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1. fejezet

Bevezetés

A kémiaban, biolégiaban, ipari alkalmazasokban gyakran felmeriil
olyan probléma, amelyben bizonyos ,nyersanyagok” és , miiveleti egységek”
rendelkezésiinkre &allnak és eloirt anyagokat kivanunk elééllitani az adott
miiveleti egységek Osszekapcsolasaval. A probléma egy lehetséges model-
lezését Fan és Friedler professzorok a 70-es években dolgoztak ki, melyben
strukturalis tulajdonsdgokra épiilé technikakat hasznaltak a megoldédsok ke-
resésére. Ebben a ,,Process Network Synthesis” (PNS)-nek nevezett modell-
ben minden miiveleti egység az anyagok egy részhalmazat inputként igény-
li és anyagok egy masik részhalmazat allitja el6. A grafelméleti megkoze-
litésben egy anyagtol irdnyitott él vezet azokhoz a miiveleti egységekhez,
amelyek input anyagként felhasznaljak, illetve egy miveleti egységet iranyi-
tott éllel kotiink ossze azokkal az anyagokkal, amelyeket output anyagként
termel. Igy egy kétrészes (anyagok; miiveleti egységek) irdnyitott grafot
kapunk, a folyamat grafjat. Statikusan képzelve a termelési folyamatot,
a muveleti egységek egy részrendszerének miikodésével a kivant anyagokat
bizonyos alapveto feltételek teljesiilése esetén kaphatjuk meg. Ily mdédon
a lehetséges megoldasoknak rendelkeznitlik kell bizonyos strukturalis tulaj-
donsagokkal, ami miatt ezeket megoldas strukturaknak is szokas nevezni.
A Fan és Friedler professzorok altal iranyitott kutatasokban kidolgozéasra
kertiltek olyan eljarasok, melyek lehetové teszik adott probléméra az Gsz-
szes lehetséges, vagy valamilyen szempontbol optimalis megoldas struktura
generdlasat ([15, 16, 18]). Ezek kozott kitiintetett szerepe van a maximalis
strukturanak, mely a lehetséges megoldas struktiurdk unidja, és melynek ge-
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nerdldsara a szerzoknek sikeriilt polinomialis idejii algoritmust adniuk ([11]).
A 90’-es évek mésodik felében Imreh Balazs vezetésével Szegeden is kialakult
egy szakmai kozosseég, melynek szerencsére a szerzo is részese lehetett, és
amely els6 sorban a PNS probléma diszkrét, strukturalis és kombinatorikai
tulajdonsdgainak vizsgalataval foglalkozott. A csoport kutatémunkédjanak
eredményeképpen szamos publikalt cikk sziiletett, melyek koziil most csak
a dolgozathoz kapcsol6dé [2, 25, 3, 4, 5, 30, 20, 6, 7, 21, 31, 23, 8, 28, 22]
cikkeket emliteném meg.

A dolgozatban targyalt PNS modell csak strukturalis szempontbdl
tekinti a problémat, mivel annak lefrasa anyagmennyiségekre vonatkozé elo-
irasokat nem tartalmaz. A rendelkezésre all6 miveleti egységek viszont ren-
delkeznek bizonyos koltséggel és az anyagelééllitds soran hasznalt miveleti
egységek 0sszkoltségét szeretnénk optimalizalni: keressitk a miveleti egy-
ségek azon legkisebb 0sszkoltségii részhalmazat, mely a rendelkezésre &llo
nyersanyagokbdl képes eldallitani a kivant végtermékeket. Mivel a minimum
meghatarozasa még ebben a legegyszeriibb struktiralis esetben is a halmaz-
lefedési probléméval ekvivalens (]2, 17, 27]), igy a halmazlefedési probléma
NP teljességébdl ([32, 1]) kovetkezéen a struktirédlis PNS-probléma is saj-
nos NP-teljes. Nem varhato tehat hatékony megoldas ra. Ezért indokolt
hatékonyabban megoldhato specidlis esetek, vagy csak az optimumhoz kozeli
megoldast szolgaltatd, de polinomidlis idejii heurisztikdk vizsgalata ([25, 30,
6, 7, 31, 8]), illetve exponencidlis algoritmusok és azok kiilonb6z6 heurisz-
tikakkal kombindlt Branch-and-Bound jellegii valtozatainak kidolgozasa ([13,
24, 21, 23]). Ezek felépitésében fontos szerepet jatszik az tgynevezett dontési
leképezés fogalma ([12]), mely lényegében meghatarozza adott anyagra az &t
gyarté miveleti egységek halmazat. Gyakorlati szempontbdl nyilvan nagyon
komoly elény, hogy csak bizonyos tgynevezett ”konzisztens” dontési leké-
pezéseket kell figyelembe venni, ami abbdl az észrevételbol szarmazik, hogy
egy miveleti egység, ha miikodik, nem teheti meg, hogy bizonyos kimeneti
anyagait gyartja, masokat pedig nem. Ezen beliil tovabbi sziikitést eredmé-
nyez az az észrevétel, hogy nem miikddhet olyan miiveleti egység, amelyik
valamelyik input anyagat egyetlen miikodé miiveleti egységtol sem nyeri. Ezt
felhasznélva, a szitaformula segitségével felso korlat adhaté a lehetséges meg-
oldés strukturdk szamara ([3, 4, 5]).

Jelen dolgozat masodik, El6zmények cimii fejezetében a teljesség
igénye nélkiil ismertetjiik azokat az alapfogalmakat és technikakat, amelyek-
hez a dolgozat tovabbi részei kapcsolodni fognak. Bizonyos kapcsolodd al-
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goritmusok teljes kori bemutatasa viszont meghaladnd a dolgozat kereteit,
ezek esetében majd a megfelel6 cikkekre fogunk hivatkozni, ezen fejezet célja
inkabb egy olyan atfogd képet nyijtani a probléma alapveto eredményeirol,
mely lehetové teszi a dolgozat tovabbi részeinek megértését, és amelyet a
szerz6 kiindulépontként hasznalhatott fel onallé kutatasai megvaldsitdsahoz.

A PNS kutatasaiban torténetileg legkorabbi, a szerzéhoz kapcsoldédo
kutatdsok az ugynevezett dontési leképezések tulajdonsagainak feltarasara
iranyultak. Lényegében azt vizsgaltuk, hogy hogyan és héanyféleképpen lehet
a koztes vagy végtermékekhez Oket gyartd miiveleti egységeket rendelni. fgy
sziilettek meg a dontési leképezésekrol szolo, a dolgozat harmadik fejezetében
bemutatott, kozos kutatasi eredmények, melyeket a [3], [4], [5] dolgozatokban
publikaltunk és szerzotarsaimmal nem megoszthato eredményeknek tekintjiik
Oket.

A negyedik fejezetben is a probléma strukturajat fogjuk tanulma-
nyozni, ebben az esetben azonban a probléma méretének csokkentése a cél,
amitol azt reméljiik, hogy a probléma megoldasanak hatékonysagat is novelni
tudja. A fejezet a [20] dolgozat eredményeire épiil, amely kozos dolgozat,
de a szerzonek meghatarozo szerepe volt az eredmények elérésében. Hogy
a probléma méretének csokkentésére kidolgozott mddszer megfelelo alkal-
mazasa valéban novelheti-e a megoldds hatékonysagat, arra valaszt kapunk
az Otodik fejezetben, melyben az el6zoleg mér létezo, az Elézményekben
bizonyitott 1étjogosultsagi, exponencialis bonyolultsdgu korlatozas és szét-
valasztas tipusi moszereket igyeksziink javitani a negyedik fejezetben mar
bemutatott otletek és a mddszerek egyes részeinek mélyebbre haté tanulma-
nyozasanak segitségével. A fejezet a szerzd sajat munkajanak eredményeit
tartalmazza, melyek a [21]-ben keriiltek publikédldsra.

A hatodik fejezetben az Osszes optimalis megoldas felsorolasara fo-
gunk adni az egyetlen létezo és nem Kkifejezetten erre a célra kidolgozott
eljarasnal sokkal hatékonyabb algoritmust. A fejezet a szerzé sajat eredmé-
nyeire épiil, melyek a [23]-ben nyertek publikéldst.

Végiil, az utolsé fejezetben, a kombinatorikus optimalizdlas és az au-
tomataelmélet érdekes és hasznos Osszekapcsolasara fogunk példat mutatni,
amikor a PNS probléma optimadlis megoldasat egy hozzarendelt automata
atmeneti grafjaban valé legrovidebb ut keresésével fogjuk meghatdrozni. A
moédositott PNS probléma és annak alapveté megolddsa utédn, a 7.3. alfe-
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jezetben egy komplexebb, a szerz6 dltal kidolgozott és a [22]-ban publikalt
megoldo eljarast fogunk bemutatni.



2. fejezet

El6zmények

2.1. A PNS probléma

Jelolje o(H) egy tetszéleges H halmaz Osszes részhalmazat, ¢’ (H)
pedig a H halmaz Gsszes nemiires részhalmazat. Legyenek M és O C o' (M) x
¢’ (M) véges, nemiires, és diszjunkt halmazok. Az M elemei az anyagok, mig
az O elemei a miveleti egységek, melyek segitségével bizonyos bemeno anya-
gokbol nyeriink el6irt médon egy kimeneti anyaghalmazt. Hogy mi megy
végbe a miiveleti egységekben, azzal nem foglalkozunk. Figyelmen kiviil
hagyjuk tovabbd azt is, hogy miként kezdett a rendszer miikodni, csak stati-
kus ,,termeléssel” foglalkozunk. Formalisan barmely u € O miiveleti egységre
u = («, 3), ahol az a a bemeneti (nem iires) anyaghalmaz, (3 pedig a kimeneti
(nem {iires) anyaghalmaz. Azt fogjuk mondani, hogy az u miiveleti egység az
a anyaghalmazbdl a 3 anyaghalmazt gyartja.

2.1.1. Definicié. Az (M,O) pdrhoz egyérelmien hozzdrendelhetd eqy grdf,
amit a folyamat grdfjdnak nevezink: PG(M,0) = (M UO,A; U Asy),
ahol az élhalmaz kétféle tipusiu €lbol all,

A ={(X,)Y): Y =(o,8) €0 és X € a},

Ay ={(V,X):Y =(o,0) €0 és X € 5}.



FEJEZET 2. ELOZMENYEK 9

2.1.2. Definicié. Egy (V', E') graf eqy PG(M,O) folyamat grif részgrdf-
ja, ha:

o V' =MUO, MCM, OCO
o O/ C (M) x (M)
o £'=AlUA,, ahol
Al ={(X)Y): Y =(a,8) € O és X € a},

A, ={(V,X):Y =(a,8) €0 és X € }.

2.1.1. Megjegyzés. Vegyiik észre, hogy adott (M, O) par és a hozzd rendelt
folyamat graf kolecsonosen egyértelmiien meghatarozzék egymast. Ezért a to-

vabbiakban az (M, O) parokat azonositani fogjuk a hozzajuk rendelt folyamat
grafokkal.

Egy X € M anyag forrds (M, O)-ban, ha nem létezik (Y, X) él a fo-
lyamat grafban. Ha léteznek X, Xo, ..., X,, cstcspontok a grafban, melyekre
(X1, Xa), (X2, X3), ..., (Xn_1, X,) élek az (M, O) folyamat grafban, akkor az
ezen csucspontok altal meghatérozott utat [ X, X, ]-el fogjuk jeldlni.

Legyen most P C M és R C M az elédllitandé anyagok és a fel-
haszndlhaté nyersanyagok egymastol diszjunkt halmaza. Az el6allitandé
anyagokra szinonimaként fogjuk haszndlni a céltermék vagy végtermék
szavakat, a felhasznalhato nyersanyagokat pedig egyszertien nyersanyagok-
nak nevezzilkk. Akkor az M=(P, R,O) harmast a tekintett PNS-probléma
strukturdlis modelljének nevezzik.

2.1.1. Példa. Legyen M=(P, R, O), melyben

o P={L N},
e R={A B,C,D,E},

e U= {u17u27u37u47u5}7 ahol
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o (A, B}, {F,G,H}),
{B,C},{H,1}),

up = (
us = (
us = ({C, D, E}. {1, J}),
ug = (
us = (

O

O

O

{E}AKY), és
{(H,1},{L,N}).

o

FEkkor M = {A,B,C,D,E,F,G,H,I,J,K,L,N} és az (M,O) fo-
lyamat grafot a 2.1. dbra szemlélteti.

2.1. abra.

2.1.3. Definicié. Legyen adott eqy M = (P, R,O) strukturdlis modell és
legyen o C O miuveleti eqységek egy halmaza. Ekkor egy (m,o) részgrafot
az M strukturdlis modell eqy lehetséges megoldds struktirdjanak ne-
vezink, ha teljestilnek a kovetkezd tulajdonsdgok:

(A1) P Cm,
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(A2) VX € m, X € R < nem létezik (Y, X) él (m,o0)-ban,
(A3) VY, € 0, 3 [Y,, Y,] dt, amelyre Y,, € P,

(A4) VX € m, Ao, B) € 0 tgy, hogy X € aU .

Jelolje S(M) az M strukturalis modell lehetséges megoldas strukti-
rainak halmazat. Egy lehetséges megoldas strukturat tehat ugy képzelhetiink
el, mint a folyamat grafjanak egy olyan részhalézatat, melyben:

szerepelnek az elééallitand6 anyagok,

e nyersanyagokat nem gyartunk, és minden nem nyersanyagot gyartja
valamelyik miiveleti egységiink,

e csak olyan miiveleti egységet miikodtetiink, amely legalabb kozvetve
részt vesz valamelyik el6allitand6 anyag gyartasaban, illetve

e nincs izolalt anyagi pont a részgrafban.

2.1.2. Példa. Tekintsiik a 2.1.1 példdat. Akkor

{A7 B7F7G7 H7O)D)E)Ia Jv L7 N},{U17U3,U5}),

{B,C, H,I, L, N}, {’LLQ,U5})

(my,01) = (
(mg,05) = (

o (mg,03) = ({A, B,F,G,H,C,I,L, N}, {u,us,us}),
(ma,01) = ({B,C, D, B, H,1, J,L, N}, {uz, uz, us})
(ms, 05) = (

{Aa B,C,D,E,F,G, Haja Ja La N}a {u17u27u37u5}>
az 0sszes lehetséges megoldds struktiurdk, mig példdul

e (mg,06) = ({C,D,E,H,I,J,L,N},{us, us}) és
b (m7707) = ({B,O, H717 E7 K7 L,N},{U27U4,U5})
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nem lehetséges megoldds struktirdk az (A2), illetve az (A3) feltételek nem
teljestilése miatt.

2.1.2. Megjegyzés. Az M és O halmazok végessége miatt S(IM) is véges
halmaz.

2.1.3. Megjegyzés. Altalanos esetben az (A1) — (A4) feltételeket teljesi-
t0 lehetséges megoldds strukturak halmaza tires halmaz is lehet: a 2.1.1.
példdban, ha B ¢ R lenne (azaz nem lenne nyersanyag), akkor S(M) = ) -t
kapnank.

2.1.1. Lemma. ([15]) Legyen M=(P, R,O) egy PNS probléma strukturdlis
modellje. Ha (m,o0) és (m’,0') lehetséges megoldds struktirai M-nek, akkor
(m,0) U (m',0) is lehetséges megoldds struktirdja M-nek.

2.1.1. Kovetkezmény. A 2.1.2. megjeqyzés és 2.1.1. lemma alapjin S(M)
0sszes lehetséges megoldas struktirdinak egyesitése is lehetséges megoldds
struktira lesz.

2.1.4. Definicié. Legyen M=(P, R, O) egy PNS probléma strukturdlis mo-
dellje. M maximalis strukturdja alatt a

n(M) = U (m, o)

(m,0)€S (M)

megoldds struktirat értjik. Ha S(M) = 0, akkor p(M) = 0 és (M) -et
degenerdltnak nevezzik.

2.1.4. Megjegyzés. S(M) # () akkor és csakis akkor, ha (M) # ().

2.1.5. Definicié. Legyen o C O mdveleti eqységek eqy halmaza. Definidljuk
a mat™, mat®™, és mat figguényeket a kovetkezdképpen:

mat™(0) : ' (0) — ' (M), mat™ (o) = U a,
(

a,B)€o0
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mat® (o) : ¢'(0) — @'(M), mat® (o) = U B,
(a,8)€0
és
mat (o) : ¢ (0) — @' (M), mat(oﬁ = mat™ (o) Umat®™ (o).

Szemléletesen a miveleti egységek egy o halmazahoz tartozé input anyagok,

illetve output anyagok egyesitésérol van szo.

2.1.2. Lemma. ([15]) Legyen M=(P, R,O) egy PNS probléma strukturdlis
modellje. Ha (m,o0) € S(M), akkor m = mat(o).

2.1.2. Kovetkezmény. ([15]) Egy (m, o) lehetséges megoldds struktira egy-
értelmiten meghatdrozott az o miveleti eqység halmazzal.

2.2. A PNS probléma redukcidja

Az eddigiekbédl nyilvanvald, hogy egy M=(P, R, O) strukturalis mo-
dell egyértelmiien meghatarozza az S(M) lehetséges megoldas struktira hal-
mazt. Ez forditva azonban nem igaz: kiilonb6zo strukturalis modellek rendel-
kezhetnek azonos megoldas struktira halmazzal. Példaul ha egy modellhez
felvesziink olyan tovabbi miiveleti egységeket, melyeknek bemeneti és kime-
neti anyaghalmazaik diszjunktak az eredeti modell anyaghalmazaitol, akkor
az 1gy kapott strukturalis modell ugyanazzal a megoldas struktiura halmazzal
fog rendelkezni. Gyakorlati szempontbdl fontos lenne tehat megtalalni azt a
legkisebb méretii, és igy legkonnyebben kezelheté megoldas strukturat, mely
tartalmazza az eredeti probléma Osszes lehetséges megoldas strukturdjat.

2.2.1. Definicié. Jeloljiik M-el a PNS problémak strukturdlis modelljer-
nek halmazdt. Azt mondjuk, hogy az M = (?, R, 6) e M, ésaxM =
(P',R,0") € M strukturdlis modellek ekvivalensek, és ezt M ~ M’ -vel
jeléljiik, ha P = P' és S(M) = S(M').

A ~ relacié reflexiv, tranzitiv és szimmetrikus, azaz ekvivalencia
relacio. Mivel gyakorlatilag csak a M nem iires megoldas struktura halmaz-
zal rendelkez6 ekvivalencia osztalyai érdekesek, ezért a tovabbiakban ilyen



FEJEZET 2. ELOZMENYEK 14

osztalyokat fogunk tanulmanyozni. TetszOleges G’ ilyen osztalyra és M =
(P,R,0) € G, illetve M’ = (P',R',0") € G’ strukturélis modellekre de-
finialjuk a < reldciot a kovetkezéképpen: M <« M’ akkor és csakis akkor, ha
(M,0) C (M',0") és R C R/, ahol (M,0) és (M',O") az M illetve M’
strukturalis modellek folyamat grafjai. Nyilvanvaléoan a < relacié reflexiv,
antiszimmetrikus és tranzitiv, azaz részben rendezés G'-n

2.2.1. Példa. Legyen M’=(P', R',O"), melyben

e P'={L,N},
e R={A B,C,D,E},
o O = {uy,us, u3, us}, ahol

{A, B} {F,G, H}),
= ({B,C},{H,1}),

= ({C, D, E}{I,J}), ¢
= ({H#,1},{L,N}).

o Uy =

~—~~ —~ —~

A folyamat grdfjat a 2.2. dbra szemlélteti. Konnyen ellendrizhetd, hogy P =
P, R = R, O C O, tovibbd a folyamatok lehetséges megoldds struktirdi
azonosak a 2.1.2. példaban leirtakkal. Mindebbdl az kovetkezik, hogy M’ <M.
Erdemes tovdbbd mefigyelni azt is, hogy a példik mazximdlis struktirdi is
azonosak: (M) = p(M') = (ms, 05).

Szeretnénk meghatarozni adott ekvivalencia osztaly egy minimélis
elemét a < részben rendezésre nézve. Legyen G’ egy nem iires lehetséges
megoldas struktiura halmazzal rendelkez6 ekvivalencia osztaly. Legyen M =
(P,R,0) € G'. Mivel S(M) # 0, ezért a 2.1.4. megjegyzés alapjan (M)
nem degenerélt. Akkor u(M) = (M,0) -re képezzikk az M = (P, R, O)
harmast, ahol R = RN M.

2.2.1. Lemma. A fenti médon meghatdrozott M = (P, R, O) egy PNS prob-
és

U) egy
léma olyan strukturdlis modellje, mely ekvivalens M-el és M < M.
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2.2. abra.

2.2.1. Kovetkezmény. ([15]) Minden M € G'-re M aM teljesiil, ami azt
gelenti, hogy M az ekvivalencia osztdly legkisebb eleme.

Az ekvivalencia osztaly legkisebb eleme a folyamat graf olyan mini-
malis részgrafjanak felel meg, mely tartalmazza az 0sszes lehetséges megoldas
strukturat, de nem tartalmaz sziikségtelen informéaciét. Ennek megtaldlasa
azért hasznos, mert csokkenti a probléma méretét.

2.2.2. Definicié. Egy PNS probléma M = (P, R, O) strukturdlis modelljét
a tekintett PNS probléma redukdlt strukturdlis modelljének nevezziik,
ha S(M) # 0, és barmely mds M’ ~ M strukturdlis modellre M < M.

Tehat egy G’ ekvivalencia osztaly egy nem iires lehetséges megol-
dés struktura halmazzal rendelkezé M = (P, R, O) strukturélis modelljéb6l
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kiindulva, a u(M) = (M, O) maximdlis struktira ismeretében, az M redu-
kalt strukturdt az M = (P, R, O) médon kaphatjuk meg, ahol R = RN M.
Ehhez azonban tetszoleges strukturdlis modellrol el kellene tudnunk donteni,
hogy a lehetséges megoldas strukturak halmaza iires halmaz-e, és ha nem,
akkor meg kellene tudnunk hatarozni a maximdlis strukturdt. Ennek meg-
valésitdasat fogjuk bemutatni a kévetkezo alfejezetben.

2.3. A maximalis struktira meghatarozasa

A vizsgalatok soran bebizonyosodott, hogy a lehetséges megoldas
struktira halmaz tiressségének eldontésére és a maximalis struktira genera-
ldsdra adhaté egy hatékony, polinomidlis idejii algoritmus ([16, 11]). Tovébbi
empirikus vizsgalatok megmutattak, hogy véletlenszertien generdlt felada-
tokra a redukcids eljaras bizonyos, atlagosnak tekinthet6 feladatosztalyoknal
kozelitéleg 47%-ara csokkenti a feladat méretét ([25]). Ebben az alfejezetben
a ([11])-ben leirt algoritmmust fogjuk ismertetni.

Legyen M = (P, R, O) egy PNS probléma strukturélis modellje.

Maximadlis struktira generilé algoritmus (MSG)

1. Redukcio

Inicializdlds

1.1. Legyen Og = O\ {(a, B) : (o, 3) € O & BN R # D} és My = mat(Oy).

1.2. Ha P € M, akkor nem létezik M-re maximalis struktira és az algo-
ritmus véget ér. Egyébként folytassuk az eljarast a kovetkezo 1épéssel.

1.3. Legyen Tp = {X : X € Mo\ R & ((o,5) € Og — X & )}

1.4. Legyen r = 0.
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Iterdacio

1.5.
1.6.
1.7.
1.8.
1.9.

1.10.

1.11.
1.12.

1.13.

Ha T, = (), akkor folytassuk az eljardst a 2.1. 1épéssel.
Valasszunk egy X € T, anyagot.

Legyen Ox = {(,3) : (o, ) € O, & X € a}.
Legyen O,41 = O, \ Ox és M, 1 = mat(O,41).

Ha P € M, .4, akkor nem létezik M-re maximalis struktira és az algo-
ritmus véget ér. Egyébként folytassuk az eljarast a kovetkezo 1épéssel.

Hatarozzuk meg a
T ={Y :Y € mat®(Ox) &Y & mat®(O,;1) &Y € mat™(O,41)}
halmazt.
Legyen T,y = (1. N M,41) UT].
Noveljiik eggyel az r iteraciészamot.

Kezdjiink egy 1j iteraciot az 1.5. 1épéssel.

2. Epités

Inicializdlds

2.1.

Legyen Wy = P, mg =10, 0og = ) és s = 0.

Iterdcio

2.2.

Ha W, = (), akkor vége: kaptunk egy megoldés struktirat M-re.
Ha m = mat (o), akkor (m, o5) az M maximélis struktirija.

Ha W, # (), akkor folytassuk az eljdrdst a kovetkezd lépéssel.
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2.3. Vélasszunk egy teszoleges X anyagot W,-bol.

2.4. Legyen mgyi1 = mgs U {X}.

2.5. Alkossuk meg az O% = {(,3) : (o, ) € O, & X € [} halmazt.
2.6. Legyen o441 = 0, U O%.

2.7. Weyir = (WeUmat™(O%)) \ (RUmg ).

2.8. Noveljiik eggyel az s iteraciészamot.

2.9. Kezdjunk egy 1j iteraciét a 2.2. 1épéssel.

Az algoritmus két f6 részbol all. Az elsé redukcids részben toroljik
azokat a miveleti egységeket, melyek vagy nyersanyagot is termelnek, vagy
valamely nyersanyagtdl kiillonb6zo, egyetlen miiveleti egység dltal sem termelt
bemeneti anyag hidnyaban nem tudnanak miikodni. Ha kozben azt tapasz-
taljuk, hogy valamely célterméket egyetlen megmaradt miiveleti egységiink
sem gyartja, ez azt jelenti, hogy nincs lehetséges megoldés struktira, azaz
S(M) = (), de akkor maximalis struktira sincs, {gy az algoritmust megallit-
hatjuk.

A masodik részben a rendelkezésre all6 miiveleti egységekbdl fel-
épitjilkk azt a hélézatot, mely kizarolag hasznos anyagokat termel6é miiveleti
egységeket tartalmaz. Eloszor kiindulunk abbdl, hogy a céltermékeket le
kell gyartani. Ehhez minden olyan miiveleti egység hasznos lehet, mely
célterméket gyart, tehat ezeket bevessziik a halézatba. De a halézatba be-
vett miveleti egységek bemeneti anyagait is le kellene gyartani, tehat be-
vesszilk az azokat gyarté miveleti egységeket is, és igy tovabb. Természe-
tesen altalanos esetben megtorténhet, hogy a céltermékek gyartasa az ily
modon meghatarozott miiveleti egységek akar tobb kiillonbozé valédi rész-
halmazaval is legyarthaték, most az volt a cél, hogy 0Osszegytijtsiik azokat
a miveleti egységeket, melyek részt vehetnek valamely lehetséges megoldas
strukturaban.

Osszesitve, az algoritmus eldénti az ” S(M) = () ?” kérdést, és ameny-
nyiben létezik lehetséges megoldas struktira, az eredményeképpen kapott
halozat azokat és csakis azokat a miveleti egységeket és anyagokat tartal-
mazza, amelyek részt vehetnek valamely lehetséges megoldéds strukturaban,
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igy a modell maximélis strukturajat szolgaltatja. Lényeges tovabba az is,
hogy az algoritmus polinomidlis id6 alatt oldja meg ezt a feladatot ([11]).

2.4. A silyozott PNS modell

Legyen M = (P,R,0) egy PNS probléma strukturdlis modellje.
Gyakorlati szempontbdl természetes igény, hogy szeretnénk meghatarozni azt
a lehetséges megoldas strukturat, mely valamilyen szempontbdl a leggazdasé-
gosabban allitja el6 a céltermékeket. Definidlunk tehét a lehetséges megoldés
strukturak halmazén egy koltségfiiggvényt és kerestink egy legkisebb koltsé-
gl lehetséges megoldast. Legyen z : S(M) — Ry egy ilyen koltségfiiggvény.
Akkor a megoldandé feladat:

(PNS-1) min{z((m,o0)) : (m,o0) € S(M)}.

Egy megoldés struktiura koltségfiiggvényét tobbféleképpen definial-
hatjuk. Mi most ennek egy egyszerii és természetes definicigjat fogjuk adni.

Legyen w : O — R, egy koltségfiiggvény a miiveleti egységeken.
Egy lehetséges megoldas struktira koltségét a benne levé miiveleti egységek
Osszkoltségeként fogjuk definidlni. fgy a PNS probléma azon valtozatat
vizsgédljuk, amikor a feladat egy olyan lehetséges megoldas struktira meg-
hatarozéasa, melyre a benne miikodo miiveleti egységek Osszstulya minimaélis,
vagyis

(PNS-2) min{)_ . w(u) : (m,0) € S(M)}.

Az a kérdés, hogy meg tudjuk-e oldani ezt a feladatot, ha igen ho-
gyan, és milyen hatékonysaggal ?

Mivel az M és O halmazok végessége miatt a lehetséges megoldas
strukturak szama is véges, tovabbd adott lehetséges megoldas struktira fen-
tiekben definialt koltségének kiszamitasa is véges id6 alatt elvégezhetd, ezért
nyilvan a legkisebb koltségii lehetséges megoldas struktira meghatarozasa
is véges idoben megoldhaté feladat. Példaul egy lehetdség, hogy felsorol-
juk a strukturdlis modellben szereplé O halmaz Gsszes részhalmazat, mind-
egyikrol megvizsgaljuk, hogy lehetséges megoldas struktira-e, és a lehetsé-



FEJEZET 2. ELOZMENYEK 20

ges megoldés struktiurak koziil kivélasztjuk a legkisebb koltségiit. Konnyen
belathaté azonban errdl a moddszerrol, hogy nagyon kicsi a hatékonysaga,
hiszen tul sok részhalmazt vizsgdlunk meg feleslegesen. Az elézdekben tar-
gyaltak ismeretében azonnal latjuk, hogy csak a maximadlis struktira rész-
halmazaival érdemes foglalkozni, de még ezek felsorolasa is nagyon sok, az O
miiveleti egység halmaz szamossaganak fliggvényében exponencialis szamu
részhalmaz megvizsgalasat igényli. A kovetkezo fejezetekben latni fogjuk,
hogy ennél hatékonyabb megoldast ugyan lehet talalni, de sokkal hatéko-
nyabb, polinomialis idejii megoldds megtaldlasa nem varhaté.

2.5. A PNS probléma NP teljessége

A [2, 17, 27] cikkekben igazoldst nyert a a PNS-2 probléma NP
teljessége. A bizonyitas alapotlete az volt, hogy megmutattdk a PNS-2
problémaék egy részosztalyanak ekvivalenciajat a halmazlefedési problémaval,
mely egy jol ismert NP teljes probléma ([32, 1]). Az eredmény fontossiga és
a két probléma ekvivalencidjanak érdekessége miatt az aldbbiakban ismer-
tetjiikk a bizonyitasok lényegét.

Eloszor a PNS-2 probléma NP nehézségét fogjuk megmutatni. Te-
kintsiik a PNS-2 problémak azon PNSgp részosztalyat, melyben O C ¢'(R) x
¢'(P), azaz melyben minden miiveleti egység nyersanyagokbdl céltermékeket
gyért, és ezek parhuzamosan dolgoznak. Legyen tehdt O = {uy,...,u,},
uj = (ay, ;) € ¢'(R) x ¢'(P), j =1,...,n. Ha a ; halmazok stlyozasat a
kévetkez6képpen definidljuk: w'(5;) = w(u;), akkor kénnyen belathato, hogy
a PNSgp probléma ekvivalens a P halmaz 3; halmazokkal val6 halmazlefedési
probléméjaval.

Forditva, tekintsiink egy tetszoleges halmazlefedési problémat. Ez
azt jelenti, hogy egy tetszéleges nem fires, véges, P halmazt le szeretnénk
fedni sdlyozott 3;, j = 1,...n halmazokkal, minél kisebb 0sszkoltséggel.
Jelolje a halmazok silyozdsat w'(G;), 7 = 1,...,n. Legyen R # 0 egy
tetsz6leges véges halmaz, melyre RN P = (). Legyenek tovabbd u; = (R, ),
j=1,...,n,és O = {uy,...,u,}. Definidljunk egy w silyfiiggvényt O-n a
kévetkez6képpen: w(u;) = w'(6;), 7 = 1,...,n. Ha a P és R halmazokat
anyaghalmazoknak, az O-t pedig miiveleti egységek halmazanak tekintjiik,
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akkor a (P, R, O) altal meghatérozott PNSgp probléma ekvivalens a tekintett
halmazlefedési problémaval.

A fentiekbdl kovetkezik, hogy:

2.5.1. Lemma. ([2, 17]) A PNSgp problémaosztily ekvivalens a halmazle-
fedési problémdval.

Mivel azonban a PNSgp problémaosztaly a PNS-2 problémanak egy
részosztalya, a halmazlefedési probléma pedig NP teljes, ezért a kovekezd
allitast kapjuk.

2.5.1. Tétel. ([2, 17]) A PNS-2 probléma NP nehéz.

Egy NP nehéz probléma NP teljességéhez azt kellene megmutat-
ni, hogy eleme az NP osztalynak. Ha vesziink egy feltételezett optimalis
megoldést, annak az ellenorzése, hogy valéban megfelel6 koltségii lehetsé-
ges megoldds struktiira-e, polinomidlis idében elvégezhets. A ([27]) cikkben
azonban a szerzok egy sokkal szebb, konstruktiv megoldast adtak, melyet az
alabbiakban vazolunk.

Abbdl indulunk ki, hogy a lehetséges megoldas strukturak mind a
maximélis struktira részei, és ily médon, ha (M,0) az M = (P, R,0)
strukturalis modell maximdlis strukturaja, akkor az eredeti silyozott PNS
probléma ekvivalens a

(PNS-3) min{z w(u) : (m,o) € S(P,Rﬂﬁ,a)}

uco

feladattal.

Ha S(P,R,0) = (), akkor a PNS probléma ekvivalens azzal a hal-
mazlefedési problémaval, melyben a P halmazt kell lefedni annak egy valédi,
tetszoleges sulyu részhalmazaval: egyiknek sincs lehetséges megoldésa. To-
vabba, az " S(P, R,0) = ()77 kérdés, a méar emlitettek szerint, polinomidlis
id6ében eldonthet6 ([11]).
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Ha S(P,R,0) # 0, akkor felhaszndlva a 2.1.2. kovetkezménybe-
li megallapitast, mi szerint egy miveleti egység halmaz egyértelmiien meg-
hataroz egy lehetséges megoldas strukturat, a lehetséges megoldéas struktu-
rakat egy logikai konjunktiv normal formaval fogjuk jellemezni.

Legyen O = {(ay,B1),...,(a, %)} és J = {1,...,1}. Akkor az
(M, 0O) minden (m, o) folyamat részgrafjdhoz hozzarendelhetiink egy v, ...,
y; logikai vektort gy, hogy minden j € J-re y; = IGAZ <> (w;, ;) € o.
Kénnyen belathaté, hogy ez egy bijektiv leképezés az (M, O) folyamat (A4)-
et kielégité részgrafjai és a hozzdjuk rendelt logikai vektorok kozott. Egy
y logikai vektornak megfelel6 (m,o0) folyamat részgraf a kovetkezképpen
hatarozhat6 meg:

m = U (Oéj Uﬂ]) és 0 = {(&jaﬁj) j € T(y)}a

JET(y)

ahol T(y) = {j : j € J ésy; = IGAZ}. Azonban tetszéleges y vektorhoz
rendelt folyamat részgraf nem feltétlen lehetséges megoldas struktira is. Az
aldbbiakban meghatarozunk egy olyan ® konjunktiv normal formét, amelyet
egy y logikai vektor akkor és csakis akkor elégit ki, ha a hozzarendelt folyamat
részgraf lehetséges megoldas struktira is. Legyenek:

e b= A V y

XeP jeJ
Xep;
e o= A (yV V un)
Jj€J heJ
XEaj\R X€eBp
e &= A (~4;V V un)
Jj€J heJ
Pﬁﬂj:(o ﬁjﬁ(!h;é@

D =Py AN Dy A Dy

2.5.2. Lemma. ([27]) Egyy logikail-vektor akkor és csakis akkor elégiti ki a
® konjunktiv normdl format, ha az y-hoz rendelt folyamat graf eqy lehetséges
megoldas struktira.

Bizonyitas Legyen (m,0) egy tetszbleges (M, O)-beli lehetséges megoldés
struktira és y a hozzd rendelt logikai vektor. Mivel m = mat(o), (A1) és



FEJEZET 2. ELOZMENYEK 23

(A2) alapjan minden P-beli anyagot gyart valamilyen o-beli miiveleti egység,
igy ®o(y) = IGAZ. (A2)-bdl nyilvan kovetkezik ®,(y) = IGAZ is.

Bizonyitani szeretnénk ®, teljesiilését is. Legyen j € J gy, hogy
B; NP = 0. Akkor —y; V. \/ wy tagja a ®y-nek. Ha u; ¢ o, akkor

heJ
ﬁjﬁah;ﬁ@

y; = HAMIS és az el6bbi diszjunkcié logikai értéke IGAZ. Meg kell még
mutatnunk, hogy akkor isigaz, hau; € o, azazy; = IGAZ. Ebben az esetben
(A3) alapjan létezik egy (m,o0)-beli Gt u;-b6l P-be, ami miatt létezik olyan
uy, € o, melyre 3; Nay, # 0. Ez viszont azt jelenti, hogy y;, = IGAZ, amibél
az kovetkezik, hogy az Ot tartalmazo diszjunkcid is igaz. Mivel a j € J-t
teszblegesen vélasztottuk a §; N P = () feltétel mellett, igy a @5 konjunkcié
minden tagja IGAZ lesz, amibol kovetkezik @q teljestilése.

A fentiekben megmutattuk tehat, hogy ®,, ®; és $, mindegyike
IGAZ, amibol kovetkezik @ teljesiilése.

A masik irdny bizonyitasahoz most tegytik fel, hogy y kielégiti ®-t.
Legyen (m, o) az (M, O) y-hoz rendelt folyamat részgréfja. Igazolni szeret-
nénk, hogy (m, o) lehetséges megoldds struktira, azaz kielégiti az (A1) - (LA4)
feltételeket.

(A4) az y definiciéjabol kozvetleniil kovetkezik.

Py (y) = IGAZ miatt minden X € P-re létezik olyan v € O miiveleti
egység, mely X-et kozvetleniil termeli, igy (A1) is teljesiil.

(A2) bizonyitésdhoz legyen X € m N R. Mivel o C O és az (M, O)
maximalis struktirdban a nyersanyagokat egyetlen O-beli mfiveleti egység
sem gyartja, igy nem létezhet (Y, X)) él az (m,o0)-ban. Most feltétetezziik,
hogy X € m és nem létezik (Y, X) él (m,o0)-ban. Bizonyitani szeretnénk,
hogy X € R. Feltétetezziik az ellenkezdjét, azt hogy X ¢ R. Mivel X € m,
a ®-hez rendelt (m,o0) definiciéja miatt léteznie kell u; = («ay, ;) € o-
nak ugy, hogy X € «;, ami azt jelenti, hogy y; = [GAZ. Masfelol az
(M, O) maximalis struktira is a 2.1.1. kévetkezmény alapjan egy lehetséges
megoldés struktira, melyben feltételezésiink szerint X nem nyersanyag, igy
létezniiik kell olyan u;, € O miiveleti egységeknek, melyekre X € 3,. Mivel
a ®; a maximalis struktira minden nem csak nyersanyag bemenettel ren-
delkezé miveleti egységére tartalmaz egy tagot, ezért ®; tartalmazni fogja
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a (—y; V. \/ yn) tagot is. Mivel feltételezésiink szerint & = IGAZ, ezért

heJ
X €Epp,
¢, = IGAZ, de akkor az (—y; V. \/ yp) tagnak is IGAZ-nak kell lennie.
heJ
XepBy

Ugyanakkor a fentiekben azt kaptuk, hogy y; = IGAZ. Ez azt jelenti, hogy
V ynis IGAZ, amibdl az kovetkezik, hogy létezik olyan hg, melyre uy, € o

heJ
Xepy

és X € Bp,. Ez viszont azt jelenti, hogy létezik (Y, X) él (m,o0)-ban, ami el-
lentmondas a feltételezésiinkkel. Kovetkezésképpen X € R, és (LA2) teljesiil.

(A3) bizonyitasahoz vegyiink egy tetszbleges u; € o miiveleti egysé-
get. Ha ;N P # 0, akkor nyilvén létezik it u-b&l P-be. Egyébként, fel-
hasznalva azt a tényt, hogy a maximalis struktira egy lehetséges megoldas
struktira, a maximalis struktiraban létezik ut u;-bél P-be, igy 1étezik olyan
up, € O miiveleti egység, melyre 3; Moy, # (0. Mivel ®, a maximalis strukttra
minden célterméket nem gyarto miiveleti egységére tartalmaz egy tagot, ezért
tartalmazni fogja a —y; V. \/  yp, tagot is. Mivel u; € o miatt y; = IGAZ,

heJ
ﬁjﬁah?f@

ezért az el6bbiekhez hasonlé moédon létezik hy ugy, hogy up, € o és 3; N
ap, # 0. Most wup,-al indulva ugyanezt a gondolatmenetet megismételve,
véges szamu ismétlé 1épés utan kapunk egy u;-bol P-be vezetd (m, o0)-beli
utat, ami azt mutatja, hogy (A3) igaz. —

A 2.5.2. lemma alapjan felirhatjuk a PNS probléma egy ekvivalens
formajat:

(PNS-4) min{ > w; oy kielégiti @—t},

JeT(y)
ahol w; = w(u;), j=1,...,L

A ([17]) alapjdn bevezetve a 2], z; € {0,1}, j =1,...,1 véltozSkat

ugy, hogy Zi = 1 akkor és csakis akkor ha y; = IGAZ, tovabba z; = 1— z}L,
a fenti feladatot az aldbbi formédban is felirhatjuk:

> z7 > 1, minden X € P-re,
JjeJ
XeB;
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z; + > % >1, minden j € J, X € a;\ R-re,
XE,

z;+ > 2 >1, minden j € J, PN ;= (-re,
Nz

z;.r +2z; =1, minden j € J-re,

z;-r,z-_ € {0,1}, minden j € J-re,

- o
min Y w; - 2;
jeJ

A ([17])-ban bemutatott bizonyitds alapjén kénnyen belathatd, hogy
tetszéleges L > ) wj-re a fenti feladat optimalis megolddsai azonosak az
jed
alabbi halmazlefedési probléma optimalis megoldasaival:

> z;’ > 1, minden X € P-re,
263,
z; + > % >1, minden j € J, X € a;\ R-re,

heJ
X €EPp,

z;+ > 2 >1, minden j € J, PN ;= (-re,
800

z;r +2; > 1, minden j € J-re,

z;-r,z-_ € {0,1}, minden j € J-re,

min > [(w; + L) - 25 + L+ 2]

jeJ

Osszegezve az eddigieket, azt kaptuk, hogy a PNS probléma visszave-
zethetd egy halmazlefedési feladatra, ugyanakkor a 2.5.1. lemma értelmében
a halmazlefedési feladat ekvivalens egy specidlis PNS problémaosztéllyal.

Ebbdl az kovetkezik, hogy:
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2.5.2. Tétel. [27] A PNS-2 probléma ekvivalens a halmazlefedési problémd-
val.

A halmazlefedési probléma NP teljessége (1d. [32, 1]) alapjan ebbél adddik,
hogy:

2.5.3. Tétel. [27] A PNS-2 probléma NP teljes.

A 2.5.3. tétel alapjan feltételezhetd, hogy a PNS-2 probléma ha-
tékony, polinomidlis idejii megoldasa nem véarhaté. FEz indokolja azt, hogy
exponencialis idejii megoldé algoritmusokat elfogadhatoknak tekintsiink és
alkalmazzuk az ilyen esetekben szokdasos korlatozas és szétvalasztas jellegii
modszereket.

2.6. Dontési leképezések

Fontos szerepet jatszik a PNS-problémanak a korlatozas és szétva-
lasztas médszerével torténd, killonbozo ([24, 21]) megoldédsaiban a ([13, 14])-
ban bevezetett dontési leképezés fogalma.

Legyen O a miiveleti egységek egy halmaza. Definialjuk a A :
M\ R — p(0), fliggvényt a kovetkez6 médon. Minden X € M \ R-re
legyen A(X) = {(«,0) : (o, 8) € O & X € (}. Szemléletesen a A minden
nem nyersanyaghoz hozzarendeli azokat a miiveleti egységeket, melyek azt az
anyagot gyarthatjak. Mi viszont altalanos esetben a miiveleti egységeknek
csak egy olyan részhalmazat szeretnénk haszndlni, mely a legkisebb kolt-
séggel képes a céltermékek legyartasara. Mivel altaldban egy anyagot tobb
miiveleti egység is legyarthat, ezért egy megoldas felépitése sordan minden
anyagra vonatkozoan dontentink kell arrdl, hogy azt az anyagot mely miveleti
egységekkel kivanjuk legyartani. Ezen dontések leirdsara hasznaljuk a dontési
leképezéseket. Legyen m C M \ R és §(X) C A(X), minden X € m-re. A
d[m] = {(X,6(X)) : X € m} leképezést reguldris dontési leképezésnek,
vagy egyszeriien csak dontési leképezésnek nevezzik.

Egy dontési leképezés konzisztens, ha 6(X)NA(Y) C §(Y), bar-
mely X,Y € m-re. Ez azt fejezi ki, hogy ha egy miiveleti egység tobb
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anyagot is gyart, akkor vagy azt feltételezziik, hogy nem miikodik, azaz nem
gyart semmit és akkor nem rendeljiik hozza egyetlen anyaghoz sem, vagy azt
feltételezziik, hogy miikodik, de akkor mindegyik kimeneti anyagat gyartja
és igy mindhez hozza kell rendelni. Az M strukturalis modell konzisztens
dontési leképezéseinek halmazat (2yg-el fogjuk jelolni.

Most tegyiik fel, hogy egy d[m]| dontési leképezés éltal leszogeztiik a
miiveleti egységek egy részhalmazat abbdl a célbol, hogy az m-beli anyagokat
kozvetleniil gyartsa. Ha vesziink egy tovabbi Y € M \ (m U R) anyagot és
ennek kozvetlen gyartdsara konzisztens modon hozzarendeljikk az uf, ..., u!
A(Y)-beli miiveleti egységeket, akkor egy nagyobb részfolyamatot kapunk.
Az ennek megfelel

FmU{Y} =dm]U{(Y,{u),...,u.})}

» T

dontési leképezésre azt mondjuk, hogy a d[m] reguldris kiterjesztése vagy
egyszertien csak a d|m| kiterjesztése.

A kiterjeszés fliggvény Qzp-en egy reflexiv, antiszimmetrikus és tran-
zitiv, tehat részben rendezés reldcidt hatdroz meg. Jeloljiikk a részben ren-
dezett halmazt (Qu, <)-el. Nyilvdnvaléan 0[0)] az (2um, <) halmaz legkisebb
eleme. A fentiek értelmében a Kkiterjesztés relaciot altaldnosithatjuk tugy,
hogy azt mondjuk, hogy ds[ms] (reguldris) kiterjesztése 0, [m;]-nek és
ezt ugyancsak 0;[mq] < da[ms] -vel jeldljiik, ha my C mag, 61 [mq] és da [mo]
konzisztens dontési leképezések, valamint §; (X)= d2(X) minden X € m-re.
Az (v, <) halmaz maximélis elemeit Qpf*-val fogjuk jeldlni.

Konnyen belathatjuk, hogy teljesiil az alabbi tulajdonsag:

2.6.1. Lemma. FEgy d[m] € Q\ dontési leképezés az (v, <) részben ren-
dezett halmaz mazimdlis eleme akkor és csakis akkor, ha m = M \ R.

Bizonyos esetekben egy d[m| € Qn \ Q™ dontési leképezésbdl ma-
ximalis elemet képezhetiink a kovetkezé modon. Ha

W = (mat™(op(d[m])) U P)\ (RUm) = ()
akkor legyen
(X)) ={(a,B) : (a, B) € op(6[m]) and X € 3}
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minden X € M \ R-re. Akkor konnyen belathatd, hogy ¢ € Qpp*. A ¢
dontési leképezést a d[m] (reguldris) lezdrdsdnak fogjuk nevezni.

Mivel minden 0 [m] € Qpf*re m = M \ R, ezért ismert M =
(P, R, O) strukturalis modell esetén adott maximalis dontési leképezést egy-
szertien d-val fogunk jelolni. Erdemes definidlni a mfiveleti egységek azon
halmazat, amely egy konzisztens dontési leképezés altal van meghatarozva.
Nevezetesen, legyen

op(d[m]) =U{0(X): X € m}.

A maximalis konzisztens dontési leképezések és a lehetséges megoldas
struktirdk kozotti osszefiiggések tanulményozdsdra, minden (m,o0) € S (M)
lehetséges megoldas struktirahoz hozzarendeliink egy maximaélis konzisztens
dontési leképezést a kovetkezoképpen.

2.6.1. Definicié. Legyen p : S (M) — QR figgvény, melyre p(m,o0) = o
tgy, hogy

d(X)={u:u=(a,p)€0& X €5}, ha X em\ R, és

§(X)=10, ha X ¢ M\ (RUm).

2.6.2. Lemma. ([21]) p egy injektiv leképezés S(M)-rdl QxE*-ba, tovdbbd

p~'(8) = (mat(op(6)), op(6))

igaz minden olyan 0-ra, mely eqy S(M)-beli elem p dltali leképezése.

Bizonyitdas  El6szor megmutatjuk, hogy (m,o0) € S(M)-bdl kévetkezik
p((m,0)) € Qpf*. Mivel a p((m,0)) = d§[M \ R] az M \ R halmazon de-
finidlt, tovabba egy d[m] dontési leképezés akkor és csakis akkor maximélis,
ha m = M \ R, ezért azt kell belatnunk, hogy ¢ konzisztens. Ebbdl a célbdl
legyenek X,Y € M\ R tetszéleges anyagok. Igazoljuk, hogy 6(X)NA(Y) C
(Y). Ha §(X)NA(Y) = 0, akkor a konzisztencidhoz sziikséges tartal-
mazés nyilvdnvaléan teljesiil. Most tegyiik fel, hogy §(X) N A(Y) # 0 és
(a, B) € 6(X)NA(Y). Akkor ¢ definicidja alapjan X € m \ R és («, 3) € o.
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Masfelol (a, B) € A(Y)-b6l kovetkezik, hogy Y € 5. Mivel (m,0) egy meg-
oldés struktira, ezért a 2.1.2. lemma alapjan m = mat(o) 2 3 3 Y, és igy
Y em. Az Y € M\ R feltételezés azt vonja maga utén, hogy Y ¢ R, és
ezért Y € m \ R. Azt kapjuk tehat, hogy (o, 3) € (Y, amibdl kévetkezik
az eloirt tartalmazas.

Most legyen (m,o0) és (m/, o) két kiilonbozé megoldas struktira.
Megmutatjuk, hogy a p((m,0)) = és p((m',0")) = ¢, egymastdl kiilonboz6
dontési leképezések. A 2.1.2. lemma és 2.1.2. kovetkezmény alapjan az
(m,0) és (m', o) egyértelmiien meghatérozottak az o illetve o’ halmazok altal,
ezért o # o. Akkor az altalanossag megszoritasa nélkil feltételezhetjiik,
hogy létezik olyan (a, ) € O, melyre (o, 3) € o, de (o, 3) & 0. Mivel
(m,0) € S(M), ezért a 2.1.2. lemma alapjan m = mat(o) és igy 5 C m. Az
(A3) feltételbdl |3| > 1, vagyis létezik legaldbb egy olyan X anyag, melyre
X € 3, és ezért X € m. Mivel (M,0) egy megoldas struktira és X € £,
tovabba (a, B) € O, ezért az (A2) feltételbél X &€ R és igy X € m \ R.
Tovébbéd a ¢ definici6jabdl (a, ) € §(X). Két esetet kiilonboztethetiink
meg.

Ha X & m/, akkor a ¢ definicija alapjan §'(X) = (), kovetkezéskép-
pen 6(X) # §'(X).

Ha X € m/, akkor (a, 3) ¢ 0'-bdl &’ definicidja alapjan kovetkezik,
hogy (e, 8) ¢ 6'(X) .

Ily médon igazoltuk, hogy & # ¢'.

Végil legyen 0 = p((m,0)) valamely (m, o) € S(M) megoldés struk-
turdra. A p definici6ja alapjan konnyen belathat6, hogy o = op(d). Akkor
a 2.1.2. lemmabdl azt kapjuk, hogy (m,o0) = (mat(op( )),0p(d)), ami azt
jelenti, hogy igazoltuk az allitast. —

2.6.1. Megjegyzés. Vegyiik észre, hogy p-ra a sziirjektivités, és ily médon a
bijektivitds sem teljesiil. Példdul a 0*(X) = 0,VX € M\ R dontési leképezés
eleme az Qpf* halmaznak, de nem létezik olyan (m,o0) € S(M) lehetséges
megoldas struktira, melyre p((m,0)) = §* teljesiilne.
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Jelolje S'(M) az S(M) p melletti képét, vagyis legyen

§'(M) = {p((m,0)) : (m,0) € S(M)}.

Vegyiik észre, hogy minden (m, 0) € S(M)-re ha p((m, o)) = §[M \ R], akkor
o = op(6[M \ R]). Ezen észrevételbél és a 2.6.2. lemmabdl azt kapjuk, hogy
a PNS-3 feladat helyett megoldhatjuk az alabbi feladatot:

(PNS-5) min{ > w(u):d € S’(M)} :

u€op(d)

Az egyszertliség kedvéért az S’'(M) elemeit lehetséges megoldasoknak fog-
juk nevezni.

A késébbiekben latni fogjuk, hogy a konzisztens dontési leképezések
lehetové teszik a lehetséges megoldas struktirak hatékonyabb leirdsat és ge-
neralasat.

2.7. Leszamlalasi algoritmusok

Ebben a részben a PNS-5 feladat megolddsara fogunk kidolgozni
alapvetd algoritmusokat. A 2.5.3 tétel alapjan tudjuk, hogy nem varhato
hatékony polinomialis idejii megoldas. Ezért eloszor kidolgozunk egy olyan
Branch and Bound jellegli eljarast, mely &altalanos keretet nyujt majd az
ilyen jellegii algoritmusok késébbiekben torténé targyalasara, majd egy olyan
algoritmust fogunk megnézni, mely a feladat Gsszes lehetséges megoldésait,
koztiik az Osszes optimalis megoldast is felsorolja.

2.7.1. Egyszeri leszamlalas

Legyen M egy PNS probléma strukturélis modellje és jeldlje (M, O) a
maximalis struktiarat. Célunk az, hogy megoldjuk a PNS-5 problémét. Mivel
az S'(M) nem iires, véges halmaz, ezért léteznie kell legaldbb egy optimalis
megoldasnak. A tovabbiakban megmutatjuk, hogy hogyan alkalmazhatoé az
altalanos korlatozas és szétvalasztas modszere a feladat megoldéséra.
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A Branch and Bound algoritmus egyik {6 6sszetevéje a szétvalasztasi
fiiggvény, mely S’(M) részhalmazait particidkra osztja. Mivel itt S'(IM) csak
implicit médon van definidlva, viszont S’(M) C Qpf*, amibdl kifolydlag az
QR particiéi az S'(M)-ben is particidkat hoznak létre, ezért S'(M) helyett
az Ot befoglald Q™ halmazt és annak részhalmazait fogjuk particiondlni.

Definidljuk az w @ Qp \ QpFF — ¢/ (QpF) figgvényt a kovet-
kez6képpen. Minden d[m] € Qpp \ QRF* -re legyen

w(d[m]) ={d: 6 € M~ és 6[m] < d}.

Tulajdonképpen w(d[m]) megadja a §[m| maximélis konzisztens kiterjeszté-
seit. A 2.6 részben lattuk, hogy minden nem maximélis konzisztens dontési
leképezésnek létezik maximalis konzisztens dontési leképezésre vald kiter-
jesztése. Az is nyilvanvald, hogy w(d[0]) = Qp™. Az w(d[m]) NS’ (M) halmaz
elemeit (reguldris) lehetséges megoldds kiterjesztéseknek fogjuk ne-
vezni.

A [25]-ban igazoldst nyert a kovetkezo allitas.

2.7.1. Lemma. Ha 6[m],d'[m'] € Qm \ F, és IX € mnNm/ @ §[X] #
§'[X], akkor w(d[m]) Nw(d'[m']) = 0.

Legyen d[m] € Oz \ Q3f*. Akkor a 2.6.1. lemma értelmében m C
M\ R, ami azt jelenti, hogy létezik X € M \ (R Um) anyag. Mivel (M, O)
maximalis struktira, ezért A(X) # 0, igy A(X) minden @Q;, i = 1, ..., 214X
részhalmazara definidlhatjuk a

dilm U{X}] = d[m] U {(X, @)}
dontési leképezést.

Az dltaldnossdg megszoritasa nélkiil feltételezhetjiik, hogy a d;[m U
{X}], i = 1,...,28F) halmaz konisztens dontési leképezései a d;[m U
{X}], t=1,... k dontési leképezések. Akkor a [25] alapjdn tudjuk, hogy

2.7.2. Lemma. Az w(§:;[mU{X}]), t =1,...,k halmazok egy nem feltétlen
nem trividlis particidi az w(0[m]) halmaznak.
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Akkor a B&B algoritmus w szétvalasztasi fliggvénye a kovetkezd
lesz:

w(d[m]) = {w(dmU{X}]), t=1,...,k}.

A Branch and Bound algoritmus masik lényeges Osszetevoje a kor-
latozas. Jelen esetben ez egy g : Qn — R fliggvény, mely alsé korlatokat
hatédroz meg a w(d'), o' € S'(M) Nw(d[m]), d[m] € Qnm \ Q™ értékekre,
g(0) =w(0) ha d[m] € §'(M), és g(d) = oo ha d[m] € QF*\ S"(M).

A korlatozas és szétvalasztas modszere tulajdonképpen az Osszes le-
hetséges megoldast tartalmazo leszamlélasi fa olyan intelligens bejarasa, mely
a szétvalaszto és korlatozd fiiggvényeinek koszonhetoen a fanak csak egy
részét generalja és jarja be azért, hogy minél hamarabb eljusson az optimalis
megoldashoz. Ez ugy lehetséges, hogy azokat a csicspontokat nem fogja
tovabb particiondlni, melyekrol a korlatozd fiiggvény segitségével biztosan
meg tudja allapitani, hogy nem tartalmazhatnak optimalis megoldast. Az
ilyen csucspontokat felderitett, lezdart, vagy halott csticspontoknak szok-
tuk nevezni, mig a tobbi csicspontok alkotjak az €lé csticspontokat. Ezek
utan megadhatjuk a PNS-5 problémat megoldé B&B algoritmust.

Branch and Bound Algoritmus ([25])
Inicializdlds

e Legyen m =0, L ={w(d[0])}, z=00, s =0, r=0.
Szémoljuk ki g([0])-t.

Iterdcid (r. iterdcid)

1. Befejezés tesztelés

Ha L = (, akkor VEGE: 2 tartalmazza az optimumot, s pedig az
optimalis megoldast.

Egyébként, ha r > 0, akkor térjunk a 2. 1épésre,

ha pedig » = 0, akkor térjink a 3. lépésre.



FEJEZET 2. ELOZMENYEK 33

2. Levélkivdlasztdas

Vélasszunk egy w(d[m]) elemet az L-bol, melyre a % minidlis. Ha

tobb ilyen van, akkor valasszunk egyet véletlenszertien koziliik. Tér-
jiunk a 3. 1épésre.

3. Szétvdlasztds

Alkossuk meg w(d[m])-nek a w(d[m]) = {w(d;[mi]), i =1,...,k} par-
ticidit. Térjiink a 4. 1épésre.

4. Korlatszdmitas
Minden ¢ = 1,..., k-ra szdmoljuk ki a g(d;[m;]

)
ham = M\ R és g(0;) < z, akkor legyen z = ¢(J;
az b. lépésre.

korlatokat. Tovabba,
) és s = {4;}. Térjiink

5. Felderités

Aktualizaljuk L értékét:
L =A{w('[m']) - w(d'[m']) € (L\{w(d[m])}) Uw(6[m]), g(6'[m']) < z}.

Legyen r = r + 1, és térjiink a kovetkezo iterdciéra (1. 1épés).

2.7.1. Megjegyzés. A leirt algoritmus nem teljes, hanem egy séma, mely
a kiilonbozo valasztasi lehetdségek pontositasaval tobbé-kevésbé hatékonyan
implementalhat6. Példaul a 3. lépésben nem hataroztuk meg, hogy mely
anyaggal fogjuk kiterjeszteni az m anyaghalmazt a particiék képzése céljabdl.
Erre egy lehetdség lehet, hogy az M\ (mU R) halmaz legkisebb index{i elemét
valasztjuk. Hasonléképpen, a g korldtozo fliggvény pontos képletét sem ad-
tuk meg. Trividlis korlatként megadhatndnk példaul a 6[m] édltal rogzitett
miiveleti egységek sulyainak Gsszegét. Ezek kiilonbozé implementacidja kii-
16nb6z6 B&B algoritmusokhoz vezet. Tovéabbi ilyen lehetéségeket tartalmaz
a [25] munka.
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2.7.2. Teljes leszamlalas

Vannak esetek, amikor nem csak az optimumot és egy hozza tar-
tozd optimdlis megoldast keresiink, hanem valamiért érdekel a tobbi, nem
feltétlen optimalis megoldds is. Ebben a részben egy olyan ([16])-ben ki-
dolgozott eljaras modositott lefrasat mutatjuk be, mely a PNS-5 probléma
Osszes lehetséges megoldasat szolgdltatja.

Az altalanossdg megszoritasa nélkiil feltételezhetjik, hogy O = {uy,
cooupyés M ={A,..., A}, ahol P ={A;,..., A} valamely k és 1 < s <
n pozitiv egészekre.

Bevezetiink egy linearis rendezést az O-ban levé miiveleti egységek
tetszoleges halmazanak részhalmazai kozott. Ennek definidlasa érdekében
legyen ) # o az O egy tetszbleges részhalmaza, tovabbé legyenek o; =
{wi, .. u}, i < oo < ig és 0o = {uy,,...,u5}, 1 < -0 < Jrazo
tetszbleges részhalmazai. Akkor o; = 0o ha az aldbbi feltételek valamelyike
teljestil:

(1) 01 = 09,
(i) lo1| < ozl

(ili) |o1] = |o2| és ik < ji a legkisebb olyan k indexre, melyre 1 < k < s és
ik 7 Jk-

Abban az esetben, ha 01 # 09, az |= helyett az b jel6lést haszndlhatjuk.
Konnyt belatni, hogy az [= reldcié linedris rendezés.

Egy 6[m] € Qpm dontési leképezés felépitéséhez az m halmaz elemei-
nek rendezett, m =< A;,,..., A;, >-vel jelolt sorozatait fogjuk hasznalni.
Ha egy A ¢ m anyaggal kiterjesztjiikk a o[m] dontési leképezést, akkor a
kiterjesztett dontési leképezés tartomanya < A;,,..., A;,, A > lesz, melyet

m\[{A} =< A;,, ... A, > \[{A}

-val fogunk jelolni.
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Most készen allunk arra, hogy az eljarast bemutassuk.

Teljes leszamlalas (Complete Enumeration, ([16])

Inicializdlds

e Legyen mg =0, S := 0 és do[mo] = 0, tovabba i = 0.

Iterdcio

1. Legyen §;[m;| az m; =< A;,,..., A;, > rendezett tartomdnnyal rendel-
kez6 aktualis dontési leképezés. Tovabba legyen

W; = (mat™(op(6;m;])) U P) \ (RUmy),
és térjiink a 2. lépésre.
2. Ha W; = 0, akkor konstrudljuk meg a d;[m;] dontési leképezés o]

lezarasat, tovabba aktualizdljuk S-et: S = S U {d}, és térjink a 4.
lépésre. Egyébként térjink a 3. lépésre.

3. Valasszuk ki W;-bol a legkisebb indexi X elemet. Vizsgaljuk meg
A(X) nem iires részhalmazait a = reldciéra vonatkozdéan. Vélasszuk
ki a A(X) els6 olyan @ részhalmazat, melyre 6;(m;] U {(X,Q)} egy
konzisztens dontési leképezés, feltéve, hogy van ilyen.

Legyen m;1 = m; \/{X}, és
Sit1[mita] = 0i[mi] U{(X, Q)},
Legyen ¢ = i + 1, és térjiink a kévetkezo iterdciora (1. 1épés).

Ha A(X) egyetlen nem iires részhalmaza sem megfelelé konzisztens
dontési leképezés, akkor térjiink a 4. 1épésre.
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4. Ha §;(4;,) C A(A4;,) és van olyan nem iires Q C A(A;,) részhalmaz,
melyre 6;(Aj,) # Q, 6:(4;,) < Q, tovabba az

{(Ajy, 0 (A) U U{(A) 5 0i(Ay ) U {(4,,Q)}

dontési leképezés konzisztens, akkor térjink az 5. lépésre.
Egyébként térjiink a 6. 1épésre.

5. Valasszuk a A(A,,) részhalmazai koziil a 4. 1épésben leirt feltételt
teljesito |= szerinti els6 részhalmazat és jeloljuk ezt @Q'-vel. Legyen:

mip1 =< Aj17 s 7Ajk >, es

5i+1[mi+1] = {(Aj176i(Aj1)} U---uU {(Ajk—17 61(Ajk—1)}) U {(Ajk7 Q/)}

Legyen ¢ =i + 1, és térjiink a kovetkezd iterdciora (1. 1épés).

6. Legyen k = k — 1. Ha k = 0, akkor VEGE. Egyébként térjiink a 4.
lépésre.



3. fejezet

A dontési leképezések szama

A fejezet a [3], [4] és [5] cikkek eredményeit tartalmazza. Ezek olyan
kozos publikaciok, melyek eredményeit szerzétarsaimmal oszthatatlanoknak
tekintjik.

A konzisztencia sziikséges ahhoz, hogy eljussunk a lehetséges megol-
dasokig. Azonban tobb is igaz: minden konzisztens dontési leképezés azono-
sithaté a fentiek szerint hozzarendelt miveleti egységek részhalmazaval, hi-
szen, ham C M\ R adott, akkor azon miiveleti egységek koziil valaszthatunk,
amelyek kimenetében szerepel legalabb egy anyag m-bol. Viszont ha egy
miiveleti egységet valamelyik anyaghoz hozzarendeltiik, akkor éppen a kon-
zisztencia miatt ezt mar minden kimeneti anyagdhoz hozza kell rendelniink.
Ez az egyszeri észrevétel tehat azt jelenti, hogy az eddigieknél jobban kezel-
hetjiik a konzisztens dontési leképezéseket és megszamolhatjuk 6ket.

3.1. Altaldnos eset

3.1.1. Tétel. ([3]) Minden O # m C M \ R-re, az m-en definidlhaté kon-
zisztens dontési leképezések szama 2!Uxem AX1

37
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Bizonyitas

Jeloljik 7(m)-el az m anyaghalmaz felett definidlhaté konzisztens
dontési leképezések szamat. Eljarasunkban |m| szerinti indukeiét fogunk
alkalmazni.

Ha |m| = 1, akkor X — @ egy konzisztens dontési leképezés barmely
Q C A(X)-re, ahol X az m egyetlen elemét jeloli. A konzisztens déntési
leképezések szama ebben az esetben 2141

Most legyen 1 < i < |M \ R| egy tetszoleges egész szam és feltéte-
lezziik, hogy az &llitds igaz minden olyan m C M \ R-re, melyre |m| = i.
Vegyliink egy tetszéleges i + 1 elemii m’ C M \ R halmazt. Az dltaldnossag
megszoritasa nélkiil feltételezhetjiik, hogy m’ = {Xi,..., X;, X;41}. Legyen
W =A(Xi11) \ (U{A(Xy) -t =1,...,i}). W alapjan két esetet kiilénbozte-
tink meg.

L. BSET. W =0. Akkor (Jyc,v A(X) = Uyem AX).

Igazolnunk kell hat, hogy 7(m') = 7(m). A konzisztencia defini-
ci6jabdl kovetkezik, hogy minden §[m’'] konzisztens dontési leképezésnek az
{X1, ..., X;} halmazra valé sziikitése is konzisztens dontési leképezés. Mésfe-
161, ha azonos halmazon definialt két konzisztens dontési leképezés kiilonbozo,
akkor a kiterjesztéseik is kiillonbozoek lesznek. Elegendd tehat azt igazolni,
hogy barmely 0[{Xj, ..., X;}] dontési leképezésnek egyetlen kiterjeszése van
az {Xi,...,X;, X;41} halmazra.

El6szor megkonstrudljuk a 0[{ X1, ..., X;}| egy kiterjesztését az { X,
..., X;, Xiy1} halmazra. Legyen

0"(Xiv1) = {(, ) : (@, B) € A(Xipr) & Fj € {1,...,i} : (a,5) € 6(X))},
§'(Xy) = 6(Xy), VEe{1,... i}

Mindenek el6tt igazolnunk kell a 6'[{ X7, ..., X;, X;.1}| konzisztencidjat, ne-
vezetesen azt, hogy
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(1) &(Xe) NA(Xiy1) € 6'(Xiga),

(2)  F(Xi) NALX) C 8(X)

teljesiilnek barmely X; € {Xi,..., X;} esetén.

Az (1) érvényessége a ¢’ definiciéjabdl kévetkezik. A (2) igazoldséra
vegylnk egy (o, ) € 0'(Xii1) N A(X) tetszéleges miiveleti egységet vala-
mely t € {1,...,i}-re. Mivel (a, ) € §(Xi31), ezért 35 € {1,...,i} :
(a, ) € 6(X;) N A(Xiq1). Akkor (a, 5) € 6(X;) N A(Xy). Masfeldl, mivel
J.t €{l,...,1} ezért 0 konzisztencidjabol kovetkezik, hogy 6(X;) N A(X;) C
§(X:) = §'(Xy). Kovetkezésképpen (a, 3) € §'(X;), ami azt jelenti, hogy a
(2) feltétel is teljestil.

Most legyen 0*[{ Xy, ..., X;, X;u1}] a 0[{Xy,..., X;}| egy kiterjesz-
tése. Meg fogjuk mutatni, hogy & (X;) = 0*(Xy), Vt € {1, ..., i + 1}.
Ha 1 < t < i, akkor az egyenl6ség nyilvanvaléan teljestil. Azt kell iga-
zolnunk tehat, hogy ¢'(X;41) € 0*(Xit1) és 0'(Xiq1) 2 0%(Xi+1). Ennek
érdekében legyen (a, ) € §'(X;41) egy tetszOleges miiveleti egység. A ¢
definicidja alapjan (o, 3) € 0(X;) N A(X;11) valamely X; € {X;,..., X;}-re.
De §(X;) = 0%(Xj) és 0* konzisztens dontési leképezés, kovetkezésképpen
(o, B) € 6"(X;) N A(Xi41) C 0%(Xiq1). Forditva, legyen (a, 3) € 6*(Xiq1).
Mivel W = 0, ezért 3 j € {1, ..., i} : (o, ) € A(X]), és ily mbédon
(a, B) € 6" (Xi+1) N A(X;). De 6* konzisztenciaja miatt *(X,;41) N A(X;) C
0 (X;) = 6(X;), kovetkezésképpen (a, 5) € A(X;+1) N6(X;), de akkor ¢
definiciéja miatt («, 5) € &' (Xi11).

2. ESET. W # (. Az 1. ESET.-ben tett észrevételek alapjdn

elegendd megmutatni, hogy a 0[{ X1, ..., X;}] konzisztens dontési leképezés-
nek 2" kiterjesztése van a {X1,..., X;, X;;1} halmazra. Ennek érdekében
legyen

T={(a,8): (a,8) € AXp) & 3t € {1,...,i}: (a,8) € 6(X,)}.

T és W definici6éibdl nyilvéanvalé, hogy T NW = (). Meg fogjuk mutatni,
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hogy a
’ o 5(X), ha X € {Xla' .. ,XZ}
5(X)_{TUQ, haX:XZ-H

dontési leképezés minden ) C W-re konzisztens. A §[{X;, ..., X;}] konzisz-
tencidja miatt elegendo igazolnunk a

(3) (X5 NA(Xip1) C6'(Xiga),

(4) (X)) NA(X;) C (X)),

tartalmazasokat minden j =1, ..., i-re.

Ezért legyen j € {1,...,i} egy tetszéleges index és (a, 5) € §'(X;)N
A(Xi41). Akkor (o, 5) € T, és igy (a, B) € §'(Xi4+1), amibdl kévetkezik (3).
Most legyen (o, 3) € 0'(Xit1) N A(X;). Akkor (o, 3) € (TUQ) NA(X;) =
T NA(X;). Az (o, ) € T tartalmazdsbol kovetkezik, hogy (o, ) € 6(X})
valamely ¢t € {1,...,i}-re, kovetkezésképpen (a, 5) € 6(X;) N A(X;). Mivel
d konzisztens, ezért 0(X;) N A(X;) C §(X;) = §'(X;), ami a (4) teljesiilését
jelenti.

Mivel W lehetséges Q részhalmazainak szama 2/ ezért a fenti

médszerrel a §[{X1, ..., X;}] dontési leképezésnek 2/"! kiilonbozé kiterjesz-
tését kapjuk. Meg kell még mutatnunk, hogy a fenti dontési leképezésnek
nincsenek tovabbi konzisztens kiterjesztései { X1, ..., X;, X;1}-re.

Legyen ehhez 6*[{X1,..., X;, X;11}] egy tetszéleges kiterjesztése o-
nak, és (Oé,ﬁ) € T. Akkor (Oé,ﬁ) c 5(Xt) N A(XZ+1) = (5*(Xt) N A(XZ+1)
valamely ¢t € {1,...,i}-re. Mivel 6* konzisztens, ezért §*(X;) N A(X;1) C
0 (Xit1), és igy (a, B) € 0*(X;41). Kovetkezésképpen T' C 6*(X;11). Most
legyen («, 3) € 0*(X;11) \ 7. Ha (o, B) ¢ W, akkor (o, 5) € A(X;) valamely
t € {1,...,i}-re, és akkor 0* konzisztencidja miatt (a, 3) € 6*(X;) = 0(Xy),
ami azt jelenti, hogy (a, 5) € T, de ez ellentmondés. Tehat (a, 5) € W, igy
0*(Xip1) CTUW. Ez azt jelenti, hogy d*-nak meg kell egyezni § valamely
elozéekben maér felsorolt kiterjesztésével.

Az indukcids feltevést hasznélva tehat azt kapjuk, hogy
TX1, ., Xipr }) = 2UAGDH=1iB oW — ol{AG):t=1,it1}]
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amivel igazoltuk az allitast. —

Megjegyezziik, hogy m-en dsszesen 22 xem AN dgntési leképezés de-
finidlhatd. Tételinkbdl kovetkezik, hogy m = M \ R-re, vagyis a maximaélis
konzisztens déntési leképezésekre 7(Qm*) =291 adédik. Ez azt mutatja,
hogy szoros kapcsolat all fenn az O részhalmazai és a maximaélis konzisztens
dontési leképezések kozott. Konnyen beldthatd, hogy a v(5) = op(d) egy
bijektiv leképezés QR és p(O) kozott.

A 2.6.1. definicioban meghataroztunk egy p fliggvényt a lehetséges
megoldés struktirak és a maximaélis konzisztens dontési leképezések kozott.
Vildgos, hogy p az S (M)-et kolesonosen egyértelmiien beleképezi Qpf*-be.
Ez viszont azt is jelenti, hogy a 2/legy trividlis fels6 korldt S (M)-re. Ter-
mészetesen ez nagyon durva becslés. Azonban ha akar mar csak (A2)-t figye-
lembe vessziik, sokkal jobb becslés adhat6 |S (M)|-re. A [3] munka alapjin
ezt fogjuk megvizsgalni a tovabbiakban.

Legyen (m,o0)€ S (M) egy tetszOleges lehetséges megoldas struktira
és p(m,o0) = 6. Ha X € mat™(op(9)), akkor létezik u = (o, 3) € op(d) gy,
hogy X € a. A ¢ definicidja szerint u € o, és igy X € m. (A2) alapjan
X € mat®™(op(d)) U R, tehat felirhatjuk, hogy:

(A'2) mat™ (op(8)) € mat®*(op(d)) U R.

Az (A'2)-nek megfeleld maximélis konzisztens dontési leképezések
szama nyilvan nem kevesebb, mint a lehetséges megoldas strukturak szama,
igy feliilrol becsiiliink, ha az elobbit meghatarozzuk. Ennek érdekében legyen
(M,0) egy PNS probléma folyamat gréfja, M = {Xi,..., X} és O =
{uy, ..., u,}. Legyen tovabba

OX,)={u: u=(,0) €0 & X; € a}
minden X; € M-re. Tetszbleges j € {1,...,k}-ra legyen
Aj={6:6€ ™ & X; € mat™(op(5)) \ (mat®™ (op(6)) U R)}.

A, azon maximalis dontési leképezéseket tartalmazza, melyek X; miatt nem
elégitik ki az (A'2)-t. Minden @) # I C {1,...,k}-ra vezessikk be az A; =
NicrA; jelolést, tovabba legyen Ay = Qpp*. Vildgos, hogy I = {i1,...,4}
esetén

Ar={0:6 € Qp &{Xi,,.... Xi,} € mat™(op(6)) \ (mat®™*(op(6)) UR)}
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azon dontési leképezéseket jelenti, amelyek esetén (LA4'2) éppen az I-beli in-
dexi anyagok miatt sériil. Igy a Szitaformuldt alkalmazva, az (A’2)-nek
megfelel6 maximalis konzisztens dontési leképezések szamara

O\ (AL UA UL UA) = n (-1 4y
IC{1,..k}

adodik.

3.1.1. Megjegyzés. Figyeljiik meg, hogy a kapott korlat fiiggetlen az elo-
allitand6 anyagok halmazétol, azaz érvényes barmely P C M \ R-re.

3.1.1. Példa. Az dltalanos esetre vonatkozo korlatszamitds szemléltetésére
legyen M = {Xla c. 7X12}; 0= {ul, c. ,U7}, P = {Xg} és R = {X10,X11,
X2}, ahol a miveleti egységek bemeneti és kimeneti anyagait a 3.1. tabldzat
tartalmazza.

Miiveleti egységek

bemenetek  kimenetek

Ui Xio X1, Xy
U X1 X3, Xy, X5
Us X2 X5, X
Uy Xy Xo, X3
Us Xo, X3 X7, Xg
Ug X5, X Xg, Xy
U7 Xe X5, X3

3.1. tablazat.

A megfeleld folyamat grdafot a 3.1. dbra szemléleteti.

A maximdlis konzisztens dontési leképezések és O részhalmazai ko-
zotti kapcsolatot felhaszndlva tudjuk, hogy Ay akkor és csakis akkor tartal-
mazza a O-t, ha op(d) kielégiti az uy & op(d) és uy € op(9) tulajdonsdgokat.
Ezen mazimdlis dontési leképezések szima 2°, tehdt |A;| = 2°. Hasonléan
kapjuk, hogy |As| = 2, |As| = 25, |A5| = 23, |Ag| = 3-2* és |A;] =0 a tobbi
7 indexre. Kovetkezésképpen

> |A;| = 136.

IC{1,...k} & |I|=1
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X X X

10 11

12
ul u2 u3
1 x5 XG
XS X9

3.1. abra.

X7

A kételemii részhalmazokat vizsgdlva, Ay oy akkor és csakis akkor
tartalmazza 6-t, ha uy,us & op(d) €s ua,us € op(d), ezért Ay oy = 0. Ha-
sonldan Ag 3y = 23 mivel Aqi 3y akkor és csakis akkor tartalmazza 6-t, ha
uy, uy &€ op(0) €s uyg,us € op(0). Kiszdmolva és dsszegezve a részhalmazokra
a megfeleld értékeket azt kapjuk, hogy:

> |A;| = 60.

IC{1,....k} & |1|=2

Folytatva az eljarast, a harom elemi részhalmazokra a 12 értéket kapjuk.
Végiil azt tapasztaljuk, hogy |I| > 3-ra |Ar| = 0. Koévetkezésképpen a keresett
érték:

27 — 136 + 60 — 12 = 40.

Megjegyezziik, hogy ebben a példdban |Qpf*| = 128 és |[S(M)| = 19.

A Szitaformuldban | A;| meghatarozdséra van sziikség, ami altalaban,
tetszOleges folyamat graf esetén, rendkiviil bonyolult: |A;| az {X,,,..., X, }
azon «;,, ..., , fedérendszereinek szdmaval egyenld, amelyekre léteznek az
((bozjt, B;,) € O, t=1,...,smiveleti egységek ugy, hogy {X;,,..., X;,} NG, =

,t=1,...,sre.
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3.2. Specidlis esetek

Bizonyos sajdtos esetekben |A;| meghatdrozasa természetesen egy-
szerlisodhet. A tovabbiakban azt a specidlis esetet fogjuk megvizsgalni,
amikor egyetlen input anyaggal miikodo, Gn. szeparator tipusi miiveleti
egységeink vannak, melyekre tehdt |o| = 1, barmely u = («, #) € O miiveleti
egységre. Legyen ismételten I = {iy,... 4} és

O (Xy;) = O(Xy)) \ (UierA(Xy)).

) L

O*(X;,) azon miiveleti egységek halmaza, melyeknek bemeneti anyaguk az
Xi;, de nem termelnek egyetlen anyagot sem az {X; : ¢ € I} halmazbdl.
Akkor |Af|-re a kovetkezé képletet kapjuk ([3]):

l
’AI’ _ (H <2|O*(Xit>’ _ 1)) . 9IO\(VierAXi)\(VierO(Xa))|

t=1

A tovabbiakban két specidlis szepardtor tipusu miveleti egységeket
tartalmazé PNS problémaosztaly esetén a lehetséges megoldas struktirak
szamara explicit modon kiszamolhato képleteket fogunk adni.

Mindkét esetben legyen M = {X;,..., X;} az anyagok halmaza és
O ={uy,...,u;} a miveleti egységek halmaza. Figyeljiill meg tehét, hogy az
anyagok és miiveleti egységek szama egyenlo.

Az els6, az in. Egyenes modellben
u; = (a1, A1), ahol g = X és 31 = Xy,

U = (Oék, ﬁk), ahol oy, = X, és By = Xy,

és altaldban:

U; = (Odi,ﬂi), ahol a; = X és BZ = {Xifl’XZ'+1}’ (2 <i<k-— 1)

Elképzelhetjiik sorban egymaés mellett a miveleti egységeket gy,
hogy mindegyik egyetlen bemeneti anyaggal rendelkezik és a két szomszéd-
janak a bemeneti anyagait gyartja. Megjegyzendd, hogy a valésagban egy
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anyaggal tobb, egymassal 0sszetartozo anyagot vagy informaciét is modellez-
hetiink, amit a miiveleti egységek feldolgoznak és tovabbitanak, jelen esetben
a szomszédaiknak.

Az egyenes két végén csak egyetlen szomszéd van. Ha teljesebb
szimmetriat akarunk, akkor a masodik, a Lanc modelliinket is tekinthetjiik,
ahol

B = {Xo, Xi} és B = {Xi—1, Xu}.

Mindkét modelliinkben lehetséges |A;| kiszamitasa, azonban szamos
kombinatorikai probléma adédik, amelyeket meg kell oldanunk. A mitveleti
egységek részhalmazaiban gondolkodva, nyilvan az Ay olyan S; C O miiveleti
egységek halmazanak megfelel6 maximalis konzisztens dontési leképezéseket
tartalmaz, melyekre w;, € Sy, de az u;, egyik szomszédja sincs S;-ben (1 <
s < j). (Az Egyenes modellben a két széls6 miiveleti egységnek csak egy
szomszédja van, a Lanc modellben mindegyik miiveleti egységnek egységesen
két szomszédja van.) Adott I-re legyen tehdt Sy = {u;,...,us}, Ny (i) az
u; szomszédai indexeinek halmaza, és jelolje

Fr={i:7#isési ¢ N(is), 1<s<j,1<i <k}

a "szabad” miiveleti egységek halmazdt, tehat azokét, amelyek miikodése
nem érinti (A'2) teljesiilését. Egy konkrét I -re |A;| = 21l Sajnos |Fy|
nem csak pusztan j-tél fiigg, hanem az I struktirdjatol is. Az wu,, ..., u;
nem szomszédos miuveleti egységek az Egyenes vagy a Lanc modellben. A
leszamolas szempontjabol nagyon fontos, hogy hany olyan intervallumra vag-
jak fel a muveleti egységeket, amely egyelemii, és ezek hogyan helyezkednek
el.

3.2.1. Az Egyenes modell

Tegyiik fel, hogy az S; = {u,,...,u;}, miveleti egységei r darab
intervallumot hatdaroznak meg I-ben, ahol egy intervallum hosszisagan az
I altal meghatarozott miiveleti egység halmaz két eleme kozotti miveleti
egységek szamat értjik. Harom esetet kiilonboztethetiink meg az I tipusa
alapjan:
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a) ilzléSij:k,
b) ilzléSij<kVagyi1>1éSij:l€,

b) i1>1éSij<k.

Konnyt belétni hogy ezen eseteknek megfeleléen F elemszama rendre | F;| =
k—3j+r+2,|F|=k—3j+r+1,illetve |Ff| =k —3j +r.

Kérdés, hogy hany olyan I halmaz van, mely a fenti eseteknek megfe-
lel. Jellje Ly(r, j, k), Ly (r, j, k), illetve Ly (r, j, k) a fenti eseteknek megfelelé
I-k szamat. Az r darab egyetlen miveleti egységet tartalmazoé intervallumot

( J ; 1 > modon lehet kivdlasztani a (j — 1)-bél, mig a maradék miiveleti

egységeket a hoszszabb intervallumokba rendre ( jk__rZ_j2 ), ( jk_—r2_j1 ),

( ]3__27;7 )—féleképpen lehet szétosztani a harom esetben. Kovetkezésképpen
oy (T k—2j
L[}(ijuk)_( r ) (]-T’—Q)’
. 7 —1 k—2j .
wesn=(7) (58,
oy (J-LY (k=2
s (77) (47

Figyelembe véve a paraméterek hatarait, a Szitaformula az Egyenes
modell esetében azt adja, hogy ([4]):

1) _ ok v J—1\ k—2j ok—3j+r+2
LW =24 3" (-1 Z<T><j_r_22 +

- ktl 0<r<j—1
<5< k—3jLr4+2>0

J=1N (k=21 \ ok-3jtrt1
s (r)(j—r—l)Q *

0<r<j—1
k—3j+4r+1>0

n Z J=LN (R =27 ) oh-sier
- T j—r
0<r<j—1
k—3j+r>0
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3.2.2. A Lanc modell

Jelen esetben is az Egyenes modell jeloléseit fogjuk hasznalni. Most
a szimmetridnak koészonhetOen |Fy|-t konnyebb kiszdmolni, nem sziikséges
eseteket megkiilonboztetni, hanem minden [-re |Fy| = 283+ az I halmazok
szaméanak meghatarozasa azonban éppen a forgasszimmetria miatt nehezebb.
A miveleti egységek intervallum strukturdinak szama:

(20

mig az {uq;struktira} parok szdma:

. JY (k—27-1
T jg—r—1 ’
de igy j-szer szamoltuk az I -ket, ugyanis az u;-gyel j-féleképpen vaghatjuk

el a lancot, barmely intervallumban, igy a parok szama j-szer tobb. A Szi-
taformulaval megkapjuk a keresett szdmot a Lénc modell esetében is ([4]):

; k ] k—25—1 ,
(1) _ ok RV n J . J L ok=3j+r
cW=2t4 3 (1. Y - (T) (j_r_l)Q +ex,

]
ick 0<r<j—1
1<5<5 k—3j+r>0

ahol X
o — (=1)2 -2, ha k paros,
¥ 0 , ha k paratlan.

Az ey, ,,hibatag” kezeli a maximalis j esetét kiilon, ilyenkor csak két I van, a
paratlan indexek, vagy a paros indexek.

A fentiek alajin elmondhatjuk, hogy az LM és CM formuldk a te-
kintett két modellben az |\S (M)|-et feliilrél korldtozzak.
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3.2.3. Azonossagok

Altaldnos esetben a felmeriils bonyolult kombinatorikai és grafelmé-
leti problémak kovetkeztében nem varhato, hogy a Szitaformula kiszamolhato
korlatot adjon a lehetséges megoldas struktirak szamara. A targyalt specialis
strukturak esetén azonban olyan képleteket kaptunk, melyek lehetové teszik
a felso korlatok kozvetlen kiszdamolasat.

Eldszor az Egyenes modellben, egy U C O, U = op(9) akkor tel-
jesiti az (A'2) feltételt, ha minden u;€ U miiveleti egységnek van szomszédja
U-ban. Legyen O = {uy,...,ux} és U = {u;,,...,u;, }. Az U-beli miiveleti
egységek ¢ darab 1 hosszu intervallumot hatdroznak meg. A fentiekhez ha-
sonlé médon megszamlélhatjuk az U és O \ U particiéit. Akkor ([4]):

R M G G |

2<t<k lgqgmin{%;k—t-i-l}

Az U részhalmazainak kozvetlen megszamélasa a Lanc modellben
sokkal bonyolultabb, ebben az esetben a szimmetria nem segit. A Lancban
az up helyzete szerint 3 esetet kiilonboztetiink meg:

1) uy € U és bal oldaldn van egy masik U-beli elem, de jobb oldaldn
nincsen,;

2) w3 € U és az 6 (i — 1) jobboldali szomszédja U-beli elem, ahol (i > 1);

3) up ¢ U és az 6 (i — 1) jobboldali szomszédja nem eleme U-nak, ahol
(i >1).

Ezek az Gsszes lehetséges kiillonbozé esetek. Leszogezett (k,t, g, 1) paraméte-
rekre az eseteknek megfeleléen az U részhalmazainak szdma:

t—q—1\ (k—-t-1

g—1 qg—1 ’
b=i=g+1) k—t—1 , illetve

g—1 g—1
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t—q—1Y\ (k—t—i
qg—1 g—1 '

fgy a kovetkez6 képletet kapjuk ([4]):

S B D (P N G

2<t<k | 1<q<min{;k—t}

‘*E: 2: (t—;:%+1).<k;izl)%_

2<i<t 1<q< el S

PN G |

1<i<k—t lgqgmin{%;k—t—i—i—l}
melyben az els6 1-es ¢t = 0, az utols6 1-es pedig a t = k-t esetet jelentik.

Osszesitve, két szép kombinatérikus azonossagot is kapunk ([4]):

LW =12 & o=@

3.2.4. Szemléltetés

Az eredmény hatékonysdganak szemléltetésére az aldbbi tablazatok-
ban leirjuk az [S(M)|-re kapott korldtokat. Mig az elsé tédblazat a kiilonb6z6
méretll, Egyenes és Lanc struktiraju feladatokra kiszamolt korlatokat tar-
talmazza, a masodik tablazat a korlatok és a maximalis dontési leképezések
szamanak aranyait szemlélteti a kiillonboz6é méretii feladatokra.
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[ k] LO: | cW:. ]
3 4 5
4 7 10
) 12 17
6 21 29
7 37 o1
8 65 90
9 114 158
10 200 277
11 351 486
12 616 853
13 1081 1497
14 1897 2627
15 3329 4610
16 5842 8090
17 10252 14197
18 17991 24914
19 31572 43721
20 55405 76725
21 97229 134643
22 | 170625 236282
23 | 299426 414646
24 | 525456 727653
25 | 922111 1276942
26 | 1618192 | 2240877
27 | 2839729 | 3932465
28 | 4983377 | 6900995
29 | 8745217 | 12110402
30 | 15346786 | 21252274
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LD,
2k *

Cc@ |
2k *

5.0000000000E-01

6.2500000000E-01

4.3750000000E-01

6.2500000000E-01

3.7500000000E-01

5.3125000000E-01

3.2812500000E-01

4.5312500000E-01

2.8906250000E-01

3.9843750000E-01

2.5390625000E-01

3.5156250000E-01

©o| ||| o | w| T

2.2265625000E-01

3.0859375000E-01

10

1.9531250000E-01

2.7050781250E-01

1.7138671875E-01

2.3730468750E-01

12

1.5039062500E-01

2.0825195313E-01

13

1.3195800781E-01

1.8273925781E-01

14

1.1578369141E-01

1.6033935547E-01

15

1.0159301758E-01

1.4068603516E-01

16

8.9141845705E-02

1.2344360352E-01

17

7.8216552731E-02

1.0831451416E-01

18

6.8630218504E-02

9.5039367684E-02

19

6.0218811040E-02

8.3391189581E-02

20

5.2838325502E-02

7.3170661930E-02

21

4.6362400052E-02

6.4202785490E-02

22

4.0680170050E-02

5.6334018708E-02

24

3.1319618239E-02

4.3371498586E-02

26

2.4112939849E-02

3.3391669387E-02

28

1.8564525990E-02

2.5708209726E-02

30

1.4292808268E-02

1.9792722558E-02

40

3.8662157089E-03

5.3539468199E-03

60

2.8289357042E-04

3.9175187251E-04

80

2.0700221556E-05

2.8661325825E-05

100

1.5277899843E-06

2.0515052235E-06

3.3. Kovetkeztetések

51

Sajnos a korlat kiszamitasa altalanos esetben nem konnyti feladat.
A fenti tabldzatokbdl viszont 14tszik, hogy elég nagy k-ra az (A'2) segitsé-
gével megfogalmazott korlatok és a maximalis dontési leképezések szamanak
aranyai 0 fele tartanak, ami mutatja a korlatok élességét, legaldbbis a fenti
specialis esetekben.



4. fejezet

Osszevonasos redukcio

A 2.3. alfejezetben leirtunk egy polinomidlis idejli algoritmust a
maximalis struktira meghatdrozasara, mely csokkentette a feladat méretét
azaltal, hogy sziikségtelen miiveleti egységeket torolt a modellbol. Ebben a
fejezetben egy 1j modszert fogunk kidolgozni, mely a maximaélis struktira
altal meghatérozott feladat méretét tovabb fogja csokkenteni oly mddon,
hogy bizonyos miiveleti egységek Osszevonasaval csokkenni fog a miiveleti
egységek szama. A fejezetben bemutatandé médszerek a ([20]) cikk eredmé-
nyeit tartalmazzak, amely bar kozos munka, de jelen dolgozat szerzojének
meghattozo szerepe volt az eredmények elérésében.

4.1. Az oOsszevonas megvaldsitasa

4.1.1. Definicié. Két uy = (aq, B1) és us = (o, B2) miveleti eqgység 6ssze-
vondsdn azok helyettesitését értjik egy 1j, u = (a1 U g, B U B2) miveleti
eqyséqggel.

Nyilvanval6, hogy két vagy tobb miveleti egység Osszevondsanak
kovetkeztében egy mas PNS probléma strukturalis modelljét kapjuk. Ter-
mészetesen, ha ezt az 1j modellt az eredeti feladat megoldésara szeretnénk
hasznalni, akkor szoros Osszefiiggéseket kell talalnunk az eredeti és az 1j

52
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strukturalis modellek lehetséges megoldasai kozott. Egy ennek megfelel6 1j
modell megtaldlasaban az alapvetd kérdés nyilvan az, hogy mely miveleti
egységek vonhatdk oGssze.

4.1.2. Definicié. Legyen M = (P, R,O) egy PNS probléma redukdlt struk-
turalis modellje. Akkor az uy,us € O miwveleti eqységeket 6sszevonhatok-
nak nevezzik, ha barmely lehetséges megoldds struktirdaban egyszerre szere-
pelnek vagy eqyikik sem szerepel benne. Formdlisan, uy €s uy 0szszevonhatok,
ha uy € (m,0) <= ug € (M, 0), ¥(m,0) € S(M).

Konnyen beldthatd, hogy ez a relacié reflexiv, szimmetrikus és tran-
zitiv, tehat ekvivalencia relacié az O halmazon, melyet =-val fogunk jelolni.
Tetsz6leges u € O-ra jelolje C(u) az u miiveleti egység ekvivalencia osztalyat.
Definidljuk az M/ = = (P, R, O*) strukturdlis modellt tgy, hogy

O ={(W{ay : ug = (o, Br) € C(u) }, U{B - ug = (e, Br) € C(u)}) : u € O}

Szemléletesen az M/ = jelentését a kovetkezOképpen képzelhetjik el. Min-
den ekvivalencia osztaly esetén, az ekvivalencia osztalyhoz tartozé miveleti
egységeket egyetlen Uj miveleti egységhbe vonjuk Ossze, mely az eredetieket
fogja helyettesiteni M/ =-ben. Nyilvanvaléan M/ = egy PNS probléma
strukturalis modellje, melynek maximalis struktiraja (M, O*).

Definidljuk a ¥ : M UO — M U O* leképezést a kovetkezoképpen:

T(X) = X ,ha X € M,
U(ug) = (U{ay s ug € C(u)}, U{5; s uy € C(u)}) , ha ug € C(u),
U(m)={¥(X): X € m} ,ham C M, és
V(o) ={¥(u):u € o} ,haoCO

Az utébbi kiterjesztéseknek megfeleléen az (M, O) maximalis struk-
tura (m, o) részfolyamat grafjanak képe a W mellett (U(m), ¥ (o)) lesz. Az
egyszeriiség kedvéért ezt a leképezést is W-vel fogjuk jelolni. Akkor a szoros
kapcsolatot az S(M) és S(M/ =) lehetséges megoldas strukturdi kozott az
alabbi tétel mondja ki.

4.1.1. Tétel. ([20]) A ¥ : S(M) — S(M/ =) egy bijektiv leképezés.
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Bizonyitds  Legyen (m,0) € S(M) egy lehetséges megoldds struktira.
Eldszor is megmutatjuk, hogy (¥(m), U(0)) az M/ = egy lehetséges megol-
dés struktirdja. Nyilvdnvaléan (¥(m), ¥(0)) az (M, O*) egy folyamat gréfja.
Ezért elegendd bizonyitani, hogy (W(m), U(0)) kielégiti a 2.1. alfejezetben
definiélt (A1) — (A4) feltételeket. Mivel P C m = W(m), ezért az (A1) fel-
tétel teljesiil. Az (A2) teljesiilését is konnyen beldthatjuk, ha észrevessziik,
hogy W megdrzi a nyersanyagokat. Az (LA3) bizonyitasahoz legyen u € W(o)
egy tetszoleges miveleti egység. Akkor létezik legalabb egy u; € o, melyre
U(u;) = u. Mésfelol (m,0) € S(M), és igy (A3) alapjan létezik [u;, Y]
it az (m,o)-ban Y, € P-vel. Most ha ezen Ut csomépontjainak W melletti
képét tekintjiik, akkor egy [u, Y,/] utat kapunk (¥(m), ¥(0))-ben, melyre Y, €
P, amibdl kovetkezik (A3) teljesiilése. Végiil (LA4) bizonyitasa érdekében
vegylink egy tetszéleges X € W(m) anyagot. Akkor X € m és (A4) alapjén
létezik olyan u; = (o, B;) miveleti egység, melyre X € o; U ;. Legyen
U(u;) = (a, 5). A U(u;) definicidja alapjan X € aU 3, ami igazolja (A4)-et.

A bijektivitds igazolasdhoz el6szor megmutatjuk, hogy W injectiv
leképezés. Ebbdl a célbdl legyen (m,o0) # (m',0') € S(M). Ha m # m/,
akkor W(m) # W(m'), és igy a U melletti képeik kiilonbozéek. Ellenkezd
esetben o # o. Tegyiik fel, hogy (¥(m), V(o)) = (V(m'), V(o). Mivel
o # 0, az altalanossdg megszoritdsa nélkiil feltehetjilk, hogy létezik v’ € o
melyre v’ & o. Legyen ¥(u') = u. Mivel (¥(m),¥(0)) = (¥(m'), ¥(o)),
ezért létezik u € o melyre ¥(u) = u. Akkor a ¥ definicidja alapjén u =
u', és igy az ekvivalencia relacié definiciéjabdl u' € o, ami ellentmondas.

Kovetkezésképpen U egy inektiv leképezés.

Végul ¥ sziirjektivitasat kell megmutatnunk, vagyis azt, hogy az
S(M) halmazt a teljes S(M/ =) halmazra képezi le. Ebbél a célbdl legyen
(m*,0%) az S(M/ =) egy tetszéleges lehetséges megoldés strukturdja. Legyen
m=m"é o= {u; : u; € O&¥Y(u;) € o*}. Nyilvanvaléan ¥(m,o0) =
(T(m),¥(0)) = (m*, 0*), ezért azt kell bizonyitanunk, hogy (m,o0) az M egy
lehetséges megoldas struktiurdja. Kénnyen beldthat6, hogy (m, o) az (M, O)
részfolyamat grafja. Az aldbbiakban meg fogjuk mutatni az (A1) — (A4)
feltételek teljesiilését is (m, o)-ra.

Mivel (m*,0*) € S(M/ =), ezért az (Al) feltétel alapjan P C m*.
Masfelol m = m*, amibél kovetkezik az (A1) teljesiilése (m,o)-ra.
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Mivel egy cstics el6z6 csticsa (m*, 0*)-ban egy (m, 0)-beli csics el6z6
csicsanak W melletti képe, és (m*, 0*) teljesiti az (A2) feltételt, ezért az (A2)
feltételt (m,0)-nak is teljesitenie kell.

Most tegyiik fel, hogy (\A3) nem teljesiil (m,o)-ra. Jeloljik o;-el
o azon miiveleti egységeinek halmazat, melyekre nincsen Ut (m,o)-ben egy
céltermékig, vagyis legyen

01 = {u; : u; € o & nincs olyan [u;, Y] Ut (m, 0)-ban, melyre Y € P}.

Feltételezéstink szerint 01 # (). Most legyen (m/, o) egy folyamat graf, melyre
o =0\ o0 ésm' =mat(o). Megmutatjuk, hogy (m',o") az M egy lehetséges
megoldés struktiraja.

Mivel (m*,0*) € S(M/ =), (A1) alapjan barmely X € P-re létezik
olyan u miiveleti egység, mely X-et kozvetleniil gyartja. De akkor 1étezik egy
X-et kozvetleniil gyarté ' miiveleti egység is o-ban, melyre nyilvan u' ¢ o.
Kovetkezésképpen u' € o, ami azt mutatja, hogy P C m’, vagyis (m’, o)
teljesiti az (A1) feltételt.

(A2) igazolasahoz legyen X € m’ egy tetszileges anyag. Ha X € R,
mivel (m*, 0*) lehetséges megoldas struktira, ezért X egy forras (m*, o*)-ben.
De W definicidja alapjdn, ha X-nek (m, o)-ban lenne 6se, akkor (m*, o*)-ban
is kellene legyen, ami ellentmondds. Tehdt X forrds (m,o)-ban, de (m/o") C
(m,0), ezért X forrds (m’,0')-ben. Forditva, legyen X most forras (m/, o)-
ben. Megmutatjuk, hogy akkor X forrds (m,o0)-ban is. Ellenkez& esetben
X kimenete lenne egy u; € o;-beli miiveleti egységnek. Mivel X forras
(m/, 0')-ben és igy X bemenete egy o'-beli miiveleti egységnek, ezért 1étezne
egy [u1, Y] it (m,o0)-ban, ami ellentmondana az o; definiciéjanak. Tehat
X forrdas (m,o0)-ban. De akkor X forrds (m*,o*)-ban is, viszont (m*,o*)
lehetséges megoldés struktira, ezért teljesiti az (A2) feltételt, amibél azt
kapjuk, hogy X € R. Kovetkezésképpen (m/, o) az (A2) feltételt is teljesiti.

Az (A3) és (A4) feltételek teljesiilése kovetkezik oy és (m/, o) de-
finici6ibdl, ezért azt kapjuk, hogy (m’,0’) az M egy lehetséges megoldas
strukturaja.

Konnyen beldthaté, hogy ¥(m', o) = (m*,0*) = ¥(m,o0), amibél ¥
injektivitdsa miatt azt kapjuk, hogy (m/,0') = (m,0). Ez azt jelenti, hogy
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01 = ), ami ellentmondés. Kovetkezésképpen az (m, o) teljesiti az (A3) fel-
tételt.

Igazolnunk kell még, hogy (m,o) az (A4) feltételt is teljesiti. Ha
X € m egy tetszbleges anyag, akkor X € m*, és mivel (m*,0*) teljesiti
az (A3)-et, ezért létezik olyan u = (o, ) € o* miiveleti egység, melyre
X € aUp. Ez azt jelenti, hogy létezik olyan u; = (ay,3;) € o miiveleti
egység, melyre U(u;) = u és X € a;Uf;, ellenkezd esetben ugyanis X ¢ aU/3
lenne, ami ellentmondés. Kovetkezésképpen (m, o) teljesiti az (A4) feltételt.

Osszesitve, megmutattuk U injektivitasat és sziirjektivitdsat, vagyis
igazoltuk, hogy W egy bijektiv leképezés. —

Az nyilvanvald, hogy altaldban az M/ = modellben kevesebb mii-
veleti egység talalhato, mint az M-ben. Mivel a két modell lehetséges meg-
oldas strukturai kolcsonosen megfeleltethetok egymasnak, ezért szeretnénk
az M/ = modellben egy PNS-3-mal ekvivalens feladatot felirni, amitél azt
reméljiik, hogy valamivel egyszeriibben megoldhato lesz, mint az eredeti fe-
ladat.

Definidlunk tehdt az M/ = modellben egy w sulyfliggvényt a kovet-
kezo6képpen:

w(u) = Z w(ut), minden u € O*-ra

utGC(u/)
U (u)=u

Mivel az ekvivalens miiveleti egységek W melletti képei azonosak, ezért w jol

definialt leképezés.

fgy a PNS kovetkezé modellje:

(PNS-6) min { S @(w) : (m, o) € S(M/ z>} .

uco

Kiterjesztjiik a sulyfiiggvényeket a lehetséges megoldas struktirakra
a kovetkezoképpen. Legyen

w(m,o0) =Y {w(u) : u € o}, minden (m,o0) € S(M)-re, és

w(m*, 0*) = > {w(u) : u € 0*}, minden (m*, 0*) € S(M/ =)-re.



FEJEZET 4. OSSZEVONASOS REDUKCIO o7

Akkor barmely (m,o0) € S(M) lehetséges megoldds struktirdra teljesiil az,
hogy w(m,o0) = w(¥(m,o0)). Igy a 4.1.1. tétel alapjan az aldbbi tétel tel-
jestilése is nyilvanvalo.

4.1.2. Tétel. ([20]) A PNS-3 feladat tetszdleges optimdlis megolddsdanak ¥
melletti képe optimdlis megolddsa a PNS-6 feladatnak és forditva, PNS-6 bdr-
mely optimdlis megoldasanak V melletti 6se optimdlis megolddasa PNS-3-nak.

Ahhoz, hogy a PNS probléma adott példanyan az Osszevonasos re-
dukciot elvégezhessiik, eloszor meg kell hatarozni az ekvivalencia relaciét.

Legyen M = (P,R,0) egy PNS probléma strukturdlis modellje,
melyre S(M) # 0, tovdbbd legyen u; € O egy tetszbleges miiveleti egység.
Felépithetiink egy 1j PNS strukturalis modellt a kovetkezoképpen:

M(u;) = (P, R, O\ {u;}).
Jeloljitk az M(u;) maximélis strukturdjat (M;, O;)-vel, feltéve hogy létezik,

ellenkezd esetben M; = O; = ). Akkor a kovetkezd allitds érvényes.

4.1.3. Tétel. ([20]) Bdrmely u;,u; € O miveleti egységekre u; = u; akkor
és csakis akkor, ha u; € O\ O; ésu; € O\ O; egyidejiileg teljesiilnek vagy
eqyidejileg nem teljestlnek.

Bizonyitds  Tegyiik fel, hogy w; € O\ O; és u; € O\ O; tetszOleges
w; # u; € O miiveleti egységekre, és legyen (m,0) egy tetszOleges lehetséges
megoldés struktira. Harom esetet kiillonboztetiink meg.

1. ESET. (m,o0) nem tartalmazza u;,t. Akkor (m,o) részhalmaza
M;, O;)-nek és igy feltevésiink értelmében (m, o) nem tartalmazza wu;-t.
g J

2. ESET. (m,o) nem tartalmazza wu;-t. Akkor (m,o) részhalmaza
(M;, O;)-nek és igy feltevésiink értelmében (m, o) nem tartalmazza u;-t.

3. ESET. (m,o0) egyarant tartalmazza u;-t és u;-t is.

Mivel tovébbi esetek nincsenek, igy bebizonyitottuk u; = u;-t.
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A feltétel sziikségességének bizonyitdsdhoz legyenek u; # u; € O
tetszéleges miiveleti egységek, melyekre u; = w;. Az M(u;) strukturélis
modell (M;, O;) maximélis struktirdja azon lehetséges megoldas struktirak
egyesitése, melyek nem tartalmazzak u;-t, feltéve, hogy léteznek egyaltalan
ilyen lehetséges megoldas strukturak. Mivel u; = wu;, igy ezen megoldds
strukturak egyike sem tartalmazhatja wu;-t, tehat ezek egyesitése sem fogja
tartalmazni u;-t, vagyis u; € O\ O;. Hasonlé indoklédssal kaphatjuk meg azt
is, hogy u; € O\ O;. Ha minden lehetséges megoldds struktira tartalmazza
u;-t, azaz O; = 0, akkor az u; = u; ekvivalencidbdl kovetkezik, hogy minden
lehetséges megoldés struktira tartalmazza u,-t is, és igy O; = () és a megfeleld
tartalmazasok nyilvanvaléan teljesiilnek. —

Az 4.1.3. tételbol kapjuk az aldbbi eredményt:

4.1.1. Kovetkezmény. O; = O \ {u;} akkor és csakis akkor, ha u; nem
osszevonhato egyetlen mdsik miveleti eqységgel sem.

Legyen O = {uy,...,u,}. A 4.1.3. tételbdl és az MSG maximélis
struktira generald algoritmusbdl kapjuk az alabbi eljarast az ekvivalencia
relaciéo meghatarozasara. Az eljards soran alapértelmezésnek tekintjiik, hogy
mas eléiras hidnyaban egy 1épés elvégzése utan az algoritmus a lefrasi sor-
rendben kovetkezo lépésére tér.

Osszevonasos ekvivalencia reldciét meghatarozé eljaras (ER)

1. Legyen i :=1,k:=1, N={1,...,n}.

2. Hatdrozzuk meg az M(u;) maximalis struktirdjat az MSG maximélis
struktira general6 algoritmussal.

3. Ha O; = O\ {u;}, akkor legyen Vi, = {u;}, N =N\ {i}, és k =k + 1.
4. Ha © # n, akkor i =i + 1 és térjunk a 2. lépésre.
5. Ha N = ), akkor VEGE.

Egyébként jelolje 7 az N legkisebb elemét és legyen
J={t:te N, uy € O\ O}, illetve V = 0.
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6. Ha J = (), akkor legyen N = N\ {i}, Vi, = VU{w}, k = k+1, és
térjink az 5. lépésre.

7. Vélasszunk egy j elemet J-bol. Legyen J = J\ {j}. Haw; € O\ O;,
akkor legyen V =V U{u;}, N = N\ {j}, és térjiink a 6. 1épésre.

Az 1. lépés egyszer, a 2., 3., 4. lépések m-szer hajtédnak végre.
Ugyanakkor tudjuk, hogy az MSG maximélis struktiura generdld algoritmus
polinomidlis, O(n?) idében megvalésithatd. Az 5. 1épésre vagy a 4. 1épésrél
egyszer, vagy a 6. 1épésrol az N elemszaménak csokkentésével tudunk jutni,
mindaddig amig N # (. Ebbdl az kovetkezik, hogy az 5. 1épés legfeljebb
(|N] + 1)-szer hajtédhat végre. A 6. és 7. 1épésekre csak az 5. 1épés végre-
hajtasa kovetkeztében lehet jutni. Az 5. 1épés minden végrehajtasahoz - a J
halmaz elemszaménak a 7. 1épés minden végrehajtasakor torténo csokkentése
kovetkeztében - a 6. 1épés egyetlen, a 7. 1épés legfeljebb |.J| végrehajtasa
tartozik. Mivel J C N, ezért |J| < |[N| = n. Osszességében tehat azt
kapjuk, hogy az Osszevondsos ekvivalencia reldciot meghatarozé ER eljaras
is legrosszabb esetben polinomialis O(n?) idé alatt végrehajtodik.

Az eljaras helyessége az el6z6 tételekbol kovetkezik, futasanak ered-
ményeképpen megkapjuk az = relacié Vi, ...,V ekvivalencia osztélyait.

Mindezek utan az 6sszevonasos redukciéval kapcsolatban a kovetkezo
kérdések meriilnek fel.

(1) Vajon az dsszevondsos redukcid csak eqy szép elméleti eredmény,
vagy a gyakorlati problémdk esetén ténylegesen csokkenti a feladatok méretét?

(2) Képes-e a méretcsokkenés ellensilyozni az dsszevonds kovetkez-
tében keletkezo miveleti eqységek nagyobb bonyolultsigat az ismert PNS meg-
oldo algoritmusok futdsi idejének szempontjdbol?

Mindkét kérdést empirikusan vizsgaltuk. A szamitasi tapasztalato-
kat és az eredményeket a kovetkezo alfejezetben ismertetjiik.
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4.2. Empirikus analizis

Az elsé empirikus analizis célja a méretcsokkenés becslése volt. Pon-
tosabban azt vizsgaltuk, hogy az 0sszevonds altaldban mekkora méretcsok-
kenést eredményez. Ennek érdekében készitettiink 1000 véletlentil generalt
PNS problémat (ezek generdlasara vonatkozéan ld. [25]), és minden problé-
mara meghataroztuk annak maximalis struktirajat, majd végrehajtottuk az
Osszevonasos redukciot.

A 4.1. abra a miveleti egységek atlagos szamat mutatja az eredeti
problémékban, a maximalis strukturakban, illetve az 0sszevonéasos redukcio
elvégzése utan.

Az 4.2. abra ugyanezeket az informadcidkat szazalékos aranyban
szemlélteti.

Maveleti egységek szama
O]

100
90

80

70 1
60

50 1

40 1

30 ~

20

1 2 3 4
M Eredeti 72 78 84 90
O Max. strukt. 37,34 39,37 42,32 45,05
OER redukcid 31,39 34,21 36,45 38,64
4.1. abra.

Az empirikus analizisek azt mutatjak, hogy az 0sszevonasos reduk-
ci6 altaldban kb. 7%-os méretcsokkenést eredményez. Nyilvanvalé ugyanak-
kor, hogy a méretcsokkenés kovetkeztében a probléma szerkezete bonyolul-
tabbd valik, nevezetesen a miiveleti egységeknek tobb bemeneti és kimeneti
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Maveleti egységek szamanak szazalékos aranya

)

[ ]|
m—

Eredeti
Max. strukt.

ER redukcié

1 2 3 4

OER redukcio | 43,59722222 43,85897436 43,39285714 42,93333333

O Max. strukt. 51,86111111 50,47435897 50,38095238 50,05555556

B Eredeti 100 100 100 100
4.2. abra.

anyagaik lesznek. Ezért érdekesnek latszott az ismert megoldé algpritmusok
viselkedésének tanulmanyozasa is az 6sszevonas utan keletkezett feladatokon.
Ennek érdekében harom algoritmust vizsgaltunk meg: az ABBA ([13, 14])
gyorsitott korldtozési és szétvélasztasi algoritmust (Accerelated Branch-and-
Bound Algorithm), az MABBA ([24]) mddositott gyorsitott korlatozasi és
szétvalasztasi eljarast (Modified Accerelated Branch-and-Bound Procedure),
és az RMABBA ([25]) finomitott médositott gyorsitott korlatozasi és szétva-
lasztasi eljarast. Generaltunk 1000 véletlen PNS probléméat, mindegyiknek
meghataroztuk a maximalis struktirajat, majd elvégeztiik az Gsszevondsos
redukciot. Végiil mindharom algoritmussal megoldottuk az eredeti maximaélis
strukturaval rendelkezo, illetve az Osszevonas utan keletkezett feladatokat. A
4.3. abra mutatja a futasi idok szazalékos aranyainak atlagait.

4.3. Kovetkeztetések

Az empirikus analizisek azt mutattak, hogy az Gsszevonasos redukcié meg-
felel6 eszkoz a feladat méretének csokkentésére, tovabba az Osszevonas utan
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RMABBA

Futasi idok szazalékos aranya

Max. strukt.

Osszevont strukt.

ABBA MABBA RMABBA
0 Osszevont strukt. 86,59 67,75 68,86
W Max. strukt. 100 100 100

4.3. abra.

62

keletkez6 miiveleti egységek fokozottabb bonyolultsaga nem feltétlen okoz
hosszabb futasi id6t: a kisebb méreti PNS problémék kevesebb futéasi idét

igényeltek még akkor is, ha a miiveleti egységeik bonyolultabbak lettek.



5. fejezet

Eloretekinté B&B algoritmus

A jelen fejezet a szerzé sajat eredményein alapszik, melyek a [21]-ben
nyertek publikalast.

A 2.3. és 4.1. alfejezetekben bemutattunk két technikat (maximélis
struktira meghatarozasa, illetve 0sszevonasos ekvivalencian alapulé reduk-
ci6), melyek segitségével a probléma méretét csokkenteni tudjuk. A célunk
azonban végso sorban mégiscsak az, hogy a PNS feladatot megoldjuk.

Lattuk a 2.5. alfejezetben, hogy a PNS probléma NP teljes ([2, 17,
27]), ami indokolttd teszi a korlatozés és szétvédlasztas jellegli megoldé algorit-
musok hasznélatat. Eddig harom ilyen algoritmus volt ismeretes: az ABBA
([14]), MABBA (]24]), illetve RMABBA ([24]). Ezen algoritmusok empi-
rikus analiziseib6l ([25]) latszott, hogy az RMABBA-ban hasznalt élesebb
korlatozé fiiggvény kiszamitdsa tulsagosan koltséges, ezért hasznélata alta-
laban nem indokolt. A masik két algoritmus esetén az empirikus vizsgalatok
azt mutattdk, hogy az MABBA lényegesen jobban dolgozott, mint az ABBA

([25]).

A kovetkezékben bemutatdsra keriilé 1j, LABBA (Look Ahead B
&B Algorithm = Elbretekintd korldtozdsi és szétvdlasztasi algoritmus) -nak
nevezett eljaras két szempontbdl is kiillonbozni fog az el6zoektol. Eldszor is,
felhasznalja az el6z6 fejezetben bemutatott Osszevonds otletét. Ennek segit-
ségével az el6zé eljarasok korlatozo fliggvényei javithatok, a B&B (Branch

63
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and Bound) fa mérete pedig csokkentheté az ekvivalens miiveleti egységek
egyideju rogzitésével. A masik szempont, hogy az LABBA figyelembe veszi a
kiilonbozo vélasztéasi lehetéségek tovabbi hatasait, mig az ABBA és MABBA
olyan anyagkivalasztasi szabdlyokon alapszanak, melyek ezt nem tették meg.
A kiilonboz6 anyagkivalasztasok kovetkezményeinek vizsgdlata a B&B fa
méretének tovabbi csokkenését eredményezi.

5.1. Az algoritmus bemutatasa

Nyilvdnvaléan, amikor van egy d[m] dontési leképezésiink, melyet
szeretnénk kiterjeszteni oly médon, hogy az m halmazt bovitjiikk egy Y elem-
mel, akkor az Y elemet sokféleképpen kivalaszthatjuk. Az Y kivalasztdsanak
modjat anyagkivalasztasi szabalynak nevezziik, mely nagyon fontos, hi-
szen meghatarozza a B&B algoritmus levél kivélasztasi stratégiajat.

A legegyszeriibb anyagkivélasztasi szabdly az, amikor az M \ (mUR)
halmazbdl valasztunk egy anyagot. Ebben az esetben megtorténhet, hogy
olyan Y anyagot véalasztunk, melyre A(Y') azon rendelkezésre all6 miiveleti
egységei, melyek Y-t kozvetlentl gyartjak, egyértelmiien meghatarozottak.
Ez az észrevétel egy masik anyagvélasztasi médhoz, a ([14])-ban bevezetett
bemend anyag kivalasztasi szabalyhoz vezet. Ebben az esetben az aldbbi
halmazbdl valasztunk:

(mat™(op(6[m]) U P) \ (m U R).

Ez az anyagvdlasztasi mod képezi alapjat a ([14])-ben leirt ABBA mdd-
szer levél kivalasztasi szabdlyanak. Figyeljiik meg, hogy egy ilyen anyag
valasztasi stratégia mellett elképzelhetd, hogy olyan Y-t vélasztunk, mely
a 0[m] &ltal mar rogzitett miiveleti egységeknek kimenete. Ebben az eset-
ben megtorténhet, hogy a konzisztencia miatt Y-hoz ugyanazokat a miiveleti
egységeket kell rendelniink, melyek a §[m| altal meghatérozott részgréafban
Y-t gyartjak. Ez a 1épés nyilvan sziikségtelen. Ez a probléma az MABBA
algoritmusban meg lett oldva, mert az anyag kivélasztasi szabaly mddositva
lett oly médon, hogy Y-t az alabbi halmazbdl valasztjuk:
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(mat™(op(6[m])) U P) \ (mat®*(6[m]) U R).

Az Osszevonasos ekvivalencia felhasznalasaval és az anyagvélasztas
hatéasainak vizsgalataval azonban tovabb javithato az anyagkivalasztasi sza-
baly hatékonysaga. Az 0sszevonasos ekvivalencia alapjan, amikor egy dontési
leképezésben az anyagokhoz hozzarendeljiik az 6ket gyarté miiveleti egysége-
ket, akkor barmely miveleti egységgel egyiitt rogzithetjiik a vele ekvivalens
tobbi miveleti egységet is. Tovabba megtehetjiik azt is, hogy a kiterjesztés
kovetkezo anyagat gy valasztjuk ki, hogy az dltala bevont miiveleti egységek
minél tobb pillanatnyilag sziikséges anyagot termeljenek. Ezek eredménye-
képpen a B&B fa kisebb lesz, az eljaras pedig hatékonyabb.

Az alabbiakban bemutatara keriil6 LABBA algoritmusaban fel fog-
juk hasznalni ezeket az otleteket.

Mindenekel6tt bevezetiink néhany specidlis dontési leképezést. En-
nek érdekében rendeljiink hozzéd minden §[m] € Qn konzisztens dontési
leképezéshez egy Osp) € O miiveleti egység halmazt, melyre

Ostn) = 0p(3[m]) U (H{C(w) : u € op(8[m])}).

Igy Osjim) tartalmazni fogja a d[m/| altal kézvetleniil, és az Gsszevondsos ekvi-
valencia relacio altal kozvetve rogzitett miiveleti egységeket.

5.1.1. Definicié. Legyen d[m] € Qm, melyre |m| < |M \ R|; tovdbbd legyen
Y egy anyag, melyre

Y € (mat™(Osm)) U P) \ (mat®™ (Ogpmy) U R),

feltéve, hogy az utébbi nem iires halmaz. Jeldlje K, ..., K, a A(Y)-nek az
= reldacid A(Y)-re vald szikitése szerinti ekvivalencia osztdlyait. Minden
J C {Ky,..., K.} nem dres részhalmazra legyen K; = U{K; : K; € J}.
Akkor a

S[m U{Y}] =d[m] U{(Y,K,)}, J € ¢'({K1,... K.}

alaki konzisztens dontési leképezéseket a §|m| Y szerinti irreguldris kiter-
jesztésének nevezzik, ha

05(,4) N A(B) - (5(3),VA, BemU {Y}
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Nyilvanval6an minden irregularis kiterjesztés egy kiterjesztés is. Te-
kintsiik az irregularis kiterjesztés reflexiv és tranzitiv lezartjat az €2y hal-
mazon. Nyilvanvaléan a kapott relacio reflexiv, tranzitiv és antiszimmet-
rikus, azaz részben rendezés, melyet < -vel fogunk jelolni. Tovabb&a, ha
d[m] < §'[m’] és o[m] # o'[m’], akkor ezt &[m] < &'[m/]-vel jeldljik.

Legyen 0y az a dontési leképezés, melyre do[0] = 0.

5.1.2. Definicio. Legyen
Yz = {d8[m] : 6[m] € Om & §o[0] < d[m]}.
A Y\ elemeit irreguldris dontési leképezéseknek fogjuk hivni.
Egy dontési leképezés tehat akkor és csakis akkor irregularis, ha
egyenlé 0g[0]-el, vagy megkaphaté abbdl irreguldris dontési leképezések so-

rozatanak elemeként. A fenti definiciékbol kozvetlentil kapjuk az alabbi
lemmat.

5.1.1. Lemma. Ha 0[m] € X, akkor 6(X) # 0,VX € m.

5.1.3. Definicié. Legyen §|m] € Xz , melyre
(mat™(Ospm)) U P) \ (mat™(Osp)) U R) = 0.
Definidlunk eqy &' dontési leképezést a kivetkezbképpen.:
(X)) ={(a,B) : (a,B) € Osy & X € 8}, VX € M\ R.
Akkor 0'-t 6m] irreguldris lezdrdsdnak nevezzik és icl(d[ml])-el jeloljiik.
5.1.1. Megjegyzés. Egy regularis dontési leképezés irregularis lezarasa egy-

értelmiien meghatarozott maximalis dontési leképezés. Tovabba, ha m =
M \ R, akkor icl(6[m]) = d[m].
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A bevezetett irregularis dontési leképezések segitségével definialjuk
a X\ halmaz alabbi részhalmazat, amely fontos lesz az eljaras leirasaban.
Legyen

S*(M) = {icl(6[m]) : 6[m] € Tm & (mati"(O(;[m])UP)\(m@tOUt(Og[m])UR) = 0}.

S*(M)-re érvényes a kovetkezd allitds.

5.1.2. Lemma. ([21]) Legyen M = (P, R, O) egy PNS probléma strukturdlis
modellje. Akkor S*(M) C S'(M).

Bizonyitas

Legyen § € S*(M) egy tetszéleges dontési leképezés, tovabba legyen
0 = op(0) és m = mat(o). Nyilvanvaléan (m, o) egy folyamat graf és (m, o) C
(M, O). Megmutatjuk, hogy (m,0) € S(M) és p((m,0)) =J.

Mivel § € S*(M), ezért 1étezik olyan dg[mo] < 01[mq] < -+ < dx[my]
irreguldris dontési leképezés sorozat, melyre mg = (), icl(dx[my]) = 0, 0 =
ng[mk], és (mati”(OJk[mk}) U P) \ (m&tOUt(ng[mk]) U R) = (. Az utébbi
egyenl6ségbél kovetkezik, hogy P C mat®(Os,jm,)) = mat®™*(o).

Most legyen 60 = {u : u € 0 & I [u,Y,] 4t, melyre Y,, € P}, és (m,0)
egy folyamat graf, melyre m = mat(0). Eldszor igazoljuk, hogy (m, o) M egy
lehetséges megoldés struktiraja.

Mivel P C mat®* (o) és m = mat(0), ezért P C m, tehdt (m,o0)-ra
az (A1) feltétel teljesiil.

Az (A2) feltétel bizonyitasahoz legyen X € m egy tetszéleges anyag.
Ha X € R, mivel 0 C O, és O nem tartalmaz kozvetleniil az X nyersa-
nyagot gyarté miiveleti egységeket, ezért nem létezik (Y, X)) él (m, o) -ban.
Ha X & R, akkor m = mat(0)-bdl kovetkezik, hogy létezik legalabb egy
olyan miveleti egység o-ban, melynek X kozvetlen bemenete vagy kimenete.
fgy két esetet kiilonboztethetiink meg. Ha létezik olyan miiveleti egység
o-ban, mely kozvetleniil gydrtja X-et, akkor létezik (Y, X) él (m,a)-ben,
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kovetkezésképpen (m, o) teljesiti az (A2) feltételt. Ellenkez6 esetben X -et
nem gyartja egyetlen o-beli miveleti egység sem, de bemenete o legalabb
egy miveleti egységének. Akkor a o definiciéja alapjan igaz, hogy ez o-
ra is érvényes. Ez azt jelenti, hogy X € mat™(op(d)) = mat™(Os,m,))
és X & mat®™ (op(9)) = mat®(Os,[m,)) ami ellentmond a 6 € S*(M) fel-
tevésiinknek. Kovetkezésképpen ez az eset nem lehetséges, és igy (m,0)
teljesiti az (A2) feltételt.

Az (A3) feltétel teljeiilése (m,o)-ra az o definiciéjdbdl kovetkezik.
Végiil, mivel m = mat(0), ezért (m,0) az (A4) feltételt is teljesiti, tehat
(m,0) M egy lehetséges megoldds struktiraja.

Kovetkezo 1épésként igazoljuk, hogy o = 0. A 0 definiciéja alapjan
0 C 0. Masfelol ¢ szerinti indukciéval bizonyitjuk, hogy Os,p,,) € 0. Ha i =1
és u € Og,[m,), akkor létezik olyan v € o miiveleti egység, melyre u = v és v
kozvetleniil gyart végterméket. Akkor az o definicigjabdl v € o, tovabba mi-
vel u = v és (m, 0) egy lehetséges megoldas struktira, ezért u és v egyidében
elemei az (m,0)-nek, és igy u € 6. Most legyen 1 < i < k és feltételezziik,
hogy az allitds igaz Os,m,)-1a. Legyen u € Os,, [m,,,)- Akkor két lehetdség
van. Ha u € Og,[m,), akkor az indukcios feltevés szerint u € 0. Ellenkezd
esetben létezik olyan v € o miiveleti egység, melyre u = v és v gyart legalabb
egy bemeneti anyagot a Oy, halmaz miiveleti egységei szdmdra. Akkor,
o0 definicidja alapjén v € 0. Mésfeldl, mivel u = v és (m,0) egy lehetséges
megoldés struktira, teljesiil az v € 0 tartalmazas. Kovetkezésképpen o = o,
és igy az m és m definiciéi alapjan (m, o) = (m, 0).

A bizonyitas befejezéseként vegyiik észre, hogy a p definicidjabdl
kévetkezik a p((m,o0)) = § egyenldség. —

5.1.3. Lemma. ([21]) Legyen M = (P, R, O) egy PNS probléma strukturd-
lis modellje. Ha (m,o0) a PNS-3 probléma egy optimdlis megolddsa, akkor

p((m,0)) € 5*(M).

Bizonyitas Legyen (m,o0) € S(M) a PNS-3 probléma egy optimélis megol-
désa, melyre p((m,o0)) = d. Igazoljuk, hogy 0 € S*(M). Vegyiik észre, hogy
a bizonyitashoz elegendé megkonstrualni egy o,[m;|, t = 0,1, ..., k irreguldris
dontési leképezés sorozatot gy, hogy d;[my] < dpr1[musq], t = 0, 1, k=1,
és icl(0x[my]) = o. Ehhez tegyiik fel, hogy van egy &;[my], t = 0,1,...,1,
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sorozatunk, melyre d;[m¢] < dpp1[mesa], ¢ = 0,1,...,4 — 1, és minden ¢t =
0,1,...,ire és X € myre 6(X) = 6;(X). Nyilvdnvaléan mg = 0 és dy[0)] egy
megfelel6 sorozat i = 0-ra. Most két esetet fogunk megkiillonboztetni.

1. ESET. (matm(O(gi[mi]) UP)\ (matout(O(gi[mi]) UR) # 0.

Legyen Y egy tetszélegesen rogzitett elem a fenti halmazbol. Akkor
A(Y) N Osyimy = 0, ugyanis ellenkezd esetben létezne egy v = (o, 3) €
Os,m,) miiveleti egység Y € [(-val, ami ellentmondana Y vélasztdsdnak.
Jeloljiik most d(Y)-t @Q-val, tovabbd legyen =5(y) az = Osszevondsos ek-
vivalencia reldcié A(Y)-ra valé sziikitése. Igazoljuk, hogy @ a A(Y) egyes
=A(v) szerinti ekvivalencia osztalyainak egyesitése. Ennek érdekében legyen
u,v € AY), u € Q és u = v. Akkor u € o, és mivel (m,0) egy le-
hetséges megoldas struktura és u = v, ezért v € o. fgy 0 definicidja alapjan
v e Q =9(Y). Kovetkezésképpen @ egyesitése a A(Y) bizonyos ekvivalen-
cia osztalyainak. Most legyen 0;,1[m; 1] = &;[m;] U {(Y,Q)}. Nyilvanvaléan
X)) =0i41(X), VX € myyq, 63 igy 0;p1[miq1] egy irreguldris kiterjesztése a
d;[m;] -nak, mely azonos a §-val az m;,; halmazon. Ily médon a

(matm(OtSz[mz]) U P) \ (matout(OtSi[mi]) U R) 7& 0
esetben 1étezik a sorozatnak kovetkezo tagja.
2. ESET. (mati”(Ogi[mi]) U P) \ (matout(O(gi[mi]) U R) = (.

Megmutatjuk, hogy icl(dx[ms]) = ¢ ahol k = i. Legyen ezittal o' =
op(icl(dx[my]). Akkor o = Os,m,). Masfeldl minden v € Os,jm,) miveleti
egységre létezik olyan X € my, anyag és v miiveleti egység (mely nem feltétlen
kiilonbozik u-tdl) ugy, hogy v € dx(X) és u = v. Mivel 0,(Y) = §(Y), VY €
my, ezért v € §(X), és igy v € 0. Most az u = v-bdl azt kapjuk, hogy u € o.
Kovetkezésképpen o' C o.

Az o = o egyenl6ség igazoldsahoz tegyiik fel, hogy o' C o. Mivel
icl(0g[my]) € S*(M), ezért a 2.6.2. és 5.1.2. lemmdakbdl kévetkezik, hogy
létezik olyan (m/,o’) € S(M) amire p((m’,0")) = icl(dx[my]). Akkor, mivel
o' C o és a silyok mind pozitivak, azt kapjuk, hogy

Z w(u) < Z w(u)

u€o’ u€co
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ami ellentmondds, mivel (m,o0) a PNS-3 feladat optimélis megoldasa. Ko-
vetkezésképpen o = o', és igy icl(dx[my]) = 0, amivel igazoltuk a lemmat.

(|

A 5.1.2. és 5.1.3. lemmak alapjan azt kapjuk, hogy a PNS-5 prob-
léma helyett megoldhatjuk az aldbbi feladatot:

(PNS-7) min{ Yo w(u):d € S*(M)} :

u€op(d)

A PNS-7 feladat megoldasara egy 1j B&B eljarast fogunk kidolgozni.

A szétvalasztasi szabdly megaddsahoz definidljuk a ¥(d[m]) fiigg-
vényt minden §[m| € Y irreguldris dontési leképezésre a kovetkezéképpen:

9(Sm]) = {8 : &' € S*(M) & (38]m] € D) (8[m] < 3[m)] & icl(3[m]) = &)}

Figyeljiik meg, hogy ¥(d[0]) = S*(M). Egyébként ¥(5[m])-et a kovetkezod-
képpen tudjuk szemléltetni. J(d[m]) a d[m] azon irregularis kiterjesztéseit
tartalmazza, melyek a PNS-7 feladatnak lehetséges megoldasai; ezek min-
degyike megkaphaté egy irregularis kiterjesztés sorozattal és a irregularis
lezérds miivelettel. Ezen szemléltetés alapjan a 9¥(d[m|) elemeit d[m] irre-
guldris lehetséges megoldds kiterjesztéseinek hivjuk.

A bevezetett ¥ fiiggvényre vonatkozéan vegyiik észre, hogy ha o[m]
és ¢'m'] két olyan irregularis dontési leképezés, melyre §(X) # §'(X) vala-
mely X € m Nm/-re, akkor

9(Sm]) NI [m]) = 0.

A fentiek értelmében bérmely 6[m] € Yp-ra, ha §[m]|-nek van legaldbb egy
nem reguldris kiterjesztése, akkor definidlhatjuk a 9(d[m]) nem feltétlen nem
trividlis particijat. Ugyanis konnyen beldthatd, hogy ha 6;[m U {X}] =
Sm) U{(X,Ky,)}, t = 1,2,...,k, irreguldris kiterjesztései d[m]-nek, akkor
a Y(&[mU{X}]), t = 1,2,...,k, halmazok a 9¥(5[m]) egy (nem feltétlen
nem trividlis) particidjat alkotjak. Az ilyen particidk képezik az eljardsunk
szétvalasztasi szabalyat. Pontosabban az aktudalis B&B fa minden levele
Y¥(d[m]) alaki lesz, a 9(5;[mU{X}]), t =1,2,..., k halmazok pedig az adott
levél leszarmazottai lesznek.
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A korlatozés és szétvalasztas eljaras masik f6 6sszetevéje a korlatozo
fiiggvény, mely a B&B fa minden leveléhez hozzarendeli az annak meg-
felelo lehetséges megoldasok célfiiggvényértékeinek egy alsé korlatjat. El-
jardasunkban egy levél ¥(d[m]) alaki lesz, melyhez a d[m] irreguléris lehetsé-
ges megoldas kiterjesztései tartoznak. Mivel a miiveleti egységeknek pozitiv
sulyuk van, ezért §[m] barmely kiterjesztésének silya nem kisebb, mint az
Osm) miveleti egységek sulyainak osszege. Ennek megfeleléen a g* korlatozo
fliggvényt a kovetkezoképpen definidljuk:

u605[m])

A korlatozas és szétvéalasztas implementaciéjanak elosegitése érdeké-
ben a kovetkez6 jeloléseket, szabdlyokat és feltételezéseket fogjuk hasznalni.

(a) Az eljards soran L fogja jelolni az é16 levelek halmazat, z* fogja
tartalmazni a célfliggvény aktudlis pillanatig elért legjobb értékét, z pedig a
megfeleld legjobb lehetséges megoldast.

(b) A levél kivalasztési szabdly a kovetkezd: a 9(5[m]) levelet akkor
valasztjuk ki L-bol, ha

g (6[m])/[m]

értéke minimalis, feltéve, hogy m # (). Ha t6bb ilyen levél van, akkor ezek
koziil tetszolegesen valasztunk egyet.

(c¢) Az anyagkivalasztds meghatdrozasahoz annak hatdsait a kovet-
kezoképpen vizsgaljuk. Figyeljiik meg, hogy az aktudlis

T = (mati"(Og[m]) UP)\ (matout(Og[m}) UR)

halmaz a sziikséges, de még nem termelt anyagokat tartalmazza. Akkor egy
olyan X-et fogunk vélasztani, melyre a |(mat®*(A(X))NT| értéke maximadlis.

(d) Az eljarashoz hozzatartozik a lehetséges megoldédsok felismerése:
akkor taldltunk lehetséges megoldést, ha teljesiil az alabbi egyenl6ség:
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(mat™(Osmy) U P) \ (mat®(Osm)) U R) = 0.

(e) A szétvalasztasi 1épésben egy részprobléma akkor van felderitve,
ha d[m]-nek a valasztott X anyagra nézve nincs irregularis kiterjesztése.

El6retekinté B&B algoritmus (LABBA, Look Ahead B&B Algo-
rithm) ([21])

Inicializdlds

e Hatarozzuk meg az O0sszevondasos ekvivalencia reldciot.

e Legyen L := {9(60[0])}, z* :== 00, s:=0, és r := 0.
Hatdrozzuk meg g*(do[0])-t.

Iterdcid (r. iterdcid)

1. Befejezés

Ha L = (), akkor VEGE: az s tartalmazza az optimélis megoldast és z*
tartalmazza az optimum értéket. Egyébként térjiink a 2. 1épésre.

2. Levélkivdlasztds

Ha L egyelemii, akkor vélasszuk ki az egyetlen elemét. Egyébként
vélasszunk egy olyan ¥(d[m]) levelet L-bél, melyre a g*(d[m])/|m/| érték
minimalis; ha tobb ilyen érték van, akkor valasszunk egyet tetszélegesen
koziliik.

3. Megoldastesztelés

Ha T = (mat™(Ogp) U P) \ (mat® (Ospmy) U R) # 0, akkor térjiink a
4. lépésre.

Egyébként alkossuk meg a d[m| irreguldris lezarasat, jelolje ezt ¢,
tovabba ha w(d’) < z*, akkor aktualizaljuk a z* és s értékeket: z* :=
w(d') és s := {0'}; ellenkez6 esetben z* és s értékei nem valtoznak.
Legyen @ := () és térjink a 6. lépésre.
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4. Szétvdlasztas

Vélasszunk egy X € T anyagot, melyre |(mat®(A(X))NT| maximélis,
és alkossuk meg a d[m| X szerinti irreguldris kiterjesztéseit.

Ha nem létezik d[m]|-nek ilyen kiterjesztése, akkor legyen L := L\
{¥(6[m])} és térjiink az 1. 1épésre.

Egyébként legyenek §;[m;], i = 1,2,...,k a §[m] X szerinti irreguldris
kiterjesztései. Akkor legyen ® = {9(d;[m;]) : 1 < i < k}, és térjiink az
5. 1épésre.

5. Korlatozas
Szamoljuk ki a g*(0;{m;]) értékeket i = 1,2,... k-ra, és térjiink a 6.

lépésre.

6. Felderités

Definialjuk djra az L halmazt a kévetkezoképpen:

L = {9(d[m]) : 9(0[m]) € (L\{9(d[m])}) U, g"(d[m]) < 2"}

Legyen r := r + 1 és kezdjiink egy 1j iteraciét (térjiink az 1. 1épésre).

Az algoritmus hatékonysagara vonatkozéan empirikus analiziseket
végeztiink, melyek eredményeit a kovetkezd részben ismertetjiik.

5.2. Empirikus analizis

5.2.1. A vizsgalatok ismertetése

Az ([25])-ban ismertetett empirikus analizisek alapjdn az MABBA
eljaras tlint a legjobbnak az addig kidolgozottak koziil, ezért a mi algorit-
musunkat ezzel hasonlitottuk Ossze. Ennek érdekében kétféle PNS problé-
maosztalyt vizsgaltunk. (Az osztélyok és generdldsuk részletesebb leirdsa
a ([25])-ban talalhaté.) Mindkét osztdly esetén 1000 darab 100 anyagot
tartalmazé PNS problémat generdltunk véletlenszertien, melyeket mindkét
eljarassal (MABBA és LABBA) megoldottunk ([21]).
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A 5.1. dbra a futasi idok atlaganak szazalékos ardnyat, mig a 5.2.
abra az iteraciok szaménak szézalékos aranyat mutatja.

Futasi idok szazalékos aranya

100

A problémaosztaly B problémaosztaly
HMABBA 100 100
JLABBA 59,4028 82,9642
5.1. abra.

5.2.2. Konluzidk

Az empirikus vizsgalatokra vonatkozdan hangsilyoznunk kell, hogy
azok kovetkeztetései csak a vizsgdlt feladatosztalyokra jelenthetok ki bi-
zonyossaggal. Megjegyezziik tovdbbd, hogy a vizsgalt osztélyok egyike (A
feladatosztély (Isd. [25])) tobb gyakorlati alkalmazdsra épiil.

Az empirikus analizisiink azt mutatja, hogy ugy futdsi id6, mint ite-
racidészam szempontjabol az LABBA lényegesen jobbnak bizonyult a régebbi
MABBA algoritmusnal. A hatékonysag javulasa annak koszonhetd, hogy az
LABBA a tobbi eljarastol az alabbiakban kiilonbozik:

(1) a lehetséges megolddsok halmaza a PNS-7-ben kisebb, mint az
elozo megfogalmazdsokban,
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Iteraciok szamanak szazalékos aranya

100

A problémaosztaly B problémaosztaly
HMABBA 100 100
EJLABBA 72,4235 73,4749
5.2. abra.

(2) az ekvivalens miveleti eqységek sulydt figyelembe vevd g* korld-
tozo fugguény élesebb az elozo korlatozo fiigguényeknél,

(3) az anyagkivdlasztds kévetkezményeinek tanulmdnyozdsa a B&B
fa mélységének csokkenését eredményezi.

Ezen szempontok alapjan varhaté, hogy az LABBA mas feladatosz-
talyok esetén is el6deinél hatékonyabban oldja meg a feladatot.



6. fejezet
Parcialis leszamlalasi eljaras

Ez a fejezet a szerzé sajit eredményeit tartalmazza, melyek a [23]-
ben lettek publikalva.

A 2.7.2 részben bemutattunk egy [16]-ben kidolgozott eljarast, mely
a PNS-5 probléma 0Osszes lehetséges megoldéasat felsorolja. Lehetnek azon-
ban olyan esetek is, amikor csak az optimalis megoldasok érdekelnek, de
azokat mind fel szeretnénk sorolni. A feladat megoldhaté a 2.7.2 részben
leirt teljes leszamlaldssal is, példaul gy, hogy el6szor megkeressiik az optimu-
mot, majd utdna a teljes leszamlalasnal ugyan az 0sszes lehetséges megoldast
végigjarjuk, de csak az optimalis megoldasokat tartjuk meg. Ez a megoldas
azonban egyaltalan nem hatékony, hiszen sok felesleges lehetséges, de nem
optimalis megoldast vizsgdl meg. Ezért kidolgoztunk egy ennél hatékonyabb
eljarast, mely ugyan még mindig nem csak az optimalis megoldasokat taldlja
meg, viszont az altala felsorolt megoldas halmaz, mely tartalmazza az osszes
optimalis megoldést, az empirikus vizsgalatokbdl itélve, 1ényegesen kisebb,
mint az Osszes lehetséges megoldasok halmaza, hiszen az algoritmus a teljes
leszamlalasndl sokkal hatékonyabbnak bizonyult.

A fejezet elsoO részében ezt a parcialis leszamlalasnak nevezett eljarast
fogjuk bemutatni, mig a fejezet masodik részében targyaljuk a teljes és
parcialis leszamlalasi algoritmusok 0sszehasonlitasara végzett empirikus vizs-
galatokon kapott eredményeket.

76
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6.1. A parcialis leszamlalas bemutatasa

Az alabbi eljaras nem sorolja fel az Osszes lehetséges megoldast, vi-
szont felsorlja az O0sszes optimalis megoldast. Elénye, hogy kevesebb dontési
leképezés vizsgalatat igényli, mint a teljes leszamlalas, és ennélfogva hatéko-
nyabban dolgozik.

Parcidlis leszamlalas (Partial Enumeration, [23])
Inicializalds

e Hatarozzuk meg az Gsszevondsos ekvivalenciat. Legyen oy azon miive-
leti egységek halmaza, melyeknek minden lehetséges megoldas struktu-
raban szerepelniiik kell. Legyen mg = () és 1 = 0.

Tterdacio

1. Legyen 0;[m;| az m; =< Aj,,...,Aj, > tartomannyal rendelkez ak-
tudlis irregularis dontési leképezés. Tovabba legyen
E - (matm(o&[mz]) U P) \ (matom(o&'[mi}) U R)v

és térjiink a 2. lépésre.

2. Ha T; = (), akkor alkossuk meg a 0;[m;] irreguldris lezdrdsdt, melyet
jeloljiink o}-val. Aktualizéljuk S értékét: S = S U {0/}, és térjiink a 4.
lépésre. Egyébként térjiink a 3. 1épésre.

3. Valasszunk egy legkisebb indexii X anyagot T;-bol, melyre
|mat®™ (A(X)) N T;|

maximalis. Vizsgdljuk meg a d;[m;] dontési leképezés A(X) \ oy meg-
feleld részhalmazaira vald irregularis kiterjesztéseit a = linedris ren-
dezés figyelembe vételével.
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Vélasszuk az elsé olyan K; C A(X) \ oy részhalmazt, melyre §;[m;] U
{(X, K"} a 6;lm;] egy irreguldris kiterjesztése, ahol

feltételezve, hogy létezik ilyen K. Legyen 111 = m; \[{X} és
Oi1[miga] = &i[mi] U {(X, K7)}.

Legyen @ =1 + 1, és térjiink a kovetkezo iteracios lépésre.

Ha A(X) egyetlen megfelels részhalmaza sem lehet a d;[m;] irregularis
kiterjesztése, akkor térjink a 4. lépésre.

4. Ha;(4;,) C A(A;,) és vanolyan K; C A(A;, )\ 0op részhalmaz, melyre
0i(Aj,) # K7, 0:i(A;,) < K, ahol

és a

{(AJ175( jl)}U U{( Jk—1 ( jk—l)}u{(AJk7K/)}

dontési leképezés a {(A;,,0;(A;)} U - U{(A),_,,%(A4;,_,)}-nak egy
irreguldaris kiterjesztése, akkor terjunk a 5. lépésre. Egyébként térjiink
a 6. 1épésre.

5. Valasszuk a A(A;,) \ oo = szerinti els6 4. pontbeli feltételt kielégitd
részhalmazat és jeloljik K j-vel. Legyen

mit1 =< Ajl? R 7Ajk >, €8

5i+1[mi+1] = {(AJU(S(A )} U{(Ajk 175(Ajk 1)})U{(Ajk7 )}7

ahol
K = K; U (A(X)Nop).

Legyen i := 1 + 1, és térjliink a kovetkezo iteraciés lépésre.

6. Legyen k = k — 1. Ha k = 0, akkor VEGE. Egyébként térjiink a 4.
lépésre.
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Az, hogy az eljaras a megfeleld lehetséges megoldasokat hatarozza
meg, kovetkezik abbdl, hogy S pontosan az S*(M) elemeit fogja tartalmazni
és igy a 5.1.3. lemma alapjan ezek tartalmazni fogjak a PNS-3 Gsszes op-
timalis megoldasat.

6.2. Empirikus analizis

Az, hogy a parcialis leszamlalas a teljes leszamlélasnal hatékonyab-
ban oldja meg az optimélis megoldasok felsorolasanak feladatdat, a fenti el-
méleti eredmények fényében varhaté volt. Ennek mértékét elméleti mod-
szerekkel azonban meglehetdsen nehéz feladat megadni, ezért ismételten az
empirikus vizsgalatokhoz folyamodtunk. Minden n = 20,21,...,29-re ge-
neraltunk 1000 darab n anyagot tartalmazé maximalis struktirdjua véletlen
PNS problémét a [25] cikknek megfeleléen. Minden problémat megoldottunk
a teljes illetve parcidlis leszamlasi algoritmussal, és minden megoldés esetén
mértiik a futasi idét és meghataroztuk az iterdcids lépések szamat. Végiil at-
lagoltuk az eredményeket, melyeket a 6.1. illetve a 6.2. abrakon lathatunk.

Az 5.1.2. lemmabdl tudjuk, hogy S*(M) C S’(M). Szerettiik volna
azonban megbecsiilni az eltérés mértékét is, ezért minden feladatra a két
halmaz szamossaganak aranyat is meghataroztuk. A 6.3. abra a kapott
|S*(M)|/]S"(M)| ardnyok &tlagait szemlélteti a kiilonboz6 méretii feladatok
esetén.
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50,00

45,00

40,00

35,00

30,00

25,00

Futasi idé (mp)

20,00
15,00
10,00

5,00

0,00
Anaygok szama

Futasi idok atlagai

20

21

28

29

[mTeljes leszamialas

0,33

0,63

1,06

2,12

3,21

4,99

12,02

21,36

33,72

49,20

[DParcialis leszamialas

0,17

0,27

0,38

0,63

0,97

1,16

2,86

3,86

542

7,75

6.1. abra.

80

Végil kivancsiak voltunk arra is, hogy a parcialis leszamlalas meny-
nyivel lesz hatékonyabb a teljes leszamldlasnal egy tényleges gyakorlati prob-
léma megoldédsaban, ezért az Gsszehasonlitast a [16]-ben leirt Folpet (N-(tri-
chloromethylthio)phthalamide) folyamatra vonatkozéan is elvégeztiik és a

kovetkezo eredményeket kaptuk:

‘ Teljes leszamlalas ‘ Parcidlis leszamlaléds H

[teracios 1épések szama 15573 2305
Futdsi idé (mp) 36 9
S' (M) és S*(M) 3465 1575

Ugyan az aranyok szempontjabdl 1ényegtelen, de a teljesség kedvé-
ért megjegyezziilk, hogy az empirikus vizsgalatok egy AMD-K6(tm)-2/333

CPU-val rendelkezé PC-n voltak elvégezve.



FEJEZET 6. PARCIALIS LESZAMLALASI ELJARAS 81

Az iteracids lépések szamainak atlagai

22000,00

19750,00

17500,00

15250,00

13000,00

10750,00

Iteracios lépések szama

8500,00

6250,00

4000,00

1750,00

-500,00
Anyagok szama 20 21 22 23 24 25 26 27 28 29
‘ITeljes leszamlalas 270,84 416,94 742,10 1071,35 1562,71 2941,15 5564,68 9462,65 14414,70 | 21042,30
‘El Parcidlis leszamlalas 62,63 85,93 137,71 173,86 268,58 405,70 782,13 1099,41 1591,96 2204,79
7
6.2. abra.

6.2.1. Konkluziok

Az empirikus analizisek azt mutattak, hogy tugy a futdsi id6, mint
az iteracids 1épések szamaban az 0j parcialis leszamlalas jobbnak bizonyult
a korabbi teljes leszamlalasnal. Hasonlé eredményeket kaptunk a valds ipari
alkalmazas esetén is. Mindez persze nem jelenti azt, hogy a teljes leszamlélas
a tovabbiakban sziikségtelen lenne, hiszen a hatranya elonye is egyben, hogy
az Osszes lehetséges megoldast meg tudja adni, ellentétben a parcidlis le-
szamlalassal, ha viszont csak az optimalis megoldasokat keressiik, akkor azok
felsorolasara az 1j parcidlis leszamlalas sokkal alkalmasabbnak bizonyult.

Az eljarasok altal meghatarozott lehetséges megoldashalmazokkal
kapcsolatban viszont nyitott kérdés maradt az, hogy

a parcidlis leszdamldlds milyen feltételek mellett képes csak az op-
timalis megoldasokat, illetve az osszes lehetséges megoldast felsorolni.
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Az |S*(M)| / |S'(M)| aranyok atlagai

0,50
945 44
0,40 0.38
0,35
0,31 0,30
I 0,24
w2 w2 2% a2

29

0,60

0,50

o
~
=)

[S*(M)] /|S*(M)]

o
[N
=]

0,1

o

0,01

S

Anyagszam

6.3. abra.



7. fejezet

Automataelméleti megkozelités

Ebben a fejezetben a PNS probléma egy eddigiektdl eltérd jellegii
megoldasat fogjuk bemutatni. A [28] cikkben a PNS egy mddositott véltozata
lett kidolgozva, melynek megoldédsara egy automataelméleti megkozelitésen
alapuld eljarast keriilt kidolgozasra. Az eljards alapotlete az, hogy a médosi-
tott PNS probléma adott példanyahoz hozzarendelhetd egy automata, melyre
teljestil az, hogy az eredeti feladat megolddsa visszavezethetd az automata
atmeneti grafjaban egy legrévidebb Ut megtalalasara. A tovabbi kutatasok
soran ([22]) kideriilt, hogy ez az algoritmus tovabb javithat6 oly médon, hogy
a legrovidebb 1t keresésével egyidoben az atmeneti grafnak csak egy részét
generaljuk.

7.1. A moédositott PNS probléma

A 2.1.3 definiciéban az [18] és [15] alapjén megadtunk (A1) - (A4)
feltételeket, melyeket egy folyamat részgrafnak ki kell elégitenie ahhoz, hogy
lehetséges megoldas strukturanak tekintsiik. Ezek a feltételek azonban még
mindig megengedik olyan lehetséges megoldas struktirak létezését, melyek
a valdsagban nem tudnak végrehajtodni. A végrehajthatésdg biztositasa
céljabol a [28]-ban az (A1) - (A4) feltételek ki lettek egészitve egy tjabb
feltétellel és az igy kapott feladatot modositott PNS problémdnak ne-
vezték el. Ennek a megoldasara a [29]-ban leirt dtletet fogjuk tovabbfejlesz-

83
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teni gy, hogy definidlunk a [28]-ban leirt médon egy automatat, melyrél a
[28] alapjan tudjuk, hogy a mddositott PNS probldma optimalis megoldésé-
nak megtalalasa ekvivalens az automata atmeneti grafjaban egy legrovidebb
ut megtalalasaval, és ily modon feladatunk az atmeneti grafban egy ilyen
legrovidebb 1t minél hatékonyabb megtalaldsa lesz.

Mindenekel6tt azonban definidlnunk kell a médositott PNS problé-
mat, ami azt jelenti, hogy meg kell hataroznunk a végrehajthatosagi feltételt.
Ehhez el6szor is egy eljarast fogunk irni, amit folyamat graf szinezd elja-
rdsdnak fogunk nevezni. Ennek érdekében legyen (M, O) egy folyamat graf
és R egy anyaghalmaz. Azt mondjuk, hogy (M,O) az R altal szinezhetd,
ha az (M, O) minden csticspontja beszinezheté az alabbi eljardssal.

Szinez6 eljaras ([28]

1. Szinezzitk be M N R minden anyagat.

2. Mindaddig, amig van olyan miiveleti egység, melynek minden bemenete
szinezve van, valasszunk egy ilyen miiveleti egységet és szinezziik be
annak kimeneti anyagait. Ha nincs ilyen miiveleti egység, akkor VEGE.

Megjegyzendo, hogy a szinezhetéség tulajdonképpen a végrehajtha-
tosagot jelenti. Ha egy folyamat graf szinezhetd, akkor minden mitveleti
egységéhez hozzarendelhetoé az az idopont, amikor a kimeneti anyagait be-
szineztiik. Megfelel6 idoegység valasztasaval, adott miiveleti egység szinezési
idopontjat a miiveleti egység folyamatban vald titemezési idépontjanak is
tekinthetjiikk. Egy ilyen iitemezett folyamat nyilvanvaléan elvégezheto, ami
nem jelenti azt, hogy az igy kapott iitemezés optimalis is lenne. Forditva, ha
egy folyamat végrehajthato, akkor az abban résztvevé miiveleti egységeknek
létezik egy iitemezése, és ebben a sorrendben a folyamat miiveleti egységei
be is szinezhetok.

Most mar definidlhatjuk a végrehajthatosagi feltételt:
(A5)  (M,0) az R 4ltal szinezheto.

Egy PNS probléma azon lehetséges megoldas strukturait, amelyek
az (A1) - (A4) feltétel mellett még az (A5) feltételt is teljesitik, mddositott
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lehetséges megoldds struktirdknak nevezzik. Ha M = (P, R,O) egy
PNS probléma strukturalis modellje, akkor jeldljitk S(M)-el a médositott
lehetséges megoldas strukturak halmazat. Most megadhatjuk a megoldas
strukturakhoz rendelt optimalizaciés problémat:

(PNS-8) min { S w(u) : (M,0) € g(M)} :
uel
A tovabbiakban mddositott PNS problémdn a (PNS-8) problé-
mat értjiik. A [28]-ban targyaltak szerint a (PNS-8) is egy NP nehéz feladat,
ami az eredeti PNS-2 probléma NP nehézségének [2]-ben leirt igazoldsdhoz
hasonléan bizonyithato.

Nyilvénvaléan S(M) egy véges, nem iires halmaz, fgy a PNS-8-nak
van optimadlis megolddsa. Masfeldl hatékonyan eldonthets, hogy S(M) = ()
teljesiil-e a kovetkezOképpen. A 2.3 alfejezetben bemutattunk egy algo-
ritmust, mely polinomidlis idében eldonti az ”S(M) = @ ?” kérdést és -
amennyiben létezik - meghatdrozza az (M,O) maximélis struktirat. Ha
(M, O) 1étezik, akkor ratérhetiink annak szinezésére, mely meghatdrozza ab-
ban azt az (]/W\ : 6) folyamat részgrafot, mely azon miiveleti egységeket tartal-
mazza, melyek kimenete szinezett. Koénnyen bizonyithat6, hogy S(M) # ()
akkor és csakis akkor, ha P C M. Ebben az esetben térélve (]/W\ , 6)—b61
azokat a miiveleti egységeket, melyek nem teljesitik az (A3) feltételt, meg-
kapjuk (M, O) azon legnagyobb folyamat részgrafjit, mely teljesiti az (A1)-
(AB) feltételeket. Az eldénthetéség alapjan a tovdbbiakban csak médositott
lehetséges megoldasokkal rendelkez6 mddositott PNS problémékkal fogunk
foglalkozni.

Megjegyezziik tovabba, hogy amennyiben az M = (O, P, R) struk-
turdlis modell (M, O) folyamatgrafja kérmentes, gy az eredeti és a médosi-
tott PNS problémék egyebeesnek. Kormentes PNS problémak megoldésaval
kapcsolatosan bovebben a [7] és [31] cikkekben olvashatunk.
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7.2. A moédositott PNS probléma
megoldasa

7.2.1. Automataelméleti alapfogalmak

Legyen X egy tetszoleges nem iires halmaz. Jelolje X* az X feletti
véges szavak halmazat, \ az tires (0 karakterbdl 41l6) szét, és legyen X+ =
X*\ {\}. Tetszbleges p,q € X* szavakra azt mondjuk, hogy p részszava
g-nak, és ezt p oc g-vel jeloljiik, ha p megkaphat6 ¢-bol néhany karakter
torlésével.

7.2.1. Definicié. Automata alatt eqy olyan A = (A, X) pdrost értink,
melyben A az dllapotok véges, nem tires halmaza, X a bemeneti jelek
véges, nem tires halmaza, és minden x € X eqy eqyoperandusi ™ miiveletet
hatdroz meg A-n. Minden a € A, x € X-re az®™ gy értelmezhetd, mint
az az dllapot, melybe A keril az x bemeneti jel feldolgozasa kovetkeztében.
Tetszéleges p € X* szora ap™ induktiv mddon definidlhato a kovetlezbképpen:

(1) a)® = a,

(2) ap® = (av™)z®, hap=vzr, v € X* ésx € X.

7.2.2. Definicié. Egy A = (A, X) automata dtmeneti grdfjin egy olyan
Ga = (A, E) grdfot értink, melyben minden a,b € A dllapot pdrra (a,b) € E
akkor és csakis akkor, ha létezik olyan x € X bemeneti jel, melyre ax® = b.
Az atmeneti grdf éleit szokds szerint a megfelelé bemeneti jellel cimkézziik.

7.2.3. Definicié. Egy felismerd egy olyan A = (A, ag, F') rendszer, mely
egqy A = (A, X) automatdbdl, eqy ag(€ A) kezdbdllapotbdl, és egy F(C
A) végdllapotok halmazdbdl dll. Az A dltal felismert vagy elfogadott
nyelvet a kovetkezé halmaz definidlja:
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L(A)={p:pe€ X* and app™ € F}.

Azt is szoktuk mondani, hogy L(A) felismerhetd (elfogadott) az A auto-
matdval.

7.2.2. A probléma megoldasa

A PNS-8 probléma barmely strukturalis modelljéhez hozza fogunk
rendelni egy automatat gy, hogy a probléma mdédositott lehetséges megoldas
strukturai leirhatok legyenek az automata olyan bemeneti szavaival, melyeket
elfogad egy, az automata alapjan felépitett, felismers. Akkor az automata
atmeneti grafjat a miiveleti egységek stlyaival cimkézve, a silyozott grafban
a kezddallapotbol a végallapotok halmazaba vezeté barmely legrovidebb 1t
a PNS strukturalis modelljének egy optimalis megoldasat hatdarozza meg.

Az automata megépitéséhez legyen M = (O, P, R) egy PNS problé-
ma strukturalis modellje és w a sulyfliggvény.

A B = (B,0’) automatéat a kovetkezéképpen definidljuk. Legyen
B = B ' U{o}, melyre B' = ¢/(M) és o ¢ B’, és legyen

O'={u:u=(C,D)e0é RND =0}
Az automata egy allapota megfelel egy adott pillanatban rendel-
kezésre all6 anyagok halmazanak. Az ¢ allapot a sikertelen atmenetek jelolé-

sére szolgal. Az atmeneteket a kovetezOképpen definialjuk. Minden @ € B’
ésu = (C,D) € O'-re legyen

o _ [ QUD haCCQ
] ¢ egyébként,

tovabba
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7.2.1. Megjegyzés. Ha Q € B, p egy O feletti sz6, és u € O el6fordul
p-ben, akkor Q(pu)B = QpB.

A Gp graf silyozédsét a kovetkezdképpen definidljuk. Ha (Q, Q') egy
¢l G-ben, melynek cimkéi u;,, ..., u;,, akkor az ¢l silya

w' = min{w(u;,), ..., w(uj;)}

lesz, tovabba egyetlen olyan u;, 1 < [ < t, cimkét tartunk meg, melyre
w' = w(uy,), a tébbi cimkéket toroljik. Jeloljik az igy kapott silyozott,
cimkézett grafot (Gg, w)-vel.

Legyen most B = (B, R, F') egy olyan felismerd, melyre F' = {Q :
Qe B é P CQ}. Akkor teljesiil az aldbbi allités.

7.2.1. Lemma. ([28]) Minden p = u;, ...u;, € L(B) széra, ha [R, Rp®|
egy R-b6l a (G, w) egy vdgdllapotdba vezetd legrovidebb it, akkor u,,, . .., u;,
pdronként kiilonbéz6k, tovdbbd (M, 0) a PNS-8-nak egy optimdlis megolddsa,
ahol O = {u;,, ..., u; } és M = mat(O).

A fentiek alapjan, egy optimalis megoldas meghatarozasahoz a ko-
vetkezd 1épéseket kell megtenniink:

1. Epl’tsiik meg a B automata dtmeneti grafjat és hatdarozzuk meg a
végallapot halmazt.

2. Végezziik el az atmeneti graf silyozasat és Gjracimkézését az el6zbek-
ben leirtak szerint oly modon, hogy végiil minden él egyetlen cimkével
rendelkezzen.

3. Hatarozzunk meg egy R-bol F-be vezetd legrovidebb utat.

4. A kapott legrovidebb 1t segitségével hatarozzuk meg a PNS-8 egy op-
timalis megoldasat.

7.2.2. Megjegyzés. Figyeljiik meg, hogy az eljaras altalaban nem igényli a
teljes dtmeneti graf megépitését, hanem elegendo6 az R-bdl generalt részgraf
elkészitése.
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Mivel az allapotok M részhalmazai, a fenti megjegyzés alapjan fel-
épithetiink egy eljarast, mely az atmeneti grafnak csak egy részgrafjat ge-
neralja, és ezzel egyidében egy megfelel6 legrovidebb utat is meghatéroz a
grafban.

7.3. A PAT algoritmus

A tovabbiakban egy, a szerzé sajat munkajanak eredményeként létre-
jott és a [22]-ban publikalt eljarast fogunk bemutatni, mely a fenti és néhany
tovabbi észrevétel alapjan az el6z6 algoritmusndl hatékonyabban fogja meg-
talalni az optimalis megoldast.

7.3.1. Megjegyzés. Adott allapotban &ltaldban a sikeres dtmenetet biz-
tosité bemeneti jelek az O halmaznak csupan egy valédi részhalmazat képe-
zik.

7.3.2. Megjegyzés. Legyenek () és Q' dllapotok, melyek legkisebb tavolsa-
ga R-t6l w = w([R, Q)]) illetve w' = w([R,Q']). Ha Q' C Q és w’' > w, akkor
Q@' és a Q'-be bemend és kimend élek torolheték az atmeneti grafbol.

Most definidljunk egy tjabb < reldciét a miiveleti egységek O hal-
mazan.

7.3.1. Definicié. Minden u,v € O'-re legyen

v < u ha u=v vagy mat®(v) N mat™(u) # 0.

*
Ez a relacié reflexiv és tranzitiv. Jeldlje < a < tranizitiv lezarasat.

7.3.2. Definicié. Azt mondjuk hogy két u,v € O" mieleti eqység egymdst
kolcsonosen elért, ha u <wésv < .
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Konnyen belathatd, hogy a kolesonos elérhetoség reflexiv, tranzitiv
és szimmetrikus, azaz ekvivalencia relacié O’-n, melyet x-nel fogunk jel6lni.

7.3.3. Megjegyzés. Felmeriil a kérdés, hogy mennyire hatékonyan valdsit-
haté meg a X relacié meghatarozasa. Legyen (M,O) a PNS probléma fo-
lyamat grafja, ahol O = {us, ..., u,} és M = mat(O). Akkor (M, O)-hoz ren-
deljiink hozza egy masik (O, A) gréfot a kovetkezéképpen. Legyen © = O és
barmely 1 <i # j < n-re (u;,u;) € A <= u; < u;. Ezt linedris id6ben meg
tudjuk tenni. Ugyanakkor az is nyilvanvald, hogy a x relacié meghatarozasa
(M, O)-ban ekvivalens az erdsen Osszefliggé komponensek meghatarozdsdval
(©,A)-ban. Mivel az utébbi polinomialis (O(n?)) idében elvégezhets ([9]),
a megoldas X relaciora vald konvertalasa pedig trivialis, ezért elmondhat-
juk, hogy a X relacié hatékonyan meghatarozhato. A PNS megoldédsa soran
természetesen nem sziikséges a (O, A) graf tényleges megépitése, az er6sen
osszefliggd komponenseket meghatarozé mélységi bejarason alapuld algorit-
mus konnyen médosithaé gy, hogy kézvetlentil az (M, O) grafban hatarozza
meg a X relaciot.

Most definidlhatunk egy hasonlé, <« relaciét az O’/ x-on.

7.3.3. Definicié. Bdaremely C,C" € O’/ x-ra C <& C" ha C = C' vagy
léteznek u € C és v € C' miveleti eqységek gy, hogy u < v.

7.3.1. Példa. Legyen M = (O, P, R) az 7.1. dbran ldthato strukturdlis mo-

dell:
o M ={X1,X5,..., X2},
e R= {X1}7
) P: {Xll}; éS
o O — {u17u27 .. 7“9}7 ahOl
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7.1. 4bra.

ur = ({Xa}, {Xo, X3, Xu}),
us = ({ X1}, {Xu, X5}),
uz = ({Xo}, {Xo, X7}),

o ug = ({Xe}, {Xs, X12}),
us = ({X7, Xs},{Xo}),
ug = ({Xs}, {X2, X10}),

91
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o uy = ({ X3, Xu}, {X5, X7, Xo}),
o ug = ({Xs5}, { X2, Xu0}),
o ug = ({Xo, Xio}, {X11}).

Akkor uy < ur € ug < uz < Uy < Uug <K ug <K Uy <K uy <K Ug, €5 a X

szerinti ekvivalencia osztdlyok halmaza C = {Cy,Cy, ..., Ct}, ahol
o O1 = {ui},
o 5= {up},
o (3 = {ug,uq,ug},
o Cy = {us},
o C5 = {ur},
o G = {us},
o C7 = {uy}.

GO KOKGKGK U0k (.

Konnyen belathatd, hogy a <« relacié reflexiv, tranzitiv és anti-
szimmetrikus, azaz részben rendezés C-n. [33] alapjan tudjuk, hogy min-
den részben rendezés kiegészithetd linearis rendezésre. fgy, az altaldnossag
megszoratasa nélkill feltételezhetjitk, hogy C = {C},Cs,...,Cy} valamely
1 < h < |O'|-ra tgy, hogy barmely i, j € {1,..., h}-re C; < C}-bél kovetke-
zik i < j. Definidljuk az ¢ : (O')* — {1,..., h} fliggvényt a kivetkezOképpen:

0 ,hap=A\,
lp)=4( m ,hape O, peC,
max{l(u;) : 1 <t<Il} ,hap=wu...u € (0)".

7.3.4. Definicié. Kiterjesztett dllapoton egy (Rp,p,w(p)) hdrmast ér-
tink, ahol p eqy olyan szo, mely az automatdt az R-bol eqy F'-beli allapotba
viszi at. Azt mondjuk, hogy (Rp,p,w(p)) egy optimdlis kiterjesztett dlla-
pot, ha egy kiterjesztett allapot és w(p) < w(p') barmely (Rp',p',w(p)) ki-
terjesztett dallapotra.
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7.3.4. Megjegyzés. Ha (Rp,p, w(p)) egy optimélis kiterjesztett allapot, ak-
kor p egy legrovidebb ut R-bol egy végallapotba.

7.3.1. Lemma. ([22]) Legyen s = (Rp,p,w(p)) egy optimdlis kiterjesztett
dllapot p = uy ...u; € (O")*-al. Bdrmely k-ra, melyre 1 < k <1 és l(uy) <
oo < l(ug), létezik egy T {1,... k+ 1} — {1,...,k + 1} permutdcio igy,
hogy ((ur)) < ... < luzy) < Uur(er)), €8 ha p' = Ur(ry - . Us(hrr)Uhsa
...uy, akkor ' = (Rp',p/,w(p')) dgyszintén optimdlis kiterjesztett dllapot.

Bizonyitdas Ha ((ug41) > l(uy), akkor az identikus leképezés egy megfelel6
permutédcié. Tegyiik fel, hogy f(upy1) < (ug). Akkor létezik egy r, 1 <
r < k egész szdm, melyre {(ui) < ... < lup—1) < lug1) < Lu,) <

... < l(ug). A C rendezése miatt ez azt jelenti, hogy barmely r < ¢t < k
ra mat®(u;) N mat™(up, 1) = 0. EbbSl kovetkezik, hogy mat™(ugy1) C
Ruy ... up_q, tovdbba Ruy ... u; = Ruy ... Up_1UpiqUp . . Ul . . . uy. Bz azt
adja, hogy a

t yhal <t <,
T(t)=q¢ k+1 ,hat=r,
t—1 ,har+1<t<k+]1.

permutdciéval teljesiil az allitds. —

7.3.2. Lemma. ([22]) Legyen s = (Rp,p,w(p)) egy optimdlis kiterjesztett
dllapot p = uy ...y € (O')*-gal. Minden olyan k-ra, melyre 1 < k <1, létezik
olyant : {1,... .k} — {1,..., k} permutdcio, melyre {(u;q)) < ... < (ur(x))
és ha p' = Urq) ... Ure)yUkt - - - wg, akkor s = (Rp',p',w(p')) egy optimdlis
kiterjesztett dllapot.

Bizonyitas A 7.3.1. lemma alapjan az &llitas k szerinti indukciéval
konnyen bizonyithat6. —

7.3.3. Lemma. ([22]) Barmely s = (Rp,p,w(p)) optimdlis kiterjesztett dlla-
potra, melyre p = uy ... uy, létezik egy 7 : {1,...,1} — {1,...,1} permutdcid
dgy, hogy L(urq)) < ... < L(urp) ésp' = urqy...uq)-re s = (Rp',p', w(p’))
eqy optimalis kiterjesztett dllapot.
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Bizonyitas Az allitds a 7.3.2. lemmdbdl k = [-re azonnal kovetkezik. —

7.3.5. Megjegyzés. A 7.2.1. és 7.3.3. lemmak mutatjak egy olyan s* =
(Rp, p,w(p)) optimdlis kiterjesztett allapot létezését, melyben p = u; ... uy,
az ug, t = 1,...,1 jelek paronként kiilonbozoek, tovabba f(uy) < ... < £(w)
is teljestil.

Az 7.3.5. megjegyzés alapjan elegendd az el6bbi lemmak altal meg-
hatarozott tipusu Kkiterjesztett allapotokat generalni és vizsgalni, ami azt
jelenti, hogy kevesebb &llapotot tartalmazé atmeneti grafban keressiik a
legrovidebb utat, ez pedig hatékonyabba teszi az eljarast. A kovetkezo algo-
ritmus ezt az otletet is felhasznédlja.

PAT algoritmus a PNS-8 optimalis megoldasainak meghatarozasa-
ra ([22])

Inicializdlas.

Iterdcio

1. M; = {(Rp,p,w(p)) € Li : w(p) < w(q), Y(Rq,q,w(q)) € Li}.
Si =A{(Rp,p,w(p)) € M; : P C Rp}.
Ha S; # (), akkor VEGE; az S; elemei optimalis kiterjesztett allapotok.

2. Valasszunk egy tetszéleges (Rt,t,w(t)) € M; elemet, és legyen ¢ =
Ut ... Up.

3. Legyen 1=1+ 1, Lz = Lifl'

5. Legyen V; = {v € O'\ {uy,...,u,} : mat™(v) C Rt és L(v) > £(t)}.
Ha V; = (), akkor térjiink az 1. 1épésre.
Egyébként legyen V; = {vy,..., v}
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6. Minden j = 1,...,m értékre rendre hajtsuk végre az alabbi lépéseket:
o A(v;) :={(Rq,q,w(q)) € L; : Rq 2D Rtv; és w(q) < w(tv;) és
(w(q) < w(tvy) vagy £(q) < £(tvy))},
o D(v;) :={(Rq,q,w(q)) € L; : Rq C Rtv; és w(q) > w(tv;) és
(w(g) > wtvy) vagy £(q) = £(tvy))},

e ha A(v;) = 0, akkor legyen
Li = (Li \ D(vy)) U{(Rtvj, tvj, w(tvy))}.

7. Térjink az 1. 1épésre.

7.3.6. Megjegyzés.

(a) Bérmely ¢ > 0 egészre, ha létezik L; és (Rp,p,w(p)) € LZ, ahol p =
uy ... uy, akkor uq, ..., u; paronként kiillonbozéek és £(uy) < - -+ < l(wy).
(b) Bérmely i > 1 egészre, ha létezik L; és (Rp,p, w(p )) , ahol p =
U1 ..., akkor minden olyan j-re, melyre 0 < j < [ és p' = uy...u;,

igaz, hogy (Rp',p',w(p')) & L;.

Legyen S(L;) az L;-b6l kaphaté alabbi hdrmasok halmaza:

S(Li) = {(Rpg, pg, w(pq)) : (Rp,p,w(p)) € L és g € (O')" és

a pg-ban el6forduld jelek paronként kiilonboznek egyméstol}.

7.3.7. Megjegyzés. Vegyiik észre, hogy a 7.3.6. megjegyzés (b) pontja
alapjdn barmely ¢ > O-ra, L; N S(L;) = 0.

7.3.4. Lemma. ([22]) Bdrmely i > 0 egészre, melyre létezik L;, van olyan

st = (Rpi, pi, w(p;)) optimdlis kiterjesztett dllapot p; = U(1) ) ugn)z—vel, melyre

(i) az U(1 ), . ugn)z jelek paronként kilonbozoek,
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(i) s € L; US(Ly),

(iii) létezik olyan 0 < k; < m; és p, = ugi) . .u,(;i), melyre

(Rpy, ps, w(p;)) € L,

(iv) C(u’) < -+ < L(ui).

Bizonyitas Az éllitast ¢ szerinti indukcidval igazoljuk. Ha i = 0, akkor a
7.3.5. megjegyzéshol kovetkezik annak teljestilése ko = 0, (RA, A, 0) € Ly, és
sh = s* € S(Lg)-al. Most legyen i > 0 tetszileges egész érték, feltétetelezziik
az allitds érvényességét i-re, és igazoljuk (i + 1)-re. Az indukcids feltevés
alapjan 1étezik olyan sf = (Rp;, p;, w(p;)) optimalis kiterjesztett dllapot p; =
. ul) vel, mely teljesiti az (i), (i), (iii), és (iv) feltételeket. Ha a 1.
léspésben megallunk, akkor nem létezik L;,; és az &llitas teljesil. Most
tegyiik fel, hogy az algoritmus végrehajtasa nem ér véget a 1. 1épésben.
Legyen (Rt,t,w(t)) a 2. 1épésben valasztott harmas. Nyilvan (Rt,t,w(t)) #
st, mivel (Rt t,w(t)) = si-vel az eljards véget ért volna. Ha Vi = 0,
akkor (Rt t,w(t)) kilonbozik (Rp},p;, w(p,))-t6l, ugyanis ellenkezd esetben
(Rt, t,w(t)) = (Rpl, pi,w(p}))-bol és (Rt t,w(t)) # si-bdl azt kapnank, hogy
létezik u,g?ﬂ € Vii1, ami ellentmondés. Kovetkezésképpen, ha Vi1 = 0,
akkor a 4. 1épésben L;.1-b6l toroljik (Rt,t,w(t))-t, de (Rp;, pi, w(p) € Liwy
marad, ezért s, = s; egy olyan optimaélis kiterjesztett allapot, mely teljesiti
az elvart tulajdonsidgokat. Most tegyiik fel, hogy Vi 1 # 0.

Az (i + 1)-dik lépésben legyenek L., , és L”;y1 kozvetlenil a 3. il-
letve 6. lépések utdni aktualis L;;; halmazok. Jeloljiikk tovdbba Lgi)l—vel az
aktudlis L;; halmazt kozvetleniil a 6. 1épés j-re vald végrehajtasa eldtt.

Az egyszertliség kedvéért a tovabbiakban jeldlje s = (Rp,p,w(p))
mindig a rendelkezésre all6 aktualis optimalis kiterjesztett allapotot, mely-
ben p = uy ... uy, és legyen az ennek megfelelé (Rp',p',w(p’)) € L, ahol
P = uy...up valamely 0 < k < m-re. Ha (Rp,p,w(p’)) € L";41, akkor
sj,, = 5 egy megfelel6 optimalis kiterjesztett allapot. Most tegyiik fel, hogy
(Rp',p',w(p')) & L i1, azaz, hogy (Rp',p',w(p’))-t toroltik L, ,-bol. Két
esetet kiillonboztetiink meg.

1. BSET. (Rp,p,w(p))) & M; vagy (Rp'.p',w(p')) € M; de
a 2. lépésben nem ezt a hdrmast vdlasztottuk. Akkor (Rp/,p’,w(p'))-t
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csak a 6. lépésben torolhettiik, fgy (Rp',p/,w(p))) € LY, tehat j = 1
esetben az allitds teljesiil. Minden olyan esetben, amikor a 6. lépésben
valamely j-re egy (Rp/,p',w(p’))-t torlink az aktuélis Lz(i)l—bél, teljesiilnie

kell (Rp',p',w(p')) € D(v;)-nek v; € V;yi-re. Ez akkor torténik, amikor
1.1. BSET Rp’ C Rtv;, w(p') > w(tv;) vagy
1.2. ESET Rp' C Rtv;, w(p') > w(tv;), L(p") > L(tv;),

ahol a 2. lépésben (Rt,t,w(t))-t valasztottuk. Az 1.1. esetben, mivel
Rp' C Rtvj, ezért (Rtvjugiy ... U, t0jULL1 - - - Uy, W(EV UL - . . Upy,)) Olyan
kiterjesztett allapot lenne, melyre w(p) > w(tvjuj41 . . . Up,), ami ellentmon-
dana 5 optimalitasanak. Tehat az 1.1. eset lehetetlen. Az 1.2. esetben jelolje
q az Upiq. ..U, azon részszavat, melyet ugy kapunk, hogy toroljiik beléle
a tv;-ben el6forduld jeleket. Akkor (Rtv;,tv;,w(tv;)) € Lgﬂl) és konnyt
belatni, hogy s' = (Rtv;q, tv;q, w(tv;q)) az allitas altal kért feltételeket tel-
jesité optimaélis kiterjesztett allapot.

2. ESET. (Rp,p,w(p')) € M; és ezt a hdrmast vdlasztjuk ki a 2.
lépésben.  Akkor (Rp',p',w(p’)) €& Lgi)l mivel ez a harmas a 4. 1épésben
torlésre kertilt, tovabbd w1 € Vigr. Ha A(ugyq) # 0, akkor

2.1. BSET. Rp'upyr € Rq, w(p'ugs1) > w(q) vagy
2.2. ESET. Rp'up1 C Ry, w(p'ugir) > w(q), €(q) < U(p'ugs1)

teljesiil valamely (Rq, q,w(q)) € L;1i-re. Vegyiik észre, hogy § optimalitdsa
miatt a 2.1. eset lehetetlen. A 2.2. esetben jeldlje ¢ az ugis...u, azon
részszavat, melyet ugy kapunk, hogy toroljiik beléle a g-ban eléfordulo jele-
ket, és legyen ¢’ = qq. Akkor kénnyti beldtni, hogy (Rq', ¢, w(q')) egy kivént
tulajdonsdgokkal rendelkezd optimélis kiterjesztett dllapot. Ha A(ugyq) = 0,
akkor az (Rp'ugy1, P'uks1, w(p'ugs1)) hdrmast hozzdadjuk az aktudlis L; -
hez és igy s, = 5 az allitas feltételeit kielégitd optimalis kiterjesztett allapot
lesz. Ha valamely v; # ujy1, v; € Viyq-re az aktudlis (Rp', p’, w(p'))-t toroljiik
L, 1-bél, akkor ennek D(v;)-ben kell lennie és akkor az 1. esetben leirtakhoz
hasonléan meg tudunk hatarozni egy, az allitas feltételeit kielégito, optimalis
kiterjesztett allapotot. Ezzel igazoltuk az allitast. —
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7.3.1. Kovetkezmény. Bdrmely i > 0-ra, ha létezik L;, akkor L; # ().

7.3.5. Lemma. Bdrmely i > 0-ra, ha S; = () akkor

|L; US(Li)| > [Lis1 US(Lita).

Bizonyitas Az allitast ¢ szerinti indukciéval fogjuk igazolni. Ha i = 0,
akkor Ly € (Lo US(Lg)) \ (L1 US(Ly)) és az éllitas nyilvanvaléan teljesiil.
Most tegyiik fel, hogy az allitds teljesiil ¢ > 0-ra és igazoljuk (i + 1)-re.
Legyen S; = 0 és (Rt,t,w(t)) a 2. lépésben kivalasztott harmas. Akkor
az 7.3.6. megjegyzés alapjan (Rt,t,w(t)) € L; \ (Lit1 US(L;11)). Masfelol
L; 1US(L;iy1) C L;US(L;) nyilvanval6an igaz, ami azt jelenti, hogy az &llitas
barmely i-re teljestl. —

7.3.1. Tétel. ([22]) A PAT algoritmus véges szami lépés utdan véget ér és
eqy optomdalis kiterjesztett dllapotot hatdroz meg.

Bizonyitas Eloszor igazoljuk, hogy az algoritmus véges szamu 1épés utan
véget ér. A 7.3.1. kovetkezmény alajdn az eljards az S; # () esetben fog
véget érni. Mivel Ly U S(Lg) egy véges halmaz, ezért a 7.3.5. lemma és a
7.3.1. kovetkezmény alapjdn legtobb |Lg U S(Lg)| 1épés utan L; U S(L;) = )
kellene legyen, de mivel ha létezik L;, akkor L; # (), ezért L; akkor médr nem
létezhet, azaz az algoritmus valahol meg kellett alljon.

Igazolnunk kell még, hogy ha S; # 0, akkor s € S; egy optimélis
kiterjesztett allapot. Legyen s = (Rp,p, w(p)) az S; tetszbleges eleme. S; de-
finicigja alapjan s egy kiterjesztett allapot. Az 7.3.4. lemmé&bol kovetkezik
olyan s; = (Rq,q,w(q)) optimélis kiterjesztett dllapot létezése, melyre g =
uy ... u ugy, hogy uy ... ug € L; valamely 0 < k < l-re. Akkor w(u;...ux) <
w(q). Mésfelol M; definicidja alapjan w(p) < w(uy ... uy). Kovetkezésképpen
w(p) < w(q), ami azt jelenti, hogy s egy optimalis kiterjesztett allapot. —
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9. fejezet

A disszertacid osszefoglalasa

A kémiaban, biolégiaban, ipari alkalmazasokban gyakran felmeriil
olyan probléma, amelyben bizonyos ,nyersanyagok” és , miiveleti egységek”
rendelkezésiinkre &allnak és eloirt anyagokat kivanunk elééllitani az adott
miiveleti egységek Osszekapcsolasaval. A probléma egy lehetséges modellezése
a ,Process Network Synthesis” (PNS), melyben minden miiveleti egység az
anyagok egy részhalmazat inputként igényli és anyagok egy masik részhal-
mazat allitja el6. A grafelméleti megkozelitésben egy anyagtdl irdnyitott
él vezet azokhoz a miveleti egységekhez, amelyek azt input anyagként fel-
hasznaljak, illetve egy miiveleti egységet iranyitott éllel kotiink 6ssze azokkal
az anyagokkal, amelyeket output anyagként termel. fgy egy kétrészes (anya-
gok; miiveleti egységek) irdnyitott grafot kapunk, a folyamat grafjat. Egy
ilyen halézatban az eloirt anyagok legyartasa altalaban tobbféleképpen, a
rendelkezésre all6 gépek kiilonbz6 részhalmazaival is megvaldsithaté. Stati-
kusan képzelve a termelési folyamatot, a miiveleti egységek egy részrendsze-
rének miikodésével a kivant anyagokat bizonyos alapveto feltételek teljesiilése
esetén kaphatjuk meg. Ily médon a lehetséges megoldasoknak rendelkeznitik
kell bizonyos strukturélis tulajdonsdgokkal ([15]), ami miatt ezeket megoldas
strukturaknak is szokds nevezni. Ezek kozott kitlintetett szerepe van a ma-
ximalis strukturanak, mely a lehetséges megoldas struktirak unidja. A ma-
ximalis struktira meghatarozasa azért hasznos, mert ily médon a hélézatbol
toroljiik azokat a miiveleti egységeket, melyek igysem szerepelnének egyetlen
lehetséges megoldasban sem, és ily médon csokkentjiik a probléma méretét.
Mivel a maximaélis struktira generalasara polinomidlis ideji algoritmus ad-
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hat6 ([11]), ezért célszeriinek tiinik a PNS problémak megolddsét ezzel kez-
deni. A legtobb esetben azonban minket nem a legtébb miveleti egységet
igénybe vevo, hanem ellenkezoleg, valamilyen szempontbdl leggazdasagosabb
megoldéasok érdekelnek, tehat nem elégedhetiink meg a maximalis struktira
meghatarozasaval.

A dolgozatban targyalt PNS modell csak strukturdlis szempontbdl
tekinti a problémét, mivel annak leirdsa anyagmennyiségekre vonatkozo elo-
irasokat nem tartalmaz. A rendelkezésre all6 miveleti egységek viszont
rendelkeznek bizonyos koltséggel és az anyagel6allitas soran haszndlt mi-
veleti egységek 0Osszkoltségét szeretnénk optimalizélni: keressitk a miivele-
ti egységek azon legkisebb 0sszkoltségli részhalmazat, mely a rendelkezésre
allé nyersanyagokbol képes eldallitani a kivant végtermékeket. Mivel a mi-
nimum meghatdrozasa még ebben a legegyszeriibb struktirdlis esetben is
a halmazlefedési problémaval ekvivalens ([2, 17, 27]), igy a halmazlefedési
probléma NP teljességébél ([32, 1]) kovetkezoen a struktirdlis PNS-probléma
is sajnos NP-teljes. Nem varhaté tehat hatékony megoldas ra. Ezért indo-
kolt exponencialis idji algoritmusok és azok kiilonb6z6 heurisztikakkal kom-
binalt, korlatozas és szétvalasztas moddszerére alapuld valtozatainak kidol-
gozésa ([13, 24, 21, 23]).

A Branch-and-Bound jellegti médszerek felépitésében fontos szere-
pet jatszik az ugynevezett dontési leképezés fogalma ([12]), mely lényegében
meghatarozza adott anyagra az 6t gyarté miveleti egységek halmazat. Gya-
korlati szempontbdl nyilvan nagyon komoly elény, hogy csak bizonyos tigyne-
vezett "konzisztens” dontési leképezéseket kell figyelembe venni, ami abbdl az
észrevételbol szarmazik, hogy egy miiveleti egység, ha miikodik, nem teheti
meg, hogy bizonyos kimeneti anyagait gyartja, masokat pedig nem. FEzen
beliil tovabbi sziikitést eredményez az az észrevétel, hogy nem miikodhet
olyan miveleti egység, amelyik valamelyik input anyagéat egyetlen miikodo
muveleti egységtol sem nyeri. A konzisztens dontési leképezések és a le-
hetséges megoldés struklturak kozotti kapesolatot felhasznélva, a konzisz-
tens dontési leképezések megszamlalasaval, a szitaformula segitségével felso
korlat adhaté a lehetséges megoldés struktirak szdamara ([3]). Mivel a korlat
tényleges kiszamitasa a probléma strukturajatél fiigg és altalaban, tetszoleges
folyamat graf esetén, meglehetésen bonyolult, ezért megvizsgaltunk két spe-
cialis PNS problémaosztalyt is, melyre ténylegesen kiszamithaté képleteket
tudtunk adni, mikézben szép kombinatorikus azonossagokat is kaptunk ([4,

5)).
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A tovabbiakban észrevettiik, hogy bizonyos miiveleti egységek, ne-
vezetesen azok, amelyek egyszerre vannak jelen vagy egyikiik sem szerepel
a lehetséges megoldasokban, egyiitt kezelhetok. Ebbdl kiindulva definidltuk
az Osszevonas miiveletét, mely a maximalis struktirahoz képest is altaldban
kb. 7%-o0s tovabbi méretcsokkenést eredményez ([20]). Ugyanakkor az 0sz-
szevonas kovetkeztében megjelend j miveleti egységek az eltavolitottaknal
tobb bemeneti és kimeneti anyaghalmazzal rendelkeznek (bar a be- és kime-
neti anyagok szdma Osszességében megmarad), ezért felmeriil a kérdés, hogy
az Osszevonas oOtlete vajon egyaltaldan hasznalhato-e a feladat hatékonyabb
megoldasara. A dontési leképezések mélyebbre haté tanulmanyozasanak
kovetkeztében kapott néhany tovabbi észrevételt is felhasznélva, kidolgoz-
tunk egy 1j, Eldretekintd B & B (ER) nevezetii, korldtozas és szétvélasztas
tipusu eljarast, mely az Osszevonas otletét implicit médon alkalmazva, vizs-
galatainkban az eddig ismert legjobb MABBA eljarasnal lényegesen hatéko-
nyabban oldotta meg a feladatot ([21]).

A gyakorlatban eléallhatnak olyan esetek, amikor nem csak egy op-
timalis megoldas, hanem tobb vagy az Osszes, lehetséges vagy optimalis
megoldés is érdekel. A [16]-ban kidolgozasra keriilt egy eljards, mely egy
PNS probléma oOsszes lehetséges megoldasat felsorolja. Lehetnek azonban
olyan esetek is, amikor csak az optimalis megoldasok érdekelnek, de azo-
kat mind fel szeretnénk sorolni. A feladat megoldhaté a [16]-ban megadott
teljes leszamlaldssal is, példaul tgy, hogy elészor megkeressiik az optimu-
mot, majd utdna a teljes leszamlalasnal ugyan az 0sszes lehetséges megoldést
végigjarjuk, de csak az optimédlis megoldasokat tartjuk meg, ez a megoldas
azonban egyaltalan nem hatékony, hiszen sok felesleges lehetséges, de nem
optimalis megoldast vizsgal meg. Ezért kidolgoztunk egy ennél hatékonyabb
eljarast, mely ugyan még mindig nem csak az optimélis megoldasokat talalja
meg, viszont az altala felsorolt megoldas halmaz, mely tartalmazza az osszes
optimalis megoldast, a bemutatott empirikus vizsgalatokbdl itélve, lényege-
sen kisebb, mint az 6sszes lehetséges megoldasok halmaza, hiszen az algorit-
mus a teljes leszamldldsnal sokkal hatékonyabbnak bizonyult ([23]). Nyitott
kérdés maradt azonban, hogy a parcidlis leszamlalas milyen feltételek mellett
képes csak az optimalis megoldasokat végigjarni.

A dolgozat befejez6 részében a PNS egy teljesen tjszerti, automa-
taelméleti megkozelitését vizsgaltuk meg. A [28] cikk alapjan lattuk, hogy a
lehetséges megolddsok [18] és [15] munkakban meghatarozott feltételei nem
biztositjak a végrehajthatésigot, ezért a [28]-ben kidolgozésra keriilt egy
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ugynevezett szinezo eljaras, mely meghatarozza a végrahajthaté folyamato-
kat, melyeket médositott lehetséges megoldasoknak neveztiink. Ugyancsak a
[28]-ban meg lett adva egy eljaras a mdédositott lehetséges optimélis megoldas
meghatarozasara, melynek alapotlete az, hogy a mddositott PNS probléma
adott példanyahoz hozzérendelheté egy automata, melyre teljesiil az, hogy
az eredeti feladat megoldasa visszavezethet6 az automata atmeneti grafjaban
egy legrovidebb tut megtalaldsara. A disszertacié ezen részének tulajdonkép-
peni célja ezen eljaras tovabbfejlesztése volt. Definialtunk egy ekvivalencia
relaciot a miiveleti egységek halmazén, egy részben rendezést az ekvivalen-
cia osztalyokon, melyeknek segitségével, néhany tovabbi észrevétel felhasz-
nalasaval, egy nyilvanvaléan hatékonyabb eljarast sikeriilt kidolgoznunk az
optiomalis médositott lehetséges megoldas meghatarozasara, melynek az a
lényege, hogy a legrovidebb 1t keresésével egyidoben az atmeneti grafnak
csak egy részét generdljuk ([22]).

Osszesitve, a PNS nem az egyetlen, de egy lehetséges és hasznosnak
bizonyult modellje a hal6zati folyamatoknak, mely lehetové tette strukturalis
osszefliggések feltarasat és a folyamatok bonyolultsagahoz képest valamivel
hatékonyabb megoldasok megtaldlasat.



10. fejezet

Summary of the doctoral thesis

10.1. Synopsis

In a manufacturing system, materials of different properties are consumed
through various mechanical, physical and chemical transformations to result
in desired products. Devices in which these transformations are carried out
are called operating units, e.g., a lathe or a chemical reactor. Hence, a
manufacturing system can be considered as a network of operating units
which is called process network. The importance of process network synthesis
(PNS) arises from the fact that such networks are ubiquitous in the chemical
and allied industries. A process design problem in general, and flowsheeting
in particular mean to construct a manufacturing system. A design problem
is defined from a structural point of view by the raw materials, the desired
products, and the available operating units, which determine the structure of
the problem as a process graph containing the corresponding interconnections
among the operating units. Thus, the appropriate process networks can be
described by some subgraphs of the process graph belonging to the design
problem under consideration. Naturally, the cost minimization of a process
network is indeed essential. For this purpose, several papers have appeared
for solving PNS problems by global optimization methods (cf. [10] and [19])
and by combinatorial approach based on the feasible graphs of processes (see,
e.g., [18], [15], [11] ). However its solution is difficult in general. It has been
pointed out that the PNS-problems are NP-complete (see [2], [17] and [27]).
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In general, there are three basic approaches to attack NP-hard pro-
blems. The first approach is to develop exponential time algorithms for
solving the problem. In case of PNS problem, some exponential time al-
gorithms based on the Branch and Bound technique were developed and
studied in [16], [12], [13], [14], [24], [25], [20], [21], and [23]. This approach is
studied also in this work. Another approach is to investigate specially struc-
tured instances for which interesting stuctural properties and bounds (e.g.
for number of feasable solutions, see [3], [4], [5]) can be determined, which are
called well-solvable classes and their instances can be solved efficiently. Some
well-solvable classes were presented in [30], [6], [6], [31]. The third approach
is to establish fast (polynomial time) algorithms which do not guarantee an
optimal solution in general, but always result in a feasible solution which is
close to the optimal solution in some sense. Such algorithms, called heuristic
algorithms or heuristics, are important for several reasons. The feasible solu-
tions found by such algorithms can be used in exponential time algorithms,
furthermore, there is often not enough time to find an optimal solution or
the size of the problem is too large to use an exponential algorithm. In these
cases, heuristic algorithms can be useful again. The first heuristic algorithm
for this problem was presented in [8].

10.2. The structural model of PNS

The foundations of PNS and the background of the combinatorial model
studied here can be found in [15], [18]. In the combinatorial approach, the
structure of a process can be described by the process graph (see [15]) defined
as follows.

Let M be a finite nonempty set, the set of the materials. Further-
more, let ) £ O C @' (M) x ¢'(M) with M N O = ), where ¢'(M) denotes
the set of all nonempty subsets of M. The elements of O are called operating
units, and for an operating unit, u = (a,3) € O, o and (3 are called the
input-set and output-set of the operating unit, respectively. The pair (M, O)
is defined to be a process graph or P-graph in short. The set of vertices of
this directed graph is M U O, and the set of arcs is A = A; U Ay, where
A ={X)Y):Y = (a,f) € Oand X € a} and 4y = {(V,X) : YV =
(a, ) € O and X € (}.
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Let the process graphs (m, o) and (M, O) be given. (m, o) is defined
to be a subgraph of (M,0),if m C M, 0 C O and o C ¢'(m) x ¢'(m).

By a structural model of PNS, we mean the triplet, M = (P, R, O),
where P C M and O C ¢'(M) x ¢'(M) are finite nonempty sets representing
the set of desired products and that of available operating units, respectively,
R C M is a finite set representing the set of raw materials and P N R = ().

Then, the process graph (M, O), where M = U{aU 3 : (o, ) € O},
presents the interconnections among the operating units of O. Furthermore,
every feasible process network, producing the given set P of products from
the given set R of raw materials using operating units from O, corresponds to
a subgraph of (M, O). Investigating the corresponding subgraphs of (M, O),
therefore, we can determine the feasible process networks. If we do not
consider further constraints such as material balance, then the subgraphs of
(M, O) which can be assigned to the feasible process networks have common
combinatorial properties. They are studied in [15] and their description is
given by the following definition.

A subgraph (m, o) of (M, O) is called a solution-structure of (P, R, O)
if the following conditions are satisfied:

(A1) P Cm,

(A2) VX € m, X € R < no (Y, X) arc in the process graph (m, o),
(A3) VY € o, 3 path [Y,Y,] in (m,0) with Y,, € P,

(A4) VX € m, 3(a, ) € o such that X € a U S.

The set of the solution-structures of M = (P, R,O) will be denoted by
S(P,R,0) or S(M).

Let us consider PNS problems in which each operating unit has a
weight. We are to find a feasible process network with the minimal weight
where by weight of a process network we mean the sum of the weights of
the operating units belonging to the process network under consideration.
Each feasible process network in such a class of PNS problems is determined
uniquely from the corresponding solution-structure and vice versa. Thus,
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the problem can be formalized as follows. Let a structural model of PNS
problem M = (P, R, O) be given. Moreover, let w be a positive real-valued
function defined on O, the weight function. The basic model is then

(PNS-2) min {}_, ., w(u) : (m,0) € S(P,R,0)} .

In this work by PNS problem we always mean PNS problem with
weight, and the solution-structures are also called feasible solutions. It is
known (see [2, 17, 27]) that this PNS problem is NP-complete.

Now, let 0 € O and m C M be arbitrary sets. Let us define the
following functions on the sets o and m:

mat™ (o) = U a, mat®* (o) = U B,

(a,B)€0 (a,B)€0

mat(0) = mat™ (o) Umat®* (o),

and

A(m) ={u: ue€ O & mnmat®™(u) # 0}.

Let m be a subset of M \ R; furthermore, let 6(X) be a subset of A(X) for
each X € m. Mapping ¢ from set m into the set of subsets of O, §[m] =
{(X,0(X)) : X € m}, is called a decision-mapping belonging to M; 6[m] is
said to be consistent when 6(X) N A(Y) C §(Y) is valid for all X|Y € m,
and the set of all consistent decision-mappings of M is denoted by . A
decision-mapping can be visualised as a sequence of decisions, each of which is
concerned with a single material involved in the process being synthesized; it
identifies the set of operating units to be considered for producing directly the
material of interest. If §;[m,] and da[ms] are arbitrary consistent decision-
mappings, then, d[ms] is called an extension of 01|m4] if my C my and
91(X) = 92(X) for all X € m;. Relation extension is a partial ordering on
Q. Let us denote the set of all maximal elements of this partially ordered set
by Qpf* and its elements are called mazimal consistent decision-mappings.

We use a coloring of process graphs. For this purpose, let (M, O) be
a process graph and R a set of materials. It is said that (M, O) is colorable
by R if every material vertex of (M,0) can be colored by the following
procedure.
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Coloring Procedure ([28])

Step 1. Color every material in M N R.

Step 2. If there is an operating unit whose all input materials have already
colored, then color its every output material. Terminate otherwise.

A modified PNS problem is a PNS problem satisfying (A1) - (\A4) and
(A5) (M, O) is colorable by R.

The weighted modified PNS problem is then:

ueO

(PNS-8) min { S w(u): (M,0) € g(M)} :

where S(M) is the set of feasible solutions of the modified PNS problem.

10.3. Results of the thesis

In the Chapter 2 we define the mathematical model of the PNS problem,
furthermore, we recall the most fundamental definitions and results for this
problem. In Chapter 3, based on the works [3, 4, 5], the number of the con-
sistent decision-mappings is counted, and an upper bound is presented for
the number of the feasible solutions of a PNS problem. Since the expression
of this bound depends on the structure of the process, the determination
of its value is much easier if we restrict ourselves to special classes of PNS
problems. This is why we study also two special classes and determine the
bounds for them. In the Chpater 4, based on the work [20], a new me-
thod called merging reduction is introduced which is based on the merging of
operating units. The mergeable operating units are determined by an equi-
valence relation on the set of the operating units, and all of the operating
units included in an equivalence class are merged into one new operating unit.
This reduction has the following property: an optimal solution of the origi-
nal problem can be derived from an optimal solution of the reduced problem
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and conversely. Presentation of this reduction is equipped with an empirical
analysis on randomly generated problems which shows the measure of the
size decrease.

Since the combinatorial version of the Process Network Synthesis
(PNS) problem is NP-complete, it is important to establish effective B&B
procedures for its solution. Until now three such algorithms have been esta-
blished: the Accelerated B&B Algorithm (ABBA for short) [14], a modified
version of the ABBA (MABBA in short) [24], and the modified ABBA equip-
ped with a stronger bounding function [24]. The empirical analysis presented
in [25] shows that the best procedure among them is MABBA. In Chapter
5, based on the work [21], a new B&B procedure is presented which is based
on the merging reduction of PNS problems and on a new branching rule.
Our new procedure called Look Ahead B&B Algorithm (LABBA in short)
differs in two aspects from the previous ones. It uses the new reduction idea
obtained in [20] which is based on the observation that the operating units
of a PNS problem can be classified such that for each feasible solution, the
equivalent operating units simultaneously either appear or do not appear in
the feasible solution considered. Using this result, the bounding functions of
the earlier procedures can be improved and the size of the B&B tree can be
decreased by fixing the equivalent operating units simultaneously. Another
aspect is that the LABBA studies the effects of the different possible bran-
chings while in the ABBA and MABBA, the branching rule is based on such
a material selection which is independent of its effect. By examining the ef-
fects of the different material selections, the size of the B&B tree can be also
decreased. Finally, the power of this procedure is justified by an empirical
analysis.

Sometimes, it is not sufficient to know only one optimal solution,
one may need all of the feasible solutions or all of the optimal solutions.
For obtaining all of the feasible solutions, a complete enumeration procedure
and possible applications are also described in [16]. In Chpater 6, based on
the work [23], a new and relatively fast procedure is presented. It does not
generate all of the feasible solutions, but it provides such a subset of feasible
solutions which contains all of the optimal solutions of problem considered.
The power of this enumeration procedure is illustrated by an empirical ana-
lysis.
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In [28], a procedure is given for solving modified Process Network
Synthesis problems. The idea of this procedure is that for every instance of
the modified problem, an automaton can be defined such that an optimal
solution can be found by performing a shortest path method in the weighted
transition graph of this automaton. In the Chpater 7, we recall this algorithm
and improve its efficiency by defining an equivalence relation on operating
units, a partial ordering on the equivalence classes, and thus, generating
only a part of the transition graph and computing a required shortest path
simultaneously. The results of this chapter are based on the work [22].
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