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1. Bevezetés

A kémidban, biolégiaban, ipari alkalmazasokban gyakran felmeriil olyan probléma,
amelyben bizonyos , nyersanyagok” és ,,miveleti egységek” rendelkezésiinkre allnak és el6irt
anyagokat kivanunk eloallitani az adott miveleti egységek Osszekapcsolasaval. A probléma
egy lehetséges modellezése a ,,Process Network Synthesis” (PNS), melyben minden miiveleti
egység az anyagok egy részhalmazat inputként igényli és anyagok egy masik részhalmazat
allitja el6. A grafelméleti megkdozelitésben egy anyagtol irdanyitott él vezet azokhoz a miiveleti
egységekhez, amelyek azt input anyagként felhasznaljak, illetve egy miiveleti egységet ira-
nyitott éllel kotiink Ossze azokkal az anyagokkal, amelyeket output anyagként termel. fgy
egy kétrészes (anyagok; miiveleti egységek) irdnyitott grafot kapunk, a folyamat grafjat. Egy
ilyen halézatban az el6irt anyagok legyartasa altalaban tobbféleképpen, a rendelkezésre allé
gépek kulonbzo részhalmazaival is megvaldsithato. Statikusan képzelve a termelési folya-
matot, a miveleti egységek egy részrendszerének miikodésével a kivant anyagokat bizonyos
alapveto feltételek teljesiilése esetén kaphatjuk meg. Ily mdédon a lehetséges megoldasoknak
rendelkezniiik kell bizonyos strukturalis tulajdonsdgokkal ([15]), ami miatt ezeket megol-
das strukturaknak is szokds nevezni. Ezek kozott kitlintetett szerepe van a maximalis
strukturanak, mely a lehetséges megoldas strukturak uniéja. A maximalis struktira megha-
tarozésa azért hasznos, mert ily médon a halézatbdl toroljitkk azokat a miveleti egységeket,
melyek igysem szerepelnének egyetlen lehetséges megoldasban sem, és ily modon csokkentjiik
a probléma méretét. Mivel a maximalis struktira generalasara polinomidlis idejii algoritmus
adhat6 ([11]), ezért célszertinek tiinik a PNS problémék megolddsat ezzel kezdeni. A legtébb
esetben azonban minket nem a legtobb miveleti egységet igénybe vevo, hanem ellenkezoleg,
valamilyen szempontbdl leggazdasidgosabb megoldésok érdekelnek, tehat nem elégedhetiink
meg a maximalis struktira meghatarozasaval.

A dolgozatban targyalt PNS modell csak strukturalis szempontbdl tekinti a prob-
lémat, mivel annak lefrdsa anyagmennyiségekre vonatkozé eléirasokat nem tartalmaz. A
rendelkezésre all6 miiveleti egységek viszont rendelkeznek bizonyos koltséggel és az anyag-
el6éllitas soran hasznalt miiveleti egységek 6sszkoltségét szeretnénk optimalizalni: keressiik a
miiveleti egységek azon legkisebb 6sszkoltségli részhalmazat, mely a rendelkezésre allé nyers-
anyagokbol képes eloallitani a kivant végtermékeket. Mivel a minimum meghatarozasa még
ebben a legegyszer(ibb strukturalis esetben is a halmazlefedési probléméval ekvivalens (|2,
17, 27]), igy a halmazlefedési probléma NP teljességébdl ([32, 1]) kovetkezéen a strukturalis
PNS-probléma is sajnos NP-teljes. Nem varhato tehat hatékony megoldés ra. Ezért indokolt
exponencialis ideji algoritmusok és azok kiilonb6z6 heurisztikakkal kombinalt, korlatozas és
szétvalasztas moédszerére alapulé valtozatainak kidolgozédsa ([13, 24, 21, 23]).

A Branch-and-Bound jellegti médszerek felépitésében fontos szerepet jatszik az ugy-
nevezett dontési leképezés fogalma ([12]), mely lényegében meghatarozza adott anyagra az 6t
gyarté miiveleti egységek halmazat. Gyakorlati szempontbdl nyilvan nagyon komoly elony,
hogy csak bizonyos tgynevezett "konzisztens” dontési leképezéseket kell figyelembe venni,
ami abbdl az észrevételbol szarmazik, hogy egy miveleti egység, ha miikodik, nem teheti
meg, hogy bizonyos kimeneti anyagait gyartja, masokat pedig nem. Ezen beliil tovabbi



sziikitést eredményez az az észrevétel, hogy nem miikodhet olyan miveleti egység, amelyik
valamelyik input anyagat egyetlen miikodé miveleti egységtél sem nyeri. A konzisztens
dontési leképezések és a lehetséges megoldas strukltirak kozotti kapcesolatot felhaszndlva, a
konzisztens dontési leképezések megszamlalasaval, a szitaformula segitségével, felso korlat
adhaté a lehetséges megoldas struktirak szamara ([3]). Mivel a korlat tényleges kiszdmitésa
a probléma strukturajatol fiigg és altalaban, tetszéleges folyamat graf esetén, meglehetésen
bonyolult, ezért megvizsgalunk két specialis PNS problémaosztalyt is, melyre ténylegesen
kiszamithato képleteket tudunk adni, mikozben szép kombinatorikus azonossagokat is ka-
punk ([4, 5]).

A tovabbiakban észrevessziik, hogy bizonyos miiveleti egységek, nevezetesen azok,
amelyek egyszerre vannak jelen vagy egyikiik sem szerepel a lehetséges megoldasokban,
egyiitt kezelhetok. Ebbdl kiindulva definialjuk az 6sszevonas miiveletét, mely a maxima-
lis strukturdhoz képest is altaldban kb. 7%-os tovabbi méretcsokkenést eredményez ([20]).
Ugyanakkor az 0szszevonas kovetkeztében megjelend 1j miveleti egységek az eltavolitottak-
nél tobb bemeneti és kimeneti anyaghalmazzal rendelkeznek (béar a be- és kimeneti anyagok
széma, Osszességében megmarad), ezért felmeriil a kérdés, hogy az Gsszevonds Otlete egyal-
talan hasznéalhato-e a feladat hatékonyabb megoldasara. A dontési leképezések mélyebbre
haté tanulmanyozasanak koévetkeztében kapott néhany tovabbi észrevételt is felhasznalva,
kidolgozunk egy 1j, Eléretekinté B & B (ER) nevezetii, korlatozds és szétvalasztds tipusi
eljarast, mely az 6sszevonas otletét implicit modon alkalmazva, vizsgalataink szerint az eddig
ismert legjobb MABBA eljdrdsndl lényegesen hatékonyabban oldja meg a feladatot ([21]).

A gyakorlatban el6allhatnak olyan esetek, amikor nem csak egy optimalis megoldas,
hanem t6bb vagy az Osszes, lehetséges vagy optimélis megoldds is érdekel. A [16]-ban kidol-
gozasra keriilt egy eljaras, mely egy PNS probléma 0Osszes lehetséges megoldasat felsorolja.
Lehetnek azonban olyan esetek is, amikor csak az optimélis megoldasok érdekelnek, de azokat
mind fel szeretnénk sorolni. A feladat megoldhaté a [16]-ban megadott teljes leszamlalassal
is, példaul ugy, hogy el6szor megkeressiik az optimumot, majd utana a teljes leszamlalasnal
ugyan az osszes lehetséges megoldast végigjarjuk, de csak az optimalis megoldasokat tartjuk
meg, ez a megoldéas azonban egyaltalan nem hatékony, hiszen sok felesleges lehetséges, de nem
optimélis megoldast vizsgal meg. Ezért kidolgozunk egy ennél hatékonyabb eljarast, mely
ugyan még mindig nem csak az optimalis megoldasokat taldlja meg, viszont az altala felsorolt
megoldas halmaz, mely tartalmazza az 6sszes optimélis megoldast, empirikus vizsgalataink
szerint 1ényegesen kisebb, mint az Osszes lehetséges megolddsok halmaza, hiszen az algorit-
mus a teljes leszamlaldsnal sokkal hatékonyabban miikodik ([23]). Tovabbra is nyitott kérdés
marad azonban, hogy a parcidlis leszamlalas milyen feltételek mellett képes csak az optimalis
megoldasokat végigjarni.

A dolgozat befejezd részében a PNS egy teljesen tjszerti, automataelméleti megko-
zelitését vizsgaljuk meg. A [28] cikk alapjan lattuk, hogy a lehetséges megolddsok [18] és
[15] munkdkban meghatdrozott feltételei nem biztositjak a végrehajthatésagot, ezért a [28]-
ban kidolgozasra keriilt egy tigynevezett szinezd eljaras, mely meghatarozza a végrahajthaté
folyamatokat, melyeket médositott lehetséges megolddsoknak neveztiink. Ugyancsak a [28]-
ban meg lett adva egy eljaras a médositott lehetséges optimalis megoldas meghatarozasara,



melynek alapoétlete az, hogy a médositott PNS probléma adott példanyahoz hozzarendelheto
egy automata, melyre teljesiil az, hogy az eredeti feladat megoldasa visszavezetheté az au-
tomata atmeneti grafjdban egy legrovidebb ut megtaldlasara. A disszertacié ezen részének
tulajdonképpeni célja ezen eljaras tovabbfejlesztése. Definidlunk egy ekvivalencia relaciot
a miveleti egységek halmazan, egy részben rendezést az ekvivalencia osztalyokon, melyek-
nek segitségével, néhany tovabbi észrevétel felhasznaldsaval, az atmeneti grafnak csak egy
részét generaljuk és igy egy hatékonyabb eljarast kapunk az optiomalis moédositott lehetséges
megoldds meghatarozasara ([22]).

A fentiek alapjan elmondhatjuk, hogy a PNS nem az egyetlen, de egy lehetséges
és hasznosnak bizonyult modellje a héalézati folyamatoknak, mely lehetové teszi struktura-
lis Osszefliggések feltarasat és a folyamatok bonyolultsdgahoz képest valamivel hatékonyabb
megoldasok megtalalasat.

2. A PNS probléma

Jelolje p(H) egy tetszbleges H halmaz 6sszes részhalmazat, ¢'(H) pedig a H halmaz
Osszes nemiires részhalmazat. Legyenek M és O C ¢ (M) x ¢'(M) véges, nemiires, és
diszjunkt halmazok. Az M elemei az anyagok, mig az O elemei a miiveleti egységek, melyek
segitségével bizonyos bemend anyagokbol nyeriink el6irt modon egy kimeneti anyaghalmazt.
Hogy mi megy véghe a miiveleti egységekben, azzal nem foglalkozunk. Figyelmen kiviil
hagyjuk tovabba azt is, hogy miként kezdett a rendszer miikodni, csak statikus ,,termeléssel”
foglalkozunk. Formalisan barmely u € O miiveleti egységre u = («, ), ahol az a a bemeneti
(nem {iires) anyaghalmaz, 5 pedig a kimeneti (nem tires) anyaghalmaz. Azt fogjuk mondani,
hogy az u miveleti egység az a anyaghalmazbdl a § anyaghalmazt gyartja.

Az (M, O) parhoz egyérelmiien hozzarendelhet6 egy graf, amit a folyamat grdf-
jdanak nevezink: PG(M,0) = (M UO, A; U As), ahol az élhalmaz kétféle tipusu élbél &ll,
A ={X)Y): Y =(a,f)€eO0és X ea}, Ay ={(V,X):Y =(o,0) € O és X € 3}. Egy
(V' E") graf egy PG(M, O) folyamat graf részgrdfja, ha V! = M'UO’', M' C M, O’ C O,
O C (M) x ¢ (M)és E' = A UA,, ahol A] ={(X,Y):Y =(o,0) € O és X € a},
Ay, ={(Y,X):Y = (a,0) € O és X € [}. Adott (M,0) péar és a hozzd rendelt fo-
lyamat graf kolecsonosen egyértelmiien meghatarozzéak egymast. Ezért a tovabbiakban az
(M, O) péarokat azonositani fogjuk a hozzajuk rendelt folyamat grafokkal. Egy X € M anyag
forrds (M, O)-ban, ha nem létezik (Y, X) él a folyamat grafban. Ha léteznek X1, X, ..., X,
csicspontok a grafban, melyekre (X7, X)), (Xo, X3), ..., (Xn_1, X,) élek az (M, O) folyamat
grafban, akkor az ezen csiicspontok altal meghatérozott utat [ X, X, ]-el fogjuk jeldlni.

Legyen most P C M és R C M az elddllitandé anyagok és a felhaszndlhato
nyersanyagok egyméstol diszjunkt halmaza. Akkor az M=(P, R, O) harmast a tekintett
PNS-probléma strukturdlis modelljének nevezziik. Legyen adott egy M = (P, R,0)
strukturalis modell és legyen o C O miiveleti egységek egy halmaza. Ekkor egy (m, o) rész-



grafot az M strukturdlis modell egy lehetséges megoldds struktirdjanak neveziink, ha
teljesiilnek a kovetkezo tulajdonsagok:

(A1) P Cm,

(A2) VX € m, X € R < nem létezik (Y, X) él (m,0)-ban,
(A3) VY, € o, 3 [Y,,Y,] 1t, amelyre Y, € P,

(A4) VX € m, I(a, B) € 0 gy, hogy X € a U f3.

Jelolje S(M) az M strukturdlis modell lehetséges megoldas strukturdinak halmazat. M
maximdlis struktirdja alatt a (M) = {{J(m,0) : (m,0) € S(M)} megoldés struktirat
értjiik. A miiveleti egységek egy o C O halmazéra definidljuk a mat™, mat®, mat : ©'(0) —
¢ (M), mat™(o) ={Ua : (a,8) €0}, mat™ (o) ={UPB : (a,B) €0 } és mat(o) =
mat™(0) U mat®*(o) leképezéseket. Ekkor, ha (m,0) € S(M), akkor m = mat (o) ([15]).

Legyen w : O — Ry egy koltségfiiggvény a miiveleti egységeken. FKEgy lehetsé-
ges megoldas struktira koltségét a benne levé miveleti egységek oOsszkoltségeként fogjuk
definidlni. Igy a PNS probléma:

(PNS-2) min{) ., w(u) : (m,0) € S(M)}.

Bizonyitdst nyert, hogy a PNS-2 probléma NP teljes ([2, 17, 27]. Ez indokolja
exponencialis idejii, Branch and Bound tipusi megoldasok kidolgozasat. Fontos szerepet
jatszik a PNS-probléméanak a korlatozas és szétvalasztas modszerével torténo, kiilonbozo
([24, 21]) megolddsaiban a ([13, 14])-ban bevezetett dontési leképezés fogalma. Legyen o a
miiveleti egységek egy halmaza. Definidljuk a A : M \ R — p(0), fiiggvényt a kovet-
kez6 médon. Minden X € M \ R-re legyen A(X) = {(o,0) : (a,8) € 0& X € 3}
Legyen m C M\ Rés 6 : M\ R — (o) ugy, hogy 6(X) C A(X), minden X € m-
re. A dm| = {(X,0(X)) : X € m} leképezést reguldris déntési leképezésnek, vagy
egyszeriien csak dontési leképezésnek nevezziik. Egy dontési leképezés konzisztens,
ha 6(X) N A(Y) C 4(Y), barmely X, Y € m-re. Az M strukturalis modell konzisztens
dontési leképezéseinek halmazat Qyg-el fogjuk jelolni. Most tegyiik fel, hogy egy d[m]| dontési
leképezés altal leszogeztiik a miveleti egységek egy részhalmazat abbdl a célbdl, hogy az m-
beli anyagokat kozvetleniil gyartsa. Ha vesziink egy tovabbi Y € M \ (m U R) anyagot
és ennek kozvetlen gyartdsara konzisztens médon hozzarendeljitk az o), ..., ul A(Y)-beli
miveleti egységeket, akkor egy nagyobb részfolyamatot kapunk. Az ennek megfeleld

0'[m UL} = o[m] U{(Y, {v), ..., })}

dontési leképezésre azt mondjuk, hogy a d[m| reguldris kiterjesztése vagy egyszeriien
csak a 0[m] kiterjesztése. A Kkiterjeszés fliggvény pyp-en egy részben rendezés relaciot
hatdroz meg. Jeloljiik a részben rendezett halmazt (Qpp, <)-el. A kiterjesztés relaciot
altaldnosithatjuk gy, hogy azt mondjuk, hogy ds[ms| (reguldris) kiterjesztése 6, [m;]-
nek és ezt ugyancsak 01[ms] < do[ms] -vel jeloljiik, ha my C ma, §; [my] és 93 [ms] konzisz-
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tens dontési leképezések, valamint §; (X)= 02(X) minden X € my-re. Az (Qpp, <) halmaz
maximalis elemeit maximalis dontési leképezéseknek fogjuk nevezni és ezek halmazat
Qp*-val fogjuk jelolni. Legyen tovéabba op(d [m]) = U{d(X): X e m} és p: S(M) —
QR egy fliggvény, melyre p(m,o0) = 6 gy, hogy §(X) = {u : v = (a,) € 0& X €
B}, ha X em\R, ésd(X)=0, ha X ¢ M\ (RUm).

2.1. Lemma. ([21]) p egy injektiv leképezés S(M)-rdl Qxi*-ba, tovdbbd
p~(0) = (mat(op(9)), op(9))

igaz minden olyan d-ra, mely egy S(M)-beli elem p dltali leképezése.

3. A dontési leképezések szama

1. Téziscsoport

3.1. Tétel. ([3]) Minden ) # m C M\ R-re, az m-en definidlhatd dontési leképezések szama
95 xem IA)]

Jeloljiitk 7(m)-el az m anyaghalmaz felett definidlhaté konzisztens dontési leképezések szamat.
3.2. Tétel. ([3]) Minden O #m C M\ R-re, 7(m) = 2/AAK):Xem}],

Legyen (m,0)e S (M) egy tetszbleges lehetséges megoldas struktira és p (m,0) = 9.
Ha X € mat™(op(d)), akkor 1étezik u = (o, 3) € op(d) ugy, hogy X € a. A ¢ definicidja
szerint u € o, és igy X € m. (A2) alapjdn X € mat®*(op(d)) U R, tehét felirhatjuk, hogy:

(A'2) mat™(op(8)) € mat®(op(§)) U R.

Az (A’2)-nek megfeleld maximalis konzisztens dontési leképezések szdma nyilvdn nem ke-
vesebb, mint a lehetséges megoldas strukturak szama, igy feliilrol becsiiliink, ha az elobbit
meghatédrozzuk. Ennek érdekében legyen (M, O) egy PNS probléma folyamat grafja, M =
{X1,..., X} és O = {w,..., uy}. Legyen tovabbd O(X;) = {u: u=(a,5) € O & X, € a}
minden X; € M-re. Tetsz6leges j € {1,...,k}-ra legyen
Aj={6:6 € & X; € mat™(op(8)) \ (mat®™ (op(6)) U R)}.

Minden ) # I = {iy,...,4} C {1,...,k}-ra legyen Ay = Q> és A; = NierA;. Akkor

Ar={6:0€ Oy &{Xi,..., X;,} Cmat™(op(8)) \ (mat™ (op()) UR)} .

Legyen 7/(m) az (A'2) feltételt kielégité m felett definidlhaté konzisztens déntési leképezések
szama.



3.3. Tétel. ([3]) T/(m) == ’QII{I/I&X \ (Al U A2 u..u Ak)’ - Z[g{Lk}(—l)‘” ‘ ’A[‘ .

Az |A;| meghatarozédsa altalaban, tetszéleges folyamat gréaf esetén, rendkiviil bonyolult, bi-
zonyos sajatos esetekben azonban egyszertisdhet. A tovdabbiakban azt a specidlis esetet fog-
juk megvizsgalni, amikor egyetlen input anyaggal miikodo, Un. szepardtor tipusi miiveleti
egységeink vannak, melyekre |a| = 1, barmely u = (a, 8) € O miiveleti egységre. Legyen
ismételten I = {i1,... i1} és O*(X;;) = O(Xy;) \ (UierA(Xq)).

]

3.4. Tétel. ([3]) Szepardtor tipusi miveleti eqységek esetén

l
1A = <II(?VT(XHH__1>>_QKNHMHAC&DVUmﬂXXnN

t=1

A tovabbiakban két specidlis szeparator tipusi miiveleti egységeket tartalmazo PNS
problémaosztaly esetén a lehetséges megoldas strukturak szamara explicit moédon kiszdmol-
haté képleteket fogunk adni. Mindkét esetben legyen M = {Xj, ..., X;} az anyagok halmaza
és O = {uy,...,ur} a miveleti egységek halmaza. Az els6, az tin. FEgyenes modellben
u; = (a1,01) ahol o = X;és By = Xo, up = (ag, B) ahol ap = Xy és B = X1 és
altalaban U; = (O[Z‘,ﬁi) ahol Q; = Xz és ﬁz = {Xi—luXi—l—l}; (2 S 1 S k — 1), ml'g a m&isodik,
Lanc modellben (3 = { Xy, X} és B = {Xp_1, X1}

3.5. Tétel. ([4]) Az Egyenes modellben |S(M)| < LYY ahol

(1) _ ok Y J—1\ k—2j ok—3j+r+2
LW =2F4 3" (-1 > ( ) ) <j_r_2 2 +

k1 0<r<j—1
1K<= k—3j+r+2>0

J=1N ([ k=21 '\ or-3jtrt1 J=1\ (k=27 \ or-3jir
= 2 () s () (577 )

0<r<j—1 0<r<j—1
k—3j+r+1>0 k—3j+r>0

:1+Z Z (t;ﬁl)-(’“_;“)-

2<t<k1<q<min{;k—t+1}

3.6. Tétel. ([4]) A Ldnc modellben |S(M)| < CY) ahol

- k ] k—27—1 -
(1) _ ok 1V L ) ) J _ok—3j+r _
cY =2+ E ( 1) E - (r) (j—r—l) 2 + e, =

)
ik 0<r<j—1
1<5<5 k=3j4r>0



t—q—1 k—t—1
S 2 ( ¢—1 )( q¢—1 )+
2<t<k | 1<q<min{;k—t}
t—i—q+1 k—t—1
cXox () ()
2<z<t1<q<t1
t—q—1 k—t—1
CX oy () ()
1<i<k—t lgqgmin{%;kz—t—i-i-l}

ahol .
o — (=1)z -2 | ha k pdros,
b 0 , ha k pdratlan.

4. Osszevonasos redukcio

2. Téziscsoport

Két uy = (a1, 01) és ug = (g, 32) milveleti egység dsszevondsdn azok helyet-
tesitését értjiik egy 4j, u = (ay U an, B U B2) miiveleti egységgel. Az uy,us € O miiveleti
egységeket dsszevonhatdknak nevezzik, ha u; € (m,0) <= uy € (m,0), V(m,o0) € S(M).
Beldthatd, hogy ez a relacié ekvivalencia relacié az O halmazon, melyet =-val fogunk jelolni.
Tetsz6leges u € O-ra jeldlje C(u) az u miiveleti egység ekvivalencia osztalyat. Definidljuk
az M/ = = (P, R,O*) strukturalis modellt gy, hogy

O ={(W{ay : us = (ay, By) € C(u)}, U{B; - up = (ay, B4) € C(u)}) 1w € O}

Definidljuk a ¥ : M UO — M U O* leképezést a kovetkezdképpen:

W(X)= X L ha X € M,
U(ug) = (U{ay :up € C(u)}, U{5; : uy € C(u)}) , ha ug € C(u),
U(m) ={¥(X): X € m} , ham C M, és
V(o) ={¥(u):ue€o} ,haoCO

4.1. Tétel. ([20]) A ¥ : S(M) — S(M/ =) egy bijektiv leképezés.

Definidlunk az M/ = modellben egy w stlyfiiggvényt a kovetkezéképpen:

w(u) = Z w(uy), minden u € O*-ra

utEC(ul)
W (u)=u

Legyen a PNS kovetkezo modellje:



(PNS-6) min {z w(w) : (m,0) € S(M/ E)} .

uco

4.2. Tétel. ([20]) A PNS-2 feladat tetszdleges optimdlis megolddsinak VU melletti képe op-
timalis megoldasa a PNS-6 feladatnak és forditva, PNS-6 bdrmely optimdlis megolddsdanak
U melletti dse optimdlis megolddsa PNS-2-nek.

Legyen M = (P, R, O) egy PNS probléma strukturdlis modellje, melyre S(M) # 0,
tovédbba legyen u; € O egy tetszéleges miiveleti egység. Felépithetiink egy 1j PNS struk-
turalis modellt a kévetkezOképpen: M(u;) = (P, R, O \ {u;}). Jeloljitkk az M(u;) maximélis
strukturdjat (M;, O;)-vel, feltéve hogy létezik, ellenkezd esetben AM; = O; = 0.

4.3. Tétel. ([20]) Bdrmely u;,u; € O miveleti egységekre u; = u; akkor és csakis akkor, ha
u; € O\ O; ésuj € O\ O; egyidejiileg teljesilnek vagy egyidejileg nem teljestlnek.

Osszevonasos ekvivalencia reliciét meghatarozé eljaras (ER) ([20])

1. Legyeni:=1,k:=1, N ={1,...,n}.

2. Hatdrozzuk meg az M(u;) maximélis struktirajat az MSG maximdlis struktira ge-
neralé algoritmussal.

3. Ha O; = O\ {u;}, akkor legyen Vi, = {u;}, N =N\ {i}, és k =k + 1.
4. Ha i # n, akkor ¢ =i + 1 és térjiink a 2. 1épésre.

5. Ha N = (), akkor VEGE.
Egyébként jelolje ¢ az N legkisebb elemét és legyen
J={t:te N, u € 0\O0,;}illetve V = 0.
6. Ha J = (), akkor legyen N = N\ {i}, Vi, = VU{u;}, k = k+1, és térjink az 5. 1épésre.

7. Vélasszunk egy j elemet J-bél. Legyen J = J\ {j}. Ha u; € O\ O;, akkor legyen
V=V U{u;}, N =N\ {j}, és térjunk a 6. lépésre.

Az eljarés futasanak eredményeképpen megkapjuk az = relacié Vi,..., Vi ekviva-
lencia osztalyait.



5. Eloretekinto B&B algoritmus

3. Téziscsoport

Minden (m, o) € S(M)-re legyen p((m,o0)) = §[M \ R], ahol §(X) = {(«,3) : (o, B) € 0 és
X epthaXem\R,é d(X)=0haX e M\ (RUm). Legyen S"(M) = {p((m,0)) :
(m,0) € S(M)}. Akkor a PNS-2 helyett megoldhatjuk az aldbbi feladatot:

(PNS-5) min{ > w(u):6€ S’(M)} :
u€op(9)

Minden §[m] € Q-re legyen Oy = op(0[m]) U (U{C(u) : v € op(d[m])}). Ha |m| < |M \
RJ;, akkor legyen Y egy anyag, melyre Y € (mat™(Ogpm) U P) \ (mat®*(Ospny) U R), feltéve,
hogy az utébbi nem iires halmaz. Jelolje Ky,..., K, a A(Y)-nek az = relacié A(Y)-re val6
sziikitése szerinti ekvivalencia osztalyait. Minden J C {Kj, ..., K, } nem iires részhalmazra
legyen K; = U{K; : K; € J}. Akkor a o0;;mU{Y'}] = o[m|U{(Y,K,)}, J C ¢'({K1,..., K,})
alaku konzisztens dontési leképezéseket a d[m] Y szerinti érreguldris kiterjesztésének ne-
vezziik, ha Osa) NA(B) C §(B), VA, B € mU{Y}. Nyilvanval6an minden irreguldris kiter-
jesztés egy kiterjesztés is. Tekintsiik az irregularis kiterjesztés reflexiv és tranzitiv lezartjat az
O halmazon. A kapott relacié részben rendezés, melyet < -vel fogunk jelolni. Legyen &y az
a dontési leképezés, melyre dp[)] = (). Definidljuk a Xy trreguldris dontési leképezések
halmazat: Yn = {0[m] : 6[m] € Qm & 0o[0] = 0[m]}. Legyen d[m] € Yy , melyre

(mat""(Og[m}) UP)\ (m&tOUt(Og[m}) UR) = 0.
Definidlunk egy &' dontési leképezést a kovetkezOképpen:
5/(X> = {(C“aﬁ) : (047ﬂ> € Oé[m] & X e ﬂ}a VX € M\R

Akkor 0’-t 0[m] irreguldris lezdrdsdnak nevezziik és icl(d[m])-el jeloljik. Legyen
S*(M) = {icl(6[m]) : §[m] € Ep & (mat™(Osppm)) U P) \ (mat™ (Ospmy) U R) = 0}
5.1. Lemma. ([21]) S*(M) C S'(M).

5.2. Lemma. ([21]) Legyen M = (P, R,0) egy PNS probléma strukturdlis modellje. Ha
(m,0) a PNS-2 probléma egy optimdlis megolddsa, akkor p((m,o0)) € S*(M).

5.1. Tétel. ([21]) A PNS-5 probléma helyett megoldhatjuk az aldbbi feladatot:

(PNS-7) min{ > w(u):d€ S*(M)} :

u€op(9)



Definialjuk a 9(d[m]) fiiggvényt minden [m] € Yp-re a kovetkezéképpen:
I(5[m]) = {§ : ' € S* (M) & (35[m] € Tm)(8[m] = §[m] & icl(d[m]) = &')}.
Legyen tovabba

u€O5[m])

El6retekinté B&B algoritmus (LABBA, Look Ahead B&B Algorithm) ([21])

Inicializdlds Hatdrozzuk meg az osszevondsos ekvivalencia reldciét. Legyen L := {19(d[0])},

2* =00, s := ), és r := 0. Hatdrozzuk meg g*(do[0])-t.
Iterdcid (r. iterdcid)

1. Befejezés
Ha L = (), akkor VEGE: az s tartalmazza az optimélis megoldast és z* tartalmazza az
optimum értéket. Egyébként térjiink a 2. 1épésre.

2.  Levélkivdlasztds

Ha L egyelemii, akkor valasszuk ki az egyetlen elemét. Egyébként valasszunk egy olyan
Y¥(d[m]) levelet L-bSl, melyre a g*(d[m])/|m| érték minimédlis; ha tobb ilyen érték van,
akkor vélasszunk egyet tetszolegesen koziiliik.

3. Megoldastesztelés

Ha T = (mat™(Osm)) U P) \ (mat®(Ogpm) U R) # 0, akkor térjiink a 4. 1épésre.
Egyébként alkossuk meg a §[m]| irregularis lezdrasat, jelolje ezt &, tovabba ha w(d') <
z*, akkor aktualizaljuk a z* és s értékeket: z* := w(d’) és s := {¢'}; ellenkezd esetben
2* és s értékei nem véltoznak. Legyen ® := () és térjiink a 6. 1épésre.

4. Szétvdlasztds

Vélasszunk egy X € T anyagot, melyre |(mat®(A(X)) N T| maximdlis, és alkossuk
meg a d[m| X szerinti irreguléris kiterjesztéseit.
Ha nem létezik d[m]-nek ilyen kiterjesztése, akkor legyen L := L\ {(d[m])} és térjiink
az 1. lépésre.
Egyébként legyenek &;[m;], 1 = 1,2,...,k a 6[m] X szerinti irreguldris kiterjesztései.
Akkor legyen ® = {9(0;[m;]) : 1 < i < k}, és térjiink az 5. lépésre.

5. Korldtozds
Szamoljuk ki a g*(d;[m;]) értékeket i = 1,2,..., k-ra, és térjiink a 6. 1épésre.

6. Felderités
Definialjuk djra az L halmazt a kovetkezoképpen:

L = {0(d[m]) : 9(o[m]) € (L\{(é[m])}) U D, g"(d[m]) < 2"}

Legyen r :=r + 1 és kezdjlink egy 1j iteraciét (térjink az 1. 1épésre).
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6. Parcialis leszamlalasi eljaras

4. Téziscsoport

Az alabbi eljaras nem sorolja fel az Osszes lehetséges megoldést, viszont felsorolja
az Osszes optimélis megoldast. Elonye, hogy kevesebb dontési leképezés vizsgalatat igényli,
mint a teljes leszamlaléas, és ennélfogva hatékonyabban dolgozik.

Parcidlis leszamlalas (Partial Enumeration, [23])

Inicializalds ~ Hatarozzuk meg az Osszevonasos ekvivalenciat. Legyen oy azon miveleti
egységek halmaza, melyeknek minden lehetséges megoldas strukturdban szerepelniiik kell.
Legyen mg = () és i = 0.

Iterdacio

1. Legyen 6;\m;] az m; =< Aj,,...,Aj, > rendezett tartomannyal rendelkez6 aktudlis
irreguldris dontési leképezés. és legyen T; = (mat™(Os,m,)) UP) \ (mat®(Og,jm,]) U R).
Térjink a 2. 1épésre.

2. Ha T; = 0, akkor alkossuk meg a 0;[m;] irreguléris lezdrdsat, melyet jeloljiink §.-val.
Aktualizéljuk S értékét: S = SU{d;}, és térjiink a 4. 1épésre. Egyébként térjiink a 3.
lépésre.

3. Vélasszunk egy legkisebb indexi X anyagot T;-bél, melyre |mat®*(A(X)) N T;| ma-
ximélis. Vizsgaljuk meg a d;[m;] dontési leképezés A(X) \ oy megfelel$ részhalmazaira
valé irreguldris kiterjesztéseit a |= linedris rendezés figyelembe vételével.

Vélasszuk az els6 olyan K; C A(X)\ 0 részhalmazt, melyre 6;[m;]U{(X, K})} a 6;[m;]
egy irreguldris kiterjesztése, ahol K, = K; U (A(X) N o), feltételezve, hogy létezik
ilyen Kfj Legyen miﬂ = fnl \/{X} és (5¢+1[mi+1] = 5Z[mz] U {(X, K})}

Legyen ¢ = ¢ + 1, és térjlink a kovetkezo iteracios lépésre.

Ha A(X) egyetlen megfelelé részhalmaza sem lehet a 0;[m;] irreguldris kiterjesztése,
akkor térjink a 4. 1épésre.

4. Ha 0,(A;,) C A(Aj,) és van olyan K; C A(A,, ) \ op részhalmaz, melyre 9,(4;,) # K/,
9;(4;,) < K}, ahol

és a

{(A5,0i(Ag) U U{(Ay 0 00( Ay ) U LA, KD}

dontési leképezés a {(A;,,0;(A;) U U{(4j,_,,0i(Aj,_,)}-nak egy irreguldris kiter-
jesztése, akkor térjiink a 5. 1épésre. Egyébként térjiink a 6. lépésre.
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5. Valasszuk a A(A4;,) \ 0y = szerinti elsé 4. pontbeli feltételt kielégité részhalmazat és
jeloljiik K j-vel. Legyen

miﬂ =< Aj17 .. '7Ajk >, és
Oiv1[mipr] = {(Aj,,0:(A;) U - U{(A;_,, 0:(A;_) 1) U{(4;, K7},

ahol
K = K; U (A(X)Nop).

Legyen ¢ := 1 + 1, és térjiink a kovetkezo iteracios lépésre.

6. Legyen k =k — 1. Ha k = 0, akkor VEGE. Egyébként térjiink a 4. 1épésre.

S pontosan az S*(M) elemeit fogja tartalmazni, igy tartalmazni fogja a PNS-2 6sszes
optimélis megoldésait is.

7. Automataelméleti megkozelités

Legyen (M, O) egy folyamat graf és R egy anyaghalmaz. Azt mondjuk, hogy (M,0) az R
altal szinezhetd, ha az (M, O) minden csicspontja beszinezhetd az aldbbi eljardssal.

Szinezd eljaras ([28]

1. Szinezziik be M N R minden anyagét.

2. Mindaddig, amig van olyan miiveleti egység, melynek minden bemenete szinezve van,
valasszunk egy ilyen miveleti egységet és szinezziik be annak kimeneti anyagait. Ha
nincs ilyen miveleti egység, akkor VEGE.

Megjegyzendo, hogy a szinezhet6ség tulajdonképpen a végrehajthatosagot jelenti. Egy PNS
probléma azon lehetséges megoldés strukturdit, amelyek az (A1) - (A4) feltétel mellett még
az

(A5)  (M,O) az R altal szinezhetd

feltételt is teljesitik, modositott lehetséges megoldds strukturdknak nevezziik. Ha
M = (P, R, O) egy PNS probléma strukturélis modellje, akkor jeldljiik S(M)-el a médositott
lehetséges megoldas strukturak halmazat. Most megadhatjuk a megoldas struktirakhoz
rendelt optimalizaciés problémat:
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(PNS-8) min { S w(u) : (M,0) € F(M)} :

ueO

A tovédbbiakban mddositott PNS problémdn a (PNS-8) problémét értjik. A médositott
PNS probléméahoz rendelt B = (B, 0’) automatéat a kévetkezdképpen definidljuk. Legyen
B = B U{o}, melyre B’ = ¢/(M) és o & B', és legyen O' ={u:u=(C,D) € Oés RND =
0}. Az automata egy allapota megfelel egy adott pillanatban rendelkezésre 4ll6 anyagok
halmazanak. Az ¢ allapot a sikertelen atmenetek jelolésére szolgal. Az atmeneteket a kovet-
kezéképpen definidljuk. Minden @ € B’ és u = (C, D) € O'-re legyen

o _ [ QUD haCCQ
] o egyébként,

tovabba ouB = o. A Gg atmeneti graf silyozdsat a kovetkezOképpen definialjuk. Ha (Q, Q")
egy él Gg-ben, melynek cimkéi u;,, ..., u;,, akkor az él silya w = min{w(u;,),...,w(u;)}
lesz, tovdbbé egyetlen olyan u;,, 1 <1 <t, cimkét tartunk meg, melyre w = w(u;,), a t6bbi
cimkéket toroljiik. Jeloljiik az igy kapott silyozott, cimkézett grafot (Gg, w)-vel. Definidlunk
tovabbé egy olyan B = (B, R, F') felismer6t, melyre F = {Q : Q € B' é P C Q}.

5. Téziscsoport

Minden u,v € O'-re legyen v < u ha u = v vagy mat®(v) N mat™(u) # 0. Ez
a relacié reflexiv és tranzitiv. Jelolje < a < tranizitiv lezdrasat. Azt mondjuk, hogy két

u,v € O' miveleti egység egymdst kolcsondsen eléri, ha u < vésv < . Belathato, hogy
a kolesonds elérhetség ekvivalencia relacié O'-n, melyet x-nel, az ekvivalencia osztélyt pedig
C-vel fogjuk jelolni. Béaremely C,C" € O’/ x-ra legyen C' <« C" ha C' = C" vagy léteznek

u € C ésv € C' miiveleti egységek gy, hogy u < v. A < relécié részben rendezés C-n, mely
kiegészithetd linearis rendezésre. fgy, az altalanossag megszoratdasa nélkiil feltételezhetjiik,
hogy C = {C1,Cy,...,Cy} valamely 1 < h < |O’|-ra gy, hogy barmely 7,5 € {1,...,h}-
re C; <« C}-bél kovetkezik ¢ < j. Definialjuk az ¢ : (O')* — {1,...,h} fiiggvényt a
kovetkezoképpen:

0 ,hap=A\,
lp)=¢ m yhape O, peC,
max{l(u;) : 1 <t <I} ,hap=wu;...u € (O)".
Barmely p = uy...w; € O'-re legyen w(p) = 22:1 u;. Kiterjesztett dllapoton egy
(Rp, p,w(p)) hdrmast értiink, ahol p egy olyan sz6, mely az automatéit az R-bol egy F-beli
allapotba viszi 4t. Azt mondjuk, hogy (Rp, p,w(p)) egy optimdlis kiterjesztett dllapot,
ha egy kiterjesztett dllapot és w(p) < w(p’) barmely (Rp', p’, w(p’)) kiterjesztett allapotra.
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PAT algoritmus a PNS-8 optimdlis megoldasainak meghatarozasara ([22])

Inicializalds. i:=0, Ly :={(R,\,0)}.

Iterdacio

Si = {(Rp,p,w(p)) € M; : P < Rp}-
Ha S; # 0, akkor VEGE; az 5; elemei optimalis kiterjesztett allapotok.
Valasszunk egy tetszOleges (Rt,t, w(t)) € M; elemet, és legyen t = u; . .. u,.

Legyen i =i+ 1, L; = L;_;.

L; =L\ {(Rt, t,w(t))}.

Legyen V; = {v € O'\ {uq,...,u,} : mat™(v) C Rt és {(v) > L(t)}.
Ha V; = (), akkor térjiink az 1. 1épésre.
Egyébként legyen V; = {vy,...,vn}.

6. Minden 7 = 1,...,m értékre rendre hajtsuk végre az alabbi 1épéseket:

{(Rq,q,w(q)) € L; : Rq D Rtv; és w(q) < w(tv;) és

w(t i) vagy £(q) < ((tv;))},

={(Rq,q,w(q)) € L; : Rqg C Rtv; és w(q) > w(tv;) és
w(t i) vagy £(q) > ((tv;))},

e ha A(Uj) = (), akkor legyen

L = (L\ D)) U {(Rtvy, oy, w(tes))}.

7. Térjink az 1. 1épésre.

7.1. Tétel. ([22]) A PAT algoritmus véges szami lépés utdn véget ér és eqy optomdlis ki-
terjesztett dallapotot hataroz meg, mely a PNS-8 probléma optimdlis megolddsdnak felel meg.
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