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1. Bevezetés

A kémiában, biológiában, ipari alkalmazásokban gyakran felmerül olyan probléma,
amelyben bizonyos

”
nyersanyagok” és

”
műveleti egységek” rendelkezésünkre állnak és elő́ırt

anyagokat ḱıvánunk előálĺıtani az adott műveleti egységek összekapcsolásával. A probléma
egy lehetséges modellezése a

”
Process Network Synthesis” (PNS), melyben minden műveleti

egység az anyagok egy részhalmazát inputként igényli és anyagok egy másik részhalmazát
álĺıtja elő. A gráfelméleti megközeĺıtésben egy anyagtól iránýıtott él vezet azokhoz a műveleti
egységekhez, amelyek azt input anyagként felhasználják, illetve egy műveleti egységet irá-
nýıtott éllel kötünk össze azokkal az anyagokkal, amelyeket output anyagként termel. Így
egy kétrészes (anyagok; műveleti egységek) iránýıtott gráfot kapunk, a folyamat gráfját. Egy
ilyen hálózatban az elő́ırt anyagok legyártása általában többféleképpen, a rendelkezésre álló
gépek különbz̈ő részhalmazaival is megvalóśıtható. Statikusan képzelve a termelési folya-
matot, a műveleti egységek egy részrendszerének működésével a ḱıvánt anyagokat bizonyos
alapvető feltételek teljesülése esetén kaphatjuk meg. Ily módon a lehetséges megoldásoknak
rendelkezniük kell bizonyos strukturális tulajdonságokkal ([15]), ami miatt ezeket megol-
dás struktúráknak is szokás nevezni. Ezek között kitűntetett szerepe van a maximális
struktúrának, mely a lehetséges megoldás struktúrák uniója. A maximális struktúra megha-
tározása azért hasznos, mert ily módon a hálózatból töröljük azokat a műveleti egységeket,
melyek úgysem szerepelnének egyetlen lehetséges megoldásban sem, és ily módon csökkentjük
a probléma méretét. Mivel a maximális struktúra generálására polinomiális idejű algoritmus
adható ([11]), ezért célszerűnek tűnik a PNS problémák megoldását ezzel kezdeni. A legtöbb
esetben azonban minket nem a legtöbb műveleti egységet igénybe vevő, hanem ellenkezőleg,
valamilyen szempontból leggazdaságosabb megoldások érdekelnek, tehát nem elégedhetünk
meg a maximális struktúra meghatározásával.

A dolgozatban tárgyalt PNS modell csak strukturális szempontból tekinti a prob-
lémát, mivel annak léırása anyagmennyiségekre vonatkozó elő́ırásokat nem tartalmaz. A
rendelkezésre álló műveleti egységek viszont rendelkeznek bizonyos költséggel és az anyag-
előálĺıtás során használt műveleti egységek összköltségét szeretnénk optimalizálni: keressük a
műveleti egységek azon legkisebb összköltségű részhalmazát, mely a rendelkezésre álló nyers-
anyagokból képes előálĺıtani a ḱıvánt végtermékeket. Mivel a minimum meghatározása még
ebben a legegyszerűbb strukturális esetben is a halmazlefedési problémával ekvivalens ([2,
17, 27]), ı́gy a halmazlefedési probléma NP teljességéből ([32, 1]) következően a struktúrális
PNS-probléma is sajnos NP-teljes. Nem várható tehát hatékony megoldás rá. Ezért indokolt
exponenciális idejű algoritmusok és azok különböző heurisztikákkal kombinált, korlátozás és
szétválasztás módszerére alapuló változatainak kidolgozása ([13, 24, 21, 23]).

A Branch-and-Bound jellegű módszerek feléṕıtésében fontos szerepet játszik az úgy-
nevezett döntési leképezés fogalma ([12]), mely lényegében meghatározza adott anyagra az őt
gyártó műveleti egységek halmazát. Gyakorlati szempontból nyilván nagyon komoly előny,
hogy csak bizonyos úgynevezett ”konzisztens” döntési leképezéseket kell figyelembe venni,
ami abból az észrevételből származik, hogy egy műveleti egység, ha működik, nem teheti
meg, hogy bizonyos kimeneti anyagait gyártja, másokat pedig nem. Ezen belül további
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szűḱıtést eredményez az az észrevétel, hogy nem működhet olyan műveleti egység, amelyik
valamelyik input anyagát egyetlen működő műveleti egységtől sem nyeri. A konzisztens
döntési leképezések és a lehetséges megoldás strukltúrák közötti kapcsolatot felhasználva, a
konzisztens döntési leképezések megszámlálásával, a szitaformula seǵıtségével, felső korlát
adható a lehetséges megoldás struktúrák számára ([3]). Mivel a korlát tényleges kiszámı́tása
a probléma struktúrájától függ és általában, tetszőleges folyamat gráf esetén, meglehetősen
bonyolult, ezért megvizsgálunk két speciális PNS problémaosztályt is, melyre ténylegesen
kiszámı́tható képleteket tudunk adni, miközben szép kombinatorikus azonosságokat is ka-
punk ([4, 5]).

A továbbiakban észrevesszük, hogy bizonyos műveleti egységek, nevezetesen azok,
amelyek egyszerre vannak jelen vagy egyikük sem szerepel a lehetséges megoldásokban,
együtt kezelhetők. Ebből kiindulva definiáljuk az összevonás műveletét, mely a maximá-
lis struktúrához képest is általában kb. 7%-os további méretcsökkenést eredményez ([20]).
Ugyanakkor az öszszevonás következtében megjelenő új műveleti egységek az eltávoĺıtottak-
nál több bemeneti és kimeneti anyaghalmazzal rendelkeznek (bár a be- és kimeneti anyagok
száma összességében megmarad), ezért felmerül a kérdés, hogy az összevonás ötlete egyál-
talán használható-e a feladat hatékonyabb megoldására. A döntési leképezések mélyebbre
ható tanulmányozásának következtében kapott néhány további észrevételt is felhasználva,
kidolgozunk egy új, Előretekintő B & B (ER) nevezetű, korlátozás és szétválasztás t́ıpusú
eljárást, mely az összevonás ötletét implicit módon alkalmazva, vizsgálataink szerint az eddig
ismert legjobb MABBA eljárásnál lényegesen hatékonyabban oldja meg a feladatot ([21]).

A gyakorlatban előállhatnak olyan esetek, amikor nem csak egy optimális megoldás,
hanem több vagy az összes, lehetséges vagy optimális megoldás is érdekel. A [16]-ban kidol-
gozásra került egy eljárás, mely egy PNS probléma összes lehetséges megoldását felsorolja.
Lehetnek azonban olyan esetek is, amikor csak az optimális megoldások érdekelnek, de azokat
mind fel szeretnénk sorolni. A feladat megoldható a [16]-ban megadott teljes leszámlálással
is, például úgy, hogy először megkeressük az optimumot, majd utána a teljes leszámlálásnál
ugyan az összes lehetséges megoldást végigjárjuk, de csak az optimális megoldásokat tartjuk
meg, ez a megoldás azonban egyáltalán nem hatékony, hiszen sok felesleges lehetséges, de nem
optimális megoldást vizsgál meg. Ezért kidolgozunk egy ennél hatékonyabb eljárást, mely
ugyan még mindig nem csak az optimális megoldásokat találja meg, viszont az általa felsorolt
megoldás halmaz, mely tartalmazza az összes optimális megoldást, empirikus vizsgálataink
szerint lényegesen kisebb, mint az összes lehetséges megoldások halmaza, hiszen az algorit-
mus a teljes leszámlálásnál sokkal hatékonyabban működik ([23]). Továbbra is nyitott kérdés
marad azonban, hogy a parciális leszámlálás milyen feltételek mellett képes csak az optimális
megoldásokat végigjárni.

A dolgozat befejező részében a PNS egy teljesen újszerű, automataelméleti megkö-
zeĺıtését vizsgáljuk meg. A [28] cikk alapján láttuk, hogy a lehetséges megoldások [18] és
[15] munkákban meghatározott feltételei nem biztośıtják a végrehajthatóságot, ezért a [28]-
ban kidolgozásra került egy úgynevezett sźınező eljárás, mely meghatározza a végrahajtható
folyamatokat, melyeket módośıtott lehetséges megoldásoknak neveztünk. Ugyancsak a [28]-
ban meg lett adva egy eljárás a módośıtott lehetséges optimális megoldás meghatározására,
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melynek alapötlete az, hogy a módośıtott PNS probléma adott példányához hozzárendelhető
egy automata, melyre teljesül az, hogy az eredeti feladat megoldása visszavezethető az au-
tomata átmeneti gráfjában egy legrövidebb út megtalálására. A disszertáció ezen részének
tulajdonképpeni célja ezen eljárás továbbfejlesztése. Definiálunk egy ekvivalencia relációt
a műveleti egységek halmazán, egy részben rendezést az ekvivalencia osztályokon, melyek-
nek seǵıtségével, néhány további észrevétel felhasználásával, az átmeneti gráfnak csak egy
részét generáljuk és ı́gy egy hatékonyabb eljárást kapunk az optiomális módośıtott lehetséges
megoldás meghatározására ([22]).

A fentiek alapján elmondhatjuk, hogy a PNS nem az egyetlen, de egy lehetséges
és hasznosnak bizonyult modellje a hálózati folyamatoknak, mely lehetővé teszi strukturá-
lis összefüggések feltárását és a folyamatok bonyolultságához képest valamivel hatékonyabb
megoldások megtalálását.

2. A PNS probléma

Jelölje ϕ(H) egy tetszőleges H halmaz összes részhalmazát, ϕ′(H) pedig a H halmaz
összes nemüres részhalmazát. Legyenek M és O ⊆ ϕ′(M) × ϕ′(M) véges, nemüres, és
diszjunkt halmazok. Az M elemei az anyagok, mı́g az O elemei a műveleti egységek, melyek
seǵıtségével bizonyos bemenő anyagokból nyerünk elő́ırt módon egy kimeneti anyaghalmazt.
Hogy mi megy végbe a műveleti egységekben, azzal nem foglalkozunk. Figyelmen ḱıvül
hagyjuk továbbá azt is, hogy miként kezdett a rendszer működni, csak statikus

”
termeléssel”

foglalkozunk. Formálisan bármely u ∈ O műveleti egységre u = (α, β), ahol az α a bemeneti
(nem üres) anyaghalmaz, β pedig a kimeneti (nem üres) anyaghalmaz. Azt fogjuk mondani,
hogy az u műveleti egység az α anyaghalmazból a β anyaghalmazt gyártja.

Az (M, O) párhoz egyérelműen hozzárendelhető egy gráf, amit a folyamat gráf-
jának nevezünk: PG(M, O) = (M ∪ O, A1 ∪ A2), ahol az élhalmaz kétféle t́ıpusú élből áll,
A1 = {(X, Y ) : Y = (α, β) ∈ O és X ∈ α}, A2 = {(Y, X) : Y = (α, β) ∈ O és X ∈ β}. Egy
(V ′, E ′) gráf egy PG(M, O) folyamat gráf részgráfja, ha V ′ = M ′ ∪O′, M ′ ⊆ M, O′ ⊆ O,
O′ ⊆ ϕ′(M ′) × ϕ′(M ′) és E ′ = A′

1 ∪ A′
2, ahol A′

1 = {(X, Y ) : Y = (α, β) ∈ O′ és X ∈ α},
A′

2 = {(Y, X) : Y = (α, β) ∈ O′ és X ∈ β}. Adott (M, O) pár és a hozzá rendelt fo-
lyamat gráf kölcsönösen egyértelműen meghatározzák egymást. Ezért a továbbiakban az
(M, O) párokat azonośıtani fogjuk a hozzájuk rendelt folyamat gráfokkal. Egy X ∈ M anyag
forrás (M, O)-ban, ha nem létezik (Y, X) él a folyamat gráfban. Ha léteznek X1, X2, ..., Xn

csúcspontok a gráfban, melyekre (X1, X2), (X2, X3), . . . , (Xn−1, Xn) élek az (M, O) folyamat
gráfban, akkor az ezen csúcspontok által meghatározott utat [X1, Xn]-el fogjuk jelölni.

Legyen most P ⊆ M és R ⊆ M az előálĺıtandó anyagok és a felhasználható
nyersanyagok egymástól diszjunkt halmaza. Akkor az M=(P, R, O) hármast a tekintett
PNS-probléma strukturális modelljének nevezzük. Legyen adott egy M = (P, R, O)
strukturális modell és legyen o ⊆ O műveleti egységek egy halmaza. Ekkor egy (m, o) rész-
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gráfot az M strukturális modell egy lehetséges megoldás struktúrájának nevezünk, ha
teljesülnek a következő tulajdonságok:

(A1) P ⊆ m,

(A2) ∀X ∈ m, X ∈ R ⇔ nem létezik (Y, X) él (m, o)-ban,

(A3) ∀Y0 ∈ o, ∃ [Yo, Yn] út, amelyre Yn ∈ P ,

(A4) ∀X ∈ m, ∃(α, β) ∈ o úgy, hogy X ∈ α ∪ β.

Jelölje S(M) az M strukturális modell lehetséges megoldás struktúráinak halmazát. M
maximális struktúrája alatt a µ(M) = {⋃(m, o) : (m, o) ∈ S(M)} megoldás struktúrát
értjük. A műveleti egységek egy o ⊆ O halmazára definiáljuk a matin, matout, mat : ϕ′(O) →
ϕ′(M), matin(o) = { ⋃α : (α, β) ∈ o } , matout(o) = { ⋃β : (α, β) ∈ o } és mat(o) =
matin(o) ∪ matout(o) leképezéseket. Ekkor, ha (m, o) ∈ S(M), akkor m = mat(o) ([15]).

Legyen w : O → R+ egy költségfüggvény a műveleti egységeken. Egy lehetsé-
ges megoldás struktúra költségét a benne levő műveleti egységek összköltségeként fogjuk
definiálni. Így a PNS probléma:

(PNS-2) min{∑u∈o w(u) : (m, o) ∈ S(M)}.

Bizonýıtást nyert, hogy a PNS-2 probléma NP teljes ([2, 17, 27]. Ez indokolja
exponenciális idejű, Branch and Bound t́ıpusú megoldások kidolgozását. Fontos szerepet
játszik a PNS-problémának a korlátozás és szétválasztás módszerével történő, különböző
([24, 21]) megoldásaiban a ([13, 14])-ban bevezetett döntési leképezés fogalma. Legyen o a
műveleti egységek egy halmaza. Definiáljuk a ∆ : M \ R −→ ℘(o), függvényt a követ-
kező módon. Minden X ∈ M \ R-re legyen ∆(X) = {(α, β) : (α, β) ∈ o & X ∈ β}.
Legyen m ⊆ M \ R és δ : M \ R −→ ℘(o) úgy, hogy δ(X) ⊆ ∆(X), minden X ∈ m-
re. A δ[m] = {(X, δ(X)) : X ∈ m} leképezést reguláris döntési leképezésnek, vagy
egyszerűen csak döntési leképezésnek nevezzük. Egy döntési leképezés konzisztens,
ha δ(X) ∩ ∆(Y ) ⊆ δ(Y ), bármely X, Y ∈ m-re. Az M strukturális modell konzisztens
döntési leképezéseinek halmazát ΩM-el fogjuk jelölni. Most tegyük fel, hogy egy δ[m] döntési
leképezés által leszögeztük a műveleti egységek egy részhalmazát abból a célból, hogy az m-
beli anyagokat közvetlenül gyártsa. Ha veszünk egy további Y ∈ M \ (m ∪ R) anyagot
és ennek közvetlen gyártására konzisztens módon hozzárendeljük az u′

1, . . . , u
′
r ∆(Y )-beli

műveleti egységeket, akkor egy nagyobb részfolyamatot kapunk. Az ennek megfelelő

δ′[m ∪ {Y }] = δ[m] ∪ {(Y, {u′
1, . . . , u

′
r})}

döntési leképezésre azt mondjuk, hogy a δ[m] reguláris kiterjesztése vagy egyszerűen
csak a δ[m] kiterjesztése. A kiterjeszés függvény ΩM-en egy részben rendezés relációt
határoz meg. Jelöljük a részben rendezett halmazt (ΩM,≤)-el. A kiterjesztés relációt
általánośıthatjuk úgy, hogy azt mondjuk, hogy δ2[m2] (reguláris) kiterjesztése δ1 [m1]-
nek és ezt ugyancsak δ1[m1] ≤ δ2[m2] -vel jelöljük, ha m1 ⊆ m2, δ1 [m1] és δ2 [m2] konzisz-
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tens döntési leképezések, valamint δ1 (X)= δ2(X) minden X ∈ m1-re. Az (ΩM,≤) halmaz
maximális elemeit maximális döntési leképezéseknek fogjuk nevezni és ezek halmazát
Ωmax

M -val fogjuk jelölni. Legyen továbbá op(δ [m]) = ∪{δ(X) : X ∈ m} és ρ : S (M) −→
Ωmax

M egy függvény, melyre ρ(m, o) = δ úgy, hogy δ(X) = {u : u = (α, β) ∈ o & X ∈
β}, ha X ∈ m \ R, és δ(X) = ∅, ha X /∈ M \ (R ∪ m).

2.1. Lemma. ([21]) ρ egy injekt́ıv leképezés S(M)-ről Ωmax
M -ba, továbbá

ρ−1(δ) = (mat(op(δ)), op(δ))

igaz minden olyan δ-ra, mely egy S(M)-beli elem ρ általi leképezése.

3. A döntési leképezések száma

1. Téziscsoport

3.1. Tétel. ([3]) Minden ∅ �= m ⊆ M \R-re, az m-en definiálható döntési leképezések száma
2
∑

X∈m |∆(X)|.

Jelöljük τ(m)-el az m anyaghalmaz felett definiálható konzisztens döntési leképezések számát.

3.2. Tétel. ([3]) Minden ∅ �= m ⊆ M \ R-re, τ(m) = 2|∪{∆(X):X∈m}|.

Legyen (m, o)∈ S (M) egy tetszőleges lehetséges megoldás struktúra és ρ (m, o) = δ.
Ha X ∈ matin(op(δ)), akkor létezik u = (α, β) ∈ op(δ) úgy, hogy X ∈ α. A δ defińıciója
szerint u ∈ o, és ı́gy X ∈ m. (A2) alapján X ∈ matout(op(δ)) ∪ R, tehát feĺırhatjuk, hogy:

(A′2) matin(op(δ)) ⊆ matout(op(δ)) ∪ R.

Az (A′2)-nek megfelelő maximális konzisztens döntési leképezések száma nyilván nem ke-
vesebb, mint a lehetséges megoldás struktúrák száma, ı́gy felülről becsülünk, ha az előbbit
meghatározzuk. Ennek érdekében legyen (M, O) egy PNS probléma folyamat gráfja, M =
{X1, . . . , Xk} és O = {u1, . . . , un}. Legyen továbbá O(Xj) = {u : u = (α, β) ∈ O & Xj ∈ α}
minden Xj ∈ M-re. Tetszőleges j ∈ {1, . . . , k}-ra legyen

Aj = {δ : δ ∈ Ωmax
M & Xj ∈ matin(op(δ)) \ (matout(op(δ)) ∪ R)}.

Minden ∅ �= I = {i1, . . . , il} ⊆ {1, ..., k}-ra legyen A∅ = Ωmax
M és AI = ∩i∈IAi. Akkor

AI =
{
δ : δ ∈ Ωmax

M & {Xi1 , . . . , Xil} ⊆ matin(op(δ)) \ (matout(op(δ)) ∪ R)
}

.

Legyen τ ′(m) az (A′2) feltételt kieléǵıtő m felett definiálható konzisztens döntési leképezések
száma.
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3.3. Tétel. ([3]) τ ′(m) = |Ωmax
M \ (A1 ∪ A2 ∪ ... ∪ Ak)| = ΣI⊆{1,...k}(−1)|I| · |AI | .

Az |AI | meghatározása általában, tetszőleges folyamat gráf esetén, rendḱıvül bonyolult, bi-
zonyos sajátos esetekben azonban egyszerűsödhet. A továbbiakban azt a speciális esetet fog-
juk megvizsgálni, amikor egyetlen input anyaggal működő, ún. szeparátor t́ıpusú műveleti
egységeink vannak, melyekre |α| = 1, bármely u = (α, β) ∈ O műveleti egységre. Legyen
ismételten I = {i1, . . . , il} és O∗(Xij ) = O(Xij) \ (∪i∈I∆(Xi)).

3.4. Tétel. ([3]) Szeparátor t́ıpusú műveleti egységek esetén

|AI | =

(
l∏

t=1

(
2|O∗(Xit)| − 1

))
· 2|O\(∪i∈I∆(Xi))\(∪i∈IO(Xi))|.

A továbbiakban két speciális szeparátor t́ıpusú műveleti egységeket tartalmazó PNS
problémaosztály esetén a lehetséges megoldás struktúrák számára explicit módon kiszámol-
ható képleteket fogunk adni. Mindkét esetben legyen M = {X1, . . . , Xk} az anyagok halmaza
és O = {u1, . . . , uk} a műveleti egységek halmaza. Az első, az ún. Egyenes modellben
u1 = (α1, β1) ahol α1 = X1 és β1 = X2, uk = (αk, βk) ahol αk = Xk és βk = Xk−1 és
általában ui = (αi, βi) ahol αi = Xi és βi = {Xi−1, Xi+1}, (2 ≤ i ≤ k − 1), mı́g a második,
Lánc modellben β1 = {X2, Xk} és βk = {Xk−1, X1}.

3.5. Tétel. ([4]) Az Egyenes modellben |S(M)| ≤ L(1) ahol

L(1) = 2k +
∑

1≤j≤ k+1
2

(−1)j ·

⎡
⎢⎣ ∑

0≤r≤j−1
k−3j+r+2≥0

(
j − 1

r

)
·
(

k − 2j
j − r − 2

)
· 2k−3j+r+2 +

+
∑

0≤r≤j−1
k−3j+r+1≥0

(
j − 1

r

)
·
(

k − 2j
j − r − 1

)
· 2k−3j+r+1 +

∑
0≤r≤j−1
k−3j+r≥0

(
j − 1

r

)
·
(

k − 2j
j − r

)
· 2k−3j+r

⎤
⎥⎦

= 1 +
∑

2≤t≤k

∑
1≤q≤min{ t

2
;k−t+1}

(
t − q − 1

q − 1

)
·
(

k − t + 1
q

)
.

3.6. Tétel. ([4]) A Lánc modellben |S(M)| ≤ C(1) ahol

C(1) = 2k +
∑

1≤j< k
2

(−1)j ·
∑

0≤r≤j−1
k−3j+r≥0

k

j
·
(

j
r

)
·
(

k − 2j − 1
j − r − 1

)
· 2k−3j+r + ek =
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= 1 +
∑

2≤t≤k

⎡
⎣ ∑

1≤q≤min{ t
2
;k−t}

(
t − q − 1

q − 1

)
·
(

k − t − 1
q − 1

)
+

+
∑

2≤i≤t

∑
1≤q≤ t−i

2
+1

(
t − i − q + 1

q − 1

)
·
(

k − t − 1
q − 1

)
+

+
∑

1≤i≤k−t

∑
1≤q≤min{ t

2
;k−t−i+1}

(
t − q − 1

q − 1

)
·
(

k − t − i
q − 1

)⎤⎦+ 1,

ahol

ek =

{
(−1)

k
2 · 2 , ha k páros,

0 , ha k páratlan.

4. Összevonásos redukció

2. Téziscsoport

Két u1 = (α1, β1) és u2 = (α2, β2) műveleti egység összevonásán azok helyet-
teśıtését értjük egy új, u = (α1 ∪ α2, β1 ∪ β2) műveleti egységgel. Az u1, u2 ∈ O műveleti
egységeket összevonhatóknak nevezzük, ha u1 ∈ (m, o) ⇐⇒ u2 ∈ (m, o), ∀(m, o) ∈ S(M).
Belátható, hogy ez a reláció ekvivalencia reláció az O halmazon, melyet ≡-val fogunk jelölni.
Tetszőleges u ∈ O-ra jelölje C(u) az u műveleti egység ekvivalencia osztályát. Definiáljuk
az M/ ≡ = (P, R, O∗) strukturális modellt úgy, hogy

O∗ = {(∪{αt : ut = (αt, βt) ∈ C(u)},∪{βt : ut = (αt, βt) ∈ C(u)}) : u ∈ O}

Definiáljuk a Ψ : M ∪ O −→ M ∪ O∗ leképezést a következőképpen:⎧⎪⎪⎨
⎪⎪⎩

Ψ(X) = X , ha X ∈ M,
Ψ(us) = (∪{αt : ut ∈ C(u)},∪{βt : ut ∈ C(u)}) , ha us ∈ C(u),
Ψ(m) = {Ψ(X) : X ∈ m} , ha m ⊆ M , és
Ψ(o) = {Ψ(u) : u ∈ o} , ha o ⊆ O

4.1. Tétel. ([20]) A Ψ : S(M) −→ S(M/ ≡) egy bijekt́ıv leképezés.

Definiálunk az M/ ≡ modellben egy w̄ súlyfüggvényt a következőképpen:

w̄(u) =
∑

ut∈C(u′)
Ψ(u′)=u

w(ut), minden u ∈ O∗-ra

Legyen a PNS következő modellje:
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(PNS-6) min

{∑
u∈o

w̄(u) : (m, o) ∈ S(M/ ≡)

}
.

4.2. Tétel. ([20]) A PNS-2 feladat tetszőleges optimális megoldásának Ψ melletti képe op-
timális megoldása a PNS-6 feladatnak és ford́ıtva, PNS-6 bármely optimális megoldásának
Ψ melletti őse optimális megoldása PNS-2-nek.

Legyen M = (P, R, O) egy PNS probléma strukturális modellje, melyre S(M) �= ∅,
továbbá legyen uj ∈ O egy tetszőleges műveleti egység. Feléṕıthetünk egy új PNS struk-
turális modellt a következőképpen: M(uj) = (P, R, O \ {uj}). Jelöljük az M(uj) maximális
struktúráját (Mj, Oj)-vel, feltéve hogy létezik, ellenkező esetben Mj = Oj = ∅.

4.3. Tétel. ([20]) Bármely ui, uj ∈ O műveleti egységekre ui ≡ uj akkor és csakis akkor, ha
ui ∈ O \ Oj és uj ∈ O \ Oi egyidejűleg teljesülnek vagy egyidejűleg nem teljesülnek.

Összevonásos ekvivalencia relációt meghatározó eljárás (ER) ([20])

1. Legyen i := 1, k := 1, N = {1, . . . , n}.
2. Határozzuk meg az M(ui) maximális struktúráját az MSG maximális struktúra ge-

neráló algoritmussal.

3. Ha Oi = O \ {ui}, akkor legyen Vk = {ui}, N = N \ {i}, és k = k + 1.

4. Ha i �= n, akkor i = i + 1 és térjünk a 2. lépésre.

5. Ha N = ∅, akkor VÉGE.

Egyébként jelölje i az N legkisebb elemét és legyen

J = {t : t ∈ N, ut ∈ O \ Oi}, illetve V = ∅.
6. Ha J = ∅, akkor legyen N = N \{i}, Vk = V ∪{ui}, k = k+1, és térjünk az 5. lépésre.

7. Válasszunk egy j elemet J-ből. Legyen J = J \ {j}. Ha ui ∈ O \ Oj, akkor legyen
V = V ∪ {uj}, N = N \ {j}, és térjünk a 6. lépésre.

Az eljárás futásának eredményeképpen megkapjuk az ≡ reláció V1, . . . , Vk ekviva-
lencia osztályait.
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5. Előretekintő B&B algoritmus

3. Téziscsoport

Minden (m, o) ∈ S(M)-re legyen ρ((m, o)) = δ[M \ R], ahol δ(X) = {(α, β) : (α, β) ∈ o és
X ∈ β} ha X ∈ m \ R, és δ(X) = ∅ ha X ∈ M \ (R ∪ m). Legyen S ′(M) = {ρ((m, o)) :
(m, o) ∈ S(M)}. Akkor a PNS-2 helyett megoldhatjuk az alábbi feladatot:

(PNS-5) min

{ ∑
u∈op(δ)

w(u) : δ ∈ S ′(M)

}
.

Minden δ[m] ∈ ΩM-re legyen Oδ[m] = op(δ[m]) ∪ (
⋃{C(u) : u ∈ op(δ[m])}). Ha |m| < |M \

R|;, akkor legyen Y egy anyag, melyre Y ∈ (matin(Oδ[m])∪P ) \ (matout(Oδ[m])∪R), feltéve,
hogy az utóbbi nem üres halmaz. Jelölje K1, . . . , Kr a ∆(Y )-nek az ≡ reláció ∆(Y )-re való
szűḱıtése szerinti ekvivalencia osztályait. Minden J ⊆ {K1, . . . , Kr} nem üres részhalmazra
legyen KJ = ∪{Kt : Kt ∈ J}. Akkor a δt[m∪{Y }] = δ[m]∪{(Y, KJ )}, J ⊆ ℘′({K1, . . . , Kr})
alakú konzisztens döntési leképezéseket a δ[m] Y szerinti irreguláris kiterjesztésének ne-
vezzük, ha Oδ(A) ∩ ∆(B) ⊆ δ(B), ∀A, B ∈ m ∪ {Y }. Nyilvánvalóan minden irreguláris kiter-
jesztés egy kiterjesztés is. Tekintsük az irreguláris kiterjesztés reflex́ıv és tranzit́ıv lezártját az
ΩM halmazon. A kapott reláció részben rendezés, melyet � -vel fogunk jelölni. Legyen δ0 az
a döntési leképezés, melyre δ0[∅] = ∅. Definiáljuk a ΣM irreguláris döntési leképezések
halmazát: ΣM = {δ[m] : δ[m] ∈ ΩM & δ0[∅] � δ[m]}. Legyen δ[m] ∈ ΣM , melyre

(matin(Oδ[m]) ∪ P ) \ (matout(Oδ[m]) ∪ R) = ∅.
Definiálunk egy δ′ döntési leképezést a következőképpen:

δ′(X) = {(α, β) : (α, β) ∈ Oδ[m] & X ∈ β}, ∀X ∈ M \ R.

Akkor δ′-t δ[m] irreguláris lezárásának nevezzük és icl(δ[m])-el jelöljük. Legyen

S∗(M) = {icl(δ[m]) : δ[m] ∈ ΣM &(matin(Oδ[m]) ∪ P ) \ (matout(Oδ[m]) ∪ R) = ∅}.

5.1. Lemma. ([21]) S∗(M) ⊆ S ′(M).

5.2. Lemma. ([21]) Legyen M = (P, R, O) egy PNS probléma strukturális modellje. Ha
(m, o) a PNS-2 probléma egy optimális megoldása, akkor ρ((m, o)) ∈ S∗(M).

5.1. Tétel. ([21]) A PNS-5 probléma helyett megoldhatjuk az alábbi feladatot:

(PNS-7) min

{ ∑
u∈op(δ)

w(u) : δ ∈ S∗(M)

}
.
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Definiáljuk a ϑ(δ[m]) függvényt minden δ[m] ∈ ΣM-re a következőképpen:

ϑ(δ[m]) = {δ′ : δ′ ∈ S∗(M)&(∃δ̄[m̄] ∈ ΣM)(δ[m] � δ̄[m̄] & icl(δ̄[m̄]) = δ′)}.
Legyen továbbá

g∗(δ[m]) =
∑

u∈Oδ[m])

w(u).

Előretekintő B&B algoritmus (LABBA, Look Ahead B&B Algorithm) ([21])

Inicializálás Határozzuk meg az összevonásos ekvivalencia relációt. Legyen L := {ϑ(δ0[∅])},
z∗ := ∞, s := ∅, és r := 0. Határozzuk meg g∗(δ0[∅])-t.

Iteráció (r. iteráció)

1. Befejezés

Ha L = ∅, akkor VÉGE: az s tartalmazza az optimális megoldást és z∗ tartalmazza az
optimum értéket. Egyébként térjünk a 2. lépésre.

2. Levélkiválasztás

Ha L egyelemű, akkor válasszuk ki az egyetlen elemét. Egyébként válasszunk egy olyan
ϑ(δ[m]) levelet L-ből, melyre a g∗(δ[m])/|m| érték minimális; ha több ilyen érték van,
akkor válasszunk egyet tetszőlegesen közülük.

3. Megoldástesztelés

Ha T = (matin(Oδ[m]) ∪ P ) \ (matout(Oδ[m]) ∪ R) �= ∅, akkor térjünk a 4. lépésre.
Egyébként alkossuk meg a δ[m] irreguláris lezárását, jelölje ezt δ′, továbbá ha w(δ′) <
z∗, akkor aktualizáljuk a z∗ és s értékeket: z∗ := w(δ′) és s := {δ′}; ellenkező esetben
z∗ és s értékei nem változnak. Legyen Φ := ∅ és térjünk a 6. lépésre.

4. Szétválasztás

Válasszunk egy X ∈ T anyagot, melyre |(matout(∆(X)) ∩ T | maximális, és alkossuk
meg a δ[m] X szerinti irreguláris kiterjesztéseit.
Ha nem létezik δ[m]-nek ilyen kiterjesztése, akkor legyen L := L\{ϑ(δ[m])} és térjünk
az 1. lépésre.
Egyébként legyenek δi[mi], i = 1, 2, . . . , k a δ[m] X szerinti irreguláris kiterjesztései.
Akkor legyen Φ = {ϑ(δi[mi]) : 1 ≤ i ≤ k}, és térjünk az 5. lépésre.

5. Korlátozás

Számoljuk ki a g∗(δi[mi]) értékeket i = 1, 2, . . . , k-ra, és térjünk a 6. lépésre.

6. Feldeŕıtés

Definiáljuk újra az L halmazt a következőképpen:

L := {ϑ(δ̄[m̄]) : ϑ(δ̄[m̄]) ∈ (L \ {ϑ(δ[m])}) ∪ Φ, g∗(δ̄[m̄]) < z∗}.
Legyen r := r + 1 és kezdjünk egy új iterációt (térjünk az 1. lépésre).
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6. Parciális leszámlálási eljárás

4. Téziscsoport

Az alábbi eljárás nem sorolja fel az összes lehetséges megoldást, viszont felsorolja
az összes optimális megoldást. Előnye, hogy kevesebb döntési leképezés vizsgálatát igényli,
mint a teljes leszámlálás, és ennélfogva hatékonyabban dolgozik.

Parciális leszámlálás (Partial Enumeration, [23])

Inicializálás Határozzuk meg az összevonásos ekvivalenciát. Legyen o0 azon műveleti
egységek halmaza, melyeknek minden lehetséges megoldás struktúrában szerepelniük kell.
Legyen m0 = ∅ és i = 0.

Iteráció

1. Legyen δi[mi] az m̂i =< Aj1 , . . . , Ajk
> rendezett tartománnyal rendelkező aktuális

irreguláris döntési leképezés. és legyen Ti = (matin(Oδi[mi])∪P )\ (matout(Oδi[mi])∪R).
Térjünk a 2. lépésre.

2. Ha Ti = ∅, akkor alkossuk meg a δi[mi] irreguláris lezárását, melyet jelöljünk δ′i-val.
Aktualizáljuk S értékét: S = S ∪ {δ′i}, és térjünk a 4. lépésre. Egyébként térjünk a 3.
lépésre.

3. Válasszunk egy legkisebb indexű X anyagot Ti-ből, melyre |matout(∆(X)) ∩ Ti| ma-
ximális. Vizsgáljuk meg a δi[mi] döntési leképezés ∆(X) \ o0 megfelelő részhalmazaira
való irreguláris kiterjesztéseit a |= lineáris rendezés figyelembe vételével.

Válasszuk az első olyan KJ ⊆ ∆(X)\o0 részhalmazt, melyre δi[mi]∪{(X, K ′
J)} a δi[mi]

egy irreguláris kiterjesztése, ahol K ′
J = KJ ∪ (∆(X) ∩ o0), feltételezve, hogy létezik

ilyen K ′
J . Legyen m̂i+1 = m̂i

∨{X} és δi+1[mi+1] = δi[mi] ∪ {(X, K ′
J)}.

Legyen i = i + 1, és térjünk a következő iterációs lépésre.

Ha ∆(X) egyetlen megfelelő részhalmaza sem lehet a δi[mi] irreguláris kiterjesztése,
akkor térjünk a 4. lépésre.

4. Ha δi(Ajk
) ⊂ ∆(Ajk

) és van olyan KJ ⊆ ∆(Ajk
) \ o0 részhalmaz, melyre δi(Ajk

) �= K ′
J ,

δi(Ajk
) ≤ K ′

J , ahol
K ′

J = Kj ∪ (∆(X) ∩ o0)

és a

{(Aj1, δi(Aj1)} ∪ · · · ∪ {(Ajk−1
, δi(Ajk−1

)} ∪ {(Ajk
, K ′

J)}
döntési leképezés a {(Aj1, δi(Aj1)} ∪ · · · ∪ {(Ajk−1

, δi(Ajk−1
)}-nak egy irreguláris kiter-

jesztése, akkor térjünk a 5. lépésre. Egyébként térjünk a 6. lépésre.
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5. Válasszuk a ∆(Ajk
) \ o0 |= szerinti első 4. pontbeli feltételt kieléǵıtő részhalmazát és

jelöljük KJ -vel. Legyen

m̂i+1 =< Aj1, . . . , Ajk
>, és

δi+1[mi+1] = {(Aj1 , δi(Aj1)} ∪ · · · ∪ {(Ajk−1
, δi(Ajk−1

)}) ∪ {(Ajk
, K ′

J)},
ahol

K ′
J = Kj ∪ (∆(X) ∩ o0).

Legyen i := i + 1, és térjünk a következő iterációs lépésre.

6. Legyen k = k − 1. Ha k = 0, akkor VÉGE. Egyébként térjünk a 4. lépésre.

S pontosan az S∗(M) elemeit fogja tartalmazni, ı́gy tartalmazni fogja a PNS-2 összes
optimális megoldásait is.

7. Automataelméleti megközeĺıtés

Legyen (M̄, Ō) egy folyamat gráf és R egy anyaghalmaz. Azt mondjuk, hogy (M̄, Ō) az R
által sźınezhető, ha az (M̄, Ō) minden csúcspontja besźınezhető az alábbi eljárással.

Sźınező eljárás ([28]

1. Sźınezzük be M̄ ∩ R minden anyagát.

2. Mindaddig, amı́g van olyan műveleti egység, melynek minden bemenete sźınezve van,
válasszunk egy ilyen műveleti egységet és sźınezzük be annak kimeneti anyagait. Ha
nincs ilyen műveleti egység, akkor VÉGE.

Megjegyzendő, hogy a sźınezhetőség tulajdonképpen a végrehajthatóságot jelenti. Egy PNS
probléma azon lehetséges megoldás struktúráit, amelyek az (A1) - (A4) feltétel mellett még
az

(A5) (M̄, Ō) az R által sźınezhető

feltételt is teljeśıtik, módośıtott lehetséges megoldás struktúráknak nevezzük. Ha
M = (P, R, O) egy PNS probléma strukturális modellje, akkor jelöljük S(M)-el a módośıtott
lehetséges megoldás struktúrák halmazát. Most megadhatjuk a megoldás struktúrákhoz
rendelt optimalizációs problémát:
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(PNS-8) min

{∑
u∈Ō

w(u) : (M̄, Ō) ∈ S(M)

}
.

A továbbiakban módośıtott PNS problémán a (PNS-8) problémát értjük. A módośıtott
PNS problémához rendelt B = (B, O′) automatát a következőképpen definiáljuk. Legyen
B = B′ ∪{�}, melyre B′ = ϕ′(M) és � �∈ B′, és legyen O′ = {u : u = (C, D) ∈ O és R∩D =
∅}. Az automata egy állapota megfelel egy adott pillanatban rendelkezésre álló anyagok
halmazának. Az � állapot a sikertelen átmenetek jelölésére szolgál. Az átmeneteket a követ-
kezőképpen definiáljuk. Minden Q ∈ B′ és u = (C, D) ∈ O′-re legyen

QuB =

{
Q ∪ D ha C ⊆ Q
� egyébként,

továbbá �uB = �. A GB átmeneti gráf súlyozását a következőképpen definiáljuk. Ha (Q, Q′)
egy él GB-ben, melynek ćımkéi uj1, . . . , ujt, akkor az él súlya w = min{w(uj1), . . . , w(ujt)}
lesz, továbbá egyetlen olyan ujl

, 1 ≤ l ≤ t, ćımkét tartunk meg, melyre w = w(ujl
), a többi

ćımkéket töröljük. Jelöljük az ı́gy kapott súlyozott, ćımkézett gráfot (GB, w)-vel. Definiálunk
továbbá egy olyan B = (B, R, F ) felismerőt, melyre F = {Q : Q ∈ B′ és P ⊆ Q}.

5. Téziscsoport

Minden u, v ∈ O′-re legyen v � u ha u = v vagy matout(v) ∩ matin(u) �= ∅. Ez

a reláció reflex́ıv és tranzit́ıv. Jelölje
∗� a � tranizit́ıv lezárását. Azt mondjuk, hogy két

u, v ∈ O′ műveleti egység egymást kölcsönösen eléri, ha u
∗� v és v

∗� u. Belátható, hogy
a kölcsönös elérhetőség ekvivalencia reláció O′-n, melyet ��-nel, az ekvivalencia osztályt pedig
C-vel fogjuk jelölni. Báremely C, C ′ ∈ O′/ ��-ra legyen C ≪ C ′ ha C = C ′ vagy léteznek

u ∈ C és v ∈ C ′ műveleti egységek úgy, hogy u
∗� v. A ≪ reláció részben rendezés C-n, mely

kiegésźıthető lineáris rendezésre. Így, az általánosság megszorátása nélkül feltételezhetjük,
hogy C = {C1, C2, . . . , Ch} valamely 1 ≤ h ≤ |O′|-ra úgy, hogy bármely i, j ∈ {1, . . . , h}-
re Ci ≪ Cj-ből következik i ≤ j. Definiáljuk az 	 : (O′)∗ → {1, . . . , h} függvényt a
következőképpen:

	(p) =

⎧⎨
⎩

0 , ha p = λ,
m , ha p ∈ O′, p ∈ Cm

max{	(ut) : 1 ≤ t ≤ l} , ha p = u1 . . . ul ∈ (O′)+.

Bármely p = u1 . . . ul ∈ O′-re legyen w(p) =
∑l

i=1 ui. Kiterjesztett állapoton egy
(Rp, p, w(p)) hármast értünk, ahol p egy olyan szó, mely az automatát az R-ből egy F -beli
állapotba viszi át. Azt mondjuk, hogy (Rp, p, w(p)) egy optimális kiterjesztett állapot,
ha egy kiterjesztett állapot és w(p) ≤ w(p′) bármely (Rp′, p′, w(p′)) kiterjesztett állapotra.
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PAT algoritmus a PNS-8 optimális megoldásainak meghatározására ([22])

Inicializálás. i := 0, L0 := {(R, λ, 0)}.

Iteráció

1. Mi = {(Rp, p, w(p)) ∈ Li : w(p) ≤ w(q), ∀(Rq, q, w(q)) ∈ Li}.
Si = {(Rp, p, w(p)) ∈ Mi : P ⊆ Rp}.
Ha Si �= ∅, akkor VÉGE; az Si elemei optimális kiterjesztett állapotok.

2. Válasszunk egy tetszőleges (Rt, t, w(t)) ∈ Mi elemet, és legyen t = u1 . . . un.

3. Legyen i = i + 1, Li = Li−1.

4. Li = Li \ {(Rt, t, w(t))}.
5. Legyen Vi = {v ∈ O′ \ {u1, . . . , un} : matin(v) ⊆ Rt és 	(v) ≥ 	(t)}.

Ha Vi = ∅, akkor térjünk az 1. lépésre.
Egyébként legyen Vi = {v1, . . . , vm}.

6. Minden j = 1, . . . , m értékre rendre hajtsuk végre az alábbi lépéseket:

• A(vj) := {(Rq, q, w(q)) ∈ Li : Rq ⊇ Rtvj és w(q) ≤ w(tvj) és
(w(q) < w(tvj) vagy 	(q) ≤ 	(tvj))},

• D(vj) := {(Rq, q, w(q)) ∈ Li : Rq ⊆ Rtvj és w(q) ≥ w(tvj) és
(w(q) > w(tvj) vagy 	(q) ≥ 	(tvj))},

• ha A(vj) = ∅, akkor legyen

Li := (Li \ D(vj)) ∪ {(Rtvj , tvj , w(tvj))}.
7. Térjünk az 1. lépésre.

7.1. Tétel. ([22]) A PAT algoritmus véges számú lépés után véget ér és egy optomális ki-
terjesztett állapotot határoz meg, mely a PNS-8 probléma optimális megoldásának felel meg.
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[22] Holló, Cs., A Procedure Based on Automaton Theory Approach for Solving Modified PNS
Problems, PU.M.A., 1-2, 2002, 159-169.
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