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5.1. Az algoritmus bemutatása . . . . . . . . . . . . . . . . . . . . 64
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Tárgymutató 111
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1. fejezet

Bevezetés

A kémiában, biológiában, ipari alkalmazásokban gyakran felmerül
olyan probléma, amelyben bizonyos

”
nyersanyagok” és

”
műveleti egységek”

rendelkezésünkre állnak és elő́ırt anyagokat ḱıvánunk előálĺıtani az adott
műveleti egységek összekapcsolásával. A probléma egy lehetséges model-
lezését Fan és Friedler professzorok a 70-es években dolgozták ki, melyben
strukturális tulajdonságokra épülő technikákat használtak a megoldások ke-
resésére. Ebben a

”
Process Network Synthesis” (PNS)-nek nevezett modell-

ben minden műveleti egység az anyagok egy részhalmazát inputként igény-
li és anyagok egy másik részhalmazát álĺıtja elő. A gráfelméleti megköze-
ĺıtésben egy anyagtól iránýıtott él vezet azokhoz a műveleti egységekhez,
amelyek input anyagként felhasználják, illetve egy műveleti egységet iránýı-
tott éllel kötünk össze azokkal az anyagokkal, amelyeket output anyagként
termel. Így egy kétrészes (anyagok; műveleti egységek) iránýıtott gráfot
kapunk, a folyamat gráfját. Statikusan képzelve a termelési folyamatot,
a műveleti egységek egy részrendszerének működésével a ḱıvánt anyagokat
bizonyos alapvető feltételek teljesülése esetén kaphatjuk meg. Ily módon
a lehetséges megoldásoknak rendelkezniük kell bizonyos strukturális tulaj-
donságokkal, ami miatt ezeket megoldás struktúráknak is szokás nevezni.
A Fan és Friedler professzorok által iránýıtott kutatásokban kidolgozásra
kerültek olyan eljárások, melyek lehetővé teszik adott problémára az ösz-
szes lehetséges, vagy valamilyen szempontból optimális megoldás struktúra
generálását ([15, 16, 18]). Ezek között kitűntetett szerepe van a maximális
struktúrának, mely a lehetséges megoldás struktúrák uniója, és melynek ge-
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nerálására a szerzőknek sikerült polinomiális idejű algoritmust adniuk ([11]).
A 90’-es évek második felében Imreh Balázs vezetésével Szegeden is kialakult
egy szakmai közösseég, melynek szerencsére a szerző is részese lehetett, és
amely első sorban a PNS probléma diszkrét, strukturális és kombinatorikai
tulajdonságainak vizsgálatával foglalkozott. A csoport kutatómunkájának
eredményeképpen számos publikált cikk született, melyek közül most csak
a dolgozathoz kapcsolódó [2, 25, 3, 4, 5, 30, 20, 6, 7, 21, 31, 23, 8, 28, 22]
cikkeket emĺıteném meg.

A dolgozatban tárgyalt PNS modell csak strukturális szempontból
tekinti a problémát, mivel annak léırása anyagmennyiségekre vonatkozó elő-
ı́rásokat nem tartalmaz. A rendelkezésre álló műveleti egységek viszont ren-
delkeznek bizonyos költséggel és az anyagelőálĺıtás során használt műveleti
egységek összköltségét szeretnénk optimalizálni: keressük a műveleti egy-
ségek azon legkisebb összköltségű részhalmazát, mely a rendelkezésre álló
nyersanyagokból képes előálĺıtani a ḱıvánt végtermékeket. Mivel a minimum
meghatározása még ebben a legegyszerűbb struktúrális esetben is a halmaz-
lefedési problémával ekvivalens ([2, 17, 27]), ı́gy a halmazlefedési probléma
NP teljességéből ([32, 1]) következően a struktúrális PNS-probléma is saj-
nos NP-teljes. Nem várható tehát hatékony megoldás rá. Ezért indokolt
hatékonyabban megoldható speciális esetek, vagy csak az optimumhoz közeli
megoldást szolgáltató, de polinomiális idejű heurisztikák vizsgálata ([25, 30,
6, 7, 31, 8]), illetve exponenciális algoritmusok és azok különböző heurisz-
tikákkal kombinált Branch-and-Bound jellegű változatainak kidolgozása ([13,
24, 21, 23]). Ezek feléṕıtésében fontos szerepet játszik az úgynevezett döntési
leképezés fogalma ([12]), mely lényegében meghatározza adott anyagra az őt
gyártó műveleti egységek halmazát. Gyakorlati szempontból nyilván nagyon
komoly előny, hogy csak bizonyos úgynevezett ”konzisztens” döntési leké-
pezéseket kell figyelembe venni, ami abból az észrevételből származik, hogy
egy műveleti egység, ha működik, nem teheti meg, hogy bizonyos kimeneti
anyagait gyártja, másokat pedig nem. Ezen belül további szűḱıtést eredmé-
nyez az az észrevétel, hogy nem működhet olyan műveleti egység, amelyik
valamelyik input anyagát egyetlen működő műveleti egységtől sem nyeri. Ezt
felhasználva, a szitaformula seǵıtségével felső korlát adható a lehetséges meg-
oldás struktúrák számára ([3, 4, 5]).

Jelen dolgozat második, Előzmények ćımű fejezetében a teljesség
igénye nélkül ismertetjük azokat az alapfogalmakat és technikákat, amelyek-
hez a dolgozat további részei kapcsolódni fognak. Bizonyos kapcsolódó al-
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goritmusok teljes körű bemutatása viszont meghaladná a dolgozat kereteit,
ezek esetében majd a megfelelő cikkekre fogunk hivatkozni, ezen fejezet célja
inkább egy olyan átfogó képet nyújtani a probléma alapvető eredményeiről,
mely lehetővé teszi a dolgozat további részeinek megértését, és amelyet a
szerző kiindulópontként használhatott fel önálló kutatásai megvalóśıtásához.

A PNS kutatásaiban történetileg legkorábbi, a szerzőhöz kapcsolódó
kutatások az úgynevezett döntési leképezések tulajdonságainak feltárására
irányultak. Lényegében azt vizsgáltuk, hogy hogyan és hányféleképpen lehet
a köztes vagy végtermékekhez őket gyártó műveleti egységeket rendelni. Így
születtek meg a döntési leképezésekről szóló, a dolgozat harmadik fejezetében
bemutatott, közös kutatási eredmények, melyeket a [3], [4], [5] dolgozatokban
publikáltunk és szerzőtársaimmal nem megosztható eredményeknek tekintjük
őket.

A negyedik fejezetben is a probléma struktúráját fogjuk tanulmá-
nyozni, ebben az esetben azonban a probléma méretének csökkentése a cél,
amitől azt reméljük, hogy a probléma megoldásának hatékonyságát is növelni
tudja. A fejezet a [20] dolgozat eredményeire épül, amely közös dolgozat,
de a szerzőnek meghatározó szerepe volt az eredmények elérésében. Hogy
a probléma méretének csökkentésére kidolgozott módszer megfelelő alkal-
mazása valóban növelheti-e a megoldás hatékonyságát, arra választ kapunk
az ötödik fejezetben, melyben az előzőleg már létező, az Előzményekben
bizonýıtott létjogosultságú, exponenciális bonyolultságú korlátozás és szét-
választás t́ıpusú mószereket igyekszünk jav́ıtani a negyedik fejezetben már
bemutatott ötletek és a módszerek egyes részeinek mélyebbre ható tanulmá-
nyozásának seǵıtségével. A fejezet a szerző saját munkájának eredményeit
tartalmazza, melyek a [21]-ben kerültek publikálásra.

A hatodik fejezetben az összes optimális megoldás felsorolására fo-
gunk adni az egyetlen létező és nem kifejezetten erre a célra kidolgozott
eljárásnál sokkal hatékonyabb algoritmust. A fejezet a szerző saját eredmé-
nyeire épül, melyek a [23]-ben nyertek publikálást.

Végül, az utolsó fejezetben, a kombinatorikus optimalizálás és az au-
tomataelmélet érdekes és hasznos összekapcsolására fogunk példát mutatni,
amikor a PNS probléma optimális megoldását egy hozzárendelt automata
átmeneti gráfjában való legrövidebb út keresésével fogjuk meghatározni. A
módośıtott PNS probléma és annak alapvető megoldása után, a 7.3. alfe-
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jezetben egy komplexebb, a szerző által kidolgozott és a [22]-ban publikált
megoldó eljárást fogunk bemutatni.



2. fejezet

Előzmények

2.1. A PNS probléma

Jelölje ϕ(H) egy tetszőleges H halmaz összes részhalmazát, ϕ′(H)
pedig a H halmaz összes nemüres részhalmazát. Legyenek M és O ⊆ ϕ′(M)×
ϕ′(M) véges, nemüres, és diszjunkt halmazok. Az M elemei az anyagok, mı́g
az O elemei a műveleti egységek, melyek seǵıtségével bizonyos bemenő anya-
gokból nyerünk elő́ırt módon egy kimeneti anyaghalmazt. Hogy mi megy
végbe a műveleti egységekben, azzal nem foglalkozunk. Figyelmen ḱıvül
hagyjuk továbbá azt is, hogy miként kezdett a rendszer működni, csak stati-
kus

”
termeléssel” foglalkozunk. Formálisan bármely u ∈ O műveleti egységre

u = (α, β), ahol az α a bemeneti (nem üres) anyaghalmaz, β pedig a kimeneti
(nem üres) anyaghalmaz. Azt fogjuk mondani, hogy az u műveleti egység az
α anyaghalmazból a β anyaghalmazt gyártja.

2.1.1. Defińıció. Az (M, O) párhoz egyérelműen hozzárendelhető egy gráf,
amit a folyamat gráfjának nevezünk: PG(M, O) = (M ∪ O, A1 ∪ A2),
ahol az élhalmaz kétféle t́ıpusú élből áll,

A1 = {(X, Y ) : Y = (α, β) ∈ O és X ∈ α},

A2 = {(Y, X) : Y = (α, β) ∈ O és X ∈ β}.

8
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2.1.2. Defińıció. Egy (V ′, E ′) gráf egy PG(M, O) folyamat gráf részgráf-
ja, ha:

• V ′ = M ′ ∪ O′, M ′ ⊆ M, O′ ⊆ O

• O′ ⊆ ϕ′(M ′) × ϕ′(M ′)

• E ′ = A′
1 ∪ A′

2, ahol

A′
1 = {(X, Y ) : Y = (α, β) ∈ O′ és X ∈ α},

A′
2 = {(Y, X) : Y = (α, β) ∈ O′ és X ∈ β}.

2.1.1. Megjegyzés. Vegyük észre, hogy adott (M, O) pár és a hozzá rendelt
folyamat gráf kölcsönösen egyértelműen meghatározzák egymást. Ezért a to-
vábbiakban az (M, O) párokat azonośıtani fogjuk a hozzájuk rendelt folyamat
gráfokkal.

Egy X ∈ M anyag forrás (M, O)-ban, ha nem létezik (Y, X) él a fo-
lyamat gráfban. Ha léteznek X1, X2, ..., Xn csúcspontok a gráfban, melyekre
(X1, X2), (X2, X3), . . . , (Xn−1, Xn) élek az (M, O) folyamat gráfban, akkor az
ezen csúcspontok által meghatározott utat [X1, Xn]-el fogjuk jelölni.

Legyen most P ⊆ M és R ⊆ M az előálĺıtandó anyagok és a fel-
használható nyersanyagok egymástól diszjunkt halmaza. Az előálĺıtandó
anyagokra szinonimaként fogjuk használni a céltermék vagy végtermék
szavakat, a felhasználható nyersanyagokat pedig egyszerűen nyersanyagok-
nak nevezzük. Akkor az M=(P, R, O) hármast a tekintett PNS-probléma
strukturális modelljének nevezzük.

2.1.1. Példa. Legyen M=(P, R, O), melyben

• P = {L, N},
• R = {A, B, C, D, E},
• O = {u1, u2, u3, u4, u5}, ahol
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◦ u1 = ({A, B}, {F, G, H}),
◦ u2 = ({B, C}, {H, I}),
◦ u3 = ({C, D, E}, {I, J}),
◦ u4 = ({E}, {K}), és

◦ u5 = ({H, I}, {L, N}).

Ekkor M = {A, B, C, D, E, F, G, H, I, J, K, L, N} és az (M, O) fo-
lyamat gráfot a 2.1. ábra szemlélteti.

2.1. ábra.

2.1.3. Defińıció. Legyen adott egy M = (P, R, O) strukturális modell és
legyen o ⊆ O műveleti egységek egy halmaza. Ekkor egy (m, o) részgráfot
az M strukturális modell egy lehetséges megoldás struktúrájának ne-
vezünk, ha teljesülnek a következő tulajdonságok:

(A1) P ⊆ m,
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(A2) ∀X ∈ m, X ∈ R ⇔ nem létezik (Y, X) él (m, o)-ban,

(A3) ∀Y0 ∈ o, ∃ [Yo, Yn] út, amelyre Yn ∈ P ,

(A4) ∀X ∈ m, ∃(α, β) ∈ o úgy, hogy X ∈ α ∪ β.

Jelölje S(M) az M strukturális modell lehetséges megoldás struktú-
ráinak halmazát. Egy lehetséges megoldás struktúrát tehát úgy képzelhetünk
el, mint a folyamat gráfjának egy olyan részhálózatát, melyben:

• szerepelnek az előálĺıtandó anyagok,

• nyersanyagokat nem gyártunk, és minden nem nyersanyagot gyártja
valamelyik műveleti egységünk,

• csak olyan műveleti egységet működtetünk, amely legalább közvetve
részt vesz valamelyik előálĺıtandó anyag gyártásában, illetve

• nincs izolált anyagi pont a részgráfban.

2.1.2. Példa. Tekintsük a 2.1.1 példát. Akkor

• (m1, o1) = ({A, B, F, G, H, C, D, E, I, J, L, N}, {u1, u3, u5}),
• (m2, o2) = ({B, C, H, I, L, N}, {u2, u5})
• (m3, o3) = ({A, B, F, G, H, C, I, L, N}, {u1, u2, u5}),
• (m4, o4) = ({B, C, D, E, H, I, J, L, N}, {u2, u3, u5})
• (m5, o5) = ({A, B, C, D, E, F, G, H, I, J, L, N}, {u1, u2, u3, u5})

az összes lehetséges megoldás struktúrák, mı́g például

• (m6, o6) = ({C, D, E, H, I, J, L, N}, {u3, u5}) és

• (m7, o7) = ({B, C, H, I, E, K, L, N}, {u2, u4, u5})
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nem lehetséges megoldás struktúrák az (A2), illetve az (A3) feltételek nem
teljesülése miatt.

2.1.2. Megjegyzés. Az M és O halmazok végessége miatt S(M) is véges
halmaz.

2.1.3. Megjegyzés. Általános esetben az (A1) − (A4) feltételeket teljeśı-
tő lehetséges megoldás struktúrák halmaza üres halmaz is lehet: a 2.1.1.
példában, ha B /∈ R lenne (azaz nem lenne nyersanyag), akkor S(M) = ∅ -t
kapnánk.

2.1.1. Lemma. ([15]) Legyen M=(P, R, O) egy PNS probléma strukturális
modellje. Ha (m, o) és (m′, o′) lehetséges megoldás struktúrái M-nek, akkor
(m, o) ∪ (m′, o′) is lehetséges megoldás struktúrája M-nek.

2.1.1. Következmény. A 2.1.2. megjegyzés és 2.1.1. lemma alapján S(M)
összes lehetséges megoldás struktúráinak egyeśıtése is lehetséges megoldás
struktúra lesz.

2.1.4. Defińıció. Legyen M=(P, R, O) egy PNS probléma strukturális mo-
dellje. M maximális struktúrája alatt a

µ(M) =
⋃

(m,o)∈S(M)

(m, o)

megoldás struktúrát értjük. Ha S(M) = ∅, akkor µ(M) = ∅ és µ(M) -et
degeneráltnak nevezzük.

2.1.4. Megjegyzés. S(M) 	= ∅ akkor és csakis akkor, ha µ(M) 	= ∅.

2.1.5. Defińıció. Legyen o ⊆ O műveleti egységek egy halmaza. Definiáljuk
a matin, matout, és mat függvényeket a következőképpen:

matin(o) : ϕ′(O) → ϕ′(M), matin(o) =
⋃

(α,β)∈o

α,
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matout(o) : ϕ′(O) → ϕ′(M), matout(o) =
⋃

(α,β)∈o

β,

és
mat(o) : ϕ′(O) → ϕ′(M), mat(o) = matin(o) ∪ matout(o).

Szemléletesen a műveleti egységek egy o halmazához tartozó input anyagok,
illetve output anyagok egyeśıtéséről van szó.

2.1.2. Lemma. ([15]) Legyen M=(P, R, O) egy PNS probléma strukturális
modellje. Ha (m, o) ∈ S(M), akkor m = mat(o).

2.1.2. Következmény. ([15]) Egy (m, o) lehetséges megoldás struktúra egy-
értelműen meghatározott az o műveleti egység halmazzal.

2.2. A PNS probléma redukciója

Az eddigiekből nyilvánvaló, hogy egy M=(P, R, O) strukturális mo-
dell egyértelműen meghatározza az S(M) lehetséges megoldás struktúra hal-
mazt. Ez ford́ıtva azonban nem igaz: különböző strukturális modellek rendel-
kezhetnek azonos megoldás struktúra halmazzal. Például ha egy modellhez
felveszünk olyan további műveleti egységeket, melyeknek bemeneti és kime-
neti anyaghalmazaik diszjunktak az eredeti modell anyaghalmazaitól, akkor
az ı́gy kapott strukturális modell ugyanazzal a megoldás struktúra halmazzal
fog rendelkezni. Gyakorlati szempontból fontos lenne tehát megtalálni azt a
legkisebb méretű, és ı́gy legkönnyebben kezelhető megoldás struktúrát, mely
tartalmazza az eredeti probléma összes lehetséges megoldás struktúráját.

2.2.1. Defińıció. Jelöljük M-el a PNS problémák strukturális modelljei-
nek halmazát. Azt mondjuk, hogy az M =

(
P , R, O

) ∈ M, és az M’ =

(P ′, R′, O′) ∈ M strukturális modellek ekvivalensek, és ezt M ∼ M′ -vel
jelöljük, ha P = P ′ és S(M) = S(M′).

A ∼ reláció reflex́ıv, tranzit́ıv és szimmetrikus, azaz ekvivalencia
reláció. Mivel gyakorlatilag csak a M nem üres megoldás struktúra halmaz-
zal rendelkező ekvivalencia osztályai érdekesek, ezért a továbbiakban ilyen
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osztályokat fogunk tanulmányozni. Tetszőleges G′ ilyen osztályra és M =
(P, R, O) ∈ G′, illetve M’ = (P ′, R′, O′) ∈ G′ strukturális modellekre de-
finiáljuk a � relációt a következőképpen: M � M′ akkor és csakis akkor, ha
(M, O) ⊆ (M ′, O′) és R ⊆ R′, ahol (M, O) és (M ′, O′) az M illetve M’
strukturális modellek folyamat gráfjai. Nyilvánvalóan a � reláció reflex́ıv,
antiszimmetrikus és tranzit́ıv, azaz részben rendezés G′-n.

2.2.1. Példa. Legyen M’=(P ′, R′, O′), melyben

• P ′ = {L, N},
• R = {A, B, C, D, E},
• O′ = {u1, u2, u3, u5}, ahol

◦ u1 = ({A, B}, {F, G, H}),
◦ u2 = ({B, C}, {H, I}),
◦ u3 = ({C, D, E}, {I, J}), és

◦ u5 = ({H, I}, {L, N}).

A folyamat gráfját a 2.2. ábra szemlélteti. Könnyen ellenőrizhető, hogy P ′ =
P , R′ = R, O′ ⊆ O, továbbá a folyamatok lehetséges megoldás struktúrái
azonosak a 2.1.2. példában léırtakkal. Mindebből az következik, hogy M′ �M.
Érdemes továbbá mefigyelni azt is, hogy a példák maximális struktúrái is
azonosak: µ(M) = µ(M′) = (m5, o5).

Szeretnénk meghatározni adott ekvivalencia osztály egy minimális
elemét a � részben rendezésre nézve. Legyen G′ egy nem üres lehetséges
megoldás struktúra halmazzal rendelkező ekvivalencia osztály. Legyen M =
(P, R, O) ∈ G′. Mivel S(M) 	= ∅, ezért a 2.1.4. megjegyzés alapján µ(M)
nem degenerált. Akkor µ(M) = (M, O) -re képezzük az M = (P, R, O)
hármast, ahol R = R ∩ M.

2.2.1. Lemma. A fenti módon meghatározott M = (P, R, O) egy PNS prob-
léma olyan strukturális modellje, mely ekvivalens M-el és M � M.
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2.2. ábra.

2.2.1. Következmény. ([15]) Minden M ∈ G′-re M � M teljesül, ami azt
jelenti, hogy M az ekvivalencia osztály legkisebb eleme.

Az ekvivalencia osztály legkisebb eleme a folyamat gráf olyan mini-
mális részgráfjának felel meg, mely tartalmazza az összes lehetséges megoldás
struktúrát, de nem tartalmaz szükségtelen információt. Ennek megtalálása
azért hasznos, mert csökkenti a probléma méretét.

2.2.2. Defińıció. Egy PNS probléma M = (P, R, O) strukturális modelljét
a tekintett PNS probléma redukált strukturális modelljének nevezzük,
ha S(M) 	= ∅, és bármely más M′ ∼ M strukturális modellre M � M′.

Tehát egy G′ ekvivalencia osztály egy nem üres lehetséges megol-
dás struktúra halmazzal rendelkező M = (P, R, O) strukturális modelljéből
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kiindulva, a µ(M) = (M, O) maximális struktúra ismeretében, az M redu-
kált strukturát az M = (P, R, O) módon kaphatjuk meg, ahol R = R ∩ M.
Ehhez azonban tetszőleges strukturális modellről el kellene tudnunk dönteni,
hogy a lehetséges megoldás struktúrák halmaza üres halmaz-e, és ha nem,
akkor meg kellene tudnunk határozni a maximális struktúrát. Ennek meg-
valóśıtását fogjuk bemutatni a következő alfejezetben.

2.3. A maximális struktúra meghatározása

A vizsgálatok során bebizonyosodott, hogy a lehetséges megoldás
struktúra halmaz üressségének eldöntésére és a maximális struktúra generá-
lására adható egy hatékony, polinomiális idejű algoritmus ([16, 11]). További
empirikus vizsgálatok megmutatták, hogy véletlenszerűen generált felada-
tokra a redukciós eljárás bizonyos, átlagosnak tekinthető feladatosztályoknál
közeĺıtőleg 47%-ára csökkenti a feladat méretét ([25]). Ebben az alfejezetben
a ([11])-ben léırt algoritmmust fogjuk ismertetni.

Legyen M = (P, R, O) egy PNS probléma strukturális modellje.

Maximális struktúra generáló algoritmus (MSG)

1. Redukció

Inicializálás

1.1. Legyen O0 = O \ {(α, β) : (α, β) ∈ O & β ∩R 	= ∅} és M0 = mat(O0).

1.2. Ha P 	⊆ M0, akkor nem létezik M-re maximális struktúra és az algo-
ritmus véget ér. Egyébként folytassuk az eljárást a következő lépéssel.

1.3. Legyen T0 = {X : X ∈ M0 \ R & ((α, β) ∈ O0 −→ X 	∈ β)}.
1.4. Legyen r = 0.
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Iteráció

1.5. Ha Tr = ∅, akkor folytassuk az eljárást a 2.1. lépéssel.

1.6. Válasszunk egy X ∈ Tr anyagot.

1.7. Legyen OX = {(α, β) : (α, β) ∈ Or & X ∈ α}.
1.8. Legyen Or+1 = Or \ OX és Mr+1 = mat(Or+1).

1.9. Ha P 	⊆ Mr+1, akkor nem létezik M-re maximális struktúra és az algo-
ritmus véget ér. Egyébként folytassuk az eljárást a következő lépéssel.

1.10. Határozzuk meg a

T ′
r = {Y : Y ∈ matout(OX) & Y 	∈ matout(Or+1) & Y ∈ matin(Or+1)}

halmazt.

1.11. Legyen Tr+1 = (Tr ∩ Mr+1) ∪ T ′
r.

1.12. Növeljük eggyel az r iterációszámot.

1.13. Kezdjünk egy új iterációt az 1.5. lépéssel.

2. Éṕıtés

Inicializálás

2.1. Legyen W0 = P , m0 = ∅, o0 = ∅ és s = 0.

Iteráció

2.2. Ha Ws = ∅, akkor vége: kaptunk egy megoldás struktúrát M-re.

Ha m̄ = mat(os), akkor (m̄, os) az M maximális struktúrája.

Ha Ws 	= ∅, akkor folytassuk az eljárást a következő lépéssel.
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2.3. Válasszunk egy teszőleges X anyagot Ws-ből.

2.4. Legyen ms+1 = ms ∪ {X}.
2.5. Alkossuk meg az O∗

X = {(α, β) : (α, β) ∈ Or & X ∈ β} halmazt.

2.6. Legyen os+1 = os ∪ O∗
X .

2.7. Ws+1 = (Ws ∪ matin(O∗
X)) \ (R ∪ ms+1).

2.8. Növeljük eggyel az s iterációszámot.

2.9. Kezdjünk egy új iterációt a 2.2. lépéssel.

Az algoritmus két fő részből áll. Az első redukciós részben töröljük
azokat a műveleti egységeket, melyek vagy nyersanyagot is termelnek, vagy
valamely nyersanyagtól különböző, egyetlen műveleti egység által sem termelt
bemeneti anyag hiányában nem tudnának működni. Ha közben azt tapasz-
taljuk, hogy valamely célterméket egyetlen megmaradt műveleti egységünk
sem gyártja, ez azt jelenti, hogy nincs lehetséges megoldás struktúra, azaz
S(M) = ∅, de akkor maximális struktúra sincs, ı́gy az algoritmust megálĺıt-
hatjuk.

A második részben a rendelkezésre álló műveleti egységekből fel-
éṕıtjük azt a hálózatot, mely kizárólag hasznos anyagokat termelő műveleti
egységeket tartalmaz. Először kiindulunk abból, hogy a céltermékeket le
kell gyártani. Ehhez minden olyan műveleti egység hasznos lehet, mely
célterméket gyárt, tehát ezeket bevesszük a hálózatba. De a hálózatba be-
vett műveleti egységek bemeneti anyagait is le kellene gyártani, tehát be-
vesszük az azokat gyártó műveleti egységeket is, és ı́gy tovább. Természe-
tesen általános esetben megtörténhet, hogy a céltermékek gyártása az ily
módon meghatározott műveleti egységek akár több különböző valódi rész-
halmazával is legyárthatók, most az volt a cél, hogy összegyűjtsük azokat
a műveleti egységeket, melyek részt vehetnek valamely lehetséges megoldás
struktúrában.

Össześıtve, az algoritmus eldönti az ”S(M) = ∅ ?” kérdést, és ameny-
nyiben létezik lehetséges megoldás struktúra, az eredményeképpen kapott
hálózat azokat és csakis azokat a műveleti egységeket és anyagokat tartal-
mazza, amelyek részt vehetnek valamely lehetséges megoldás struktúrában,
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ı́gy a modell maximális struktúráját szolgáltatja. Lényeges továbbá az is,
hogy az algoritmus polinomiális idő alatt oldja meg ezt a feladatot ([11]).

2.4. A súlyozott PNS modell

Legyen M = (P, R, O) egy PNS probléma strukturális modellje.
Gyakorlati szempontból természetes igény, hogy szeretnénk meghatározni azt
a lehetséges megoldás struktúrát, mely valamilyen szempontból a leggazdasá-
gosabban álĺıtja elő a céltermékeket. Definiálunk tehát a lehetséges megoldás
struktúrák halmazán egy költségfüggvényt és keresünk egy legkisebb költsé-
gű lehetséges megoldást. Legyen z : S(M) → R+ egy ilyen költségfüggvény.
Akkor a megoldandó feladat:

(PNS-1) min{z((m, o)) : (m, o) ∈ S(M)}.

Egy megoldás struktúra költségfüggvényét többféleképpen definiál-
hatjuk. Mi most ennek egy egyszerű és természetes defińıcióját fogjuk adni.

Legyen w : O → R+ egy költségfüggvény a műveleti egységeken.
Egy lehetséges megoldás struktúra költségét a benne levő műveleti egységek
összköltségeként fogjuk definiálni. Így a PNS probléma azon változatát
vizsgáljuk, amikor a feladat egy olyan lehetséges megoldás struktúra meg-
határozása, melyre a benne működő műveleti egységek összsúlya minimális,
vagyis

(PNS-2) min{∑u∈o w(u) : (m, o) ∈ S(M)}.

Az a kérdés, hogy meg tudjuk-e oldani ezt a feladatot, ha igen ho-
gyan, és milyen hatékonysággal ?

Mivel az M és O halmazok végessége miatt a lehetséges megoldás
struktúrák száma is véges, továbbá adott lehetséges megoldás struktúra fen-
tiekben definiált költségének kiszámı́tása is véges idő alatt elvégezhető, ezért
nyilván a legkisebb költségű lehetséges megoldás struktúra meghatározása
is véges időben megoldható feladat. Például egy lehetőség, hogy felsorol-
juk a strukturális modellben szereplő O halmaz összes részhalmazát, mind-
egyikről megvizsgáljuk, hogy lehetséges megoldás struktúra-e, és a lehetsé-
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ges megoldás struktúrák közül kiválasztjuk a legkisebb költségűt. Könnyen
belátható azonban erről a módszerről, hogy nagyon kicsi a hatékonysága,
hiszen túl sok részhalmazt vizsgálunk meg feleslegesen. Az előzőekben tár-
gyaltak ismeretében azonnal látjuk, hogy csak a maximális struktúra rész-
halmazaival érdemes foglalkozni, de még ezek felsorolása is nagyon sok, az O
műveleti egység halmaz számosságának függvényében exponenciális számú
részhalmaz megvizsgálását igényli. A következő fejezetekben látni fogjuk,
hogy ennél hatékonyabb megoldást ugyan lehet találni, de sokkal hatéko-
nyabb, polinomiális idejű megoldás megtalálása nem várható.

2.5. A PNS probléma NP teljessége

A [2, 17, 27] cikkekben igazolást nyert a a PNS-2 probléma NP
teljessége. A bizonýıtás alapötlete az volt, hogy megmutatták a PNS-2
problémák egy részosztályának ekvivalenciáját a halmazlefedési problémával,
mely egy jól ismert NP teljes probléma ([32, 1]). Az eredmény fontossága és
a két probléma ekvivalenciájának érdekessége miatt az alábbiakban ismer-
tetjük a bizonýıtások lényegét.

Először a PNS-2 probléma NP nehézségét fogjuk megmutatni. Te-
kintsük a PNS-2 problémák azon PNSRP részosztályát, melyben O ⊆ ϕ′(R)×
ϕ′(P ), azaz melyben minden műveleti egység nyersanyagokból céltermékeket
gyárt, és ezek párhuzamosan dolgoznak. Legyen tehát O = {u1, . . . , un},
uj = (αj , βj) ∈ ϕ′(R) × ϕ′(P ), j = 1, . . . , n. Ha a βj halmazok súlyozását a
következőképpen definiáljuk: w′(βj) = w(uj), akkor könnyen belátható, hogy
a PNSRP probléma ekvivalens a P halmaz βj halmazokkal való halmazlefedési
problémájával.

Ford́ıtva, tekintsünk egy tetszőleges halmazlefedési problémát. Ez
azt jelenti, hogy egy tetszőleges nem üres, véges, P halmazt le szeretnénk
fedni súlyozott βj , j = 1, . . . n halmazokkal, minél kisebb összköltséggel.
Jelölje a halmazok súlyozását w′(βj), j = 1, . . . , n. Legyen R 	= ∅ egy
tetszőleges véges halmaz, melyre R∩P = ∅. Legyenek továbbá uj = (R, βj),
j = 1, . . . , n, és O = {u1, . . . , un}. Definiáljunk egy w súlyfüggvényt O-n a
következőképpen: w(uj) = w′(βj), j = 1, . . . , n. Ha a P és R halmazokat
anyaghalmazoknak, az O-t pedig műveleti egységek halmazának tekintjük,
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akkor a (P, R, O) által meghatározott PNSRP probléma ekvivalens a tekintett
halmazlefedési problémával.

A fentiekből következik, hogy:

2.5.1. Lemma. ([2, 17]) A PNSRP problémaosztály ekvivalens a halmazle-
fedési problémával.

Mivel azonban a PNSRP problémaosztály a PNS-2 problémának egy
részosztálya, a halmazlefedési probléma pedig NP teljes, ezért a kövekező
álĺıtást kapjuk.

2.5.1. Tétel. ([2, 17]) A PNS-2 probléma NP nehéz.

Egy NP nehéz probléma NP teljességéhez azt kellene megmutat-
ni, hogy eleme az NP osztálynak. Ha veszünk egy feltételezett optimális
megoldást, annak az ellenőrzése, hogy valóban megfelelő költségű lehetsé-
ges megoldás struktúra-e, polinomiális időben elvégezhető. A ([27]) cikkben
azonban a szerzők egy sokkal szebb, konstrukt́ıv megoldást adtak, melyet az
alábbiakban vázolunk.

Abból indulunk ki, hogy a lehetséges megoldás struktúrák mind a
maximális struktúra részei, és ily módon, ha (M, O) az M = (P, R, O)
struktúrális modell maximális struktúrája, akkor az eredeti súlyozott PNS
probléma ekvivalens a

(PNS-3) min

{∑
u∈o

w(u) : (m, o) ∈ S(P, R ∩ M, O)

}
feladattal.

Ha S(P, R, O) = ∅, akkor a PNS probléma ekvivalens azzal a hal-
mazlefedési problémával, melyben a P halmazt kell lefedni annak egy valódi,
tetszőleges súlyú részhalmazával: egyiknek sincs lehetséges megoldása. To-
vábbá, az ”S(P, R, O) = ∅?” kérdés, a már emĺıtettek szerint, polinomiális
időben eldönthető ([11]).
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Ha S(P, R, O) 	= ∅, akkor felhasználva a 2.1.2. következménybe-
li megállaṕıtást, mi szerint egy műveleti egység halmaz egyértelműen meg-
határoz egy lehetséges megoldás struktúrát, a lehetséges megoldás struktú-
rákat egy logikai konjunkt́ıv normál formával fogjuk jellemezni.

Legyen O = {(α1, β1), . . . , (αl, βl)} és J = {1, . . . , l}. Akkor az
(M, O) minden (m, o) folyamat részgráfjához hozzárendelhetünk egy y1, . . . ,
yl logikai vektort úgy, hogy minden j ∈ J-re yj = IGAZ ⇐⇒ (αj , βj) ∈ o.
Könnyen belátható, hogy ez egy bijekt́ıv leképezés az (M, O) folyamat (A4)-
et kieléǵıtő részgráfjai és a hozzájuk rendelt logikai vektorok között. Egy
y logikai vektornak megfelelő (m, o) folyamat részgráf a következőképpen
határozható meg:

m =
⋃

j∈T (y)

(αj ∪ βj) és o = {(αj, βj) : j ∈ T (y)},

ahol T (y) = {j : j ∈ J és yj = IGAZ}. Azonban tetszőleges y vektorhoz
rendelt folyamat részgráf nem feltétlen lehetséges megoldás struktúra is. Az
alábbiakban meghatározunk egy olyan Φ konjunkt́ıv normál formát, amelyet
egy y logikai vektor akkor és csakis akkor eléǵıt ki, ha a hozzárendelt folyamat
részgráf lehetséges megoldás struktúra is. Legyenek:

• Φ0 =
∧

X∈P

∨
j∈J

X∈βj

yj

• Φ1 =
∧
j∈J

X∈αj\R

(¬yj ∨
∨
h∈J

X∈βh

yh)

• Φ2 =
∧
j∈J

P∩βj=∅

(¬yj ∨
∨
h∈J

βj∩αh �=∅

yh)

• Φ = Φ0 ∧ Φ1 ∧ Φ2

2.5.2. Lemma. ([27]) Egy y logikai l-vektor akkor és csakis akkor eléǵıti ki a
Φ konjunkt́ıv normál formát, ha az y-hoz rendelt folyamat gráf egy lehetséges
megoldás struktúra.

Bizonýıtás Legyen (m, o) egy tetszőleges (M, O)-beli lehetséges megoldás
struktúra és y a hozzá rendelt logikai vektor. Mivel m = mat(o), (A1) és
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(A2) alapján minden P -beli anyagot gyárt valamilyen o-beli műveleti egység,
ı́gy Φ0(y) = IGAZ. (A2)-ből nyilván következik Φ1(y) = IGAZ is.

Bizonýıtani szeretnénk Φ2 teljesülését is. Legyen j ∈ J úgy, hogy
βj ∩ P = ∅. Akkor ¬yj ∨ ∨

h∈J
βj∩αh �=∅

yh tagja a Φ2-nek. Ha uj /∈ o, akkor

yj = HAMIS és az előbbi diszjunkció logikai értéke IGAZ. Meg kell még
mutatnunk, hogy akkor is igaz, ha uj ∈ o, azaz yj = IGAZ. Ebben az esetben
(A3) alapján létezik egy (m, o)-beli út uj-ből P -be, ami miatt létezik olyan
uh ∈ o, melyre βj ∩ αh 	= ∅. Ez viszont azt jelenti, hogy yh = IGAZ, amiből
az következik, hogy az őt tartalmazó diszjunkció is igaz. Mivel a j ∈ J-t
teszőlegesen választottuk a βj ∩ P = ∅ feltétel mellett, ı́gy a Φ2 konjunkció
minden tagja IGAZ lesz, amiből következik Φ2 teljesülése.

A fentiekben megmutattuk tehát, hogy Φ0, Φ1 és Φ2 mindegyike
IGAZ, amiből következik Φ teljesülése.

A másik irány bizonýıtásához most tegyük fel, hogy y kieléǵıti Φ-t.
Legyen (m, o) az (M, O) y-hoz rendelt folyamat részgráfja. Igazolni szeret-
nénk, hogy (m, o) lehetséges megoldás struktúra, azaz kieléǵıti az (A1) - (A4)
feltételeket.

(A4) az y defińıciójából közvetlenül következik.

Φ0(y) = IGAZ miatt minden X ∈ P -re létezik olyan u ∈ O műveleti
egység, mely X-et közvetlenül termeli, ı́gy (A1) is teljesül.

(A2) bizonýıtásához legyen X ∈ m ∩ R. Mivel o ⊆ O és az (M, O)
maximális struktúrában a nyersanyagokat egyetlen O-beli műveleti egység
sem gyártja, ı́gy nem létezhet (Y, X) él az (m, o)-ban. Most feltétetezzük,
hogy X ∈ m és nem létezik (Y, X) él (m, o)-ban. Bizonýıtani szeretnénk,
hogy X ∈ R. Feltétetezzük az ellenkezőjét, azt hogy X /∈ R. Mivel X ∈ m,
a Φ-hez rendelt (m, o) defińıciója miatt léteznie kell ui = (αi, βi) ∈ o-
nak úgy, hogy X ∈ αi, ami azt jelenti, hogy yi = IGAZ. Másfelöl az
(M, O) maximális struktúra is a 2.1.1. következmény alapján egy lehetséges
megoldás struktúra, melyben feltételezésünk szerint X nem nyersanyag, ı́gy
létezniük kell olyan uh ∈ O műveleti egységeknek, melyekre X ∈ βh. Mivel
a Φ1 a maximális struktúra minden nem csak nyersanyag bemenettel ren-
delkező műveleti egységére tartalmaz egy tagot, ezért Φ1 tartalmazni fogja
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a (¬yi ∨
∨
h∈J

X∈βh

yh) tagot is. Mivel feltételezésünk szerint Φ = IGAZ, ezért

Φ1 = IGAZ, de akkor az (¬yi ∨
∨

h∈J
X∈βh

yh) tagnak is IGAZ-nak kell lennie.

Ugyanakkor a fentiekben azt kaptuk, hogy yi = IGAZ. Ez azt jelenti, hogy∨
h∈J

X∈βh

yh is IGAZ, amiből az következik, hogy létezik olyan h0, melyre uh0 ∈ o

és X ∈ βh0. Ez viszont azt jelenti, hogy létezik (Y, X) él (m, o)-ban, ami el-
lentmondás a feltételezésünkkel. Következésképpen X ∈ R, és (A2) teljesül.

(A3) bizonýıtásához vegyünk egy tetszőleges ui ∈ o műveleti egysé-
get. Ha βi ∩ P 	= ∅, akkor nyilván létezik út ui-ből P -be. Egyébként, fel-
használva azt a tényt, hogy a maximális struktúra egy lehetséges megoldás
struktúra, a maximális struktúrában létezik út ui-ből P -be, ı́gy létezik olyan
uh ∈ O műveleti egység, melyre βi ∩αh 	= ∅. Mivel Φ2 a maximális struktúra
minden célterméket nem gyártó műveleti egységére tartalmaz egy tagot, ezért
tartalmazni fogja a ¬yi ∨

∨
h∈J

βj∩αh �=∅

yh tagot is. Mivel ui ∈ o miatt yi = IGAZ,

ezért az előbbiekhez hasonló módon létezik h0 úgy, hogy uh0 ∈ o és βi ∩
αh0 	= ∅. Most uh0-al indulva ugyanezt a gondolatmenetet megismételve,
véges számú ismétlő lépés után kapunk egy ui-ből P -be vezető (m, o)-beli
utat, ami azt mutatja, hogy (A3) igaz.

A 2.5.2. lemma alapján feĺırhatjuk a PNS probléma egy ekvivalens
formáját:

(PNS-4) min

{ ∑
j∈T (y)

wj : y kieléǵıti Φ-t

}
,

ahol wj = w(uj), j = 1, . . . , l.

A ([17]) alapján bevezetve a z+
j , z−j ∈ {0, 1}, j = 1, . . . , l változókat

úgy, hogy zj
+ = 1 akkor és csakis akkor ha yj = IGAZ, továbbá z−j = 1−z+

j ,
a fenti feladatot az alábbi formában is feĺırhatjuk:

∑
j∈J

X∈βj

z+
j ≥ 1, minden X ∈ P -re,
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z−j +
∑
h∈J

X∈βh

z+
h ≥ 1, minden j ∈ J, X ∈ αj \ R-re,

z−j +
∑
h∈J

βj∩αh �=∅

z+
h ≥ 1, minden j ∈ J, P ∩ βj = ∅-re,

z+
j + z−j = 1, minden j ∈ J-re,

z+
j , z−j ∈ {0, 1}, minden j ∈ J-re,

min
∑
j∈J

wj · z+
j

A ([17])-ban bemutatott bizonýıtás alapján könnyen belátható, hogy
tetszőleges L >

∑
j∈J

wj-re a fenti feladat optimális megoldásai azonosak az

alábbi halmazlefedési probléma optimális megoldásaival:

∑
j∈J

X∈βj

z+
j ≥ 1, minden X ∈ P -re,

z−j +
∑
h∈J

X∈βh

z+
h ≥ 1, minden j ∈ J, X ∈ αj \ R-re,

z−j +
∑
h∈J

βj∩αh �=∅

z+
h ≥ 1, minden j ∈ J, P ∩ βj = ∅-re,

z+
j + z−j ≥ 1, minden j ∈ J-re,

z+
j , z−j ∈ {0, 1}, minden j ∈ J-re,

min
∑
j∈J

[(wj + L) · z+
j + L · z−j ]

Összegezve az eddigieket, azt kaptuk, hogy a PNS probléma visszave-
zethető egy halmazlefedési feladatra, ugyanakkor a 2.5.1. lemma értelmében
a halmazlefedési feladat ekvivalens egy speciális PNS problémaosztállyal.
Ebből az következik, hogy:
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2.5.2. Tétel. [27] A PNS-2 probléma ekvivalens a halmazlefedési problémá-
val.

A halmazlefedési probléma NP teljessége (ld. [32, 1]) alapján ebből adódik,
hogy:

2.5.3. Tétel. [27] A PNS-2 probléma NP teljes.

A 2.5.3. tétel alapján feltételezhető, hogy a PNS-2 probléma ha-
tékony, polinomiális idejű megoldása nem várható. Ez indokolja azt, hogy
exponenciális idejű megoldó algoritmusokat elfogadhatóknak tekintsünk és
alkalmazzuk az ilyen esetekben szokásos korlátozás és szétválasztás jellegű
módszereket.

2.6. Döntési leképezések

Fontos szerepet játszik a PNS-problémának a korlátozás és szétvá-
lasztás módszerével történő, különböző ([24, 21]) megoldásaiban a ([13, 14])-
ban bevezetett döntési leképezés fogalma.

Legyen O a műveleti egységek egy halmaza. Definiáljuk a ∆ :
M \ R −→ ℘(O), függvényt a következő módon. Minden X ∈ M \ R-re
legyen ∆(X) = {(α, β) : (α, β) ∈ O & X ∈ β}. Szemléletesen a ∆ minden
nem nyersanyaghoz hozzárendeli azokat a műveleti egységeket, melyek azt az
anyagot gyárthatják. Mi viszont általános esetben a műveleti egységeknek
csak egy olyan részhalmazát szeretnénk használni, mely a legkisebb költ-
séggel képes a céltermékek legyártására. Mivel általában egy anyagot több
műveleti egység is legyárthat, ezért egy megoldás feléṕıtése során minden
anyagra vonatkozóan döntenünk kell arról, hogy azt az anyagot mely műveleti
egységekkel ḱıvánjuk legyártani. Ezen döntések léırására használjuk a döntési
leképezéseket. Legyen m ⊆ M \ R és δ(X) ⊆ ∆(X), minden X ∈ m-re. A
δ[m] = {(X, δ(X)) : X ∈ m} leképezést reguláris döntési leképezésnek,
vagy egyszerűen csak döntési leképezésnek nevezzük.

Egy döntési leképezés konzisztens, ha δ(X) ∩ ∆(Y ) ⊆ δ(Y ), bár-
mely X, Y ∈ m-re. Ez azt fejezi ki, hogy ha egy műveleti egység több
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anyagot is gyárt, akkor vagy azt feltételezzük, hogy nem működik, azaz nem
gyárt semmit és akkor nem rendeljük hozzá egyetlen anyaghoz sem, vagy azt
feltételezzük, hogy működik, de akkor mindegyik kimeneti anyagát gyártja
és ı́gy mindhez hozzá kell rendelni. Az M strukturális modell konzisztens
döntési leképezéseinek halmazát ΩM-el fogjuk jelölni.

Most tegyük fel, hogy egy δ[m] döntési leképezés által leszögeztük a
műveleti egységek egy részhalmazát abból a célból, hogy az m-beli anyagokat
közvetlenül gyártsa. Ha veszünk egy további Y ∈ M \ (m ∪ R) anyagot és
ennek közvetlen gyártására konzisztens módon hozzárendeljük az u′

1, . . . , u
′
r

∆(Y )-beli műveleti egységeket, akkor egy nagyobb részfolyamatot kapunk.
Az ennek megfelelő

δ′[m ∪ {Y }] = δ[m] ∪ {(Y, {u′
1, . . . , u

′
r})}

döntési leképezésre azt mondjuk, hogy a δ[m] reguláris kiterjesztése vagy
egyszerűen csak a δ[m] kiterjesztése.

A kiterjeszés függvény ΩM-en egy reflex́ıv, antiszimmetrikus és tran-
zit́ıv, tehát részben rendezés relációt határoz meg. Jelöljük a részben ren-
dezett halmazt (ΩM,≤)-el. Nyilvánvalóan δ[∅] az (ΩM,≤) halmaz legkisebb
eleme. A fentiek értelmében a kiterjesztés relációt általánośıthatjuk úgy,
hogy azt mondjuk, hogy δ2[m2] (reguláris) kiterjesztése δ1 [m1]-nek és
ezt ugyancsak δ1[m1] ≤ δ2[m2] -vel jelöljük, ha m1 ⊆ m2, δ1 [m1] és δ2 [m2]
konzisztens döntési leképezések, valamint δ1 (X)= δ2(X) minden X ∈ m1-re.
Az (ΩM,≤) halmaz maximális elemeit Ωmax

M -val fogjuk jelölni.

Könnyen beláthatjuk, hogy teljesül az alábbi tulajdonság:

2.6.1. Lemma. Egy δ[m] ∈ ΩM döntési leképezés az (ΩM,≤) részben ren-
dezett halmaz maximális eleme akkor és csakis akkor, ha m = M \ R.

Bizonyos esetekben egy δ[m] ∈ ΩM \ Ωmax
M döntési leképezésből ma-

ximális elemet képezhetünk a következő módon. Ha

W = (matin(op(δ[m])) ∪ P ) \ (R ∪ m) = ∅
akkor legyen

δ′(X) = {(α, β) : (α, β) ∈ op(δ[m]) and X ∈ β}
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minden X ∈ M \ R-re. Akkor könnyen belátható, hogy δ′ ∈ Ωmax
M . A δ′

döntési leképezést a δ[m] (reguláris) lezárásának fogjuk nevezni.

Mivel minden δ [m] ∈ Ωmax
M -re m = M \ R, ezért ismert M =

(P, R, O) strukturális modell esetén adott maximális döntési leképezést egy-
szerűen δ-val fogunk jelölni. Érdemes definiálni a műveleti egységek azon
halmazát, amely egy konzisztens döntési leképezés által van meghatározva.
Nevezetesen, legyen

op(δ [m]) = ∪{δ(X) : X ∈ m} .

A maximális konzisztens döntési leképezések és a lehetséges megoldás
struktúrák közötti összefüggések tanulmányozására, minden (m, o) ∈ S (M)
lehetséges megoldás struktúrához hozzárendelünk egy maximális konzisztens
döntési leképezést a következőképpen.

2.6.1. Defińıció. Legyen ρ : S (M) −→ Ωmax
M függvény, melyre ρ(m, o) = δ

úgy, hogy

δ(X) = {u : u = (α, β) ∈ o & X ∈ β}, ha X ∈ m \ R, és

δ(X) = ∅, ha X /∈ M \ (R ∪ m).

2.6.2. Lemma. ([21]) ρ egy injekt́ıv leképezés S(M)-ről Ωmax
M -ba, továbbá

ρ−1(δ) = (mat(op(δ)), op(δ))

igaz minden olyan δ-ra, mely egy S(M)-beli elem ρ általi leképezése.

Bizonýıtás Először megmutatjuk, hogy (m, o) ∈ S(M)-ből következik
ρ((m, o)) ∈ Ωmax

M . Mivel a ρ((m, o)) = δ[M \ R] az M \ R halmazon de-
finiált, továbbá egy δ[m] döntési leképezés akkor és csakis akkor maximális,
ha m = M \ R, ezért azt kell belátnunk, hogy δ konzisztens. Ebből a célból
legyenek X, Y ∈ M \R tetszőleges anyagok. Igazoljuk, hogy δ(X)∩∆(Y ) ⊆
δ(Y ). Ha δ(X) ∩ ∆(Y ) = ∅, akkor a konzisztenciához szükséges tartal-
mazás nyilvánvalóan teljesül. Most tegyük fel, hogy δ(X) ∩ ∆(Y ) 	= ∅ és
(α, β) ∈ δ(X) ∩ ∆(Y ). Akkor δ defińıciója alapján X ∈ m \ R és (α, β) ∈ o.
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Másfelöl (α, β) ∈ ∆(Y )-ből következik, hogy Y ∈ β. Mivel (m, o) egy meg-
oldás struktúra, ezért a 2.1.2. lemma alapján m = mat(o) ⊇ β � Y , és ı́gy
Y ∈ m. Az Y ∈ M \ R feltételezés azt vonja maga után, hogy Y 	∈ R, és
ezért Y ∈ m \ R. Azt kapjuk tehát, hogy (α, β) ∈ δ(Y ), amiből következik
az elő́ırt tartalmazás.

Most legyen (m, o) és (m′, o′) két különböző megoldás struktúra.
Megmutatjuk, hogy a ρ((m, o)) = δ és ρ((m′, o′)) = δ′, egymástól különböző
döntési leképezések. A 2.1.2. lemma és 2.1.2. következmény alapján az
(m, o) és (m′, o′) egyértelműen meghatározottak az o illetve o′ halmazok által,
ezért o 	= o′. Akkor az általánosság megszoŕıtása nélkül feltételezhetjük,
hogy létezik olyan (α, β) ∈ O, melyre (α, β) ∈ o, de (α, β) 	∈ o′. Mivel
(m, o) ∈ S(M), ezért a 2.1.2. lemma alapján m = mat(o) és ı́gy β ⊆ m. Az
(A3) feltételből |β| ≥ 1, vagyis létezik legalább egy olyan X anyag, melyre
X ∈ β, és ezért X ∈ m. Mivel (M, O) egy megoldás struktúra és X ∈ β,
továbbá (α, β) ∈ O, ezért az (A2) feltételből X 	∈ R és ı́gy X ∈ m \ R.
Továbbá a δ defińıciójából (α, β) ∈ δ(X). Két esetet különböztethetünk
meg.

Ha X 	∈ m′, akkor a δ′ defińıciója alapján δ′(X) = ∅, következéskép-
pen δ(X) 	= δ′(X).

Ha X ∈ m′, akkor (α, β) 	∈ o′-ből δ′ defińıciója alapján következik,
hogy (α, β) 	∈ δ′(X) .

Ily módon igazoltuk, hogy δ 	= δ′.

Végül legyen δ = ρ((m, o)) valamely (m, o) ∈ S(M) megoldás struk-
túrára. A ρ defińıciója alapján könnyen belátható, hogy o = op(δ). Akkor
a 2.1.2. lemmából azt kapjuk, hogy (m, o) = (mat(op(δ)), op(δ)), ami azt
jelenti, hogy igazoltuk az álĺıtást.

2.6.1. Megjegyzés. Vegyük észre, hogy ρ-ra a szürjekt́ıvitás, és ily módon a
bijekt́ıvitás sem teljesül. Például a δ∗(X) = ∅, ∀X ∈ M \R döntési leképezés
eleme az Ωmax

M halmaznak, de nem létezik olyan (m, o) ∈ S(M) lehetséges
megoldás struktúra, melyre ρ((m, o)) = δ∗ teljesülne.
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Jelölje S ′(M) az S(M) ρ melletti képét, vagyis legyen

S ′(M) = {ρ((m, o)) : (m, o) ∈ S(M)}.

Vegyük észre, hogy minden (m, o) ∈ S(M)-re ha ρ((m, o)) = δ[M \R], akkor
o = op(δ[M \ R]). Ezen észrevételből és a 2.6.2. lemmából azt kapjuk, hogy
a PNS-3 feladat helyett megoldhatjuk az alábbi feladatot:

(PNS-5) min

{ ∑
u∈op(δ)

w(u) : δ ∈ S ′(M)

}
.

Az egyszerűség kedvéért az S ′(M) elemeit lehetséges megoldásoknak fog-
juk nevezni.

A későbbiekben látni fogjuk, hogy a konzisztens döntési leképezések
lehetővé teszik a lehetséges megoldás struktúrák hatékonyabb léırását és ge-
nerálását.

2.7. Leszámlálási algoritmusok

Ebben a részben a PNS-5 feladat megoldására fogunk kidolgozni
alapvető algoritmusokat. A 2.5.3 tétel alapján tudjuk, hogy nem várható
hatékony polinomiális idejű megoldás. Ezért először kidolgozunk egy olyan
Branch and Bound jellegű eljárást, mely általános keretet nyújt majd az
ilyen jellegű algoritmusok későbbiekben történő tárgyalására, majd egy olyan
algoritmust fogunk megnézni, mely a feladat összes lehetséges megoldásait,
köztük az összes optimális megoldást is felsorolja.

2.7.1. Egyszerű leszámlálás

Legyen M egy PNS probléma strukturális modellje és jelölje (M, O) a
maximális struktúrát. Célunk az, hogy megoldjuk a PNS-5 problémát. Mivel
az S ′(M) nem üres, véges halmaz, ezért léteznie kell legalább egy optimális
megoldásnak. A továbbiakban megmutatjuk, hogy hogyan alkalmazható az
általános korlátozás és szétválasztás módszere a feladat megoldására.
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A Branch and Bound algoritmus egyik fő összetevője a szétválasztási
függvény, mely S ′(M) részhalmazait part́ıciókra osztja. Mivel itt S ′(M) csak
implicit módon van definiálva, viszont S ′(M) ⊆ Ωmax

M , amiből kifolyólag az
Ωmax

M part́ıciói az S ′(M)-ben is part́ıciókat hoznak létre, ezért S ′(M) helyett
az őt befoglaló Ωmax

M halmazt és annak részhalmazait fogjuk part́ıcionálni.

Definiáljuk az ω : ΩM \ Ωmax
M −→ ϕ′(Ωmax

M ) függvényt a követ-
kezőképpen. Minden δ[m] ∈ ΩM \ Ωmax

M -re legyen

ω(δ[m]) = {δ : δ ∈ Ωmax
M és δ[m] ≤ δ} .

Tulajdonképpen ω(δ[m]) megadja a δ[m] maximális konzisztens kiterjeszté-
seit. A 2.6 részben láttuk, hogy minden nem maximális konzisztens döntési
leképezésnek létezik maximális konzisztens döntési leképezésre való kiter-
jesztése. Az is nyilvánvaló, hogy ω(δ[∅]) = Ωmax

M . Az ω(δ[m])∩S ′(M) halmaz
elemeit (reguláris) lehetséges megoldás kiterjesztéseknek fogjuk ne-
vezni.

A [25]-ban igazolást nyert a következő álĺıtás.

2.7.1. Lemma. Ha δ[m], δ′[m′] ∈ ΩM \ Ωmax
M , és ∃X ∈ m ∩ m′ : δ[X] 	=

δ′[X], akkor ω(δ[m]) ∩ ω(δ′[m′]) = ∅.

Legyen δ[m] ∈ ΩM \ Ωmax
M . Akkor a 2.6.1. lemma értelmében m ⊂

M \ R, ami azt jelenti, hogy létezik X ∈ M \ (R ∪ m) anyag. Mivel (M, O)
maximális struktúra, ezért ∆(X) 	= ∅, ı́gy ∆(X) minden Qi, i = 1, . . . , 2|∆(X)|

részhalmazára definiálhatjuk a

δi[m ∪ {X}] = δ[m] ∪ {(X, Qi)}

döntési leképezést.

Az általánosság megszoŕıtása nélkül feltételezhetjük, hogy a δi[m ∪
{X}], i = 1, . . . , 2|∆(X)| halmaz konisztens döntési leképezései a δt[m ∪
{X}], t = 1, . . . , k döntési leképezések. Akkor a [25] alapján tudjuk, hogy

2.7.2. Lemma. Az ω(δt[m∪{X}]), t = 1, . . . , k halmazok egy nem feltétlen
nem triviális part́ıciói az ω(δ[m]) halmaznak.
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Akkor a B&B algoritmus 	 szétválasztási függvénye a következő
lesz:

	(δ[m]) = {ω(δt[m ∪ {X}]), t = 1, . . . , k}.

A Branch and Bound algoritmus másik lényeges összetevője a kor-
látozás. Jelen esetben ez egy g : ΩM −→ R függvény, mely alsó korlátokat
határoz meg a w(δ′), δ′ ∈ S ′(M) ∩ ω(δ[m]), δ[m] ∈ ΩM \ Ωmax

M értékekre,
g(δ) = w(δ) ha δ[m] ∈ S ′(M), és g(δ) = ∞ ha δ[m] ∈ Ωmax

M \ S ′(M).

A korlátozás és szétválasztás módszere tulajdonképpen az összes le-
hetséges megoldást tartalmazó leszámlálási fa olyan intelligens bejárása, mely
a szétválasztó és korlátozó függvényeinek köszönhetően a fának csak egy
részét generálja és járja be azért, hogy minél hamarabb eljusson az optimális
megoldáshoz. Ez úgy lehetséges, hogy azokat a csúcspontokat nem fogja
tovább part́ıcionálni, melyekről a korlátozó függvény seǵıtségével biztosan
meg tudja állaṕıtani, hogy nem tartalmazhatnak optimális megoldást. Az
ilyen csúcspontokat feldeŕıtett, lezárt, vagy halott csúcspontoknak szok-
tuk nevezni, mı́g a többi csúcspontok alkotják az élő csúcspontokat. Ezek
után megadhatjuk a PNS-5 problémát megoldó B&B algoritmust.

Branch and Bound Algoritmus ([25])

Inicializálás

• Legyen m = ∅, L = {ω(δ[∅])}, z = ∞, s = ∅, r = 0.
Számoljuk ki g(δ[∅])-t.

Iteráció (r. iteráció)

1. Befejezés tesztelés

Ha L = ∅, akkor VÉGE: z tartalmazza az optimumot, s pedig az
optimális megoldást.
Egyébként, ha r > 0, akkor térjünk a 2. lépésre,
ha pedig r = 0, akkor térjünk a 3. lépésre.
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2. Levélkiválasztás

Válasszunk egy ω(δ[m]) elemet az L-ből, melyre a g(δ[m])
|m| miniális. Ha

több ilyen van, akkor válasszunk egyet véletlenszerűen közűlük. Tér-
jünk a 3. lépésre.

3. Szétválasztás

Alkossuk meg ω(δ[m])-nek a 	(δ[m]) = {ω(δi[mi]), i = 1, . . . , k} par-
t́ıcióit. Térjünk a 4. lépésre.

4. Korlátszámı́tás

Minden i = 1, . . . , k-ra számoljuk ki a g(δi[mi]) korlátokat. Továbbá,
ha m = M \R és g(δi) < z, akkor legyen z = g(δi) és s = {δi}. Térjünk
az 5. lépésre.

5. Feldeŕıtés

Aktualizáljuk L értékét:

L = {ω(δ′[m′]) : ω(δ′[m′]) ∈ (L \ {ω(δ[m])}) ∪ 	(δ[m]), g(δ′[m′]) < z} .

Legyen r = r + 1, és térjünk a következő iterációra (1. lépés).

2.7.1. Megjegyzés. A léırt algoritmus nem teljes, hanem egy séma, mely
a különböző választási lehetőségek pontośıtásával többé-kevésbé hatékonyan
implementálható. Például a 3. lépésben nem határoztuk meg, hogy mely
anyaggal fogjuk kiterjeszteni az m anyaghalmazt a part́ıciók képzése céljából.
Erre egy lehetőség lehet, hogy az M \(m∪R) halmaz legkisebb indexű elemét
választjuk. Hasonlóképpen, a g korlátozó függvény pontos képletét sem ad-
tuk meg. Triviális korlátként megadhatnánk például a δ[m] által rögźıtett
műveleti egységek súlyainak összegét. Ezek különböző implementációja kü-
lönböző B&B algoritmusokhoz vezet. További ilyen lehetőségeket tartalmaz
a [25] munka.
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2.7.2. Teljes leszámlálás

Vannak esetek, amikor nem csak az optimumot és egy hozzá tar-
tozó optimális megoldást keresünk, hanem valamiért érdekel a többi, nem
feltétlen optimális megoldás is. Ebben a részben egy olyan ([16])-ben ki-
dolgozott eljárás módośıtott léırását mutatjuk be, mely a PNS-5 probléma
összes lehetséges megoldását szolgáltatja.

Az általánosság megszoŕıtása nélkül feltételezhetjük, hogy O = {u1,
. . . , uk} és M = {A1, . . . , An}, ahol P = {A1, . . . , As} valamely k és 1 ≤ s ≤
n pozit́ıv egészekre.

Bevezetünk egy lineáris rendezést az O-ban levő műveleti egységek
tetszőleges halmazának részhalmazai között. Ennek definiálása érdekében
legyen ∅ 	= o az O egy tetszőleges részhalmaza, továbbá legyenek o1 =
{ui1, . . . , uis}, i1 < · · · < is és o2 = {uj1, . . . , ujt}, j1 < · · · < jt az o
tetszőleges részhalmazai. Akkor o1 |= o2 ha az alábbi feltételek valamelyike
teljesül:

(i) o1 = o2,

(ii) |o1| < |o2|,

(iii) |o1| = |o2| és ik < jk a legkisebb olyan k indexre, melyre 1 ≤ k ≤ s és
ik 	= jk.

Abban az esetben, ha o1 	= o2, az |= helyett az � jelölést használhatjuk.
Könnyű belátni, hogy az |= reláció lineáris rendezés.

Egy δ[m] ∈ ΩM döntési leképezés feléṕıtéséhez az m halmaz elemei-
nek rendezett, m̂ =< Ai1 , . . . , Ait >-vel jelölt sorozatait fogjuk használni.
Ha egy A 	∈ m anyaggal kiterjesztjük a δ[m] döntési leképezést, akkor a
kiterjesztett döntési leképezés tartománya < Ai1 , . . . , Ait , A > lesz, melyet

m̂
∨

{A} =< Ai1 , . . . , Ait >
∨

{A}
-val fogunk jelölni.
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Most készen állunk arra, hogy az eljárást bemutassuk.

Teljes leszámlálás (Complete Enumeration, ([16])

Inicializálás

• Legyen m0 = ∅, S := ∅ és δ0[m0] = ∅, továbbá i = 0.

Iteráció

1. Legyen δi[mi] az m̂i =< Aj1 , . . . , Ajk
> rendezett tartománnyal rendel-

kező aktuális döntési leképezés. Továbbá legyen

Wi = (matin(op(δi[mi])) ∪ P ) \ (R ∪ mi),

és térjünk a 2. lépésre.

2. Ha Wi = ∅, akkor konstruáljuk meg a δi[mi] döntési leképezés δ′i
lezárását, továbbá aktualizáljuk S-et: S = S ∪ {δ′i}, és térjünk a 4.
lépésre. Egyébként térjünk a 3. lépésre.

3. Válasszuk ki Wi-ből a legkisebb indexű X elemet. Vizsgáljuk meg
∆(X) nem üres részhalmazait a |= relációra vonatkozóan. Válasszuk
ki a ∆(X) első olyan Q részhalmazát, melyre δi[mi] ∪ {(X, Q)} egy
konzisztens döntési leképezés, feltéve, hogy van ilyen.

Legyen m̂i+1 = m̂i

∨{X}, és

δi+1[mi+1] = δi[mi] ∪ {(X, Q)},
Legyen i = i + 1, és térjünk a következő iterációra (1. lépés).

Ha ∆(X) egyetlen nem üres részhalmaza sem megfelelő konzisztens
döntési leképezés, akkor térjünk a 4. lépésre.



FEJEZET 2. ELŐZMÉNYEK 36

4. Ha δi(Ajk
) ⊂ ∆(Ajk

) és van olyan nem üres Q ⊆ ∆(Ajk
) részhalmaz,

melyre δi(Ajk
) 	= Q, δi(Ajk

) ≤ Q, továbbá az

{(Aj1, δi(Aj1)} ∪ · · · ∪ {(Ajk−1
, δi(Ajk−1

)} ∪ {(Ajk
, Q)}

döntési leképezés konzisztens, akkor térjünk az 5. lépésre.
Egyébként térjünk a 6. lépésre.

5. Válasszuk a ∆(Ajk
) részhalmazai közül a 4. lépésben léırt feltételt

teljeśıtő |= szerinti első részhalmazát és jelöljuk ezt Q′-vel. Legyen:

m̂i+1 =< Aj1, . . . , Ajk
>, és

δi+1[mi+1] = {(Aj1 , δi(Aj1)} ∪ · · · ∪ {(Ajk−1
, δi(Ajk−1

)}) ∪ {(Ajk
, Q′)}.

Legyen i = i + 1, és térjünk a következő iterációra (1. lépés).

6. Legyen k = k − 1. Ha k = 0, akkor VÉGE. Egyébként térjünk a 4.
lépésre.



3. fejezet

A döntési leképezések száma

A fejezet a [3], [4] és [5] cikkek eredményeit tartalmazza. Ezek olyan
közös publikációk, melyek eredményeit szerzőtársaimmal oszthatatlanoknak
tekintjük.

A konzisztencia szükséges ahhoz, hogy eljussunk a lehetséges megol-
dásokig. Azonban több is igaz: minden konzisztens döntési leképezés azono-
śıtható a fentiek szerint hozzárendelt műveleti egységek részhalmazával, hi-
szen, ha m ⊆ M\R adott, akkor azon műveleti egységek közül választhatunk,
amelyek kimenetében szerepel legalább egy anyag m-ből. Viszont ha egy
műveleti egységet valamelyik anyaghoz hozzárendeltük, akkor éppen a kon-
zisztencia miatt ezt már minden kimeneti anyagához hozzá kell rendelnünk.
Ez az egyszerű észrevétel tehát azt jelenti, hogy az eddigieknél jobban kezel-
hetjük a konzisztens döntési leképezéseket és megszámolhatjuk őket.

3.1. Általános eset

3.1.1. Tétel. ([3]) Minden ∅ 	= m ⊆ M \ R-re, az m-en definiálható kon-
zisztens döntési leképezések száma 2|

⋃
X∈m ∆(X)|.

37
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Bizonýıtás

Jelöljük τ(m)-el az m anyaghalmaz felett definiálható konzisztens
döntési leképezések számát. Eljárásunkban |m| szerinti indukciót fogunk
alkalmazni.

Ha |m| = 1, akkor X → Q egy konzisztens döntési leképezés bármely
Q ⊆ ∆(X)-re, ahol X az m egyetlen elemét jelöli. A konzisztens döntési
leképezések száma ebben az esetben 2|∆(X)|.

Most legyen 1 ≤ i < |M \ R| egy tetszőleges egész szám és feltéte-
lezzük, hogy az álĺıtás igaz minden olyan m ⊆ M \ R-re, melyre |m| = i.
Vegyünk egy tetszőleges i + 1 elemű m′ ⊆ M \ R halmazt. Az általánosság
megszoŕıtása nélkül feltételezhetjük, hogy m′ = {X1, . . . , Xi, Xi+1}. Legyen
W = ∆(Xi+1) \ (∪{∆(Xt) : t = 1, . . . , i}). W alapján két esetet különbözte-
tünk meg.

1. eset. W = ∅. Akkor
⋃

X∈m′ ∆(X) =
⋃

X∈m ∆(X).

Igazolnunk kell hát, hogy τ(m′) = τ(m). A konzisztencia defińı-
ciójából következik, hogy minden δ[m′] konzisztens döntési leképezésnek az
{X1, . . . , Xi} halmazra való szűḱıtése is konzisztens döntési leképezés. Másfe-
löl, ha azonos halmazon definiált két konzisztens döntési leképezés különböző,
akkor a kiterjesztéseik is különbözőek lesznek. Elegendő tehát azt igazolni,
hogy bármely δ[{X1, . . . , Xi}] döntési leképezésnek egyetlen kiterjeszése van
az {X1, . . . , Xi, Xi+1} halmazra.

Először megkonstruáljuk a δ[{X1, . . . , Xi}] egy kiterjesztését az {X1,
. . . , Xi, Xi+1} halmazra. Legyen

δ′(Xi+1) = {(α, β) : (α, β) ∈ ∆(Xi+1) & ∃j ∈ {1, . . . , i} : (α, β) ∈ δ(Xj)},

és

δ′(Xt) = δ(Xt), ∀t ∈ {1, . . . , i}.

Mindenek előtt igazolnunk kell a δ′[{X1, . . . , Xi, Xi+1}] konzisztenciáját, ne-
vezetesen azt, hogy
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(1) δ′(Xt) ∩ ∆(Xi+1) ⊆ δ′(Xi+1),

és

(2) δ′(Xi+1) ∩ ∆(Xt) ⊆ δ′(Xt)

teljesülnek bármely Xt ∈ {X1, . . . , Xi} esetén.

Az (1) érvényessége a δ′ defińıciójából következik. A (2) igazolására
vegyünk egy (α, β) ∈ δ′(Xi+1) ∩ ∆(Xt) tetszőleges műveleti egységet vala-
mely t ∈ {1, . . . , i}-re. Mivel (α, β) ∈ δ′(Xi+1), ezért ∃j ∈ {1, . . . , i} :
(α, β) ∈ δ(Xj) ∩ ∆(Xi+1). Akkor (α, β) ∈ δ(Xj) ∩ ∆(Xt). Másfelöl, mivel
j, t ∈ {1, . . . , i} ezért δ konzisztenciájából következik, hogy δ(Xj)∩∆(Xt) ⊆
δ(Xt) = δ′(Xt). Következésképpen (α, β) ∈ δ′(Xt), ami azt jelenti, hogy a
(2) feltétel is teljesül.

Most legyen δ∗[{X1, . . . , Xi, Xi+1}] a δ[{X1, . . . , Xi}] egy kiterjesz-
tése. Meg fogjuk mutatni, hogy δ′(Xt) = δ∗(Xt), ∀t ∈ {1, . . . , i + 1}.
Ha 1 ≤ t ≤ i, akkor az egyenlőség nyilvánvalóan teljesül. Azt kell iga-
zolnunk tehát, hogy δ′(Xi+1) ⊆ δ∗(Xi+1) és δ′(Xi+1) ⊇ δ∗(Xi+1). Ennek
érdekében legyen (α, β) ∈ δ′(Xi+1) egy tetszőleges műveleti egység. A δ′

defińıciója alapján (α, β) ∈ δ(Xj)∩∆(Xi+1) valamely Xj ∈ {X1, . . . , Xi}-re.
De δ(Xj) = δ∗(Xj) és δ∗ konzisztens döntési leképezés, következésképpen
(α, β) ∈ δ∗(Xj) ∩ ∆(Xi+1) ⊆ δ∗(Xi+1). Ford́ıtva, legyen (α, β) ∈ δ∗(Xi+1).
Mivel W = ∅, ezért ∃ j ∈ {1, . . . , i} : (α, β) ∈ ∆(Xj), és ily módon
(α, β) ∈ δ∗(Xi+1) ∩ ∆(Xj). De δ∗ konzisztenciája miatt δ∗(Xi+1) ∩ ∆(Xj) ⊆
δ∗(Xj) = δ(Xj), következésképpen (α, β) ∈ ∆(Xi+1) ∩ δ(Xj), de akkor δ′

defińıciója miatt (α, β) ∈ δ′(Xi+1).

2. eset. W 	= ∅. Az 1. eset.-ben tett észrevételek alapján
elegendő megmutatni, hogy a δ[{X1, . . . , Xi}] konzisztens döntési leképezés-
nek 2|W | kiterjesztése van a {X1, . . . , Xi, Xi+1} halmazra. Ennek érdekében
legyen

T = {(α, β) : (α, β) ∈ ∆(Xi+1) & ∃t ∈ {1, . . . , i} : (α, β) ∈ δ(Xt)}.

T és W defińıcióiból nyilvánvaló, hogy T ∩ W = ∅. Meg fogjuk mutatni,
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hogy a

δ′(X) =

{
δ(X), ha X ∈ {X1, . . . , Xi}
T ∪ Q, ha X = Xi+1

döntési leképezés minden Q ⊆ W -re konzisztens. A δ[{X1, . . . , Xi}] konzisz-
tenciája miatt elegendő igazolnunk a

(3) δ′(Xj) ∩ ∆(Xi+1) ⊆ δ′(Xi+1),

és

(4) δ′(Xi+1) ∩ ∆(Xj) ⊆ δ′(Xj),

tartalmazásokat minden j = 1, . . . , i-re.

Ezért legyen j ∈ {1, . . . , i} egy tetszőleges index és (α, β) ∈ δ′(Xj)∩
∆(Xi+1). Akkor (α, β) ∈ T , és ı́gy (α, β) ∈ δ′(Xi+1), amiből következik (3).
Most legyen (α, β) ∈ δ′(Xi+1) ∩ ∆(Xj). Akkor (α, β) ∈ (T ∪ Q) ∩ ∆(Xj) =
T ∩ ∆(Xj). Az (α, β) ∈ T tartalmazásból következik, hogy (α, β) ∈ δ(Xt)
valamely t ∈ {1, . . . , i}-re, következésképpen (α, β) ∈ δ(Xt) ∩ ∆(Xj). Mivel
δ konzisztens, ezért δ(Xt) ∩ ∆(Xj) ⊆ δ(Xj) = δ′(Xj), ami a (4) teljesülését
jelenti.

Mivel W lehetséges Q részhalmazainak száma 2|W |, ezért a fenti
módszerrel a δ[{X1, . . . , Xi}] döntési leképezésnek 2|W | különböző kiterjesz-
tését kapjuk. Meg kell még mutatnunk, hogy a fenti döntési leképezésnek
nincsenek további konzisztens kiterjesztései {X1, . . . , Xi, Xi+1}-re.

Legyen ehhez δ∗[{X1, . . . , Xi, Xi+1}] egy tetszőleges kiterjesztése δ-
nak, és (α, β) ∈ T . Akkor (α, β) ∈ δ(Xt) ∩ ∆(Xi+1) = δ∗(Xt) ∩ ∆(Xi+1)
valamely t ∈ {1, . . . , i}-re. Mivel δ∗ konzisztens, ezért δ∗(Xt) ∩ ∆(Xi+1) ⊆
δ∗(Xi+1), és ı́gy (α, β) ∈ δ∗(Xi+1). Következésképpen T ⊆ δ∗(Xi+1). Most
legyen (α, β) ∈ δ∗(Xi+1) \ T . Ha (α, β) /∈ W , akkor (α, β) ∈ ∆(Xt) valamely
t ∈ {1, . . . , i}-re, és akkor δ∗ konzisztenciája miatt (α, β) ∈ δ∗(Xt) = δ(Xt),
ami azt jelenti, hogy (α, β) ∈ T , de ez ellentmondás. Tehát (α, β) ∈ W , ı́gy
δ∗(Xi+1) ⊆ T ∪ W . Ez azt jelenti, hogy δ∗-nak meg kell egyezni δ valamely
előzőekben már felsorolt kiterjesztésével.

Az indukciós feltevést használva tehát azt kapjuk, hogy

τ({X1, . . . , Xi+1}) = 2|∪{∆(Xt):t=1,...,i}}|2|W | = 2|∪{∆(Xt):t=1,...,i+1}|,
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amivel igazoltuk az álĺıtást.

Megjegyezzük, hogy m-en összesen 2
∑

X∈m |∆(X)| döntési leképezés de-
finiálható. Tételünkből következik, hogy m = M \ R-re, vagyis a maximális
konzisztens döntési leképezésekre τ(Ωmax

M ) =2|O| adódik. Ez azt mutatja,
hogy szoros kapcsolat áll fenn az O részhalmazai és a maximális konzisztens
döntési leképezések között. Könnyen belátható, hogy a γ(δ) = op(δ) egy
bijekt́ıv leképezés Ωmax

M és ϕ(O) között.

A 2.6.1. defińıcióban meghatároztunk egy ρ függvényt a lehetséges
megoldás struktúrák és a maximális konzisztens döntési leképezések között.
Világos, hogy ρ az S (M)-et kölcsönösen egyértelműen beleképezi Ωmax

M -be.
Ez viszont azt is jelenti, hogy a 2|O|egy triviális felső korlát S (M)-re. Ter-
mészetesen ez nagyon durva becslés. Azonban ha akár már csak (A2)-t figye-
lembe vesszük, sokkal jobb becslés adható |S (M)|-re. A [3] munka alapján
ezt fogjuk megvizsgálni a továbbiakban.

Legyen (m, o)∈ S (M) egy tetszőleges lehetséges megoldás struktúra
és ρ (m, o) = δ. Ha X ∈ matin(op(δ)), akkor létezik u = (α, β) ∈ op(δ) úgy,
hogy X ∈ α. A δ defińıciója szerint u ∈ o, és ı́gy X ∈ m. (A2) alapján
X ∈ matout(op(δ)) ∪ R, tehát feĺırhatjuk, hogy:

(A′2) matin(op(δ)) ⊆ matout(op(δ)) ∪ R.

Az (A′2)-nek megfelelő maximális konzisztens döntési leképezések
száma nyilván nem kevesebb, mint a lehetséges megoldás struktúrák száma,
ı́gy felülről becsülünk, ha az előbbit meghatározzuk. Ennek érdekében legyen
(M, O) egy PNS probléma folyamat gráfja, M = {X1, . . . , Xk} és O =
{u1, . . . , un}. Legyen továbbá

O(Xj) = {u : u = (α, β) ∈ O & Xj ∈ α}
minden Xj ∈ M-re. Tetszőleges j ∈ {1, . . . , k}-ra legyen

Aj = {δ : δ ∈ Ωmax
M & Xj ∈ matin(op(δ)) \ (matout(op(δ)) ∪ R)}.

Aj azon maximális döntési leképezéseket tartalmazza, melyek Xj miatt nem
eléǵıtik ki az (A′2)-t. Minden ∅ 	= I ⊆ {1, ..., k}-ra vezessük be az AI =
∩i∈IAi jelölést, továbbá legyen A∅ = Ωmax

M . Világos, hogy I = {i1, . . . , il}
esetén

AI =
{
δ : δ ∈ Ωmax

M & {Xi1 , . . . , Xil} ⊆ matin(op(δ)) \ (matout(op(δ)) ∪ R)
}
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azon döntési leképezéseket jelenti, amelyek esetén (A′2) éppen az I-beli in-
dexű anyagok miatt sérül. Így a Szitaformulát alkalmazva, az (A′2)-nek
megfelelő maximális konzisztens döntési leképezések számára

|Ωmax
M \ (A1 ∪ A2 ∪ ... ∪ Ak)| = Σ

I⊆{1,...k}
(−1)|I| · |AI |

adódik.

3.1.1. Megjegyzés. Figyeljük meg, hogy a kapott korlát független az elő-
álĺıtandó anyagok halmazától, azaz érvényes bármely P ⊆ M \ R-re.

3.1.1. Példa. Az általános esetre vonatkozó korlátszámı́tás szemléltetésére
legyen M = {X1, . . . , X12}, O = {u1, . . . , u7}, P = {X8} és R = {X10, X11,
X12}, ahol a műveleti egységek bemeneti és kimeneti anyagait a 3.1. táblázat
tartalmazza.

Műveleti egységek

bemenetek kimenetek
u1 X10 X1, X2

u2 X11 X3, X4, X5

u3 X12 X5, X6

u4 X1 X2, X8

u5 X2, X3 X7, X8

u6 X5, X6 X8, X9

u7 X6 X5, X8

3.1. táblázat.

A megfelelő folyamat gráfot a 3.1. ábra szemléleteti.

A maximális konzisztens döntési leképezések és O részhalmazai kö-
zötti kapcsolatot felhasználva tudjuk, hogy A1 akkor és csakis akkor tartal-
mazza a δ-t, ha op(δ) kieléǵıti az u1 	∈ op(δ) és u4 ∈ op(δ) tulajdonságokat.
Ezen maximális döntési leképezések száma 25, tehát |A1| = 25. Hasonlóan
kapjuk, hogy |A2| = 24, |A3| = 25, |A5| = 23, |A6| = 3 · 24 és |Aj | = 0 a többi
j indexre. Következésképpen ∑

I⊆{1,...,k} & |I|=1

|AI | = 136.
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3.1. ábra.

A kételemű részhalmazokat vizsgálva, A{1,2} akkor és csakis akkor
tartalmazza δ-t, ha u1, u4 	∈ op(δ) és u4, u5 ∈ op(δ), ezért A{1,2} = ∅. Ha-
sonlóan A{1,3} = 23, mivel A{1,3} akkor és csakis akkor tartalmazza δ-t, ha
u1, u2 	∈ op(δ) és u4, u5 ∈ op(δ). Kiszámolva és összegezve a részhalmazokra
a megfelelő értékeket azt kapjuk, hogy:∑

I⊆{1,...,k} & |I|=2

|AI | = 60.

Folytatva az eljárást, a három elemű részhalmazokra a 12 értéket kapjuk.
Végül azt tapasztaljuk, hogy |I| > 3-ra |AI | = 0. Következésképpen a keresett
érték:

27 − 136 + 60 − 12 = 40.

Megjegyezzük, hogy ebben a példában |Ωmax
M | = 128 és |S(M)| = 19.

A Szitaformulában |AI | meghatározására van szükség, ami általában,
tetszőleges folyamat gráf esetén, rendḱıvül bonyolult: |AI | az {Xi1 , . . . , Xil}
azon αj1 , . . . , αjs fedőrendszereinek számával egyenlő, amelyekre léteznek az
(αjt , βjt) ∈ O, t = 1, . . . , s műveleti egységek úgy, hogy {Xi1, . . . , Xil}∩βjt =
∅, t = 1, . . . , s-re.
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3.2. Speciális esetek

Bizonyos sajátos esetekben |AI | meghatározása természetesen egy-
szerűsödhet. A továbbiakban azt a speciális esetet fogjuk megvizsgálni,
amikor egyetlen input anyaggal működő, ún. szeparátor t́ıpusú műveleti
egységeink vannak, melyekre tehát |α| = 1, bármely u = (α, β) ∈ O műveleti
egységre. Legyen ismételten I = {i1, . . . , il} és

O∗(Xij ) = O(Xij) \ (∪i∈I∆(Xi)).

O∗(Xij) azon műveleti egységek halmaza, melyeknek bemeneti anyaguk az
Xij , de nem termelnek egyetlen anyagot sem az {Xt : t ∈ I} halmazból.
Akkor |AI |-re a következő képletet kapjuk ([3]):

|AI | =

(
l∏

t=1

(
2|O∗(Xit)| − 1

))
· 2|O\(∪i∈I∆(Xi))\(∪i∈IO(Xi))|.

A továbbiakban két speciális szeparátor t́ıpusú műveleti egységeket
tartalmazó PNS problémaosztály esetén a lehetséges megoldás struktúrák
számára explicit módon kiszámolható képleteket fogunk adni.

Mindkét esetben legyen M = {X1, . . . , Xk} az anyagok halmaza és
O = {u1, . . . , uk} a műveleti egységek halmaza. Figyeljül meg tehát, hogy az
anyagok és műveleti egységek száma egyenlő.

Az első, az ún. Egyenes modellben

u1 = (α1, β1), ahol α1 = X1 és β1 = X2,

uk = (αk, βk), ahol αk = Xk és βk = Xk−1,

és általában:

ui = (αi, βi), ahol αi = Xi és βi = {Xi−1, Xi+1}, (2 ≤ i ≤ k − 1).

Elképzelhetjük sorban egymás mellett a műveleti egységeket úgy,
hogy mindegyik egyetlen bemeneti anyaggal rendelkezik és a két szomszéd-
jának a bemeneti anyagait gyártja. Megjegyzendő, hogy a valóságban egy
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anyaggal több, egymással összetartozó anyagot vagy információt is modellez-
hetünk, amit a műveleti egységek feldolgoznak és tovább́ıtanak, jelen esetben
a szomszédaiknak.

Az egyenes két végén csak egyetlen szomszéd van. Ha teljesebb
szimmetriát akarunk, akkor a második, a Lánc modellünket is tekinthetjük,
ahol

β1 = {X2, Xk} és βk = {Xk−1, X1}.

Mindkét modellünkben lehetséges |AI | kiszámı́tása, azonban számos
kombinatórikai probléma adódik, amelyeket meg kell oldanunk. A műveleti
egységek részhalmazaiban gondolkodva, nyilván az AI olyan SI ⊆ O műveleti
egységek halmazának megfelelő maximális konzisztens döntési leképezéseket
tartalmaz, melyekre uis ∈ SI , de az uis egyik szomszédja sincs SI-ben (1 ≤
s ≤ j). (Az Egyenes modellben a két szélső műveleti egységnek csak egy
szomszédja van, a Lánc modellben mindegyik műveleti egységnek egységesen
két szomszédja van.) Adott I-re legyen tehát SI = {ui1, . . . , uij}, NI (i) az
ui szomszédai indexeinek halmaza, és jelölje

FI = {i′ : i′ 	= is és i′ /∈ N(is), 1 ≤ s ≤ j , 1 ≤ i′ ≤ k}

a ”szabad” műveleti egységek halmazát, tehát azokét, amelyek működése
nem érinti (A′2) teljesülését. Egy konkrét I -re |AI | = 2|FI |. Sajnos |FI |
nem csak pusztán j-től függ, hanem az I struktúrájától is. Az ui1, ..., uij

nem szomszédos műveleti egységek az Egyenes vagy a Lánc modellben. A
leszámolás szempontjából nagyon fontos, hogy hány olyan intervallumra vág-
ják fel a műveleti egységeket, amely egyelemű, és ezek hogyan helyezkednek
el.

3.2.1. Az Egyenes modell

Tegyük fel, hogy az SI = {ui1, . . . , uij}, műveleti egységei r darab
intervallumot határoznak meg I-ben, ahol egy intervallum hosszúságán az
I által meghatározott műveleti egység halmaz két eleme közötti műveleti
egységek számát értjük. Három esetet különböztethetünk meg az I t́ıpusa
alapján:
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a) i1 = 1 és ij = k,

b) i1 = 1 és ij < k vagy i1 > 1 és ij = k,

b) i1 > 1 és ij < k.

Könnyű belátni hogy ezen eseteknek megfelelően FI elemszáma rendre |FI | =
k − 3j + r + 2, |FI | = k − 3j + r + 1, illetve |FI | = k − 3j + r.

Kérdés, hogy hány olyan I halmaz van, mely a fenti eseteknek megfe-
lel. Jelölje L[](r, j, k), L[)(r, j, k), illetve L()(r, j, k) a fenti eseteknek megfelelő
I-k számát. Az r darab egyetlen műveleti egységet tartalmazó intervallumot(

j − 1
r

)
módon lehet kiválasztani a (j − 1)-ből, mı́g a maradék műveleti

egységeket a hoszszabb intervallumokba rendre
(

k − 2j
j − r − 2

)
,
(

k − 2j
j − r − 1

)
,(

k − 2j
j − r

)
-féleképpen lehet szétosztani a három esetben. Következésképpen

L[](r, j, k) =

(
j − 1

r

)
·
(

k − 2j
j − r − 2

)
,

L[)(r, j, k) =

(
j − 1

r

)
·
(

k − 2j
j − r − 1

)
, és

L()(r, j, k) =

(
j − 1

r

)
·
(

k − 2j
j − r

)
.

Figyelembe véve a paraméterek határait, a Szitaformula az Egyenes
modell esetében azt adja, hogy ([4]):

L(1) = 2k +
∑

1≤j≤ k+1
2

(−1)j ·

⎡⎢⎣ ∑
0≤r≤j−1

k−3j+r+2≥0

(
j − 1

r

)
·
(

k − 2j
j − r − 2

)
· 2k−3j+r+2 +

+
∑

0≤r≤j−1
k−3j+r+1≥0

(
j − 1

r

)
·
(

k − 2j
j − r − 1

)
· 2k−3j+r+1 +

+
∑

0≤r≤j−1
k−3j+r≥0

(
j − 1

r

)
·
(

k − 2j
j − r

)
· 2k−3j+r

⎤⎥⎦ .
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3.2.2. A Lánc modell

Jelen esetben is az Egyenes modell jelöléseit fogjuk használni. Most
a szimmetriának köszönhetően |FI |-t könnyebb kiszámolni, nem szükséges
eseteket megkülönböztetni, hanem minden I-re |FI | = 2k−3j+r, az I halmazok
számának meghatározása azonban éppen a forgásszimmetria miatt nehezebb.
A műveleti egységek intervallum struktúráinak száma:(

j
r

)
·
(

k − 2j − 1
j − r − 1

)
,

mı́g az {u1; struktúra} párok száma:

k ·
(

j
r

)
·
(

k − 2j − 1
j − r − 1

)
,

de ı́gy j-szer számoltuk az I -ket, ugyanis az u1-gyel j-féleképpen vághatjuk
el a láncot, bármely intervallumban, ı́gy a párok száma j-szer több. A Szi-
taformulával megkapjuk a keresett számot a Lánc modell esetében is ([4]):

C(1) = 2k +
∑

1≤j< k
2

(−1)j ·
∑

0≤r≤j−1
k−3j+r≥0

k

j
·
(

j
r

)
·
(

k − 2j − 1
j − r − 1

)
· 2k−3j+r + ek,

ahol

ek =

{
(−1)

k
2 · 2 , ha k páros,

0 , ha k páratlan.

Az ek ”
hibatag” kezeli a maximális j esetét külön, ilyenkor csak két I van, a

páratlan indexek, vagy a páros indexek.

A fentiek alaján elmondhatjuk, hogy az L(1) és C(1) formulák a te-
kintett két modellben az |S (M)|-et felülről korlátozzák.
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3.2.3. Azonosságok

Általános esetben a felmerülő bonyolult kombinatorikai és gráfelmé-
leti problémák következtében nem várható, hogy a Szitaformula kiszámolható
korlátot adjon a lehetséges megoldás struktúrák számára. A tárgyalt speciális
struktúrák esetén azonban olyan képleteket kaptunk, melyek lehetővé teszik
a felső korlátok közvetlen kiszámolását.

Először az Egyenes modellben, egy U ⊆ O, U = op (δ) akkor tel-
jeśıti az (A′2) feltételt, ha minden ui∈ U műveleti egységnek van szomszédja
U-ban. Legyen O = {u1, ..., uk} és U = {ui1, ..., uit}. Az U-beli műveleti
egységek q darab 1 hosszú intervallumot határoznak meg. A fentiekhez ha-
sonló módon megszámlálhatjuk az U és O \ U part́ıcióit. Akkor ([4]):

L(2) = 1 +
∑

2≤t≤k

∑
1≤q≤min{ t

2
;k−t+1}

(
t − q − 1

q − 1

)
·
(

k − t + 1
q

)
.

Az U részhalmazainak közvetlen megszámálása a Lánc modellben
sokkal bonyolultabb, ebben az esetben a szimmetria nem seǵıt. A Láncban
az u1 helyzete szerint 3 esetet különböztetünk meg:

1) u1 ∈ U és bal oldalán van egy másik U-beli elem, de jobb oldalán
nincsen;

2) u1 ∈ U és az ő (i − 1) jobboldali szomszédja U-beli elem, ahol (i > 1);

3) u1 /∈ U és az ő (i − 1) jobboldali szomszédja nem eleme U-nak, ahol
(i ≥ 1).

Ezek az összes lehetséges különböző esetek. Leszögezett (k, t, q, i) paraméte-
rekre az eseteknek megfelelően az U részhalmazainak száma:(

t − q − 1
q − 1

)
·
(

k − t − 1
q − 1

)
,

(
t − i − q + 1

q − 1

)
·
(

k − t − 1
q − 1

)
, illetve
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t − q − 1

q − 1

)
·
(

k − t − i
q − 1

)
.

Így a következő képletet kapjuk ([4]):

C(2) = 1 +
∑

2≤t≤k

⎡⎣ ∑
1≤q≤min{ t

2
;k−t}

(
t − q − 1

q − 1

)
·
(

k − t − 1
q − 1

)
+

+
∑

2≤i≤t

∑
1≤q≤ t−i

2
+1

(
t − i − q + 1

q − 1

)
·
(

k − t − 1
q − 1

)
+

+
∑

1≤i≤k−t

∑
1≤q≤min{ t

2
;k−t−i+1}

(
t − q − 1

q − 1

)
·
(

k − t − i
q − 1

)⎤⎦+ 1,

melyben az első 1-es t = 0, az utolsó 1-es pedig a t = k-t esetet jelentik.

Össześıtve, két szép kombinatórikus azonosságot is kapunk ([4]):

L(1) = L(2) és C(1) = C(2).

3.2.4. Szemléltetés

Az eredmény hatékonyságának szemléltetésére az alábbi táblázatok-
ban léırjuk az |S(M)|-re kapott korlátokat. Mı́g az első táblázat a különböző
méretű, Egyenes és Lánc struktúrájú feladatokra kiszámolt korlátokat tar-
talmazza, a második táblázat a korlátok és a maximális döntési leképezések
számának arányait szemlélteti a különböző méretű feladatokra.
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k: L(1): C(1):
3 4 5
4 7 10
5 12 17
6 21 29
7 37 51
8 65 90
9 114 158

10 200 277
11 351 486
12 616 853
13 1081 1497
14 1897 2627
15 3329 4610
16 5842 8090
17 10252 14197
18 17991 24914
19 31572 43721
20 55405 76725
21 97229 134643
22 170625 236282
23 299426 414646
24 525456 727653
25 922111 1276942
26 1618192 2240877
27 2839729 3932465
28 4983377 6900995
29 8745217 12110402
30 15346786 21252274
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k: L(1)

2k : C(1)

2k :
3 5.0000000000E-01 6.2500000000E-01
4 4.3750000000E-01 6.2500000000E-01
5 3.7500000000E-01 5.3125000000E-01
6 3.2812500000E-01 4.5312500000E-01
7 2.8906250000E-01 3.9843750000E-01
8 2.5390625000E-01 3.5156250000E-01
9 2.2265625000E-01 3.0859375000E-01

10 1.9531250000E-01 2.7050781250E-01
11 1.7138671875E-01 2.3730468750E-01
12 1.5039062500E-01 2.0825195313E-01
13 1.3195800781E-01 1.8273925781E-01
14 1.1578369141E-01 1.6033935547E-01
15 1.0159301758E-01 1.4068603516E-01
16 8.9141845705E-02 1.2344360352E-01
17 7.8216552731E-02 1.0831451416E-01
18 6.8630218504E-02 9.5039367684E-02
19 6.0218811040E-02 8.3391189581E-02
20 5.2838325502E-02 7.3170661930E-02
21 4.6362400052E-02 6.4202785490E-02
22 4.0680170050E-02 5.6334018708E-02
24 3.1319618239E-02 4.3371498586E-02
26 2.4112939849E-02 3.3391669387E-02
28 1.8564525990E-02 2.5708209726E-02
30 1.4292808268E-02 1.9792722558E-02
40 3.8662157089E-03 5.3539468199E-03
60 2.8289357042E-04 3.9175187251E-04
80 2.0700221556E-05 2.8661325825E-05

100 1.5277899843E-06 2.0515052235E-06

3.3. Következtetések

Sajnos a korlát kiszámı́tása általános esetben nem könnyű feladat.
A fenti táblázatokból viszont látszik, hogy elég nagy k-ra az (A′2) seǵıtsé-
gével megfogalmazott korlátok és a maximális döntési leképezések számának
arányai 0 fele tartanak, ami mutatja a korlátok élességét, legalábbis a fenti
speciális esetekben.



4. fejezet

Összevonásos redukció

A 2.3. alfejezetben léırtunk egy polinomiális idejű algoritmust a
maximális struktúra meghatározására, mely csökkentette a feladat méretét
azáltal, hogy szükségtelen műveleti egységeket törölt a modellből. Ebben a
fejezetben egy új módszert fogunk kidolgozni, mely a maximális struktúra
által meghatározott feladat méretét tovább fogja csökkenteni oly módon,
hogy bizonyos műveleti egységek összevonásával csökkenni fog a műveleti
egységek száma. A fejezetben bemutatandó módszerek a ([20]) cikk eredmé-
nyeit tartalmazzák, amely bár közös munka, de jelen dolgozat szerzőjének
meghatŕozó szerepe volt az eredmények elérésében.

4.1. Az összevonás megvalóśıtása

4.1.1. Defińıció. Két u1 = (α1, β1) és u2 = (α2, β2) műveleti egység össze-
vonásán azok helyetteśıtését értjük egy új, u = (α1 ∪ α2, β1 ∪ β2) műveleti
egységgel.

Nyilvánvaló, hogy két vagy több műveleti egység összevonásának
következtében egy más PNS probléma strukturális modelljét kapjuk. Ter-
mészetesen, ha ezt az új modellt az eredeti feladat megoldására szeretnénk
használni, akkor szoros összefüggéseket kell találnunk az eredeti és az új
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strukturális modellek lehetséges megoldásai között. Egy ennek megfelelő új
modell megtalálásában az alapvető kérdés nyilván az, hogy mely műveleti
egységek vonhatók össze.

4.1.2. Defińıció. Legyen M = (P, R, O) egy PNS probléma redukált struk-
turális modellje. Akkor az u1, u2 ∈ O műveleti egységeket összevonhatók-
nak nevezzük, ha bármely lehetséges megoldás struktúrában egyszerre szere-
pelnek vagy egyikük sem szerepel benne. Formálisan, u1 és u2 öszszevonhatók,
ha u1 ∈ (m, o) ⇐⇒ u2 ∈ (m, o), ∀(m, o) ∈ S(M).

Könnyen belátható, hogy ez a reláció reflex́ıv, szimmetrikus és tran-
zit́ıv, tehát ekvivalencia reláció az O halmazon, melyet ≡-val fogunk jelölni.
Tetszőleges u ∈ O-ra jelölje C(u) az u műveleti egység ekvivalencia osztályát.
Definiáljuk az M/ ≡ = (P, R, O∗) strukturális modellt úgy, hogy

O∗ = {(∪{αt : ut = (αt, βt) ∈ C(u)},∪{βt : ut = (αt, βt) ∈ C(u)}) : u ∈ O}

Szemléletesen az M/ ≡ jelentését a következőképpen képzelhetjük el. Min-
den ekvivalencia osztály esetén, az ekvivalencia osztályhoz tartozó műveleti
egységeket egyetlen új műveleti egységbe vonjuk össze, mely az eredetieket
fogja helyetteśıteni M/ ≡-ben. Nyilvánvalóan M/ ≡ egy PNS probléma
strukturális modellje, melynek maximális struktúrája (M, O∗).

Definiáljuk a Ψ : M ∪O −→ M ∪O∗ leképezést a következőképpen:⎧⎪⎪⎨⎪⎪⎩
Ψ(X) = X , ha X ∈ M,
Ψ(us) = (∪{αt : ut ∈ C(u)},∪{βt : ut ∈ C(u)}) , ha us ∈ C(u),
Ψ(m) = {Ψ(X) : X ∈ m} , ha m ⊆ M , és
Ψ(o) = {Ψ(u) : u ∈ o} , ha o ⊆ O

Az utóbbi kiterjesztéseknek megfelelően az (M, O) maximális struk-
túra (m, o) részfolyamat gráfjának képe a Ψ mellett (Ψ(m), Ψ(o)) lesz. Az
egyszerűség kedvéért ezt a leképezést is Ψ-vel fogjuk jelölni. Akkor a szoros
kapcsolatot az S(M) és S(M/ ≡) lehetséges megoldás struktúrái között az
alábbi tétel mondja ki.

4.1.1. Tétel. ([20]) A Ψ : S(M) −→ S(M/ ≡) egy bijekt́ıv leképezés.
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Bizonýıtás Legyen (m, o) ∈ S(M) egy lehetséges megoldás struktúra.
Először is megmutatjuk, hogy (Ψ(m), Ψ(o)) az M/ ≡ egy lehetséges megol-
dás struktúrája. Nyilvánvalóan (Ψ(m), Ψ(o)) az (M, O∗) egy folyamat gráfja.
Ezért elegendő bizonýıtani, hogy (Ψ(m), Ψ(o)) kieléǵıti a 2.1. alfejezetben
definiált (A1) − (A4) feltételeket. Mivel P ⊆ m = Ψ(m), ezért az (A1) fel-
tétel teljesül. Az (A2) teljesülését is könnyen beláthatjuk, ha észrevesszük,
hogy Ψ megőrzi a nyersanyagokat. Az (A3) bizonýıtásához legyen u ∈ Ψ(o)
egy tetszőleges műveleti egység. Akkor létezik legalább egy uj ∈ o, melyre
Ψ(uj) = u. Másfelöl (m, o) ∈ S(M), és ı́gy (A3) alapján létezik [uj, Yn]
út az (m, o)-ban Yn ∈ P -vel. Most ha ezen út csomópontjainak Ψ melletti
képét tekintjük, akkor egy [u, Y ′

n] utat kapunk (Ψ(m), Ψ(o))-ben, melyre Y ′
n ∈

P , amiből következik (A3) teljesülése. Végül (A4) bizonýıtása érdekében
vegyünk egy tetszőleges X ∈ Ψ(m) anyagot. Akkor X ∈ m és (A4) alapján
létezik olyan uj = (αj, βj) műveleti egység, melyre X ∈ αj ∪ βj. Legyen
Ψ(uj) = (α, β). A Ψ(uj) defińıciója alapján X ∈ α∪β, ami igazolja (A4)-et.

A bijekt́ıvitás igazolásához először megmutatjuk, hogy Ψ inject́ıv
leképezés. Ebből a célból legyen (m, o) 	= (m′, o′) ∈ S(M). Ha m 	= m′,
akkor Ψ(m) 	= Ψ(m′), és ı́gy a Ψ melletti képeik különbözőek. Ellenkező
esetben o 	= o′. Tegyük fel, hogy (Ψ(m), Ψ(o)) = (Ψ(m′), Ψ(o′)). Mivel
o 	= o′, az általánosság megszoŕıtása nélkül feltehetjük, hogy létezik u′ ∈ o′

melyre u′ 	∈ o. Legyen Ψ(u′) = u. Mivel (Ψ(m), Ψ(o)) = (Ψ(m′), Ψ(o′)),
ezért létezik ū ∈ o melyre Ψ(ū) = u. Akkor a Ψ defińıciója alapján ū ≡
u′, és ı́gy az ekvivalencia reláció defińıciójából u′ ∈ o, ami ellentmondás.
Következésképpen Ψ egy inekt́ıv leképezés.

Végül Ψ szürjektivitását kell megmutatnunk, vagyis azt, hogy az
S(M) halmazt a teljes S(M/ ≡) halmazra képezi le. Ebből a célból legyen
(m∗, o∗) az S(M/ ≡) egy tetszőleges lehetséges megoldás struktúrája. Legyen
m = m∗ és o = {uj : uj ∈ O & Ψ(uj) ∈ o∗}. Nyilvánvalóan Ψ(m, o) =
(Ψ(m), Ψ(o)) = (m∗, o∗), ezért azt kell bizonýıtanunk, hogy (m, o) az M egy
lehetséges megoldás struktúrája. Könnyen belátható, hogy (m, o) az (M, O)
részfolyamat gráfja. Az alábbiakban meg fogjuk mutatni az (A1) − (A4)
feltételek teljesülését is (m, o)-ra.

Mivel (m∗, o∗) ∈ S(M/ ≡), ezért az (A1) feltétel alapján P ⊆ m∗.
Másfelöl m = m∗, amiből következik az (A1) teljesülése (m, o)-ra.
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Mivel egy csúcs előző csúcsa (m∗, o∗)-ban egy (m, o)-beli csúcs előző
csúcsának Ψ melletti képe, és (m∗, o∗) teljeśıti az (A2) feltételt, ezért az (A2)
feltételt (m, o)-nak is teljeśıtenie kell.

Most tegyük fel, hogy (A3) nem teljesül (m, o)-ra. Jelöljük o1-el
o azon műveleti egységeinek halmazát, melyekre nincsen út (m, o)-ben egy
céltermékig, vagyis legyen

o1 = {uj : uj ∈ o & nincs olyan [uj, Y ] út (m, o)-ban, melyre Y ∈ P}.
Feltételezésünk szerint o1 	= ∅. Most legyen (m′, o′) egy folyamat gráf, melyre
o′ = o \ o1 és m′ = mat(o′). Megmutatjuk, hogy (m′, o′) az M egy lehetséges
megoldás struktúrája.

Mivel (m∗, o∗) ∈ S(M/ ≡), (A1) alapján bármely X ∈ P -re létezik
olyan u műveleti egység, mely X-et közvetlenül gyártja. De akkor létezik egy
X-et közvetlenül gyártó u′ műveleti egység is o-ban, melyre nyilván u′ /∈ o1.
Következésképpen u′ ∈ o′, ami azt mutatja, hogy P ⊆ m′, vagyis (m′, o′)
teljeśıti az (A1) feltételt.

(A2) igazolásához legyen X ∈ m′ egy tetszőleges anyag. Ha X ∈ R,
mivel (m∗, o∗) lehetséges megoldás struktúra, ezért X egy forrás (m∗, o∗)-ben.
De Ψ defińıciója alapján, ha X-nek (m, o)-ban lenne őse, akkor (m∗, o∗)-ban
is kellene legyen, ami ellentmondás. Tehát X forrás (m, o)-ban, de (m′o′) ⊆
(m, o), ezért X forrás (m′, o′)-ben. Ford́ıtva, legyen X most forrás (m′, o′)-
ben. Megmutatjuk, hogy akkor X forrás (m, o)-ban is. Ellenkező esetben
X kimenete lenne egy u1 ∈ o1-beli műveleti egységnek. Mivel X forrás
(m′, o′)-ben és ı́gy X bemenete egy o′-beli műveleti egységnek, ezért létezne
egy [u1, Y ] út (m, o)-ban, ami ellentmondana az o1 defińıciójának. Tehát
X forrás (m, o)-ban. De akkor X forrás (m∗, o∗)-ban is, viszont (m∗, o∗)
lehetséges megoldás struktúra, ezért teljeśıti az (A2) feltételt, amiből azt
kapjuk, hogy X ∈ R. Következésképpen (m′, o′) az (A2) feltételt is teljeśıti.

Az (A3) és (A4) feltételek teljesülése következik o1 és (m′, o′) de-
fińıcióiból, ezért azt kapjuk, hogy (m′, o′) az M egy lehetséges megoldás
struktúrája.

Könnyen belátható, hogy Ψ(m′, o′) = (m∗, o∗) = Ψ(m, o), amiből Ψ
injektivitása miatt azt kapjuk, hogy (m′, o′) = (m, o). Ez azt jelenti, hogy
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o1 = ∅, ami ellentmondás. Következésképpen az (m, o) teljeśıti az (A3) fel-
tételt.

Igazolnunk kell még, hogy (m, o) az (A4) feltételt is teljeśıti. Ha
X ∈ m egy tetszőleges anyag, akkor X ∈ m∗, és mivel (m∗, o∗) teljeśıti
az (A3)-et, ezért létezik olyan u = (α, β) ∈ o∗ műveleti egység, melyre
X ∈ α ∪ β. Ez azt jelenti, hogy létezik olyan uj = (αj, βj) ∈ o műveleti
egység, melyre Ψ(uj) = u és X ∈ αj∪βj, ellenkező esetben ugyanis X 	∈ α∪β
lenne, ami ellentmondás. Következésképpen (m, o) teljeśıti az (A4) feltételt.

Össześıtve, megmutattuk Ψ injektiv́ıtását és szürjektivitását, vagyis
igazoltuk, hogy Ψ egy bijekt́ıv leképezés.

Az nyilvánvaló, hogy általában az M/ ≡ modellben kevesebb mű-
veleti egység található, mint az M-ben. Mivel a két modell lehetséges meg-
oldás struktúrái kölcsönösen megfeleltethetők egymásnak, ezért szeretnénk
az M/ ≡ modellben egy PNS-3 -mal ekvivalens feladatot feĺırni, amitől azt
reméljük, hogy valamivel egyszerűbben megoldható lesz, mint az eredeti fe-
ladat.

Definiálunk tehát az M/ ≡ modellben egy w̄ súlyfüggvényt a követ-
kezőképpen:

w̄(u) =
∑

ut∈C(u′)
Ψ(u′)=u

w(ut), minden u ∈ O∗-ra

Mivel az ekvivalens műveleti egységek Ψ melletti képei azonosak, ezért w̄ jól

definiált leképezés.

Így a PNS következő modellje:

(PNS-6) min

{∑
u∈o

w̄(u) : (m, o) ∈ S(M/ ≡)

}
.

Kiterjesztjük a súlyfüggvényeket a lehetséges megoldás struktúrákra
a következőképpen. Legyen

w(m, o) =
∑{w(u) : u ∈ o}, minden (m, o) ∈ S(M)-re, és

w̄(m∗, o∗) =
∑{w̄(u) : u ∈ o∗}, minden (m∗, o∗) ∈ S(M/ ≡)-re.
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Akkor bármely (m, o) ∈ S(M) lehetséges megoldás struktúrára teljesül az,
hogy w(m, o) = w̄(Ψ(m, o)). Így a 4.1.1. tétel alapján az alábbi tétel tel-
jesülése is nyilvánvaló.

4.1.2. Tétel. ([20]) A PNS-3 feladat tetszőleges optimális megoldásának Ψ
melletti képe optimális megoldása a PNS-6 feladatnak és ford́ıtva, PNS-6 bár-
mely optimális megoldásának Ψ melletti őse optimális megoldása PNS-3-nak.

Ahhoz, hogy a PNS probléma adott példányán az összevonásos re-
dukciót elvégezhessük, először meg kell határozni az ekvivalencia relációt.

Legyen M = (P, R, O) egy PNS probléma strukturális modellje,
melyre S(M) 	= ∅, továbbá legyen uj ∈ O egy tetszőleges műveleti egység.
Feléṕıthetünk egy új PNS strukturális modellt a következőképpen:

M(uj) = (P, R, O \ {uj}).
Jelöljük az M(uj) maximális struktúráját (Mj , Oj)-vel, feltéve hogy létezik,
ellenkező esetben Mj = Oj = ∅. Akkor a következő álĺıtás érvényes.

4.1.3. Tétel. ([20]) Bármely ui, uj ∈ O műveleti egységekre ui ≡ uj akkor
és csakis akkor, ha ui ∈ O \ Oj és uj ∈ O \ Oi egyidejűleg teljesülnek vagy
egyidejűleg nem teljesülnek.

Bizonýıtás Tegyük fel, hogy ui ∈ O \ Oj és uj ∈ O \ Oi tetszőleges
ui 	= uj ∈ O műveleti egységekre, és legyen (m, o) egy tetszőleges lehetséges
megoldás struktúra. Három esetet különböztetünk meg.

1. eset. (m, o) nem tartalmazza ui-t. Akkor (m, o) részhalmaza
(Mi, Oi)-nek és ı́gy feltevésünk értelmében (m, o) nem tartalmazza uj-t.

2. eset. (m, o) nem tartalmazza uj-t. Akkor (m, o) részhalmaza
(Mj , Oj)-nek és ı́gy feltevésünk értelmében (m, o) nem tartalmazza ui-t.

3. eset. (m, o) egyaránt tartalmazza ui-t és uj-t is.

Mivel további esetek nincsenek, ı́gy bebizonýıtottuk ui ≡ uj-t.
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A feltétel szükségességének bizonýıtásához legyenek ui 	= uj ∈ O
tetszőleges műveleti egységek, melyekre ui ≡ uj. Az M(uj) strukturális
modell (Mj , Oj) maximális struktúrája azon lehetséges megoldás struktúrák
egyeśıtése, melyek nem tartalmazzák uj-t, feltéve, hogy léteznek egyáltalán
ilyen lehetséges megoldás struktúrák. Mivel ui ≡ uj, ı́gy ezen megoldás
struktúrák egyike sem tartalmazhatja ui-t, tehát ezek egyeśıtése sem fogja
tartalmazni ui-t, vagyis ui ∈ O \Oj. Hasonló indoklással kaphatjuk meg azt
is, hogy uj ∈ O \ Oi. Ha minden lehetséges megoldás struktúra tartalmazza
uj-t, azaz Oj = ∅, akkor az ui ≡ uj ekvivalenciából következik, hogy minden
lehetséges megoldás struktúra tartalmazza ui-t is, és ı́gy Oi = ∅ és a megfelelő
tartalmazások nyilvánvalóan teljesülnek.

Az 4.1.3. tételből kapjuk az alábbi eredményt:

4.1.1. Következmény. Oj = O \ {uj} akkor és csakis akkor, ha uj nem
összevonható egyetlen másik műveleti egységgel sem.

Legyen O = {u1, . . . , un}. A 4.1.3. tételből és az MSG maximális
struktúra generáló algoritmusból kapjuk az alábbi eljárást az ekvivalencia
reláció meghatározására. Az eljárás során alapértelmezésnek tekintjük, hogy
más elő́ırás hiányában egy lépés elvégzése után az algoritmus a léırási sor-
rendben következő lépésére tér.

Összevonásos ekvivalencia relációt meghatározó eljárás (ER)

1. Legyen i := 1, k := 1, N = {1, . . . , n}.
2. Határozzuk meg az M(ui) maximális struktúráját az MSG maximális

struktúra generáló algoritmussal.

3. Ha Oi = O \ {ui}, akkor legyen Vk = {ui}, N = N \ {i}, és k = k + 1.

4. Ha i 	= n, akkor i = i + 1 és térjünk a 2. lépésre.

5. Ha N = ∅, akkor VÉGE.

Egyébként jelölje i az N legkisebb elemét és legyen

J = {t : t ∈ N, ut ∈ O \ Oi}, illetve V = ∅.
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6. Ha J = ∅, akkor legyen N = N \ {i}, Vk = V ∪ {ui}, k = k + 1, és
térjünk az 5. lépésre.

7. Válasszunk egy j elemet J-ből. Legyen J = J \ {j}. Ha ui ∈ O \ Oj,
akkor legyen V = V ∪ {uj}, N = N \ {j}, és térjünk a 6. lépésre.

Az 1. lépés egyszer, a 2., 3., 4. lépések n-szer hajtódnak végre.
Ugyanakkor tudjuk, hogy az MSG maximális struktúra generáló algoritmus
polinomiális, O(n2) időben megvalóśıtható. Az 5. lépésre vagy a 4. lépésről
egyszer, vagy a 6. lépésről az N elemszámának csökkentésével tudunk jutni,
mindaddig amı́g N 	= ∅. Ebből az következik, hogy az 5. lépés legfeljebb
(|N | + 1)-szer hajtódhat végre. A 6. és 7. lépésekre csak az 5. lépés végre-
hajtása következtében lehet jutni. Az 5. lépés minden végrehajtásához - a J
halmaz elemszámának a 7. lépés minden végrehajtásakor történő csökkentése
következtében - a 6. lépés egyetlen, a 7. lépés legfeljebb |J | végrehajtása
tartozik. Mivel J ⊆ N , ezért |J | ≤ |N | = n. Összességében tehát azt
kapjuk, hogy az összevonásos ekvivalencia relációt meghatározó ER eljárás
is legrosszabb esetben polinomiális O(n3) idő alatt végrehajtódik.

Az eljárás helyessége az előző tételekből következik, futásának ered-
ményeképpen megkapjuk az ≡ reláció V1, . . . , Vk ekvivalencia osztályait.

Mindezek után az összevonásos redukcióval kapcsolatban a következő
kérdések merülnek fel.

(1) Vajon az összevonásos redukció csak egy szép elméleti eredmény,
vagy a gyakorlati problémák esetén ténylegesen csökkenti a feladatok méretét?

(2) Képes-e a méretcsökkenés ellensúlyozni az összevonás következ-
tében keletkező műveleti egységek nagyobb bonyolultságát az ismert PNS meg-
oldó algoritmusok futási idejének szempontjából?

Mindkét kérdést empirikusan vizsgáltuk. A számı́tási tapasztalato-
kat és az eredményeket a következő alfejezetben ismertetjük.
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4.2. Empirikus anaĺızis

Az első empirikus anaĺızis célja a méretcsökkenés becslése volt. Pon-
tosabban azt vizsgáltuk, hogy az összevonás általában mekkora méretcsök-
kenést eredményez. Ennek érdekében késźıtettünk 1000 véletlenül generált
PNS problémát (ezek generálására vonatkozóan ld. [25]), és minden problé-
mára meghatároztuk annak maximális struktúráját, majd végrehajtottuk az
összevonásos redukciót.

A 4.1. ábra a műveleti egységek átlagos számát mutatja az eredeti
problémákban, a maximális struktúrákban, illetve az összevonásos redukció
elvégzése után.

Az 4.2. ábra ugyanezeket az információkat százalékos arányban
szemlélteti.
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4.1. ábra.

Az empirikus anaĺızisek azt mutatják, hogy az összevonásos reduk-
ció általában kb. 7%-os méretcsökkenést eredményez. Nyilvánvaló ugyanak-
kor, hogy a méretcsökkenés következtében a probléma szerkezete bonyolul-
tabbá válik, nevezetesen a műveleti egységeknek több bemeneti és kimeneti
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4.2. ábra.

anyagaik lesznek. Ezért érdekesnek látszott az ismert megoldó algpritmusok
viselkedésének tanulmányozása is az összevonás után keletkezett feladatokon.
Ennek érdekében három algoritmust vizsgáltunk meg: az ABBA ([13, 14])
gyorśıtott korlátozási és szétválasztási algoritmust (Accerelated Branch-and-
Bound Algorithm), az MABBA ([24]) módośıtott gyorśıtott korlátozási és
szétválasztási eljárást (Modified Accerelated Branch-and-Bound Procedure),
és az RMABBA ([25]) finomı́tott módośıtott gyorśıtott korlátozási és szétvá-
lasztási eljárást. Generáltunk 1000 véletlen PNS problémát, mindegyiknek
meghatároztuk a maximális struktúráját, majd elvégeztük az összevonásos
redukciót. Végül mindhárom algoritmussal megoldottuk az eredeti maximális
struktúrával rendelkező, illetve az összevonás után keletkezett feladatokat. A
4.3. ábra mutatja a futási idők százalékos arányainak átlagait.

4.3. Következtetések

Az empirikus anaĺızisek azt mutatták, hogy az összevonásos redukció meg-
felelő eszköz a feladat méretének csökkentésére, továbbá az összevonás után
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keletkező műveleti egységek fokozottabb bonyolultsága nem feltétlen okoz
hosszabb futási időt: a kisebb méretű PNS problémák kevesebb futási időt
igényeltek még akkor is, ha a műveleti egységeik bonyolultabbak lettek.



5. fejezet

Előretekintő B&B algoritmus

A jelen fejezet a szerző saját eredményein alapszik, melyek a [21]-ben
nyertek publikálást.

A 2.3. és 4.1. alfejezetekben bemutattunk két technikát (maximális
struktúra meghatározása, illetve összevonásos ekvivalencián alapuló reduk-
ció), melyek seǵıtségével a probléma méretét csökkenteni tudjuk. A célunk
azonban végső sorban mégiscsak az, hogy a PNS feladatot megoldjuk.

Láttuk a 2.5. alfejezetben, hogy a PNS probléma NP teljes ([2, 17,
27]), ami indokolttá teszi a korlátozás és szétválasztás jellegű megoldó algorit-
musok használatát. Eddig három ilyen algoritmus volt ismeretes: az ABBA
([14]), MABBA ([24]), illetve RMABBA ([24]). Ezen algoritmusok empi-
rikus anaĺıziseiből ([25]) látszott, hogy az RMABBA-ban használt élesebb
korlátozó függvény kiszámı́tása túlságosan költséges, ezért használata álta-
lában nem indokolt. A másik két algoritmus esetén az empirikus vizsgálatok
azt mutatták, hogy az MABBA lényegesen jobban dolgozott, mint az ABBA
([25]).

A következőkben bemutatásra kerülő új, LABBA (Look Ahead B
&B Algorithm = Előretekintő korlátozási és szétválasztási algoritmus) -nak
nevezett eljárás két szempontból is különbözni fog az előzőektől. Először is,
felhasználja az előző fejezetben bemutatott összevonás ötletét. Ennek seǵıt-
ségével az előző eljárások korlátozó függvényei jav́ıthatók, a B&B (Branch

63
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and Bound) fa mérete pedig csökkenthető az ekvivalens műveleti egységek
egyidejű rögźıtésével. A másik szempont, hogy az LABBA figyelembe veszi a
különböző választási lehetőségek további hatásait, mı́g az ABBA és MABBA
olyan anyagkiválasztási szabályokon alapszanak, melyek ezt nem tették meg.
A különböző anyagkiválasztások következményeinek vizsgálata a B&B fa
méretének további csökkenését eredményezi.

5.1. Az algoritmus bemutatása

Nyilvánvalóan, amikor van egy δ[m] döntési leképezésünk, melyet
szeretnénk kiterjeszteni oly módon, hogy az m halmazt bőv́ıtjük egy Y elem-
mel, akkor az Y elemet sokféleképpen kiválaszthatjuk. Az Y kiválasztásának
módját anyagkiválasztási szabálynak nevezzük, mely nagyon fontos, hi-
szen meghatározza a B&B algoritmus levél kiválasztási stratégiáját.

A legegyszerűbb anyagkiválasztási szabály az, amikor az M \(m∪R)
halmazból választunk egy anyagot. Ebben az esetben megtörténhet, hogy
olyan Y anyagot választunk, melyre ∆(Y ) azon rendelkezésre álló műveleti
egységei, melyek Y -t közvetlenül gyártják, egyértelműen meghatározottak.
Ez az észrevétel egy másik anyagválasztási módhoz, a ([14])-ban bevezetett
bemenő anyag kiválasztási szabályhoz vezet. Ebben az esetben az alábbi
halmazból választunk:

(matin(op(δ[m]) ∪ P ) \ (m ∪ R).

Ez az anyagválasztási mód képezi alapját a ([14])-ben léırt ABBA mód-
szer levél kiválasztási szabályának. Figyeljük meg, hogy egy ilyen anyag
választási stratégia mellett elképzelhető, hogy olyan Y -t választunk, mely
a δ[m] által már rögźıtett műveleti egységeknek kimenete. Ebben az eset-
ben megtörténhet, hogy a konzisztencia miatt Y -hoz ugyanazokat a műveleti
egységeket kell rendelnünk, melyek a δ[m] által meghatározott részgráfban
Y -t gyártják. Ez a lépés nyilván szükségtelen. Ez a probléma az MABBA
algoritmusban meg lett oldva, mert az anyag kiválasztási szabály módośıtva
lett oly módon, hogy Y -t az alábbi halmazból választjuk:
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(matin(op(δ[m])) ∪ P ) \ (matout(δ[m]) ∪ R).

Az összevonásos ekvivalencia felhasználásával és az anyagválasztás
hatásainak vizsgálatával azonban tovább jav́ıtható az anyagkiválasztási sza-
bály hatékonysága. Az összevonásos ekvivalencia alapján, amikor egy döntési
leképezésben az anyagokhoz hozzárendeljük az őket gyártó műveleti egysége-
ket, akkor bármely műveleti egységgel együtt rögźıthetjük a vele ekvivalens
többi műveleti egységet is. Továbbá megtehetjük azt is, hogy a kiterjesztés
következő anyagát úgy választjuk ki, hogy az általa bevont műveleti egységek
minél több pillanatnyilag szükséges anyagot termeljenek. Ezek eredménye-
képpen a B&B fa kisebb lesz, az eljárás pedig hatékonyabb.

Az alábbiakban bemutatára kerülő LABBA algoritmusaban fel fog-
juk használni ezeket az ötleteket.

Mindenekelőtt bevezetünk néhány speciális döntési leképezést. En-
nek érdekében rendeljünk hozzá minden δ[m] ∈ ΩM konzisztens döntési
leképezéshez egy Oδ[m] ⊆ O műveleti egység halmazt, melyre

Oδ[m] = op(δ[m]) ∪ (
⋃

{C(u) : u ∈ op(δ[m])}).

Így Oδ[m] tartalmazni fogja a δ[m] által közvetlenül, és az összevonásos ekvi-
valencia reláció által közvetve rögźıtett műveleti egységeket.

5.1.1. Defińıció. Legyen δ[m] ∈ ΩM, melyre |m| < |M \ R|; továbbá legyen
Y egy anyag, melyre

Y ∈ (matin(Oδ[m]) ∪ P ) \ (matout(Oδ[m]) ∪ R),

feltéve, hogy az utóbbi nem üres halmaz. Jelölje K1, . . . , Kr a ∆(Y )-nek az
≡ reláció ∆(Y )-re való szűḱıtése szerinti ekvivalencia osztályait. Minden
J ⊆ {K1, . . . , Kr} nem üres részhalmazra legyen KJ = ∪{Kt : Kt ∈ J}.
Akkor a

δt[m ∪ {Y }] = δ[m] ∪ {(Y, KJ)}, J ⊆ ℘′({K1, . . . , Kr})
alakú konzisztens döntési leképezéseket a δ[m] Y szerinti irreguláris kiter-
jesztésének nevezzük, ha

Oδ(A) ∩ ∆(B) ⊆ δ(B), ∀A, B ∈ m ∪ {Y }.
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Nyilvánvalóan minden irreguláris kiterjesztés egy kiterjesztés is. Te-
kintsük az irreguláris kiterjesztés reflex́ıv és tranzit́ıv lezártját az ΩM hal-
mazon. Nyilvánvalóan a kapott reláció reflex́ıv, tranzit́ıv és antiszimmet-
rikus, azaz részben rendezés, melyet � -vel fogunk jelölni. Továbbá, ha
δ[m] � δ′[m′] és δ[m] 	= δ′[m′], akkor ezt δ[m] ≺ δ′[m′]-vel jelöljük.

Legyen δ0 az a döntési leképezés, melyre δ0[∅] = ∅.

5.1.2. Defińıció. Legyen

ΣM = {δ[m] : δ[m] ∈ ΩM & δ0[∅] � δ[m]}.

A ΣM elemeit irreguláris döntési leképezéseknek fogjuk h́ıvni.

Egy döntési leképezés tehát akkor és csakis akkor irreguláris, ha
egyenlő δ0[∅]-el, vagy megkapható abból irreguláris döntési leképezések so-
rozatának elemeként. A fenti defińıciókból közvetlenül kapjuk az alábbi
lemmát.

5.1.1. Lemma. Ha δ[m] ∈ ΣM, akkor δ(X) 	= ∅, ∀X ∈ m.

5.1.3. Defińıció. Legyen δ[m] ∈ ΣM , melyre

(matin(Oδ[m]) ∪ P ) \ (matout(Oδ[m]) ∪ R) = ∅.

Definiálunk egy δ′ döntési leképezést a következőképpen:

δ′(X) = {(α, β) : (α, β) ∈ Oδ[m] & X ∈ β}, ∀X ∈ M \ R.

Akkor δ′-t δ[m] irreguláris lezárásának nevezzük és icl(δ[m])-el jelöljük.

5.1.1. Megjegyzés. Egy reguláris döntési leképezés irreguláris lezárása egy-
értelműen meghatározott maximális döntési leképezés. Továbbá, ha m =
M \ R, akkor icl(δ[m]) = δ[m].
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A bevezetett irreguláris döntési leképezések seǵıtségével definiáljuk
a ΣM halmaz alábbi részhalmazát, amely fontos lesz az eljáras léırásában.
Legyen

S∗(M) = {icl(δ[m]) : δ[m] ∈ ΣM &(matin(Oδ[m])∪P )\(matout(Oδ[m])∪R) = ∅}.

S∗(M)-re érvényes a következő álĺıtás.

5.1.2. Lemma. ([21]) Legyen M = (P, R, O) egy PNS probléma strukturális
modellje. Akkor S∗(M) ⊆ S ′(M).

Bizonýıtás

Legyen δ ∈ S∗(M) egy tetszőleges döntési leképezés, továbbá legyen
o = op(δ) és m = mat(o). Nyilvánvalóan (m, o) egy folyamat gráf és (m, o) ⊆
(M, O). Megmutatjuk, hogy (m, o) ∈ S(M) és ρ((m, o)) = δ.

Mivel δ ∈ S∗(M), ezért létezik olyan δ0[m0] ≺ δ1[m1] ≺ · · · ≺ δk[mk]
irreguláris döntési leképezés sorozat, melyre m0 = ∅, icl(δk[mk]) = δ, o =
Oδk[mk], és (matin(Oδk[mk]) ∪ P ) \ (matout(Oδk[mk]) ∪ R) = ∅. Az utóbbi
egyenlőségből következik, hogy P ⊆ matout(Oδk[mk]) = matout(o).

Most legyen ō = {u : u ∈ o & ∃ [u, Yn] út, melyre Yn ∈ P}, és (m̄, ō)
egy folyamat gráf, melyre m̄ = mat(ō). Először igazoljuk, hogy (m̄, ō) M egy
lehetséges megoldás struktúrája.

Mivel P ⊆ matout(o) és m̄ = mat(ō), ezért P ⊆ m̄, tehát (m̄, ō)-ra
az (A1) feltétel teljesül.

Az (A2) feltétel bizonýıtásához legyen X ∈ m̄ egy tetszőleges anyag.
Ha X ∈ R, mivel ō ⊆ O, és O nem tartalmaz közvetlenül az X nyersa-
nyagot gyártó műveleti egységeket, ezért nem létezik (Y, X) él (m̄, ō) -ban.
Ha X 	∈ R, akkor m̄ = mat(ō)-ból következik, hogy létezik legalább egy
olyan műveleti egység ō-ban, melynek X közvetlen bemenete vagy kimenete.
Így két esetet különböztethetünk meg. Ha létezik olyan műveleti egység
ō-ban, mely közvetlenül gyártja X-et, akkor létezik (Y, X) él (m̄, ō)-ben,
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következésképpen (m̄, ō) teljeśıti az (A2) feltételt. Ellenkező esetben X -et
nem gyártja egyetlen ō-beli műveleti egység sem, de bemenete ō legalább
egy műveleti egységének. Akkor a ō defińıciója alapján igaz, hogy ez o-
ra is érvényes. Ez azt jelenti, hogy X ∈ matin(op(δ)) = matin(Oδk[mk])
és X 	∈ matout(op(δ)) = matout(Oδk[mk]) ami ellentmond a δ ∈ S∗(M) fel-
tevésünknek. Következésképpen ez az eset nem lehetséges, és ı́gy (m̄, ō)
teljeśıti az (A2) feltételt.

Az (A3) feltétel teljeülése (m̄, ō)-ra az ō defińıciójából következik.
Végül, mivel m̄ = mat(ō), ezért (m̄, ō) az (A4) feltételt is teljeśıti, tehát
(m̄, ō) M egy lehetséges megoldás struktúrája.

Következő lépésként igazoljuk, hogy o = ō. A ō defińıciója alapján
ō ⊆ o. Másfelöl i szerinti indukcióval bizonýıtjuk, hogy Oδi[mi] ⊆ ō. Ha i = 1
és u ∈ Oδ1[m1], akkor létezik olyan v ∈ o műveleti egység, melyre u ≡ v és v
közvetlenül gyárt végterméket. Akkor az ō defińıciójából v ∈ ō, továbbá mi-
vel u ≡ v és (m̄, ō) egy lehetséges megoldás struktúra, ezért u és v egyidőben
elemei az (m̄, ō)-nek, és ı́gy u ∈ ō. Most legyen 1 ≤ i < k és feltételezzük,
hogy az álĺıtás igaz Oδi[mi]-ra. Legyen u ∈ Oδi+1[mi+1]. Akkor két lehetőség
van. Ha u ∈ Oδi[mi], akkor az indukciós feltevés szerint u ∈ ō. Ellenkező
esetben létezik olyan v ∈ o műveleti egység, melyre u ≡ v és v gyárt legalább
egy bemeneti anyagot a Oδi[mi] halmaz műveleti egységei számára. Akkor,
ō defińıciója alapján v ∈ ō. Másfelöl, mivel u ≡ v és (m̄, ō) egy lehetséges
megoldás struktúra, teljesül az u ∈ ō tartalmazás. Következésképpen o = ō,
és ı́gy az m és m̄ defińıciói alapján (m, o) = (m̄, ō).

A bizonýıtás befejezéseként vegyük észre, hogy a ρ defińıciójából
következik a ρ((m, o)) = δ egyenlőség.

5.1.3. Lemma. ([21]) Legyen M = (P, R, O) egy PNS probléma strukturá-
lis modellje. Ha (m, o) a PNS-3 probléma egy optimális megoldása, akkor
ρ((m, o)) ∈ S∗(M).

Bizonýıtás Legyen (m, o) ∈ S(M) a PNS-3 probléma egy optimális megol-
dása, melyre ρ((m, o)) = δ. Igazoljuk, hogy δ ∈ S∗(M). Vegyük észre, hogy
a bizonýıtáshoz elegendő megkonstruálni egy δt[mt], t = 0, 1, . . . , k irreguláris
döntési leképezés sorozatot úgy, hogy δt[mt] ≺ δt+1[mt+1], t = 0, 1, . . . , k − 1,
és icl(δk[mk]) = δ. Ehhez tegyük fel, hogy van egy δt[mt], t = 0, 1, . . . , i,
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sorozatunk, melyre δt[mt] ≺ δt+1[mt+1], t = 0, 1, . . . , i − 1, és minden t =
0, 1, . . . , i-re és X ∈ mt-re δ(X) = δt(X). Nyilvánvalóan m0 = ∅ és δ0[∅] egy
megfelelő sorozat i = 0-ra. Most két esetet fogunk megkülönböztetni.

1. eset. (matin(Oδi[mi]) ∪ P ) \ (matout(Oδi[mi]) ∪ R) 	= ∅.

Legyen Y egy tetszőlegesen rögźıtett elem a fenti halmazból. Akkor
∆(Y ) ∩ Oδi[mi] = ∅, ugyanis ellenkező esetben létezne egy u = (α, β) ∈
Oδi[mi] műveleti egység Y ∈ β-val, ami ellentmondana Y választásának.
Jelöljük most δ(Y )-t Q-val, továbbá legyen ≡∆(Y ) az ≡ összevonásos ek-
vivalencia reláció ∆(Y )-ra való szűḱıtése. Igazoljuk, hogy Q a ∆(Y ) egyes
≡∆(Y ) szerinti ekvivalencia osztályainak egyeśıtése. Ennek érdekében legyen
u, v ∈ ∆(Y ), u ∈ Q és u ≡ v. Akkor u ∈ o, és mivel (m, o) egy le-
hetséges megoldás struktúra és u ≡ v, ezért v ∈ o. Így δ defińıciója alapján
v ∈ Q = δ(Y ). Következésképpen Q egyeśıtése a ∆(Y ) bizonyos ekvivalen-
cia osztályainak. Most legyen δi+1[mi+1] = δi[mi] ∪ {(Y, Q)}. Nyilvánvalóan
δ(X) = δi+1(X), ∀X ∈ mi+1, és ı́gy δi+1[mi+1] egy irreguláris kiterjesztése a
δi[mi] -nak, mely azonos a δ-val az mi+1 halmazon. Ily módon a

(matin(Oδi[mi]) ∪ P ) \ (matout(Oδi[mi]) ∪ R) 	= ∅

esetben létezik a sorozatnak következő tagja.

2. eset. (matin(Oδi[mi]) ∪ P ) \ (matout(Oδi[mi]) ∪ R) = ∅.

Megmutatjuk, hogy icl(δk[mk]) = δ ahol k = i. Legyen ezúttal o′ =
op(icl(δk[mk]). Akkor o′ = Oδk[mk ]. Másfelöl minden u ∈ Oδk[mk] műveleti
egységre létezik olyan X ∈ mk anyag és v műveleti egység (mely nem feltétlen
különbözik u-tól) úgy, hogy v ∈ δk(X) és u ≡ v. Mivel δk(Y ) = δ(Y ), ∀Y ∈
mk, ezért v ∈ δ(X), és ı́gy v ∈ o. Most az u ≡ v-ből azt kapjuk, hogy u ∈ o.
Következésképpen o′ ⊆ o.

Az o′ = o egyenlőség igazolásához tegyük fel, hogy o′ ⊂ o. Mivel
icl(δk[mk]) ∈ S∗(M), ezért a 2.6.2. és 5.1.2. lemmákból következik, hogy
létezik olyan (m′, o′) ∈ S(M) amire ρ((m′, o′)) = icl(δk[mk]). Akkor, mivel
o′ ⊂ o és a súlyok mind pozit́ıvak, azt kapjuk, hogy

∑
u∈o′

w(u) <
∑
u∈o

w(u)
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ami ellentmondás, mivel (m, o) a PNS-3 feladat optimális megoldása. Kö-
vetkezésképpen o = o′, és ı́gy icl(δk[mk]) = δ, amivel igazoltuk a lemmát.

A 5.1.2. és 5.1.3. lemmák alapján azt kapjuk, hogy a PNS-5 prob-
léma helyett megoldhatjuk az alábbi feladatot:

(PNS-7) min

{ ∑
u∈op(δ)

w(u) : δ ∈ S∗(M)

}
.

A PNS-7 feladat megoldására egy új B&B eljárást fogunk kidolgozni.

A szétválasztási szabály megadásához definiáljuk a ϑ(δ[m]) függ-
vényt minden δ[m] ∈ ΣM irreguláris döntési leképezésre a következőképpen:

ϑ(δ[m]) = {δ′ : δ′ ∈ S∗(M)&(∃δ̄[m̄] ∈ ΣM)(δ[m] � δ̄[m̄] & icl(δ̄[m̄]) = δ′)}.

Figyeljük meg, hogy ϑ(δ0[∅]) = S∗(M). Egyébként ϑ(δ[m])-et a következő-
képpen tudjuk szemléltetni. ϑ(δ[m]) a δ[m] azon irreguláris kiterjesztéseit
tartalmazza, melyek a PNS-7 feladatnak lehetséges megoldásai; ezek min-
degyike megkapható egy irreguláris kiterjesztés sorozattal és a irreguláris
lezárás művelettel. Ezen szemléltetés alapján a ϑ(δ[m]) elemeit δ[m] irre-
guláris lehetséges megoldás kiterjesztéseinek h́ıvjuk.

A bevezetett ϑ függvényre vonatkozóan vegyük észre, hogy ha δ[m]
és δ′[m′] két olyan irreguláris döntési leképezés, melyre δ(X) 	= δ′(X) vala-
mely X ∈ m ∩ m′-re, akkor

ϑ(δ[m]) ∩ ϑ(δ′[m′]) = ∅.
A fentiek értelmében bármely δ[m] ∈ ΣM-ra, ha δ[m]-nek van legalább egy
nem reguláris kiterjesztése, akkor definiálhatjuk a ϑ(δ[m]) nem feltétlen nem
triviális part́ıcióját. Ugyanis könnyen belátható, hogy ha δt[m ∪ {X}] =
δ[m] ∪ {(X, KJt)}, t = 1, 2, . . . , k, irreguláris kiterjesztései δ[m]-nek, akkor
a ϑ(δt[m ∪ {X}]), t = 1, 2, . . . , k, halmazok a ϑ(δ[m]) egy (nem feltétlen
nem triviális) part́ıcióját alkotják. Az ilyen part́ıciók képezik az eljárásunk
szétválasztási szabályát. Pontosabban az aktuális B&B fa minden levele
ϑ(δ[m]) alakú lesz, a ϑ(δt[m∪{X}]), t = 1, 2, . . . , k halmazok pedig az adott
levél leszármazottai lesznek.
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A korlátozás és szétválasztás eljárás másik fő összetevője a korlátozó
függvény, mely a B&B fa minden leveléhez hozzárendeli az annak meg-
felelő lehetséges megoldások célfüggvényértékeinek egy alsó korlátját. El-
járásunkban egy levél ϑ(δ[m]) alakú lesz, melyhez a δ[m] irreguláris lehetsé-
ges megoldás kiterjesztései tartoznak. Mivel a műveleti egységeknek pozit́ıv
súlyuk van, ezért δ[m] bármely kiterjesztésének súlya nem kisebb, mint az
Oδ[m] műveleti egységek súlyainak összege. Ennek megfelelően a g∗ korlátozó
függvényt a következőképpen definiáljuk:

g∗(δ[m]) =
∑

u∈Oδ[m])

w(u).

A korlátozás és szétválasztás implementációjának előseǵıtése érdeké-
ben a következő jelöléseket, szabályokat és feltételezéseket fogjuk használni.

(a) Az eljárás során L fogja jelölni az élő levelek halmazát, z∗ fogja
tartalmazni a célfüggvény aktuális pillanatig elért legjobb értékét, z pedig a
megfelelő legjobb lehetséges megoldást.

(b) A levél kiválasztási szabály a következő: a ϑ(δ[m]) levelet akkor
választjuk ki L-ből, ha

g∗(δ[m])/|m|

értéke minimális, feltéve, hogy m 	= ∅. Ha több ilyen levél van, akkor ezek
közül tetszőlegesen választunk egyet.

(c) Az anyagkiválasztás meghatározásához annak hatásait a követ-
kezőképpen vizsgáljuk. Figyeljük meg, hogy az aktuális

T = (matin(Oδ[m]) ∪ P ) \ (matout(Oδ[m]) ∪ R)

halmaz a szükséges, de még nem termelt anyagokat tartalmazza. Akkor egy
olyan X-et fogunk választani, melyre a |(matout(∆(X))∩T | értéke maximális.

(d) Az eljáráshoz hozzátartozik a lehetséges megoldások felismerése:
akkor találtunk lehetséges megoldást, ha teljesül az alábbi egyenlőség:
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(matin(Oδ[m]) ∪ P ) \ (matout(Oδ[m]) ∪ R) = ∅.

(e) A szétválasztási lépésben egy részprobléma akkor van feldeŕıtve,
ha δ[m]-nek a választott X anyagra nézve nincs irreguláris kiterjesztése.

Előretekintő B&B algoritmus (LABBA, Look Ahead B&B Algo-
rithm) ([21])

Inicializálás

• Határozzuk meg az összevonásos ekvivalencia relációt.

• Legyen L := {ϑ(δ0[∅])}, z∗ := ∞, s := ∅, és r := 0.
Határozzuk meg g∗(δ0[∅])-t.

Iteráció (r. iteráció)

1. Befejezés

Ha L = ∅, akkor VÉGE: az s tartalmazza az optimális megoldást és z∗

tartalmazza az optimum értéket. Egyébként térjünk a 2. lépésre.

2. Levélkiválasztás

Ha L egyelemű, akkor válasszuk ki az egyetlen elemét. Egyébként
válasszunk egy olyan ϑ(δ[m]) levelet L-ből, melyre a g∗(δ[m])/|m| érték
minimális; ha több ilyen érték van, akkor válasszunk egyet tetszőlegesen
közülük.

3. Megoldástesztelés

Ha T = (matin(Oδ[m]) ∪ P ) \ (matout(Oδ[m]) ∪ R) 	= ∅, akkor térjünk a
4. lépésre.
Egyébként alkossuk meg a δ[m] irreguláris lezárását, jelölje ezt δ′,
továbbá ha w(δ′) < z∗, akkor aktualizáljuk a z∗ és s értékeket: z∗ :=
w(δ′) és s := {δ′}; ellenkező esetben z∗ és s értékei nem változnak.
Legyen Φ := ∅ és térjünk a 6. lépésre.
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4. Szétválasztás

Válasszunk egy X ∈ T anyagot, melyre |(matout(∆(X))∩T | maximális,
és alkossuk meg a δ[m] X szerinti irreguláris kiterjesztéseit.
Ha nem létezik δ[m]-nek ilyen kiterjesztése, akkor legyen L := L \
{ϑ(δ[m])} és térjünk az 1. lépésre.
Egyébként legyenek δi[mi], i = 1, 2, . . . , k a δ[m] X szerinti irreguláris
kiterjesztései. Akkor legyen Φ = {ϑ(δi[mi]) : 1 ≤ i ≤ k}, és térjünk az
5. lépésre.

5. Korlátozás

Számoljuk ki a g∗(δi[mi]) értékeket i = 1, 2, . . . , k-ra, és térjünk a 6.
lépésre.

6. Feldeŕıtés

Definiáljuk újra az L halmazt a következőképpen:

L := {ϑ(δ̄[m̄]) : ϑ(δ̄[m̄]) ∈ (L \ {ϑ(δ[m])}) ∪ Φ, g∗(δ̄[m̄]) < z∗}.
Legyen r := r + 1 és kezdjünk egy új iterációt (térjünk az 1. lépésre).

Az algoritmus hatékonyságára vonatkozóan empirikus anaĺıziseket
végeztünk, melyek eredményeit a következő részben ismertetjük.

5.2. Empirikus anaĺızis

5.2.1. A vizsgálatok ismertetése

Az ([25])-ban ismertetett empirikus anaĺızisek alapján az MABBA
eljárás tűnt a legjobbnak az addig kidolgozottak közül, ezért a mi algorit-
musunkat ezzel hasonĺıtottuk össze. Ennek érdekében kétféle PNS problé-
maosztályt vizsgáltunk. (Az osztályok és generálásuk részletesebb léırása
a ([25])-ban található.) Mindkét osztály esetén 1000 darab 100 anyagot
tartalmazó PNS problémát generáltunk véletlenszerűen, melyeket mindkét
eljárással (MABBA és LABBA) megoldottunk ([21]).
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A 5.1. ábra a futási idők átlagának százalékos arányát, mı́g a 5.2.
ábra az iterációk számának százalékos arányát mutatja.
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5.2.2. Konlúziók

Az empirikus vizsgálatokra vonatkozóan hangsúlyoznunk kell, hogy
azok következtetései csak a vizsgált feladatosztályokra jelenthetők ki bi-
zonyossággal. Megjegyezzük továbbá, hogy a vizsgált osztályok egyike (A
feladatosztály (lsd. [25])) több gyakorlati alkalmazásra épül.

Az empirikus anaĺızisünk azt mutatja, hogy úgy futási idő, mint ite-
rációszám szempontjából az LABBA lényegesen jobbnak bizonyult a régebbi
MABBA algoritmusnál. A hatékonyság javulása annak köszönhető, hogy az
LABBA a többi eljárástól az alábbiakban különbözik:

(1) a lehetséges megoldások halmaza a PNS-7-ben kisebb, mint az
előző megfogalmazásokban,
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(2) az ekvivalens műveleti egységek súlyát figyelembe vevő g∗ korlá-
tozó függvény élesebb az előző korlátozó függvényeknél,

(3) az anyagkiválasztás következményeinek tanulmányozása a B&B
fa mélységének csökkenését eredményezi.

Ezen szempontok alapján várható, hogy az LABBA más feladatosz-
tályok esetén is elődeinél hatékonyabban oldja meg a feladatot.



6. fejezet

Parciális leszámlálási eljárás

Ez a fejezet a szerző saját eredményeit tartalmazza, melyek a [23]-
ben lettek publikálva.

A 2.7.2 részben bemutattunk egy [16]-ben kidolgozott eljárást, mely
a PNS-5 probléma összes lehetséges megoldását felsorolja. Lehetnek azon-
ban olyan esetek is, amikor csak az optimális megoldások érdekelnek, de
azokat mind fel szeretnénk sorolni. A feladat megoldható a 2.7.2 részben
léırt teljes leszámlálással is, például úgy, hogy először megkeressük az optimu-
mot, majd utána a teljes leszámlálásnál ugyan az összes lehetséges megoldást
végigjárjuk, de csak az optimális megoldásokat tartjuk meg. Ez a megoldás
azonban egyáltalán nem hatékony, hiszen sok felesleges lehetséges, de nem
optimális megoldást vizsgál meg. Ezért kidolgoztunk egy ennél hatékonyabb
eljárást, mely ugyan még mindig nem csak az optimális megoldásokat találja
meg, viszont az általa felsorolt megoldás halmaz, mely tartalmazza az összes
optimális megoldást, az empirikus vizsgálatokból ı́télve, lényegesen kisebb,
mint az összes lehetséges megoldások halmaza, hiszen az algoritmus a teljes
leszámlálásnál sokkal hatékonyabbnak bizonyult.

A fejezet első részében ezt a parciális leszámlálásnak nevezett eljárást
fogjuk bemutatni, mı́g a fejezet második részében tárgyaljuk a teljes és
parciális leszámlálási algoritmusok összehasonĺıtására végzett empirikus vizs-
gálatokon kapott eredményeket.

76
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6.1. A parciális leszámlálás bemutatása

Az alábbi eljárás nem sorolja fel az összes lehetséges megoldást, vi-
szont felsorlja az összes optimális megoldást. Előnye, hogy kevesebb döntési
leképezés vizsgálatát igényli, mint a teljes leszámlálás, és ennélfogva hatéko-
nyabban dolgozik.

Parciális leszámlálás (Partial Enumeration, [23])

Inicializálás

• Határozzuk meg az összevonásos ekvivalenciát. Legyen o0 azon műve-
leti egységek halmaza, melyeknek minden lehetséges megoldás struktú-
rában szerepelniük kell. Legyen m0 = ∅ és i = 0.

Iteráció

1. Legyen δi[mi] az m̂i =< Aj1, . . . , Ajk
> tartománnyal rendelkező ak-

tuális irreguláris döntési leképezés. Továbbá legyen

Ti = (matin(Oδi[mi]) ∪ P ) \ (matout(Oδi[mi]) ∪ R),

és térjünk a 2. lépésre.

2. Ha Ti = ∅, akkor alkossuk meg a δi[mi] irreguláris lezárását, melyet
jelöljünk δ′i-val. Aktualizáljuk S értékét: S = S ∪ {δ′i}, és térjünk a 4.
lépésre. Egyébként térjünk a 3. lépésre.

3. Válasszunk egy legkisebb indexű X anyagot Ti-ből, melyre

|matout(∆(X)) ∩ Ti|
maximális. Vizsgáljuk meg a δi[mi] döntési leképezés ∆(X) \ o0 meg-
felelő részhalmazaira való irreguláris kiterjesztéseit a |= lineáris ren-
dezés figyelembe vételével.
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Válasszuk az első olyan KJ ⊆ ∆(X) \ o0 részhalmazt, melyre δi[mi] ∪
{(X, K ′

J)} a δi[mi] egy irreguláris kiterjesztése, ahol

K ′
J = KJ ∪ (∆(X) ∩ o0).

feltételezve, hogy létezik ilyen K ′
J . Legyen m̂i+1 = m̂i

∨{X} és

δi+1[mi+1] = δi[mi] ∪ {(X, K ′
J)}.

Legyen i = i + 1, és térjünk a következő iterációs lépésre.

Ha ∆(X) egyetlen megfelelő részhalmaza sem lehet a δi[mi] irreguláris
kiterjesztése, akkor térjünk a 4. lépésre.

4. Ha δi(Ajk
) ⊂ ∆(Ajk

) és van olyan KJ ⊆ ∆(Ajk
)\o0 részhalmaz, melyre

δi(Ajk
) 	= K ′

J , δi(Ajk
) ≤ K ′

J , ahol

K ′
J = Kj ∪ (∆(X) ∩ o0)

és a

{(Aj1, δi(Aj1)} ∪ · · · ∪ {(Ajk−1
, δi(Ajk−1

)} ∪ {(Ajk
, K ′

J)}
döntési leképezés a {(Aj1 , δi(Aj1)} ∪ · · · ∪ {(Ajk−1

, δi(Ajk−1
)}-nak egy

irreguláris kiterjesztése, akkor térjünk a 5. lépésre. Egyébként térjünk
a 6. lépésre.

5. Válasszuk a ∆(Ajk
) \ o0 |= szerinti első 4. pontbeli feltételt kieléǵıtő

részhalmazát és jelöljük KJ -vel. Legyen

m̂i+1 =< Aj1, . . . , Ajk
>, és

δi+1[mi+1] = {(Aj1, δi(Aj1)} ∪ · · · ∪ {(Ajk−1
, δi(Ajk−1

)}) ∪ {(Ajk
, K ′

J)},

ahol

K ′
J = Kj ∪ (∆(X) ∩ o0).

Legyen i := i + 1, és térjünk a következő iterációs lépésre.

6. Legyen k = k − 1. Ha k = 0, akkor VÉGE. Egyébként térjünk a 4.
lépésre.
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Az, hogy az eljárás a megfelelő lehetséges megoldásokat határozza
meg, következik abból, hogy S pontosan az S∗(M) elemeit fogja tartalmazni
és ı́gy a 5.1.3. lemma alapján ezek tartalmazni fogják a PNS-3 összes op-
timális megoldását.

6.2. Empirikus anaĺızis

Az, hogy a parciális leszámlálás a teljes leszámlálásnál hatékonyab-
ban oldja meg az optimális megoldások felsorolásának feladatát, a fenti el-
méleti eredmények fényében várható volt. Ennek mértékét elméleti mód-
szerekkel azonban meglehetősen nehéz feladat megadni, ezért ismételten az
empirikus vizsgálatokhoz folyamodtunk. Minden n = 20, 21, . . . , 29-re ge-
neráltunk 1000 darab n anyagot tartalmazó maximális struktúrájú véletlen
PNS problémát a [25] cikknek megfelelően. Minden problémát megoldottunk
a teljes illetve parciális leszámlási algoritmussal, és minden megoldás esetén
mértük a futási időt és meghatároztuk az iterációs lépések számát. Végül át-
lagoltuk az eredményeket, melyeket a 6.1. illetve a 6.2. ábrákon láthatunk.

Az 5.1.2. lemmából tudjuk, hogy S∗(M) ⊆ S ′(M). Szerettük volna
azonban megbecsülni az eltérés mértékét is, ezért minden feladatra a két
halmaz számosságának arányát is meghatároztuk. A 6.3. ábra a kapott
|S∗(M)|/|S ′(M)| arányok átlagait szemlélteti a különböző méretű feladatok
esetén.
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Futási idõk átlagai
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6.1. ábra.

Végül ḱıváncsiak voltunk arra is, hogy a parciális leszámlálás meny-
nyivel lesz hatékonyabb a teljes leszámlálásnál egy tényleges gyakorlati prob-
léma megoldásában, ezért az összehasonĺıtást a [16]-ben léırt Folpet (N-(tri-
chloromethylthio)phthalamide) folyamatra vonatkozóan is elvégeztük és a
következő eredményeket kaptuk:

Teljes leszámlálás Parciális leszámlálás

Iterációs lépések száma 15573 2305
Futási idő (mp) 36 9
S ′(M) és S∗(M) 3465 1575

Ugyan az arányok szempontjából lényegtelen, de a teljesség kedvé-
ért megjegyezzük, hogy az empirikus vizsgálatok egy AMD-K6(tm)-2/333
CPU-val rendelkező PC-n voltak elvégezve.
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Az iterációs lépések számainak átlagai
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6.2.1. Konklúziók

Az empirikus anaĺızisek azt mutatták, hogy úgy a futási idő, mint
az iterációs lépések számában az új parciális leszámlálás jobbnak bizonyult
a korábbi teljes leszámlálásnál. Hasonló eredményeket kaptunk a valós ipari
alkalmazás esetén is. Mindez persze nem jelenti azt, hogy a teljes leszámlálás
a továbbiakban szükségtelen lenne, hiszen a hátránya előnye is egyben, hogy
az összes lehetséges megoldást meg tudja adni, ellentétben a parciális le-
számlálással, ha viszont csak az optimális megoldásokat keressük, akkor azok
felsorolására az új parciális leszámlálás sokkal alkalmasabbnak bizonyult.

Az eljárások által meghatározott lehetséges megoldáshalmazokkal
kapcsolatban viszont nyitott kérdés maradt az, hogy

a parciális leszámlálás milyen feltételek mellett képes csak az op-
timális megoldásokat, illetve az összes lehetséges megoldást felsorolni.
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Az |S*(M)| / |S'(M)| arányok átlagai
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7. fejezet

Automataelméleti megközeĺıtés

Ebben a fejezetben a PNS probléma egy eddigiektől eltérő jellegű
megoldását fogjuk bemutatni. A [28] cikkben a PNS egy módośıtott változata
lett kidolgozva, melynek megoldására egy automataelméleti megközeĺıtésen
alapuló eljárást került kidolgozásra. Az eljárás alapötlete az, hogy a módośı-
tott PNS probléma adott példányához hozzárendelhető egy automata, melyre
teljesül az, hogy az eredeti feladat megoldása visszavezethető az automata
átmeneti gráfjában egy legrövidebb út megtalálására. A további kutatások
során ([22]) kiderült, hogy ez az algoritmus tovább jav́ıtható oly módon, hogy
a legrövidebb út keresésével egyidőben az átmeneti gráfnak csak egy részét
generáljuk.

7.1. A módośıtott PNS probléma

A 2.1.3 defińıcióban az [18] és [15] alapján megadtunk (A1) - (A4)
feltételeket, melyeket egy folyamat részgráfnak ki kell eléǵıtenie ahhoz, hogy
lehetséges megoldás struktúrának tekintsük. Ezek a feltételek azonban még
mindig megengedik olyan lehetséges megoldás struktúrák létezését, melyek
a valáságban nem tudnak végrehajtódni. A végrehajthatóság biztośıtása
céljából a [28]-ban az (A1) - (A4) feltételek ki lettek egésźıtve egy újabb
feltétellel és az ı́gy kapott feladatot módośıtott PNS problémának ne-
vezték el. Ennek a megoldására a [29]-ban léırt ötletet fogjuk továbbfejlesz-

83
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teni úgy, hogy definiálunk a [28]-ban léırt módon egy automatát, melyről a
[28] alapján tudjuk, hogy a módośıtott PNS probláma optimális megoldásá-
nak megtalálása ekvivalens az automata átmeneti gráfjában egy legrövidebb
út megtalálásával, és ily módon feladatunk az átmeneti gráfban egy ilyen
legrövidebb út minél hatékonyabb megtalálása lesz.

Mindenekelőtt azonban definiálnunk kell a módośıtott PNS problé-
mát, ami azt jelenti, hogy meg kell határoznunk a végrehajthatósági feltételt.
Ehhez először is egy eljárást fogunk ı́rni, amit folyamat gráf sźınező eljá-
rásának fogunk nevezni. Ennek érdekében legyen (M̄, Ō) egy folyamat gráf
és R egy anyaghalmaz. Azt mondjuk, hogy (M̄, Ō) az R által sźınezhető,
ha az (M̄, Ō) minden csúcspontja besźınezhető az alábbi eljárással.

Sźınező eljárás ([28]

1. Sźınezzük be M̄ ∩ R minden anyagát.

2. Mindaddig, amı́g van olyan műveleti egység, melynek minden bemenete
sźınezve van, válasszunk egy ilyen műveleti egységet és sźınezzük be
annak kimeneti anyagait. Ha nincs ilyen műveleti egység, akkor VÉGE.

Megjegyzendő, hogy a sźınezhetőség tulajdonképpen a végrehajtha-
tóságot jelenti. Ha egy folyamat gráf sźınezhető, akkor minden műveleti
egységéhez hozzárendelhető az az időpont, amikor a kimeneti anyagait be-
sźıneztük. Megfelelő időegység választásával, adott műveleti egység sźınezési
időpontját a műveleti egység folyamatban való ütemezési időpontjának is
tekinthetjük. Egy ilyen ütemezett folyamat nyilvánvalóan elvégezhető, ami
nem jelenti azt, hogy az ı́gy kapott ütemezés optimális is lenne. Ford́ıtva, ha
egy folyamat végrehajtható, akkor az abban résztvevő műveleti egységeknek
létezik egy ütemezése, és ebben a sorrendben a folyamat műveleti egységei
be is sźınezhetők.

Most már definiálhatjuk a végrehajthatósági feltételt:

(A5) (M̄, Ō) az R által sźınezhető.

Egy PNS probléma azon lehetséges megoldás struktúráit, amelyek
az (A1) - (A4) feltétel mellett még az (A5) feltételt is teljeśıtik, módośıtott
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lehetséges megoldás struktúráknak nevezzük. Ha M = (P, R, O) egy
PNS probléma strukturális modellje, akkor jelöljük S(M)-el a módośıtott
lehetséges megoldás struktúrák halmazát. Most megadhatjuk a megoldás
struktúrákhoz rendelt optimalizációs problémát:

(PNS-8) min

{∑
u∈Ō

w(u) : (M̄, Ō) ∈ S(M)

}
.

A továbbiakban módośıtott PNS problémán a (PNS-8) problé-
mát értjük. A [28]-ban tárgyaltak szerint a (PNS-8) is egy NP nehéz feladat,
ami az eredeti PNS-2 probléma NP nehézségének [2]-ben léırt igazolásához
hasonlóan bizonýıtható.

Nyilvánvalóan S(M) egy véges, nem üres halmaz, ı́gy a PNS-8-nak
van optimális megoldása. Másfelöl hatékonyan eldönthető, hogy S(M) = ∅
teljesül-e a következőképpen. A 2.3 alfejezetben bemutattunk egy algo-
ritmust, mely polinomiális időben eldönti az ”S(M) = ∅ ?” kérdést és -
amennyiben létezik - meghatározza az (M̄, Ō) maximális struktúrát. Ha
(M̄, Ō) létezik, akkor rátérhetünk annak sźınezésére, mely meghatározza ab-

ban azt az (M̂, Ô) folyamat részgráfot, mely azon műveleti egységeket tartal-
mazza, melyek kimenete sźınezett. Könnyen bizonýıtható, hogy S(M) 	= ∅
akkor és csakis akkor, ha P ⊆ M̂ . Ebben az esetben törölve (M̂, Ô)-ből
azokat a műveleti egységeket, melyek nem teljeśıtik az (A3) feltételt, meg-
kapjuk (M, O) azon legnagyobb folyamat részgráfját, mely teljeśıti az (A1)-
(A5) feltételeket. Az eldönthetőség alapján a továbbiakban csak módośıtott
lehetséges megoldásokkal rendelkező módośıtott PNS problémákkal fogunk
foglalkozni.

Megjegyezzük továbbá, hogy amennyiben az M = (O, P, R) struk-
turális modell (M, O) folyamatgráfja körmentes, úgy az eredeti és a módośı-
tott PNS problémák egyebeesnek. Körmentes PNS problémák megoldásával
kapcsolatosan bővebben a [7] és [31] cikkekben olvashatunk.
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7.2. A módośıtott PNS probléma

megoldása

7.2.1. Automataelméleti alapfogalmak

Legyen X egy tetszőleges nem üres halmaz. Jelölje X∗ az X feletti
véges szavak halmazát, λ az üres (0 karakterből álló) szót, és legyen X+ =
X∗ \ {λ}. Tetszőleges p, q ∈ X∗ szavakra azt mondjuk, hogy p részszava
q-nak, és ezt p ∝ q-vel jelöljük, ha p megkapható q-ból néhány karakter
törlésével.

7.2.1. Defińıció. Automata alatt egy olyan A = (A, X) párost értünk,
melyben A az állapotok véges, nem üres halmaza, X a bemeneti jelek
véges, nem üres halmaza, és minden x ∈ X egy egyoperandusú xA műveletet
határoz meg A-n. Minden a ∈ A, x ∈ X-re axA úgy értelmezhető, mint
az az állapot, melybe A kerül az x bemeneti jel feldolgozása következtében.
Tetszőleges p ∈ X∗ szóra apA indukt́ıv módon definiálható a követlezőképpen:

(1) aλA = a,

(2) apA = (avA)xA, ha p = vx, v ∈ X∗ és x ∈ X.

7.2.2. Defińıció. Egy A = (A, X) automata átmeneti gráfján egy olyan
GA = (A, E) gráfot értünk, melyben minden a, b ∈ A állapot párra (a, b) ∈ E
akkor és csakis akkor, ha létezik olyan x ∈ X bemeneti jel, melyre axA = b.
Az átmeneti gráf éleit szokás szerint a megfelelő bemeneti jellel ćımkézzük.

7.2.3. Defińıció. Egy felismerő egy olyan A = (A, a0, F ) rendszer, mely
egy A = (A, X) automatából, egy a0(∈ A) kezdőállapotból, és egy F (⊆
A) végállapotok halmazából áll. Az A által felismert vagy elfogadott
nyelvet a következő halmaz definiálja:
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L(A) = {p : p ∈ X∗ and a0p
A ∈ F}.

Azt is szoktuk mondani, hogy L(A) felismerhető (elfogadott) az A auto-
matával.

7.2.2. A probléma megoldása

A PNS-8 probléma bármely strukturális modelljéhez hozzá fogunk
rendelni egy automatát úgy, hogy a probléma módośıtott lehetséges megoldás
struktúrái léırhatók legyenek az automata olyan bemeneti szavaival, melyeket
elfogad egy, az automata alapján feléṕıtett, felismerő. Akkor az automata
átmeneti gráfját a műveleti egységek súlyaival ćımkézve, a súlyozott gráfban
a kezdőállapotból a végállapotok halmazába vezető bármely legrövidebb út
a PNS strukturális modelljének egy optimális megoldását határozza meg.

Az automata megéṕıtéséhez legyen M = (O, P, R) egy PNS problé-
ma strukturális modellje és w a súlyfüggvény.

A B = (B, O′) automatát a következőképpen definiáljuk. Legyen
B = B′ ∪ {�}, melyre B′ = ϕ′(M) és � 	∈ B′, és legyen

O′ = {u : u = (C, D) ∈ O és R ∩ D = ∅}.

Az automata egy állapota megfelel egy adott pillanatban rendel-
kezésre álló anyagok halmazának. Az � állapot a sikertelen átmenetek jelölé-
sére szolgál. Az átmeneteket a követezőképpen definiáljuk. Minden Q ∈ B′

és u = (C, D) ∈ O′-re legyen

QuB =

{
Q ∪ D ha C ⊆ Q
� egyébként,

továbbá

�uB = �.
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7.2.1. Megjegyzés. Ha Q ∈ B, p egy O′ feletti szó, és u ∈ O′ előfordul
p-ben, akkor Q(pu)B = QpB.

A GB ǵráf súlyozását a következőképpen definiáljuk. Ha (Q, Q′) egy
él G-ben, melynek ćımkéi uj1, . . . , ujt, akkor az él súlya

w′ = min{w(uj1), . . . , w(ujt)}
lesz, továbbá egyetlen olyan ujl

, 1 ≤ l ≤ t, ćımkét tartunk meg, melyre
w′ = w(ujl

), a többi ćımkéket töröljük. Jelöljük az ı́gy kapott súlyozott,
ćımkézett gráfot (GB, w)-vel.

Legyen most B = (B, R, F ) egy olyan felismerő, melyre F = {Q :
Q ∈ B′ és P ⊆ Q}. Akkor teljesül az alábbi álĺıtás.

7.2.1. Lemma. ([28]) Minden p = ui1 . . . uik ∈ L(B) szóra, ha [R, RpB]
egy R-ből a (GB, w) egy vágállapotába vezető legrövidebb út, akkor ui1, . . . , uik

páronként különbözők, továbbá (M̄, Ō) a PNS-8-nak egy optimális megoldása,
ahol Ō = {ui1, . . . , uik} és M̄ = mat(Ō).

A fentiek alapján, egy optimális megoldás meghatározásához a kö-
vetkező lépéseket kell megtennünk:

1. Éṕıtsük meg a B automata átmeneti gráfját és határozzuk meg a
végállapot halmazt.

2. Végezzük el az átmeneti gráf súlyozását és újraćımkézését az előzőek-
ben léırtak szerint oly módon, hogy végül minden él egyetlen ćımkével
rendelkezzen.

3. Határozzunk meg egy R-ből F -be vezető legrövidebb utat.

4. A kapott legrövidebb út seǵıtségével határozzuk meg a PNS-8 egy op-
timális megoldását.

7.2.2. Megjegyzés. Figyeljük meg, hogy az eljárás általában nem igényli a
teljes átmeneti gráf megéṕıtését, hanem elegendő az R-ből generált részgráf
elkésźıtése.
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Mivel az állapotok M̄ részhalmazai, a fenti megjegyzés alapján fel-
éṕıthetünk egy eljárást, mely az átmeneti gráfnak csak egy részgráfját ge-
nerálja, és ezzel egyidőben egy megfelelő legrövidebb utat is meghatároz a
gráfban.

7.3. A PAT algoritmus

A továbbiakban egy, a szerző saját munkájának eredményeként létre-
jött és a [22]-ban publikált eljárást fogunk bemutatni, mely a fenti és néhány
további észrevétel alapján az előző algoritmusnál hatékonyabban fogja meg-
találni az optimális megoldást.

7.3.1. Megjegyzés. Adott állapotban általában a sikeres átmenetet biz-
tośıtó bemeneti jelek az O′ halmaznak csupán egy valódi részhalmazát képe-
zik.

7.3.2. Megjegyzés. Legyenek Q és Q′ állapotok, melyek legkisebb távolsá-
ga R-től w = w([R, Q]) illetve w′ = w([R, Q′]). Ha Q′ ⊆ Q és w′ ≥ w, akkor
Q′ és a Q′-be bemenő és kimenő élek törölhetők az átmeneti gráfból.

Most definiáljunk egy újabb � relációt a műveleti egységek O′ hal-
mazán.

7.3.1. Defińıció. Minden u, v ∈ O′-re legyen

v � u ha u = v vagy matout(v) ∩ matin(u) 	= ∅.

Ez a reláció reflex́ıv és tranzit́ıv. Jelölje
∗� a � tranizit́ıv lezárását.

7.3.2. Defińıció. Azt mondjuk, hogy két u, v ∈ O′ műveleti egység egymást

kölcsönösen eléri, ha u
∗� v és v

∗� u.
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Könnyen belátható, hogy a kölcsönös elérhetőség reflex́ıv, tranzit́ıv
és szimmetrikus, azaz ekvivalencia reláció O′-n, melyet ��-nel fogunk jelölni.

7.3.3. Megjegyzés. Felmerül a kérdés, hogy mennyire hatékonyan valóśıt-
ható meg a �� reláció meghatározása. Legyen (M, O) a PNS probléma fo-
lyamat gráfja, ahol O = {u1, . . . , un} és M = mat(O). Akkor (M, O)-hoz ren-
deljünk hozzá egy másik (Θ, Λ) gráfot a következőképpen. Legyen Θ = O és
bármely 1 ≤ i 	= j ≤ n-re (ui, uj) ∈ Λ ⇐⇒ ui � uj. Ezt lineáris időben meg
tudjuk tenni. Ugyanakkor az is nyilvánvaló, hogy a �� reláció meghatározása
(M, O)-ban ekvivalens az erősen összefüggő komponensek meghatározásával
(Θ, Λ)-ban. Mivel az utóbbi polinomiális (O(n2)) időben elvégezhető ([9]),
a megoldás �� relációra való konvertálása pedig triviális, ezért elmondhat-
juk, hogy a �� reláció hatékonyan meghatározható. A PNS megoldása során
természetesen nem szükséges a (Θ, Λ) gráf tényleges megéṕıtése, az erősen
összefüggő komponenseket meghatározó mélységi bejáráson alapuló algorit-
mus könnyen módośıthaó úgy, hogy közvetlenül az (M, O) gráfban határozza
meg a �� relációt.

Most definiálhatunk egy hasonló, ≪ relációt az O′/ ��-on.

7.3.3. Defińıció. Báremely C, C ′ ∈ O′/ ��-ra C ≪ C ′ ha C = C ′ vagy

léteznek u ∈ C és v ∈ C ′ műveleti egységek úgy, hogy u
∗� v.

7.3.1. Példa. Legyen M = (O, P, R) az 7.1. ábrán látható strukturális mo-
dell:

• M = {X1, X2, . . . , X12},
• R = {X1},
• P = {X11}, és

• O = {u1, u2, . . . , u9}, ahol
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7.1. ábra.

◦ u1 = ({X1}, {X2, X3, X4}),
◦ u2 = ({X1}, {X4, X5}),
◦ u3 = ({X2}, {X6, X7}),
◦ u4 = ({X6}, {X8, X12}),
◦ u5 = ({X7, X8}, {X9}),
◦ u6 = ({X8}, {X2, X10}),
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◦ u7 = ({X3, X4}, {X5, X7, X9}),
◦ u8 = ({X5}, {X2, X10}),
◦ u9 = ({X9, X10}, {X11}).

Akkor u2 � u7 � u8 � u3 � u4 � u6 � u3 � u4 � u5 � u9, és a ��

szerinti ekvivalencia osztályok halmaza C = {C1, C2, . . . , C7}, ahol

• C1 = {u1},
• C2 = {u2},
• C3 = {u3, u4, u6},
• C4 = {u5},
• C5 = {u7},
• C6 = {u8},
• C7 = {u9}.

és C1 ≪ C2 ≪ C5 ≪ C6 ≪ C3 ≪ C4 ≪ C7.

Könnyen belátható, hogy a ≪ reláció reflex́ıv, tranzit́ıv és anti-
szimmetrikus, azaz részben rendezés C-n. [33] alapján tudjuk, hogy min-
den részben rendezés kiegésźıthető lineáris rendezésre. Így, az általánosság
megszorátása nélkül feltételezhetjük, hogy C = {C1, C2, . . . , Ch} valamely
1 ≤ h ≤ |O′|-ra úgy, hogy bármely i, j ∈ {1, . . . , h}-re Ci ≪ Cj-ből követke-
zik i ≤ j. Definiáljuk az � : (O′)∗ → {1, . . . , h} függvényt a következőképpen:

�(p) =

⎧⎨⎩
0 , ha p = λ,
m , ha p ∈ O′, p ∈ Cm

max{�(ut) : 1 ≤ t ≤ l} , ha p = u1 . . . ul ∈ (O′)+.

7.3.4. Defińıció. Kiterjesztett állapoton egy (Rp, p, w(p)) hármast ér-
tünk, ahol p egy olyan szó, mely az automatát az R-ből egy F -beli állapotba
viszi át. Azt mondjuk, hogy (Rp, p, w(p)) egy optimális kiterjesztett álla-
pot, ha egy kiterjesztett állapot és w(p) ≤ w(p′) bármely (Rp′, p′, w(p′)) ki-
terjesztett állapotra.
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7.3.4. Megjegyzés. Ha (Rp, p, w(p)) egy optimális kiterjesztett állapot, ak-
kor p egy legrövidebb út R-ből egy végállapotba.

7.3.1. Lemma. ([22]) Legyen s = (Rp, p, w(p)) egy optimális kiterjesztett
állapot p = u1 . . . ul ∈ (O′)∗-al. Bármely k-ra, melyre 1 ≤ k < l és �(u1) ≤
. . . ≤ �(uk), létezik egy τ : {1, . . . , k + 1} → {1, . . . , k + 1} permutáció úgy,
hogy �(uτ(1)) ≤ . . . ≤ �(uτ(k)) ≤ �(uτ(k+1)), és ha p′ = uτ(1) . . . uτ(k+1)uk+2

. . . ul, akkor s′ = (Rp′, p′, w(p′)) úgyszintén optimális kiterjesztett állapot.

Bizonýıtás Ha �(uk+1) ≥ �(uk), akkor az identikus leképezés egy megfelelő
permutáció. Tegyük fel, hogy �(uk+1) < �(uk). Akkor létezik egy r, 1 ≤
r ≤ k egész szám, melyre �(u1) ≤ . . . ≤ �(ur−1) ≤ �(uk+1) < �(ur) ≤
. . . ≤ �(uk). A C rendezése miatt ez azt jelenti, hogy bármely r ≤ t ≤ k-
ra matout(ut) ∩ matin(uk+1) = ∅. Ebből következik, hogy matin(uk+1) ⊆
Ru1 . . . ur−1, továbbá Ru1 . . . ul = Ru1 . . . ur−1uk+1ur . . . ukuk+2 . . . ul. Ez azt
adja, hogy a

τ(t) =

⎧⎨⎩
t , ha 1 ≤ t < r,
k + 1 , ha t = r,
t − 1 , ha r + 1 ≤ t ≤ k + 1.

permutációval teljesül az álĺıtás.

7.3.2. Lemma. ([22]) Legyen s = (Rp, p, w(p)) egy optimális kiterjesztett
állapot p = u1 . . . ul ∈ (O′)∗-gal. Minden olyan k-ra, melyre 1 ≤ k ≤ l, létezik
olyan τ : {1, . . . , k} → {1, . . . , k} permutáció, melyre �(uτ(1)) ≤ . . . ≤ �(uτ(k))
és ha p′ = uτ(1) . . . uτ(k)uk+1 . . . ul, akkor s′ = (Rp′, p′, w(p′)) egy optimális
kiterjesztett állapot.

Bizonýıtás A 7.3.1. lemma alapján az álĺıtás k szerinti indukcióval
könnyen bizonýıtható.

7.3.3. Lemma. ([22]) Bármely s = (Rp, p, w(p)) optimális kiterjesztett álla-
potra, melyre p = u1 . . . ul, létezik egy τ : {1, . . . , l} → {1, . . . , l} permutáció
úgy, hogy �(uτ(1)) ≤ . . . ≤ �(uτ(l)) és p′ = uτ(1) . . . uτ(l)-re s′ = (Rp′, p′, w(p′))
egy optimális kiterjesztett állapot.
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Bizonýıtás Az álĺıtás a 7.3.2. lemmából k = l-re azonnal következik.

7.3.5. Megjegyzés. A 7.2.1. és 7.3.3. lemmák mutatják egy olyan s∗ =
(Rp, p, w(p)) optimális kiterjesztett állapot létezését, melyben p = u1 . . . ul,
az ut, t = 1, . . . , l jelek páronként különbözőek, továbbá �(u1) ≤ . . . ≤ �(ul)
is teljesül.

Az 7.3.5. megjegyzés alapján elegendő az előbbi lemmák által meg-
határozott t́ıpusú kiterjesztett állapotokat generálni és vizsgálni, ami azt
jelenti, hogy kevesebb állapotot tartalmazó átmeneti gráfban keressük a
legrövidebb utat, ez pedig hatékonyabbá teszi az eljárást. A következő algo-
ritmus ezt az ötletet is felhasználja.

PAT algoritmus a PNS-8 optimális megoldásainak meghatározásá-
ra ([22])

Inicializálás.

• i := 0, L0 := {(R, λ, 0)}.

Iteráció

1. Mi = {(Rp, p, w(p)) ∈ Li : w(p) ≤ w(q), ∀(Rq, q, w(q)) ∈ Li}.
Si = {(Rp, p, w(p)) ∈ Mi : P ⊆ Rp}.
Ha Si 	= ∅, akkor VÉGE; az Si elemei optimális kiterjesztett állapotok.

2. Válasszunk egy tetszőleges (Rt, t, w(t)) ∈ Mi elemet, és legyen t =
u1 . . . un.

3. Legyen i = i + 1, Li = Li−1.

4. Li = Li \ {(Rt, t, w(t))}.
5. Legyen Vi = {v ∈ O′ \ {u1, . . . , un} : matin(v) ⊆ Rt és �(v) ≥ �(t)}.

Ha Vi = ∅, akkor térjünk az 1. lépésre.
Egyébként legyen Vi = {v1, . . . , vm}.



FEJEZET 7. AUTOMATAELMÉLETI MEGKÖZELÍTÉS 95

6. Minden j = 1, . . . , m értékre rendre hajtsuk végre az alábbi lépéseket:

• A(vj) := {(Rq, q, w(q)) ∈ Li : Rq ⊇ Rtvj és w(q) ≤ w(tvj) és
(w(q) < w(tvj) vagy �(q) ≤ �(tvj))},

• D(vj) := {(Rq, q, w(q)) ∈ Li : Rq ⊆ Rtvj és w(q) ≥ w(tvj) és
(w(q) > w(tvj) vagy �(q) ≥ �(tvj))},

• ha A(vj) = ∅, akkor legyen

Li := (Li \ D(vj)) ∪ {(Rtvj, tvj , w(tvj))}.
7. Térjünk az 1. lépésre.

7.3.6. Megjegyzés.

(a) Bármely i ≥ 0 egészre, ha létezik Li és (Rp, p, w(p)) ∈ Li, ahol p =
u1 . . . ul, akkor u1, . . . , ul páronként különbözőek és �(u1) ≤ · · · ≤ �(ul).

(b) Bármely i ≥ 1 egészre, ha létezik Li és (Rp, p, w(p)) ∈ Li, ahol p =
u1 . . . ul, akkor minden olyan j-re, melyre 0 ≤ j < l és p′ = u1 . . . uj,
igaz, hogy (Rp′, p′, w(p′)) 	∈ Li.

Legyen S(Li) az Li-ből kapható alábbi hármasok halmaza:

S(Li) = {(Rpq, pq, w(pq)) : (Rp, p, w(p)) ∈ Li és q ∈ (O′)+ és

a pq-ban előforduló jelek páronként különböznek egymástól}.

7.3.7. Megjegyzés. Vegyük észre, hogy a 7.3.6. megjegyzés (b) pontja
alapján bármely i ≥ 0-ra, Li ∩ S(Li) = ∅.

7.3.4. Lemma. ([22]) Bármely i ≥ 0 egészre, melyre létezik Li, van olyan

s∗i = (Rpi, pi, w(pi)) optimális kiterjesztett állapot pi = u
(i)
1 . . . u

(i)
mi-vel, melyre

(i) az u
(i)
1 , . . . , u

(i)
mi jelek páronként különbözőek,
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(ii) s∗i ∈ Li ∪ S(Li),

(iii) létezik olyan 0 ≤ ki ≤ mi és p′i = u
(i)
1 . . . u

(i)
ki

, melyre

(Rp′i, p
′
i, w(p′i)) ∈ Li,

(iv) �(u
(i)
1 ) ≤ · · · ≤ �(u

(i)
mi).

Bizonýıtás Az álĺıtást i szerinti indukcióval igazoljuk. Ha i = 0, akkor a
7.3.5. megjegyzésből következik annak teljesülése k0 = 0, (Rλ, λ, 0) ∈ L0, és
s∗0 = s∗ ∈ S(L0)-al. Most legyen i ≥ 0 tetszőleges egész érték, feltétetelezzük
az álĺıtás érvényességét i-re, és igazoljuk (i + 1)-re. Az indukciós feltevés
alapján létezik olyan s∗i = (Rpi, pi, w(pi)) optimális kiterjesztett állapot pi =

u
(i)
1 . . . u

(i)
mi-vel, mely teljeśıti az (i), (ii), (iii), és (iv) feltételeket. Ha a 1.

léspésben megállunk, akkor nem létezik Li+1 és az álĺıtás teljesül. Most
tegyük fel, hogy az algoritmus végrehajtása nem ér véget a 1. lépésben.
Legyen (Rt, t, w(t)) a 2. lépésben választott hármas. Nyilván (Rt, t, w(t)) 	=
s∗i , mivel (Rt, t, w(t)) = s∗i -vel az eljárás véget ért volna. Ha Vi+1 = ∅,
akkor (Rt, t, w(t)) különbözik (Rp′i, p

′
i, w(p′i))-től, ugyanis ellenkező esetben

(Rt, t, w(t)) = (Rp′i, p
′
i, w(p′i))-ből és (Rt, t, w(t)) 	= s∗i -ból azt kapnánk, hogy

létezik u
(i)
ki+1 ∈ Vi+1, ami ellentmondás. Következésképpen, ha Vi+1 = ∅,

akkor a 4. lépésben Li+1-ből töröljük (Rt, t, w(t))-t, de (Rp′i, p
′
i, w(p′i) ∈ Li+1

marad, ezért s∗i+1 = s∗i egy olyan optimális kiterjesztett állapot, mely teljeśıti
az elvárt tulajdonságokat. Most tegyük fel, hogy Vi+1 	= ∅.

Az (i + 1)-dik lépésben legyenek L′
i+1 és L”i+1 közvetlenül a 3. il-

letve 6. lépések utáni aktuális Li+1 halmazok. Jelöljük továbbá L
(j)
i+1-vel az

aktuális Li+1 halmazt közvetlenül a 6. lépés j-re való végrehajtása előtt.

Az egyszerűség kedvéért a továbbiakban jelölje s̄ = (Rp, p, w(p))
mindig a rendelkezésre álló aktuális optimális kiterjesztett állapotot, mely-
ben p = u1 . . . um és legyen az ennek megfelelő (Rp′, p′, w(p′)) ∈ L′

i+1, ahol
p′ = u1 . . . uk valamely 0 ≤ k ≤ m-re. Ha (Rp′, p′, w(p′)) ∈ L”i+1, akkor
s∗i+1 = s̄ egy megfelelő optimális kiterjesztett állapot. Most tegyük fel, hogy
(Rp′, p′, w(p′)) 	∈ L”i+1, azaz, hogy (Rp′, p′, w(p′))-t töröltük L′

i+1-ből. Két
esetet különböztetünk meg.

1. eset. (Rp′, p′, w(p′)) 	∈ Mi vagy (Rp′, p′, w(p′)) ∈ Mi de
a 2. lépésben nem ezt a hármast választottuk. Akkor (Rp′, p′, w(p′))-t
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csak a 6. lépésben törölhettük, ı́gy (Rp′, p′, w(p′)) ∈ L
(1)
i+1, tehát j = 1

esetben az álĺıtás teljesül. Minden olyan esetben, amikor a 6. lépésben
valamely j-re egy (Rp′, p′, w(p′))-t törlünk az aktuális L

(j)
i+1-ből, teljesülnie

kell (Rp′, p′, w(p′)) ∈ D(vj)-nek vj ∈ Vi+1-re. Ez akkor történik, amikor

1.1. eset Rp′ ⊆ Rtvj , w(p′) > w(tvj) vagy

1.2. eset Rp′ ⊆ Rtvj , w(p′) ≥ w(tvj), �(p′) ≥ �(tvj),

ahol a 2. lépésben (Rt, t, w(t))-t választottuk. Az 1.1. esetben, mivel
Rp′ ⊆ Rtvj , ezért (Rtvjuk+1 . . . um, tvjuk+1 . . . um, w(tvjuk+1 . . . um)) olyan
kiterjesztett állapot lenne, melyre w(p) > w(tvjuk+1 . . . um), ami ellentmon-
dana s̄ optimalitásának. Tehát az 1.1. eset lehetetlen. Az 1.2. esetben jelölje
q̂ az uk+1 . . . um azon részszavát, melyet úgy kapunk, hogy töröljük belőle

a tvj-ben előforduló jeleket. Akkor (Rtvj , tvj, w(tvj)) ∈ L
(j+1)
i+1 és könnyű

belátni, hogy s′ = (Rtvj q̂, tvj q̂, w(tvj q̂)) az álĺıtás által kért feltételeket tel-
jeśıtő optimális kiterjesztett állapot.

2. eset. (Rp′, p′, w(p′)) ∈ Mi és ezt a hármast választjuk ki a 2.

lépésben. Akkor (Rp′, p′, w(p′)) 	∈ L
(1)
i+1 mivel ez a hármas a 4. lépésben

törlésre került, továbbá uk+1 ∈ Vi+1. Ha A(uk+1) 	= ∅, akkor

2.1. eset. Rp′uk+1 ⊆ Rq, w(p′uk+1) > w(q) vagy

2.2. eset. Rp′uk+1 ⊆ Rq, w(p′uk+1) ≥ w(q), �(q) ≤ �(p′uk+1)

teljesül valamely (Rq, q, w(q)) ∈ Li+1-re. Vegyük észre, hogy s̄ optimalitása
miatt a 2.1. eset lehetetlen. A 2.2. esetben jelölje q̂ az uk+2 . . . um azon
részszavát, melyet úgy kapunk, hogy töröljük belőle a q-ban előforduló jele-
ket, és legyen q′ = qq̂. Akkor könnyű belátni, hogy (Rq′, q′, w(q′)) egy ḱıvánt
tulajdonságokkal rendelkező optimális kiterjesztett állapot. Ha A(uk+1) = ∅,
akkor az (Rp′uk+1, p

′uk+1, w(p′uk+1)) hármast hozzáadjuk az aktuális Li+1-
hez és ı́gy s∗i+1 = s̄ az álĺıtás feltételeit kieléǵıtő optimális kiterjesztett állapot
lesz. Ha valamely vj 	= uk+1, vj ∈ Vi+1-re az aktuális (Rp′, p′, w(p′))-t töröljük
Li+1-ből, akkor ennek D(vj)-ben kell lennie és akkor az 1. esetben léırtakhoz
hasonlóan meg tudunk határozni egy, az álĺıtás feltételeit kieléǵıtő, optimális
kiterjesztett állapotot. Ezzel igazoltuk az álĺıtást.
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7.3.1. Következmény. Bármely i ≥ 0-ra, ha létezik Li, akkor Li 	= ∅.

7.3.5. Lemma. Bármely i ≥ 0-ra, ha Si = ∅ akkor

|Li ∪ S(Li)| > |Li+1 ∪ S(Li+1)|.

Bizonýıtás Az álĺıtást i szerinti indukcióval fogjuk igazolni. Ha i = 0,
akkor L0 ∈ (L0 ∪ S(L0)) \ (L1 ∪ S(L1)) és az álĺıtás nyilvánvalóan teljesül.
Most tegyük fel, hogy az álĺıtás teljesül i ≥ 0-ra és igazoljuk (i + 1)-re.
Legyen Si = ∅ és (Rt, t, w(t)) a 2. lépésben kiválasztott hármas. Akkor
az 7.3.6. megjegyzés alapján (Rt, t, w(t)) ∈ Li \ (Li+1 ∪ S(Li+1)). Másfelöl
Li+1∪S(Li+1) ⊆ Li∪S(Li) nyilvánvalóan igaz, ami azt jelenti, hogy az álĺıtás
bármely i-re teljesül.

7.3.1. Tétel. ([22]) A PAT algoritmus véges számú lépés után véget ér és
egy optomális kiterjesztett állapotot határoz meg.

Bizonýıtás Először igazoljuk, hogy az algoritmus véges számú lépés után
véget ér. A 7.3.1. következmény alaján az eljárás az Si 	= ∅ esetben fog
véget érni. Mivel L0 ∪ S(L0) egy véges halmaz, ezért a 7.3.5. lemma és a
7.3.1. következmény alapján legtöbb |L0 ∪ S(L0)| lépés után Li ∪ S(Li) = ∅
kellene legyen, de mivel ha létezik Li, akkor Li 	= ∅, ezért Li akkor már nem
létezhet, azaz az algoritmus valahol meg kellett álljon.

Igazolnunk kell még, hogy ha Si 	= ∅, akkor s ∈ Si egy optimális
kiterjesztett állapot. Legyen s = (Rp, p, w(p)) az Si tetszőleges eleme. Si de-
fińıciója alapján s egy kiterjesztett állapot. Az 7.3.4. lemmából következik
olyan s∗i = (Rq, q, w(q)) optimális kiterjesztett állapot létezése, melyre q =
u1 . . . ul úgy, hogy u1 . . . uk ∈ Li valamely 0 ≤ k ≤ l-re. Akkor w(u1 . . . uk) ≤
w(q). Másfelöl Mi defińıciója alapján w(p) ≤ w(u1 . . . uk). Következésképpen
w(p) ≤ w(q), ami azt jelenti, hogy s egy optimális kiterjesztett állapot.
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9. fejezet

A disszertáció összefoglalása

A kémiában, biológiában, ipari alkalmazásokban gyakran felmerül
olyan probléma, amelyben bizonyos

”
nyersanyagok” és

”
műveleti egységek”

rendelkezésünkre állnak és elő́ırt anyagokat ḱıvánunk előálĺıtani az adott
műveleti egységek összekapcsolásával. A probléma egy lehetséges modellezése
a

”
Process Network Synthesis” (PNS), melyben minden műveleti egység az

anyagok egy részhalmazát inputként igényli és anyagok egy másik részhal-
mazát álĺıtja elő. A gráfelméleti megközeĺıtésben egy anyagtól iránýıtott
él vezet azokhoz a műveleti egységekhez, amelyek azt input anyagként fel-
használják, illetve egy műveleti egységet iránýıtott éllel kötünk össze azokkal
az anyagokkal, amelyeket output anyagként termel. Így egy kétrészes (anya-
gok; műveleti egységek) iránýıtott gráfot kapunk, a folyamat gráfját. Egy
ilyen hálózatban az elő́ırt anyagok legyártása általában többféleképpen, a
rendelkezésre álló gépek különbz̈ő részhalmazaival is megvalóśıtható. Stati-
kusan képzelve a termelési folyamatot, a műveleti egységek egy részrendsze-
rének működésével a ḱıvánt anyagokat bizonyos alapvető feltételek teljesülése
esetén kaphatjuk meg. Ily módon a lehetséges megoldásoknak rendelkezniük
kell bizonyos strukturális tulajdonságokkal ([15]), ami miatt ezeket megoldás
struktúráknak is szokás nevezni. Ezek között kitűntetett szerepe van a ma-
ximális struktúrának, mely a lehetséges megoldás struktúrák uniója. A ma-
ximális struktúra meghatározása azért hasznos, mert ily módon a hálózatból
töröljük azokat a műveleti egységeket, melyek úgysem szerepelnének egyetlen
lehetséges megoldásban sem, és ily módon csökkentjük a probléma méretét.
Mivel a maximális struktúra generálására polinomiális idejű algoritmus ad-
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ható ([11]), ezért célszerűnek tűnik a PNS problémák megoldását ezzel kez-
deni. A legtöbb esetben azonban minket nem a legtöbb műveleti egységet
igénybe vevő, hanem ellenkezőleg, valamilyen szempontból leggazdaságosabb
megoldások érdekelnek, tehát nem elégedhetünk meg a maximális struktúra
meghatározásával.

A dolgozatban tárgyalt PNS modell csak strukturális szempontból
tekinti a problémát, mivel annak léırása anyagmennyiségekre vonatkozó elő-
ı́rásokat nem tartalmaz. A rendelkezésre álló műveleti egységek viszont
rendelkeznek bizonyos költséggel és az anyagelőálĺıtás során használt mű-
veleti egységek összköltségét szeretnénk optimalizálni: keressük a művele-
ti egységek azon legkisebb összköltségű részhalmazát, mely a rendelkezésre
álló nyersanyagokból képes előálĺıtani a ḱıvánt végtermékeket. Mivel a mi-
nimum meghatározása még ebben a legegyszerűbb struktúrális esetben is
a halmazlefedési problémával ekvivalens ([2, 17, 27]), ı́gy a halmazlefedési
probléma NP teljességéből ([32, 1]) következően a struktúrális PNS-probléma
is sajnos NP-teljes. Nem várható tehát hatékony megoldás rá. Ezért indo-
kolt exponenciális idjű algoritmusok és azok különböző heurisztikákkal kom-
binált, korlátozás és szétválasztás módszerére alapuló változatainak kidol-
gozása ([13, 24, 21, 23]).

A Branch-and-Bound jellegű módszerek feléṕıtésében fontos szere-
pet játszik az úgynevezett döntési leképezés fogalma ([12]), mely lényegében
meghatározza adott anyagra az őt gyártó műveleti egységek halmazát. Gya-
korlati szempontból nyilván nagyon komoly előny, hogy csak bizonyos úgyne-
vezett ”konzisztens” döntési leképezéseket kell figyelembe venni, ami abból az
észrevételből származik, hogy egy műveleti egység, ha működik, nem teheti
meg, hogy bizonyos kimeneti anyagait gyártja, másokat pedig nem. Ezen
belül további szűḱıtést eredményez az az észrevétel, hogy nem működhet
olyan műveleti egység, amelyik valamelyik input anyagát egyetlen működő
műveleti egységtől sem nyeri. A konzisztens döntési leképezések és a le-
hetséges megoldás strukltúrák közötti kapcsolatot felhasználva, a konzisz-
tens döntési leképezések megszámlálásával, a szitaformula seǵıtségével felső
korlát adható a lehetséges megoldás struktúrák számára ([3]). Mivel a korlát
tényleges kiszámı́tása a probléma struktúrájától függ és általában, tetszőleges
folyamat gráf esetén, meglehetősen bonyolult, ezért megvizsgáltunk két spe-
ciális PNS problémaosztályt is, melyre ténylegesen kiszámı́tható képleteket
tudtunk adni, miközben szép kombinatorikus azonosságokat is kaptunk ([4,
5]).
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A továbbiakban észrevettük, hogy bizonyos műveleti egységek, ne-
vezetesen azok, amelyek egyszerre vannak jelen vagy egyikük sem szerepel
a lehetséges megoldásokban, együtt kezelhetők. Ebből kiindulva definiáltuk
az összevonás műveletét, mely a maximális struktúrához képest is általában
kb. 7%-os további méretcsökkenést eredményez ([20]). Ugyanakkor az ösz-
szevonás következtében megjelenő új műveleti egységek az eltávoĺıtottaknál
több bemeneti és kimeneti anyaghalmazzal rendelkeznek (bár a be- és kime-
neti anyagok száma összességében megmarad), ezért felmerül a kérdés, hogy
az összevonás ötlete vajon egyáltalán használható-e a feladat hatékonyabb
megoldására. A döntési leképezések mélyebbre ható tanulmányozásának
következtében kapott néhány további észrevételt is felhasználva, kidolgoz-
tunk egy új, Előretekintő B & B (ER) nevezetű, korlátozás és szétválasztás
t́ıpusú eljárást, mely az összevonás ötletét implicit módon alkalmazva, vizs-
gálatainkban az eddig ismert legjobb MABBA eljárásnál lényegesen hatéko-
nyabban oldotta meg a feladatot ([21]).

A gyakorlatban előállhatnak olyan esetek, amikor nem csak egy op-
timális megoldás, hanem több vagy az összes, lehetséges vagy optimális
megoldás is érdekel. A [16]-ban kidolgozásra került egy eljárás, mely egy
PNS probléma összes lehetséges megoldását felsorolja. Lehetnek azonban
olyan esetek is, amikor csak az optimális megoldások érdekelnek, de azo-
kat mind fel szeretnénk sorolni. A feladat megoldható a [16]-ban megadott
teljes leszámlálással is, például úgy, hogy először megkeressük az optimu-
mot, majd utána a teljes leszámlálásnál ugyan az összes lehetséges megoldást
végigjárjuk, de csak az optimális megoldásokat tartjuk meg, ez a megoldás
azonban egyáltalán nem hatékony, hiszen sok felesleges lehetséges, de nem
optimális megoldást vizsgál meg. Ezért kidolgoztunk egy ennél hatékonyabb
eljárást, mely ugyan még mindig nem csak az optimális megoldásokat találja
meg, viszont az általa felsorolt megoldás halmaz, mely tartalmazza az összes
optimális megoldást, a bemutatott empirikus vizsgálatokból ı́télve, lényege-
sen kisebb, mint az összes lehetséges megoldások halmaza, hiszen az algorit-
mus a teljes leszámlálásnál sokkal hatékonyabbnak bizonyult ([23]). Nyitott
kérdés maradt azonban, hogy a parciális leszámlálás milyen feltételek mellett
képes csak az optimális megoldásokat végigjárni.

A dolgozat befejező részében a PNS egy teljesen újszerű, automa-
taelméleti megközeĺıtését vizsgáltuk meg. A [28] cikk alapján láttuk, hogy a
lehetséges megoldások [18] és [15] munkákban meghatározott feltételei nem
biztośıtják a végrehajthatóságot, ezért a [28]-ben kidolgozásra került egy
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úgynevezett sźınező eljárás, mely meghatározza a végrahajtható folyamato-
kat, melyeket módośıtott lehetséges megoldásoknak neveztünk. Ugyancsak a
[28]-ban meg lett adva egy eljárás a módośıtott lehetséges optimális megoldás
meghatározására, melynek alapötlete az, hogy a módośıtott PNS probléma
adott példányához hozzárendelhető egy automata, melyre teljesül az, hogy
az eredeti feladat megoldása visszavezethető az automata átmeneti gráfjában
egy legrövidebb út megtalálására. A disszertáció ezen részének tulajdonkép-
peni célja ezen eljárás továbbfejlesztése volt. Definiáltunk egy ekvivalencia
relációt a műveleti egységek halmazán, egy részben rendezést az ekvivalen-
cia osztályokon, melyeknek seǵıtségével, néhány további észrevétel felhasz-
nálásával, egy nyilvánvalóan hatékonyabb eljárást sikerült kidolgoznunk az
optiomális módośıtott lehetséges megoldás meghatározására, melynek az a
lényege, hogy a legrövidebb út keresésével egyidőben az átmeneti gráfnak
csak egy részét generáljuk ([22]).

Össześıtve, a PNS nem az egyetlen, de egy lehetséges és hasznosnak
bizonyult modellje a hálózati folyamatoknak, mely lehetővé tette strukturális
összefüggések feltárását és a folyamatok bonyolultságához képest valamivel
hatékonyabb megoldások megtalálását.



10. fejezet

Summary of the doctoral thesis

10.1. Synopsis

In a manufacturing system, materials of different properties are consumed
through various mechanical, physical and chemical transformations to result
in desired products. Devices in which these transformations are carried out
are called operating units, e.g., a lathe or a chemical reactor. Hence, a
manufacturing system can be considered as a network of operating units
which is called process network. The importance of process network synthesis
(PNS) arises from the fact that such networks are ubiquitous in the chemical
and allied industries. A process design problem in general, and flowsheeting
in particular mean to construct a manufacturing system. A design problem
is defined from a structural point of view by the raw materials, the desired
products, and the available operating units, which determine the structure of
the problem as a process graph containing the corresponding interconnections
among the operating units. Thus, the appropriate process networks can be
described by some subgraphs of the process graph belonging to the design
problem under consideration. Naturally, the cost minimization of a process
network is indeed essential. For this purpose, several papers have appeared
for solving PNS problems by global optimization methods (cf. [10] and [19])
and by combinatorial approach based on the feasible graphs of processes (see,
e.g., [18], [15], [11] ). However its solution is difficult in general. It has been
pointed out that the PNS-problems are NP-complete (see [2], [17] and [27]).
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In general, there are three basic approaches to attack NP-hard pro-
blems. The first approach is to develop exponential time algorithms for
solving the problem. In case of PNS problem, some exponential time al-
gorithms based on the Branch and Bound technique were developed and
studied in [16], [12], [13], [14], [24], [25], [20], [21], and [23]. This approach is
studied also in this work. Another approach is to investigate specially struc-
tured instances for which interesting stuctural properties and bounds (e.g.
for number of feasable solutions, see [3], [4], [5]) can be determined, which are
called well-solvable classes and their instances can be solved efficiently. Some
well-solvable classes were presented in [30], [6], [6], [31]. The third approach
is to establish fast (polynomial time) algorithms which do not guarantee an
optimal solution in general, but always result in a feasible solution which is
close to the optimal solution in some sense. Such algorithms, called heuristic
algorithms or heuristics, are important for several reasons. The feasible solu-
tions found by such algorithms can be used in exponential time algorithms,
furthermore, there is often not enough time to find an optimal solution or
the size of the problem is too large to use an exponential algorithm. In these
cases, heuristic algorithms can be useful again. The first heuristic algorithm
for this problem was presented in [8].

10.2. The structural model of PNS

The foundations of PNS and the background of the combinatorial model
studied here can be found in [15], [18]. In the combinatorial approach, the
structure of a process can be described by the process graph (see [15]) defined
as follows.

Let M be a finite nonempty set, the set of the materials. Further-
more, let ∅ 	= O ⊆ ϕ′(M) × ϕ′(M) with M ∩ O = ∅, where ϕ′(M) denotes
the set of all nonempty subsets of M . The elements of O are called operating
units, and for an operating unit, u = (α, β) ∈ O, α and β are called the
input-set and output-set of the operating unit, respectively. The pair (M, O)
is defined to be a process graph or P-graph in short. The set of vertices of
this directed graph is M ∪ O, and the set of arcs is A = A1 ∪ A2, where
A1 = {(X, Y ) : Y = (α, β) ∈ O and X ∈ α} and A2 = {(Y, X) : Y =
(α, β) ∈ O and X ∈ β}.
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Let the process graphs (m, o) and (M, O) be given. (m, o) is defined
to be a subgraph of (M, O), if m ⊆ M , o ⊆ O and o ⊆ ϕ′(m) × ϕ′(m).

By a structural model of PNS, we mean the triplet, M = (P, R, O),
where P ⊆ M and O ⊆ ϕ′(M)×ϕ′(M) are finite nonempty sets representing
the set of desired products and that of available operating units, respectively,
R ⊆ M is a finite set representing the set of raw materials and P ∩ R = ∅.

Then, the process graph (M, O), where M = ∪{α ∪ β : (α, β) ∈ O},
presents the interconnections among the operating units of O. Furthermore,
every feasible process network, producing the given set P of products from
the given set R of raw materials using operating units from O, corresponds to
a subgraph of (M, O). Investigating the corresponding subgraphs of (M, O),
therefore, we can determine the feasible process networks. If we do not
consider further constraints such as material balance, then the subgraphs of
(M, O) which can be assigned to the feasible process networks have common
combinatorial properties. They are studied in [15] and their description is
given by the following definition.

A subgraph (m, o) of (M, O) is called a solution-structure of (P, R, O)
if the following conditions are satisfied:

(A1) P ⊆ m,

(A2) ∀X ∈ m, X ∈ R ⇔ no (Y, X) arc in the process graph (m, o),

(A3) ∀Y0 ∈ o, ∃ path [Y0, Yn] in (m, o) with Yn ∈ P ,

(A4) ∀X ∈ m, ∃(α, β) ∈ o such that X ∈ α ∪ β.

The set of the solution-structures of M = (P, R, O) will be denoted by
S(P, R, O) or S(M).

Let us consider PNS problems in which each operating unit has a
weight. We are to find a feasible process network with the minimal weight
where by weight of a process network we mean the sum of the weights of
the operating units belonging to the process network under consideration.
Each feasible process network in such a class of PNS problems is determined
uniquely from the corresponding solution-structure and vice versa. Thus,



FEJEZET 10. SUMMARY OF THE DOCTORAL THESIS 107

the problem can be formalized as follows. Let a structural model of PNS
problem M = (P, R, O) be given. Moreover, let w be a positive real-valued
function defined on O, the weight function. The basic model is then

(PNS-2) min
{∑

u∈o w(u) : (m, o) ∈ S(P, R, O)
}

.

In this work by PNS problem we always mean PNS problem with
weight, and the solution-structures are also called feasible solutions. It is
known (see [2, 17, 27]) that this PNS problem is NP-complete.

Now, let o ⊆ O and m ⊆ M be arbitrary sets. Let us define the
following functions on the sets o and m:

matin(o) =
⋃

(α,β)∈o

α, matout(o) =
⋃

(α,β)∈o

β,

mat(o) = matin(o) ∪ matout(o),

and

∆(m) = {u : u ∈ O & m ∩ matout(u) 	= ∅}.

Let m be a subset of M \ R; furthermore, let δ(X) be a subset of ∆(X) for
each X ∈ m. Mapping δ from set m into the set of subsets of O, δ[m] =
{(X, δ(X)) : X ∈ m}, is called a decision-mapping belonging to M; δ[m] is
said to be consistent when δ(X) ∩ ∆(Y ) ⊆ δ(Y ) is valid for all X, Y ∈ m,
and the set of all consistent decision-mappings of M is denoted by ΩM. A
decision-mapping can be visualised as a sequence of decisions, each of which is
concerned with a single material involved in the process being synthesized; it
identifies the set of operating units to be considered for producing directly the
material of interest. If δ1[m1] and δ2[m2] are arbitrary consistent decision-
mappings, then, δ2[m2] is called an extension of δ1[m1] if m1 ⊆ m2 and
δ1(X) = δ2(X) for all X ∈ m1. Relation extension is a partial ordering on
ΩM. Let us denote the set of all maximal elements of this partially ordered set
by Ωmax

M and its elements are called maximal consistent decision-mappings.

We use a coloring of process graphs. For this purpose, let (M̄, Ō) be
a process graph and R a set of materials. It is said that (M̄, Ō) is colorable
by R if every material vertex of (M̄, Ō) can be colored by the following
procedure.
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Coloring Procedure ([28])

Step 1. Color every material in M̄ ∩ R.

Step 2. If there is an operating unit whose all input materials have already
colored, then color its every output material. Terminate otherwise.

A modified PNS problem is a PNS problem satisfying (A1) - (A4) and

(A5) (M̄, Ō) is colorable by R.

The weighted modified PNS problem is then:

(PNS-8) min

{∑
u∈Ō

w(u) : (M̄, Ō) ∈ S(M)

}
.

where S(M) is the set of feasible solutions of the modified PNS problem.

10.3. Results of the thesis

In the Chapter 2 we define the mathematical model of the PNS problem,
furthermore, we recall the most fundamental definitions and results for this
problem. In Chapter 3, based on the works [3, 4, 5], the number of the con-
sistent decision-mappings is counted, and an upper bound is presented for
the number of the feasible solutions of a PNS problem. Since the expression
of this bound depends on the structure of the process, the determination
of its value is much easier if we restrict ourselves to special classes of PNS
problems. This is why we study also two special classes and determine the
bounds for them. In the Chpater 4, based on the work [20], a new me-
thod called merging reduction is introduced which is based on the merging of
operating units. The mergeable operating units are determined by an equi-
valence relation on the set of the operating units, and all of the operating
units included in an equivalence class are merged into one new operating unit.
This reduction has the following property: an optimal solution of the origi-
nal problem can be derived from an optimal solution of the reduced problem
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and conversely. Presentation of this reduction is equipped with an empirical
analysis on randomly generated problems which shows the measure of the
size decrease.

Since the combinatorial version of the Process Network Synthesis
(PNS) problem is NP-complete, it is important to establish effective B&B
procedures for its solution. Until now three such algorithms have been esta-
blished: the Accelerated B&B Algorithm (ABBA for short) [14], a modified
version of the ABBA (MABBA in short) [24], and the modified ABBA equip-
ped with a stronger bounding function [24]. The empirical analysis presented
in [25] shows that the best procedure among them is MABBA. In Chapter
5, based on the work [21], a new B&B procedure is presented which is based
on the merging reduction of PNS problems and on a new branching rule.
Our new procedure called Look Ahead B&B Algorithm (LABBA in short)
differs in two aspects from the previous ones. It uses the new reduction idea
obtained in [20] which is based on the observation that the operating units
of a PNS problem can be classified such that for each feasible solution, the
equivalent operating units simultaneously either appear or do not appear in
the feasible solution considered. Using this result, the bounding functions of
the earlier procedures can be improved and the size of the B&B tree can be
decreased by fixing the equivalent operating units simultaneously. Another
aspect is that the LABBA studies the effects of the different possible bran-
chings while in the ABBA and MABBA, the branching rule is based on such
a material selection which is independent of its effect. By examining the ef-
fects of the different material selections, the size of the B&B tree can be also
decreased. Finally, the power of this procedure is justified by an empirical
analysis.

Sometimes, it is not sufficient to know only one optimal solution,
one may need all of the feasible solutions or all of the optimal solutions.
For obtaining all of the feasible solutions, a complete enumeration procedure
and possible applications are also described in [16]. In Chpater 6, based on
the work [23], a new and relatively fast procedure is presented. It does not
generate all of the feasible solutions, but it provides such a subset of feasible
solutions which contains all of the optimal solutions of problem considered.
The power of this enumeration procedure is illustrated by an empirical ana-
lysis.
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In [28], a procedure is given for solving modified Process Network
Synthesis problems. The idea of this procedure is that for every instance of
the modified problem, an automaton can be defined such that an optimal
solution can be found by performing a shortest path method in the weighted
transition graph of this automaton. In the Chpater 7, we recall this algorithm
and improve its efficiency by defining an equivalence relation on operating
units, a partial ordering on the equivalence classes, and thus, generating
only a part of the transition graph and computing a required shortest path
simultaneously. The results of this chapter are based on the work [22].
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degenerált maximális struktúra, 12
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részszó, 86
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sźınező eljárás (folyamat gráf), 84
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