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FOREWORD 

This section is intended as plead for interdisciplinary research. For some obscure 

reason, Alfred Nobeli, the father of the notorious homonym prize, decided to 

omit mathematics from among the distinguished sciences. Various rumors have 

surrounded the peculiar decision of the famous mecena. One of them states that 

Nobel decided against a prize in mathematics because his fiancé cheated on him 

with a famous mathematician, often claimed to be Gösta Mittag-Lefflerii. The 

most likely explanation is, however, that he considered mathematics a purely 

theoretical science with no direct practical benefit to mankind. If that was the 

case, modern research and the fusion of sciences that emerged thereof proved 

him wrong. Informatics, the latest branch of mathematics, including game theory, 

control theory, graph theory or algorithms for that matter, has been thoroughly 

integrated with other disciplines, being an indispensable tool of current research. 

Representative figures have demonstrated the practical importance of this area 

hitherto considered entirely theoretical. Let’s just take John Nashiii for a well 

known example, since he was the hero of the Hollywood movie Beautiful Mind. 

But the choice of the 2002 Nobel laureates (to mention just two: Daniel 

Kahnemaniv and Vernon Smithv – economy, both owing much to game theory) 

also shows the role mathematics plays in all the sciences. Thus, Mittag-Leffler is 

cheating again on Nobel by taking the prize the back-door way. Putting the 

anecdote aside, today’s science has become profoundly computer-centric. Not 

only the huge libraries have become available by means of informatics, but also 

the modern tools of research. The future of understanding nature, as many see it, 

lays in the concept of interdisciplinarity. Perhaps the “homo universalis” idea of 

the Renaissance has failed, but in order to understand our environment and life 

itself, as in putting the pieces together, we certainly recognize the need for a 
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modern “universal” research group, where “Les savants ne sont pas curieux” 

(Anatole Francevi) does not apply.  

When I was graduating the university, one of my professors held a speech. His 

closing remark was that all he expects us, graduate engineers, to remain with after 

five years of training, is a systemic thinking. Thus, faithful to this idea I shall 

continue and during this thesis I shall present a gradual evolution and 

development of biological data analysis from simpler bioinformatic and statistical 

analysis to a systemic signal processing framework. First, let us introduce systems 

theory as an interdisciplinary theory that is concerned with the properties of 

systems as wholes. As opposed to studying the individual system components, 

systems theory studies the interactions between these components, interactions 

that will determine the general properties and behavior of the system. Established 

as a science by Ludwig von Bertalanffyvii, Anatol Rapoportviii and others in the 

1950s, systems theory can be considered a revolutionary change of the scientific 

view of the world. The major practical applications of this field are found in 

control engineering. Currently, however, the emerging scientific discipline of 

systems biology is also beginning to use the achievements of systems theory. 

Thus, systems biology, often overlapping with bioinformatics, integrates 

molecular biology knowledge and computational analysis in an attempt to model, 

simulate and analyze biological systems and processes. 
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AIMS 

The aims of this study are typically concerned with gene expression data 

processing. The list of aims related to the subsequent individual bioinformatics 

processing steps, as illustrated by our results, is presented below. 

 Application of the “gold standard” gene-expression data analysis 

methods to real laboratory QRT-PCR and microarray data . 

 Statistical analysis of the effect of laboratory protocol innovation 

on the gene-expression experiment outcome. 

 Class discovery and marker gene testing in schizophrenia 

transcriptional profiles. 

  Development of innovative system level methods for expression 

data normalization and noise reduction (Kalman Filter), with 

application to molecular diagnosis of cancer.  

Incorporating the expression covariance between genes proves to be an 

important issue in biological data classification problems with application to 

diagnosis, since this represents the functional relationships that govern tissue 

state. We also aim to show here that employing the Kalman Filter to remove 

noise on gene expression data (while retaining meaningful covariance and thus 

being able to estimate the underlying biological state from microarray 

measurements) yields linearly separable data suitable for most classification 

algorithms. 
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C h a p t e r  1  

GENERAL INTRODUCTION 

1.1 Mathematical Modeling - A Short Survey 

“The mathematics is not there till we put it there” (Arthur Eddingtonix), 

therefore, a mathematical model is not the system but an abstract model that uses 

mathematical language to approximately describe the system as in Figure 1.  
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Figure 1. Graph model of the adenine nucleotide integrating physics 
and chemistry knowledge and possibly predicting biological function. 

There is a close relationship between mathematical modeling and systems theory. 

To make it more clear, a mathematical model is a representation of the properties 

of a system in a mathematically usable form [1]. The components of the system 

are represented by variables, while the relationships between them by 

mathematical functions. There are three major objectives of system modeling: 

analysis of system structure, prediction of behavior and ultimately control of 

behavior. These objectives bear with major consequences; let’s just think of the 

biological system of the cell for example. In the following we will shortly describe 

the essential aspects of mathematical modeling and clear some concepts that will 

be used later on throughout this dissertation. Models can be static or dynamic. 

Static models, such as those used for classification in this study (random forests, 
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k-nearest neighbours) do not account for the element of time. They can be linear 

(linear kernel support vector machines) or non-linear (sigmoid output artificial 

neural networks), depending on the nature of the functions relating the variables, 

and they are trained in order to learn the structure of the system that produced 

the so called training dataset (for example a microarray dataset that accounts for 

several disease subclasses). The training itself can be supervised or unsupervised, 

depending on whether the user will supervise the training by providing the 

expected output for the given input data (classification, also known as supervised 

clustering), or the model should self-organize in order to fit the input data 

(hierarchical clustering). Dynamic models, on the other hand, attempt to model 

the time dependent relationships between the variables (state-space models). Here 

we can have output variables (actual measurements), input variables (system 

control) or state variables (hidden variables such as the true gene expression state 

that we attempted to estimate using the Kalman filtering). Models can also be 

deterministic, such as a state-space model that uses the state transition functions 

to uniquely determine the following state from the current one, or stochastic. 

Stochastic models use probabilistic approaches to account for the randomness of 

the variables (for example the noise models used by the Kalman filter are 

stochastic). The evaluation of an acquired model is of particular importance, since 

it concerns the model’s reliability (classification models for medical diagnosis). 

For this purpose, a set of test data is usually used. If the model shows comparable 

performance on the training data and on the test data, then the model fits well the 

system in cause. However, there is a degree of uncertainty when it comes to the 

model handling events outside the measured data. Eddington has a witty solution 

to that problem: “It is also a good rule not to put overmuch confidence in the 

observational results that are put forward until they are confirmed by theory”. 
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1.2 Biology of Gene Expression 

The DNA molecule encodes the hereditable information fundamental to the life 

of the cell. A major discovery of molecular biology was that the DNA encoded 

biological information is copied by the RNA and that the RNA mediated 

information is used to assemble the proteins. Proteins thus decode biological 

information into biological function. This flow of information (Figure 2) from 

DNA to RNA and from RNA to protein is stated as the “Central Dogma” of 

molecular biology, which was proposed by Francis Crickx in 1957 [2].  

 

Figure 2. Flow of information: in transcription DNA information is 
copied to produce an RNA transcript; in translation the instructions 
in mRNA are used to synthesize a polypeptide. 

The actual mechanism of gene expression is complex and consists of two major 

stages. During transcription, the transcript of the gene is produced as a molecule 

of mRNA. During the second phase, namely translation, the mRNA nucleotide 

information is decoded to a sequence of amino acids yielding the polypeptide at 

the ribosomes. The transcription of genes is a complexly regulated process. A 

large network of signal mediating components (signal pathways) is involved in 

activating the final effectors of the process, such as the transcription factors or 

the RNA polymerase [2][3]. Identifying this so called transcriptional network 

represents one of the major goals of systems biology. The mathematical modeling 
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of such a large system can be made possible by the currently available high 

throughput technologies that provide large scale data like gene sequence, 

transcription profiles, protein quantitative data as well as protein interaction data. 

Clearly, having such a model would have major implications in predicting the 

response of the cell to stimuli for example, or in controlling the cell’s behavior. 

For the time being however, based on the modeling the available biological data, 

the less ambitious task of medical diagnosis can be achieved, still of great 

importance in medicine. 

1.3 Biotechnological Research Tools 

As we saw, according to the “Central Dogma”, the gene transcript stands in the 

information flow path between the DNA and the protein. Thus, quantifying the 

mRNA provides in some degree quantitative information about the proteins 

downstream, and also qualitative information about the DNA upstream. It has 

been shown that transcription profiles reflect well the biological state of the 

investigated samples. Thus, measuring the mRNA level at a particular cell state 

also provides insight into gene expression events, genes being activated and partly 

proteins that the cell responds with, allowing us to infer their function. Currently 

two major technologies are available for gene transcript quantification: 

quantitative real-time PCR (QRT-PCR) and DNA microarray. The RNA level 

measured using these techniques actually corresponds to the stationary level of 

the RNA formed as a combination of transcription, RNA maturation and RNA 

degradation. 

1.3.1 Real-time PCR 

The “real-time” or kinetic variant of the polymerase chain reaction invented by 

Kary Mullisxi, was pioneered by Higuchi et al. [4]. The DNA is quantified after 

each amplification cycle by detecting the fluorescence emitted by a dye 
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intercalating with the double-strand DNA. For mRNA quantification, reverse 

transcription PCR (RT-PCR) is used first to reverse transcribe the RNA to 

complementary DNA (cDNA), which is then quantified using the QRT-PCR. 

1.3.2 DNA Microarray 

In recent years, a new technique, the DNA microarray technology (DNA-chip) 

[5] has emerged, offering the possibility of high-throughput systematic analysis of 

the transcriptome. The arrays are constructed of thousands of DNA fragments 

either spotted or synthesized (Affymetrix) onto chemically activated glass slides. 

DNA fragments can be collections of short or long oligonucleotides or cDNAs 

of variable length. DNA microarrays with sets of cDNA fragments on their 

surface can be used to obtain a molecular fingerprint of gene expression of cells. 

The method has enabled large numbers of genes, from specific cell populations, 

to be studied in a single experiment.  

 

Figure 3. Application of cDNA arrays for the follow up detection of 
gene expression changes. 



15 

During the experiment, mRNA populations gained from diverse biological 

samples (tissues or cell cultures) are converted to cDNA in the presence of 

fluorescent dye (Cy3 or Cy5) labeled nucleotides. Using a co-hybridization 

strategy, with Cy3- labeled cDNA from the test sample and Cy5-labeled cDNA 

from the control sample, the relative intensity ratio on the microarrays can be 

determined and the expression pattern can be analyzed. The schematic 

representation of a cDNA microarray experiment can be seen in Figure 3. Clearly 

the most attractive feature of the technology and its major advantage over the 

QRT-PCR is the high throughput.  
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Figure 4. Block diagram of the microarray experiment taken from 
the MIAME exchange specifications regarding the microarray 
workflow. 

This however induces some disadvantages as well, namely the high number of 

error sources which will act in the detriment of precision. As opposed to the 
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QRT-PCR, the DNA microarray is static, based on the natural pairing of the 

complementary bases. The dynamics of the PCR facilitate the more exact analysis 

of the differences in gene expression. It is a good practice, therefore, to verify the 

results of a microarray experiment by means of real-time PCR. Currently, the 

primary applications of microarrays include gene discovery [7], disease diagnosis 

[8], drug discovery [9], and toxicological research [10]. More advanced systems 

biological tasks, such as transcriptional network modeling, have also been 

attempted [11][12][13]. A successful DNA microarray experiment starts with a 

good design of the experiment. Figure 4 shows such a design and specific 

workflow steps according to the MIAME specifications [6]. The block diagram of 

the microarray experiment reveals the complexity and the large number of stages 

involved in the process. It has to be outlined that each of the blocks 

corresponding to the work phases, including hybridization, washing (BioAssay 

treatment), image acquisition, and the protocols used, are major sources of error 

and noise that will be superimposed on the final data output. Due to this noise, 

subsequent data pre-processing and bioinformatic analysis steps must be taken 

before any biological interpretation of the results. 
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C h a p t e r  2  

METHODS AND MODELS FOR GENE EXPRESSION DATA 
ANALYSIS 

The methods described below aim at data obtained as result of quantification by 

means of either arrayed image analysis (microarray) or change in fluorescence 

signal intensity (during the PCR reaction). These digitized signals are considered 

raw measurement data and reach the analysis workstation in the form of 

numerical vector columns. Within such a vector each observation element 

corresponds to the expression of a specifically inspected gene under the given 

conditions. They will be called alternatively features, while the vectors themselves 

will sometimes be denominated as samples. 

2.1 Quality Control and Feature Rejection 

Quality control [14] can refer to any step that is required to prepare a generic data 

set for a specific type of analysis. Quality control is often referred to as data 

filtering, a term that can take different meanings as we shall see later on. The 

process primarily involves two concepts: feature rejection and averaging. The 

various quality control measures provided by the quantification process are used 

to eliminate specific observations that do not comply with given laboratory set or 

standard thresholds. Flags set at the image analysis stage, local background 

estimates, signal to noise ratios are valuable information in determining the 

reliability of features in a microarray measurement. The same applies for QRT-

PCR data, where dilution curves, reaction efficiencies and crossing point 

deviations can motivate the rejection of certain reactions. Technical replicas are 

repeats of measurements of samples coming from the same pool of extracted 

RNA. They are truly meant to control the quality and reproducibility of the 

experimental conditions. Averaging is generally used to combine observations 
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from measurements technically replicated. Biological replicates on the other hand, 

are independent measurements of the same type. They provide the means for 

most of the methods presented in the following sections. Quality control is a 

concept that can be applied at any stage of processing and it is a compromise 

between biological and mathematical consideration, since there is a general 

danger of losing data before one is certain that it is not useful or unusable. The 

practical application of quality control within the case studies shown in the 

Results section was done in MS Excel. 

2.2 Normalization – A Milestone 

Normalization at its origins denotes a transformation of the data, which results in 

a normal (Gaussian) distribution. The denomination here has historical reasons 

since the parametric statistics used for differentially expressed gene identification 

require normal distributions. There is general agreement that a log transformation 

of most microarray data provides a good approximation of the normal 

distribution with minor exceptions [15]. Currently, however, the normalization 

procedure covers more tasks essential to expression data analysis including 

scaling, noise smoothing and dye bias correction. To conclude, the gene 

expression data related normalization represents the procedures required to make 

the samples comparable. There is no optimal general method to be used, thus, 

depending on the experiment various normalization schemes can be employed. 

2.2.1 Reference features 

Using control features to normalize the expression data is a popular method, 

which is based on the assumption that certain genes do not change their 

expression under the inspected circumstances. One must be careful however, 

since endogenous controls (i.e. housekeeping genes) can become unreliable under 

rough changes in the cell’s housekeeping such as tumor. In the following we shall 
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describe one such normalization procedure widely and exclusively used with 

QRT-PCR data, known as the Pfaffl method [16]. This method provides a means 

for quantification of a target gene transcript in comparison to a reference gene. 

The relative expression ratio is calculated only from the real-time PCR efficiencies 

and the crossing point deviation of an unknown sample versus a control. The 

model used needs no calibration curve, as control levels are included within the 

model. High accuracy and reproducibility (less than 2.5% variation) may be 

reached using this procedure. For the mathematical model it is necessary to 

determine the crossing points (CP) for each transcript. CP is defined as the point 

at which the fluorescence rises appreciably above the background fluorescence. 

CP cycles versus cDNA concentration are then plotted to calculate the slope 

(mean, standard deviation). The corresponding real-time efficiencies are 

computed according to the equation: 

slope

1

10


E                                                   (1) 

The relative expression ratio (R) of a target gene is calculated based on E and the 

CP deviation of an unknown sample versus a control, and expressed in 

comparison to a reference gene: 

)(

ref
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ref

target

samplecontrolCP

samplecontrolCP

E

E
R





                                          (2) 

The ratio of a target gene is expressed in a sample versus a control in comparison 

to a reference gene. Etarget is the real-time PCR efficiency of target gene transcript; 

Eref is the real-time PCR efficiency of a reference gene transcript; ΔCPtarget is the 

CP deviation of control – sample of the target gene transcript; ΔCPref is the CP 

deviation of control – sample of reference gene transcript. The reference gene 

should be a stable and secure unregulated transcript. Because the perfect 
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reference does not exist, reference genes should be validated by showing that they 

do not change significantly in expression under the experimental conditions. 

Using multiple reference genes can increase reproducibility. Examples of 

common internal standards include b-Actin, GAPDH, MCH I mRNA, and 

ribosomal RNAs (rRNA). For microarray data, where thousands of genes are 

monitored, things tend to be more difficult. The literature is acquainted with the 

housekeeping genes method [18] and the “spiking” technique [17][19], although 

there is no standard on how the actual normalization should be performed using 

the reference genes. The application of the Pfaffl method to real laboratory QRT-

PCR data within our projects was done in MS Excel. 

2.2.2 Global methods 

Most published references to microarray normalization deal primarily with the 

removal of biases in the data. Bias arises from a number of sources, including 

variation within and among arrays, differences in mRNA concentration or quality, 

unequal dye incorporation, and wavelength-related differences in scanner 

strength. Without correcting these biases, it may appear as though too many 

genes are up- (or down-) regulated. Bias correction is performed based on some 

assumption that the experimenter makes. The first is that the starting amount of 

cDNA used for each hybridization is the same. This type of assumption can also 

be made in the case of QRT-PCR. The preferred method to use in these cases is 

the so called total intensity method [20], a global normalization procedure. The 

technique consists of a simple scaling usually so that the sums across the samples 

(i.e. the overall sample intensities) become equal. Other variants include mean or 

median centralization. To present the method in a mathematical form, first we 

introduce the following model of hybridization for a single spot on the array: 

iii baCT                                                    (3) 
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where Ti represents the fluorescence intensity of the i-th test spot and Ci is ibid 

for control. The bi parameter stands for the difference in expression and is 

considered a random variable, normally distributed around null: 

00)(  
i

ii bb                                          (4) 

We are interested in the parameter a, the constant normalization factor across the 

data samples. To express the equal starting cDNA amount assumption we write: 

  
i i

iii baCT )(                                           (5) 

From the two above equations the scaling factor is derived as: 


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

i
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i

i
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T

a                                                    (6) 

2.2.3 Regression methods 

Global centralization cannot correct for biases that are present within specific 

parts of the data, mostly due to unequal dye incorporation or spatial irregularities 

on the physical array. For these systematic errors, presuming we can make the 

assumption that the great majority of genes do not change their expression within 

the experiment, regression methods are the choice. These approaches are 

particularly important when using ratios to monitor changes in gene expression 

and especially when employing a two-color scheme. To visually identify such bias 

problems a graphical aid such as the M vs. A plot can be used [21]. The measured 

expression (M) is the logarithmic gene expression ratio between the test and the 

control samples. The intensity (A) represents the average of log intensities over 

the test-control cases. Thus, for each spot i we have: 
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With these transformations we can again write the hybridization model as 

follows: 

iii baM                                                   (8) 

where this time the scaling factor is not a constant, but an intensity dependent 

value for each feature; log-expression change bi again follows a Gaussian 

distribution: 
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The normalized expression log-ratios are then computed: 

iii

norm
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f(Ai) is typically a regression function. The use of the locally weighted scatter-plot 

smoothing (LOWESS) [22] has been suggested [21][23] to correct the intensity 

dependent measurement corruption, being one of the most robust curve fitting 

procedures. Figure 5 shows LOWESS in action on an example dataset. As an 

effect of the procedure, the data “cloud” is smoothed, and centered around zero. 

The normalized dataset is shown in Figure 6. 
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Figure 5. M vs. A plot of the raw dataset and the LOWESS curve. 

 

Figure 6. Normalized expression ratios with the corresponding 
LOWESS curve. 

The LOWESS normalization within our projects, exemplified as results, was 

performed using the R statistical software. Finally we mention that the 

normalization problem is still an open one. Each method has its advantages and 
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drawbacks, and new approaches with sound biological and mathematical basis are 

always welcome.  

2.3 Decision and Statistical Significance 

Having performed the two previously mentioned steps, namely quality control 

and normalization, we practically end up with the fold changes between control 

and test conditions for each gene under investigation. Many of these values, 

however, are false changes, mainly due to the experimental errors. To assess 

experimental error, one basically needs to repeat the experiment and measure the 

variation. If both control and test are biologically replicated, hypothesis testing 

can be used to decide whether the expression of a particular gene is significantly 

different between the two conditions. 

2.3.1 Hypothesis testing 

Statistically speaking, expression change can generally never be verified, but only 

disproved. Thus, we typically have a null (no expression change) hypothesis and 

an alternative hypothesis, contradictory to the former. The “change” hypothesis 

is supported if we can show that there is evidence against the null hypothesis. 

Hypothesis testing [24] consists of three steps: 

1. Setting up the null hypothesis H0 and the alternative hypothesis H1. 

2. Using a test statistic to compare the observed values with the values 

predicted by H0. 

3. Defining of a region for the test statistic for which H0 is rejected in favor 

of H1. 

The probability that H0 is true given the observed test statistic is called the p-value 

of the test. The level of significance α of a test is the probability that the test 
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statistic falls in the rejection region if H0 is true. The test statistic is usually largely 

influenced by the population sample size. Thus the expression change decision is 

risky when the number of biological repeats is small, which can lead to type I 

(false negatives) or type II (false positives) errors. 

2.3.1 Student'sxii t-test 

A frequent parametric test statistic for expression change inspection [23] is the t-

statistic. Student’s t-test [24] assumes the normality of the distributions of the data 

involved. Thus log-transformed gene expression data are suitable for such an 

analysis. Having the test-control log-ratio data prepared, the simplest and 

straightforward approach to detecting the differentially expressed genes is the 

single sample t-test. This variant of the statistic compares the mean of a sample 

population with a given value. The null hypothesis is therefore that the mean of 

expression log-ratio values for a gene is null, that is, its expression remains the 

same in both test and control conditions. The expression of the t-statistic in this 

case is the following: 

Rs

nR
t                                                    (11) 

where R  and sR are the estimated mean and standard deviation of the log-ratios 

respectively, while n is the number of repeated measurements. The t-value follows 

a t-distribution with df=n-1 degrees of freedom. In situations where the 

measurements are not paired, or two conditions relative to normal are to be 

compared, the unpaired two-sample t-test can be used. The statistic on this case 

has the form: 
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Considering unequal sample sizes n1 and n2, the estimated standard error of the 

mean difference is: 
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and the df parameter equals n1+n2-1. If we perform multiple tests in parallel, usual 

for microarray data, the level of significance for the whole set of tests does not 

equal the level of significance for the single tests. The simplest adjustment is the 

Bonferroni correction. The overall significance level αa is derived from the 

significance level α of m single tests by 

m
a


                                                    (14) 

The same procedure can be applied for the adjustment of the p-values. The t-test 

and Bonferroni correction on our own data was performed using MS Excel. 

2.3.2 χ2-test 

Suppose we have an experimental factor, whose optimization can improve either 

cost or precision of a microarray experiment. We are interested in statistically 

assessing the effect of this factor on the actual expression changes as well as 

directly on their significance. For this purpose we propose using the χ2-test 

[24][25]. In the simplest case we can have two categories of experiments, C1 and 

C2, given the factor. Within each experiment category the t-test can be used to 

infer the test-control gene expression changes at the chosen significance level. 

Thus, based on the p-values and α, the continuous expression ratios can be 

discretized, each gene receiving a categorical value of down-regulated (dr), up-

regulated (ur) or not-regulated (nr). This data altogether may be presented in a 3 x 

2 contingency table with 3 rows and 2 columns such as Table 1. 
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Row 
categories 

C1 
1 

C2 
2 

 
Total 

dr f11 f12 Sdr 

ur f21 f22 Sur 

nr f31 f32 Snr 

Total SC1 SC2 n 
Table 1. Contingency table. 

The entries in the table are frequencies; each cell contains the number of genes in 

a particular row and a particular column. Thus, we deal with two factors: the 

experimental factor and the expression change factor. The null hypothesis is that 

there is no association between the two factors, equivalent to the statement that 

tampering with the experimental factor does not influence the expression 

changes. Next we calculate the frequency that we expect in each cell of the 

contingency table if the null hypothesis is true. The expected frequency in a 

particular cell is the product of the relevant row total and relevant column total, 

divided by the overall total. In a final step, we calculate the test statistic that 

focuses on the discrepancy between the observed and expected frequencies in 

every cell of the table: 
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where O and E are the observed and expected frequencies in each cell of the 

table. This test statistic follows the χ2 distribution with degrees of freedom equal 

to (rows-1)x(columns-1). If the overall discrepancy is large, then it is unlikely the null 

hypothesis is true. The application of the χ2-test on the practical case of assessing 

the effect of the amplification protocol on the expression change outcomes, 

shown in the Results, was done using the R statistical software package. 
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2.4 Advanced Analysis – Multivariate Statistics and Biomimicry Models 

In the following we shall focus on gene expression data containing several 

biological repeats of possibly heterogeneous samples. The considerably large 

amount of data will be treated as an nxm matrix, each of the n rows 

corresponding to the investigated genes, while the m columns stand for the actual 

sample measurements. It is common with microarray data to have a much larger 

dimension n than samples m. The analysis of such high dimensional data requires 

“intelligent” approaches, and the methods employed have mostly immigrated 

from the field of artificial intelligence. Currently a somewhat paradoxal cycling of 

information between branches of biology (ecology, population genetics, or 

physiology) and mathematical modeling, back and forth, can be observed. Models 

developed initially to mimic biological phenomena, such as artificial neural 

networks, are being reused to handle the large amounts of newly produced 

biological data. As molecular biology processes are being understood, it is 

probable that the knowledge therein will yield more “intelligent” models. The 

methods introduced in the following aim at what is called clustering in statistics. 

The discovery of the subset- or class-membership of the samples in a dataset in 

this manner can be either self-motive (un-supervised) or supervised, and the 

result can be interpreted as the discrete states the biological system (cell) may be 

in. 

2.4.1 Hierarchical dendrogram models 

Hierarchical clustering is perhaps the best-known clustering method for 

expression data analyses. The main objective of this technique is to produce a tree 

like structure in which the nodes represent subsets of an expression data set. 

Thus, expression samples are joined to form groups, which are further joined 

until a single hierarchical tree (also known as dendrogram) is produced. Several 

studies on the molecular classification of cancers and biological modeling have 
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been based on this type of algorithms [26]. Hierarchical clustering of microarray 

data has been particularly fruitful in cancer diagnosis [27], investigation of cancer 

tumorigenesis mechanisms [28], or identification of cancer subtypes [29]. There 

are different versions of hierarchical clustering, which depend on the metric used 

to assess the separation between clusters, the cluster merging direction or the 

merging method. The most commonly used metrics are the Euclidean distance (a 

distance metric): 

 
i

ii yxyx 2)(),d(                                      (16) 

where x and y are two sample vectors and i spans the entire gene space; and the 

Pearson correlation coefficient (a similarity metric). Concerning the merging 

direction, the method can be divisive (top-down), which starts with one large 

cluster that contains all data points, and splits off a cluster at each step, or 

agglomerative. In the agglomerative method (bottom-up), illustrated in Figure 7, 

each data point initially forms a cluster, and the two “closest” clusters are merged 

in each step. 

 

Figure 7. The process of agglomerative clustering. The distance 
between the data points is also suggested by the color spectrum. 
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The merging method or linkage can also be of various types including single 

linkage, average linkage and complete linkage. In single linkage clustering, the 

distance between any two clusters of points is defined as the smallest distance 

between any point in the first cluster and any point in the second cluster. 

Complete linkage defines the inter-cluster distance as the largest distance between 

any point in the first cluster and any point in the second cluster. Average linkage 

is often perceived as a compromise between single and complete linkage because 

it uses the average of all pair-wise distances between points in the first cluster and 

points in the second cluster. Thus, with average linkage, the distance between two 

clusters A and B is computed by: 


 


Ax By

yx
BA

BA ),d(
)card()card(

1
),D(                        (17) 

The basic algorithm in hierarchical agglomerative clustering, using Euclidean 

distance and average linkage, is the following: 

1. begin with each data point as a separate cluster; 

2. using average linkage, merge the two clusters that are closest according to 

the Euclidean distance; 

3. if only a single cluster remains then proceed with step 4, else redo step 2; 

4. determine the final set of clusters. 

The traditional approach for determining the final set of clusters is to specify the 

number of clusters desired and then cut the dendrogram at the height, which 

yields this number. In the schizophrenia gene expression profiling project we 

applied the hierarchical agglomerative clustering, with average linkage. The 

software we used for it was the R statistical environment. 
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2.4.2 Class prediction models 

The following methods will particularly concern microarray data. It is known that 

a reliable and precise classification of tumors is essential for successful diagnosis 

and treatment of cancer. The gene expression-based molecular classification of 

cancer subtypes has been shown to have the potential of reliable diagnosis, either 

by complementing the traditional clinical, morphological and histo-pathological 

approaches or as an alternative procedure [29]. 

 

Figure 8. An example of gene expression based molecular 
classification of leukemia subtypes. Samples of acute lymphoblastic 
leukemia and acute myeloid leukemia were diagnosed. 

The basic scheme of molecular classification is to train a mathematical model so 

that it can discriminate between the classes within a set of points. The training 

points in the expression data case are a set of gene expression measurements (e.g. 

microarray) that are fully annotated with regard to disease. In this case the genes 

represent the dimensions of the sample points. In the final classification or 

diagnosis phase, the model will automatically diagnose any new-coming test 

sample. An milestone example of such a classification based on gene expression 

profiles, as published by Golub et al [29], is presented in Figure 8. However, 
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having large datasets comprising simultaneous expression levels of thousands of 

genes monitored under diverse circumstances still constitutes a great challenge for 

biologists, physicians as well as computational algorithm developers. In recent 

years the processing of high-throughput biological data has evolved into a highly 

interdisciplinary field and a large number of machine learning algorithms have 

been proposed to automate difficult tasks, such as that of medical diagnosis from 

gene expression profiles. The following shortly reviews the most renowned of 

these algorithms and models, as they were employed in bioinformatics in general 

and in microarray data classification in particular. 

The Support Vector Machine (SVM) classifier [30] is one of the most popular 

supervised learning algorithms, which has been effectively used in computational 

biology including protein remote homology detection [31], microarray gene 

expression analysis [32], the recognition of translation start sites [33], functional 

classification of promoter regions, the prediction of protein–protein interactions 

and peptide identification from mass spectrometry data [34]. The SVM classifier 

computes a hyper-plane with the largest margin between two classes [30] as seen 

in Figure 9.  

 

Figure 9. Maximum-margin hyper-planes separating the two classes 
within a training dataset. 
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Let us consider the training set of i high-dimensional points x, where xi 

corresponds to the expression measurements of the ith experiment or sample. 

The a priori known two classes can be expressed by a label yi associated with each 

xi, such that yi{-1,+1}. Assuming the classification function is linear, the label of 

a point can be written yi=sign(wxi+b), where w is the normal vector to the hyper-

plane separating the two classes, b is a free threshold parameter that translates the 

optimal hyper-plane relative to the origin, and operation wxi is a dot-product. The 

distance from the hyper-plane to the closest points of the two classes is called the 

margin and is 
2

w . The objective is to maximize the margin, with the constraint 

that the points from the two classes fall on opposite sides of the hyper-plane, 

written as: 

2

, 2
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This quadratic programming optimization problem is solved in its dual 

representation, which reveals that the classification is only a function of the 

support vectors, i.e., the training data that lie on the margin. In our experiments 

the SVMLight software [65] implemented in Matlab was used with a linear kernel. 

The Artificial Neural Networks (ANNs) approach was originally developed with the 

aim of modelling information processing and learning in the brain [35][36][37]. 

Within the bioinformatics area this supervised nonlinear learner has been 

employed for instance in biological sequence analysis, the recognition of signal 

peptide cleavage sites, gene recognition [38], the prediction of protein functional 

domains [39] and the classification of cancer subtypes [40]. The ANN classifier 

consists of connected artificial neurons built in a multi-layer structure [35]. Thus, 

the basic unit of the neural network is the linear perceptron. As shown in Figure 

10, the perceptron has n inputs xi, i=1:n, and a single output y.  
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Figure 10. The artificial neuron or perceptron having n inputs and a 
single output. 

Associated with each input is a weight wi, that decides how important that input is 

for the output. To obtain the output, the weighted sum of the inputs, together 

with a bias b, is passed through an activation function S: 
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The activation function is usually nonlinear, except for the input layer of the 

network. A typical activation function is the logistic sigmoid function: 
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The single perceptron is a linear classifier similar to a linear SVM.  
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Figure 11. Multilayer perceptron with one hidden layer between the 
input and output layers. 

Organizing the linear perceptrons in layers, as in Figure 11, results in a nonlinear 

classifier, which can effectively handle more difficult classification problems, such 

as multi-cancer diagnosis. Clearly the obtained neural network needs to be trained 

in a supervised fashion, using a train dataset and a set of class specific label 

values. In our study related to the Kalman filtering, a three layer ANN was used 

and the number of sigmoid output neurons within the hidden layer was 

determined by testing. Empirically we found that the best results were obtained 

with 25 hidden neurons. The ANN was part of the WEKA software package 

[66]. 

The Nearest-Neighbor (1NN) algorithm [41][42] is a simple class prediction 

technique, which achieves high-performance without a priori assumptions. This 

method has been used for protein classification [43] as well as cancer diagnosis 

[27]. The 1NN classifier is a fast algorithm, which is based on simple distance 

calculations between vectors.  

 

Figure 12. Classification criteria of the 1NN algorithm. The nearest 
point to the test case (triangle) is a circle, which determines the class 

membership. 
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Thus, the training phase consists only of storing the feature vectors and class 

labels of the training samples. In the actual classification phase, distances from 

the test cases to all stored vectors are computed and the closest sample is selected 

as pictured in Figure 12. The new point is predicted to belong to the closest class 

within the set. To measure the distance between gene expression samples, we 

used the Euclidean metric. The method can be easily extended to k neighbors 

(kNN). Within the Kalman filtering project, our tests showed that increasing k 

did not significantly improve the classification performance. The 1NN was 

typically outperformed by the previous two learners on the raw microarray data. 

The Matlab implementation of this algorithm was used in our study. 

The Random Forest (RF) technique is a recently proposed meta-classifier method, 

which is becoming evermore popular in areas of computational biology like drug 

discovery [44] and tumor classification [45]. The RF technique is a combination 

of decision trees, such that each tree is grown on a bootstrap sample of the 

training set. For each node the split is chosen from a smaller subset of the total 

features, selected at random from an independent, identical distribution out of 

the feature set [46]. Thus, the method constructs a collection of decision trees 

with controlled variations. Let the number of training cases be n, and the number 

of features be M. Each tree is constructed using the following algorithm: 

1. Select the number m of input variables (m<<M) to be used to determine 

the decision at a node of the tree. 

2. Choose a training set for this tree by bootstraping. Use the rest of the 

cases to estimate the error of the tree, by predicting their classes. 

3. For each node of the tree, randomly choose m variables (from an 

independent, identical distribution out of the feature set) on which to 
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base the decision at that node. Calculate the best split based on these m 

variables in the training set. 

4. Each tree is fully grown and not pruned (as may be done in constructing 

a normal tree classifier). 

The output of the RF is the class that is the mode of the classes output by the 

individual trees.  In our experiments, 20 trees were used and m was set to log(n + 

1). The software that we used for it was part of the WEKA package [66]. 

For multi-class datasets the one-versus-rest technique was used. Thus, for every 

biological class an independent binary learner was built, where the class member 

samples were treated as positive and the rest of the samples as negative. For each 

class specific learner we evaluated the so-called class accuracy. A test sample was 

classified to the class whose corresponding learner gave the highest score. The 

accuracy for the whole dataset was the ratio of the number of correctly classified 

samples and the total number of samples. The evaluation of the classification 

performance was carried out, among others, via standard receiver operator 

characteristic (ROC) analysis, which is based on the ranking of the objects to be 

classified [47]. This analysis is performed by plotting sensitivity versus 1-

specificity at various threshold values, and the resulting curve is integrated to give 

an area under the curve (AUC) value. For a perfect ranking AUC=1.0, while for a 

random ranking AUC=0.5.  

2.4.3 Feature selection 

A common goal in microarray data classification for diagnosis purposes is to 

select a minimal number of genes that could work as signatures for specific 

tumors. Since the SVM is generally thought to perform best in such classification 

problems, we introduce the Recursive Feature Elimination (RFE) algorithm, a 
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recently proposed feature selection method described in [48] which was designed 

in close relationship with SVM. The method seeks to recursively eliminate 

features, keeping the “best” m that lead to the largest margin of class separation 

using an SVM classifier. Considering the subset of surviving n features at a certain 

point in the procedure, the algorithm is basically the following: 

1. Train the SVM with the n dimensional data, and thus obtain w. 

2. Compute the feature ranking criteria ci=(wi)
2, i=1,n. 

3. Find and eliminate the feature with the smallest ranking criterion 

f=argmin(c). 

The procedure is repeated until the number of remaining features reaches m. The 

RFE algorithm was used as part of the Spider package [67]. RFE was employed 

with a linear kernel SVM, included in the same software package. 

2.4.4 Visualization 

Visualization is an important topic in the analysis of high-dimensional 

measurements, especially because it facilitates the better understanding of the 

data. Here we shall only summarize three state-of-the-art graphical representation 

methods suitable for microarray data visualization.  



39 

 

Figure 13. The LLE maping of high dimensional gene expression 
data into the 2D space.  

The Locally Linear Embedding (LLE) is a distance preserving non-linear mapping 

from the high-dimensional original space into a lower dimensional space. Using 

this method [49] the dataset can be mapped into the 2D space, and thus easily 

plotted on a graphic as exemplified in Figure 13. The resulting two dimensions 

are abstract and do not correspond to any physical variable, therefore we omitted 

to annotate the axes. The colors correspond to classes. The method was used in 

Matlab, and the number of neighborhoods parameter required by the procedure 

was set to the number of samples. Another proposed visualization scheme is the 

RadViz [50] algorithm where the features (i.e. the genes) are represented as 

anchors that are equally spaced around the unit circle. The samples are then 

represented as points inside this unit circle. Their positions depend on the gene 

expression values: the higher the value for a gene, the more the anchor attracts 

the corresponding point. This method works best with relatively few (3–20) 

features, thus requiring a priori feature selection. Finally, the Heat Map with an 

optional hierarchical clustering on the genes can be also employed as a graphical 
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representation of the expression data matrices where the values taken by a feature 

are represented as color intensity in a 2D map. The visualizations were generally 

performed in Matlab, using the implementations provided by the authors of these 

methods. 

2.5 Kalman Filtering – A Joint Perspective 

This section presents the main contribution of this thesis. The procedure of 

molecular classification itself, as introduced earlier, is based on the fact that gene 

expression profiles work as surrogates for the biological state. Still, living cells are 

inherently dynamic; hence microarray measurements capture a large amount of 

expression variance. A large number of environmental error sources also corrupt 

the gene expression data, even though normalization procedures are meant to 

reduce such influences. These two types of variation alter the true gene 

expression states associated with the particular diseases in question. Under such 

circumstances the Kalman state estimator, embedded in a block diagram in 

Figure 14, provides a reasonable framework for preprocessing the expression data 

by removing the noise and estimating the multivariable noise-free tumor specific 

states.  
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Figure 14. Block diagram of the biological state measurement with 
Kalman filtering. 

The Kalman filter (KF) [51][52][53] is a powerful mathematical tool that has been 

widely used in many fields of engineering from systems and control theory to 

signal processing, due to its robustness even under the violation of the normality 

assumption. It has also been used in supervised learning as well as in myriads of 

real world applications. Its applications in the bioinformatics field however were 

limited [54], not taking advantage of its full potential as a multivariate signal 

processor. The KF is based on the assumption of a continuous system that can 

be modeled as a normally distributed random process X, with mean x (the state) 

and variance P (the error covariance): 

),(~ PxNX                                               (21) 

The KF furthermore assumes that the output of the system can be modeled as a 

random process Z that is a linear function of the state x̂ plus an independent, 

normally distributed, zero-mean white noise process V, 

vxHz                                                 (22) 
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where, V~N(0,R) and E{XV}=0. H represents the system output matrix. For 

our study we model the microarray data flow using the following simplified 

discrete time state-space representation of Equations (21) and (22): 

kkk

kkk

vxz

wxx



 1
                                            (23) 

The first equation is a linear form of (21) containing the addition of an 

innovation process W~N(0,Q). Vectors wk and vk may be interpreted as the 

modeling error (i.e. the deviation from a mean, stem-state towards the particular 

biological states in question) and measurement noise, respectively, the latter 

comprising the previously mentioned functional and experimental variances. 

Note that since the state transition matrix equals the unit matrix I, as does the 

output matrix H, they have been omitted for simplicity. The network block in 

Figure 14 corresponds to the state transition matrix. A discussion on how to 

integrate actual transcription network information is given in the Further 

Discussion section. Given the models of the white noise processes W and V (Q 

and R, respectively) and the array measurements zk, the aim of the KF here is to 

estimate the state vectors kx̂ containing noise-free gene expression data. 

Considering the microarray profiling process as stationary (i.e. its statistical 

properties remain constant over time), the Kalman iterative estimation will 

converge to the steady-state KF, in which case the error covariance can be 

computed by solving the discrete algebraic Riccati equation (ARE): 

QPRPPPP  1)(                                   (24) 

Hence, the Kalman gain is given by: 

PRPK 1)(                                            (25) 
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The above equations are greatly simplified due to the omission of the state 

transition and output matrices for the same reason as noted previously. Finally, 

the estimated expression state vector is 

)ˆ(ˆˆ   xZKxx kk                                       (26) 

where, x̂ is an estimate of x based on the previous samples. An important issue 

within Kalman filtering is the filter tuning. Given the training vector set, x̂ can 

be chosen as the average of the class means, where for each class the means are 

computed from the member samples. We further use the training set to initialize 

and tune the two KF parameters, namely Q and R. To reduce the dimensionality 

of the problem, we propose the singular value decomposition [55]: 

UDYZ                                                  (27) 

The rows of Y are eigengenes and capture most of the variance of the original 

training dataset, while the columns correspond to the samples. The covariance 

matrix Q of the innovations can thus be obtained as the between-class covariance 

(i.e. the covariance of the class means with x̂ subtracted) evaluated on the 

reduced dimensionality training set Y. The measurement noise model R is 

estimated as a weighted form of the within-class covariance of Y (i.e. the 

covariance of Y with the class means subtracted). To avoid over-fitting we tune 

these parameters by introducing some uncertainty variance such that Q=Q+qI 

and R= R+rI. Our test runs led us to empirically conclude that in the case of 

single channel raw intensity array data (i.e. Affymetrix) q=Q11 and r=R11 are good 

choices for a reasonably good performance. Here the 11 index refers to the first 

eigengene usually considered as the offset of the microarray dataset, in which case 

it has a quite small variance. For expression log-ratio data (usually coming from 



44 

dual channel cDNA chips) or very sparse expression matrices these parameters 

yield acceptable results when we choose: 
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n being the number of training samples. With the tuned parameters we compute 

the low dimensional Kalman gain KY using Equations (24) and (25). Finally, from 

Equations (26) and (27), the filtered gene-expression state vector is given by: 

)ˆ(ˆˆ 1   xzUDUDKxx k

T

Yk                               (29) 

where, zk now spans the entire dataset, including both train and test 

measurements. We implemented the actual expression data specific Kalman filter 

in Matlab and the source code is available on Kelemen et al.’s [57] supplementary 

information website. 
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C h a p t e r  3  

RESULTS AND DISCUSSION 

3.1 Summary of the Results 

Since this dissertation is concerned with numerical processing methodologies for 

biological data, the results here are practical implementations of methods to real 

gene expression data. The actual biological results are also summarized. The basic 

and compulsory data preprocessing steps, namely quality control and LOWESS 

normalization, and also the t-test for detecting the differentially expressed genes 

are exemplified using publications that I have coauthored. A detailed description 

of the actual implementation of these procedures is given in Puskás et al [7], 

although these methods, or similar are used also in Nagy et al [56] and Zvara et al 

[8]. The results of Nagy et al [56] were used to present the custom application of 

the χ2 test to assess for the effect of the amplification protocol used for sample 

preparation, on the detected expression changes. A more complex analysis of 

transcription profiles is exemplified using Zvara et al [8]. A hierarchical clustering 

was performed on a group a microarray data samples coming from both healthy 

and schizophrenic individuals. The unsupervised method discovered the two 

biological classes. At the same level of analysis complexity, in Kelemen et al [57] 

we are concerned with classification (supervised clustering). Here we apply the 

proposed Kalman filtering procedure on seven publicly available cancer 

expression datasets, and test several classification methods before and after 

filtering. A large, but mostly technical discussion of the Kalman filtering results 

with regard to classification is also provided and some other mathematical 

methods that were not introduced earlier are used here for this sole purpose.  
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3.2 Applied Bioinformatic Analyses for the Identification of the Genes 
Regulated by NtrR in S. meliloti 

Here we aimed to identify the complete set of protein-coding genes influenced by 

loss of ntrR function in Sinorhizobium meliloti under aerobic and microaerobic 

conditions [7]. Microarray hybridizations were carried out to compare transcript 

levels in the wild type and mutant bacteria strains grown under both conditions. 

Mean signal and mean local background intensities were obtained for each of the 

6207 spots on the arrays. Spots were flagged as ‘‘empty’’ if R was  1.5 in both 

channels, where R=(signal mean-background mean)/background standard 

deviation, and these were not included in the further analysis. A floor value of 20 

was also used as threshold for the intensities. Data representing the log2 ratio of 

expression under microaerobic and aerobic conditions in both wild type and 

mutant strains were determined by cross-microarray comparisons, using single 

color intensities to calculate ratios. The duplicate experiments resulted in two 

average datasets calculated from triplicate spots representing each gene. Four 

combinations of ratios were calculated: wild type microaerobic/wild type aerobic; 

mutant microaerobic/ wild type microaerobic; mutant aerobic/wild type aerobic; 

mutant microaerobic/mutant aerobic. Before calculating the average ratios, tip-

LOWESS normalization (i.e. LOWESS on each grid of the microarray) was 

performed for each case. Only those ratios were determined where both of the 

median intensities were above the 2SD of the background. Genes significantly 

up- or down-regulated were identified by t-statistics, using a significance threshold 

value of α=0.05. This work encompasses therefore the three basic steps required 

for the numerical analysis of a comparative microarray experiment: quality 

control, normalization and detection of regulated genes. The changes resulting 

from the microarray analysis were verified using QRT-PCR. As suggested by the 

results, the ntrR mutation affects genes encoding for various functions in 

symbiotic nitrogen fixation, transport, metabolism, or heat shock. 



47 

 

Figure 15. Schematic representation of the modulating effect of ntrR 
on transcription levels under microaerobiosis.  

The cross-comparison reveals that some genes are induced under 

microaerobiosis, as shown in Figure 15, e.g. the members of the nif/fix cascade, 

which are up-regulated in the mutant relative to the wild type cells. The same 

figure shows that other genes, such as those participating in transcription-

translation and biosynthetic processes (rps, rpl) were repressed primarily due to 

the condition (microaerobiosis), but were less affected in the mutant. Also, 

metabolic function encoding genes (nos family), were found to be induced by 

microaerobiosis, but somewhat repressed in the mutant. Some chaperonin genes 

like groES3 were down-regulated under microoxic conditions, but in the mutant 

strain this effect was more pronounced than in the wild type cells. 
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3.3 Assessment of the Amplification Protocol Used in Sample Preparation 
on the Detected Gene Expression Changes 

The objective of this study [56] was to infer the influence of the DNA 

amplification technique used, on the outcome of an expression measurement. A 

microarray experiment suite was carried out in order to identify the genes that 

express differentially between lipopolysacharide-treated and untreated mouse 

macrophages. Concerning the underlying nucleic acid sample amplification, two 

strategies were undertaken: an exponential phase amplification and a saturation 

phase over-amplification. A third protocol using dendrimer-based signal 

amplification was also employed for a control experiment. Out of the 3200 

investigated genes, 15 were selected for QRT-PCR analysis and validation. The 

composition of this subset was balanced with regard to expression changes (i.e. it 

contained over-expressed, repressed, as well as un-regulated genes). Total RNA 

(1μg) was reverse transcribed and 15-ng aliquots were PCR amplified (Figure 16) 

with two protocols resulting in DNA samples from early phase (13th–15th 

cycles) and late exponential, early saturation phase (21st cycle). Thus, the two 

amplification strategies were again applied. Following the Pfaffl method, the 

QRT-PCR data was subjected to the one-sample t test to assess again the 

significance of the expression changes for the 15 selected genes. Within the 

control experiment that involved no DNA amplification, the same genes were 

selected and the data was subjected to the same treatment. Thus, to determine the 

effect of the amplification factor on the measured and categorized gene-

expression changes, the χ2 test, as described in the Methods section, was used. 

The overall significance threshold was set to 0.05. When comparing the 

exponentially amplified sample data to the control, a p-value of 0.8807 was 

obtained. No significant influence of the amplification could therefore be 

detected on the expression change composition. In the case of over-

amplification, on the other hand, p=0.0291 suggests a strong distortion induced 

by the experimental factor on the expression data. This result is due to the fact 
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that, while the exponential phase sample amplification protocol preserves the 

original gene expression ratios that we want to reproduce at detectable levels, in 

the saturation phase these ratios tend to roughly drift toward 1, distorting the 

results. 

 

Figure 16. cDNA amplification with QRT-PCR of the LPS-treated 
mouse macrophage. With the QRT-PCR halted at the 14th cycle, the 
amplified cDNA (a2) was generated in the exponential phase of the 
reaction; the overamplified cDNA (a1) was isolated from reactions 
halted at the 21st cycle; a3 denotes the nontemplate control. 

Clearly there are distortions that cannot be corrected by numerical means, such as 

those that appear here, during sample preparation. This type of noise, which 

physically influences the biological sample, has to be corrected on the protocol 

level. As a result of this statistical analysis, the exponential phase amplification 

was proposed as a better alternative for reliability and increased reproducibility. 

3.4 Schizophrenia Diagnosis and Marker Genes 

13 drug-naive schizophrenic patients and 10 control individuals were screened to 

identify novel peripheral genetic markers of schizophrenia [8]. A cDNA 

microarray analysis was performed in order to pre-screen for expression 
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regulation patterns on peripheral blood lymphocytes, and to identify potential 

peripheral marker genes. Out of the 3200 clones that were present on-chip, two 

were selected, based on their differential expression. These genes, namely DRD2 

and Kir2.3, also showed strong correlation with the disease. A validation 

experiment has been performed by means of QRT-PCR on these two features. 

We finally performed a hierarchical agglomerative clustering on the obtained two-

dimensional data (based on the two mentioned genes only). As pictured in Figure 

17, the procedure clearly delineates the schizophrenia from the normal healthy 

samples based on the proposed two-gene signature.  

 

Figure 17. The hierarchical clustering based on the reduced 
expression dataset clearly separates the two main clusters (MC-male 
control, FC-female control, M-male patient, F-female patient). 

A biological interpretation of the identified schizophrenia signature is given in the 

following. The increased occupancy of the D2 subclass of dopamine receptors by 
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dopamine is one of the hypotheses explaining the nature of schizophrenia. DRD2 

belongs to this class of receptors and is coupled to a G-protein. Receptor-

activated G-proteins can either activate or inactivate inwardly rectifying 

potassium channels, such as Kir2.3. Several different potassium channels are 

involved in electrical signaling in the nervous system. The malfunctioning of the 

K+ channels has also been brought in association with schizophrenia. 

3.5 Kalman Filtering for Disease-State Estimation 

We propose using the Kalman filter (KF) as a pre-processing step in microarray-

based molecular diagnosis [57]. Here, we show that employing the KF to remove 

noise (while retaining meaningful covariance and thus being able to estimate the 

underlying biological state from microarray measurements) yields linearly 

separable data suitable for most classification algorithms. We demonstrate thus 

the utility and performance of the KF as a robust disease-state estimator on 

publicly available binary and multiclass microarray datasets in combination with 

the most widely used classification methods to date. Moreover, using popular 

graphical representation schemes we show that our filtered datasets also have an 

improved visualization capability. 

3.5.1 Datasets 

We tested the Kalman filtering-classification scheme on a number of publicly 

available datasets, which are summarized in Table 2. The leukemia (ALL-AML) 

dataset of [29] is a popular dataset and is often used to test binary classification 

algorithms. Using the original sample annotation we partitioned this dataset into 

three leukemia classes. Hence the dataset consisted of T lineage acute 

lymphoblastic leukemia (T-ALL), B lineage acute lymphoblastic leukemia (B-

ALL) and acute myeloid leukemia (AML) samples. 
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Name #classes #genes #train #test Source 

ALL-AML 3 7129 38 34 Golub et al. 1999 

Tumors 14 16063 144 54 Ramaswamy et al. 2001 

MLL 3 12582 57 15 Armstrong et al. 2002 

LC 2 12533 32 149 Gordon et al. 2002 

SRBCTa 4 2308 63 25 Khan et al. 2001 

BCb 2 24481 78 19 van’t Veer et al. 2002 

Leukemia1 7 12558 215 112 Yeoh et al. 2002 

Table 2. Features of the datasets. 

In our study we included two other leukemia datasets: the mixed lineage leukemia 

(MLL) dataset [58] and the pediatric acute lymphoblastic leukemia (Leukemia) 

dataset [61]. The former consists of acute lymphoblastic leukemia (ALL) and 

AML samples along with ALLs carrying a chromosomal translocation involving 

the MLL gene. The latter is composed of B-ALL subtypes expressing BCR-ABL, 

E2A-PBX1 and TEL-AML1, respectively, a hyper-diploid karyotype, as well as 

MLL, T-ALL and a novel leukemia subtype. The “various tumor types” (Tumors) 

dataset [27] is considered a difficult dataset and consists of 14 classes of tumors: 

breast, prostate, lung, colorectal, lymphoma, bladder, melanoma, uterus, 

leukemia, renal, pancreas, ovary, mesothelioma and central nervous system 

tumors. The dataset (LC) of [59] contains microarray data that accounts for two 

distinct pathological alterations of the lung: malignant pleural mesothelioma and 

adenocarcinoma. The small, round blue cell tumors (SRBCT) of childhood 

dataset [40] includes a training set of neuroblastoma, rhabdomyosarcoma, Burkitt 

lymphoma and the Ewing family of tumors samples and an independent test set 

that, besides the samples belonging to the training classes, also contains samples 

that should not be classified into any of these tumor types. [60] provides a dataset 

(BC) consisting of samples coming from breast cancer patients that were 

clustered by the original authors into two classes according to the patient’s 

response to adjuvant therapy: relapse and non-relapse. 

                                                 
a dataset containing log-ratio expression data 

b sparse dataset 
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3.5.2 Classification results 

We applied the Kalman filtering on the described datasets and for a comparative 

study SVM, ANN, 1NN and RF supervised learning methods were evaluated in 

full gene set manner. Table 3 summarizes the Accuracy and ROC scores we 

obtained. Evidently, the KF definitely improves the classification results of the 

ANN, 1NN and RF. The SVM results were boosted in 64% of the overall scores. 

We should mention that, in the four-class SRBCT dataset there were 25 test 

samples, but among the test elements there were 5 samples which were not 

members of any of the training classes. We expected each of the class specific 

learners to reject these samples. The procedure however, will necessarily assign 

them to the closest classes, which results in an apparent decrease of performance. 

Owing to these 5 cases, for the SRBCT dataset the mean of the class accuracies 

was shown. 

  SVM ANN 1NN RF 

  Original PCA KF Original KF Original KF Original KF 

ALL-AML 
ROC score 0.99 0.99 0.99 0.97 0.99 0.73 1 0.92 0.95 

Accuracy 0.91 0.82 0.97 0.91 1 0.82 1 0.74 0.94 

BC 
ROC score 0.88 0.81 0.70 0.67 0.74 0.23 0.68 0.64 0.68 

Accuracy 0.58 0.63 0.68 0.37 0.74 0.63 0.63 0.63 0.63 

Leukemia 
ROC score 0.97 0.96 0.98 0.90 0.98 0.60 0.88 0.94 0.96 

Accuracy 0.50 0.29 0.7 0.37 0.58 0.89 0.87 0.86 0.76 

LC 
ROC score 1 0.99 0.99 1 0.99 0.59 0.99 0.99 0.99 

Accuracy 0.99 0.98 0.98 0.99 0.98 0.94 0.98 0.93 0.98 

MLL 
ROC score 1 1 1 1 1 0.87 1 0.92 0.98 

Accuracy 1 1 1 1 1 0.93 1 0.8 1 

SRBCT 
ROC score 0.99 0.99 1 0.99 1 0.66 1 0.99 1 

Accuracyc 0.97 0.97 0.99 0.94 0.95 0.91 0.95 0.93 0.98 

Tumors 
ROC score 0.95 0.91 0.94 0.90 0.94 0.72 0.92 0.84 0.87 

Accuracy 0.74 0.63 0.80 0.50 0.80 0.46 0.67 0.48 0.67 

Table 3. Comparison of the classification performance on the 
original and the Kalman filtered datasets. The best performing value 
for each method is shown in bold, and the overall best values are also 
underlined. 

                                                 
c denotes the mean of the class accuracies 
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To assess the significance of filtering on microarray data classification we 

performed paired two sample t-tests to compare the accuracies and ROC scores 

of the classification procedures on the original datasets with their counterparts in 

the KF case. The t-statistic was applied in one-tail fashion testing against the 

alternative hypothesis that the mean of accuracies/ROC scores produced by a 

certain method on the raw datasets is less than the mean of the matched 

performance measures on the pre-processed datasets. Table 4 shows that with 

95% confidence the KF approach significantly improves the accuracy or the 

ROC score. In our study we also compared the KF scheme with a different 

approach to multivariate filtering. The principal component analysis (PCA) based 

filtering consists of removing the non-significant variance components computed 

using the eigen-decomposition of the covariance matrix of the training set.  

t-Test (=0.05) Accuracies ROC scores 

pSVM≥KF+SVM 0.033 0.18 

pPCA+SVM≥KF+SVM 0.043 0.35 

pANN≥KF+ANN 0.028 0.03 

p1NN≥KF+1NN 0.033 0.0002 

pRF≥KF+RF 0.052 0.005 

pSVM≥PCA+SVM 0.083 0.058 

Table 4. Significance test results 

The PCA results with SVM are shown in Table 3. As opposed to PCA the KF 

retains the dataset in the original gene space and is also supervised procedure 

from a classification point of view. This point is made clear by the p-values in 

Table 4. In the SVM framework, the PCA filtered datasets did not yield any 

improvement at a significance level of 0.05 in accuracy/ROC score compared to 

the original data. Using the same learning algorithm, the KF shows significant 

accuracy increase over the PCA technique. The advantage of such a pre-

processing approach here is not just a better classification performance, but also 

an improved visualization capability of the data.  
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Figure 18. The heat map representation of the AML-ALL dataset. 
The first pair shows the original dataset and the second pair shows 
the filtered dataset. 

The heat map with a hierarchical clustering presented in Figure 18 demonstrates 

how effectively the KF technique performs. The columns represent the samples 

and the clustering was effectuated on the genes (the rows). Each gene expression 

value is encoded by a color according to the legend below the heat-map. A visual 

inspection on the original dataset on the left shows no distinction of the classes 

due to noise. Filtering helps remove noise and the leukemia classes become 

visible. The standard deviation of the gene expression values was reduced in each 
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class. And the genes that carried no information related to the class separation 

were homogenized. 
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Figure 19. The original (a) and the Kalman filtered (b) AML-ALL 
dataset visualized by LLE. 

Another type of visualization underlines the same performance of the Kalman 

filter. Figure 19a depicts the original AML-ALL dataset while Figure 19b depicts 

the Kalman filtered dataset. As we mentioned in the Methods section, the axes 

here stand for two abstract dimensions which result from the locally linear 

embedding. These two dimensions, obtained from the reduction of the 7129 

genes, do not correspond to any physical quantity or variable, and therefore are 

not named on the figure. The classes within the 2D points are marked distinctly. 

The LLE representation clearly shows that the classes are more delineated with 

filtering than without.  

3.5.3 Signature features 

The RFE feature selection method was evaluated on the original and the Kalman 

filtered datasets to test whether filtering could help find more reliable subsets of 

tumor marker genes.  



57 

 

35926_s_at

33845_at

1389_at

 

 

ALL

MLL

AML

35926_s_at

33412_at

38096_f_at

 

 

ALL

MLL

AML

 

 

ALL

MLL

AML

 

 

ALL

MLL

AML

a

b

35926_s_at

33845_at

1389_at

 

 

ALL

MLL

AML

35926_s_at

33412_at

38096_f_at

 

 

ALL

MLL

AML

 

 

ALL

MLL

AML

 

 

ALL

MLL

AML

a

b

 

Figure 20. Visualization of the original (left side) and the Kalman 
filtered (right side) MLL dataset. In (a) the RadViz method was used 
on three genes selected by RFE and plotted on the unit circle. The 
same genes were used with LLE in (b). 

The results we obtained, summarized in Table 5, show that the number of 

Kalman filtered features necessary for a good discrimination of tumor types is 

smaller than the size of the raw feature set required for a similar performance. 

The same result is noticeable in Figure 20 where, in a three-best-feature setup, the 

MLL classes are well separated in the KF data but they are overlapped in the 

original vector set. Figure 21 shows a heat map visualization of the MLL dataset 

with 50 selected features. 
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Figure 21. Heat map of the best 50 genes selected by RFE from the 
MLL dataset. On the Kalman filtered dataset (right) the features are 
less noisy and the three classes are further apart than in the original 
dataset (left). 

These genes were selected so that their expression is in close (numerical) 

relationship with the leukemia subtypes. The classes are almost visible now even 

on the raw data. While on the train set KF obviously removes the measurement 

noise, which results in clearly separated tumor groups, the variance of the test set 

is also noticeably diminished by the filter. Note that the selected genes from the 

original and the filtered datasets are distinct. 



 

 

Score Dataset Name 

 Number of selected features with RFE 

 2 3 5 7 10 15 20 30 50 

Accuracy 

ALL-AML 
Original 0.53 0.56 0.68 0.68 0.68 0.65 0.74 0.76 0.85 

KF 0.74 0.94 0.82 0.85 0.97 1 0.97 0.97 0.97 

BC 
Original 0.79 0.63 0.63 0.63 0.63 0.63 0.58 0.58 0.58 

KF 0.63 0.63 0.63 0.63 0.63 0.58 0.58 0.58 0.63 

Leukemia 
Original 0.26 0.46 0.58 0.60 0.66 0.82 0.75 0.78 0.77 

KF 0.19 0.32 0.59 0.68 0.79 0.79 0.77 0.81 0.54 

LC 
Original 0.95 0.98 0.99 0.99 0.97 0.98 0.97 0.97 0.98 

KF 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

MLL 
Original 0.67 0.67 0.73 0.87 0.87 0.87 0.93 1 0.93 

KF 1 1 1 1 1 1 1 1 1 

SRBCT 
Original 0.81 0.74 0.84 0.81 0.81 0.85 0.89 0.92 0.97 

KF 0.88 0.88 0.95 0.99 0.99 0.99 0.99 0.99 0.99 

Tumors 
Original 0.13 0.11 0.19 0.24 0.26 0.43 0.50 0.46 0.54 

KF 0.17 0.17 0.35 0.48 0.52 0.65 0.65 0.69 0.74 

ROC 

ALL-AML 
Original 0.68 0.65 0.83 0.83 0.89 0.87 0.90 0.92 0.95 

KF 0.87 0.93 0.92 0.94 0.99 0.99 0.99 0.99 0.99 

BC 
Original 0.89 0.81 0.76 0.79 0.75 0.73 0.75 0.62 0.78 

KF 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

Leukemia 
Original 0.74 0.82 0.88 0.89 0.90 0.95 0.93 0.92 0.95 

KF 0.74 0.84 0.95 0.96 0.98 0.98 0.99 0.98 0.98 

LC 
Original 0.97 0.99 1 1 1 1 1 1 1 

KF 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

MLL 
Original 0.86 0.88 0.93 0.98 0.99 0.96 0.95 1 1 

KF 1 1 1 1 1 1 1 1 1 

SRBCT 
Original 0.84 0.79 0.90 0.90 0.89 0.93 0.98 0.97 0.99 

KF 0.92 0.93 0.97 1 1 1 1 1 1 

Tumors 
Original 0.61 0.65 0.75 0.79 0.80 0.81 0.85 0.84 0.88 

KF 0.68 0.77 0.86 0.89 0.87 0.90 0.91 0.91 0.93 

Table 5. The accuracies and ROC scores obtained via SVM depending on the number of selected features.
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The names of the two best performing genes within the filtered MLL dataset are 

given in Table 6.  

Clone ID Accession Description 

33412_at AI535946 vicpro2.D07.r conorm Homo sapiens cDNA 5', mRNA sequence 

38096_f_at M83664 Human MHC class II lymphocyte antigen (HLA-DP) beta chain mRNA 

Table 6. The two best performing MLL markers. 

The linear or nonlinear combination of these genes’ expression levels does not 

necessarily mean an actual relationship between them. In fact, the KF uses the 

variance of all the involved features in estimating the expression state, and these 

genes may just be the “top of the stack” or the finely regulated distant ends of the 

network. The database contains little information on vicpro2, although it has 

come up as marker gene candidate in many classification projects in the literature. 

It was associated with prostate tumor. The major histocompatibility complex 

genes (lymphocyte antigen) are involved in the immune response. So there is a 

double association of the selected genes with tumor in general and leukemia in 

particular. To compare the quality of features selected from the original datasets 

with the filtered ones, the fisher separation ratio (FSR) was used. The FSR is a 

scalar which is large when the between-class covariance is large and when the 

within-class covariance is small. Out of the many possible choices of criterion 

[35] our ratio was defined as }{ 1

BW SSTrFSR  , where Tr{} denotes the trace of 

a matrix and SB and SW are the between- and within-class scatter matrices, 

respectively [62]. Here the between-class scatter matrix is the scatter of the class 

mean vectors around the overall mean vector, while the within-class scatter 

matrix denotes the weighted average scatter of the covariance matrices of the 

sample vectors belonging to each class. Table 7 lists the FSR scores for 10 

features independently selected from each dataset.  
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Dataset Original KF 

ALL-AML 14.088 19.737 

BC 1.480 2.677 

Leukemia 4.079 66.299 

LC 5.757 4.164 

MLL 8.481 67.659 

SRBCT 3.621 105.181 

Tumors 3.406 29.668 

Table 7. FSR on 10 features selected via RFE 

(pOriginalKF = 0.0245). 

The significantly larger scores (p=0.0245 obtained from a t-test, as described 

previously) produced by the KF features demonstrate the greater predictive 

power of the estimated expression data that best define the causal biological 

states. In conclusion, the KF is a systemic approach to filtering, each gene’s 

expression being estimated using the variances of all the individual features, of 

course assuming that many genes reflect the biological state of the sample due to 

the transcriptional network. Hence, it remains for further study (i.e. PCR analysis) 

to assess whether the selected features can also independently predict and 

diagnose a tumor outcome. 
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C h a p t e r  4  

FURTHER DISCUSSION AND CONCLUSIONS 

4.1 Further Study Perspectives – Beyond the Single Dataset 

Since we are concerned with biological and typically gene expression data analysis 

methodology, in the following we shall discuss the possibility of extending KF 

procedure in the systems biological sense. The preliminary results given here are 

presented solely for the purpose of practical exemplification of the thoughts and 

ideas discussed. As we saw in the Methods section, so far the filter has been used 

in conjuncture with the most simplistic model of the microarray process. The 

model was driven stochastically only by random processes. It was also clear, that 

the filter is able to process transcriptome-wide data. Therefore, the question that 

arises here is how can we integrate information about the true transcriptional 

network, in its entirety, into this model and the filtering procedure itself? It is only 

natural for this sort of problems to emerge as we approach system level analysis, 

so particular to systems biology. Further, system level understanding of cancerous 

cells could provide deterministic and reliable strategies of effective treatment. 

One possibility of model enrichment is to expand the state-space equations in 

(23) to the more general form: 

kkk

kkkk

vxz

wBuAxx



 1
.                                  (30) 

A is the state transition matrix, while B is the control matrix. The state transition 

matrix should account for the networked relationships between the states (i.e. 

transcripts), as well as the network dynamics. The acquiring of the matrix A can 

be done by estimation from time-series data. For this purpose, in our preliminary 

analysis we used a time-series dataset from Whitfield et al. [63]. This dataset was 
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obtained by expression profiling of a HeLa cell culture synchronized by arrest in 

S phase using a double thymidine block. As target tumor data the SRBCT dataset 

was chosen. Previous to any analysis, the two datasets were synchronized to each 

other, such that only common genes were kept. Also, the missing values within 

the Whitfield dataset were estimated using a kNN based algorithm described in 

[64]. Out of the remaining number of genes, we selected the 30 best ranked ones, 

based on the RFE-SVM results in Section 3.2.3. Based on the rough presumption 

that the SRBCT cell can be obtained from a HeLa cell by controlling the 

expression-states, we can write the following equations involving actual gene-

expression data: 

kBAss

BAhh
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ii



 



01
,                                         (31) 

Here, hi stands for the i-th HeLa transient response sample, while 
ks represents 

the average of the SRBCT samples belonging to the k-th (k=1:n) class (a steady 

state response). This black-box system identification problem can be solved by 

the least-squares procedure [1], when the number of samples is satisfactory: 
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In our case the number of samples was sufficient for the system identification. 

Having obtained the system model (A, B), the Kalman filtering can be performed 

similarly as described in Section 2.5, except the ARE becomes: 

QAPRPPPAP T   ])([ 1                                   (33). 



64 

Also, the uncertainty parameters q and r may be dropped. Figure 22 shows the 

dataset filtered using the proposed procedure. In this preliminary study, the test 

samples known to be members of neither of the training classes were removed 

prior to classification. Thus, the classification using SVM was 100% accurate.  

 

Figure 22. The filtered SRBCT dataset. 

This promising result, which could not be obtained based solely on the raw 

SRBCT dataset, suggests that the transcription-network model of a few genes can 

roughly account for the entire system under certain circumstances. Figure 23, on 

the other hand, shows that a cluster analysis on the filtered full dataset can 

delineate the classes, and the “foreign” samples are quite differentiated as well. 

Such a system level analysis has several implications in classification. Some of the 

variance of the tumor samples may be identified as being of biological origin. 

Thus, the method can handle such variances and this is reflected on the 

classification results as well. More importantly, it is expected that the selected 

marker genes would also be more reliable. In the future, issues like system 

controllability could be also inferred, possibly leading to the identification of 
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actual drug target genes, which control the most of the cell events, and optimal 

control based treatment strategies could be employed. 
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Figure 23. Cluster analysis on the filtered SRBCT dataset. EWS, BL, 
NB and RMS stand for the class means. 

 

4.2 Conclusions 

Data preprocessing is compulsory before biological interpretation of QRT-PCR 

and DNA microarray data. Some of our biologically interpreted result could also 

be verified in the literature showing that the preprocessing was effective and that 

the novel biological results are reliable. There are error that cannot be corrected 

numerically, such as those induced by sample preparation. The less distorting 

protocol should be used for these work phases. As we saw, the Kalman filter is a 



66 

powerful data processing tool. In the frame classification it performed well 

improving the accuracy of the used machine learning algorithms, and thus 

increasing the reliability of cancer diagnosis. The different levels of performance 

improvement on the different classification methods result from the nature, 

mathematical background and complexity of these methods. This is reflected in 

how well they can handle noise themselves. For example, the nearest neighbor 

algorithm is one of the simplest classifiers. It performs therefore quite poorly in 

noisy environment. On the linearly classifiable datasets, yielded by filtering, its 

performance is significantly improved. The different datasets were produced by 

different laboratories, probably using different protocols as well. In addition to 

that, there are various array platforms that the data come from. All these 

influence the noise estimates used by the Kalman filtering procedure. The KF 

procedure works best with normally distributed noise, although being quite 

robust to other distributions up to a certain degree. This clearly influences the 

performance on certain datasets. The results obtained within the classification 

frame intuitively lead to the idea of the KF being used also for the purpose of 

general expression-data normalization, in the broader sense. The only problem 

consists of estimating the measurement-experimental noise. This could be 

achieved for example by performing multiple technical repeats, prior to the actual 

experiment. Once passed over this obstacle, the procedure can in theory filter 

systematic as well as random noise, and thus could replace several steps of the by 

now conventional microarray data analysis. The technique is suitable for both 

QRT-PCR and microarray data, since these data are of the same nature. Actually, 

for the QRT-PCR data the implementation of the filter could simpler, since the 

number of investigated genes is smaller, thus the dimensionality of the problem is 

lower. The performance of the KF technique depends essentially on the tuning of 

the covariance matrices Q and R. In our implementation we used a flexible 

parametric setting, which allows us to handle the uncertainty of the noise 

estimates (due to the high dimensionality, the test samples’ noise may be marginal 
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in the noise distribution). We tried the make these settings as general as possible, 

and yet provide overall good performance. Our choice of parameters proved to 

be reasonable for classification, although an improvement based on larger 

training data or better tuning formulae is possible. The filtering of one dataset 

took only a few seconds of CPU time, hence the technique is a fast and scalable 

method for pre-processing the gene-expression data. 
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ABSTRACT 

Introduction  

The ever-increasing flow of biological data – DNA sequence, gene expression 

profiles, protein-protein interactions – leads to rapid progress in the area of 

biology known as systems biology. The available high-throughput gene-

expression quantification technologies are partly responsible for the burst of this 

field. In an attempt to model and simulate the biological system of the cell, 

systems biology promises better understanding of life functions and also reliable 

treatment against disease. It is known that the various subtypes of cancer respond 

differently to various treatments. It is essential, therefore, to accurately diagnose a 

tumor, before any treatment. Based on its gene-expression profile, a tumor cell 

can be viewed as a state machine with each state corresponding to the biological 

state of cancer subtype. This leads to the idea of gene-expression based molecular 

classification - a mathematical approach to cancer diagnosis, which is a true 

systems biological task. This sort of class prediction problem, particularly based 

on DNA microarray data, has been an important research topic in recent years. A 

large number of machine learning algorithms and methods, such as support 

vector machines, artificial neural networks, nearest neighbor classifiers, or 

random forests, have been applied, aiming for better accuracy and precision of 

diagnosis, and also the selection of a more reliable cancer signature consisting of a 

reduced number of genes. Unfortunately, the gene expression data used for such 

classifications is invariably corrupted with noise, either of biological or of 

experimental origin. Thus, for a reliable classification, the data has to flow 

through various preprocessing stages. 
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Objectives 

The aims of this study are typically concerned with gene expression data 

processing. The list of objectives related to the subsequent individual 

bioinformatic processing steps is presented below. 

 Application of the “gold standard” gene-expression data analysis methods 

to real laboratory QRT-PCR and microarray data. 

 Statistical analysis of the effect of laboratory protocol innovation on the 

gene-expression experiment outcome. 

 Class discovery and marker gene testing in schizophrenia transcriptional 

profiles. 

 Development of innovative system level methods for expression data 

normalization and noise reduction (Kalman Filter), with application to 

molecular diagnosis of cancer.  

Incorporating the expression covariance between genes proves to be an 

important issue in biological data classification problems with application to 

diagnosis, since this represents the functional relationships that govern tissue 

state. We also aim to show here that employing the Kalman Filter on microarray 

data to remove noise (while retaining meaningful covariance and thus being able 

to estimate the underlying biological state from microarray measurements) yields 

linearly separable data suitable for most classification algorithms. 

Results 

Since this dissertation is concerned with numerical processing methodologies for 

biological data, the results here are practical implementations of methods to real 
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gene expression data. The actual biological results, although significant, were not 

of major concern here. The basic and compulsory data preprocessing steps, 

namely quality control and LOWESS normalization, and also the t-test for 

detecting the differentially expressed genes are exemplified using publications that 

I have coauthored. A detailed description of the actual implementation of these 

procedures is given for the experiment related to the identification of the genes 

modulated by the ntrR gene in Sinorhizobium meliloti. These methods or similar are 

applied however in all the experiments related to this study.  

An experiment concerning the expression changes induced by lipopolysaccharide 

treatment on mouse macrophage cells was used to assess for the effect of the 

amplification protocol used for sample preparation, on the detected expression 

changes. A statistical analysis based on the custom application of the χ2 test on 

the categorical expression change results (down-regulation, up-regulation, no 

change) for some 15 genes, shows that the exponential-phase DNA amplification 

is more reliable than the saturation-phase over-amplification for sample 

preparation. These results are important for selecting the proper protocol, from 

the reproducibility point of view. 

A more complex analysis of transcription profiles is presented within an 

experiment seeking to identify genes regulated differently in schizophrenia 

compared to the healthy control. During the analysis, two genes, namely DRD2 

and Kir2.3, were identified as having such a behavior. These genes were proposed 

as marker genes. To test their predictive capability in diagnosing the disease, a 

hierarchical clustering was performed on data samples specific to these two genes, 

coming from both healthy and schizophrenic individuals. The unsupervised 

method discovered the two biologically distinct classes.  

At the same level of analysis complexity, we were also concerned with 

classification (supervised clustering) of microarray data, as a molecular diagnosis 
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method for cancer subtypes. Here we proposed the Kalman filtering procedure as 

a mathematical tool which is able to decompose the noise into biologically 

meaningful variance and measurement noise or error. Considering the biological 

state the true gene expression profile associated with a tumor family, the 

biological variance is the stochastic model of the expression changes associated 

with the tumor subclasses under investigation. The measurement noise, on the 

other hand, represents the stochastic model of all the errors that can appear at the 

various laboratory phases in the course of a microarray experiment. The Kalman 

filter, using a state-space model of the data flow, and the two mentioned 

stochastic models, estimates the actual biological state. We applied Kalman 

filtering on seven publicly available cancer expression datasets, and tested the 

support vector machines, artificial neural networks, nearest neighbor classifiers, 

and random forests classification methods before and after filtering. In a mostly 

technical discussion of the Kalman filtering results with regard to classification, 

we show that the classification results were significantly improved. Three state-of-

the-art graphical representation schemes are also employed in the study, to 

inspect whether the tumor subclasses are also visually detectable. We also discuss 

in detail the selection of marker genes. The predictive potential with regard to 

cancer, of the original and Kalman filtered marker genes is assessed statistically, 

and we show that the number of Kalman filtered features necessary for a good 

discrimination of tumor types is smaller than the size of the raw feature set 

required for a similar performance. 
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ÖSSZEFOGLALÁS 

Bevezetés 

Az utóbbi években egyre gyarapodó biológiai adatbázisok – mint például a DNS 

szekvencia, génexpressziós mintázat, fehérje-fehérje kölcsönhatás adattárak – a 

rendszer biológia dinamikus fejlődését eredményezték. A ma hozzáférhető magas 

adatátvitelű gén-expressziós technológiák hasonlóan hozzájárultak a rendszer 

biológia tudományterület fejlődéséhez. A rendszer biológia lehetővé teszi az 

élettani folyamatok jobb megértését és az orvosi biológia területén megbízhatóbb 

diagnosztikát és orvosi kezelést ígér. Ez azáltal válik elérhetővé, hogy törekszik 

matematikailag modellezni és szimulálni a sejtben zajló komplex biológiai 

folyamatokat. Ismeretes, hogy a rákos megbetegedések altípusai eltérően 

válaszolhatnak az eltérő kezelésekre. Ezért is indokolt a kezelést megelőző pontos 

diagnózis. A gén-expressziós mintázata alapján, a rákos sejt egy olyan több-

állapotos rendszerként fogható fel, ahol az egyes állapotok a rák altípusainak 

feleltethetők meg. Ez az elképzelés vezetett el a rákos megbetegedés gén-

expresszión alapuló molekuláris klasszifikációjához – ami nem más, mint 

matematikai módszereken alapuló diagnózis. Az utóbbi években kitűntetett 

tudományos érdeklődésnek tartanak számot az elsősorban DNS microarray alapú 

ide sorolható módszerek. Nagyszámú mesterséges intelligencián alapuló 

algoritmusok, mint amilyenek a support vector machine, mesterséges neuron 

hálók, nearest neighbor osztályozó, vagy a random forests, azzal a céllal kerültek 

alkalmazásra, hogy pontosabb és megbízhatóbb diagnosztikát tegyenek lehetővé. 

Sajnos a meglévő gén-expressziós adatokon (QRT-PCR, DNS microarray), a 

kísérleti körülményekből adódó hiba (zaj) és a biológiai eredetű variancia 

együttesen megfigyelhető. Ezért indokolt egy több lépésből álló adat elő-

feldolgozás és további módszertani fejlesztések is.  
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Célkitűzés 

Célkitűzéseink a gén-expressziós adatfeldolgozással és módszertani fejlesztéssel 

kapcsolatosak. Nevezetesen: 

 A standard gén-expressziós adatfeldolgozási módszerek alkalmazása 

QRT-PCR és microarray adatokon. 

 Statisztikailag megvizsgálni, hogy a laboratóriumban használt protokollok 

alapján hogyan befolyásolhatók az egyes gén-expressziós változások. 

 Klaszterezés és marker gének azonosítása szkizofréniás betegek gén-

expressziós mintázatában. 

 Új normalizációs és zajszűrési (Kálmán Szűrő) módszerek fejlesztése és 

alkalmazása a molekuláris szintű rák diagnosztikában. 

A gén-expressziós kovariancia, mely a gének közti funkcionális kapcsolatot is 

mutatja, fontos szereppel bír a betegségek molekuláris osztályozásában. A 

Kálmán Szűrő figyelembe veszi a gén-expressziós kovarianciát. Célunk, hogy a 

Kálmán Szűrő segítségével kiszűrjük a kísérleti zajt és megbecsüljük a minták 

biológiai állapotát. Nem utolsó sorban szándékunkban állt megvizsgálni a Kálmán 

Szűrővel kezelt adatok osztályozhatóságát, osztályozó algoritmusok segítségével. 

Eredmények 

A disszertációban közölt eredmények bioinformatikai módszerek alkalmazását 

mutatják be. A kötelező gén-expressziós adat elő-feldolgozási lépések, 

nevezetesen a minőség ellenőrzés és a LOWESS normalizáció illetve a t-próba, 

mely a gén-expressziós eltéréseket tárja föl, a társszerzős publikációk 

eredményeiben kerültek bemutatásra. A fenti módszerek alkalmazásának részletes 
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leírása került bemutatásra, abban a publikációban, mely az ntrR által szabályozott 

géneket azonosítja Sinorhizobium meliloti modell organizmusban. Egy DNS 

microarray kísérletben az S. meliloti egy ntrR funkcióvesztéses mutánsát 

hasonlítottuk össze a vad típussal aerob és mikroaerob körülmények között.  

Egerek makrofág sejtjein végzett lipopoliszacharidos kezelés egy olyan kísérletnek 

szolgált alapul, melyben a DNS amplifikációnak a gén-expressziós változásra mért 

hatását vizsgáltuk. A cDNS amplifikációt két protokoll - exponenciális fázisban 

megállított amplifikáció illetve szaturációs amplifikáció - alapján végeztük el és az 

eredményezett gén-expressziós változást mutató adatokon χ2 próbát hajtotunk 

végre. A kísérlet kontrolljaként egy non-amplifikációs protokoll szolgált. A 

statisztikai eredmények azt igazolták, hogy az exponenciális fázisban megállított 

amplifikáció megbízhatóbb, szemben a szaturációs amplifikációval, a microarray 

kísérletek reprodukálhatósága szempontjából.  

Továbbá, egy szkizofréniás betegekből álló populációt használtunk fel arra, hogy 

megbízható marker géneket keressünk a kór molekuláris diagnosztizálásához. A 

DRD2 és a Kir2.3 bizonyultak marker génnek. Annak ellenőrzésére, hogy a fenti 

gének esetében valóban a betegség marker génjeivel állunk szemben, hierarchikus 

klaszterezést hajtottunk végre, beteg és egészséges személyektől származó 

adatokon. A klasszterező eljárás látványosan kimutatta, hogy a szkizofrén minták 

elkülönültek a normál mintáktól a fenti gének tekintetében. 

A továbbiakban a gén-expressziós adatok klasszifikációja állt érdeklődésünk 

középpontjában. A klasszifikáció hatékonyságának javítása érdekében a Kálmán 

Szűrőt vezettük be. Munkánk szempontjából a legfontosabb tulajdonsága ennek a 

matematikai módszernek, hogy elkülőníti a biológiailag értelmezhető varianciát a 

mérési zajtól. A microarray kísérletben biológiai állapotnak tekintjük a gének valós 

expressziós szintjét. Az osztályozási felállásban ez az állapot az egyes 

alosztályoknak megfelelően változik. Ezt az esetet stochasztikusan modelleztük. A 
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mérési zaj szintén stochaszikusan volt megjeleníthető. A Kálmán Szűrő a 

stochaszikus modellek mellett fölhasznál még egy a microarray folyamatnak 

megfelelő determinisztikus modellt. Ezek segítségével vált felbecsülhetővé a 

gének valós expressziós szintje azaz a biológiai állapot. A fenti módszert 7 

különböző publikus, tumoros eredetű adatsoron alkalmaztuk. A 

leghasználatosabb klasszifikációs módszereket szűrt és nem szűrt adatokon 

egyaránt teszteltük. Statisztikailag igazoltuk, hogy a Kálmán Szűrő szignifikánsan 

javítja az osztályozhatóságot. Három különböző grafikai ábrázolást alkalmaztunk, 

annak demonstrálására, hogy az egyes osztályok szemmel láthatóan elkülönülnek 

egymástól. Új markerek azonosítását is tárgyaljuk, annak bizonyítására, hogy a 

szűrt expressziós adatok, már kis számú gén esetében is predikciós portenciállal 

bírnak az osztályozásra nézve. 
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Notes sourced by 
www.wikipedia.org: 
                                   
i Alfred Bernhard Nobel 

(1833-1896) was a 

Swedish chemist, 

engineer, innovator, 

armaments manufacturer 

and the inventor of 

dynamite. He owned 

Bofors, a major 

armaments manufacturer, 

which he had redirected 

from its previous role as 

an iron and steel mill. In 

his last will, he used his 

enormous fortune to 

institute the Nobel Prizes. 

There is no Nobel Prize 

for mathematics (the 

Fields Medal is often 

considered to be the 

equivalent in terms of 

prestige). 

ii Magnus Gustaf (Gösta) 

Mittag-Leffler (1846-

1927) was a Swedish 

mathematician. He was a 

member of the Royal 

Swedish Academy of 

Sciences (1883), the 

Finnish Society of 

Sciences and Letters 

(1878, later honorary 

member), the Royal 

Swedish Society of 

Sciences in Uppsala, the 

Royal Physiographic 

Society in Lund (1906) 

and about 30 foreign 

learned societies, including 

the Royal Society of 

London (1896) and 

Académie des sciences in 

Paris. He held honorary 

doctorates from the 

University of Oxford and 

several other universities. 

iii John Forbes Nash, Jr. 

(1928-) is an American 

mathematician who works 

                                   
in game theory and 

differential geometry. He 

shared the 1994 Bank of 

Sweden Prize in 

Economic Sciences (also 

called the Nobel Prize in 

Economics) 

iv Daniel Kahneman (1934-

) is an American 

psychologist, notable for 

his pioneering work on 

behavioral finance and 

hedonic psychology. 

v Vernon Lomax Smith 

(1927-) is professor of 

economics at George 

Mason University, a 

research scholar at George 

Mason's Interdisciplinary 

Center for Economic 

Science, and a Fellow of 

the Mercatus Center, all in 

Arlington, Virginia. 

vi Anatole France (1844-

1924) was the pen name 

of French author Jacques 

Anatole François 

Thibault. He was born in 

Paris, France, and died in 

Tours, Indre-et-Loire, 

France. 

vii Karl Ludwig von 

Bertalanffy (1901-1972) 

was an Austrian-born 

biologist known as one of 

the founders of general 

systems theory. 

viii Anatol Rapoport (1911-) 

is a Russian-born 

American Jewish 

mathematical 

psychologist. He is one of 

the founders of the 

general systems theory. 

He also contributed to 

mathematical biology and 

to the mathematical 

modeling of social 

interaction and stochastic 

                                   
models of contagion. He 

combined his 

mathematical expertise 

with psychological insights 

into the study of game 

theory and semantics. 

Rapoport extended these 

understandings into 

studies of psychological 

conflict, dealing with 

nuclear disarmament and 

international politics. 

ix Sir Arthur Stanley 

Eddington (1882-1944) 

was an astrophysicist of 

the early 20th century. He 

is famous for his work 

regarding the Theory of 

Relativity. Eddington 

wrote an article in 1919, 

Report on the relativity 

theory of gravitation, 

which announced 

Einstein's theory of 

general relativity to the 

English-speaking world. 

Because of World War I, 

new developments in 

German science were not 

well known in England. 

x Francis Harry Compton 

Crick (1916-2004) was an 

English molecular 

biologist, physicist, and 

neuroscientist, who is 

most noted for being one 

of the co-discoverers of 

the structure of the DNA 

molecule in 1953. He, 

James D. Watson, and 

Maurice Wilkins were 

jointly awarded the 1962 

Nobel Prize for 

Physiology or Medicine 

"for their discoveries 

concerning the molecular 

structure of nucleic acids 

and its significance for 

information transfer in 

living material". 
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xi Kary Banks Mullis (1944-

) is an American 

biochemist who 

developed the polymerase 

chain reaction (PCR), a 

central technique in 

biochemistry and 

molecular biology which 

allows the amplification of 

specified DNA sequences, 

for which he was awarded 

the Nobel Prize in 

Chemistry and the Japan 

Prize in 1993. 

xii The t-statistic was 

introduced by William 

Sealy Gosset for cheaply 

monitoring the quality of 

beer brews. "Student" was 

his pen name. Gosset was 

a statistician for the 

Guinness brewery in 

Dublin, Ireland, and was 

hired due to Claude 

Guinness's innovative 

policy of recruiting the 

best graduates from 

Oxford and Cambridge to 

apply biochemistry and 

statistics to Guinness' 

industrial processes. 

Gosset published the t test 

in Biometrika in 1908, but 

was forced to use a pen 

name by his employer 

who regarded the fact that 

they were using statistics 

as a trade secret. In fact, 

Gosset's identity was 

unknown not only to 

fellow statisticians but to 

his employer—the 

company insisted on the 

pseudonym so that it 

could turn a blind eye to 

the breach of its rules. 


