a következő:

=Z1 (17)Píí’P
M Í(A)

tehát tulajdonképpen az A atom teljes elektronsű­
rűségét jelenti.

A és 7Г
kát SLATER tipusú s pályákra elméleti úton számít­
ják ki analitikus formulák segítségével.

Más közelítéseknél más empirikus közelíté­
seket is alkalmaznak az elektrontaszitási integrá­
lok kiszámítására. Ilyen PARISER és PARR egyenle­

tesen töltött gömb modellje (C32], [333), ahol 
v оR> 2,8 A eseten a

elektrontaszitási integrálo-AB
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1 1

;Ш]}Vi (18)

közelítést használják. Ez a klasszikus elektroszta­
tikus taszitás olyan 7Г”е1е^гоп felhők között, 

lyeket két

me-

9,194
(19)d =

átmérőjű tangenciálisan érintkező gömb képvisel, A 

(19) egyenletben^ a SLATER-féle atomi *ÍT -pálya 

exponense.
E ^2,8 i esetére a

V-; - (AR + BR2) (20)

’

kifejezést alkalmazzák, ahol az A és В konstansok 

értékét úgy lehet megkapni, hogy R = 2,8 i és 3,7 í 

értékeket behelyettesítjük (20)-ba, és ezt egyen­
lővé tesszük a (18) egyenletből adódó értékekkel,

A MATAGA-tfISHIMOTO közelítésnél [34]
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2eT (21)=
rv R+a /uv

2e2
ahol Vv' ■
Molekula spektrumok értelmezésénél népszerű ez a 

közelítés.
Az OmiO-KLOPMAIT közelítés ( C353 , С36Д ) formája a 

következő:

2
(22)

Átmeneti fémek tárgyalására alkalmas parametrizá- 

ciét CLACK és munkatársai készítettek először [16]. 

Az általuk készített CEDO változat nagyjából a 

СШЮ/2 közelítésen alapszik, de azoknál az elemek­

nél, ahol d elektronokkal is számolnak, a HP-mát­
rixelemek formuláit és paramétereit az s,p - d el­

különítéssel számítjuk. Az s és p pályákat egyen-
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értékűen kezelik, paramétereik azonosak, de a d 

pályák paramétereitől különböznek.
Átmeneti fémek vegyületeinek tárgyalására 

is alkalmas a YOHEZAWA és munkatársai által készí­
tett CNDO [37] változat is. Nem használnak bonyo­
lult formulákat az integrálok kiszámítására. Azo­
kat empirikus adatokból nyerik az átfedési integ­
rál kivételével.
A DEL BENE és JAFFÉ által készített CNDO/S válto­
zat ( [38], [39З) elsősorban spektrumok értelmezésé­
re alkalmas. Kissé más parametrizációt használ, 

mint az eddig említettek. E módszerrel jó eredmé­
nyek nyerhetők konjugált, heteroatomokat tartalma­
zó molekulák ultraibolya spektrumtartományának ér­
telmezésénél. WIBERG [40] СШЮ módszerével geomet­
riákat és képződési hőket számolt jó egyezésben 

különböző szénhidrogénekre. A ^uv rezonancia in­

tegrál számításánál bevezetett egy arányossági té­
nyezőt, melyet úgy kapott meg, hogy a metánra, e- 

tánra és etilénre vele számolt geometriák és kép­
ződési hők jól megegyezzenek a kísérleti értékek­

kel •
A FISCHER és KOLLMAR által újra paraméte-
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rezett CMDO módszerrel [41] megbizhatóan lehetett 

számolni atomizációs hőket, erőállandókat és e- 

gyensúlyi geometriákat.
SÉRAFUTI, LABARRE és munkatársai az s, p 

és d pályára vonatkozó paramétereket elkülönítik, 

így egy átmeneti fém atomot háromféle SLATER expo­
nenssel és kötési paraméterrel jellemeznek ([42],

[43] ).

2.2.2. A EREUlTO-féle CJTOO módszer

Az átmeneti fémek vegyületeinek leírására 

a korábban ismertetett szemiempirikus módszerek nem 

bizonyultak kielégítőnek. A CLACK-féle СЖ)0 [16] az 

elért eredmények ellenére sem irta le megfelelően 

pl. a töltéseloszlást, mint azt a 2.1. pontban már 

említettük. Az EXTENDED HÜGKEL módszer alkalmazása 

lehetőséget nyújt ilyen molekulák sikeres számítá­
sára, ez a módszer azonban nem veszi explicit módon*
figyelembe az elektron taszitási integrálokat, ami 
esetleg már meg nem engedhető egyszerüsitést jelent. 

Ezért olyan módszert kerestünk, ami elég egyszerű 

ugyan, de figyelembe veszi a fentemlitett elektron- 

taszitási integrálokat.
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Ilyen módszer volt a FREUITO és HOHLHEICHER 

által kidolgozott, általuk kiterjesztett СЖЮ mód­
szernek nevezett eljárás ([253-E303 ). E módszer 

elméleti alapjait ismertetjük röviden [253 alap-
. /ű an.

Kiindulásul a (15) és (l6) egyenleteket 
választjuk. A POPLE-SEGAL fele CIID0/2-ben а '7Г7JV
elektron taszitási integrálok megválasztása úgy 

történik, hogy az invariancia fennálljon mind a 

helyi koordinátarendszerek forgására, mind pedig 

az atomi bázissor hibridizációjára vonatkozóan. 
Mint a 2.2.1. pontban már említettük, minden atom­
párra csupán egyetlen elektrontaszitási integrált 

számítunk ki. A CLACK-féle СШЮ már elkülöníti az 

átmeneti fém d pályáit az s és p pályáktól, de az 

s és p pályák paramétereit már nem különbözteti 
meg egymástól. Ha a hibridizációra vonatkozó in­
variancia feltevést elvetjük, mint olyan felte­
vést, melynek fennállása lehetséges, de nem szük­
ségszerű, a szabadsági fok megnövekedése miatt le­
hetségessé válik az s, p és d pályákra különböző 

paraméterek megadása a rotációs invariancia meg­
sértése nélkül. Ez történik a FREUUD-féle СШ)0 

módszernél•
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A 4. periódusban levő átmeneti fémeknél e- 

legendő a 4s, 4p és 3d pályákat figyelembe venni.

A (16) egyenletből kiindulva a FOCK-operátor dia- 

gonális mátrixelemei a következők:

SS- - Pss7ss+ PaA(S^^ +

,АВ + РВВ(Р)* (23)

+ РF__ = Нss

+ Р

•ТЛр + рвв

\ *pp%p+ PAA(S>tT^

+ РАА(В>ТГ^ + JJJ »BB^ßps

•ТГрр * РВВ^)?Гр^ .

<р)?Ги +
,АВ + РВВ(Р)* (24)

F = Н - РР РР + РАА

\ paaW pAA(s>?£t + РАА{Р>?^ + 

+ VD>1Tdd + ё ВНВ<«>Т£ + РВВ(Р> 

•TTdp + РНВ^®)<Вм] •

раа ■ наа-

(25)



- 19 -

ВЛ*
, (a d függve-Itt például PBB(D) PSS

66
<4 =i

nyék száma а В atomon).
A nem-diagonális mátrix elemek a következők:

*

1
2 Psp*ffsp * (26)= HFsp sp

“ Psd7Fsd » 

2 Ppd*2Fpd *

(27)Psd = Hsd

(28)= Hpd '

Ha a FOCK-operátor nem diagonális mátrixe­

lemeinél az f függvényeket is figyelembe vesszük, 
ez 4 diagonális és 6 nem-diagonális mátrixelemre 

vezet.
Ebben az esetben a diagonális mátrixelemek

a következők:
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A nem-diagonális mátrixelemek pedig a következők:

1
— p 7Г2 sp u (32)= H sp *sp sp
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1
sd “ 2 ^sd^sd * (33)psd = H

\ Psf ^

1 or2 Ppd. ^ Pd *

2 W *

(34)Psf = Hsf " sf »

(35)Ppd = Hpd "

(36)Ppf = V -

(37)Pdf = Hdf " df ’

угуи ^uV a POPLE-féle kifejezések szerint:

-X VAB ,>/“= >/“ 

^UV = ß/üyUV •

(38)B^A

(39)

=Д«(- Iv2 -
VAB “ J*fXu

(40)dv ,Itt U/a/a

(41)dv .

kötési paraméterek meghatározásánálРНЕШТО а
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paramétert (ßs.ß° ßd)3 különböző rezonancia és
vesz figyelembe.

és kifejezések az átmeneti fémeknél el­

térnek a CKDO/2 változatban szereplő kifejezésektől. 

Az átmeneti fém elektron konfigurációja legyen

V

Az D/U/U

értéke függ az A atomhoz tartozó pályaAB
tipusától és В elektronkonfigurációjától. Legyen az 

А-hoz tartozó pálya s tipusú, В atom elektronkonfi­
gurációja pedig a fent leirt. Ekkor

Vs > - + ^+ *SAB (42)sd •

/inkBent emlitett konfigurációk E^Cs ) átlagos e-

nergiáit POPLE eljárását követve a pálya ionizáci­
ós energiák és pálya affinitások segítségével szá­
míthatjuk ki. Ezek számtani közepét véve ü úgy/U/U

adódik, mint a MULLIKEN-féle elektronegativitási

tényező és az elektrontaszitási integrálok algeb­

rai összege.

Az ^u/u kifejezések az s2dn”2 konfigurációra:

31
- - ^V^-Vüas-*- 2 (43)USS
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51
Uff= ~ (!f+ff)”ZA0*ff+ 2*5ff" 4fs * (52)

i i кA továbbiakban s pud konfigurációt tételezzünk fel 
minden átmeneti fémre, ill. olyan elemre, ahol az s 

és p elektronok figyelembe vétele nem elegendő a 

vegyérték elektronoknál. E konfiguráció esetében 9 

szabad paramétert kell meghatározni:

2^^u + ^u^ elektronegativitási tényezőt,a/ 3

ъ/3 $ 

о/ 3 §

rezonancia paramétert,

SLATER exponenst .г
Ezeknél a paramétereknél yu = s,p,d lehet.
Az ionizációs potenciálokat atomi adatokból nyer­
hetjük C44], az elektron affinitást izoelektronos 

extrapoláció révén, vertikális és horizontális a- 

nalizissel ([8]-[11], [16], [453 -[47]).
A £ exponensek és |3 paraméterek megválasz­

tása úgy történt, hogy kis átmeneti fém vegyülete- 

ken (pl. Hi(CO)^, Cr(CO)g, Pe(GO)^) ab initio vagy 

pszeudopotenciál módszerekkel végzett számítások 

adataival legjobb legyen az egyezés. Más elemeknél
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lineáris interpolációval nyerhetők a megfelelő pa­

raméterek.

2.3. A FREUND-féle program alkalmazásra kész
formába hozása

2.3.1. A FREUND-féle program kiegészítése

Mivel a FREUND-féle kiterjesztett С1ГО0 mód­

szer igen alkalmasnak tűnt átmeneti fémek karbonil 
és egyéb komplexeinek vizsgálatára, levélben kértük 

FREUND-ot (Heidelberg, NSZK), hogy bocsássa rendel­
kezésünkre programját. FREUND néhány általa lénye­
gesnek Ítélt programrészletet küldött meg "list­
ing” formájában. Az általa elküldött programrészek 

zárt héjú vegyületek számítására lettek volna al­
kalmasak (konfigurációs kölcsönhatás nélkül), a 

hiányzó programrészek pótlása után. Ezek a hiányzó 

programrészek a következő szubrutinok voltak:
COEFFT, LIRED2, LTQL2, READMS, WRITMS, COHPOP. A 

hiányzó utasítások száma kb. 4 500 utasítás.
A LIRED2 és LTQL2 szubrutinok a program el­

lenőrzése során nélkülözhetőnek bizonyultak. A
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READMS és WRITMS szubrutinokat a megfelelő helyen 

néhány sor utasítással pótoltuk. Ezek külön ismer­
tetést nem érdemelnek egyszerűségük miatt.

kötésrend analízist 

végezhet (néhány véletlenül megmaradt sorából erre 

lehetett következtetni). A program viszont más he­
lyen számított WIBERG indexeket [48]. így ez a 

szubrutin is nélkülözhető volt. (itt megjegyezzük, 
hogy egy későbbi cikk megerősítette ezt a felte­
vést [493, mely szerint e szubrutin végezhette a 

COHEN-féle C50] kötésrend kiszámítását. Ez a jól 
ismert COULSOIT [513 és MULLIKEN-féle ( [523 , [533 ) 
kötésrend általánosítása 7Г-elektron rendszerekre.)

A COHPOP szubrutin

2.3.2. A COEFFT szubrutin pótlása

Az igazi nehézséget a COEFFT szubrutin pót­
lása jelentette. Ez a szubrutin lényegében véve 

csak a következő 4 tömb elemeinek ad értéket:

Y(9135), F(15925), Z(765) és Zl(l518).
E tömbökben tárolt koefficienseket a prog­

ram SS nevű FUNCTION szegmense használja, amely 

redukált átfedési integrálokat számit ki. A Z és Y 

tömbök elemei az eredeti POPLE-féle СМЮ program-
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ból jól ismertek, E programban szükség van olyan 

redukált átfedési integrálok kiszámítására is, me­
lyeknél szereplő főkvantumszámok nagyobbak, mint 
az eredeti programban. Ezen integrálok kiszámítá­
sánál szükségesek a Z1 és F tömbök elemei is.

A redukált átfedési integrálok kiszámítá­
sához szükséges Y és Z tömbök elemeinek meghatá­
rozásához induljunk ki abból, hogy [54] szerint 

fennáll a

*^l”m ^2“m

(/,-v)“2

u=0 v=0

•(1-/UV)T (/и+У)П1 -m-v-m-u (53)

i,j=0

egyenlőség, ahol 0 és 0 = m

is teljesül. A 0^mu együtthatók a következő egyen­

lettel vannak definiálva:

&-m(m+1)!
cos(54)p|(cos^) = °ísin mu8 u=0
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Az (54) egyenletben szereplő I^(z) neve: •£, -edfokú 

m-ed rendű LEGERERE polinom. [553 alapján az (54)- 

ben szereplő Cßmu együtthatókra felírhatjuk, hogy

Ы)!8
(-l)PCX,m i-m-2p (m+1)t 2^ül U-m)l

(55)
C£-m-2p+l)(2-к)С0-т-Л) • • •

(2Í-2p+l)(2p)(2^-l)(af-3)2*4 • • •• • •

Az (5З) egyenlet bal oldalán szereplő hatványokat 
a matematikából jól ismert

n
(a+b)n = ^ (?)an-i, i b (56)

i=0

binomális tétel segítségével a következőképpen Ír­

hatjuk fel:
'

(/и2-1)Ш (-DNíj^/U
i1=0

2m-2í^
, (57)

. (58)
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(1+/UV)U = ]Г (Ö/3^3 • 
i3=0

d-^)v = xi (-dXV4*4 *

(59)

(60)
i,=04

n-,-m-i

i5=0

5/5 ,-m-u-in, -m-u n,<4 V"1ni^u+}>) 1 -m-u
(61)

Пр-И-V

i6=°
m-v n0-m-v-i,- ír6 )/u 2 4 6 .n~

jAl-V) 2 -m-v
(62)

Az (55)-(62) egyenletek alapján nem volt 

túl nehéz olyan programot irni, melynek segítségé­
vel meghatározzuk az (53) egyenlet bal oldalán 

szereplő tagok együtthatóit, mint i,j,n^, 

n2,^l*^2*m,u ®s v ^%Svényeit. A jobb oldalon szin- 

yu^ alakú tagok szerepelnek Yjj^ együttha­

tókkal. így a bal oldalon levő együtthatókat B-vel 

jelölve felírható, hogy

tén

= YijZ . (63)
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Ezek után nem látszott nehéz feladatnak a három di­
menziósnak tekintett Y mátrix elemeinek kiszámítá­
sa. Mivel i és j legkisebb értéke 0, Я pedig a 

FUUCTIOIf SS-ben szereplő

L = (5-M)(24-10M+M2)(83-30M)+3M2)/120 

+ (30-9L1+L2-2N1) (28-91^+1^-21^ )/8 

+ (30-9L2+L2-21í2)/2

(64)

értékével azonosítható, kézenfekvő a következő a- 

zonositási feltevés:

Y135l= Y(i + 1,3 + l.L) . (65)

A COEFFT szubrutin rendelkezésre álló 30 sorából 
(az összes kb. 4 000 utasítás) kiderült, hogy az Y 

tömb elemeinek megadása az eredeti С1ГО0 programhoz 

hasonlóan egydimenziós vektorként történik, azaz 

meghatározandó az az n szám, melyre

Y(n) = Y(k,fi,m) (66)

fennáll. Itt a jól ismert
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к + Мх(Х- 1) + M^MgU - 1) (67)n =

cimfüggvény adja meg a keresett összefüggést.
Ekkor következett az a meglepetés, hogy noha а СШЮ 

programban láthatóan a (63) egyenlet bal oldalán 

szereplő - általunk kiszámított - koefficiensek 

szerepeltek, a (65) egyenlet jobb oldalán szereplő 

három index az esetek nagy többségében helytelen 

volt •
Ez a probléma komoly nehézséget okozott az

Y koefficiensek reprodukálásában, mig ki nem derült 

a következő. Ha valamilyen (n^,ninúexö-

tös mellett létezik nem-zérus együtthatójú ^

tag, akkor ugyanezen indexötös mellett (ne felejt­
sük el, hogy az (57)-(62) összefüggésben szereplő
i^,i2,i^,i^,i^ és i^ paraméterek bizonyos határok

között szabadon változhatnak) nem létezhet^ у

tagok közül egyik sem zérustól eltérő

j-1
i .J+lés /и у

együtthatóval!
Ez az állitás szinte triviálisan belátható 

az (57)-(62) összefüggések felhasználásával. Nevez­
zük i-t és j-t azonos paritásának, ha mindkettő pá­
ros vagy páratlan, ellenkező esetben pedig ellen-
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kező paritásának. Tegyük fel továbbá, hogy valamely

(i,j) indexpárra /u1 tag együtthatója nem zérus 

(53) bal oldalán (itt eltekintünk attól az esettől, 

bogy a C^.C^

az a kérdéses esetben nulla, nincs mit bizonyita- 

nunk). Igaz ugyan, hogy i-pigfi^ii^i^ig egymástól

függetlenül változhat, de /u és >) kitevőjét mindé- 

gyik úgy változtatja meg, hogy egymáshoz viszonyí­
tott paritásuk változatlan marad! Ha a változások 

olyanok, hogy yu kitevője i marad, akkor ")) kitevője 

vagy változatlan marad (továbbra is j), vagy j-től 

csak páros számmal térhet el, ellenkező esetben a 

paritás megváltozna, ami, mint már beláttuk, lehe­
tetlen. Ezzel állításunkat bebizonyítottuk.
Fenti állitásból következik, hogy az Y(k,-£,m) mát­
rixból legalább minden második elem zérus (egyéb­
ként sokkal több az), tehát a benne szereplő koef­
ficiensek fele akkora helyen is elférnek, mert csak 

minden második indexnél lehet nem zérus elem vál­

tozatlan к és m mellett.
(65) helyett válasszuk a következő azonosi-

szorzat is lehet nulla, mert ha

tási feltevést:
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Yij* ■ Y(i +1» ~+ 1,L) • (68)

A (68) feltevés igazolására programot ké­
szítettünk. A program outputjánál minden У koeffi­
ciens azonos volt az eredeti POPLE-féle СЖЮ-Ъап 

szereplő Y koefficiensekkel• E program segítségé­
vel azt is be lehetett látni, hogy különböző, de a 

Р1ШСТ101Т SS szegmens által megengedett n-^,n2»^i»

^2»m paraméterek esetén a nem-zérus elemekhez kü-

lönzöző L érték tartozik.
A Z mátrix elemeire C543 szerint fennáll,

hogy

nl n2 nl! n2!n2-j
(69)

i!(n1-i)!j!(n2-j)!i=0 j=0

ahol к = 0,1,...,n1+n2 értékeket vehet fel.

Itt ZkX megfeleltetése a kétdimenziós Z mátrix­

szal :

Zk^ = Z(k + 1, ^.) . (70)
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Я. megfeleltethető a FUNCTION SS szegmensben sze­
replő

= (90 - 17NX + N^ - 21$2)/2 (71)L

értékkel. Itt is belátható, hogy a FUNCTION SS 

szegmens által megengedett ПрП2 paraméterek ese­

tén a nem-zérus elemekhez különböző L érték tarto­
zik. A Z mátrix elemeinek elhelyezésénél a (70) 

gyenlet az irányadó. A programkészitők - amint ez 

az összehasonlitásból kiderült - ezúttal semmiféle

e-

trükkös megoldást nem alkalmaztak.
Az Y és Z mátrixok reprodukálása után nem 

okozott nehézséget az F és Z1 mátrixok elemeinek
kiszámitása, mert az F mátrix tulajdonképpen az Y 

mátrixhoz hasonló elemeket tárol (csupán az ПрПр

üp^2»m paraméterek mások), a Z1 mátrix pedig a Z

mátrixhoz hasonló elemeket tárol (csak más n-^ és

n2 paraméterek mellett).
A Z1 mátrixnál egy ellenőrzési lehetőség 

is kínálkozott: a COEFFT szubrutin töredékben 14 

db nem-zérus Z1 mátrixelem szerepelt, amelyek mind
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megegyeztek a fentiek szerint kiszámolt mátrixele- 

mekkel•

2.3.3« A program összeállitása, javitása 

és tesztelése

A programban levő ismeretlen, ill. az ESZR 

tipusú gép által nem végrehajtható utasításokat 

megkerestük és helyettesitettük, esetleg kihagy­
tuk, ha ez volt az egyszerűbb megoldás. Utóbbit 

tettük például az idő kiírására szolgáló utasítá­

sokkal •
А СОММСШ mezőket felül kellett vizsgálni, 

mert azon a gépen, ahol a program eredetileg fu­
tott, úgy tűnik nem kellett ügyelni arra, hogy a 

REAL ж 8 tipusú változók dupla szóhatárra kerülje­
nek. A mi gépünkön az INTEGER és REAL ж 8 tipusú 

változók megfontolás nélküli elhelyezése a fordí­
tásnál, ill. később a futtatásnál problémákat oko­
zott volna. A különböző szubrutinok ugyanazon 

COMMON mezőket többször teljesen más beosztásokkal 
használták, ezért a COMMON mezők bármiféle megvál­
toztatását kellő óvatossággal kellett végeznünk.

A programban szereplő tömböket átdimenzio-
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náltuk 100 pályának megfelelőre. Ez természetesen 

megkövetelte a teljes program felülvizsgálatát, it 

kellett nézni az összes tömb dimenzióját, a szub­
rutinok formális éa aktuális paramétereit és az 

összes ciklus határait, ahol ezek szerepelhettek.
Itt említjük meg azt is, hogy azóta elké­

szült a program 200 pályás változata, ami újabb át- 

dimenzionálást tett szükségessé.
Az eredeti listáról az eddig említett kie­

gészítésekkel és módosításokkal lyukkártyákat ké­
szítettünk és az ún, ’’Béta rendszer” segítségével 
mágnesszalagra vittük a programot. Első lépésben a 

szintaktikus hibákat javítottuk ki a PORTRAEÍ-H for­
dító segítségével. A következő lépésben elkészítet­
tük a program OVERLAY-struktúráját• Ezt a lépést 

nem részletezzük, mert a virtuális memória bevezeté­
se után feleslegessé vált annak használata,

A program belövésénél az irodalomban szerep­
lő példával próbálkoztunk. A futás során kiderült 

- amint az természetesen várható is volt -, hogy a 

programban hibák vannak. Az outputban levő durva 

hibák alapján be lehetett határolni a program kisebb- 

nagyobb részeit, ahol a listák ismételt átolvasása 

után meg lehetett találni a hibákat. Ezt az eljárást
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természetesen jónéhányszor ismételni kellett, mig 

úgy tűnt, hogy a program használható lett. Ekkor a 

program készítőjétől levélben tesztelés céljára 

input és output adatokat kértünk, amit idővel meg 

is kaptunk.
A teszt program futása bizonyította, hogy 

a programban alapvető hiba nem maradhatott.

2.4. A CLACK-féle СШЮ és az ЕХТЕШЕР HÜCKEL
programok alkalmazásra kész formába ho-
zása

A CLACK-féle СШЮ program a GEOMO néven 

ismert program részeként felhasználásra készen 

állt ugyan a program megkezdésekor, de különböző 

okok miatt változatlanul még sem lehetett használ­

ni.
Az egyik ok az volt, hogy a program külön­

féle hibákat tartalmazott és az átmeneti fémekre 

rossz eredményeket adott [56]. A szükséges javítá­
sokról listát kértünk MAYER Istvántól (KKKI, Buda­
pest), aki korábban a javításokat elvégezte és ké­
résünkre meg is küldte azt. A lista alapján vi-
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szonylag jelentős (kb. 100 utasitás) javítást esz­
közöltünk.

A másik ok, ami miatt változtatni kellett 

a programon, az volt, hogy a GEOMO csupán 57 pá­
lyát képes kiszámítani az eredeti program dimenzi­
ók szerint. A legnagyobb molekula, melyet most ke­
zelni kellett, a Co^PCoo)^ volt, melynél 108 atomi

pálya fordul elő. A több mint 7 000 utasítást tar­
talmazó GEOMO-t át kellett méretezni úgy, hogy i- 

lyen pályaszámú molekulát is lehessen vele számol­
ni. Mostani változata 140 atomi pályáig képes szá­
mit ani .

Az átméretezett GEOMO-t load-modul készí­
tés után teszteltük néhány korábban már futtatott 

nyilt és zárt héjú molekulára. A tesztelés során 

jelentkező hibák alapján a szükséges módosításokat 
elvégeztük, mig a tesztek eredménye hibátlan nem
lett.

Az EXTENDED HÜCKEL programot a SOTE-nél 
(Semmelweis Orvostudományi Egyetem, Budapest) már 

évek óta használják. Kérésünkre megküldték mágnes- 

szalagon. Az igy kapott programot más úton szer­
zett használati utasitás alapján teszteltük. Kide­
rült, hogy az eredeti programot időközben módosi-
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tották, ezért bizonyos esetekben nem működött, ill. 

rosszul működött. Ezért az eredeti programról egy 

másik listát kellett beszereznünk, amely alapján a 

programot vissza tudtuk állítani eredeti formájá­
ban. A program tesztelése azt mutatta, hogy vissza­
alakított formájában rendeltetésszerűen használható.

2.5• További fejlesztések. Szimmetriapályákat
számitó program készítése

2.5.1. Szimmetria szerepe a molekuláknál

A munkavégzés során felvetődött, hogy a kü­
lönböző kvantumkémiai programok - igy а CNDO válto­
zatok, EXTENDED HÜCKEL, stb. - által kiszámított 

molekulapályákról igen hasznos információt nyújt, 

ha ismerjük a pálya szimmetriáját is.
A molekula szimmetria tulajdonságainak is­

merete nemcsak a kvantumkémiai számításokat egy­
szerűsíti le azzal, hogy sok részletszámitás fe­
leslegessé válik, hanem a molekula tulajdonságai­
nak jobb megértését, a kötések, a színképek egy­
szerűbb értelmezését is lehetővé teszi.

Régóta ismeretes, hogy a szimmetria ope-
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rátörök - tehát azok az operátorok, melyek a mole­
kulát önmagába viszik át - csoportot alkotnak, me­
lyet szimmetriacsoportnak nevezünk. A szimmetria­
csoportokat a kémiai irodalomban elterjedt 

SHOEEFLIES szimbólumokkal jelöljük.
A komplex molekulák különösen alkalmasak 

arra, hogy a szimmetriamüveletek eredményét tanul­
mányozzuk a molekula különböző tulajdonságainál, 

pl. a termek felhasadását [57], a parciális tölté­
sek eloszlását, a kötésrendeket, stb.

A szimmetria operátorokhoz bármely n-elemü 

ortonormált bázis mellett n-edrendü mátrixokat ren­
delhetünk, melyek a szimmetriacsoport valamely rep­
rezentációját alkotják. Ekvivalens reprezentáció­
kat a mátrixok diagonális elemeinek összegével jel­
lemezhetünk, melyet az illető mátrixhoz tartozó o- 

perátor karakterének neveznek.
Abban az esetben, ha egy mátrix reprezen­

tációnak a bázisa olyan teret feszit ki, melyben 

a csoportnak invariáns alterei vannak, azt mondjuk, 
hogy a reprezentáció reducibilis, ellenkező eset­
ben pedig irreducibilisnek nevezzük.

A reducibilis reprezentációkat a karakter­
tábla ismeretében irreducibilis reprezentációk
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összegére bontjuk fel, amely műveletet kiredukálás­
nak nevezünk. Ezt matematikai formulával a követke­
zőképpen Írhatjuk fel, ha|~~(R) jelöli egy R cso­
portelemhez tartozó reducibilis reprezentáció mát­
rixát, J"~^(R) pedig a csoport i-edik irreducibilis 

reprezentációjának R-hez tartozó mátrixát:

f(R) = Cir1(R)+C2r2(R)+ +crrr(R) • (72)• • •

ГItt az egyenlőség azt jelenti, hogy a 

ráció minden R csoportelemhez tartozó mátrixa u- 

gyanazzal a hasonlósági transzformációval olyan 

blokkdiagonális alakra hozható, hogy a diagonális
.—I

menti blokkok közt j irreducibilis reprezentáció 

C^-szer, J C2-ször fordul elő, stb.
A szimmetriapályák meghatározása lényegé­

ben véve azt jelenti, hogy az előzőekben ismerte­
tett kiredukálás segítségével meghatározzuk az e- 

gyes molekulapályák szimmetriáját, azaz megálla­
pítjuk, hogy milyen irreducibilis reprezentációval 
azonos szimmetriájú az illető molekulapálya. Az 

irreducibilis reprezentáció dimenziója egyenlő 

lesz az illető molekulapályához tartozó energia

reprezen-
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degenerációjának fokával* A csoportelmélet ismere­
tében (lásd pl. [58]-at és [593-et) ezek a számí­
tások elvégezhetők.

2.5.2. Szimmetriapályákat számitó program 

készítése

Mivel a kvantumkémiai programok nagy része 

nem határozza meg a szimmetriapályákat, de az e- 

nergiákat és a hozzájuk tartozó molekulapályákat 

meghatározza, célszerűnek tűnt olyan különálló 

programot Írni, amely inputként felhasználja vala­
mely program által már kiszámított sajátértékeket 

(a molekulapályák energiáit) és a hozzájuk tartozó 

sajátvektorokat (azaz a molekulapályákat meghatá­
rozó koefficienseket). E témakörből irt korábbi 
munka [573 során szerzett tapasztalatok nagy se­
gítséget jelentettek a program elkészítésénél.

Célszerűnek tűnt, hogy a készítendő prog­
ram saját maga határozza meg a molekula szimmetri­
áját is és ebből kiindulva végezze el a szimmet­
riapályák kiszámítását.

Ilyen program Írása igen bonyolult és ne­
héz feladat. Segítséget jelentett viszont e munká-
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ban, hogy a rendelkezésünkre álló kb. 3 000 utasí­
tást tartalmazó ún. UMINDO programban beépítve 

szerepel több olyan szubrutin, amely elvégzi ezt a 

feladatot.
A továbbiakban tehát meg kellett ismerni 

az UMINDO működését, a benne szereplő tömbök, vál­
tozók és szubrutinok feladatait. Ezek után a fe­
lesleges utasításokat törölni kellett a programból 
és meg kellett határozni, hogy az igy nyert cson­
ka programnak milyen legyen az inputja. Nyilvánva­
ló ugyanis, hogy a szimmetriapályákat számitó 

programrészeknek az új programban is meg kell kap­
niuk azokat az adatokat, melyeket az eredeti prog­
ramtól készen kaptak. A különbség csupán annyi, 

hogy ezeket most input adatokként kell megkapni­
uk.

Az új program létrehozásának ez a része 

meglehetősen időigényes feladat volt, mert a tel­
jesen új főprogram mellett a régi programból 8 

szubrutin is szerepelt. Szemléltetésül érdemes 

megemlíteni, hogy az UMINDO-ból kivágott részek 

összesen több mint 900 utasítást tartalmaznak.
A javítások és tesztelések elvégzése után 

még két megoldandó feladat volt. Az egyik feladat



- 44 -

az volt, hogy az új program inputként lehetőleg 

többféle kvantumkémiai program outputját felhasz­
nálhassa. Különböző С1ГО0 tipusú programoknál ez 

viszonylag egyszerű feladatnak bizonyult. Az EX­
TENDED HÜCKEL programnál már szükségesnek bizo­
nyult a főprogram megváltoztatása. Az EXTENDED 

HÜCKEL programnál ugyanis más az atomi pályák sor­
rendje. Az input beolvasása után a sajátvektorok 

komponenseit megfelelő sorrendbe kellett állitani. 

Az igy nyert sajátvektorok még mindig nem alkal­
masak a szimmetriapályák kiszámításához, mert or­
togonálisak, de nem normáltak. Ezért a főprogra­
mot átalakítottuk úgy, hogy a normálást is elvé­

gezze .
A másik feladat keményebbnek bizonyult• Az 

UMINDO program csupán s és p tipusú atomi pályák 

kezelésére készült. A szimmetriapályákat számitó 

részei sem tudták kezelni a d pályákat. Az első 

átalakítás elvégzése után a program csak az első 

és második periódusban levő atomokat tartalmazó 

molekulákat tudott számítani. Az átmeneti fémeknél 
és néhány más elemnél is elengedhetetlen az atomi 

d pályák figyelembevétele.
A d pályák figyelembevételénél a tulajdon-

•5 SZEGBD k4 sj



- 45 -

képpeni problémát e pályák ortogonális transzfor­
mációja jelenti. Fogalmazzuk meg a feladatot ma­
tematikai formában! Legyen adott egy M harmadren­
dű ortogonális mátrix, azaz olyan mátrix, melynek 

sorai (és igy oszlopai is) ortogonálisak és nor­
mál tak:

a aa1 32

(73)bl b2 b3 

C2 °3

M =

\C1

Egy adott bázis mellett ez az M mátrix egy operá­
tort reprezentál, amely az (x\y\z') koordinátákkal 
jellemzett pontot az (x,y,z ) koordinátájú pontba 

viszi át, ahol

(74)x = a-^x 41 b^y 4* c-^z ,

y' = a2x + Ъ2У + c2z ,

z = a^x b^y "f* c^z •

(75)

(76)

Ismeretes, hogy 5 lineárisan független d pálya 

van, melyek a következő alakban irhatok fel [553:



- 46 -

v.s ■ (3z2-r2)F(r) , (77)

ÜJd^ = 2l|3xzF(r) ,

фа = 243yzF(r) ,
‘ yz

= 2Í3xyP(r) ,

= |з(х2-у2)Р(г) .
2

(78)

(79)

(80)

v«2 (81)
x -y

P(r) itt 3d pályák esetén

7

lYV 91
(82)P(r) =

81 |бТГ \dQ

ahol dQ az első БОНН pálya sugara és ^ •

Ha nem 3d pályáról van szó, a (77)-(8l) egyenletek 

akkor is fennállnak, csak P(r) értéke lesz más.
Legyen "R valamilyen szimmetriamüvelet ope­

rátora és legyen f(r) egy olyan függvény, amely a 

tér minden r(x,y,z) helyvektoré, pontjához valami­

lyen f(r) értéket rendel. Ekkor megállapodás sze­

rint
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(83)

Ai Лáll fenn, ahol R az R operator inverze.
Mivel P(r) ortogonális transzformációkkal szemben 

invariáns, a d függvények transzformációinál elég 

(77)-(8l) egyenletekben levő többi tényező 

transzformációját elvégezni.
Először végezzük el a

a

függvény
z

transzformációját. Könnyen belátható, hogy e függ­
vény (77) szerinti alakja nem megfelelő számunkra, 
ezért válasszuk most a vele ekvivalens, 

ritkábban használt

de sokkal

(84)

alakot. A (74)-(76) egyenletek felhasználásával 

felirható, hogy

22 2 2 ^ 2а1Ъ1“2а2Ъ2^х У +

ООО ^
+ (2Ъ^—Ъ^-*Ь2 )у + ()х Z + (85)

ООО 2 т
-2b2c2)y z +(2c^-c1-c2)z J.И- (4b^c^—2 Ъ-j^ C-J^

■ “ía 2 •
Z

•p(r)
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A (78)-(80) egyenletek felhasználásával (85) a kö­
vetkező alakra hozható:

1

) Td + f=^2b3c3“blcl"b2c2^
XZ у z

+[(га^-а^-а^)x +(2Ьз-Ъ^-ъ|)у +(2сз-с2-

p 2-c2)z JF(r)

ц=(2а3Ъ3-а1Ъ1-а2Ъ2

“а2°2
(86)

= «1d2 •
z

A (86) egyenlet bal oldalán elő kell állítanunk
t. V 2П2

7Г
függvényeket is. Ehhez az x ésd 2 2x -y

együtthatóit 2 részre kell bontanunk, mégpedig
2

У
úgy, hogy fennálljon a következő egyenlőség:

2 2 2
(2a3-a^-a2)F(r)x +

2 2
)+b(x +y ) =a(x -У

(87)2
+(2b3-b^-b2)F(r)y

Ebből következik, hogy
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о о 2 2 2 2
2 *•! "* ®2 *""^2 (88)F(r)Ъ =

2
és

2 2 2 2 2 2 
2S'2“®'2_“*Q'2—2Ьз+Ъ"^+Ъ2- Р(г) . (89)а «

2

(84) miatt viszont fenn kell állnia (8б)-Ъап a

222 222 222 2аз-а^-а|+2Ъз~Ъ£-Ъ2 = -2сз+с£+с| (90)

egyenlőségnek is, amit bizonyítanunk kell! 

Mivel a (73)-ban szereplő M mátrix ortogonális, 

fennáll, hogy

2 2 2 + Wg + W3 (91)= 1

ahol W helyett a,b,c irható be (91)-ben. így

-ЗС3 + 12 2 Заз - 1 + 3b| - 1 =

irható fel, vagy átrendezés után

3(а^ + Ьз + C3) = 3 . (92)
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(92) fennáll, mert M mátrixnak nemcsak a sorai, ha­
nem az oszlopai is normáltak, igy a (90) egyenlőség 

fennállását bebizonyítottuk.
Megkaptuk a (86)-ban szereplő

‘ 2 2 x -y

gyütthatóját, ami (87) szerint —r -mai egyenlő,
V

együtthatója pedig (85) szerint ^ (2c^-c^-c|).

e-

(86) egyenlet egyszerűbb alakra hozható, ha kihasz­
náljuk M sorainak és oszlopainak ortogonalitását 

is:

= 0 (i,j = 1,2,3; i*j), (93)a±ad+biV°i0;j
U1V1+U2V2+U3V3 = 0 (u,v = a»h,c; u?ív). (94)

Itt megjegyezzük, hogy a (94) egyenletnél u^v je­
löléssel azt rövidítjük, hogy u és v tetszőleges 

kettőt jelenthet az a,b,c betűk közül, de két kü­
lönbözőt. E két utóbbi egyenlet felhasználásával 
(86) végső alakja:

-(Зо^-1)^ +1за3СзЧ4 + 
2 z2 xz* V ^ЪЗсзЧй.._+

+ J- (a3_b3)lFd 2
X

(95)2+ßa3b3^
dxy-У
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A Yd hullámfüggvények az R operátor hatására tör- 
xz

ténő transzformációjánál a (78) egyenletből indul­
hatunk ki és használjuk fel a (74) és (76) egyenle­

teket is:

R 4a = 2Í3(a1x +Ъ1У +C-J.Z +b^y +

+ OjZ )P(r) .
(96)

A kijelölt műveletek elvégzése és rendezés után az 

adódik, hogy

22
4- z|5[ +(a1b^+a^b1)x у +Ъ1Ъ^У + 

+ (a1c^+a^c1)x z +(bic3+b3ci)У z +

a-^yc

(97)
2

+c1c3z ]P(r) .

A (78)-(80) egyenletek felhasználásával a (97) e- 

gyenlet a következő alakra hozható:

2+b1b3y 2+

)F(r) .

)^Pd +^Ъ1С3xz

(98)

2
+C1C3Z
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A (98) egyenlet jobb oldalán a ^
z2

hatója nyilván |[J* 

következik. A

pálya együtt-

, ez u.i. a (84) egyenletbőlclc3

v* , 2 pálya együtthatója (81) és
x -y

(98) alapján a-^a^ - b-^b^ •

(84) miatt fenn kell állnia (98)-ban a következő 

egyenlőségneki

(99)a^a^ + b-^b^ — ~clc3 •

Ez bizonyítandó egyenlőség, de triviálisan telje­
sül M mátrix oszlopainak ortogonalitása miatt.
A transzformált függvény végleges alakja tehát a 

következő:

A
)Ta+(ai°3+a30i)'laxz+(b( ад.Ьуна^Ъ].R lc3+

•^a^-b-^b^)^ ^+Ъ3°1^%. t(a 
У 2#

+í^cic3%. 2 •

(100)+
у 2x -

z

függvény transzformációjánál a (79) egyen-
dyz

létből indulunk ki, felhasználjuk még a (75) és
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(76) egyenleteket is:

2 2
= 2Уз сyz

+(а2Ъ3+а3Ь2)х У +b2b^y +aga^x

(101)+ (а2С2+азс2^х z +(Ъ2сз+'Ь2С52)У z +
2

+c2c^z ]Р(г) .

A (78)-(80) és (84) egyenlet felhasználásával (101) 

egyenlet a következő alakra hozható:

R4dy -(a2h3+a3b2 )^d_^ + (a

У2 z2

^ - 
xz2c3+a3c2

(102)

"b2b3^d 2
2 2 x -y

(84) miatt (lOl)-ben fenn kell állnia a következő 

egyenlőségnek:

(103)a£&3 + ^2^3 25 “c2°3 *

A bizonyítandó (103) egyenlőség triviálisan tel­
jesül M mátrix oszlopainak ortogonalitása miatt.
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tj^ függvény transzformációjánál (80) egyenletből

indulunk ki. (74) és (75) egyenletek felhasználása, 

egyes műveletek elvégzése után, a következő egyen­

lethez jutunk;

22
-2t3C +(a1b2+a2b1)x у +Ъ1Ъ2у +

(104)+(a1c2+a2c1)x z +(b1c2+b2c1)y z +
2

+C1C2Z ^F(r) •

(77)-(80) és (84) egyenletek felhasználásával (104) 

egyenlet a következő alakra hozható;

2+(a
ХУ z<-

)lFa +(ayz

+(а1Ъ2+а2Ъ1^

>V<1
«,

X -y

lc2+a2cl lc2+

(105)]_а2-Ъд_Ъ2+b2c1

d__ * xy

(84) miatt (l04)-ben fenn kell állnia a következő 

egyenlőségnek;

(106)+ ^2.^2 = ”C1C2 ,ala2
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A bizonyítandó (l06) egyenlőség triviálisan telje­

sül az M mátrix oszlopainak ortogonalitása miatt.

függvény transzformációjánál a (81) e-a^2

x -y2

gyenletből indulunk ki. (74) és (75) egyenletek 

felhasználása, egyes műveletek elvégzése után a 

következő egyenlethez jutunk:

2
= С (а^~&2 )зс + (2a-^b^—2a2^2 У

2 2 2
+ (b-^-b2 )y + (2a^c^—2а^С2 ^

2 2 2
+ (20^^-20202)y z +(c|-c2)z ]F(r) .

42
x -У

(107)

(77)-(80) és (84) egyenletek felhasználásával (107) 

egyenlet a következő alakra hozható:

42 )Ta -xz= (a^b.^— ^2^2 )^Hi ”a2C22 ,,2 x -y

V 42 z2
+(bici-b2c2 (108)

1 2+ —■ (a-i —a 
2 X

2 2 
2~Ъ1+Ъ2

x -y2

Be kell látnunk még a következő egyenlőség telje-
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sülését:

ъ2 - .2U2 —* ♦ b?2 2 (109)al - a2 + c1 ” 2 »

melyet másképpen is felírhatunk:

22 . h2 2 + b22 2 4 + 4 2 (110)+ Сд. = a + c2 •

(110) egyenlőség teljesülése azért nyilvánvaló, 

mert az M mátrix oszlopai normáltak.
A d pályák ortogonális transzformációját 

igy az általános esetre megoldottuk. A programban 

az s és p pályák speciális transzformációi (pl. Z 

tengely körüli adott szöggel való forgatás, stb.) 

több helyen szerepelnek.
Minden ilyen helyen a (95), (lOO), (102), 

(105) és (l08) általános transzformációs képletek 

alapján az egyes speciális transzformációs képle­
tek kiszámítása és programba építése már nem je­
lentett nehézséget.

Fentiek végrehajtása után a programot már 

csupán tesztelni kellett egyszerű molekulákra és a 

tesztelés során jelentkező hibákat ki kellett ja-
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vitani. A program használata során kiderült, hogy 

egy nagyobb méretű változatot is el kell készíte­
ni, mert az eredeti program csupán legfeljebb 100 

pályából álló bázis kezelésére alkalmas. A szüksé­
ges átdimenzionálás elvégzése után a programot új­
ra teszteltük. A program nagyobbik változata je­
lenleg maximum 200 atomi pályából álló bázis ese­
tén alkalmazható szimmetriapályák kiszámítására 

különböző szemiempirikus programok által számított 

adatokból. A program előnye még könnyű kiterjeszt­
hetősége. Csak kevés átalakítás szükséges ahhoz, 
hogy más szemiempirikus számítások outputját in­
putként felhasználhassa.
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3- NÉHÁNY ÖSSZEFOGLALÓ MEGJEGYZÉS

Vizsgálataink célja elsősorban az volt, 

hogy kidolgozzunk, ill. adaptáljunk olyan módsze­
reket, melyekkel nagy szerves vagy szervetlen mo­
lekulák, ilyen ligandumokat tartalmazó fémkomple­
xek, ill. fémorganikus vegyületek kvantumkémiai 
kezelése lehetséges. Másik célunk az volt, hogy 

néhány konkrét példán illusztráljuk e módszerek 

használatát, ill. használhatóságát, továbbá az, 
hogy a különböző kvantumkémiai módszerek alkal­
mazhatóságát és teljesítőképességét kritikai szem­
pontból értékeljük.

Megjegyezzük, hogy valamennyi alkalmazott 

módszert - mint az a korábbi tárgyalásból is ki­
tűnik - teszteltünk felhasználás előtt. A teszte­
lés során a módszereket irodalmi adatokkal hason- 

littuk össze. Ezek leírásával feleslegesen nem 

növeltük az értekezés terjedelmét.
Tapasztalati tény [60], hogy a foszfor a- 

tomok LEWIS-bázicitása csökken a foszfor atomok 

számának növekedésével a homológ sorban. A továb­
biakban használjuk a vegyületek rövid jelölésére
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a bennük levő foszfor atomot jelző P betűt és an­
nak alsó indexeként a foszfor atomok számát* E 

jelöléssel a LEWIS-bázicitás sorrendje:

1^> P2/> P3 *P

Ugyanez világosan látható a VI* táblázat adatai­
ból is, ugyanis valamennyi módszer alapján minél 
több foszfor atom van a homológ sorban, annál ki­
sebb a nettó negativ töltés a foszfor atomon, az­
az annál gyengébb LEWIS bázisként viselkedik. Itt 

jegyezzük meg azt is, hogy a PR^ tercier foszfi- 

nokkal szemben a relativ reakciókészség sorrendje 

ugyanez* Például a P^CoCcO)^ szubsztitúciója csak

az erősen bázikus PB»^-mal sikerült, a P2Co2(C0)g

viszont aromás foszfinokkal is szubsztituálható• 
Az eredmények közül anomális viselkedést mutat a 

CLACK módszerrel és FREUHD paraméterekkel számí­
tott nettó töltések sorrendje (a táblázatban 

CLACK cim alatt szerepel) a PCo-^(CO)^ komplexnél*

Az anomália okának részletes vizsgálata a jövőben 

további feladatként szerepel. A nem túlságosan
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kedvező gépidő szükséglet miatt (XX. táblázat) a- 

zonban a FREUITO módszert kell előnyben részesíte­
nünk a CLACK módszerrel szemben egyéb, már emlí­
tett előnyei miatt is.
A táblázatokból még az alábbi következtetések von­
hatók le:

1/ A CLACK és a FREUHD módszerrel számított 

molekulapálya energiák abszolút értékben 

és relative is hasonlóak, a termek elosz­
lása szintén (i.-IV. táblázatok).
Az EHMO noniterativ és iterativ változa­
tainál is jó az egyezés, a pályák cseré­
je csak ritkán fordul elő. А СЖЮ és EHMO 

módszerek eredményei abszolút érték te­
kintetében kevésbé egyeznek meg, de az 

eloszlások ezeknél is nagymértékben ha­
sonlóak. Ezért megállapíthatjuk, hogy tá­
jékozódási célra a noniterativ EHMO mód­
szer is alkalmas és gépidő szükséglete 

minimális•

Az eredmények összehasonlításánál most és 

a továbbiakban is a PREUlTO-féle С1ГО0 mód­
szert tekintjük mérvadónak.
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2/ Gépidő felhasználás (IX. táblázat) szem­
pontjából a noniterativ EHMO a legkedve­
zőbb, a FREUND módszer és az iterativ 

EHMO módszer nem tér el jelentősen egy­
mástól, a CLACK módszer pedig a legkedve­
zőtlenebb. Érdekes, hogy a noniterativ 

EHMO módszernél a homológ sort vizsgálva 

a kobalt atomok számának növekedésével a 

gépidő felhasználás csak kb. duplájára 

nő az egymásra következő tagok esetében.

3/ A kémiai információk közül a legfontosabb 

paraméterek a WIBERG indexek és az atomo­
kon levő nettó töltések (V. és VI. táblá­
zat). Ezek mind a négy közelitésben tel­
jesen azonos trendeket adnak (kivéve az 

emlitett anomális esetet). A nettó tölté­
sek sorrendje az egyes atomoknál:

! pi<p2<p3<p 

Со ! Px ?2 ^ P3

P1 < P2 < P3 

P1<P2<P3

(negativ)P

(pozitiv)

(pozitiv)

(negativ)
°áti!

°átl!
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4/ A X. táblázatból látható, hogy a viszont- 

koordináció miatt a komplexben levő kar- 

bonilon a nettó töltések a következők:

a komplexnél: -0,093; a P2 komplexnél 

-0,027, (C0)2-re: -0,094,
4

-ra: -0,072; a P komplexnél (CO)^-

+0,063, (^O)átlг

(С0)х-re:

(СО)átl
-0,034, (C0)2-re:re:

+0,031.

Tehát a viszontkoordinációs effektus a 

legnagyobb a P^CoCcO)^ komplexnél és leg­

kisebb a PCo^CCO)^ komplexnél. Utóbbi

komplexnél a 2-es jelzésű karboniloknál 
még a nettó töltés előjele is megválto­
zik, kis pozitiv érték lesz. Ez а VI. 

táblázat szerint azzal magyarázható, hogy 

a homológ soron belül itt a legnagyobb a 

foszfor atomon levő nettó negativ töltés 

abszolút értéke, azaz a foszfor atom 

mintegy elszivja a karbonil elől el ko­

balt atom elektronjait.

5/ Mind a négy számitási módszer kvalitati-
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ve helyesen tükrözi a molekulában levő a- 

tomok nettó töltését, mint a 3. megjegy­
zésünkben már emlitettük.
A bruttó töltések nagysága és előjele is 

megfelelő (VTI. táblázat) és elfogadható 

más hasonló vegyületekre vonatkozó iro­
dalmi adatok ismeretében - az emlitett a- 

nomáliától eltekintve.

6/ A WIBERG indexek (V. táblázat) alapján a 

következő megállapitások tehetők:
A P-P kötések erősségének sorrendje a 

P4 sorban növekszik kb. 1-ről

csaknem 1,5-szeres kötésig.

A P-Со kötéserősség а P-j^^^^l

kis mértékben növekszik.
A Co-Co kötéserősség P2<^P^-nek megfelelő,

itt majdnem 0,5-szeres kötésről kb. 1-sze- 

res kötésig változik a kötéserősség.
A C-0 kötés erőssége átlagosan alig válto­
zik, értéke 2,3 körül van.

A Co-C kötés értéke a homológ sorban alig 

változik, értéke 0,7 körül van.

sorban

>-
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Látható tehát, hogy ha a tetraéderes szim­
metriájú Co^(CO)12 komplexben (lásd az áb­

rát!) a Co(CO)^ egységeket fokozatosan P

atomokkal cseréljük ki, ez elsősorban a 

P-P kötést és a Co-Co kötést, kisebb mér­
tékben pedig a P-Со kötést értinti, csak­
nem teljesen változatlanul hagyja a C-0 

és Co-C kötéseket.

7/ Az elektronenergiák (VIII. táblázat) és a 

pályaenergiák (i.-IV. táblázatok) összeha­
sonlításából az adódik, hogy az iterativ 

és noniterativ EHMO adatok közelítőleg meg­
egyeznek, ezért gyakorlatilag jó tájékoz­
tató adatok nyerhetők a lényegesen kisebb 

gépidő igényű és ezért olcsóbb noniterativ 

eljárással, A töltések abszolút értékei 
mindkét irányban túlzottak a standardnak 

tekintett РКЕШШ módszerhez képest, a szá­
mított trendek (egyik komplexnek a másik­
kal való összehasonlításakor) mégis jól 

használhatók.

8/ Az EHMO és СШ30 módszernél az elektroné-
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nergia adatok nem hasonlíthatok össze, 
mert az energiák számítása során az EHMO 

az elektron taszítást nem veszi figyelem­

be.
A két С1Ш0 módszerrel kapott értékek mind 

az elektronenergia, mind az összenergia 

esetén egymáshoz közeliek.

9/ A dipólusmomentumok a ^2^^1

CLACK és FRÉDIK) módszerek szerint számít­
va egyaránt csökkennek. FREUKD-nál a vál­
tozás az egymásra következő tagoknál ki­
sebb mint CLACK-nél. Sajnos nem ismerete­
sek a kísérleti dipólusmomentum értékek, 

de a számított adatok plauzibilisnek lát­
szanak.

sorban





P^ molekulapálya energiák atomi egységben

CLACK
pálya pálya 
szimm. en.

F R E U H D
pálya
en.

EHMO nonit.
pálya pálya 
szimm. en.

EHMO iterativ
pálya pálya 
szimm. en.

pálya 
sorsz. pálya

szimm.

-1,4556
-0,7588
-0,7588
-0,7588
-0,5415
-0,4593
-0,4593
-0,4593
-0,3877
-0,3877
0,0032
0,0032
0,0032

-1,3036
-0,7995
-0,7995
-0,7995
-0,5765
-0,4842
-0,4842
-0,4842
-0,4268
-0,4268

0,0361
0,0361
0,0361

1A -0,9391
-0,7062
-0,7062
-0,7062
-0,5678
-0,5592
-0,5592
-0,5440
-0,5440
-0,5440
-0,3895
-0,3895
-0,3895

1. 1A 1A 1A -0,9391
-0,7062
-0,7062
-0,7062
-0,5678
-0,5592
-0,5592
-0,5440
-0,5440
-0,5440
-0,3895
-0,3895
-0,3895

1 111
2. II II 1T II2 2 2 2
3. 1T II 1T 1T22 2 2
4. 1T 1T 1T II I2 2 2 2

СГч5. 2A 2A 2A 2A -4 '11 1 1
6 • 2T 1E2T 1E I2 2
7. 1E2T 2T 1E2 2
8. 2T 2T 2T 2T22 2 2
9. 1E 1E 2T 2T2 2

10. 1E 1E 2T 2T2 2
11. 1T 1T 1T 1T1 11 1
12. 1T 1T 1T II1 11 1
13. 1T 1T 1T 1T1 1 11

I. táblázat



РуЗоСсо)^ molekulapálya energiák atomi egységben

FREUND
pálya pálya 
szimm.

EHMO nonit•
pálya pálya 
szimm.

EHMO iterativ
pálya pálya 
szimm.

pálya 
sorsz. CLACK

en. en. en.

-1,6970 

-1,6660 

-1,6660 

-1,3046 

-1,0246 

-0,9215 

-0,9215 

-0,8634 

-0,8634 

-0,8509 

-0,8072 

-0,8061 

-0,8061 

-0,7653

-1,7104
-1,6728
-1,6728
-1,4199
-1,0476
-0,9270
-0,9270
-0,8615
-0,8615
-0,8535
-0,8164
-0,8164
-0,8112
-0,7746

1. lAi -1,2735
-1,2692
-1,2692
-0,9127
-0,7502
-0,7030
-0,7030
-0,6655
-0,6655
-0,6104
-0,5764
-0,5764
-0,5764
-0,5716

-1,2654
-1,2604
-1,2604
-0,8884
-0,7641
-0,7035
-0,7035
-0,6556
-0,6556
-0,5957
-0,5730
-0,5730
-0,5710
-0,5631

1A lAi1 1
2. 1E 1E 1E 04Ш3. 1E 1E 1E

1
4. 2A 2A 2A1 1 1
5. ЗА ЗА ЗА1 1 1
6. 2E 2E 2E
7. 2E 2E 2E
8. ЗЕ ЗЕ ЗЕ
9. ЗЕ ЗЕ ЗЕ

4А 4А10. 4АХ1 1
4Е11. 5А 4Е1
4Е 4Е 4Е12.

4Е13. 5Ai 5АХ
14. 1А 5Е 5Е2

-0,7226
-0,7226
-0,7053
-0,7053
-0,6351
-0,5391
-0,5391
-0,4950
-0,4072
-0,4004
-0,4004
-0,3654
-0,3654
0,0429
0,0429

-0,5716
-0,5708
-0,5637
-0,5436
-0,5436
-0,5309
-0,5203
-0,5203
-0,4937
-0,4937
-0,4574
-0,4574
-0,4515
-0,3833
-0,3635
-0,3635

-0,7137
-0,7137
-0,7095
-0,7095
-0,5821
-0,5054
-0,5054
-0,4921
-0,4106
-0,4066
-0,4066
-0,3392
-0,3392
-0,0097
0,0079

-0,5631
-0,5617
-0,5492
-0,5348
-0,5348
-0,5280
-0,5245
-0,5245
-0,4946
-0,4946
-0,4802
-0,4802
-0,4772
-0,3683
-0,3650
-0,3650

15. 5Е 5Е 5Е
16. 5Е 1А ia22

6E 6A 6A17. 1 1
6Е 6E 6E18.
6A 6E 6E19. 1
7B Ik Ik20. 1 1
7E 7E21. 7E
7*i 7E 7E22.
8 ' jf23. 8E 8E

24. 8E 8E 8E
25. 8 9E 9E
26. 9E 9E 9E
27. ЭЕ GA 8A1 1

2A28. 2k 2k2A 23AZ29. 10E 10E
10E10E30.

II. táblázat



I>2^°2^®^6 m°lekulapálya energiák atomi egységben

EHMO nonit•
pálya pálya 
szimm. en.

EHMOpálya 
sorsz. CLACK FREUUD

iterativ

-1,7261
-1,7143
-1,6863
-1,6709
-1,6348
-1,6326
-1,3041
-1,0772
-0,9297
-0,9219
-0,9160
-0,9073
-0,8975
-0,8733
-0,8622

1. -1,7735
-1,7428
-1,7256
-1,6975
-1,6717
-1,6652
-1,4056
-1,1218
-0,9877
-0,9606
-0,9453
-0,9390
-0,9366
-0,9014
-0,8934

-1,2763
-1,2728
-1,2722
-1,2696
-1,2673
-1,2657
-0,8555
-0,7504
-0,7425
-0,7039
-0,6884
-0,6844
-0,6791
-0,6242
-0,5921

1A1 -1,2664
-1,2626
-1,2621
-1,2597
-1,2566
-1,2547
-0,8288
-0,7632
-0,7429
-0,7069
-0,6938
-0,6892
-0,6834
-0,6044
-0,5778

2. 1Б I1
3. ib2 o\
4. 2A I1
5. 2B2
6 • 1A2
7. ЗА1
8. 3B2
9. 4A1

10. 2Bi
11. 5A1
12. 4B2
13. 2A2
14. 3B1
15. 6A^

16. -0,8534
-0,8369
-0,8298
-0,8160
-0,8120
-0,8065
-0,7986
-0,7669
-0,7617
-0,7521
-0,7423
-0,7409
-0,7153
-0,6974
-0,6919
-0,6819
-0,6483
-0,6267
-0,5516
-0,5379
-0,5275
-0,4853
-0,4723
-0,3916
-0,3879
-0,3505
-0,3434

-0,8912
-0,8650
-0,8572
-0,8543
-0,8498
-0,8397
-0,8332
-0,7979
-0,7954
-0,7937
-0,7799
-0,7795
-0,7392
-0,7356
-0,7211
-0,7157
-0,6883
-0,6176
-0,5451
-0,5377
-0,5318
-0,4716
-0,4626
-0,4369
-0,4256
-0,3873
-0,3623

-0,5768
-0,5731
-0,5727
-0,5680
-0,5674
-0,5654
-0,5615
-0,5598
-0,5592
-0,5590
-0,5585
-0,5567
-0,5551
-0,5376
-0,5304
-0,5281
-0,5264
-0,5262
-0,5229
-0,5143
-0,4994
-0,4806
-0,4778
-0,4751
-0,4728
-0,4722
-0,4637

5B -0,5919
-0,5785
-0,5783
-0,5761
-0,5748
-0,5743
-0,5719
-0,5717
-0,5707
-0,5706
-0,5703
-0,5679
-0,5677
-0,5552
-0,5309
-0,5304
-0,5244
-0,5193
-0,5190
-0,5185
-0,4954
-0,4862
-0,4593
-0,4581
-0,4536
-0,4533
-0,4497

2
17. 7A1
18. 4BX
19. 8АХ
20. ЗА2

бв221.
22. 9Ai
23. 5B1
24. 6B1
25. 4А2
26. 7В2
27. 5А2
28. 8В2
29. 10АХ
30. 11А1
31. 9В2
32. 7В1
33. 10В2
34. 6А2
35. 12А1
36. 8ВХ
37. 7А2
38. 13А1
39. ив2
40. 9ВХ
41. 8А2
42. 14А1

-0,3534
-0,2993
-0,0863
-0,0768
-0,0425
-0,0216

-0,4494
-0,4297
-0,3608
-0,3579
-0,3564
-0,3293

43. -0,3373
-0,2927
-0,0229
-0,0069
0,0164
0,0468

-0,4593
-0,4473
-0,3722
-0,3501
-0,3490
-0,3399

12В2
44. 15А1
45. ювх

13В246.
47. 9А2
48. ив1

III. táblázat



PCo^(CO)g molekulapálya energiák atomi egységben

EHMO nonit.
pálya pálya 
szimra. en.

EHMO iter.
pálya pálya 
szimm. en.

pálya 
sorsz. GLACK FREUND

1. -1,7879
-1,7879
-1,7673
-1,7138
-1,6618
-1,6618
-1,6492
-1,6232
-1,6232
-1,3205
-1,0741
-1,0741
-0,9332
-0,9332
-0,9273
-0,9088
-0,9029
-0,9002
-0,9002

-1,8774
-1,8770
-1,8770
-1,8247
-1,7563
-1,7563
-1,7411
-1,7411
-1,7371
-1,4682
-1,2004
-1,2004
-1,0324
-1,0324
-1,0319
-1,0105
-1,0105
-1,0063
-0,9922

-1,2776
-1,2753
-1,2753
-1,2717
-1,2700
-1,2700
-1,2657
-1,2657
-1,2646
-0,7964
-0,7522
-0,7522
-0,7034
-0,6952
-0,6952
-0,6808
-0,6808
-0,6764
-0,6534

1A 1A -1,2666
-1,2641
-1,2641
-1,2590
-1,2575
-1,2575
-1,2537
-1,2537
-1,2527
-0,7970
-0,7619
-0,7619
-0,7040
-0,6985
-0,6985
-0,6825
-0,6825
-0,6789
-0,6386

1 12. 1E 1E
3. 1E 1E
4. 2A 2A1 1
5. 2E 2E I
6. -a *2E 2E о
7. 3E 3E I
8. 3E 3E
9. 1A 1A2 210. ЗА ЗА1 111. 4E 4E

12. 4E 4E
13. 4A 4AX1
14. 5E 5E
15. 5E 5E
16. 6Е 6E
17. 6E 6E
18. 2A 2A22
19. 5A1 5A1

20. -0,8831
-0,8813
-0,8813
-0,8647
-0,8482
-0,8482
-0,8311
-0,8311
-0,8250
-0,8110
-0,8110
-0,8055
-0,7649
-0,7649
-0,7552
-0,7552
-0,7473
-0,7431
-0,7410
-0,7410
-0,7387
-0,7030
-0,7022
-0,7022
-0,6745
-0,6745
-0,6489

7E-0,9801
-0,9725
-0,9725
-0,9574
-0,9418
-0,9418
-0,9352
-0,9352
-0,9279
-0,9163
-0,9109
-0,9109
-0,8694
-0,8694
-0,8607
-0,8607
-0,8593
-0,8593
-0,8577
-0,8379
-0,8229
-0,8093
-0,8093
-0,7928
-0,7928
-0,7907
-0,7818

6A-0,5827
-0,5827
-0,5804
-0,5770
-0,5767
-0,5767
-0,5754
-0,5754
-0,5738
-0,5731
-0,5714
-0,5714
-0,5712
-0,5712
-0,5700
-0,5677
-0,5677
-0,5659
-0,5599
-0,5599
-0,5520
-0,5310
-0,5277
-0,5277
-0,5238
-0,5193
-0,5193

-0,5742
-0,5741
-0,5741
-0,5693
-0,5680
-0,5680
-0,5665
-0,5665
-0,5645
-0,5614
-0,5593
-0,5593
-0,5588
-0,5588
-0,5572
-0,5562
-0,5562
-0,5532
-0,5465
-0,5465
-0,5364
-0,5264
-0,5264
-0,5250
-0,5240
-0,5224
-0,5224

1
21. 7E 7E
22. 6A 7E1
23. 7A 7A1 1
24. 8E 8E
25. 8E 8E
26. 9E 9E
27. 9E 9E
28. за2 ЗА2
29. ЗА 8A1 1
30. 10E 10E
31. 10E 10E
32. 11E HE
33. 11E 11E
34. 4A 4A22
35. 12E 12E
36. 12E 12E
37. 5A2 5A2
38. 13E 13E
39. 13E 13E
40. 9A 9A1 1
41. 10A1 14E
42. 14E 14E
43. 14E 10AX
44. 11A1 11A1
45. 15E 15E
46. 15E 15E

6A 6A2-0,6306
-0,5962
-0,5962
-0,5683
-0,5270
-0,5270
-0,5027
-0,5027
-0,5009
-0,3744
-0,3744
-0,3424
-0,3205
-0,2778
-0,2778
-0,0128
-0,0058
-0,0058

-0,6996
-0,6340
-0,6340
-0,6211
-0,5603
-0,5603
-0,5529
-0,5440
-0,5440
-0,4702
-0,4702
-0,4096
-0,3851
-0,3851
-0,3461
-0,1666
-0,1666
-0,1556

-0,5179
-0,5095
-0,5095
-0,4728
-0,4622
-0,4622
-0,4544
-0,4533
-0,4533
-0,4476
-0,4476
-0,4419
-0,4264
-0,4264
-0,4122
-0,3663
-0,3410
-0,3410

47. -0,5215
-0,5070
-0,5070
-0,4881
-0,4740
-0,4740
-0,4707
-0,4680
-0,4680
-0,4630
-0,4630
-0,4427
-0,4405
-0,4405
-0,4231
-0,3815
-0,3463
-0,3463

2
16E 16E48.
16E 16E49.
12A50. 12A11
17E 17E51.
17E 17E52.

7A 7A253. 2
54. 18E 18E

18E 18E55.
56. 19E 19E

19E57. 19E
13A 13A58. 1 1
20E 20E59.

60 • 20E 20E
14AX61. 14AX

62. 8A 8A22
63. 21E 21E
64. 21E 21E

IV. táblázat



WIBERG indexek

P3Co(CO)3 P2Co2(CO)6 PCo3(CO)9P4atom-
párok

CLACK FREUND CLACK FREUND CLACK FREUND CLACK FREUND

1,444
0,771

1,048
0,618

1,394
0,621
0,416
0,653
0,708
0,671
2,262
2,273
2,266

1,257 0,950 1,889
0,872
0,425
0,525
0,709
0,536
2,294
2,286
2,291

P -P 

P -Co 

Co-Co 

Co-C

1,086
0,964
0,807
0,388
0,667
2,329
2,391
2,350

0,704
0,555
0,716
0,586
0,673
2,309
2,352
2,323

0,679
0,679
0,679
2,270
2,270
2,270

0,549
0,549
0,549
2,318
2,318
2,318

2
ICo-C1

Co-C 

C -0
Hátl

2
с -ох
C -0átl

02: egy síkban levő 0 atomok On: a síkon kívül levő 0 atomok : átla-°átlag
golt érték C2: egy síkban levő C atomok C-^s a síkon kívül levő C atomok

1

C^átlag1 átlagolt érték

V. táblázat



Az egyes atomokon levő nettó töltés

P3Co(CO)3P 4
atom

EHMO EHMO
nonit• it•

EHMO EHMO
nonit. it•CLACK FREUND CLACK FREUND

-0,688
1,992
0,761

-0,737

-0,120
0,343
0,136

-0,130

-0,131
0,671
0,029

-0,122

-0,432
0,970
0,590

-0,481

P О О о о
Со
С
о

Р2Со2(СО)6

-0,270 -1,354
0,485 1,510
0,014 0,688

0,081 0,741

0,036 0,701

-0,108 -0,759

-0,108 -0,741

-0,108 -0,753

РСо3(СО)9
I

-0,784
0,750
0,516

0,540

0,524

-0,520

-0,500

-0,513

-0,496
0,074
0,114

0,009

0,079

-0,051

-0,043

-0,048

-0,996
0,566
0,492

0,414

0,466

-0,538

-0,556

-0,544

0,191
-0,498
0,315

0,209

0,280

-0,135

-0,135

-0,135

Р -0,208
0,165
0,129

0,213

0,157

-0,144

-0,140

-0,142

-1,901
1,027
0,685

0,549

0,640

-0,766

-0,779

-0,770

-4 -
ГОС©
IС*2

С?1
С*átl
о*2
О*1
О?átl

я jelölés magyarázatát lásd az V. táblázatban

VI. táblázat



Az egyes atomokon levő bruttó töltés

P3Co(CO)3P 4
atom

ЕНЫО 
it.

EHMO 
nonit•

EHMO 
nonit.

EHMOCLACK EREUHDCLACK EREUKD it.

5,688 

7,008 

3,239 

6,737

pc©3(co)9

6,901 

7,973 

3,315

3,451

3,360

6,766

6,779

6,770

5,432
8,030
3,410
6,481

5,131
8,329
3,971
6,122

5,120
8,657
3,864
6,130

5 5 55P
Со
C
0

p2c©2(co)6

6,354 

7,490 

3,312

3,259

3,299

6,759

6,741

6,753

5,496
8,926
3,886

3,991

3,921

6,051

6,043

6,048

5,996
8,434
3,508

3,586

3,534

6,538

6,556

6,544

4,809
9,498
3,685

3,791

3,720

6,135

6,135

6,135

5,784
8,250
3,484

3,460

3,476

6,520

6,500

6,513

5,270
8,515
3,986

3,919

3,964

6,108

6,108

6,108

5,208
8,835
3,871

3,787

3,843

6,144

6,140

6,142

P I
Со -j ' u>
C2 I

0*°1
x°áu

o*u2
0*

°átl

* jelölés magyarázatát lásd az V. táblázatban

VII. táblázat



Dipólusmomentum, elektronenergia, összes energia

P3Co(CO)3P4

EHMO
it.

EHMO 
nonit•

EHMO 
nonit.

EHMOCLACK FREUND CLACK FREUND it.

dipólusmomentum 4,665 4,588О О(D)
összes energia 
(atomi egyseg) -124,463 -115,469-29,390 -28,911

1
elektronenergia 
(atomi egység)3* -65,307 -64,828 -12,752 -12,752

P2Co2(C0)6

-374,452 -365,453 -35,683 -35,560

pc©3(co)9
4*
1

dipólusmomentum 3,174 4,446 1,688 3,596(D)
összes energia 
(atomi egység)*
elektronenergia 
(atomi egység)*

-315,257 -289,046-219,703 -202,191

-816,247 -798,725 -58,482 -58,240 -1383,665 -1357,434 -81,123 -80,811

-1eV kcal kJcm
* 1 a.e. = 27,2117 = 627,52 = 2625,51 -----

mól
= 219475

részecske részecske mól

VIII. táblázat



A számítások során felhasznált gépidő (s)

EHMO EHMO 
nonit. it.CLACK PREUiromolekula

40* 604692P4
334*P3Co(C0)3

Р2Сс^(С0)б

PCo3(CO)9

153 1 355989 I
903* 314 2 594 4 -5 388 

17 386 168012 472 5 398

* Ezek az adatok a SZTAKI IBM-3031 számítógépre 

vonatkoznak. Az R-55 számitógépen kb. 3-szoros 

futási idővel számolhatunk.

IX. táblázat



A karbonil csoportok C és 0 atomján levő nettó töltések 

változása komplex képződés hatására

P3Co(CO)3szabad karbonil
atom CLACK FREUND EHMO EHMO

nonit• it•
CLACK FREUND EHMO

nonit.
EHMO
it.

0,058 0,568
-0,058 -0,568

P2Co2(CO)6

0,014 0,688

0,081 0,741

0,036 0,701

-0,108 -0,759

-0,108 -0,741

-0,108 -0,753

0,136
-0,130

0,761
-0,737

0,357
-0,357

C 0,058
-0,058

0,029
-0,122

0,590
-0,4810

PCo3(CO)9

0,114 0,685

0,009 0,549

0,079 0,640

-0,051 -0,766

-0,043 -0,779

-0,048 -0,770

Ic* 0,516 0,315 

0,540 0,209 

0,524 0,280 

-0,520 -0,135 

-0,500 -0,135 

-0,513 -0,135

0,492

0,414

0,466

-0,538

-0,556

-0,544

0,129

0,213

0,157

-0,144

-0,140

-0,142

2 -3 '
СЛ

C*1 1

C*átl
0*2
x01

0*átl

jr

Jelölés magyarázatát lásd az V. táblázatban!
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