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FOREWORD

This section is intended as plead for interdisciplinary research. For some obscure
reason, Alfred Nobel', the father of the notorious homonym prize, decided to
omit mathematics from among the distinguished sciences. Various rumors have
surrounded the peculiar decision of the famous mecena. One of them states that
Nobel decided against a prize in mathematics because his fiancé cheated on him
with a famous mathematician, often claimed to be Gésta Mittag-Leffler”. The
most likely explanation is, however, that he considered mathematics a purely
theoretical science with no direct practical benefit to mankind. If that was the
case, modern research and the fusion of sciences that emerged thereof proved
him wrong. Informatics, the latest branch of mathematics, including game theory,
control theory, graph theory or algorithms for that matter, has been thoroughly
integrated with other disciplines, being an indispensable tool of current research.
Representative figures have demonstrated the practical importance of this area
hitherto considered entirely theoretical. Let’s just take John Nash™ for a well
known example, since he was the hero of the Hollywood movie Beautiful Mind.
But the choice of the 2002 Nobel laureates (to mention just two: Daniel
Kahneman" and Vernon Smith" — economy, both owing much to game theory)
also shows the role mathematics plays in all the sciences. Thus, Mittag-Leffler is
cheating again on Nobel by taking the prize the back-door way. Putting the
anecdote aside, today’s science has become profoundly computer-centric. Not
only the huge libraries have become available by means of informatics, but also
the modern tools of research. The future of understanding nature, as many see it,
lays in the concept of interdisciplinarity. Perhaps the “homo universalis” idea of
the Renaissance has failed, but in order to understand our environment and life

itself, as in putting the pieces together, we certainly recognize the need for a
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modern “universal” research group, where “Les savants ne sont pas curieux’

(Anatole France") does not apply.

When I was graduating the university, one of my professors held a speech. His
closing remark was that all he expects us, graduate engineers, to remain with after
five years of training, is a systemic thinking. Thus, faithful to this idea I shall
continue and during this thesis I shall present a gradual evolution and
development of biological data analysis from simpler bioinformatic and statistical
analysis to a systemic signal processing framework. First, let us introduce systems
theory as an interdisciplinary theory that is concerned with the properties of
systems as wholes. As opposed to studying the individual system components,
systems theory studies the interactions between these components, interactions
that will determine the general properties and behavior of the system. Established
as a science by Ludwig von Bertalanffy™, Anatol Rapoport™ and others in the
1950s, systems theory can be considered a revolutionary change of the scientific
view of the world. The major practical applications of this field are found in
control engineering. Currently, however, the emerging scientific discipline of
systems biology is also beginning to use the achievements of systems theory.
Thus, systems biology, often overlapping with bioinformatics, integrates

molecular biology knowledge and computational analysis in an attempt to model,

simulate and analyze biological systems and processes.



AIMS

The aims of this study are typically concerned with gene expression data
processing. The list of aims related to the subsequent individual bioinformatics

processing steps, as illustrated by our results, is presented below.

e Application of the “gold standard” gene-expression data analysis

methods to real laboratory QRT-PCR and microarray data .

e Statistical analysis of the effect of laboratory protocol innovation

on the gene-expression experiment outcome.

e C(lass discovery and marker gene testing in schizophrenia

transcriptional profiles.

e Development of innovative system level methods for expression
data normalization and noise reduction (Kalman Filter), with

application to molecular diagnosis of cancer.

Incorporating the expression covariance between genes proves to be an
important issue in biological data classification problems with application to
diagnosis, since this represents the functional relationships that govern tissue
state. We also aim to show here that employing the Kalman Filter to remove
noise on gene expression data (while retaining meaningful covariance and thus
being able to estimate the undetlying biological state from microarray
measurements) yields linearly separable data suitable for most classification

algorithms.



Chapter 1
GENERAL INTRODUCTION

1.1 Mathematical Modeling - A Short Survey

“The mathematics is not there till we put it there” (Arthur Eddington™),
therefore, a mathematical model is not the system but an abstract model that uses

mathematical language to approximately describe the system as in Figure 1.
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Figure 1. Graph model of the adenine nucleotide integrating physics
and chemistry knowledge and possibly predicting biological function.

There is a close relationship between mathematical modeling and systems theory.
To make it more clear, a mathematical model is a representation of the properties
of a system in a mathematically usable form [1]. The components of the system
are represented by wvariables, while the relationships between them by
mathematical functions. There are three major objectives of system modeling:
analysis of system structure, prediction of behavior and ultimately control of
behavior. These objectives bear with major consequences; let’s just think of the
biological system of the cell for example. In the following we will shortly describe
the essential aspects of mathematical modeling and clear some concepts that will
be used later on throughout this dissertation. Models can be static or dynamic.

Static models, such as those used for classification in this study (random forests,
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k-nearest neighbours) do not account for the element of time. They can be linear
(linear kernel support vector machines) or non-linear (sigmoid output artificial
neural networks), depending on the nature of the functions relating the variables,
and they are trained in order to learn the structure of the system that produced
the so called training dataset (for example a microarray dataset that accounts for
several disease subclasses). The training itself can be supervised or unsupervised,
depending on whether the user will supervise the training by providing the
expected output for the given input data (classification, also known as supervised
clustering), or the model should self-organize in order to fit the input data
(hierarchical clustering). Dynamic models, on the other hand, attempt to model
the time dependent relationships between the variables (state-space models). Here
we can have output variables (actual measurements), input variables (system
control) or state variables (hidden variables such as the true gene expression state
that we attempted to estimate using the Kalman filtering). Models can also be
deterministic, such as a state-space model that uses the state transition functions
to uniquely determine the following state from the current one, or stochastic.
Stochastic models use probabilistic approaches to account for the randomness of
the variables (for example the noise models used by the Kalman filter are
stochastic). The evaluation of an acquired model is of particular importance, since
it concerns the model’s reliability (classification models for medical diagnosis).
For this purpose, a set of test data is usually used. If the model shows comparable
performance on the training data and on the test data, then the model fits well the
system in cause. However, there is a degree of uncertainty when it comes to the
model handling events outside the measured data. Eddington has a witty solution
to that problem: “It is also a good rule not to put overmuch confidence in the

observational results that are put forward until they are confirmed by theory”.
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1.2 Biology of Gene Expression

The DNA molecule encodes the hereditable information fundamental to the life
of the cell. A major discovery of molecular biology was that the DNA encoded
biological information is copied by the RNA and that the RNA mediated
information is used to assemble the proteins. Proteins thus decode biological
information into biological function. This flow of information (Figure 2) from
DNA to RNA and from RNA to protein is stated as the “Central Dogma” of
molecular biology, which was proposed by Francis Crick® in 1957 [2].

Protein

Figure 2. Flow of information: in transcription DNA information is
copied to produce an RNA transcript; in translation the instructions
in mRINA are used to synthesize a polypeptide.

The actual mechanism of gene expression is complex and consists of two major
stages. During transcription, the transcript of the gene is produced as a molecule
of mRNA. During the second phase, namely translation, the mRNA nucleotide
information is decoded to a sequence of amino acids yielding the polypeptide at
the ribosomes. The transcription of genes is a complexly regulated process. A
large network of signal mediating components (signal pathways) is involved in
activating the final effectors of the process, such as the transcription factors or
the RNA polymerase [2][3]. Identifying this so called transcriptional network

represents one of the major goals of systems biology. The mathematical modeling
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of such a large system can be made possible by the currently available high
throughput technologies that provide large scale data like gene sequence,
transcription profiles, protein quantitative data as well as protein interaction data.
Clearly, having such a model would have major implications in predicting the
response of the cell to stimuli for example, or in controlling the cell’s behavior.
For the time being however, based on the modeling the available biological data,
the less ambitious task of medical diagnosis can be achieved, still of great

importance in medicine.

1.3 Biotechnological Research Tools

As we saw, according to the “Central Dogma”, the gene transcript stands in the
information flow path between the DNA and the protein. Thus, quantifying the
mRNA provides in some degree quantitative information about the proteins
downstream, and also qualitative information about the DNA upstream. It has
been shown that transcription profiles reflect well the biological state of the
investigated samples. Thus, measuring the mRNA level at a particular cell state
also provides insight into gene expression events, genes being activated and partly
proteins that the cell responds with, allowing us to infer their function. Currently
two major technologies are available for gene transcript quantification:
quantitative real-time PCR (QRT-PCR) and DNA microarray. The RNA level
measured using these techniques actually corresponds to the stationary level of
the RNA formed as a combination of transcription, RNA maturation and RNA

degradation.
1.3.1 Real-time PCR

The “real-time” or kinetic variant of the polymerase chain reaction invented by
Kary Mullis*, was pioneered by Higuchi et al. [4]. The DNA is quantified after

each amplification cycle by detecting the fluorescence emitted by a dye
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intercalating with the double-strand DNA. For mRNA quantification, reverse
transcription PCR (RT-PCR) is used first to reverse transcribe the RNA to
complementary DNA (cDNA), which is then quantified using the QRT-PCR.

1.3.2  DNA Microarray

In recent years, a new technique, the DNA microarray technology (DNA-chip)
[5] has emerged, offering the possibility of high-throughput systematic analysis of
the transcriptome. The arrays are constructed of thousands of DNA fragments
either spotted or synthesized (Affymetrix) onto chemically activated glass slides.
DNA fragments can be collections of short or long oligonucleotides or cDNAs
of variable length. DNA microarrays with sets of cDNA fragments on their
surface can be used to obtain a molecular fingerprint of gene expression of cells.
The method has enabled large numbers of genes, from specific cell populations,

to be studied in a single experiment.

1. Sample Preparation
1. sample RT

—-RNA —=—

2. Hybridization
control tissue Cy-3-dCTP |

2. sample RT -
- — - RNA —jp cDNA-chip
affected, diseased ~ Cy-5-dCTP * washing

tissue
: 3. Scanning

~atf—— Laser 1.
(543 nm)

s | 2T 2.
(633 nm)

raw data —— 4. Data Processing

Figure 3. Application of cDNA arrays for the follow up detection of
gene expression changes.
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During the experiment, mRNA populations gained from diverse biological
samples (tissues or cell cultures) are converted to cDNA in the presence of
fluorescent dye (Cy3 or Cy5) labeled nucleotides. Using a co-hybridization
strategy, with Cy3- labeled cDNA from the test sample and Cy5-labeled cDNA
from the control sample, the relative intensity ratio on the microarrays can be
determined and the expression pattern can be analyzed. The schematic
representation of a cDNA microarray experiment can be seen in Figure 3. Clearly

the most attractive feature of the technology and its major advantage over the

QRT-PCR is the high throughput.

BioMaterial

Hybridization
Protocol

Physical BioAssay

BioAssay
Treatment
Protocol

Physical BioAssay

Scan Protocol

Physical BioAssay

Feature
Extraction
Protocol

Measured BioAssay

Measured
| BioAssayData,
_ Derived Derived BioAssay
BioAssayData
Figure 4. Block diagram of the microarray experiment taken from

the MIAME exchange specifications regarding the microarray
workflow.

This however induces some disadvantages as well, namely the high number of

error sources which will act in the detriment of precision. As opposed to the

15



QRT-PCR, the DNA microarray is static, based on the natural pairing of the
complementary bases. The dynamics of the PCR facilitate the more exact analysis
of the differences in gene expression. It is a good practice, therefore, to verify the
results of a microarray experiment by means of real-time PCR. Currently, the
primary applications of microarrays include gene discovery [7], disease diagnosis
[8], drug discovery [9], and toxicological research [10]. More advanced systems
biological tasks, such as transcriptional network modeling, have also been
attempted [11][12][13]. A successful DNA microarray experiment starts with a
good design of the experiment. Figure 4 shows such a design and specific
workflow steps according to the MIAME specifications [6]. The block diagram of
the microarray experiment reveals the complexity and the large number of stages
involved in the process. It has to be outlined that each of the blocks
corresponding to the work phases, including hybridization, washing (BioAssay
treatment), image acquisition, and the protocols used, are major sources of error
and noise that will be superimposed on the final data output. Due to this noise,
subsequent data pre-processing and bioinformatic analysis steps must be taken

before any biological interpretation of the results.

16



Chapter 2

METHODS AND MODELS FOR GENE EXPRESSION DATA
ANALYSIS

The methods described below aim at data obtained as result of quantification by
means of either arrayed image analysis (microarray) or change in fluorescence
signal intensity (during the PCR reaction). These digitized signals are considered
raw measurement data and reach the analysis workstation in the form of
numerical vector columns. Within such a vector each observation element
corresponds to the expression of a specifically inspected gene under the given
conditions. They will be called alternatively features, while the vectors themselves

will sometimes be denominated as samples.

2.1 Quality Control and Feature Rejection

Quality control [14] can refer to any step that is required to prepare a generic data
set for a specific type of analysis. Quality control is often referred to as data
filtering, a term that can take different meanings as we shall see later on. The
process primarily involves two concepts: feature rejection and averaging. The
various quality control measures provided by the quantification process are used
to eliminate specific observations that do not comply with given laboratory set or
standard thresholds. Flags set at the image analysis stage, local background
estimates, signal to noise ratios are valuable information in determining the
reliability of features in a microarray measurement. The same applies for QRT-
PCR data, where dilution curves, reaction efficiencies and crossing point
deviations can motivate the rejection of certain reactions. Technical replicas are
repeats of measurements of samples coming from the same pool of extracted
RNA. They are truly meant to control the quality and reproducibility of the

experimental conditions. Averaging is generally used to combine observations
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from measurements technically replicated. Biological replicates on the other hand,
are independent measurements of the same type. They provide the means for
most of the methods presented in the following sections. Quality control is a
concept that can be applied at any stage of processing and it is a compromise
between biological and mathematical consideration, since there is a general
danger of losing data before one is certain that it is not useful or unusable. The
practical application of quality control within the case studies shown in the

Results section was done in MS Excel.

2.2 Normalization — A Milestone

Normalization at its origins denotes a transformation of the data, which results in
a normal (Gaussian) distribution. The denomination here has historical reasons
since the parametric statistics used for differentially expressed gene identification
require normal distributions. There is general agreement that a log transformation
of most microarray data provides a good approximation of the normal
distribution with minor exceptions [15]. Currently, however, the normalization
procedure covers more tasks essential to expression data analysis including
scaling, noise smoothing and dye bias correction. To conclude, the gene
expression data related normalization represents the procedures required to make
the samples comparable. There is no optimal general method to be used, thus,

depending on the experiment various normalization schemes can be employed.

2.2.1 Reference features

Using control features to normalize the expression data is a popular method,
which is based on the assumption that certain genes do not change their
expression under the inspected circumstances. One must be careful however,
since endogenous controls (i.e. housekeeping genes) can become unreliable under

rough changes in the cell’s housekeeping such as tumor. In the following we shall
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describe one such normalization procedure widely and exclusively used with
QRT-PCR data, known as the Pfaffl method [16]. This method provides a means
for quantification of a target gene transcript in comparison to a reference gene.
The relative expression ratio is calculated only from the real-time PCR efficiencies
and the crossing point deviation of an unknown sample versus a control. The
model used needs no calibration cutve, as control levels are included within the
model. High accuracy and reproducibility (less than 2.5% variation) may be
reached using this procedure. For the mathematical model it is necessary to
determine the crossing points (CP) for each transcript. CP is defined as the point
at which the fluorescence rises appreciably above the background fluorescence.
CP cycles versus cDNA concentration are then plotted to calculate the slope
(mean, standard deviation). The corresponding real-time efficiencies are

computed according to the equation:

1

E :1075I0pe (1)

The relative expression ratio (R) of a target gene is calculated based on E and the
CP deviation of an unknown sample versus a control, and expressed in

comparison to a reference gene:

EACRa,gel(control-sample)

R = target (2)

- EACPref (controksamplg
ref

The ratio of a target gene is expressed in a sample versus a control in comparison
to a reference gene. e 18 the real-time PCR efficiency of target gene transcript;
E. is the real-time PCR efficiency of a reference gene transcript; ACPum is the
CP deviation of control — sample of the target gene transcript; ACPys is the CP
deviation of control — sample of reference gene transcript. The reference gene

should be a stable and secure unregulated transcript. Because the perfect
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reference does not exist, reference genes should be validated by showing that they
do not change significantly in expression under the experimental conditions.
Using multiple reference genes can increase reproducibility. Examples of
common internal standards include b-Actin, GAPDH, MCH I mRNA, and
ribosomal RNAs (tfRNA). For microarray data, where thousands of genes are
monitored, things tend to be more difficult. The literature is acquainted with the
housekeeping genes method [18] and the “spiking” technique [17][19], although
there is no standard on how the actual normalization should be performed using
the reference genes. The application of the Pfaffl method to real laboratory QRT-

PCR data within our projects was done in MS Excel.

2.2.2  Global methods

Most published references to microarray normalization deal primarily with the
removal of biases in the data. Bias arises from a number of sources, including
variation within and among arrays, differences in mRNA concentration or quality,
unequal dye incorporation, and wavelength-related differences in scanner
strength. Without correcting these biases, it may appear as though too many
genes are up- (or down-) regulated. Bias correction is performed based on some
assumption that the experimenter makes. The first is that the starting amount of
cDNA used for each hybridization is the same. This type of assumption can also
be made in the case of QRT-PCR. The preferred method to use in these cases is
the so called total intensity method [20], a global normalization procedure. The
technique consists of a simple scaling usually so that the sums across the samples
(i.e. the overall sample intensities) become equal. Other variants include mean or
median centralization. To present the method in a mathematical form, first we

introduce the following model of hybridization for a single spot on the array:

T,=aC, +b, 3)

20



where T; represents the fluorescence intensity of the /th test spot and C; is ibid
for control. The b parameter stands for the difference in expression and is

considered a random variable, normally distributed around null:

u(®)~0=>h >0 (4)

We are interested in the parameter a, the constant normalization factor across the

data samples. To express the equal starting cDNA amount assumption we write:

zTi = Z(aCi + b.) ©)

From the two above equations the scaling factor is derived as:
a=—— (0)

2.2.3  Regression methods

Global centralization cannot correct for biases that are present within specific
parts of the data, mostly due to unequal dye incorporation or spatial irregularities
on the physical array. For these systematic errors, presuming we can make the
assumption that the great majority of genes do not change their expression within
the experiment, regression methods are the choice. These approaches are
particularly important when using ratios to monitor changes in gene expression
and especially when employing a two-color scheme. To visually identify such bias
problems a graphical aid such as the M vs. A plot can be used [21]. The measured
expression (M) is the logarithmic gene expression ratio between the test and the
control samples. The intensity (A) represents the average of log intensities over

the test-control cases. Thus, for each spot i we have:
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Mi = IogzL
N %
_log, T, +log, C,

A 2

With these transformations we can again write the hybridization model as

follows:
M, =3 +h ®

where this time the scaling factor is not a constant, but an intensity dependent
value for each feature; log-expression change /4 again follows a Gaussian

distribution:

a; = f(A)

©)
u(b) ~0
The normalized expression log-ratios are then computed:
M™™=M; - f(A)=b (10)

f{A) is typically a regression function. The use of the locally weighted scatter-plot
smoothing (LOWESS) [22] has been suggested [21][23] to correct the intensity
dependent measurement corruption, being one of the most robust curve fitting
procedures. Figure 5 shows LOWESS in action on an example dataset. As an
effect of the procedure, the data “cloud” is smoothed, and centered around zero.

The normalized dataset is shown in Figure 6.
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Mrorm

Figure 6. Normalized expression ratios with the corresponding
LOWESS curve.

The LOWESS normalization within our projects, exemplified as results, was
performed using the R statistical software. Finally we mention that the

normalization problem is still an open one. Each method has its advantages and
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drawbacks, and new approaches with sound biological and mathematical basis are

always welcome.

2.3 Decision and Statistical Significance

Having performed the two previously mentioned steps, namely quality control
and normalization, we practically end up with the fold changes between control
and test conditions for each gene under investigation. Many of these values,
however, are false changes, mainly due to the experimental errors. To assess
experimental error, one basically needs to repeat the experiment and measure the
variation. If both control and test are biologically replicated, hypothesis testing
can be used to decide whether the expression of a particular gene is significantly

different between the two conditions.

2.3.1 Hypothesis testing

Statistically speaking, expression change can generally never be verified, but only
disproved. Thus, we typically have a null (no expression change) hypothesis and
an alternative hypothesis, contradictory to the former. The “change” hypothesis
is supported if we can show that there is evidence against the null hypothesis.

Hypothesis testing [24] consists of three steps:

1. Setting up the null hypothesis Hy and the alternative hypothesis H;.

2. Using a test statistic to compare the observed values with the values

predicted by Ho.

3. Defining of a region for the test statistic for which Hj is rejected in favor

Oin.

The probability that Hy is true given the observed test statistic is called the p-value

of the test. The level of significance a of a test is the probability that the test
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statistic falls in the rejection region if Hy is true. The test statistic is usually largely
influenced by the population sample size. Thus the expression change decision is
risky when the number of biological repeats is small, which can lead to type I

(false negatives) or type II (false positives) errors.
2.3.1  Student's™ ~test

A frequent parametric test statistic for expression change inspection [23] is the #
statistic. Student’s #test [24] assumes the normality of the distributions of the data
involved. Thus log-transformed gene expression data are suitable for such an
analysis. Having the test-control log-ratio data prepared, the simplest and
straightforward approach to detecting the differentially expressed genes is the
single sample #test. This variant of the statistic compares the mean of a sample
population with a given value. The null hypothesis is therefore that the mean of
expression log-ratio values for a gene is null, that is, its expression remains the
same in both test and control conditions. The expression of the #statistic in this

case is the following:

G

SR

t

(11)

where R and sz are the estimated mean and standard deviation of the log-ratios
respectively, while 7 is the number of repeated measurements. The #value follows
a tdistribution with df=n-7 degrees of freedom. In situations where the
measurements are not paired, or two conditions relative to normal are to be
compared, the unpaired two-sample t-test can be used. The statistic on this case

has the form:

t=—12 (12)



Considering unequal sample sizes 7; and 7., the estimated standard error of the

mean difference is:

S12 -

n+n,—2 n, n,

and the df parameter equals #,+7.-1. If we perform multiple tests in parallel, usual
for microarray data, the level of significance for the whole set of tests does not
equal the level of significance for the single tests. The simplest adjustment is the
Bonferroni correction. The overall significance level a, is derived from the

significance level a of 7 single tests by
(149

The same procedure can be applied for the adjustment of the p-values. The #test

and Bonferroni correction on our own data was performed using MS Excel.
232 y/-test

Suppose we have an experimental factor, whose optimization can improve either
cost or precision of a microarray experiment. We are interested in statistically
assessing the effect of this factor on the actual expression changes as well as
directly on their significance. For this purpose we propose using the y’-test
[24][25]. In the simplest case we can have two categories of experiments, C7 and
C2, given the factor. Within each experiment category the ~test can be used to
infer the test-control gene expression changes at the chosen significance level.
Thus, based on the p-values and a, the continuous expression ratios can be
discretized, each gene receiving a categorical value of down-regulated (d7), up-
regulated (#r) or not-regulated (#7). This data altogether may be presented in a 3 x

2 contingency table with 3 rows and 2 columns such as Table 1.
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Row C1 c2
categories 1 2 Total
dr S NE Sar
ur f27 f22 S
nr f37 f32 S
Total Sci Sez 7

Table 1. Contingency table.

The entries in the table are frequencies; each cell contains the number of genes in
a particular row and a particular column. Thus, we deal with two factors: the
experimental factor and the expression change factor. The null hypothesis is that
there is no association between the two factors, equivalent to the statement that
tampering with the experimental factor does not influence the expression
changes. Next we calculate the frequency that we expect in each cell of the
contingency table if the null hypothesis is true. The expected frequency in a
particular cell is the product of the relevant row total and relevant column total,
divided by the overall total. In a final step, we calculate the test statistic that
focuses on the discrepancy between the observed and expected frequencies in

every cell of the table:

. < (0O—EY
X :Z% (15)

where O and E are the observed and expected frequencies in each cell of the
table. This test statistic follows the y’ distribution with degrees of freedom equal
to (rows-1)x(columns-1). If the overall discrepancy is large, then it is unlikely the null
hypothesis is true. The application of the y’~test on the practical case of assessing
the effect of the amplification protocol on the expression change outcomes,

shown in the Results, was done using the R statistical software package.
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2.4 Advanced Analysis — Multivariate Statistics and Biomimicry Models

In the following we shall focus on gene expression data containing several
biological repeats of possibly heterogeneous samples. The considerably large
amount of data will be treated as an mxw matrix, each of the #» rows
corresponding to the investigated genes, while the 7 columns stand for the actual
sample measurements. It is common with microarray data to have a much larger
dimension # than samples 7. The analysis of such high dimensional data requires
“intelligent” approaches, and the methods employed have mostly immigrated
from the field of artificial intelligence. Currently a somewhat paradoxal cycling of
information between branches of biology (ecology, population genetics, or
physiology) and mathematical modeling, back and forth, can be observed. Models
developed initially to mimic biological phenomena, such as artificial neural
networks, are being reused to handle the large amounts of newly produced
biological data. As molecular biology processes are being understood, it is
probable that the knowledge therein will yield more “intelligent” models. The
methods introduced in the following aim at what is called clustering in statistics.
The discovery of the subset- or class-membership of the samples in a dataset in
this manner can be either self-motive (un-supervised) or supervised, and the
result can be interpreted as the discrete states the biological system (cell) may be

in.

2.4.1  Hierarchical dendrogram models

Hierarchical clustering is perhaps the best-known clustering method for
expression data analyses. The main objective of this technique is to produce a tree
like structure in which the nodes represent subsets of an expression data set.
Thus, expression samples are joined to form groups, which are further joined
until a single hierarchical tree (also known as dendrogram) is produced. Several

studies on the molecular classification of cancers and biological modeling have
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been based on this type of algorithms [26]. Hierarchical clustering of microarray
data has been particularly fruitful in cancer diagnosis [27], investigation of cancer
tumorigenesis mechanisms [28], or identification of cancer subtypes [29]. There
are different versions of hierarchical clustering, which depend on the metric used
to assess the separation between clusters, the cluster merging direction or the
merging method. The most commonly used metrics are the Euclidean distance (a

distance metric):

d(x,y)= IZ(Xi _Yi)2 (16)

where x and y are two sample vectors and 7 spans the entire gene space; and the
Pearson correlation coefficient (a similarity metric). Concerning the merging
direction, the method can be divisive (top-down), which starts with one large
cluster that contains all data points, and splits off a cluster at each step, or
agglomerative. In the agglomerative method (bottom-up), illustrated in Figure 7,
each data point initially forms a cluster, and the two “closest” clusters are merged

in each step.

Merge height

Data points

Figure 7. The process of agglomerative clustering. The distance
between the data points is also suggested by the color spectrum.
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The merging method or linkage can also be of various types including single
linkage, average linkage and complete linkage. In single linkage clustering, the
distance between any two clusters of points is defined as the smallest distance
between any point in the first cluster and any point in the second cluster.
Complete linkage defines the inter-cluster distance as the largest distance between
any point in the first cluster and any point in the second cluster. Average linkage
is often perceived as a compromise between single and complete linkage because
it uses the average of all pair-wise distances between points in the first cluster and
points in the second cluster. Thus, with average linkage, the distance between two

clusters 4 and B is computed by:

1
D(AB) = card(A) card(B) 2.2.d(x.y) a7

xeA yeB

The basic algorithm in hierarchical agglomerative clustering, using Euclidean

distance and average linkage, is the following:

1. begin with each data point as a separate cluster;

2. using average linkage, merge the two clusters that are closest according to

the Euclidean distance;

3. if only a single cluster remains then proceed with step 4, else redo step 2;

4. determine the final set of clusters.

The traditional approach for determining the final set of clusters is to specify the
number of clusters desired and then cut the dendrogram at the height, which
yields this number. In the schizophrenia gene expression profiling project we
applied the hierarchical agglomerative clustering, with average linkage. The

software we used for it was the R statistical environment.
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2.4.2  Class prediction models

The following methods will particularly concern microarray data. It is known that
a reliable and precise classification of tumors is essential for successful diagnosis
and treatment of cancer. The gene expression-based molecular classification of
cancer subtypes has been shown to have the potential of reliable diagnosis, either
by complementing the traditional clinical, morphological and histo-pathological

approaches or as an alternative procedure [29].

ALL AML ALL AML
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Figure 8. An example of gene expression based molecular
classification of leukemia subtypes. Samples of acute lymphoblastic
leukemia and acute myeloid leukemia were diagnosed.

The basic scheme of molecular classification is to train a mathematical model so
that it can discriminate between the classes within a set of points. The training
points in the expression data case are a set of gene expression measurements (e.g.
microarray) that are fully annotated with regard to disease. In this case the genes
represent the dimensions of the sample points. In the final classification or
diagnosis phase, the model will automatically diagnose any new-coming test
sample. An milestone example of such a classification based on gene expression

profiles, as published by Golub et al [29], is presented in Figure 8. However,

31



having large datasets comprising simultaneous expression levels of thousands of
genes monitored under diverse circumstances still constitutes a great challenge for
biologists, physicians as well as computational algorithm developers. In recent
years the processing of high-throughput biological data has evolved into a highly
interdisciplinary field and a large number of machine learning algorithms have
been proposed to automate difficult tasks, such as that of medical diagnosis from
gene expression profiles. The following shortly reviews the most renowned of
these algorithms and models, as they were employed in bioinformatics in general

and in microarray data classification in particular.

The Support Vector Machine (SVM) classifier [30] is one of the most popular
supervised learning algorithms, which has been effectively used in computational
biology including protein remote homology detection [31], microarray gene
expression analysis [32], the recognition of translation start sites [33], functional
classification of promoter regions, the prediction of protein—protein interactions
and peptide identification from mass spectrometry data [34]. The SVM classifier
computes a hyper-plane with the largest margin between two classes [30] as seen

in Figure 9.

{.1\\‘9\

e

Figure 9. Maximum-margin hyper-planes separating the two classes
within a training dataset.
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Let us consider the training set of 7/ high-dimensional points x, where x;
corresponds to the expression measurements of the sth experiment or sample.
The a priori known two classes can be expressed by a label y; associated with each
x;, such that y;€{-7,+7}. Assuming the classification function is linear, the label of
a point can be written y=sign(wx;+5), where w is the normal vector to the hyper-
plane separating the two classes, 4 is a free threshold parameter that translates the
optimal hyper-plane relative to the origin, and operation ux; is a dot-product. The

distance from the hyper-plane to the closest points of the two classes is called the
. . -2 N - L .
margin and is ||W|| . The objective is to maximize the margin, with the constraint

that the points from the two classes fall on opposite sides of the hyper-plane,

written as:
min <[’ , subject to y, (WK, +b) >1 (18)
wh 2 > i i ==

This quadratic programming optimization problem is solved in its dual
representation, which reveals that the classification is only a function of the
suppott vectors, i.e., the training data that lie on the margin. In our experiments

the SVMLight software [65] implemented in Matlab was used with a linear kernel.

The Artificial Neural Networks (ANNs) approach was originally developed with the
aim of modelling information processing and learning in the brain [35][36][37].
Within the bioinformatics area this supervised nonlinear learner has been
employed for instance in biological sequence analysis, the recognition of signal
peptide cleavage sites, gene recognition [38], the prediction of protein functional
domains [39] and the classification of cancer subtypes [40]. The ANN classifier
consists of connected artificial neurons built in a multi-layer structure [35]. Thus,
the basic unit of the neural network is the linear perceptron. As shown in Figure

10, the perceptron has 7 inputs x;, /=71, and a single output y.
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Figure 10. The artificial neuron or perceptron having # inputs and a
single output.

Associated with each input is a weight »;, that decides how important that input is

for the output. To obtain the output, the weighted sum of the inputs, together

with a bias b, is passed through an activation function S:

y:S(ZWixi +bj. (19)

The activation function is usually nonlinear, except for the input layer of the

network. A typical activation function is the logistic sigmoid function:

1
S(2) 20)

C1+e?

The single perceptron is a linear classifier similar to a linear SVM.

34



hidden

inputs
output

Figure 11. Multilayer perceptron with one hidden layer between the
input and output layers.

Organizing the linear perceptrons in layers, as in Figure 11, results in a nonlinear
classifier, which can effectively handle more difficult classification problems, such
as multi-cancer diagnosis. Clearly the obtained neural network needs to be trained
in a supervised fashion, using a train dataset and a set of class specific label
values. In our study related to the Kalman filtering, a three layer ANN was used
and the number of sigmoid output neurons within the hidden layer was
determined by testing. Empirically we found that the best results were obtained

with 25 hidden neurons. The ANN was part of the WEKA software package
[66].

The Nearest-INeighbor (INN) algorithm [41][42] is a simple class prediction
technique, which achieves high-performance without a priori assumptions. This
method has been used for protein classification [43] as well as cancer diagnosis
[27]. The INN classifier is a fast algorithm, which is based on simple distance

calculations between vectors.

Figure 12. Classification criteria of the 1NN algorithm. The nearest
point to the test case (triangle) is a circle, which determines the class
membership.
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Thus, the training phase consists only of storing the feature vectors and class
labels of the training samples. In the actual classification phase, distances from
the test cases to all stored vectors are computed and the closest sample is selected
as pictured in Figure 12. The new point is predicted to belong to the closest class
within the set. To measure the distance between gene expression samples, we
used the Euclidean metric. The method can be easily extended to £ neighbors
(ANN). Within the Kalman filtering project, our tests showed that increasing £
did not significantly improve the classification performance. The 1NN was
typically outperformed by the previous two learners on the raw microarray data.

The Matlab implementation of this algorithm was used in our study.

The Random Forest (RF) technique is a recently proposed meta-classifier method,
which is becoming evermore popular in areas of computational biology like drug
discovery [44] and tumor classification [45]. The RF technique is a combination
of decision trees, such that each tree is grown on a bootstrap sample of the
training set. For each node the split is chosen from a smaller subset of the total
features, selected at random from an independent, identical distribution out of
the feature set [46]. Thus, the method constructs a collection of decision trees
with controlled variations. Let the number of training cases be #, and the number

of features be M. Each tree is constructed using the following algorithm:

1. Select the number 2 of input variables (77<<M) to be used to determine

the decision at a node of the tree.

2. Choose a training set for this tree by bootstraping. Use the rest of the

cases to estimate the error of the tree, by predicting their classes.

3. For each node of the tree, randomly choose » variables (from an

independent, identical distribution out of the feature set) on which to
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base the decision at that node. Calculate the best split based on these

variables in the training set.

4. Each tree is fully grown and not pruned (as may be done in constructing

a normal tree classifier).

The output of the RF is the class that is the mode of the classes output by the
individual trees. In our experiments, 20 trees were used and  was set to /Jog(n +

7). The software that we used for it was part of the WEKA package [66].

For multi-class datasets the one-versus-rest technique was used. Thus, for every
biological class an independent binary learner was built, where the class member
samples were treated as positive and the rest of the samples as negative. For each
class specific learner we evaluated the so-called class accuracy. A test sample was
classified to the class whose corresponding learner gave the highest score. The
accuracy for the whole dataset was the ratio of the number of correctly classified
samples and the total number of samples. The evaluation of the classification
performance was carried out, among others, via standard receiver operator
characteristic (ROC) analysis, which is based on the ranking of the objects to be
classified [47]. This analysis is performed by plotting sensitivity versus 7-
specificity at various threshold values, and the resulting curve is integrated to give
an area under the curve (AUC) value. For a perfect ranking AUC=1.0, while for a
random ranking AUC=0.5.

2.4.3  Feature selection

A common goal in microarray data classification for diagnosis purposes is to
select a minimal number of genes that could work as signatures for specific
tumors. Since the SVM is generally thought to perform best in such classification

problems, we introduce the Reaursive Feature Elimination (RFE) algorithm, a
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recently proposed feature selection method described in [48] which was designed
in close relationship with SVM. The method seeks to recursively eliminate
features, keeping the “best” 7 that lead to the largest margin of class separation
using an SVM classifier. Considering the subset of surviving # features at a certain

point in the procedure, the algorithm is basically the following:
1. Train the SVM with the » dimensional data, and thus obtain ».
2. Compute the feature ranking critetia ¢=(w)’, i=1,n.

3. Find and eliminate the feature with the smallest ranking criterion

f=argmin(c).

The procedure is repeated until the number of remaining features reaches 7. The
RFE algorithm was used as part of the Spider package [67]. RFE was employed

with a linear kernel SVM, included in the same software package.
2.4.4  Visualization

Visualization is an important topic in the analysis of high-dimensional
measurements, especially because it facilitates the better understanding of the
data. Here we shall only summarize three state-of-the-art graphical representation

methods suitable for microarray data visualization.
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Figure 13. The LLE maping of high dimensional gene expression
data into the 2D space.

The Locally Linear Embedding (LLE) is a distance preserving non-linear mapping
from the high-dimensional original space into a lower dimensional space. Using
this method [49] the dataset can be mapped into the 2D space, and thus easily
plotted on a graphic as exemplified in Figure 13. The resulting two dimensions
are abstract and do not correspond to any physical variable, therefore we omitted
to annotate the axes. The colors correspond to classes. The method was used in
Matlab, and the number of neighborhoods parameter required by the procedure
was set to the number of samples. Another proposed visualization scheme is the
RadViz [50] algorithm where the features (i.e. the genes) are represented as
anchors that are equally spaced around the unit circle. The samples are then
represented as points inside this unit circle. Their positions depend on the gene
expression values: the higher the value for a gene, the more the anchor attracts
the corresponding point. This method works best with relatively few (3-20)
features, thus requiring a priori feature selection. Finally, the Heat Map with an

optional hierarchical clustering on the genes can be also employed as a graphical
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representation of the expression data matrices where the values taken by a feature
are represented as color intensity in a 2D map. The visualizations were generally
performed in Matlab, using the implementations provided by the authors of these

methods.

2.5 Kalman Filtering — A Joint Perspective

This section presents the main contribution of this thesis. The procedure of
molecular classification itself, as introduced eatlier, is based on the fact that gene
expression profiles work as surrogates for the biological state. Still, living cells are
inherently dynamic; hence microarray measurements capture a large amount of
expression variance. A large number of environmental error sources also corrupt
the gene expression data, even though normalization procedures are meant to
reduce such influences. These two types of variation alter the true gene
expression states associated with the particular diseases in question. Under such
circumstances the Kalman state estimator, embedded in a block diagram in
Figure 14, provides a reasonable framework for preprocessing the expression data
by removing the noise and estimating the multivariable noise-free tumor specific

states.
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Figure 14. Block diagram of the biological state measurement with
Kalman filtering.

The Kalman filter (KF) [51][52][53] is a powerful mathematical tool that has been
widely used in many fields of engineering from systems and control theory to
signal processing, due to its robustness even under the violation of the normality
assumption. It has also been used in supervised learning as well as in myriads of
real world applications. Its applications in the bioinformatics field however were
limited [54], not taking advantage of its full potential as a multivariate signal
processor. The KF is based on the assumption of a continuous system that can
be modeled as a normally distributed random process X, with mean X (the state)

and variance P (the error covariance):
X ~N(X,P) 1)

The KF furthermore assumes that the output of the system can be modeled as a
random process Z that is a linear function of the state X plus an independent,

normally distributed, zero-mean white noise process 1

Z=HX+V 22)



where, I'~N(0,R) and E{X17}=0. H trepresents the system output matrix. For
our study we model the microarray data flow using the following simplified
discrete time state-space representation of Equations (21) and (22):

X = X4 +W,

23
Z, =X, +V, ®)

The first equation is a linear form of (21) containing the addition of an
innovation process W~N(0,0). Vectors we and 2 may be interpreted as the
modeling error (i.e. the deviation from a mean, stem-state towards the particular
biological states in question) and measurement noise, respectively, the latter
comprising the previously mentioned functional and experimental variances.
Note that since the state transition matrix equals the unit matrix [, as does the
output matrix H, they have been omitted for simplicity. The network block in
Figure 14 corresponds to the state transition matrix. A discussion on how to
integrate actual transcription network information is given in the Further
Discussion section. Given the models of the white noise processes W and 17 (Q
and R, respectively) and the array measurements gz, the aim of the KI here is to

estimate the state vectors X, containing noise-free gene expression data.

Considering the microarray profiling process as stationary (i.e. its statistical
properties remain constant over time), the Kalman iterative estimation will
converge to the steady-state KF, in which case the error covariance can be

computed by solving the discrete algebraic Riccati equation (ARE):
P=P-P(P+R)'P+Q (24)
Hence, the Kalman gain is given by:

K=(P+R)™'P (25)
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The above equations are greatly simplified due to the omission of the state
transition and output matrices for the same reason as noted previously. Finally,

the estimated expression state vector is

R =% +K(Z, —%) 26)

where, X is an estimate of X based on the previous samples. An important issue

within Kalman filtering is the filter tuning. Given the training vector set, X~ can
be chosen as the average of the class means, where for each class the means are
computed from the member samples. We further use the training set to initialize
and tune the two KF parameters, namely O and R. To reduce the dimensionality

of the problem, we propose the singular value decomposition [55]:
Z =UDY 27)

The rows of Y are eigengenes and capture most of the variance of the original
training dataset, while the columns correspond to the samples. The covariance

matrix Q of the innovations can thus be obtained as the between-class covariance

(i.e. the covariance of the class means with X subtracted) evaluated on the
reduced dimensionality training set Y. The measurement noise model R is
estimated as a weighted form of the within-class covariance of Y (i.e. the
covariance of Y with the class means subtracted). To avoid over-fitting we tune
these parameters by introducing some uncertainty variance such that O=0Q+¢gl
and R= R+71. Our test runs led us to empirically conclude that in the case of
single channel raw intensity array data (i.e. Affymetrix) 4= and =R;; are good
choices for a reasonably good performance. Here the 77 index refers to the first
eigengene usually considered as the offset of the microarray dataset, in which case

it has a quite small variance. For expression log-ratio data (usually coming from
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dual channel cDNA chips) or very sparse expression matrices these parameters

yield acceptable results when we choose:

q :ZQii

n
r= Rii
=1

(28)

7 being the number of training samples. With the tuned parameters we compute
the low dimensional Kalman gain Ky using Equations (24) and (25). Finally, from

Equations (26) and (27), the filtered gene-expression state vector is given by:
%, =KX +UDK,DU"(z, —R") (29)

where, zx now spans the entire dataset, including both train and test
measurements. We implemented the actual expression data specific Kalman filter
in Matlab and the source code is available on Kelemen et al.’s [57] supplementary

information website.
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Chapter 3

RESULTS AND DISCUSSION

3.1 Summary of the Results

Since this dissertation is concerned with numerical processing methodologies for
biological data, the results here are practical implementations of methods to real
gene expression data. The actual biological results are also summarized. The basic
and compulsory data preprocessing steps, namely quality control and LOWESS
normalization, and also the #test for detecting the differentially expressed genes
are exemplified using publications that I have coauthored. A detailed description
of the actual implementation of these procedures is given in Puskas et al [7],
although these methods, or similar are used also in Nagy et al [56] and Zvara et al
[8]. The results of Nagy et al [56] were used to present the custom application of
the 7 test to assess for the effect of the amplification protocol used for sample
preparation, on the detected expression changes. A more complex analysis of
transcription profiles is exemplified using Zvara et al [8]. A hierarchical clustering
was performed on a group a microarray data samples coming from both healthy
and schizophrenic individuals. The unsupervised method discovered the two
biological classes. At the same level of analysis complexity, in Kelemen et al [57]
we are concerned with classification (supervised clustering). Here we apply the
proposed Kalman filtering procedure on seven publicly available cancer
expression datasets, and test several classificaion methods before and after
filtering. A large, but mostly technical discussion of the Kalman filtering results
with regard to classification is also provided and some other mathematical

methods that were not introduced eatlier are used here for this sole purpose.
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3.2 Applied Bioinformatic Analyses for the Identification of the Genes
Regulated by N#R in . meliloti
Here we aimed to identify the complete set of protein-coding genes influenced by
loss of n#R function in Sinorhizobium meliloti under aerobic and microaerobic
conditions [7]. Microarray hybridizations were carried out to compare transcript
levels in the wild type and mutant bacteria strains grown under both conditions.
Mean signal and mean local background intensities were obtained for each of the
6207 spots on the arrays. Spots were flagged as “empty” if R was < 1.5 in both
channels, where R=(signal mean-background mean)/background standard
deviation, and these were not included in the further analysis. A floor value of 20
was also used as threshold for the intensities. Data representing the log2 ratio of
expression under microaerobic and aerobic conditions in both wild type and
mutant strains were determined by cross-microarray comparisons, using single
color intensities to calculate ratios. The duplicate experiments resulted in two
average datasets calculated from triplicate spots representing each gene. Four
combinations of ratios were calculated: wild type microaerobic/wild type aerobic;
mutant microaerobic/ wild type microaerobic; mutant aerobic/wild type aerobic;
mutant microaerobic/mutant aerobic. Before calculating the average ratios, tip-
LOWESS normalization (i.e. LOWESS on each grid of the microarray) was
performed for each case. Only those ratios were determined where both of the
median intensities were above the 28D of the background. Genes significantly
up- or down-regulated were identified by #statistics, using a significance threshold
value of ¢=0.05. This work encompasses therefore the three basic steps required
for the numerical analysis of a comparative microarray experiment: quality
control, normalization and detection of regulated genes. The changes resulting
from the microarray analysis were verified using QRT-PCR. As suggested by the
results, the ##R mutation affects genes encoding for various functions in

symbiotic nitrogen fixation, transport, metabolism, or heat shock.
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Figure 15. Schematic representation of the modulating effect of n#R
on transcription levels under microaerobiosis.

The cross-comparison reveals that some genes are induced under
microaerobiosis, as shown in Figure 15, e.g. the members of the #/f/fix cascade,
which are up-regulated in the mutant relative to the wild type cells. The same
figure shows that other genes, such as those participating in transcription-
translation and biosynthetic processes (7ps, 7p/) were repressed primarily due to
the condition (microaerobiosis), but were less affected in the mutant. Also,
metabolic function encoding genes (7os family), were found to be induced by
microaerobiosis, but somewhat repressed in the mutant. Some chaperonin genes
like groEES3 were down-regulated under microoxic conditions, but in the mutant

strain this effect was more pronounced than in the wild type cells.

47



3.3 Assessment of the Amplification Protocol Used in Sample Preparation
on the Detected Gene Expression Changes
The objective of this study [56] was to infer the influence of the DNA
amplification technique used, on the outcome of an expression measurement. A
microarray experiment suite was carried out in order to identify the genes that
express differentially between lipopolysacharide-treated and untreated mouse
macrophages. Concerning the underlying nucleic acid sample amplification, two
strategies were undertaken: an exponential phase amplification and a saturation
phase over-amplification. A third protocol using dendrimer-based signal
amplification was also employed for a control experiment. Out of the 3200
investigated genes, 15 were selected for QRT-PCR analysis and validation. The
composition of this subset was balanced with regard to expression changes (i.e. it
contained over-expressed, repressed, as well as un-regulated genes). Total RNA
(1pg) was reverse transcribed and 15-ng aliquots were PCR amplified (Figure 16)
with two protocols resulting in DNA samples from early phase (13th—15th
cycles) and late exponential, early saturation phase (21st cycle). Thus, the two
amplification strategies were again applied. Following the Pfaffl method, the
QRT-PCR data was subjected to the one-sample 7 test to assess again the
significance of the expression changes for the 15 selected genes. Within the
control experiment that involved no DNA amplification, the same genes were
selected and the data was subjected to the same treatment. Thus, to determine the
effect of the amplification factor on the measured and categorized gene-
expression changes, the y test, as described in the Methods section, was used.
The overall significance threshold was set to 0.05. When comparing the
exponentially amplified sample data to the control, a p-value of 0.8807 was
obtained. No significant influence of the amplification could therefore be
detected on the expression change composition. In the case of over-
amplification, on the other hand, p=0.0291 suggests a strong distortion induced

by the experimental factor on the expression data. This result is due to the fact
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that, while the exponential phase sample amplification protocol preserves the
original gene expression ratios that we want to reproduce at detectable levels, in
the saturation phase these ratios tend to roughly drift toward 1, distorting the

results.
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Figure 16. cDNA amplification with QRT-PCR of the LPS-treated
mouse macrophage. With the QRT-PCR halted at the 14™ cycle, the
amplified cDNA (a2) was generated in the exponential phase of the
reaction; the overamplified cDNA (al) was isolated from reactions
halted at the 21st cycle; a3 denotes the nontemplate control.

Clearly there are distortions that cannot be corrected by numerical means, such as
those that appear here, during sample preparation. This type of noise, which
physically influences the biological sample, has to be corrected on the protocol
level. As a result of this statistical analysis, the exponential phase amplification

was proposed as a better alternative for reliability and increased reproducibility.

3.4 Schizophrenia Diagnosis and Marker Genes

13 drug-naive schizophrenic patients and 10 control individuals were screened to
identify novel peripheral genetic markers of schizophrenia [8]. A cDNA

microarray analysis was performed in order to pre-screen for expression
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regulation patterns on peripheral blood lymphocytes, and to identify potential
peripheral marker genes. Out of the 3200 clones that were present on-chip, two
were selected, based on their differential expression. These genes, namely DRD2
and Kir2.3, also showed strong correlation with the disease. A validation
experiment has been performed by means of QRT-PCR on these two features.
We finally performed a hierarchical agglomerative clustering on the obtained two-
dimensional data (based on the two mentioned genes only). As pictured in Figure
17, the procedure clearly delineates the schizophrenia from the normal healthy

samples based on the proposed two-gene signature.

o
o

10

Height
6
]

;
g
=

Figure 17. The hierarchical clustering based on the reduced
expression dataset clearly separates the two main clusters (MC-male
control, FC-female control, M-male patient, F-female patient).

A biological interpretation of the identified schizophrenia signature is given in the

following. The increased occupancy of the D2 subclass of dopamine receptors by
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dopamine is one of the hypotheses explaining the nature of schizophrenia. DRD2
belongs to this class of receptors and is coupled to a G-protein. Receptor-
activated G-proteins can either activate or inactivate inwardly rectifying
potassium channels, such as Kir2.3. Several different potassium channels are
involved in electrical signaling in the nervous system. The malfunctioning of the

K" channels has also been brought in association with schizophrenia.

3.5 Kalman Filtering for Disease-State Estimation

We propose using the Kalman filter (KF) as a pre-processing step in microarray-
based molecular diagnosis [57]. Here, we show that employing the KF to remove
noise (while retaining meaningful covariance and thus being able to estimate the
underlying biological state from microarray measurements) vyields linearly
separable data suitable for most classification algorithms. We demonstrate thus
the utility and performance of the KF as a robust disease-state estimator on
publicly available binary and multiclass microarray datasets in combination with
the most widely used classification methods to date. Moreover, using popular
graphical representation schemes we show that our filtered datasets also have an

improved visualization capability.
3.5.1 Datasets

We tested the Kalman filtering-classification scheme on a number of publicly
available datasets, which are summarized in Table 2. The leukemia (ALL-AML)
dataset of [29] is a popular dataset and is often used to test binary classification
algorithms. Using the original sample annotation we partitioned this dataset into
three leukemia classes. Hence the dataset consisted of T lineage acute
lymphoblastic leukemia (T-ALL), B lineage acute lymphoblastic leukemia (B-
ALL) and acute myeloid leukemia (AML) samples.
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Name Hclasses #Hgenes #train #Htest Source

ALL-AML 3 7129 38 34 Golub et al. 1999
Tumorts 14 16063 144 54  Ramaswamy et al. 2001
MLL 3 12582 57 15 Armstrong et al. 2002
1L.C 2 12533 32 149  Gotdon et al. 2002
SRBCT* 4 2308 63 25 Khan et al. 2001

BCh 2 24481 78 19 van’t Veer et al. 2002
Leukemia! 7 12558 215 112 Yeoh et al. 2002

Table 2. Features of the datasets.

In our study we included two other leukemia datasets: the mixed lineage leukemia
(MLL) dataset [58] and the pediatric acute lymphoblastic leukemia (Leukemia)
dataset [61]. The former consists of acute lymphoblastic leukemia (ALL) and
AML samples along with ALLs carrying a chromosomal translocation involving
the MLL gene. The latter is composed of B-ALL subtypes expressing BCR-ABL,
E2A-PBX1 and TEL-AMLI, respectively, a hyper-diploid karyotype, as well as
MLL, T-ALL and a novel leukemia subtype. The “vatious tumor types” (Tumors)
dataset [27] is considered a difficult dataset and consists of 14 classes of tumors:
breast, prostate, lung, colorectal, lymphoma, bladder, melanoma, uterus,
leukemia, renal, pancreas, ovary, mesothelioma and central nervous system
tumors. The dataset (LC) of [59] contains microarray data that accounts for two
distinct pathological alterations of the lung: malignant pleural mesothelioma and
adenocarcinoma. The small, round blue cell tumors (SRBCT) of childhood
dataset [40] includes a training set of neuroblastoma, thabdomyosarcoma, Burkitt
lymphoma and the Ewing family of tumors samples and an independent test set
that, besides the samples belonging to the training classes, also contains samples
that should not be classified into any of these tumor types. [60] provides a dataset
(BC) consisting of samples coming from breast cancer patients that were
clustered by the original authors into two classes according to the patient’s

response to adjuvant therapy: relapse and non-relapse.

2 dataset containing log-ratio expression data

b sparse dataset
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3.5.2 Classification results

We applied the Kalman filtering on the described datasets and for a comparative
study SVM, ANN, 1NN and RF supervised learning methods were evaluated in
full gene set manner. Table 3 summarizes the Accuracy and ROC scores we
obtained. Evidently, the KF definitely improves the classification results of the
ANN, 1NN and RF. The SVM results were boosted in 64% of the overall scores.
We should mention that, in the four-class SRBCT dataset there were 25 test
samples, but among the test elements there were 5 samples which were not
members of any of the training classes. We expected each of the class specific
learners to reject these samples. The procedure however, will necessarily assign
them to the closest classes, which results in an apparent decrease of performance.

Owing to these 5 cases, for the SRBCT dataset the mean of the class accuracies

was shown.
SVM ANN INN RF
Original PCA KF Original KF Original KF  Original KF
ROC score  0.99 0.99 0.99 0.97 0.99 0.73 1 092  0.95
ALL-AML Accuracy 0.91 0.82 0.97 0.91 1 0.82 1 074  0.94
Be ROC score 0.8 0.81 0.70 0.67 0.74 0.23 068 064  0.68
Accuracy 0.58 0.63 0.68 0.37 0.74 0.63 063 063 063
_ ROCscore 097 0.96 0.98 0.90 0.98 0.60 088 094  0.96
Leukemia
Accuracy 0.50 0.29 0.7 0.37 0.58 0.89 087 086 076
L ROC score 1 0.99 0.99 1 0.99 0.59 099 099 099
Accuracy 0.99 0.98 0.98 0.99 0.98 0.94 098 093 098
ROC score 1 1 1 1 1 0.87 1 092 0.98
MLL Accuracy 1 1 1 1 1 0.93 1 0.8 1
sgper | ROCscore 099 0.99 1 0.99 1 0.66 1 0.99 1
Accutacye  0.97 0.97 0.99 0.94 0.95 0.91 095 093  0.98
um ROC score  0.95 0.91 0.94 0.90 0.94 0.72 092 084  0.87
1!
UM A ccuracy 0.74 0.63 0.80 0.50 0.80 0.46 0.67 048  0.67

Table 3. Comparison of the classification performance on the
original and the Kalman filtered datasets. The best performing value
for each method is shown in bold, and the overall best values are also
underlined.

¢ denotes the mean of the class accuracies
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To assess the significance of filtering on microarray data classification we
performed paired two sample #tests to compare the accuracies and ROC scores
of the classification procedures on the original datasets with their counterparts in
the KF case. The #statistic was applied in one-tail fashion testing against the
alternative hypothesis that the mean of accuracies/ROC scores produced by a
certain method on the raw datasets is less than the mean of the matched
performance measures on the pre-processed datasets. Table 4 shows that with
95% confidence the KF approach significantly improves the accuracy or the
ROC score. In our study we also compared the KF scheme with a different
approach to multivariate filtering. The principal component analysis (PCA) based
filtering consists of removing the non-significant variance components computed

using the eigen-decomposition of the covariance matrix of the training set.

+Test (a=0.05) Accuracies ROC scores
PSVMZKF+SVM 0.033 0.18
PPCA+SVM>KF+SVM 0.043 0.35
PANNZKF+ANN 0.028 0.03
PINNZKF+INN 0.033 0.0002
PRE>KE+RF 0.052 0.005
PSVM>PCA+SVM 0.083 0.058

Table 4. Significance test results

The PCA results with SVM are shown in Table 3. As opposed to PCA the KF
retains the dataset in the original gene space and is also supervised procedure
from a classification point of view. This point is made clear by the p-values in
Table 4. In the SVM framework, the PCA filtered datasets did not yield any
improvement at a significance level of 0.05 in accuracy/ROC score compated to
the original data. Using the same learning algorithm, the KF shows significant
accuracy increase over the PCA technique. The advantage of such a pre-
processing approach here is not just a better classification performance, but also

an improved visualization capability of the data.
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Figure 18. The heat map representation of the AML-ALL dataset.
The first pair shows the original dataset and the second pair shows
the filtered dataset.

The heat map with a hierarchical clustering presented in Figure 18 demonstrates
how effectively the KF technique performs. The columns represent the samples
and the clustering was effectuated on the genes (the rows). Each gene expression
value is encoded by a color according to the legend below the heat-map. A visual
inspection on the original dataset on the left shows no distinction of the classes
due to noise. Filtering helps remove noise and the leukemia classes become

visible. The standard deviation of the gene expression values was reduced in each
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class. And the genes that carried no information related to the class separation

were homogenized.
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Figure 19. The original (a) and the Kalman filtered (b) AML-ALL
dataset visualized by LLE.

Another type of visualization underlines the same performance of the Kalman
filter. Figure 19a depicts the original AML-ALL dataset while Figure 19b depicts
the Kalman filtered dataset. As we mentioned in the Methods section, the axes
here stand for two abstract dimensions which result from the locally linear
embedding. These two dimensions, obtained from the reduction of the 7129
genes, do not correspond to any physical quantity or variable, and therefore are
not named on the figure. The classes within the 2D points are marked distinctly.
The LLE representation clearly shows that the classes are more delineated with

filtering than without.
3.5.3 Signature features

The RFE feature selection method was evaluated on the original and the Kalman
filtered datasets to test whether filtering could help find more reliable subsets of

tumor marker genes.
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Figure 20. Visualization of the original (left side) and the Kalman
filtered (right side) MLL dataset. In (a) the RadViz method was used
on three genes selected by RFE and plotted on the unit circle. The
same genes were used with LLE in (b).

The results we obtained, summarized in Table 5, show that the number of
Kalman filtered features necessary for a good discrimination of tumor types is
smaller than the size of the raw feature set required for a similar performance.
The same result is noticeable in Figure 20 where, in a three-best-feature setup, the
MLL classes are well separated in the KF data but they are overlapped in the
original vector set. Figure 21 shows a heat map visualization of the MLL dataset

with 50 selected features.
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Figure 21. Heat map of the best 50 genes selected by RFE from the
MLL dataset. On the Kalman filtered dataset (right) the features are

less noisy and the three classes are further apart than in the original
dataset (left).

These genes were selected so that their expression is in close (numerical)
relationship with the leukemia subtypes. The classes are almost visible now even
on the raw data. While on the train set KF obviously removes the measurement
noise, which results in clearly separated tumor groups, the variance of the test set
is also noticeably diminished by the filter. Note that the selected genes from the

original and the filtered datasets are distinct.
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Number of selected features with RFE

Score Dataset Name
2 3 5 7 10 15 20 30 50
Original 053 0.56 0.68 0.68 0.68 0.65 0.74 0.76 0.85
ALL-AMI. KF 0.74 0.94 0.82 0.85 0.97 1 0.97 0.97 0.97
Be Original 0.79 0.63 0.63 0.63 0.63 0.63 0.58 0.58 0.58
KF 0.63 0.63 0.63 0.63 0.63 058 0.58 0.58 0.63
A Original 0.26 0.46 058 0.60 0.66 0.82 0.75 0.78 0.77
KF 0.19 032 0.59 0.68 0.79 0.79 0.77 0.81 0.54
Accusaey L Original 0.95 0.98 0.99 0.99 0.97 0.98 0.97 0.97 0.98
KF 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
MLL Original 0.67 0.67 0.73 0.87 0.87 0.87 0.93 1 0.93
KF 1 1 1 1 1 1 1 1 1
SRBCT Original 0.81 0.74 0.84 0.81 0.81 0.85 0.89 0.92 0.97
KF 0.88 0.88 0.95 0.99 0.99 0.99 0.99 0.99 0.99
. Original 0.13 0.11 0.19 0.24 0.26 0.43 0.50 0.46 0.54
umors KF 0.17 0.17 0.35 0.48 052 0.65 0.65 0.69 0.74
Original 0.68 0.65 0.83 0.83 0.89 0.87 0.90 0.92 0.95
ALL-AML KF 0.87 0.93 0.92 0.94 0.99 0.99 0.99 0.99 0.99
e Original 0.89 0.81 0.76 0.79 0.75 0.73 0.75 0.62 0.78
KF 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.68 0.68
Leukemia Original 0.74 0.82 0.88 0.89 0.90 0.95 0.93 0.92 0.95
KF 0.74 0.84 0.95 0.96 0.98 0.98 0.99 0.98 0.98
Original 0.97 0.99 1 1 1 1 1 1 1
ROC Le KF 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MLL Original 0.86 0.88 0.93 0.98 0.99 0.96 0.95 1 1
KF 1 1 1 1 1 1 1 1 1
Original 0.84 0.79 0.90 0.90 0.89 0.93 0.98 0.97 0.99
SRBCT KF 0.92 0.93 0.97 1 1 1 1 1 1
Tumore Original 0.61 0.65 0.75 0.79 0.80 0.81 0.85 0.84 0.88
KF 0.68 0.77 0.86 0.89 0.87 0.90 0.91 0.91 0.93

Table 5. The accuracies and ROC scores obtained via SVM depending on the number of selected features.



The names of the two best performing genes within the filtered MLL dataset are

given in Table 6.

Clone ID Accession  Description

33412_at AT535946  vicpro2.D07.r conorm Homo sapiens cDNA 5', mRNA sequence
38096_f_at M83664 Human MHC class II lymphocyte antigen (HLLA-DP) beta chain mRNA
Table 6. The two best performing MLL markers.

The linear or nonlinear combination of these genes’ expression levels does not
necessarily mean an actual relationship between them. In fact, the KI uses the
variance of all the involved features in estimating the expression state, and these
genes may just be the “top of the stack” or the finely regulated distant ends of the
network. The database contains little information on vicpro2, although it has
come up as marker gene candidate in many classification projects in the literature.
It was associated with prostate tumor. The major histocompatibility complex
genes (lymphocyte antigen) are involved in the immune response. So there is a
double association of the selected genes with tumor in general and leukemia in
particular. To compare the quality of features selected from the original datasets
with the filtered ones, the fisher separation ratio (FSR) was used. The FSR is a
scalar which is large when the between-class covariance is large and when the

within-class covariance is small. Out of the many possible choices of criterion
[35] our ratio was defined as FSR=Tr{S,,'S;}, where Tr{} denotes the trace of

a matrix and S and S are the between- and within-class scatter matrices,
respectively [62]. Here the between-class scatter matrix is the scatter of the class
mean vectors around the overall mean vector, while the within-class scatter
matrix denotes the weighted average scatter of the covariance matrices of the
sample vectors belonging to each class. Table 7 lists the FSR scores for 10

features independently selected from each dataset.
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Dataset Original KF

ALL-AML 14.088 19.737
BC 1.480 2.677
Leukemia 4.079 66.299
LC 5.757 4.164
MLL 8.481 67.659
SRBCT 3.621 105.181
Tumors 3.406 29.668

Table 7. FSR on 10 features selected via RFE
(poriginazir = 0.0245).

The significantly larger scores (p=0.0245 obtained from a ~test, as described
previously) produced by the KF features demonstrate the greater predictive
power of the estimated expression data that best define the causal biological
states. In conclusion, the KF is a systemic approach to filtering, each gene’s
expression being estimated using the variances of all the individual features, of
course assuming that many genes reflect the biological state of the sample due to
the transcriptional network. Hence, it remains for further study (i.e. PCR analysis)
to assess whether the selected features can also independently predict and

diagnose a tumor outcome.
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Chapter 4
FURTHER DISCUSSION AND CONCLUSIONS

4.1 Further Study Perspectives — Beyond the Single Dataset

Since we are concerned with biological and typically gene expression data analysis
methodology, in the following we shall discuss the possibility of extending KF
procedure in the systems biological sense. The preliminary results given here are
presented solely for the purpose of practical exemplification of the thoughts and
ideas discussed. As we saw in the Methods section, so far the filter has been used
in conjuncture with the most simplistic model of the microarray process. The
model was driven stochastically only by random processes. It was also clear, that
the filter is able to process transcriptome-wide data. Therefore, the question that
arises here is how can we integrate information about the true transcriptional
network, in its entirety, into this model and the filtering procedure itself? It is only
natural for this sort of problems to emerge as we approach system level analysis,
so particular to systems biology. Further, system level understanding of cancerous
cells could provide deterministic and reliable strategies of effective treatment.
One possibility of model enrichment is to expand the state-space equations in

(23) to the more general form:
X, = AX,, + Bu, +w,

30
Z, =X, +V, G0

A is the state transition matrix, while B is the control matrix. The state transition
matrix should account for the networked relationships between the states (i.c.
transcripts), as well as the network dynamics. The acquiring of the matrix .4 can
be done by estimation from time-series data. For this purpose, in our preliminary

analysis we used a time-series dataset from Whitfield et al. [63]. This dataset was
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obtained by expression profiling of a Hela cell culture synchronized by arrest in
S phase using a double thymidine block. As target tumor data the SRBCT dataset
was chosen. Previous to any analysis, the two datasets were synchronized to each
other, such that only common genes were kept. Also, the missing values within
the Whitfield dataset were estimated using a ANN based algorithm described in
[64]. Out of the remaining number of genes, we selected the 30 best ranked ones,
based on the RFE-SVM results in Section 3.2.3. Based on the rough presumption
that the SRBCT cell can be obtained from a Hel.z cell by controlling the
expression-states, we can write the following equations involving actual gene-

expression data:

h,=Ah_+B-0

: 31)
s =As; +B-k

Here, A; stands for the #th Hel a transient response sample, while S/’ trepresents

the average of the SRBCT samples belonging to the £-th (£=7:7) class (a steady
state response). This black-box system identification problem can be solved by

the least-squares procedure [1], when the number of samples is satisfactory:

-1

A AN N
(AB)" = (Ok ](Ok J (Ok ](hisk)‘ (32)

In our case the number of samples was sufficient for the system identification.
Having obtained the system model (A, B), the Kalman filtering can be performed

similarly as described in Section 2.5, except the ARE becomes:

P=AP-P(P+R)"P]JA" +Q (33).
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Also, the uncertainty parameters ¢ and » may be dropped. Figure 22 shows the
dataset filtered using the proposed procedure. In this preliminary study, the test
samples known to be members of neither of the training classes were removed

prior to classification. Thus, the classification using SVM was 100% accurate.
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Figure 22. The filtered SRBCT dataset.

This promising result, which could not be obtained based solely on the raw
SRBCT dataset, suggests that the transcription-network model of a few genes can
roughly account for the entire system under certain circumstances. Figure 23, on
the other hand, shows that a cluster analysis on the filtered full dataset can
delineate the classes, and the “foreign” samples are quite differentiated as well.
Such a system level analysis has several implications in classification. Some of the
variance of the tumor samples may be identified as being of biological origin.
Thus, the method can handle such variances and this is reflected on the
classification results as well. More importantly, it is expected that the selected
marker genes would also be more reliable. In the future, issues like system

controllability could be also inferred, possibly leading to the identification of
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actual drug target genes, which control the most of the cell events, and optimal

control based treatment strategies could be employed.
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Figure 23. Cluster analysis on the filtered SRBCT dataset. EWS, BL,
NB and RMS stand for the class means.

4.2 Conclusions

Data preprocessing is compulsory before biological interpretation of QRT-PCR
and DNA microarray data. Some of our biologically interpreted result could also
be verified in the literature showing that the preprocessing was effective and that
the novel biological results are reliable. There are error that cannot be corrected
numerically, such as those induced by sample preparation. The less distorting

protocol should be used for these work phases. As we saw, the Kalman filter is a
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powerful data processing tool. In the frame classification it performed well
improving the accuracy of the used machine learning algorithms, and thus
increasing the reliability of cancer diagnosis. The different levels of performance
improvement on the different classification methods result from the nature,
mathematical background and complexity of these methods. This is reflected in
how well they can handle noise themselves. For example, the nearest neighbor
algorithm is one of the simplest classifiers. It performs therefore quite poortly in
noisy environment. On the linearly classifiable datasets, yielded by filtering, its
performance is significantly improved. The different datasets were produced by
different laboratories, probably using different protocols as well. In addition to
that, there are various array platforms that the data come from. All these
influence the noise estimates used by the Kalman filtering procedure. The KF
procedure works best with normally distributed noise, although being quite
robust to other distributions up to a certain degree. This cleatly influences the
performance on certain datasets. The results obtained within the classification
frame intuitively lead to the idea of the KF being used also for the purpose of
general expression-data normalization, in the broader sense. The only problem
consists of estimating the measurement-experimental noise. This could be
achieved for example by performing multiple technical repeats, prior to the actual
experiment. Once passed over this obstacle, the procedure can in theory filter
systematic as well as random noise, and thus could replace several steps of the by
now conventional microarray data analysis. The technique is suitable for both
QRT-PCR and microarray data, since these data are of the same nature. Actually,
for the QRT-PCR data the implementation of the filter could simpler, since the
number of investigated genes is smaller, thus the dimensionality of the problem is
lower. The performance of the KF technique depends essentially on the tuning of
the covariance matrices ¢ and R. In our implementation we used a flexible
parametric setting, which allows us to handle the uncertainty of the noise

estimates (due to the high dimensionality, the test samples’ noise may be marginal
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in the noise distribution). We tried the make these settings as general as possible,
and yet provide overall good performance. Our choice of parameters proved to
be reasonable for classification, although an improvement based on larger
training data or better tuning formulae is possible. The filtering of one dataset
took only a few seconds of CPU time, hence the technique is a fast and scalable

method for pre-processing the gene-expression data.
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ABSTRACT

Introduction

The ever-increasing flow of biological data — DNA sequence, gene expression
profiles, protein-protein interactions — leads to rapid progress in the area of
biology known as systems biology. The available high-throughput gene-
expression quantification technologies are partly responsible for the burst of this
field. In an attempt to model and simulate the biological system of the cell,
systems biology promises better understanding of life functions and also reliable
treatment against disease. It is known that the various subtypes of cancer respond
differently to various treatments. It is essential, therefore, to accurately diagnose a
tumor, before any treatment. Based on its gene-expression profile, a tumor cell
can be viewed as a state machine with each state corresponding to the biological
state of cancer subtype. This leads to the idea of gene-expression based molecular
classification - a mathematical approach to cancer diagnosis, which is a true
systems biological task. This sort of class prediction problem, particulatly based
on DNA microarray data, has been an important research topic in recent years. A
large number of machine learning algorithms and methods, such as support
vector machines, artificial neural networks, nearest neighbor classifiers, or
random forests, have been applied, aiming for better accuracy and precision of
diagnosis, and also the selection of a more reliable cancer signature consisting of a
reduced number of genes. Unfortunately, the gene expression data used for such
classifications is invariably corrupted with noise, either of biological or of
experimental origin. Thus, for a reliable classification, the data has to flow

through various preprocessing stages.
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Objectives

The aims of this study are typically concerned with gene expression data
processing. The list of objectives related to the subsequent individual

bioinformatic processing steps is presented below.

Application of the “gold standard” gene-expression data analysis methods

to real laboratory QRT-PCR and microarray data.

e Statistical analysis of the effect of laboratory protocol innovation on the

gene-expression experiment outcome.

e (lass discovery and marker gene testing in schizophrenia transcriptional

profiles.

e Development of innovative system level methods for expression data
normalization and noise reduction (Kalman Filter), with application to

molecular diagnosis of cancer.

Incorporating the expression covariance between genes proves to be an
important issue in biological data classification problems with application to
diagnosis, since this represents the functional relationships that govern tissue
state. We also aim to show here that employing the Kalman Filter on microarray
data to remove noise (while retaining meaningful covariance and thus being able
to estimate the underlying biological state from microarray measurements) yields

linearly separable data suitable for most classification algorithms.

Results

Since this dissertation is concerned with numerical processing methodologies for

biological data, the results here are practical implementations of methods to real
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gene expression data. The actual biological results, although significant, were not
of major concern here. The basic and compulsory data preprocessing steps,
namely quality control and LOWESS normalization, and also the #test for
detecting the differentially expressed genes are exemplified using publications that
I have coauthored. A detailed description of the actual implementation of these
procedures is given for the experiment related to the identification of the genes
modulated by the ##R gene in Sinorhizobium meliloti. These methods or similar are

applied however in all the experiments related to this study.

An experiment concerning the expression changes induced by lipopolysaccharide
treatment on mouse macrophage cells was used to assess for the effect of the
amplification protocol used for sample preparation, on the detected expression
changes. A statistical analysis based on the custom application of the y2 test on
the categorical expression change results (down-regulation, up-regulation, no
change) for some 15 genes, shows that the exponential-phase DNA amplification
is more reliable than the saturation-phase over-amplification for sample
preparation. These results are important for selecting the proper protocol, from

the reproducibility point of view.

A more complex analysis of transcription profiles is presented within an
experiment seeking to identify genes regulated differently in schizophrenia
compared to the healthy control. During the analysis, two genes, namely DRD2
and Kir2.3, were identified as having such a behavior. These genes were proposed
as marker genes. To test their predictive capability in diagnosing the disease, a
hierarchical clustering was performed on data samples specific to these two genes,
coming from both healthy and schizophrenic individuals. The unsupervised

method discovered the two biologically distinct classes.

At the same level of analysis complexity, we were also concerned with

classification (supervised clustering) of microarray data, as a molecular diagnosis
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method for cancer subtypes. Here we proposed the Kalman filtering procedure as
a mathematical tool which is able to decompose the noise into biologically
meaningful variance and measurement noise or error. Considering the biological
state the true gene expression profile associated with a tumor family, the
biological variance is the stochastic model of the expression changes associated
with the tumor subclasses under investigation. The measurement noise, on the
other hand, represents the stochastic model of all the errors that can appear at the
various laboratory phases in the course of a microarray experiment. The Kalman
filter, using a state-space model of the data flow, and the two mentioned
stochastic models, estimates the actual biological state. We applied Kalman
filtering on seven publicly available cancer expression datasets, and tested the
support vector machines, artificial neural networks, nearest neighbor classifiers,
and random forests classification methods before and after filtering. In a mostly
technical discussion of the Kalman filtering results with regard to classification,
we show that the classification results were significantly improved. Three state-of-
the-art graphical representation schemes are also employed in the study, to
inspect whether the tumor subclasses are also visually detectable. We also discuss
in detail the selection of marker genes. The predictive potential with regard to
cancet, of the original and Kalman filtered marker genes is assessed statistically,
and we show that the number of Kalman filtered features necessary for a good
discrimination of tumor types is smaller than the size of the raw feature set

required for a similar performance.
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OSSZEFOGLALAS

Bevezetés

Az utébbi években egyre gyarapodo biologiai adatbazisok — mint példaul a DNS
szekvencia, génexpresszids mintazat, fehérje-fehérje kolcsonhatas adattarak — a
rendszer biologia dinamikus fejlédését eredményezték. A ma hozzaférhet6 magas
adatatviteld gén-expresszidés technologiak hasonléan hozzajarultak a rendszer
biologia tudomanytertilet fejlédéséhez. A rendszer biologia lehetévé teszi az
élettani folyamatok jobb megértését és az orvosi bioldgia teriiletén megbizhatobb
diagnosztikat és orvosi kezelést igér. Ez azaltal valik elérhet6vé, hogy torekszik
matematikailag modellezni és szimuldlni a sejtben zajlé komplex biologiai
folyamatokat. Ismeretes, hogy a riakos megbetegedések altipusai eltéréen
valaszolhatnak az eltérd kezelésekre. Ezért is indokolt a kezelést megel6z6 pontos
diagndzis. A gén-expresszids mintazata alapjan, a rakos sejt egy olyan tobb-
allapotos rendszerként foghat6 fel, ahol az egyes allapotok a rak altipusainak
feleltethet6k meg. Ez az elképzelés vezetett el a rakos megbetegedés gén-
expresszion alapulé molekularis klasszifikacidjahoz — ami nem mas, mint
matematikai modszereken alapuld diagnézis. Az utébbi években kitlntetett
tudomanyos érdeklédésnek tartanak szamot az elsésorban DNS microarray alapu
ide sorolhat6 modszerek. Nagyszami mesterséges intelligencian alapuld
algoritmusok, mint amilyenek a support vector machine, mesterséges neuron
halék, nearest neighbor osztalyozo, vagy a random forests, azzal a céllal kertiltek
alkalmazasra, hogy pontosabb és megbizhatobb diagnosztikat tegyenek lehet6vé.
Sajnos a meglévé gén-expresszids adatokon (QRT-PCR, DNS microarray), a
kisérleti korilményekbdl addédéd hiba (zaj) és a bioldgiai eredetll vatiancia
egylttesen megfigyelhetd. Ezért indokolt egy tobb 1épésbdl 4llé adat eld-

feldolgozas és tovabbi moédszertani fejlesztések is.
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Célkittazés

Célkitizéseink a gén-expresszios adatfeldolgozassal és modszertani fejlesztéssel

kapcsolatosak. Nevezetesen:

A standard gén-expresszids adatfeldolgozasi modszerek alkalmazasa

QRT-PCR és microarray adatokon.

e Statisztikailag megvizsgalni, hogy a laboratériumban hasznalt protokollok

alapjan hogyan befolyasolhatok az egyes gén-expresszios valtozasok.

o Klaszterezés ¢és marker gének azonositasa szkizofrénias betegek gén-

expresszios mintazataban.

”

e Uj normalizacids és zajszlrési (Kalman Szaré) modszerek fejlesztése és

alkalmazasa a molekularis szintd rak diagnosztikaban.

A gén-expresszios kovariancia, mely a gének kozti funkcionalis kapcsolatot is
mutatja, fontos szereppel bir a betegségek molekularis osztilyozasaban. A
Kalman Sziré figyelembe veszi a gén-expresszios kovarianciat. Célunk, hogy a
Kalman SzGr6 segitségével kiszdrjik a kisérleti zajt és megbecsiljik a mintdk
biologiai allapotat. Nem utols6 sorban szandékunkban allt megvizsgalni a Kalman

Szlrével kezelt adatok osztalyozhatdsagat, osztalyozé algoritmusok segitségével.
Eredmények

A disszertacioban kozolt eredmények bioinformatikai moédszerek alkalmazasat
mutatjdk be. A kotelezd gén-expressziés adat el6-feldolgozasi  1épések,
nevezetesen a mindség ellendrzés és a LOWESS normalizacié illetve a #proba,
mely a gén-expresszios eltéréseket tarja fOl, a tarsszerzés publikaciok

eredményeiben kertltek bemutatasra. A fenti modszerek alkalmazasanak részletes
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leirasa kertilt bemutatasra, abban a publikacidban, mely az ntrR altal szabalyozott
géneket azonositja Sinorhizobium meliloti modell organizmusban. Egy DNS
microarray kisérletben az S. meliloti egy ntrR funkcidvesztéses mutansat

hasonlitottuk ssze a vad tipussal aerob és mikroaerob kértlmények kozott.

Egerek makrofag sejtjein végzett lipopoliszacharidos kezelés egy olyan kisérletnek
szolgalt alapul, melyben a DNS amplifikdcionak a gén-expresszids valtozasra mért
hatasat vizsgaltuk. A cDNS amplifikaciot két protokoll - exponencialis fazisban
megallitott amplifikacié illetve szaturaciés amplifikaci6 - alapjan végeztik el és az
eredményezett gén-expresszids valtozast mutaté adatokon y2 prébat hajtotunk
végre. A kisérlet kontrolljaként egy non-amplifikaciés protokoll szolgalt. A
statisztikai eredmények azt igazoltik, hogy az exponencialis fazisban megallitott
amplifikacié megbizhatobb, szemben a szaturaciés amplifikacioval, a microarray

kisérletek reprodukalhatésaga szempontjabol.

Tovabba, egy szkizofrénias betegekbdl allé populaciot hasznaltunk fel arra, hogy
megbizhaté marker géneket keressiink a kér molekularis diagnosztizalasihoz. A
DRD2 és a Kir2.3 bizonyultak marker génnek. Annak ellenérzésére, hogy a fenti
gének esetében valoban a betegség marker génjeivel allunk szemben, hierarchikus
klaszterezést hajtottunk végre, beteg és egészséges személyektSl szarmazo
adatokon. A klasszterezé eljaras latvanyosan kimutatta, hogy a szkizofrén mintak

elkiléntltek a normal mintaktdl a fenti gének tekintetében.

A tovabbiakban a gén-expresszids adatok klasszifikacidja allt érdeklédéstink
kozéppontjaban. A klasszifikacio hatékonysaganak javitasa érdekében a Kalman
Szhrét vezettitk be. Munkank szempontjabdl a legfontosabb tulajdonsaga ennek a
matematikai moédszernek, hogy elkiiléniti a biologiailag értelmezhetd varianciat a
mérési zajtol. A microarray kisérletben bioldgiai allapotnak tekintjik a gének valos
expresszios szintjét. Az osztalyozasi felallasban ez az allapot az egyes

alosztalyoknak megfeleléen valtozik. Ezt az esetet stochasztikusan modelleztik. A
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mérési zaj szintén stochaszikusan volt megjelenithet. A Kalman SzGré a
stochaszikus modellek mellett folhasznal még egy a microarray folyamatnak
megfelel6 determinisztikus modellt. Ezek segitségével valt felbecsiilhet6vé a
gének valos expresszids szintje azaz a bioldgiai allapot. A fenti mddszert 7
kilonb6zé  publikus,  tumoros  eredeti  adatsoron  alkalmaztuk. A
leghasznalatosabb klasszifikdciés modszereket szlrt és nem szdrt adatokon
egyarant teszteltiik. Statisztikailag igazoltuk, hogy a Kalman Sziir6 szignifikansan
javitja az osztalyozhatosagot. Harom kilonb6z6 grafikai abrazolast alkalmaztunk,
annak demonstralasara, hogy az egyes osztalyok szemmel lathatéan elkiloniilnek
egymastol. U] markerek azonositasat is targyaljuk, annak bizonyitasara, hogy a
szurt expresszios adatok, mar kis szamu gén esetében is predikciés portenciallal

birnak az osztalyozasra nézve.
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Notes sourced by
www.wikipedia.org:

i Alfred Bernhard Nobel
(1833-1896) was a
Swedish chemist,
engineer, innovator,
armaments manufacturer
and the inventor of
dynamite. He owned
Bofors, a major
armaments manufacturer,
which he had redirected
from its previous role as
an iron and steel mill. In
his last will, he used his
enormous  fortune to
institute the Nobel Prizes.
Thetre is no Nobel Prize
for mathematics (the
Fields Medal is often
considered to be the
equivalent in terms of

prestige).

i Magnus Gustaf (Gosta)
Mittag-Leffler (1846-
1927) was a Swedish
mathematician. He was a
member of the Royal
Swedish ~ Academy  of
Sciences  (1883),  the
Finnish Society of
Sciences and  Letters
(1878, later  honorary
member), the  Royal
Swedish Society of
Sciences in Uppsala, the
Royal Physiographic
Society in Lund (1906)
and about 30 foreign
learned societies, including
the Royal Society of
London  (1896)  and
Académie des sciences in
Paris. He held honorary
doctorates ~ from  the
University of Oxford and
several other universities.

i John Forbes Nash, Jr.
(1928-) is an American
mathematician who works

in game theory and
differential geometry. He
shared the 1994 Bank of
Sweden Prize in
Economic Sciences (also
called the Nobel Prize in
Economics)

v Daniel Kahneman (1934-
) is an  American
psychologist, notable for
his pioneering work on
behavioral ~ finance and
hedonic psychology.

v Vernon Lomax Smith
(1927-) is professor of
economics at  George
Mason  University, a
research scholar at George
Mason's  Interdisciplinary
Center for FEconomic
Science, and a Fellow of
the Mercatus Center, all in
Atrlington, Virginia.

vi Anatole France (1844-
1924) was the pen name
of French author Jacques
Anatole Francois
Thibault. He was born in
Paris, France, and died in
Tours, Indre-et-Loire,
France.

vi Karl Ludwig von
Bertalanffy (1901-1972)
was an  Austrian-born
biologist known as one of
the founders of general
systems theory.

vii. Anatol Rapoport (1911-)

is a Russian-born
Ametican Jewish
mathematical

psychologist. He is one of
the founders of the
general systems theory.
He also contributed to
mathematical biology and
to  the  mathematical
modeling of  social
interaction and stochastic
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models of contagion. He
combined his
mathematical ~ expertise
with psychological insights
into the study of game
theory and  semantics.
Rapoport extended these
understandings into
studies of psychological
conflict, dealing with
nuclear disarmament and
international politics.

ix  Sir Arthur Stanley
Eddington (1882-1944)
was an astrophysicist of
the early 20th century. He
is famous for his work
regarding the Theory of
Relativity. Eddington
wrote an atticle in 1919,
Report on the relativity
theory of  gravitation,
which announced
Einstein's  theoty  of
general relativity to the
English-speaking ~ world.
Because of World War 1,
new developments in
German science were not
well known in England.

x Francis Harry Compton
Crick (1916-2004) was an
English molecular
biologist, physicist, and
neuroscientist, who is
most noted for being one
of the co-discoverers of
the structure of the DNA
molecule in 1953. He,
James D. Watson, and
Maurice Wilkins  were
jointly awarded the 1962
Nobel Prize for
Physiology or Medicine
"for  their discoveties
concerning the molecular
structure of nucleic acids
and its significance for
information transfer in
living material".



xi Kary Banks Mullis (1944-
) is an  American
biochemist who
developed the polymerase
chain reaction (PCR), a
central  technique  in
biochemistry and
molecular biology which
allows the amplification of
specified DNA sequences,
for which he was awarded
the Nobel Prize in
Chemistry and the Japan
Prize in 1993.

di o The  fstatistic  was
introduced by William
Sealy Gosset for cheaply
monitoring the quality of
beer brews. "Student" was
his pen name. Gosset was
a statistician for the
Guinness ~ brewery  in
Dublin, Ireland, and was
hited due to Claude
Guinness's innovative
policy of recruiting the
best  graduates  from
Oxford and Cambridge to
apply biochemistry and
statistics to  Guinness'
industtial processes.
Gosset published the t test
in Biometrika in 1908, but
was forced to use a pen
name by his employer
who regarded the fact that
they were using statistics
as a trade secret. In fact,
Gosset's  identity ~ was
unknown not only to
fellow statisticians but to
his employer—the
company insisted on the
pseudonym so that it
could turn a blind eye to
the breach of its rules.
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